TW201245633A - Illumination article and device for front-lighting reflective scattering element - Google Patents
Illumination article and device for front-lighting reflective scattering element Download PDFInfo
- Publication number
- TW201245633A TW201245633A TW101106328A TW101106328A TW201245633A TW 201245633 A TW201245633 A TW 201245633A TW 101106328 A TW101106328 A TW 101106328A TW 101106328 A TW101106328 A TW 101106328A TW 201245633 A TW201245633 A TW 201245633A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- layer
- refractive index
- region
- variable
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/004—Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
- G02B6/0043—Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0058—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
- G02B6/006—Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to produce indicia, symbols, texts or the like
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
201245633 六、發明說明: 【發明所屬之技術領域】 本申請案概言之係關於適用於前照明反射物件中之照明 系統,其中特定應用係採用與光導組合使用之光學旗之照 明系統。 本申請案涉及與其在同-日期提出巾請且以引用方式併 入本文中之下列美國臨時專利申請案:「Fr〇nt_Lit201245633 VI. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present application relates generally to illumination systems suitable for use in front-illuminated reflective articles, wherein the particular application employs an optical flag illumination system for use in combination with a light guide. This application is related to the following U.S. Provisional Patent Application, which is hereby incorporated by reference in its entirety in its entirety herein in
Reflective Display Device and Method of Front-Lighting Reflective Display」(美國臨時申請案第61/446,74〇號)及Reflective Display Device and Method of Front-Lighting Reflective Display" (US Provisional Application No. 61/446, No. 74) and
Variable Index Light Extraction Layer and Method of Illuminating With Same」(美國臨時申請案第 61/446,642 號)。 【先前技術】 照明系統或裝置(例如彼等用於將物體照明或在電子顯 示器系統中提供照明者)利用一或多個光學層來管控由一 或多個光源發射之光。通常,光學層需要具有期望之光學 透射率、光學霾度、光學清晰度或折射率。在許多應用 中,光學層包含與空氣層及光汲取層組合使用之光導以便 由光源發射之光在光導内傳輸’且該空氣層及該汲取層藉 由支持來自該光導之光之全内反射(TIR)及汲取來管控該 光。業内仍需要能夠管控光並適用於薄撓性系統以及大型 系統之光學膜。 【發明内容】 本申請案概言之係關於適用於前照明反射物件中之照明 162607.doc 201245633 系統,特定申請案係關於使用與光導組合使用之光學膜之 照明系統。本中請案闡述照明系統之組件,該等級件包含 一或多個光學層或膜、光源及反射散射元件。光學膜可包 含可變折射率光沒取層,該可變折射率光沒取層具有諸如 折射率、霾度、透光率、清晰度或其組合等性質有所不同 之區域。光學膜管控由光源發射之光,由此增加光之空間 均勻性,然後將光遞送至反射散射元件。此光由反射散射 元件朝向觀察者反射。 在一態樣中,本申請案闡述照明物件,該照明物件包含 與光導光學耦合之可變折射率光汲取層。可變折射率光汲 取層具有第一及第二區域,其中該第一區域包含奈米空隙 聚合材料’且該第二區域包含奈米空隙聚合材料及其他材 料。第一及第二區域經佈置以便對於由光源發射並注入光 導中之光而言,可變折射率光汲取層基於該等第一及第二 區域之幾何配置以預定方式選擇性汲取該光。 照明物件可用作具有適用於不同應用之光學性質之高性 能光學物件。舉例而言,第一區域可具有小於約5%之霾 度及大於約90%之清晰度,及/或該層可具有大於約9〇%之 透光率。對於另一實例而言,該層可具有小於約1〇%之霾 度及大於約90。/。之清晰度。第一及第二區域可在層之橫向 平面上係連續的,或其可不連續而配置成圖案或隨機佈 置。照明物件可經設計以展現隨第一及第二區域之相對面 積而變之特定光學性質。舉例而言,第二區域可佔層之橫 向平面之面積之約5%至約60%。 162607.doc 201245633 在另一態樣中,本申請案闡述照明總成,該照明總成包 含上述照明物件與反射散射元件之組合。反射散射元件可 包含不同類型之反射器,或該元件可包含圖形。 . 在另一態樣中,本申請案闡述光學裝置,該光學裝置包 J 含光源與照明物件之組合。亦闡述前打光散射元件。 r 以上概述並不意欲闡述本揭示内容之每一揭示實施例或 每一實施方式。下文之圖及詳細闡述更具體地例示說明性 實施例。 【實施方式】 一般而言,本文所揭示之可變折射率光汲取層包括至少 兩個不同區或區域’其中可以不同方式管控入射至該層上 之任一角度之光’此乃因該荨區域具有不同折射率。可變 折射率光汲取層可用於各種光學膜構造、總成及裝置中, 如(例如)「Front-Lit Reflective Display Device and Method of Front-Lighting Reflective Display」(代理槽案號: 66858US002)及「Variable Index Light Extraction Layer andVariable Index Light Extraction Layer and Method of Illuminating With Same (US Provisional Application No. 61/446,642). [Prior Art] Lighting systems or devices (e.g., those used to illuminate objects or provide illumination in an electronic display system) utilize one or more optical layers to control the light emitted by one or more light sources. Generally, the optical layer needs to have a desired optical transmittance, optical intensity, optical clarity, or refractive index. In many applications, the optical layer comprises a light guide for use in combination with an air layer and a light extraction layer such that light emitted by the light source is transmitted within the light guide and the air layer and the capture layer support total internal reflection from light from the light guide (TIR) and capture to control the light. There is still a need in the industry for optical films that can be controlled and used in thin flexible systems as well as large systems. SUMMARY OF THE INVENTION The present application is generally directed to illumination suitable for use in a front-illuminated reflective article 162607.doc 201245633 system, the particular application being directed to an illumination system using an optical film for use in combination with a light guide. The present application sets out the components of the illumination system that include one or more optical layers or films, light sources, and reflective scattering elements. The optical film may comprise a variable refractive index light absorbing layer having regions having different properties such as refractive index, twist, light transmittance, sharpness, or a combination thereof. The optical film controls the light emitted by the light source, thereby increasing the spatial uniformity of the light and then delivering the light to the reflective scattering element. This light is reflected by the reflective scattering element towards the viewer. In one aspect, the application sets forth an illumination article comprising a variable index optical pickup layer optically coupled to a light guide. The variable index optical pickup layer has first and second regions, wherein the first region comprises a nanovoided polymeric material' and the second region comprises a nanovoided polymeric material and other materials. The first and second regions are arranged such that, for light emitted by the light source and injected into the light guide, the variable index light extraction layer selectively extracts the light in a predetermined manner based on geometric configurations of the first and second regions. Illuminating objects can be used as high performance optical objects with optical properties suitable for different applications. For example, the first region can have a degree of less than about 5% and greater than about 90% clarity, and/or the layer can have a light transmission greater than about 9%. For another example, the layer can have a twist of less than about 1% and a thickness of greater than about 90. /. The clarity. The first and second regions may be continuous in the transverse plane of the layer, or they may be discontinuously arranged in a pattern or randomly arranged. The illuminating article can be designed to exhibit specific optical properties as a function of the relative area of the first and second regions. For example, the second region can comprise from about 5% to about 60% of the area of the transverse plane of the layer. 162607.doc 201245633 In another aspect, the application sets forth a lighting assembly that includes a combination of the above-described illuminating article and a reflective scatter element. The reflective scattering element can comprise a different type of reflector, or the element can comprise a graphic. In another aspect, the application sets forth an optical device that includes a combination of a light source and an illumination item. The front light scattering element is also described. r The above summary is not intended to illustrate each disclosed embodiment or each embodiment of the present disclosure. The following figures and detailed descriptions more specifically illustrate the illustrative embodiments. [Embodiment] In general, the variable index optical pickup layer disclosed herein includes at least two different regions or regions 'where the light incident to any angle on the layer can be controlled in different ways'. The regions have different refractive indices. The variable index light extraction layer can be used in various optical film constructions, assemblies, and devices, such as, for example, "Front-Lit Reflective Display Device and Method of Front-Lighting Reflective Display" ("Agent Case Number: 66858US002") and " Variable Index Light Extraction Layer and
Method of Illuminating With Same」(代理樓案號. . 67310US002)(其與本文在同一曰期提出申請且以引用方式 \ 併入本文117)中所述。 -· 可變折射率光汲取層係用於汲取以超臨界角度在毗鄰層 中穿行之光之光學層’而同時對於入射至該汲取層上之亞 臨界角度光具有較少光散射(甚至沒有光散射)。可變折射 率光汲取層自諸如透明層等毗鄰層汲取光,且可將所沒取 光遞送至物件或元件中以便將物件或元件照明。可變折射 162607.doc 201245633 率f層並不具有顯著地或在功能上散射光之特徵。因 此’在透過該層觀看時,如圓15b中所展示,該層之相對 側上之影像及物體具有較少失真。理想地,第—及第二區 域中之材料具有不同折射率,且皆具有高透射性與極㈣ 度。在可變折㈣歧取層以物理方式附接至光導、反射 散射元件或反射顯示器且進行光學耗合時,制中之第一 及第二區域可經成型及配置以得到具有高清晰度、低霾度 及高透光率之層。 可變折射率光絲層容許光導透明以在存在及不存在照 :之情形下展現較小霾度(甚至沒有霾度)及高清晰度。此 容許觀察反射顯示器上之影像或觀察圖形,其中解析度及 對比度並不顯著減小’ i由不同區域散射或繞射之光並不 生成可見光學假影。在傳統光導中,汲取層具有光散射特 徵以引導在光導内藉由光導中之TIR(以等於或大於臨界角 度之角度)傳輸之光離開%導。該等光散射特徵通常包括 漫反射印刷之汲取點或結構,該等汲取點或結構佈置於光 導表面上或蝕刻至光導表面中,此導致在透過光導觀看時 觀察品質顯著減小。 除光學益處外,可藉由適於高速、低成本製造之相對簡 單之塗覆及印刷技術來產生可變折射率光汲取層。 本揭不内容概言之係關於聚合光學膜或層,該等聚合光 學膜或層展現高折射率樣光學性質及低折射率樣光學性質 之區域,或以其他方式與光之透射、散射、吸收、折射或 反射相互作用《高折射率樣光學性質及低折射率樣光學性 162607.doc 201245633 質之區域在光學層之橫向平面上有所變化,亦即,該光學 層係可變折射率光學層。在本揭示内容通篇中,術語「折 射率(indeX)」通常用於代替折射率(index of refraction或 refractive index)。本文所揭示可變折射率光沒取層之橫向 平面可闡述為與該層之至少一個主表面平行之平面。 圖13展示㈣性可變折射率紋取層_之示意性橫截 面該;及取層包括第一區域14〇3及M〇b,該等區域包括奈 米空隙聚合材料。為—J.L ^ y ., . 寸在些貫施例中,奈米空隙聚合材料包 括複數個互連奈米空隙,如评〇 2〇1〇/12〇422 A〗(K〇lb等 人)及W〇 2〇1〇/120468 A1 (Kolb等人)中所述。複數個互連 奈米空隙係分散於黏合劑中之奈米空隙之網絡其中至少 -些奈米空隙經由空心隧道或空心隧道樣通路彼此連接。 包括互連奈米空隙之奈米空隙聚合材料具有可 之-或多個表面之奈米空隙或孔I 材枓 可變折射率光沒取層包括佈置於第一區域14〇績鳴之 間之第二區域130。第二區域包括奈米空隙聚合材料及苴 他m些實施例中,此其他材料佔據奈米空隙聚^ 材料之空隙體積之至少-部分。在本揭示内容通篇中,; 截面及平面圖中之虛線用於指示第一及第二區域之—般位 置’然而’該等虛線並不意欲闡述該等區域之間之任一又類 邊界。 圖μ示佈置於透明⑽㈣上之實例性 取層之示意性橫截面。光學膜奶包㈣ (其係相基板U之可變折㈣歧取層100。可變折射率 162607.doc 201245633 光;及取層100包括第一區域14〇a及l4〇b及佈置於該等第— 區域之間之第二區域13〇。 一般而言,藉由所包括材料與區域之折射率之組合來鑑 別區或區域。第-區域包括奈米空隙聚合材料且具有第一 折射率;6Γ實質上所有區域皆包括奈米空隙聚合材料且若 /區域在°亥層之連續橫向平面上具有±0.02内之折射率, 則將該區域鑑別為第一區域。測定層之橫向平面上之折射 率之方法闡述於下文中。 第二區域包括奈米空隙聚合材料及其他材料,且具有鱼 =折:率相差至少約0.03之第二折射率。第一及第二區 可=米空隙聚合材料係相同材料。若材料實質上納入 二3 ,取層内並使得第-區域之折射率變化至少 如:約0.03至約〇·5、約。。5至約叫咖 )則將忒材料視為其他材料。 -實施例令,其他材料與用 料之黏合劑不同。在一此實施❹甘成不水工隙聚合材 奈米空隙聚人心 ^施财,其他材料與用於形成 承聚σ材料之黏合劑相同。 米空隙聚合材料 區域皆包括奈 續橫向平面上具右)域在可變折射率光沒取層之連 則將該區域 第-區=!Γ,°2内之折射率,且㈣該區域具有與 梦別為Γ 少約_之折射率, &別為第二區域。 在一些實施例中,可變折射率 ^ 材料與已形成—些期望形狀(例如層)之太組合其他 之部分來製得。將足夠其他材料與奈米空隙 162607.doc 201245633 、便得到期望折射率變化,且該變化為至少約Ο。〗,例 女、力〇·03至約0 5、約0.〇5至約〇.5或約〇.〇5至約0.25。 可變折射率光汲取層包括第一及第二區域,該等第一及 第一區域經彼此相對佈置以便對於在毗鄰層中以超臨界角 度傳輸之光而言,可變折射率光汲取層基於第一及第二區 域之幾何配置以預定方式選擇性:¾取該光。如本文所使 用’超臨界角度係等於或大於由可變折射率光汲取層之第 一區域與毗鄰層形成之給定界面之臨界角度(藉由第一區 域與晚鄰層之間之折射率差測得)的角度。臨界角度係自 一種介質傳遞至另一較小折射率介質之光線可自兩種介質 間之邊界全反射之最小入射角。 參照圖lb (其係圖ia之簡化圖),由光線15〇及16〇代表之 光藉由TIR在毗鄰層120内傳輸^在此實施例中,第一區域 140a及140b之折射率遠小於界定所示臨界角度1之毗鄰層 之折射率。以由光線150代表之超臨界角度穿行之光撞擊 毗鄰層120與第一區域140b之間之界面,且光線15〇之此入 射角大於Θ。’此使得實質上所有光皆在界面處反射。 同樣,在此實施例中,第二區域13〇之折射率近似等於 或大於毗鄰層1 20之折射率。在此情況下,在界面處沒有 臨界角度且由光線160代表之光通過毗鄰層12〇與第二區域 130之間之界面,由此自毗鄰層汲取至第二區域中。 因此’對於圖la及圖lb中所展示之實施例而言,第一及 第二區域經彼此相對佈置以便在毗鄰層中以超臨界角度傳 輸之光可由可變折射率光汲取層基於第一及第二區域之幾 162607.doc 201245633 何配置以預定方式選擇性汲取。 圖lc展示光以亞臨界角度碰撞她鄰層之光學膜之示 意性橫截面。由光線18〇及刚代表之光以亞臨界角度碰撞 毗鄰層120之表面170,且光基本上無偏離地穿過層12〇及 100。由光線190代表之光穿過第一區域14讥,且由光線 180代表之光穿過第二區域13〇。穿過可變折射率光汲取層 100之不同區域之光具有較小偏離(甚至沒有偏離)。此產生 具有低霾度及高清晰度之光學膜(例如實例性光學膜105), 以便在透過光學膜觀看時相對側上之影像具有較少失真 (甚至沒有失真)。可變折射率光汲取層之第一及第二區域 可具有任一幾何配置以產生期望汲取光圖案。 般而5,可變折射率光汲取層之折射率特徵可以任一 方式有所變化,只要獲得該層之期望光學性能即可。圖2 繪不折射率可在層之橫向平面上有所變化之可變折射率光 汲取層。折射率特徵曲線展示平面圖中之層之距_之圖 線’距離d對應於層之橫向平面上之距離。圖2展示,在對 應於d。之層上之一些初始位置處’層具有對應於第一區域 之第一折射率nl。跨越層之橫向平面進行移動,觀測到第 折射率⑴直至達到dl為止,其中層之折射率突然增加至 對應於第二區域之策-从4+ Φ 弟一折射率之〜。繼續跨越層之橫向平 面移動,觀測到第二折射率n2直至達料為止,其中層之 折射率突然降低至指示第一區域之…。 分別具有低折射率及高折射率之兩個桃鄰第—及第二區 域間之折射率之變化可以諸多方式有所變 舉例而言, I62607.doc 201245633 兩個毗鄰區域之間之折射率變化可為突然性,士。同在階梯 函數中。對於另一實例而言,折射率變化可為單調性,其 令折射率連續增加或降低(端視隨著分別自第—區域移動 至第二區域抑或自第二區域移動至第—區域來觀測變 化)。在一些情形下,毗鄰第一及第二區域之第一及第二 折射率隨著階梯函數與單調函數之—些組合而有所變化。 可變光&取層之第—區域之折射率小於第:區域之折射 率。舉例而言’第-折射率可小於約14、小於約! 3或小 於約1,2。第-折射率可為約1.15至約i.45、約h2至約 1.42、約1.2至約uo或約1 2至約i 35。—般而言,特定第 -及第二折射率以及二者之特定差取決於下文所述可變折 射率光汲取層之期望光學性能。第一及第二區域間之折射 率差大於約0.03。在一些實施例中,第一及第二區域間之 折射率差大於G.05、大於G.l、大於0.2或大於〇·25。 奈米空隙聚合材料通常包括複數個互連奈米空隙或分散 於黏”中之奈米空隙之網絡。複數個奈米m網絡中 之至少-些奈米空隙經由空心隧道或空㈣道樣通路彼此 j接奈米空隙未必不含所有物質及/或微粒。舉例而 5 ’在-些情形下,奈米空隙可包含—或多種包含(例如) 黏口剤及/或奈米顆粒之較小纖維樣或線樣物體。所揭示 :-些第-區域包含多個複數個互連奈米空隙或多個奈米 空隙網絡,其中各複數個奈米空隙或網絡中之奈米空:皆 連在些1情形下,除' 多個複數個互連奈米空隙外,所 揭不之第—區域可包含密閉或未連接奈米空隙部分,此意 162607.doc 201245633 味者該等奈米空隙並未經由㈣與其他奈Μ隙連接。 不米工隙聚合材料經設計以藉助包含複數個奈米空隙來 支持TIR。當在光學透明(澄清及非多孔Μ鄰層中穿行之 光入射至具有高孔隙率之層時,入射光之反射率在斜角處 比垂直入射時高很多。在具有較小霾度(甚至沒有霾度)之 奈米空隙第—區域之愔# π , L·域之It形下’大於臨界角度之斜角處之反 射率接近約1GG%。在料情料,人射光發生™。 所揭示第-區財之奈米空隙具有折射率nv及介電常數 %,2其中ην2=εν,且黏合劑具有折射率nb及介電常數Sb,其 中nb 。一般而言,奈米空隙聚合材料層與光(例如入射 至該層或在該層中傳播之光)之相互作用取決於諸多層特 性,例如層厚度、黏合劑折射率、奈米空隙或孔隙之折射 率、孔隙之形狀及尺寸、孔隙之空間分佈及光之波長。在 二It形下,入射至奈米空隙聚合材料層或在奈米空隙聚 合材料層内傳播之光「經歷」或「體驗」有效介電常數Method of Illuminating With Same, which is hereby incorporated by reference in its entirety herein by reference in its entirety in its entirety in the the the the the the the the the - a variable index light extraction layer for extracting an optical layer of light traveling in an adjacent layer at a supercritical angle while having less light scattering (or even no light) for subcritical angle light incident on the extraction layer Light scattering). The variable refractive index light extraction layer extracts light from an adjacent layer, such as a transparent layer, and can deliver the unexposed light into an object or component to illuminate the object or component. Variable Refraction 162607.doc 201245633 The rate f layer does not have the characteristic of scattering light significantly or functionally. Thus, as viewed through the layer, as shown in circle 15b, the images and objects on the opposite side of the layer have less distortion. Ideally, the materials in the first and second regions have different refractive indices and both have high transmission and polar (four) degrees. When the variable-fold (four) distracting layer is physically attached to the light guide, the reflective scattering element, or the reflective display and optically constrained, the first and second regions of the system can be shaped and configured to achieve high definition, Layer of low twist and high light transmittance. The variable index filament layer allows the light guide to be transparent to exhibit less twist (even without twist) and high definition in the presence and absence of illumination. This allows viewing of the image or viewing pattern on the reflective display where the resolution and contrast are not significantly reduced. i. Light scattered or diffracted by different regions does not produce visible optical artifacts. In conventional light guides, the capture layer has light scattering characteristics to direct light exiting within the light guide by TIR (at an angle equal to or greater than the critical angle) in the light guide. Such light scattering features typically include a draw point or structure of diffusely printed dots disposed on or etched into the surface of the light guide, which results in a significant reduction in viewing quality as viewed through the light guide. In addition to optical benefits, variable refractive index light extraction layers can be produced by relatively simple coating and printing techniques suitable for high speed, low cost manufacturing. SUMMARY OF THE INVENTION The present disclosure relates to polymeric optical films or layers that exhibit regions of high refractive index-like optical properties and low refractive index-like optical properties, or otherwise transmit and scatter with light, Absorption, refraction, or reflection interactions "High refractive index-like optical properties and low refractive index-like optical properties" 162607.doc 201245633 The region of the mass varies in the transverse plane of the optical layer, that is, the optical layer is a variable refractive index. Optical layer. Throughout this disclosure, the term "indeX" is commonly used in place of index of refraction or refractive index. The transverse plane of the variable refractive index light-extracting layer disclosed herein can be illustrated as a plane parallel to at least one major surface of the layer. Figure 13 shows a schematic cross section of a (four) variable refractive index textured layer; and the etch layer includes first regions 14 〇 3 and M 〇 b, the regions including nano void polymeric materials. For -JL ^ y ., . In some examples, the nanovoided polymeric material includes a plurality of interconnected nanovoids, such as the evaluation of 2〇1〇/12〇422 A (K〇lb et al.) And W〇2〇1〇/120468 A1 (Kolb et al.). A plurality of interconnected nanovoids are networks of nanovoids dispersed in the binder, wherein at least some of the nanovoids are connected to each other via a hollow tunnel or a hollow tunnel-like passage. A nanovoided polymeric material comprising interconnected nanovoids having nano-voids or pores of a surface or a plurality of surfaces, the variable refractive index light-missing layer comprising being disposed between the first region 14 The second area 130. The second region comprises a nanovoided polymeric material and, in some embodiments, the other material occupies at least a portion of the void volume of the nanovoided polymeric material. Throughout the disclosure, the dashed lines in cross-section and plan view are used to indicate the general position of the first and second regions. However, the dashed lines are not intended to illustrate any of the other types of boundaries between the regions. Figure 51 shows a schematic cross section of an exemplary layer taken on a transparent (10) (four). Optical film milk package (4) (which is a variable-folding (four) distracting layer 100 of the phase substrate U. Variable refractive index 162607.doc 201245633 light; and the layer 100 includes first regions 14〇a and 14b and is disposed thereon The second region 13 〇 between the regions. In general, the region or region is identified by a combination of the refractive index of the included material and the region. The first region includes a nanovoided polymeric material and has a first refractive index. 6Γ substantially all regions include a nanovoided polymeric material and if the region has a refractive index within ±0.02 on a continuous transverse plane of the layer, the region is identified as the first region. The lateral plane of the layer is determined The method of refractive index is set forth below. The second region includes nanovoided polymeric materials and other materials, and has a second refractive index of fish = fold: a difference of at least about 0.03. The first and second regions can be = m voids The polymeric material is the same material. If the material is substantially incorporated into the second layer, the layer is taken into the layer and the refractive index of the first region is changed at least as follows: about 0.03 to about 〇·5, about 5. 5 to about 咖. Treated as other materials. - Example, the other materials are different from the binder of the material. In this case, the implementation of the non-aqueous gap polymer material of the nano-gap is concentrated. The other materials are the same as the binder used to form the sigma-containing material. The m-gap polymeric material region includes a right-hand side in the transverse plane, and the variable refractive index light-missing layer is connected to the region-region=!Γ, the refractive index in °2, and (4) the region has And the dream is not Γ less than the refractive index, & not the second area. In some embodiments, the variable index of refraction material is made in combination with other portions of the desired shape (e.g., layers) that have been formed. A sufficient amount of other material is used with the nanovoid 162607.doc 201245633 to obtain a desired refractive index change, and the change is at least about Ο. 〗 〖, female, force 〇 03 to about 0 5, about 0. 〇 5 to about 〇. 5 or about 〇. 〇 5 to about 0.25. The variable index light extraction layer includes first and second regions that are disposed opposite one another such that the variable index light extraction layer is for light transmitted at a supercritical angle in an adjacent layer The light is selectively selected in a predetermined manner based on the geometric configuration of the first and second regions: the light is taken. As used herein, the 'supercritical angle is equal to or greater than the critical angle of a given interface formed by the first region of the variable refractive index light-extracting layer and the adjacent layer (by the refractive index between the first region and the late neighboring layer) The angle measured by the difference. The critical angle is the minimum angle of incidence at which light from one medium to another smaller refractive index medium can be totally reflected from the boundary between the two mediums. Referring to FIG. 1b (which is a simplified diagram of the diagram ia), the light represented by the rays 15 〇 and 16 传输 is transmitted in the adjacent layer 120 by TIR. In this embodiment, the refractive indices of the first regions 140a and 140b are much smaller than The refractive index of the adjacent layer of the critical angle 1 shown is defined. Light passing through the supercritical angle represented by the ray 150 strikes the interface between the adjacent layer 120 and the first region 140b, and the incident angle of the ray 15 is greater than Θ. This causes substantially all of the light to be reflected at the interface. Also, in this embodiment, the refractive index of the second region 13 is approximately equal to or greater than the refractive index of the adjacent layer 120. In this case, there is no critical angle at the interface and the light represented by ray 160 passes through the interface between the adjacent layer 12 and the second region 130, thereby being drawn from the adjacent layer into the second region. Thus, for the embodiments shown in FIGS. 1a and 1b, the first and second regions are arranged opposite each other such that light transmitted at a supercritical angle in the adjacent layer can be based on the variable refractive index light extraction layer based on the first And the second area 162607.doc 201245633 How to configure selective extraction in a predetermined manner. Figure lc shows a schematic cross section of an optical film that strikes her adjacent layer at a subcritical angle. The surface 170 of the adjacent layer 120 is struck at a subcritical angle by the light 18 〇 and the light just represented, and the light passes through the layers 12 and 100 substantially without deviation. Light represented by ray 190 passes through first region 14 讥 and light represented by ray 180 passes through second region 13 〇. Light passing through different regions of the variable index light extraction layer 100 has a small deviation (or even no deviation). This produces an optical film (e.g., exemplary optical film 105) having low twist and high definition such that the image on the opposite side has less distortion (or even no distortion) when viewed through the optical film. The first and second regions of the variable index light extraction layer can have any geometric configuration to produce a desired captured light pattern. In general, the refractive index characteristics of the variable index optical pickup layer can be varied in any manner as long as the desired optical properties of the layer are obtained. Figure 2 depicts a variable index light extraction layer with a non-refractive index that varies across the transverse plane of the layer. The refractive index characteristic curve shows the distance from the layer in the plan view. The line 'distance d corresponds to the distance in the lateral plane of the layer. Figure 2 shows that corresponds to d. The layer at some initial locations on the layer has a first index of refraction nl corresponding to the first region. Moving across the transverse plane of the layer, the first index of refraction (1) is observed until reaching dl, where the refractive index of the layer suddenly increases to correspond to the second region - from 4 + Φ to the refractive index of ~. Continuing to move across the lateral plane of the layer, a second index of refraction n2 is observed until the material is reached, wherein the refractive index of the layer suddenly drops to indicate the first region. The change in refractive index between two adjacent and second regions having a low refractive index and a high refractive index, respectively, can be varied in many ways. For example, I62607.doc 201245633 refractive index change between two adjacent regions Can be sudden, gentle. Same in the ladder function. For another example, the change in refractive index may be monotonic, which causes the refractive index to continuously increase or decrease (observation as the end moves from the first region to the second region or from the second region to the first region, respectively). Variety). In some cases, the first and second indices of refraction adjacent the first and second regions vary with some combination of a step function and a monotonic function. The refractive index of the first region of the variable light & layer is smaller than the refractive index of the first region. For example, the 'first-index' can be less than about 14, less than about! 3 or less than about 1,2. The first refractive index can range from about 1.15 to about i.45, from about h2 to about 1.42, from about 1.2 to about uo, or from about 12 to about i35. In general, the particular first and second indices of refraction and the particular difference between the two depend on the desired optical properties of the variable refractive index light extraction layer described below. The difference in refractive index between the first and second regions is greater than about 0.03. In some embodiments, the difference in refractive index between the first and second regions is greater than G.05, greater than G.l, greater than 0.2, or greater than 〇25. The nanovoided polymeric material generally comprises a plurality of interconnected nano-voids or a network of nano-voids dispersed in the viscous". At least some of the nano-mesh in the plurality of nano-m networks are via a hollow tunnel or an empty (four) path-like path. The nano-spaces of each other are not necessarily free of all substances and/or particles. For example, in some cases, the nanovoids may contain - or a plurality of, for example, smaller viscous enthalpy and/or nano granules. Fibrous or wire-like objects. It is revealed that: some of the first-regions comprise a plurality of interconnected nano-voids or a plurality of nano-void networks, wherein each of the plurality of nano-voids or nano-spaces in the network: In some cases, except for the plurality of interconnected nano-voids, the first-area region may include a closed or unconnected nano-void portion, which means that the nano-voids are 162607.doc 201245633 Not connected to other nappe gaps via (iv). The non-gap polymeric materials are designed to support TIR by including a plurality of nanovoids. When optically transparent (clear and non-porous, adjacent layers of light are incident on the Incident light when layer of high porosity The reflectivity is much higher at the oblique angle than at the normal incidence. In the case of a nano-void with a small twist (or even no twist), the 愔# π , the L-domain of the It shape is larger than the critical angle The reflectance at the corner is close to about 1 GG%. In the case of material, the human light occurs TM. The disclosed N-band gap has a refractive index nv and a dielectric constant %, 2 where ην2 = εν, and the adhesive has Refractive index nb and dielectric constant Sb, where nb. In general, the interaction of the nanovoided polymeric material layer with light (eg, light incident on or in the layer) depends on various layer characteristics, such as layers Thickness, refractive index of the binder, refractive index of the nanovoids or pores, shape and size of the pores, spatial distribution of the pores, and wavelength of light. In the second It shape, incident on the nanovoided polymeric material layer or in the nanovoids The "experience" or "experience" effective dielectric constant of light propagating within a layer of polymeric material
Seff及有效折射率neff ’其中neff可根據奈米空隙折射率nv、 黏合劑折射率nb及奈米空隙之孔隙率或體積分率「f」來表 不°在該等情形下’層足夠厚且奈米空隙足夠小以便光不 能分辨單一或分離奈米空隙之形狀及特徵。在該等情形 下’至少大部分奈米空隙(例如至少60%或70%或80%或 90%之奈米空隙)之尺寸不大於約λ/5或不大於約λ/6或不大 於約λ/8或不大於約λ/10或不大於約λ/20,其中χ係光之波 長。 在一些實施例中,入射至可變光汲取層之所揭示第一區 162607.doc • 12- 201245633 域中之光係可見光,其波長範圍可為約3 80 nm至約750 nm 或約400 nm至約700 nm或約420 nm至約680 nm »在該等情 形下’若至少大部分奈米空隙(例如至少60%或70%或80% 或90。/。之奈米空隙)之尺寸不大於約7〇 ηπ1或不大於約60 nm 或不大於約50 nm或不大於約40 nm或不大於約30 nm或不 大於約20 nm或不大於約1 〇 nm ’則可變光汲取層之第一區 域具有有效折射率且包含複數個奈米空隙。 在一些情形下’可變折射率光汲取層之所揭示第一區域 足夠厚,以便該區域可適當地具有可根據奈米空隙及黏合 劑之折射率及奈米空隙或孔隙之體積分率或孔隙率來表示 之有效折射率。在該等情形下,第一區域之厚度不小於約 100 nm或不小於約200 nm或不小於約5〇〇 nm或不小於約 700 nm或不小於約〖,〇〇〇 ηηι。 在所揭示第一區域中之奈米空隙足夠小且該區域足夠厚 時,該第一區域之有效介電常數%汀可表示如下: £eff=f Ev + (l-f) 8b ⑴ 在該等情形下’第一區域之有效折射率^可表示如下: 广心⑽ ⑺ 在-些情形下’例如在孔隙及黏合劑之折射率間之差足夠 小時,第-區域之有效折射率可近似地表示如下: neff=f nv+(l-f) nb (3) 二省等“下’第一區域之有效折射率係奈米空隙及黏合 :丨之折射率之體積加權平均值。舉例而言,空隙體積分率 為約观且黏合劑之折射率為約15之第—區域之有效折射 162607.doc •13· 201245633 率為約1.25。 圖3係可變折射率光汲取 m ,F ^ 之第一區域之示意性橫截面 囫’該第一區域包含牟半允 ^二隙、凋絡或複數個連 及複數個實質上均勻分鄱认*人 逆不木工丨系 散於黏合劑内之顆粒。第一區域 300包括複數個分散於黏合 齊310中之互連奈米空隙320。 奈米空隙320包含互連+半* 史不木空隙320A-320C。第一及第二主 表面3 3 0及3 3 2分別係吝a认 一 .你夕孔的,如藉由表面孔隙320D_Gm 示’表面孔隙320D-G可福徂+、-r τ ΐβ J挺供或可不提供自一個表面延伸至 另-表面或穿過區域厚度之隧道。一些奈米空隙(例如奈 米空隙3細及賊)位於第—區域内部且可通向或可不通 向表面。 空隙320之尺寸d丨通當可由一 κ㊉』猎由選擇適宜之組成及製造過 程來加以控制,例如塗覆、乾燥及固化條件。一般而言, 旬可為任一期望值範圍中之任一期望值。舉例而言,在一 些情形下,至少大部分奈米空隙(例如至少6〇%或7〇%或 80%或90%或95%之奈米空隙)之尺寸在期望範圍内。舉例 而5,在一些情形下,至少大部分奈米空隙(例如至少6〇% 或70%或80%或90%或95%之奈米空隙)之尺寸不大於約5〇〇 nm '不大於400 nm、不大於約300 nm、不大於約200 nm、不大於約1〇〇 nm、不大於約7〇 ηιη或不大於約50 nm。在一些情形下,一些奈米空隙可足夠小以便改變區域 之折射率,且具有較少或沒有光散射。 黏合劑3 1 0可包括任一材料’例如聚合物。黏合劑可為 自包括單體之可聚合組合物形成之聚合物,其中該等單體 162607.doc -14· 201245633 係使用以下方式進行固化:光化輻射,例如,可見光、紫 外輻射、電子束輻射、熱量及其組合;或可以化學方式戋 熱方式引發之各種習用陰離子、陽離子、自由基或其他聚 合技術中之任一者。可使用溶劑聚合、乳液聚合、懸浮液 聚合、整體聚合及諸如此類來實施聚合:有用單體包含分 子量小於約5〇〇g/莫耳之小分子、分子量大於5〇〇g/莫耳: 約10,000 g/莫耳之寡聚物及分子量大於1〇 〇〇〇 g/莫耳至約 100,000 g/莫耳之聚合物。 適於實踐本揭示内容之可固化基團之代表性實例包含環 氧基團、烯系不飽和基團、烯烴碳_碳雙鍵、烯丙氧基、 (甲基)丙烯酸酯基團、(甲基)丙烯醯胺基團、氰基酯基 團、乙烯基醚基團、該等基團之組合及諸如此類。單體可 為單官能或多官能且能夠在聚合時形成交聯網絡。如本文 所使用,(甲基)丙烯酸酯係指丙烯酸酯及甲基丙烯酸酯, 且(甲基)丙烯醯胺係指丙烯醯胺及曱基丙婦醯胺。 有用單體包含笨乙烯、α-曱基苯乙烯、經取代苯乙稀、 乙稀基S曰、乙稀基缝、Ν-乙稀基- 2-。比。各β定酮、(曱基)丙烯 醯胺、Ν-取代(曱基)丙烯醯胺、(甲基)丙烯酸辛基酯、(甲 基)丙烯酸異辛基酯、壬基酚乙氧基(甲基)丙烯酸酯、(甲 基)丙烯酸異壬基酯、二乙二醇(甲基)丙烯酸酯、(曱基)丙 烯酸異莰基酯、(甲基)丙烯酸2-(2-乙氧基乙氧基)乙基酯、 (甲基)丙烯酸2-乙基己基酯、(甲基)丙烯酸月桂基酯、丁 二醇單(曱基)丙烯酸酯、(曱基)丙烯酸β_羧基乙基酯、(曱 基)丙烯酸異丁基酯、脂環族環氧化物、α_環氧化物、(甲 162607.doc 15 201245633 基)丙烯酸2-羥乙基酯、(甲基)丙烯腈、馬來酸酐、衣康 酸、(甲基)丙烯酸異癸基酯、(甲基)丙烯酸十二烷基醋、 (甲基)丙稀酸正丁基醋、(甲基)丙稀酸曱醋、(甲基)丙稀酸 己基S旨、(曱基)丙烤酸、N-乙稀基己内酿胺、(曱基)丙烯 酸硬脂基醋、經基官能聚己内酯(甲基)丙烯酸酯、(甲基) 丙烯酸羥乙基酯、(甲基)丙烯酸羥甲基酯、(甲基)丙烯酸 羥丙基酯、(甲基)丙烯酸羥基異丙基酯、(甲基)丙烯酸羥 丁基酯、(曱基)丙烯酸羥基異丁基酯、(曱基)丙烯酸四氫 糠基酯、該等之組合及諸如此類c 官能寡聚物及聚合物亦可在本文中統稱為「較高分子量 成份或種類」。適宜較高分子量成份可納入本揭示内容之Seff and effective refractive index neff 'where neff can be expressed according to the refractive index nv of the nanovoid, the refractive index nb of the binder, and the porosity or volume fraction "f" of the nanovoids. In these cases, the layer is sufficiently thick. And the nanovoids are small enough that the light cannot distinguish the shape and characteristics of the single or separate nanovoids. In such cases, the size of at least a majority of the nanovoids (eg, at least 60% or 70% or 80% or 90% of the nanovoids) is no greater than about λ/5 or no greater than about λ/6 or no greater than about λ/8 or no more than about λ/10 or no more than about λ/20, wherein the wavelength of the lanthanide light. In some embodiments, the visible light of the optical region of the first region 162607.doc • 12-201245633 that is incident on the variable light extraction layer can range from about 3 80 nm to about 750 nm or about 400 nm. To about 700 nm or about 420 nm to about 680 nm » in these cases 'if at least most of the nanovoids (eg at least 60% or 70% or 80% or 90% of the nanovoids) are not More than about 7〇ηπ1 or no more than about 60 nm or no more than about 50 nm or no more than about 40 nm or no more than about 30 nm or no more than about 20 nm or no more than about 1 〇 nm 'the variable optical pickup layer The first region has an effective refractive index and includes a plurality of nanovoids. In some cases, the first region disclosed by the variable refractive index light extraction layer is sufficiently thick so that the region may suitably have a refractive index according to the nanovoid and the binder and a volume fraction of the nanovoid or pore or Porosity is used to indicate the effective refractive index. In such cases, the thickness of the first region is not less than about 100 nm or not less than about 200 nm or not less than about 5 〇〇 nm or not less than about 700 nm or not less than about 〇〇〇, ηηηι. When the nanovoid void in the disclosed first region is sufficiently small and the region is sufficiently thick, the effective dielectric constant % of the first region can be expressed as follows: £eff = f Ev + (lf) 8b (1) In such cases The effective refractive index of the lower first region can be expressed as follows: Center of the heart (10) (7) In some cases, for example, when the difference between the refractive indices of the pores and the binder is sufficiently small, the effective refractive index of the first region can be approximately represented As follows: neff=f nv+(lf) nb (3) The effective refractive index of the lower region of the second province, etc., is the nano-void and adhesion: the volume-weighted average of the refractive index of the crucible. For example, the void volume fraction The ratio is about 1.25607.doc •13·201245633 is about 1.25. The rate is about 1.25. Figure 3 is the variable area refractive index of the first region of m, F ^ The schematic cross-section 囫 'the first region comprises 牟 允 二 二 二 、 凋 凋 凋 凋 凋 凋 凋 凋 凋 凋 凋 及 及 及 及 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 A plurality of interconnected nano-voids 320 dispersed in the bond 310 are included. The nano-voids 320 comprise interconnects + semi-history voids 320A-320C. The first and second major surfaces 3 3 0 and 3 3 2 are respectively identified by a .a. If you pass the surface aperture 320D_Gm Show that 'surface pores 320D-G can be well+, -r τ ΐβ J quite or may not provide a tunnel extending from one surface to the other surface or through the thickness of the region. Some nano-voids (such as nano-voids 3 and The thief is located inside the first region and may or may not be open to the surface. The size of the void 320 may be controlled by a suitable composition and manufacturing process, such as coating, drying and curing conditions. In general, the tenth can be any desired value in any desired range of values. For example, in some cases, at least a majority of the nanovoids (eg, at least 6% or 7% or 80% or 90% or The size of the 95% nanopore) is within the desired range. For example, 5, in some cases, at least a majority of the nanovoids (eg, at least 6% or 70% or 80% or 90% or 95% of the nanometers) The size of the void) is not more than about 5 〇〇 nm 'not more than 400 nm, not more than about 300 nm, not more than about 2 00 nm, no more than about 1 〇〇 nm, no more than about 7 〇 ηηη or no more than about 50 nm. In some cases, some nanovoids may be small enough to change the refractive index of the region with less or no light. The binder may comprise any material such as a polymer. The binder may be a polymer formed from a polymerizable composition comprising a monomer, wherein the monomers 162607.doc -14· 201245633 are used as follows Curing in a manner: actinic radiation, for example, visible light, ultraviolet radiation, electron beam radiation, heat, and combinations thereof; or any of a variety of conventional anions, cations, free radicals, or other polymerization techniques that can be initiated chemically by thermal means. . The polymerization can be carried out using solvent polymerization, emulsion polymerization, suspension polymerization, bulk polymerization, and the like: the useful monomer comprises a small molecule having a molecular weight of less than about 5 g/mole, and a molecular weight of more than 5 g/mole: about 10,000 g/mole oligomers and polymers having a molecular weight greater than 1 〇〇〇〇g/mole to about 100,000 g/mole. Representative examples of curable groups suitable for practicing the present disclosure include epoxy groups, ethylenically unsaturated groups, olefin carbon-carbon double bonds, allyloxy groups, (meth) acrylate groups, Methyl) acrylamide groups, cyano ester groups, vinyl ether groups, combinations of such groups, and the like. The monomers can be monofunctional or polyfunctional and capable of forming a crosslinked network upon polymerization. As used herein, (meth) acrylate refers to acrylate and methacrylate, and (meth) acrylamide refers to acrylamide and decyl propyl amide. Useful monomers include stupid ethylene, alpha-mercaptostyrene, substituted styrene, ethyl sulfonium, ethyl sulphide, fluorenyl-ethylene-2-ene. ratio. Each of β-butanone, (fluorenyl) acrylamide, fluorene-substituted (fluorenyl) acrylamide, octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl phenol ethoxy ( Methyl) acrylate, isodecyl (meth) acrylate, diethylene glycol (meth) acrylate, isodecyl (mercapto) acrylate, 2-(2-ethoxyl) (meth) acrylate Ethoxy)ethyl ester, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, butanediol mono(decyl)acrylate, β-carboxyethyl (mercapto)acrylate Ester, isobutyl (meth) acrylate, alicyclic epoxide, α_epoxide, 2-hydroxyethyl acrylate, methyl 162607.doc 15 201245633, (meth) acrylonitrile, horse Anhydride, itaconic acid, isodecyl (meth)acrylate, lauryl (meth)acrylate, n-butyl methacrylate, (meth) acrylate vinegar, (Methyl)acrylic acid hexyl S, (mercapto) propene acid, N-ethylene hexylamine, (mercapto) stearyl vinegar, trans-functional polycap Ester (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxymethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyisopropyl (meth) acrylate, ( Hydroxybutyl methacrylate, hydroxyisobutyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, combinations thereof, and the like, such as c-functional oligomers and polymers, may also be herein Collectively referred to as "higher molecular weight components or species." Suitable higher molecular weight components can be included in the disclosure
.一 π v q含笨 有聚石夕氧之聚合物、 4物或聚合物包含脂肪族聚胺基甲酸 聚酯、聚醯亞胺、聚醢胺、環氧聚合 笨乙烯之共聚物)及經取代苯乙埽、含 敦化聚合物、該等物質之組合及諸如 162607.doc 201245633 此類。對於一些應用^,聚⑯基甲酸醋及丙稀酸酿寡聚 物及/或聚合物可具有改良之耐久性及耐候性特性。該等 材料亦往往易於溶於自輻射可固化(甲基)丙烯酸酯官能單 體形成之反應性稀釋劑中。 因寡聚物及/或聚合物之芳族成份通常往往具有較差耐 候性及/或較差抗日光性,故芳族成份可限於小於5重量 %、較佳地小於1重量%,且可實質上不包含於本揭示内容 之寡聚物及/或聚合物及反應性稀釋劑中。因此,直鍵、 支鏈及/或環狀脂肪族及/或雜環成份較佳用於形成用於戶 外應用中之寡聚物及/或聚合物。 用於本揭示内容中之適宜輻射可固化募聚物及/或聚合 物包含但不限於(甲基)丙烯酸酯化胺基曱酸酯(亦即,胺基 甲酸酯(甲基)丙烯酸酯)、(曱基)丙烯酸酯化環氧樹脂(亦 即,環氧(甲基)丙烯酸酯)、(曱基)丙烯酸酯化聚酯(亦即, 聚酯(曱基)丙烯酸酯)、(曱基)丙烯酸酯化(曱基)丙烯酸系 物、(曱基)丙烯酸酯化聚矽氧、(曱基)丙烯酸酯化聚醚(亦 即,聚醚(甲基)丙烯酸酯)'(甲基)丙烯酸乙烯基酯及(曱 基)丙烯酸S旨化油。 用於使奈米空隙層3 00韌化之材料包含具有高抗拉強度 及高延伸率之樹脂’例如,購自Sartomer公司之CN9893、 CN902、CN9001、CN961 及 CN964 ;及購自 cytec 之a π vq polymer containing a polyoxo oxygen, a substance or a polymer comprising an aliphatic polyurethane polyester, a polyimine, a polyamine, an epoxy polymerized copolymer of ethylene and the like Substituting phenethyl hydrazine, containing Dunhua polymers, combinations of such materials, and such as 162607.doc 201245633. For some applications, poly 16-formic acid vinegar and acrylic acid oligomers and/or polymers may have improved durability and weatherability characteristics. These materials also tend to be readily soluble in the reactive diluent formed by the self-radiating curable (meth) acrylate functional monomer. Since the aromatic component of the oligomer and/or polymer generally tends to have poor weatherability and/or poor solar resistance, the aromatic component may be limited to less than 5% by weight, preferably less than 1% by weight, and may be substantially Not included in the oligomers and/or polymers and reactive diluents of the present disclosure. Thus, the direct bond, branched chain and/or cyclic aliphatic and/or heterocyclic component are preferably used to form oligomers and/or polymers for use in outdoor applications. Suitable radiation curable polymerizable polymers and/or polymers for use in the present disclosure include, but are not limited to, (meth)acrylated amino phthalates (ie, urethane (meth) acrylates) , (fluorenyl) acrylated epoxy resin (ie, epoxy (meth) acrylate), (fluorenyl) acrylated polyester (ie, polyester (fluorenyl) acrylate), ( Mercapto acrylated (fluorenyl) acrylate, (fluorenyl) acrylated polyoxyl, (fluorenyl) acrylated polyether (ie, polyether (meth) acrylate)' Vinyl acrylate and (mercapto)acrylic acid S. The material for toughening the nanovoided layer 300 includes a resin having high tensile strength and high elongation, e.g., CN9893, CN902, CN9001, CN961, and CN964 from Sartomer; and from cytec.
EBECRYL 4833及Eb8804。適宜韌化材料亦包含「硬」寡 聚丙烯酸酯與「軟」寡聚丙烯酸酯之組合。「硬」丙烯酸 酯之實例包含聚胺基曱酸酯丙烯酸酯(例如EBECRYL 162607.doc •17· 201245633 4866)、聚酯丙烯酸酯(例如EBECRYL 83 8)及環氧丙烯酸酯 (例如 EBECRYL 600、EBECRYL 3200 及 EBECRYL 1608 (購自 Cytec)及 CN2920、CN2261 及 CN9013 (購自 Sartomer 公司))。「軟」丙烯酸酯之實例包含購自Cytec之EBECRYL 8411 ;及購自 Sartomer公司之 CN959、CN9782 及 CN973。 在以佔總固體之5-25重量%範圍(排除溶劑部分)添加至塗 層調配物中時,該等材料可有效地韌化奈米空隙結構化 層0 奈米空隙聚合材料可含有或可不含顆粒。顆粒340之尺 寸(12可為任一期望值範圍中之任一期望值。舉例而言,在 一些情形下,至少大部分顆粒(例如至少60%或70%或80% 或90%或95%之顆粒)之尺寸在期望範圍内。舉例而言,在 一些情形下,至少大部分顆粒(例如至少60%或70%或80% 或90 %或95%之顆粒)之尺寸不大於約5 um或不大於約3 um 或不大於約2 um或不大於約1 um或不大於約700 nm或不大 於約500 nm或不大於約200 nm或不大於約100 nm或不大於 約 50 nm 〇 在一些情形下,顆粒340之平均粒徑不大於約5 um、不 大於約3 um、不大於約2 um、不大於約1 um、不大於約 700 nm、不大於約500 nm、不大於約200 nm、不大於約 100 nm或不大於約50 nm。在一些情形下,一些顆粒可足 夠小以便改變區域之折射率,且具有較少或沒有光散射。 在一些情形下,ch及/或d2足夠小以便改變區域之折射 率,且具有較少或沒有光散射。在該等情形下,舉例而 162607.doc •18· 201245633 言,七及/或旬不大於約λ/5、不大於約λ/6、不大於約λ/8、 不大於約"10、不大於約λ/20,纟中λ係光之波|。根據另 一實例’在該等情形下,d丨及d2不大於約70 nm、不大於約 6〇 nm、不大於約50 nm、不大於約40 nm、不大於約30 nm、不大於約2〇 nm或不大於約1〇 。 奈米空隙聚合層中所使用之顆粒之其他性質包含形狀。 顆粒可具有規則形狀(例如球形)或不規則形狀。顆粒可為 狹長顆粒且平均縱橫比不小於約1.5、不小於約2、不小於 、·勺3不小於約4或不小於約5。在一些情形下,顆粒可呈 珍珠串(例如可自Nissan Chemical獲得之SNOWTEX-PS顆 粒)或球形或非晶型顆粒之聚集鏈(例如發煙二氧化矽)之形 式或形狀。 奈米顆粒可為無機或有機顆粒或其組合。在一些實施例 中^、米顆粒可為多孔顆粒、空心顆粒、固體顆粒或其組 °適且無機奈米顆粒之實例包含二氧化矽及金屬氧化 物’例如氧化锆、氧化鈦、二氧化鈽、氧化鋁 '氧化鐵、 氡化飢、氧化銻、氧化錫、氧化紹/二氧化石夕、二氧化石夕/ 氧化鍅及其組合。奈米顆粒可經表面修飾以便其以化學方 式及/或以物理方式結合至黏合劑。在前一情形下,經表 =修飾之奈米顆粒具有以化學方式與點合劑進行反應之^ 能性。一般而言,表面修飾已眾所周知且可使用如上文所 引用參考文獻中所述之習用材料及技術來實施。 端視奈米空隙聚合層之期望性質,點合劑與奈米顆粒之 重量比率範圍可為約30:70、40:6〇、5〇:5〇、55:45、 162607.doc •19- 201245633 60:40、70:30、80:20或90:10或更大。奈米顆粒之wt%之較 佳範圍介於約10重量%至約60重量%之間,且可取決於所 用奈米顆粒之密度及尺寸。 在空隙網絡320及顆粒340之主要光學效應係影響有效折 射率且將散射光最小化之情形下’因空隙32〇及顆粒34〇而 產生之光學層300之光學霾度不大於約5%或不大於約4%或 不大於約3.5%或不大於約4%或不大於約3%或不大於約 2.5%或不大於約2%或不大於約15%或不大於約1%。在該 等情形下’光學層之有效介質之有效折射率不大於約14〇 或不大於約1.35或不大於約1.3或不大於約1.25或不大於約 1.2或不大於約1.15 » 第一區域300除黏合劑310及顆粒340外亦可具有其他材 料。舉例而言’第一區域300可包含一或多種添加劑(例如 偶合劑)以有助於潤濕上面形成有奈米空隙聚合材料之基 板表面(未明確展示於圖3中)。第一區域3〇〇中之其他實例 f·生材料包含起始劑(例如一或多種光起始劑)、抗靜電劑、 UV吸收劑及釋放劑。 不米二隙聚合材料通常形成為層。製造奈米空隙聚合材 料層之方法闡述於尺〇113等人之上文所引用參考文獻中。在 一種方法中,首先製備包含複數個顆粒(例如奈米顆粒)及 /谷於浴劑中之可聚合材料之溶液,其中該可聚合材料可包 含(例如)—或多種類型單體。接下來,藉由(例如)施加熱 或光使可聚合材料聚合以形成存於溶劑中之可溶聚合物基 質在些情形下’在聚合步驟之後’溶劑仍可包含一歧 162607.doc • 20· 201245633 可聚合材料,但濃度較低。接下來,藉由乾燥或蒸發溶液 來去除溶劑,從而得到包含分散於聚合物黏合劑3 1〇中之 空隙網絡或複數個空隙32。的第一區域綱。第一區域另外 包含複數個分散於聚合物中之顆粒34〇。顆粒與黏合劑結 合’其中該結合可為物理結合或化學結合。 一般而言,所形成之奈米空隙聚合層可具有期望孔隙率 或空隙體積’此可取決於可變折射率光沒取層之第一區域 之期望性寊。舉例而言,第一區域可具有約2〇%至約 70%、約30%至約7〇。/。或約40%至約70%之空隙體積。在一 些情形下’空隙體積不小於約2〇%、不小於約3〇%、不小 於約40%、不小於約5〇%、不小於約6〇%、不小於約、 不小於約80%或不小於約9〇%。 在一些實施例中’第一區域3〇〇具有低光學霾度。在該 等情形下’光學層之光學霾度不大於約1〇%或不大於約7〇/〇 或不大於約5%或不大於約4¾或不大於約3 5%或不大於約 4¾或不大於約3%或不大於約2.5%或不大於約2。/。或不大於 約1.5%或不大於約1%。第一區域中之霾度變化範圍可為 勺1 5 約1/ό、約1 - 2%或小於1 % ^在該等情形下’光 學膜之較小有效折射率可不大於約14〇或不大於約135或 不大於約1.3或不大於約1 2或不大於約1.1 5或不大於約1.1 或不大於約1.05。對於垂直入射至光學層300之光而言, 本文所用之光學霾度定義為偏離垂直方向4度以上之透射 光與總透射光的比率。本文所揭示之霾度值係使用Haze_EBECRYL 4833 and Eb8804. Suitable toughening materials also include combinations of "hard" oligoacrylates and "soft" oligoacrylates. Examples of "hard" acrylates include polyamino phthalate acrylates (e.g., EBECRYL 162607.doc • 17· 201245633 4866), polyester acrylates (e.g., EBECRYL 83 8), and epoxy acrylates (e.g., EBECRYL 600, EBECRYL). 3200 and EBECRYL 1608 (available from Cytec) and CN2920, CN2261 and CN9013 (purchased from Sartomer). Examples of "soft" acrylates include EBECRYL 8411 from Cytec; and CN959, CN9782 and CN973 from Sartomer. When added to the coating formulation in the range of 5-25% by weight of the total solids (excluding the solvent portion), the materials can effectively toughen the nanovoided structured layer. The nano-voided polymeric material may or may not contain Contains particles. The size of the particles 340 (12 can be any desired value in any desired range of values. For example, in some cases, at least a majority of the particles (eg, at least 60% or 70% or 80% or 90% or 95% of the particles) The size is within the desired range. For example, in some cases, at least a majority of the particles (eg, at least 60% or 70% or 80% or 90% or 95% of the particles) have a size no greater than about 5 um or no Greater than about 3 um or no more than about 2 um or no more than about 1 um or no more than about 700 nm or no more than about 500 nm or no more than about 200 nm or no more than about 100 nm or no more than about 50 nm 〇 In some cases Lower particles 340 have an average particle size of no greater than about 5 um, no greater than about 3 um, no greater than about 2 um, no greater than about 1 um, no greater than about 700 nm, no greater than about 500 nm, no greater than about 200 nm, Not more than about 100 nm or no more than about 50 nm. In some cases, some of the particles may be small enough to change the refractive index of the region with little or no light scattering. In some cases, ch and / or d2 are small enough In order to change the refractive index of the region with little or no light scattering. In such cases For example, 162607.doc •18· 201245633, seven and/or ten is no more than about λ/5, no more than about λ/6, no more than about λ/8, no more than about "10, no more than about λ/20 In the case of λ-ray light of 纟, according to another example 'in these cases, d丨 and d2 are no greater than about 70 nm, no greater than about 6 〇 nm, no greater than about 50 nm, no greater than about 40 nm, Not more than about 30 nm, not more than about 2 〇 nm, or not more than about 1. Other properties of the particles used in the nanovoided polymeric layer include shapes. The particles may have a regular shape (e.g., a spherical shape) or an irregular shape. It may be elongate particles and have an average aspect ratio of not less than about 1.5, not less than about 2, not less than, scoop 3 not less than about 4 or not less than about 5. In some cases, the granules may be in the form of a string of pearls (eg, available from Nissan Chemical) The form or shape of the obtained SNOWTEX-PS particles or aggregate chains of spherical or amorphous particles (for example, fumed cerium oxide). The nanoparticles may be inorganic or organic particles or a combination thereof. In some embodiments, The rice granules may be porous particles, hollow particles, solid particles or a group thereof Examples of machine-nanoparticles include cerium oxide and metal oxides such as zirconia, titania, cerium oxide, aluminum oxide, iron oxide, strontium sulphate, cerium oxide, tin oxide, oxidized sulphur dioxide, and sulphur dioxide. The cerium oxide/cerium oxide and combinations thereof. The nanoparticles may be surface modified such that they are chemically and/or physically bonded to the binder. In the former case, the surface-modified nanoparticle has The chemical method and the ability of the point combination to carry out the reaction. In general, surface modifications are well known and can be practiced using conventional materials and techniques as described in the references cited above. The desired properties of the nano-voided polymeric layer can be about 30:70, 40:6, 5:5, 55:45, 162,607.doc •19-201245633 60:40, 70:30, 80:20 or 90:10 or greater. The preferred range of wt% of the nanoparticles is between about 10% and about 60% by weight, and may depend on the density and size of the nanoparticles used. In the case where the primary optical effect of the gap network 320 and the particles 340 affects the effective refractive index and minimizes the scattered light, the optical density of the optical layer 300 due to the void 32 〇 and the particles 34 不 is not more than about 5% or Not greater than about 4% or no greater than about 3.5% or no greater than about 4% or no greater than about 3% or no greater than about 2.5% or no greater than about 2% or no greater than about 15% or no greater than about 1%. In such cases, the effective medium of the optical layer has an effective refractive index of no greater than about 14 Å or no greater than about 1.35 or no greater than about 1.3 or no greater than about 1.25 or no greater than about 1.2 or no greater than about 1.15. Other materials may be present in addition to the binder 310 and the particles 340. For example, the first region 300 can include one or more additives (e.g., coupling agents) to aid in wetting the surface of the substrate on which the nanovoided polymeric material is formed (not explicitly shown in Figure 3). Other Examples in the First Zone 3 The raw material comprises an initiator (e.g., one or more photoinitiators), an antistatic agent, a UV absorber, and a release agent. The non-rice gap polymeric material is typically formed as a layer. A method of making a nanovoided polymeric material layer is described in the above cited references by Ruler 113 et al. In one method, a solution comprising a plurality of particles (e.g., nanoparticles) and/or a polymerizable material in a bath is first prepared, wherein the polymerizable material can comprise, for example, or a plurality of types of monomers. Next, the polymerizable material is polymerized by, for example, application of heat or light to form a soluble polymer matrix in a solvent. In some cases, 'after the polymerization step' the solvent may still contain a 162607.doc • 20 · 201245633 Polymerizable material, but at a lower concentration. Next, the solvent is removed by drying or evaporating the solution to obtain a void network or a plurality of voids 32 dispersed in the polymer binder 31. The first area of the program. The first zone additionally comprises a plurality of particles 34 分散 dispersed in the polymer. The particles are bound to the binder' wherein the combination can be a physical bond or a chemical bond. In general, the formed nanovoided polymeric layer can have a desired porosity or void volume' which can depend on the desired enthalpy of the first region of the variable index light absorbing layer. For example, the first region can have from about 2% to about 70%, from about 30% to about 7%. /. Or a void volume of from about 40% to about 70%. In some cases, the 'void volume is not less than about 2%, not less than about 3%, not less than about 40%, not less than about 5%, not less than about 6%, not less than about, not less than about 80%. Or not less than about 9〇%. In some embodiments the 'first region 3' has a low optical mobility. In such cases, the optical density of the optical layer is no greater than about 1% or no greater than about 7〇/〇 or no greater than about 5% or no greater than about 43⁄4 or no greater than about 35% or no greater than about 43⁄4 or Not more than about 3% or not more than about 2.5% or not more than about 2. /. Or no more than about 1.5% or no more than about 1%. The range of twist in the first region may range from about 1 to about 5, about 1 to 2%, or less than 1%. ^ In such cases, the smaller effective refractive index of the optical film may be no greater than about 14 or no. Greater than about 135 or no greater than about 1.3 or no greater than about 12 or no greater than about 1.15 or no greater than about 1.1 or no greater than about 1.05. For light incident perpendicularly to the optical layer 300, the optical mobility as used herein is defined as the ratio of transmitted light to total transmitted light that is more than 4 degrees from the vertical. The values disclosed in this paper use Haze_
Gard Plus 霾度計(BYK-Gardiner,Silver Springs,Md.)根 162607.doc 21 201245633 據ASTM D1 003中所述之程序進行量測。 在一些實施例中,第一區域300具有高光學清晰度。對 於垂直入射至第一區域3 00之光而言,本文所用之光學清 晰度係指比率(TV^/d+Ts),其中T,係偏離垂直方向1>6 度至2度之透射光’且Τ'2係位於距離垂直方向零度至〇7度 之間的透射光。本文所揭示之清晰度值係使用來自ΒΥΚ-Gard Plus 霾度计(BYK-Gardiner, Silver Springs, Md.) Root 162607.doc 21 201245633 Measured according to the procedure described in ASTM D1 003. In some embodiments, the first region 300 has high optical clarity. For light incident perpendicularly to the first region 300, the optical clarity used herein refers to the ratio (TV^/d+Ts), where T is the transmitted light from the vertical direction 1 > 6 degrees to 2 degrees. And Τ'2 is a transmitted light that is between zero degrees and 〇7 degrees from the vertical direction. The sharpness values disclosed in this paper are from ΒΥΚ-
Gardiner之Haze-Gard Plus霾度計進行量測。在第一區域 3 00具有尚光學清晰度之情形下,清晰度不小於約8〇%或 不小於約85%或不小於約90%或不小於約95%。 可藉由將含有溶劑之上述溶液塗覆於基板上來製造第一 區域3 00之奈米空隙聚合材料。在許多情形下,基板可由 用於輥對輥製程中之任一聚合材料形成。在一些實施例 中,基板層係透明的且具有較小霾度(甚至 清晰度,且係由諸如聚對苯二甲酸乙二醋(pET)、聚)碳: a!、丙烯酸系物及環烯烴聚合物等聚合物形成。基板亦可 包括透明基板,例如玻璃及其他透明無機材料。基板亦可 包括反射散射基板或材料,例如漫射白色聚合基板、半鏡 基板、聚合基板’例如多層光學膜(例如可自3M獲得之 ESR)金屬半鏡反射器(例如拉絲紹)。在—些情形下,義 板可包括釋放襯墊以#太伞 土 俄蛩以便奈未空隙聚合層300可轉移至另— 基板(例如黏著劑層)上。 區域包括奈米空隙聚合材料之實施例而言,· 之奈米空_且_^ =料駐留於奈米空隙聚合材半 ”折射率足夠高讀第二區域之折射率> 162607.doc -22· 201245633 於第一區域之折射率。右 用/、他材料包含可納入条半(Λ? ρ虫 聚合材料内以便可變折射 > —、二隙 任一姑粗甘# U 旱先,及取層可視需要發揮作用之 材科。其他材料具有高折射率,從而其可增加 隙聚合材料之折射率,亦 …工 ΛΛ, yi( ' 了將弟—折射率增加至少約 〇.〇3 ’例如’約〇 〇3至約 ’ 〇 25。 至,技5、約0.05至約0.5或約0.05至約 -般而言,其他材料可具有約14〇至。之折射率範圍。 其他材料之確切折射率範 手㈣將取決於奈米空隙聚合材料之 折射率以及汲取層自1 ,.芬 ^ 取曰自其及取先之田比鄰層的折射率。出於本 文所述之本發明目的, 鄰透明層沒取光。為實", 及取層經設計以自蛾 ^及取力為貫她此功能’可變折射率光沒取層之 一 £域之折射率必須小於轉透㈣,且 汲取層之第二區域之拼斯松 丨町牛九 透明層。&之折射率近似等於或大於沒取光之晚鄰 -般而言,將其他材料納入在奈米空隙聚合材料之表面 上具有較少或沒有其他材料之奈来空隙聚合材料中。在— 些實施例中,其他材料實質上完全填充互連奈米空隙以便 較少或沒有空隙體積(小於5%空_)保留於第 内。在-些實施例中,其他材料部分地填充互連奈来空隙 以便保留一些空隙體積。端視其他材料之折射率及第一區 域與第二區域間之期望折射率差,第:區域包括特定量之 空隙體積巧例而|,第二區域可具有小於約2()%、小於 約10%、小於約5°/。或小於約1%之空隙體積。 、 實例性其他材料包含小分子、寡聚物及聚合物。用於製 162607.doc -23· 201245633 造奈米空隙聚合材料之上述材料中之任一者皆可用作其他 材料。通常,使用諸如印刷等下文所述方法將其他材料沈 積至奈米空隙聚合材料之空隙中。在一些情形下,並 料係職固體之可聚合材料,且其黏度在應用條件下容 許其他材料滲透至奈米空隙聚合材料令由此形成第二區 域0 其他材料之特㈣擇可取決於將其納人㈣空隙聚合層 中之方法。各種方法閣述於下文中。舉例而言,在一些實 施例中,藉由將其他材料沈積於包括奈米空隙聚合㈣之 層之表面之所選區或區域上來製造可變折射率光沒取層。 其他材料㈣渗透至奈米空隙聚合材料中以便較少或 其他材料保留於層表面上。此實施例可能需要其他材料且 有足夠低黏度且其分子成份之尺寸應足夠小以滲透至奈米 空隙聚合材料之奈米空隙中並穿過該等奈米空隙。 在—實施例中,藉由將可聚合組合物沈積於包括奈米 空隙聚合材料之層之表面之所選區或區域上來製造可變折 射率光沒取層。可聚合組合物然後滲透至奈米空隙材料中 以便較乂或叹有可聚合組合物保留於層表面上。然後可藉 由習用方式使可聚合組合物聚合以形成其他材料,由此形 成具有第-材料及其他材料之第二區域。在—些情形下, 其他材料完全滲透穿過奈米空隙聚合材料層之厚度。 第-及第二區域可在可變折射率光汲取層之橫向平面上 彼此相對佈置從而以期望方式管控光。舉例而言,第二區 域可包括複數個以-定圖案配置於層之橫向平面上之第二 162607.doc •24· 201245633 品域s於另實例而5 ’第二區域可包括複數個隨機配 置於層之橫向平面上之第二區域。第一或第二區域皆可為 層之橫向平面上之連輕域。對於不連續(亦即,係複數 個區域)之第一或第二區域而言密度可在層之橫向平面 上於任一方向中有所變化。舉例而言,第二區域之密度可 在:之橫向平面上在一個或兩個維度上有所變化。若干該 等實施例闡述於圖4a-4d、5a及5bt。 π根據可變折射率光汲取層設計實施之功能來測定該層之 取佳厚度。層厚度取決於奈米空隙聚合材料之性質。可變 折射率光沒取層應足夠厚以便第—區域可提供视鄰透明基 板(超臨界光在其中傳播)與佈置於可變折射率光汲取層之 相對側上之另-層之光學隔離。奈米空隙聚合層之厚度應 足夠薄以便其他材料可沈積於該層上並實質上滲透至該層 中且在一些情形下穿過該層之厚度’由此產生第二區 域在一些情形下,可變折射率光沒取層具有大於約遍 nm之厚度,或厚度範圍為約5〇〇 nm至約1〇〇 um、約5〇〇 nm至約8um、約1微米至約5 um或約i um至約3 um。 可變折射率光汲取層支持或促進TIR,丨由此該層足夠 厚以便在可變折射率光汲取層之表面發生TIR之光線之漸 逝尾部在層之厚度中並不光學耦合,或光學耦合極少。在 該等情形下,彳變折射率光没取層之厚度不小於約〇 $ 、不小於約1 um、不小於約 不小於約1_3 um、不小於約1 4 不 小於約1·7 um或不小於約2 1·1 um、不小於約1.2 um u m、不小於約1.5 u m、 um。足夠厚之可變折射率光汲 162607.doc 5 -25- 201245633 取層可防止《減小層4纟中光學模式之漸逝尾部之不期望 光學耦合。 在二清形了彳變折射率光汲取層具有4氐光學霾度 (以層之整體性質之形式進行量測)。在該等情形下,可變 折射率光汲取層之光學霾度不大於約10%、不大於約7%、 不大於約5%、不大於約4%、不大於約3 5%、不大於約 4%、不大於約3%、不大於約2·5%、不大於約2%、不大於 約1,5°/〇或不大於約1 %。在該等情形下,可變折射率光汲 取層之減小之有效折射率可不大於約丨4〇、不大於約 1.35、不大於約1.3、不大於約1>2、不大於約115、不大於 約1.1或不大於約1.05。對於垂直入射至給定層之表面上之 光而言,將本文所用之光學霾度定義為與垂直方向偏離4 度以上之透射光與總透射光之比率。本文所揭示之霾度值 係使用 Haze-Gard Plus 霾度計(BYK_Gardiner,SUverGardiner's Haze-Gard Plus oximeter was measured. In the case where the first region 300 has an optical clarity, the sharpness is not less than about 8% or not less than about 85% or not less than about 90% or not less than about 95%. The nano-voided polymeric material of the first region 300 can be produced by applying the above solution containing the solvent to the substrate. In many cases, the substrate can be formed from any of the polymeric materials used in the roll-to-roll process. In some embodiments, the substrate layer is transparent and has a small twist (or even sharpness, and is composed of, for example, polyethylene terephthalate (pET), poly) carbon: a!, acrylics and rings A polymer such as an olefin polymer is formed. The substrate may also include a transparent substrate such as glass and other transparent inorganic materials. The substrate may also include a reflective scattering substrate or material, such as a diffuse white polymeric substrate, a semi-mirror substrate, a polymeric substrate such as a multilayer optical film (e.g., an ESR available from 3M) metal half mirror reflector (e.g., wire drawing). In some cases, the panel may include a release liner to allow the nano-void polymeric layer 300 to be transferred to another substrate (e.g., an adhesive layer). In the case where the region includes a nano-voided polymeric material, the nano-space _ and _^ = material resides in the nano-voided polymeric material. The refractive index is sufficiently high to read the refractive index of the second region > 162607.doc - 22· 201245633 Refractive index in the first region. Right/, the material contained in the material can be included in the strip half (Λ? ρ 聚合 聚合 以便 以便 以便 以便 以便 可变 可变 、 、 、 、 、 、 、 、 、 、 、 U U U U U U U U U U U U U And the layer can be used to visually play the role of the material. Other materials have a high refractive index, so that it can increase the refractive index of the gap polymeric material, also ... work, yi ( 'The brother - refractive index increased by at least about 〇. 〇 3 'For example, 'about 3 to about' 〇 25. To, 5, about 0.05 to about 0.5, or about 0.05 to about - generally, other materials may have a refractive index range of about 14 Å. Other materials The exact refractive index (4) will depend on the refractive index of the nanovoided polymeric material and the refractive index of the extracted layer from 1, and the adjacent layer of the adjacent layer. , the adjacent transparent layer does not take light. For the real ", and the layer is designed to be taken from the moth For this function, the refractive index of one of the variable refractive index light-receiving layers must be smaller than that of the transmissive (four), and the second layer of the second layer of the layer is the refraction of the Niujiu. The rate is approximately equal to or greater than the neighboring time of no light extraction - in general, other materials are incorporated into the nano-voided polymeric material having little or no other material on the surface of the nanovoided polymeric material. In some embodiments The other material substantially completely fills the interconnected nanovoids so that less or no void volume (less than 5% void_) remains in the interior. In some embodiments, other materials partially fill the interconnected navy voids for retention Some void volume, depending on the refractive index of other materials and the desired refractive index difference between the first region and the second region, the first region includes a specific amount of void volume, and the second region may have less than about 2 () %, less than about 10%, less than about 5 ° / or less than about 1% void volume. Illustrative other materials include small molecules, oligomers and polymers. Used in the manufacture of 162607.doc -23· 201245633 The above materials of the rice void polymeric material Any of these can be used as other materials. Typically, other materials are deposited into the voids of the nanovoided polymeric material using methods such as printing, as described below. In some cases, the solid polymerizable material is bound, And the viscosity of the material allows the penetration of other materials into the nanovoided polymeric material under the application conditions, thereby forming the second region. The other materials may be selected according to the method in which the nano (4) void polymerization layer is used. In the following, for example, in some embodiments, a variable refractive index light absorbing layer is fabricated by depositing other materials on selected regions or regions comprising the surface of the layer of nanovoided polymeric (4). Other materials (iv) penetrate into the nanovoided polymeric material so that less or other material remains on the surface of the layer. This embodiment may require other materials and have a sufficiently low viscosity and the molecular composition should be small enough to penetrate into the nanovoids of the nanovoided polymeric material and pass through the nanovoids. In an embodiment, the variable refractive index light absorbing layer is fabricated by depositing a polymerizable composition on selected regions or regions of the surface comprising a layer of nanovoided polymeric material. The polymerizable composition is then infiltrated into the nanovoided material to retain the polymerizable composition on the surface of the layer. The polymerizable composition can then be polymerized by conventional means to form other materials, thereby forming a second region having the first material and other materials. In some cases, other materials completely penetrate the thickness of the nanovoided polymeric material layer. The first and second regions may be arranged opposite each other in a lateral plane of the variable index light scooping layer to control the light in a desired manner. For example, the second region may include a plurality of second 162607.doc • 24· 201245633 in the horizontal plane of the layer in a fixed pattern. The second region may include a plurality of random configurations. a second region on a lateral plane of the layer. The first or second region may be a light field on a lateral plane of the layer. For a first or second region that is discontinuous (i.e., a plurality of regions), the density can vary in either direction in the transverse plane of the layer. For example, the density of the second region can vary in one or two dimensions on a lateral plane: . A number of such embodiments are illustrated in Figures 4a-4d, 5a and 5bt. π is based on the function of the variable index light extraction layer design to determine the preferred thickness of the layer. The layer thickness depends on the nature of the nanovoided polymeric material. The variable index light wicking layer should be sufficiently thick so that the first region provides optical isolation of the adjacent transparent substrate (where supercritical light propagates) and the other layer disposed on the opposite side of the variable index light extraction layer. . The thickness of the nanovoided polymeric layer should be sufficiently thin that other materials can be deposited on the layer and substantially penetrate into the layer and in some cases pass through the thickness of the layer ' thereby creating a second region, in some cases, The variable index light absorbing layer has a thickness greater than about one nm, or a thickness ranging from about 5 〇〇 nm to about 1 〇〇 um, from about 5 〇〇 nm to about 8 um, from about 1 μm to about 5 um or about i um to about 3 um. The variable index light extraction layer supports or promotes TIR, whereby the layer is sufficiently thick so that the evanescent tail of the light that undergoes TIR on the surface of the variable index light extraction layer is not optically coupled in the thickness of the layer, or optical Very little coupling. In such cases, the thickness of the 彳-refractive-index light-missing layer is not less than about 〇$, not less than about 1 um, not less than about not less than about 1_3 um, not less than about 1 4 not less than about 1.7 um or Not less than about 2 1·1 um, not less than about 1.2 um um, not less than about 1.5 um, um. A sufficiently thick variable index diaphragm 162607.doc 5 -25- 201245633 Layering prevents "unexpected optical coupling of the evanescent tail of the optical mode in layer 4". In the second clearing, the refractive index light extraction layer has a 4 氐 optical twist (measured in the form of the overall properties of the layer). In such cases, the optical refractive index of the variable index optical extraction layer is no greater than about 10%, no greater than about 7%, no greater than about 5%, no greater than about 4%, no greater than about 35%, no greater than About 4%, no more than about 3%, no more than about 2.5%, no more than about 2%, no more than about 1,5°/〇 or no more than about 1%. In such cases, the reduced effective refractive index of the variable index light extraction layer may be no greater than about 〇4〇, no greater than about 1.35, no greater than about 1.3, no greater than about 1>2, no greater than about 115, no. Greater than about 1.1 or no greater than about 1.05. For light incident perpendicularly to the surface of a given layer, the optical mobility used herein is defined as the ratio of transmitted light to total transmitted light that is more than 4 degrees from the vertical. The values disclosed in this paper are based on the Haze-Gard Plus 霾度计 (BYK_Gardiner,SUver)
Springs,Md.)根據ASTM D1003中所述之程序進行量測。 在一些情形下,可變折射率光汲取層具有高光學清晰 度。本文所用之光學清晰度係針對垂直入射至層之光來定 義且係指比率(IVT2)/(T1+T2),其中Tl係偏離垂直方向】6 度至2度之透射光’且Τ'2係位於距離垂直方向零度至〇 7度 之間的透射光。本文所揭示之清晰度值係使用來自ΒΥΚ_ Gardiner之Haze-Gard Plus霾度計進行量測。在可變折射率 光汲取層具有高光學清晰度之情形下,清晰度不小於約 80%、不小於約85°/。、不小於約90%或不小於約95%。 可變折射率光汲取層可包括在層之橫向平面上以一些期 I62607.doc -26- 201245633 望幾何配置彼此相對佈置之第一及第二區域,以便該層提 供期望光學性能特徵。圖4a係展示第一及第二區域之實例 性幾何配置之可變折射率光汲取層之平面圖。可變折射率 光汲取層400包括第一區域41〇(在層中係連續的,如在層 之平面圖中所看到)及第二區域42〇(其係由使用虛線繪示之 矩形封閉之離散區域)。 如上所述,本揭示内容通篇使用之虛線指示第一及第二 區域之一般位置,然而,該等虛線並不意欲闡述區域之間 之任-類邊界。如本文所述’藉由將其他材料沈積於奈米 空隙聚合材料上(通常藉由—些印刷方式)來形成第二區 域’從而其他材料在m隙聚合材料中之渗透、忠吸等 取決於用於形成該等區域之材料之化學十生質以及諸如黏 度、潤濕性、溫度等性質。 第二區域420之形狀為實質上具有相同長度及寬度之矩 形或條帶,其在層400之寬度上延伸並自左至右以增加之 頻率佈置。第二區域420之折射率比第—區域彻大至少約 〇.〇3。圖4b繪示可變折射率光汲取層彻之折射率特徵曲 線,其中X軸標識在如圖4a中所展示之一些實質上單一位 置%處在層長度下方之位置d。折射率特徵曲線展示層働 之折射率之變化,纟包括在分別為一之第一折射率與 第二折射率之間之圖案。圖扑及切分別展示所選光學性質 透光率。/。及透明度清晰度%之特徵曲線,且對於兩種性質 而言’在層之長度下方具有實質上較少變化或沒有變化。 圖5a展示另-可變折射率光及取層之平面圖,1展干第 162607.doc -27. 201245633 一及第二區域之實例性幾何配置。可變折射率光汲取層 5〇〇包括第一區域510(在層中係連續的,如在層之平面圖 中所看到)及第二區域520(其係由使用虛線繪示之圓封閉之 離散區域圖案亦展示’第二區域52〇之密度可在X及^維 度上有所變化。 圖5b展示另一可變折射率光汲取層之平面圖,其展示第 一及第二區域之實例性幾何配置。可變折射率光汲取層 530包括第一區域54〇(在層中係連續的,如在層之平面圖 中所看到)及第二區域55〇(其係由使用虛線繪示之形狀(在 此情形下係心形)封閉之離散區域)。圖案展示,高折射率 區域之幾何配置並非必須以梯度形式變化,而是其亦可經 圖案化以提供自毗鄰透明層之超臨界光之逐步影像汲取。 可變光汲取層之第一及第二區域之幾何配置經設計以汲 取在毗鄰透明層中傳播之超臨界光,並以預定模式(例如 實質上均勻照明)將該光遞送至位於可變折射率光汲取層 之相對側上之另一層中。 可將可變折射率光汲取層佈置於基板上。基板可包括用 於製造層之支撐件’如PCT申請案第US 2011/021053號 (Wolk等人)中所述。在一些實施例中,光學膜包含佈置於 透月基板上之可變折射率光沒取層。如本文所使用,「透 明」意指貫質上光學澄清且實質上具有低霾度且無散射。 端視光學膜之期望性質,實例性透明基板具有所需光學性 寅透月基板可包括聚合基板,例如聚自旨、聚(甲基)丙稀 酸酯、聚碳酸酯及諸如此類。在一些實施例中,透明基板 162607.doc -28· 201245633 包括如下文所述之光導。在一些實施例甲,透明基板具有 一疋程度之霾度且可提供一定光散射以便光可在正向上朝 向反射散射元件層650散射。 圖6展示實例性照明裝置6〇〇(包括可變折射率光汲取層) 與由該裝置進行照明之反射散射元件之組合之示意圖。照 明裝置600包括毗鄰可變光汲取層63〇佈置之光導6〗〇。光 導與可變折射率光汲取層630之頂部表面625光學耦合(由 兩個表面之間之虛線指示)。反射散射元件65〇(簡明起見以 層形式展示)毗鄰可變折射率光汲取層之相對表面635。反 射散射元件與可變折射率光汲取層635之底部表面光學耦 合(由兩個表面之間之虛線指示)^光源6〇1與光導6ι〇光學 耦合以便由光源發射之光可進入光導。在_些實施例中, 在光導610之底部表面615與可變折射率光汲取層之頂 P表面625之間&有空氣間% ’且在可變折射率光沒取層 630之底部表面635與反射散射元件65〇之間沒有空氣間 隙,從而發生光學耦合。 在一些實施例中,光導610之折射率介於可變折射率光 汲取層之第一及第二區域之彼等折射率之間。 根據此實施例’提供光之方法包括:提供光源、光導及 包括可變折射率光沒取層之光學膜;及使光源與光導光學 編合且使光導與可變折射率光沒取層光學搞合,從而由光 源發射之光在光導内藉由全内反射傳輸且由可變折射率光 沒取層自光導選擇性汲取。 在-些實施例中,可變光絲層伽可直接佈置於反射 162607.doc -29· 201245633 散射元件650之表面645上。光導610可藉由若干方法直接 附接至可變光汲取層之表面625上。如下文所述,光導61〇 可包括熱塑性樹脂材料(例如,丙烯酸系物),且在該等情 形下,可藉由將熔化樹脂澆鑄於可變折射率汲取層之表面 625上來形成光導,或其可藉由插入注入模製製程附接至 可變折射率汲取層。在一些情形下’光導61〇包括彈性體 材料以便其可熱層壓至可變折射率汲取層之表面625上。 在一些情形下,光導610包括壓敏性黏著劑(pSA)以便其可 直接層壓至可變折射率汲取層之表面625上。在光導61〇並 非黏著劑之情形下,可使用光學澄清黏著劑將可變折射率 光;及取層之表面625黏者至光導之表面615上。光學澄清黏 著劑闡述於下文中。 光導610可包含任一種適宜材料或多種材料。舉例而 言’光導可包含玻璃、丙烯酸酯(包含聚甲基丙烯酸甲 酯)、聚碳酸酯、聚苯乙烯、苯乙烯曱基丙烯酸酯共聚物 及摻合物、環烯烴聚合物(例如可自ΖΕΟΝ Chemicals Louisville,KY獲得之 ZEONEX 及 ZEONOR)、含氟聚合物、 聚酉旨(包含聚對苯二甲酸乙二S旨(PET)、聚萘二曱酸乙-酉》: (PEN))及含有PET或PEN或二者之共聚物、聚胺基甲酸 醋、環氧樹脂、聚烯烴(包含聚乙烯、聚丙烯、聚降冰片 烯、呈全同立構、無規立構及間同立構立體異構體形式之 ^^稀經及藉由戊金屬聚合產生之聚稀煙)。在一拉情形 下,光導可為彈性體材料,例如彈性體聚胺基曱酸酯材料 及基於t石夕氧之聚合物(包含但不限於聚二炫基碎氧燒、 162607.doc • 30· 201245633 聚矽氧聚脲及聚矽氧聚草醯胺)。 在一些實施例中,光導係黏彈性光導,如W〇 2010/ 005655 A2 (Sherman等人)中所述。一般而言,黏彈性光導 包括一或多種黏彈性材料,該等黏彈性材料在發生變形時 展現彈性及黏性行為。彈性特性係指在去除瞬時負荷之後 材料能夠返回其原始形狀。材料彈性之一種量度稱為張力 α疋值,其隨在拉伸材料且隨後在其拉伸之相同條件下使 其恢復(去拉伸)之後剩餘之延伸率而變化。若材料之張力 设定值為〇%,則在鬆弛後其返回其原始長度而若張力 設定值為100%,則該材料在鬆弛後之長度為其原始長度 之兩倍。可使用ASTM D4〗2量測張力設定值。有用黏彈性 材料之張力設定值可大於約1〇%、大於約3〇%或大於約 〇/〇或為約5 /〇至約70%、約i〇〇/。至約7〇%、約3〇%至約7〇% 或約10%至約60%。 屬於牛頓液體(Newtonian liquid)之黏性材料具有遵守牛 頓定律(Newtek law)之黏性特性,牛頓定律闡述應力隨 剪切梯度而線性增加。在去除梯度時,液體並不恢復其形 狀。有用黏彈性材料之黏性特性包含材料在合理溫度下之 流動性以便該材料並不分解。 黏彈性光導可具有促進經設計以自該光㈣取光之材料 :至少一部分(例如,光學物件)之充分接觸或潤濕的性 質’以便該黏彈性光導與該光學物件光學輕合。然後可自 1 占彈性光導沒取光。黏彈性光導通常較軟,具有順應性及 丨生。因此’黏彈性光導可具有彈性模數(或儲存模數G·) 162607.doc •31 · 201245633 以便可獲得充分接觸’且具有黏性模數(或損失模數G")以 便層並不不合意地流動,且具有關於層之相對阻尼程度之 阻尼係數(G"/G',tan D)。有用黏彈性材料可具有小於約 3 00,000 Pa之儲存模數G'(在10拉德/秒(rad/sec)及約20°C至 約22°C之溫度下量測)。可根據(例如)ASTM D4065、 D4440及D5279使用動態機械分析來量測材料之黏彈性性 質。 在一些實施例中,黏彈性光導包括如Dalquist準則範圍 (Dalquist criterion line)中所述之 PSA層(如 Handbook of Pressure Sensitive Adhesive Technology,第二版,D. Satas 編輯,Van Nostrand Reinhold,New York,1989 中所述)。 黏彈性光導可具有特定剝離力或至少展現在特定範圍内 之剝離力。舉例而言,黏彈性光導之90°剝離力可為約50 g/in至約 3000 g/in、約 300 g/in至約 3000 g/in或約 500 g/in 至約3000 g/in。可使用來自IMASS之剝離測試器來量測剝 離力。 在一些實施例中,黏彈性光導包括光學澄清之光導,其 在至少一部分可見光光譜(約400 nm至約700 nm)内具有約 80%至約100%、約90°/。至約1〇〇%、約95°/。至約100%或約 98%至約100%之高透光率《在一些實施例中,黏彈性光導 之霾度值小於約5%、小於約3°/。或小於約1 %。在一些實施 例中,黏彈性光導之霾度值為約〇.〇 1 %至小於約5%、約 0.01°/。至小於約3%或約0.01%至小於約1%。可根據ASTM D1 003使用霾度計來測定透射霾度值。 162607.doc •32- 201245633 在-些實施例中,黏彈性光導包括具有高透光率及低霾 度值之光學澄清光導。在至少一部分可見光光譜(約4〇〇 ⑽至約700⑽)内,高透光率可為約90%至約100%、約 95。/。至約1()〇%或約99%至約刚%,且霾度冑可為約〇㈣ 至小於約5%、約〇.〇1%至小於約3%或約G㈣至小於約 1%。黏彈性光導亦可具有約5〇%至約100%之透光率。 黏彈性光導可具有在W.3至約2.6、7或約i 5 至約1.7範圍内之折射率。選擇用於黏彈性光導之特定折 射率或折射率範圍可取決於照明裝置之總體設計及可使用 該裝置之特定應用。 黏彈性光導材料可包括奈米顆粒,該奈米顆粒可修改黏 彈性光導材料之折射率或影響該黏彈性光導材料之機械性 質。適宜奈米顆粒之尺寸應使得該等顆粒產生期望效應且 不會在光導材料中引入顯著量之散射。 黏彈性光導通常包括至少一種聚合物。黏彈性光導可包 括至少一種PSA。PSA可用於將黏著物黏著在—起並展示 諸如以下性質:(1)強力且持久之黏性,(2)以指壓即可黏 著’(3)具有足夠能力固定於黏著物上,及(4)具有足夠凝 聚強度以便可自黏著物乾淨地去除。已發現適合用作壓敏 性黏著劑之材料係經設計並經調配以展示所需黏彈性性質 之聚合物,該黏彈性性質可達成黏性、剝離黏著力及剪切 保持力之期望平衡。獲得各性質之適當平衡並非簡單過 程。對PSA之定量說明可參見上文所引用之DaMquist之參 考文獻。 162607.doc -33· 201245633 有用PS A詳細闡述於上文所引用之Sherman等人之參考 文獻中。有用PSA包含源自以下之聚(甲基)丙烯酸酯 PSA :單體A,其包括至少一種單烯系不飽和(曱基)丙烯酸 烷基酯單體,其中該單體之均聚物具有不大於約〇t之 Tg;及單體B,其包括至少一種單烯系不飽和自由基可共 聚強化單體,其中該單體之均聚物之Tg高於單體A(例如, 至少約10°C)。如本文所使用,(甲基)丙烯酸系物係指丙稀 酸系物質及甲基丙烯酸系物質及諸如此類(例如(曱基)丙稀 酸醋)。 在一些實施例中,黏彈性光導包括天然橡膠基pSA及合 成橡膠基PSA、熱塑性彈性體、增黏熱塑性環氧衍生物、 聚胺基曱酸醋衍生物、聚胺基曱酸醋丙烯酸g旨衍生物、聚 石夕氧PSA(例如聚一有機石夕氧院、聚二有機^夕氧统聚草酿胺 及聚矽氧脲嵌段共聚物)。 在一些實施例中’黏彈性光導包括澄清丙烯酸系pSA, 例如,彼等可以轉移膠帶形式獲得者,例如來自3M公司 之VHBtm丙烯酸系膠帶491〇1?或4918及3mtm光學透明層壓 黏著劑(8140及8180系列)。 在一些實施例中,黏彈性光導包括分散於黏著劑基質中 以形成路易斯(Lewis)酸-鹼對之嵌段共聚物。在一些實施 例中,黏彈性光導包括可在零度角下或接近零度角下拉伸 時自基板去除之可拉伸釋放之?8A。 在一些實施例中,光導610可包括其他塗層或在外表面 605上具有塗層之頂部膜。額外塗層或膜可經設計以賦予 162607.doc -34 - 201245633 光導之表面任一期望性質。塗層之實例包含(例如)硬塗 層、抗反射塗層、防污塗層、無光澤塗層、防霧塗層 '财 J傷:k層遮蔽塗層(Privacy coating)或其組合。提供增強 对久性之塗層(例如硬塗層、防霧塗層及耐劃傷塗幻適用 於諸如觸控螢幕感測器、顯示螢幕、圖形應用及諸如此類 等應用中。遮蔽塗層之實例包含(例如)使觀察變模糊之模 糊或混濁塗層或限制觀察角度之百葉窗膜。在一些情形 下,若提供膜形式之塗層,則期望使用折射率小於光導之 折射率之黏著劑將該膜黏著至光導61〇之表面6〇5上。另一 選擇為,可將奈米空隙層佈置於光導之頂部表面與 其他頂部膜之底部之間。 如上所述,可使用光學澄清黏著劑(0CA)將光導610黏 著至可變折射率光沒取層630上。在一些實施例中,QC a 包括如下PSA :其在至少一部分可見光譜(約4〇〇 nm至約 700 _)中具有約8〇%至約1〇〇%、約9〇%至約ι〇〇%、約%% 至約100%或約98%至約100%之高透光率及/或約0.01 %至小 於約5。/。、約〇.01%至小於約3%或約〇 〇1%至小於約1%之霾 度值。 在一些實施例中,有用PSA包含彼等於Dalquist準則範 圍中所闡述者(如 Handbook of Pressure Sensitive Adhesive Technology ’ 第二版,d. Satas編輯,Van Nostrand Reinhold,Springs, Md.) was measured according to the procedure described in ASTM D1003. In some cases, the variable index light extraction layer has high optical clarity. Optical clarity as used herein is defined for light incident perpendicular to the layer and refers to the ratio (IVT2) / (T1 + T2), where Tl is offset from the vertical direction by 6 to 2 degrees of transmitted light 'and '2' It is transmitted light that is between zero degrees and 〇7 degrees from the vertical direction. The sharpness values disclosed herein were measured using a Haze-Gard Plus oximeter from ΒΥΚ_Gardiner. In the case where the variable refractive index light extraction layer has high optical clarity, the sharpness is not less than about 80% and not less than about 85 °/. Not less than about 90% or not less than about 95%. The variable index light scooping layer can include first and second regions that are disposed opposite each other in a lateral plane of the layer in a period of time I62607.doc -26-201245633, such that the layer provides desired optical performance characteristics. Figure 4a is a plan view showing a variable index optical pickup layer of an exemplary geometric configuration of the first and second regions. The variable index light extraction layer 400 includes a first region 41〇 (continuous in the layer, as seen in the plan view of the layer) and a second region 42〇 (which is closed by a rectangle shown by a dashed line) Discrete area). As noted above, the dashed lines used throughout the disclosure indicate the general locations of the first and second regions, however, such dashed lines are not intended to illustrate any-class boundaries between regions. As described herein, 'the second region is formed by depositing other materials on the nanovoided polymeric material (usually by some printing means) so that the penetration, loyalty, etc. of other materials in the m-gap polymeric material depends on The chemical chemistry of the materials used to form the regions and properties such as viscosity, wettability, temperature, and the like. The shape of the second region 420 is a rectangle or strip having substantially the same length and width that extends over the width of the layer 400 and is arranged at an increasing frequency from left to right. The refractive index of the second region 420 is at least about 〇.〇3 greater than the first region. Figure 4b shows the refractive index profile of the variable index optical pickup layer, wherein the X-axis identifies a position d below the layer length at some substantially single position % as shown in Figure 4a. The refractive index profile shows the change in refractive index of the layer 纟, including the pattern between the first index of refraction and the second index of refraction, respectively. The graphs and cuts respectively show the selected optical properties of light transmittance. /. And a characteristic curve of % clarity of clarity, and for both properties there is substantially little or no change below the length of the layer. Figure 5a shows a plan view of another variable-refractive-index light and delamination, 1 exemplified by an exemplary geometric configuration of the first and second regions of 162607.doc -27. 201245633. The variable index light extraction layer 5 includes a first region 510 (continuous in the layer, as seen in the plan view of the layer) and a second region 520 (which is closed by a circle shown by a dashed line) The discrete area pattern also shows that the density of the second region 52 可 can vary in the X and ^ dimensions. Figure 5b shows a plan view of another variable index light extraction layer showing exemplary first and second regions. The geometrically configured variable refractive index light extraction layer 530 includes a first region 54〇 (continuous in the layer, as seen in the plan view of the layer) and a second region 55〇 (which is depicted by a dashed line) Shape (in this case a heart-shaped closed closed area). The pattern shows that the geometric configuration of the high refractive index region does not have to be changed in a gradient, but it can also be patterned to provide supercriticality from the adjacent transparent layer. A stepwise image capture of light. The geometric configuration of the first and second regions of the variable light capture layer is designed to capture supercritical light propagating in an adjacent transparent layer and to illuminate the light in a predetermined pattern (eg, substantially uniform illumination) Delivery to location The variable refractive index light extraction layer may be disposed on the substrate. The substrate may include a support for manufacturing the layer as described in PCT Application No. US 2011/021053 (Wolk et al.). In some embodiments, the optical film comprises a variable refractive index light absorbing layer disposed on a moon permeable substrate. As used herein, "transparent" means optically clear and substantial in nature. Low-twisting and non-scattering. Illustrating the desired properties of the optical film, an exemplary transparent substrate has the desired optical properties. The translucent substrate can include a polymeric substrate, such as poly(methyl) acrylate, Polycarbonate and the like. In some embodiments, the transparent substrate 162607.doc -28 201245333 includes a light guide as described below. In some embodiments, the transparent substrate has a degree of twist and provides some light scattering so that Light can be scattered in the forward direction toward the reflective scattering element layer 650. Figure 6 shows a set of exemplary illumination devices 6 (including a variable index light extraction layer) and reflective scattering elements illuminated by the device. The illumination device 600 includes a light guide 6 disposed adjacent to the variable light extraction layer 63. The light guide is optically coupled to the top surface 625 of the variable index light extraction layer 630 (indicated by the dashed line between the two surfaces). The reflective scattering element 65 (shown in layer form for simplicity) is adjacent to the opposite surface 635 of the variable index light extraction layer. The reflective scattering element is optically coupled to the bottom surface of the variable index light extraction layer 635 (by both surfaces) The dotted line indicates that the light source 6〇1 is optically coupled to the light guide 6ι so that light emitted by the light source can enter the light guide. In some embodiments, the bottom surface 615 of the light guide 610 and the variable index light extraction layer There is no air gap between the top P surface 625 & with air % ' and between the bottom surface 635 of the variable index light absorbing layer 630 and the reflective scattering element 65 ,, so that optical coupling occurs. In some embodiments, the refractive index of the light guide 610 is between the refractive indices of the first and second regions of the variable index light extraction layer. A method of providing light according to this embodiment includes: providing a light source, a light guide, and an optical film including a variable refractive index light absorbing layer; and optically aligning the light source with the light guide and optically modulating the light guide with the variable index light The light emitted by the light source is transmitted by total internal reflection in the light guide and selectively extracted from the light guide by the variable refractive index light absorbing layer. In some embodiments, the variable filament layer gamma can be disposed directly on the surface 645 of the scattering element 650607.doc -29·201245633. Light guide 610 can be attached directly to surface 625 of the variable light extraction layer by a number of methods. As described below, the light guide 61 can include a thermoplastic resin material (eg, an acrylic), and in such cases, the light guide can be formed by casting a molten resin onto the surface 625 of the variable refractive index draw layer, or It can be attached to the variable refractive index draw layer by an insert injection molding process. In some cases the "lightguide 61" includes an elastomeric material such that it can be thermally laminated to the surface 625 of the variable index drawdown layer. In some cases, light guide 610 includes a pressure sensitive adhesive (pSA) such that it can be laminated directly onto surface 625 of the variable index draw layer. In the case where the light guide 61 is not an adhesive, the variable refractive index light can be used using an optically clear adhesive; and the surface 625 of the layer is adhered to the surface 615 of the light guide. Optical clearing adhesives are set forth below. Light guide 610 can comprise any suitable material or materials. For example, the light guide may comprise glass, acrylate (including polymethyl methacrylate), polycarbonate, polystyrene, styrene methacrylate copolymer and blend, cyclic olefin polymer (eg, ΖΕΟΝ Chemicals Louisville, ZEONEX and ZEONOR) from KY, fluoropolymers, poly phthalocyanines (including polyethylene terephthalate (PET), polyethylene naphthalate B: (PEN)) and Copolymer containing PET or PEN or both, polyurethane urethane, epoxy resin, polyolefin (including polyethylene, polypropylene, polynorbornene, isotactic, atactic, and syndiotactic a stereoisomeric form of the dilute and a concentrated smoke produced by the polymerization of a pentane metal. In the case of a pull, the light guide can be an elastomeric material, such as an elastomeric polyamine phthalate material and a t-stone-based polymer (including but not limited to polydihydrocarbosulfan, 162607.doc • 30 · 201245633 Polyoxyl polyurea and polyoxymethylene polyoxazamide). In some embodiments, the lightguide is a viscoelastic lightguide as described in W〇 2010/005655 A2 (Sherman et al.). In general, a viscoelastic lightguide includes one or more viscoelastic materials that exhibit elastic and viscous behavior when deformed. Elastic properties mean that the material can return to its original shape after removal of the transient load. One measure of the elasticity of a material is referred to as the tension alpha enthalpy, which varies with the elongation remaining after the material is stretched and subsequently restored (de-stretched) under the same conditions under which it is stretched. If the tension setting of the material is 〇%, it returns to its original length after relaxation and if the tension is set to 100%, the length of the material after relaxation is twice its original length. The tension setpoint can be measured using ASTM D4. The tensile setting of the useful viscoelastic material can be greater than about 1%, greater than about 3%, or greater than about 〇/〇 or from about 5/〇 to about 70%, about i〇〇/. Up to about 7〇%, about 3〇% to about 7〇% or about 10% to about 60%. The viscous materials belonging to Newtonian liquid have the viscosity characteristics of Newtek law, and Newton's law states that the stress increases linearly with the shear gradient. When the gradient is removed, the liquid does not return to its shape. The viscous properties of a useful viscoelastic material include the fluidity of the material at a reasonable temperature so that the material does not decompose. The viscoelastic lightguide can have a property that promotes the material that is designed to extract light from the light (four): at least a portion (e.g., optical article) that is sufficiently contacted or wetted so that the viscoelastic lightguide is optically optically coupled to the optical article. It can then take no light from the elastic light guide. Viscoelastic light guides are usually soft, compliant and abreast. Therefore, the 'viscoelastic light guide can have an elastic modulus (or storage modulus G·) 162607.doc •31 · 201245633 in order to obtain sufficient contact 'and have a viscous modulus (or loss modulus G") so that the layer is not It flows desirably and has a damping coefficient (G"/G', tan D) with respect to the relative damping of the layer. Useful viscoelastic materials can have a storage modulus G' of less than about 30,000,000 Pa (measured at 10 rad/sec and about 20 ° C to about 22 ° C). Dynamic mechanical analysis can be used to measure the viscoelastic properties of materials according to, for example, ASTM D4065, D4440, and D5279. In some embodiments, the viscoelastic lightguide comprises a PSA layer as described in the Dalquist criterion line (eg, Handbook of Pressure Sensitive Adhesive Technology, Second Edition, edited by D. Satas, Van Nostrand Reinhold, New York, As described in 1989). The viscoelastic lightguide can have a specific peel force or a peel force that exhibits at least a specific range. For example, the 90° release force of the viscoelastic lightguide can range from about 50 g/in to about 3000 g/in, from about 300 g/in to about 3000 g/in, or from about 500 g/in to about 3000 g/in. Peeling force can be measured using a peel tester from IMASS. In some embodiments, the viscoelastic lightguide comprises an optically clear lightguide having from about 80% to about 100%, about 90°/in at least a portion of the visible light spectrum (about 400 nm to about 700 nm). Up to about 1%, about 95°/. High light transmission to about 100% or about 98% to about 100%. In some embodiments, the viscoelastic lightguide has a twist value of less than about 5% and less than about 3°. Or less than about 1%. In some embodiments, the viscoelastic lightguide has a twist value of from about 〇.〇1% to less than about 5%, about 0.01°/. To less than about 3% or from about 0.01% to less than about 1%. The transmission mobility value can be determined using a twistometer according to ASTM D1 003. 162607.doc • 32- 201245633 In some embodiments, the viscoelastic lightguide comprises an optically clear lightguide having a high light transmission and a low temperature value. The high light transmittance may be from about 90% to about 100%, about 95, in at least a portion of the visible light spectrum (about 4 Torr (10) to about 700 (10)). /. To about 1 () 〇 % or about 99% to about 8%, and the 胄 degree 胄 can be from about 〇 (4) to less than about 5%, about 〇. 〇 1% to less than about 3% or about G (four) to less than about 1% . The viscoelastic lightguide can also have a light transmission of from about 5% to about 100%. The viscoelastic lightguide can have a refractive index ranging from W.3 to about 2.6, 7 or from about i5 to about 1.7. The particular refractive index or range of refractive indices selected for the viscoelastic lightguide can depend on the overall design of the illumination device and the particular application in which the device can be used. The viscoelastic photoconductive material can include nanoparticle that modifies the refractive index of the viscoelastic photoconductive material or affects the mechanical properties of the viscoelastic photoconductive material. Suitable nanoparticles are sized such that the particles produce the desired effect and do not introduce significant amounts of scattering into the photoconductive material. A viscoelastic lightguide typically comprises at least one polymer. The viscoelastic lightguide can comprise at least one PSA. PSA can be used to adhere the adhesive to and exhibit properties such as: (1) strong and long-lasting viscosity, (2) adhesion with a finger pressure, (3) sufficient ability to be fixed to the adhesive, and 4) It has sufficient cohesive strength so that it can be cleanly removed from the adhesive. Materials suitable for use as pressure sensitive adhesives have been found to be designed and formulated to exhibit the desired viscoelastic properties of the polymer which achieves the desired balance of tack, peel adhesion and shear retention. Getting the right balance of properties is not a simple process. A quantitative description of PSA can be found in the reference to DaMquist cited above. 162607.doc -33· 201245633 Useful PS A is described in detail in the references cited above by Sherman et al. Useful PSAs comprise a poly(meth)acrylate PSA derived from a monomer A comprising at least one monoethylenically unsaturated alkyl (meth) acrylate monomer, wherein the homopolymer of the monomer has no a Tg greater than about 〇t; and a monomer B comprising at least one monoethylenically unsaturated copolymerizable copolymerizable monomer, wherein the homopolymer of the monomer has a higher Tg than monomer A (eg, at least about 10) °C). As used herein, (meth)acrylic refers to acrylic and methacrylic materials and the like (e.g., (mercapto) acrylate). In some embodiments, the viscoelastic lightguide comprises a natural rubber-based pSA and a synthetic rubber-based PSA, a thermoplastic elastomer, a tackified thermoplastic epoxy derivative, a polyamine phthalic acid vinegar derivative, and a polyamine phthalic acid acrylate. Derivatives, polyoxo-oxygen PSA (for example, poly-organic oxalate, polydiorgano-organic poly-grain amine and polyoxymethylene urea block copolymer). In some embodiments, the 'viscoelastic lightguides include clarified acrylic pSAs, for example, those that can be obtained in the form of transfer tapes, such as VHBtm acrylic tapes from 3M Company 491〇1? or 4918 and 3mtm optically clear laminating adhesives ( 8140 and 8180 series). In some embodiments, the viscoelastic lightguide comprises a block copolymer dispersed in an adhesive matrix to form a Lewis acid-base pair. In some embodiments, the viscoelastic lightguide comprises a stretchable release that is removable from the substrate when stretched at or near zero degrees. 8A. In some embodiments, light guide 610 can include other coatings or a top film having a coating on outer surface 605. Additional coatings or films can be designed to impart any desired property to the surface of the light guide of 162607.doc -34 - 201245633. Examples of the coating layer include, for example, a hard coat layer, an anti-reflective coating layer, an antifouling coating layer, a matt coating layer, an anti-fog coating layer, a k layer mask coating layer, or a combination thereof. Provides enhanced durability coatings (such as hardcoats, anti-fog coatings, and scratch-resistant coatings for applications such as touch screen sensors, display screens, graphics applications, and the like. Examples of masking coatings) A blister film comprising, for example, a blurred or turbid coating that obscures the observation or a viewing angle is limited. In some cases, if a coating in the form of a film is provided, it is desirable to use an adhesive having a refractive index less than the refractive index of the light guide. The film is adhered to the surface 6〇5 of the light guide 61. Alternatively, the nanovoid layer may be disposed between the top surface of the light guide and the bottom of the other top film. As described above, an optical clearing adhesive may be used ( 0CA) adheres light guide 610 to variable index light immersion layer 630. In some embodiments, QC a includes a PSA that has about at least a portion of the visible spectrum (about 4 〇〇 nm to about 700 _) From 8% to about 1%, from about 9% to about 〇〇%, from about %% to about 100% or from about 98% to about 100%, and/or from about 0.01% to less than about 5%, about 01.01% to less than about 3% or about 〇〇1% to less than about 1% In some embodiments, the useful PSA includes those that are equal to those described in the Dalquist criteria range (eg, Handbook of Pressure Sensitive Adhesive Technology' second edition, d. Satas editor, Van Nostrand Reinhold,
Mew York,1989中所闡述PSA可具有特定剝離力或至少 展示在特定範圍内之剝離力。舉例而言,PSA之90。剝離力 可為約 10 g/in 至約 3000 gAn、約 300 gAn 至約 3000 gAn* 162607.doc -35- 201245633 約500 g/in至約3000 g/in。可使用來自IMASS之剝離測試 器來量測剝離力。 OCA可具有在約1.3至約2.6、1.4至約1.7或約1_5至約1>7 範圍内之折射率。選擇用於OCA之特定折射率或折射率範 圍可取決於包括光導及可變折射率光汲取層之光學膜之總 體設計。一般而言’ OCA之折射率應近似等於或大於光導 之折射率’且介於可變折射率光汲取層630之第一區域及 第二區域之折射率之間。 用作OCA之PS A可包括上文針對黏彈性光導所述之材料 中之任一者。作為PSA之其他實例性〇CA包含增黏熱塑性 環氧樹脂(如US 7,005,394 (Ylitalo等人)中所述)、聚胺基 曱酸酯(如US 3,718,712 (Tushaus)中所述)、聚胺基甲酸酯 丙烯酸酯(如US 2006/0216523 (Shusuke)中所述)。在一些 實施例中’黏著劑包括澄清丙烯酸系PSA,例如,彼等可 以轉移膠帶形式獲得者,例如來自3M公司之VHB™丙烯酸 系膠帶4910F及491 8、WO 2004/0202879中所闡述之3M™ 光學澄清層壓黏著劑(8140及8180系列)及3MTM光學澄清層 壓黏著劑(8171 CL及8172 CL)。有用OCA亦闡述於US 201 1/0039099 (Sherman等人)中。在一些實施例中,OC A 可包括具有微結構化黏著劑表面以容許在施加至光導之表 面後進行空氣沖掃之PSA,如(例如)US 2007/0212535 (Sherman等人)中所述。 黏著劑可包括可拉伸釋放之PS A。若可拉伸釋放之PS A 係在零度角或接近零度角下拉伸,則其係可自基板去除之 162607.doc -36- 201245633 PSA。在一些實施例中,用於光學膠帶中之黏著劑或拉伸 釋放PSA當在1拉德/秒及-17°C下量測時剪切儲存模數小於 約10 MPa,或當在1拉德/秒及-17°C下量測時為約0.03 MPa 至約10 MPa ^若期望拆卸、再加工或再循環,則可使用可 拉伸釋放之PSA。 在一些實施例中,可拉伸釋放之PSA可包括基於聚矽氧 之PSA,如U.S. 6,569,521 Bl(Sheridan等人)或美國臨時申 請案第 61/020423 號(63934US002,Sherman 等人)及第 61/03 6501號(64151118002,〇6161'111311等人)中所述。該等基 於聚矽氧之PSA包含MQ增黏樹脂與聚矽氧聚合物之組合 物。舉例而言,可拉伸釋放之PSA可包含MQ增黏樹脂及 選自由以下組成之群之彈性體聚矽氧聚合物:基於脲之聚 矽氧共聚物、基於草醯胺之聚矽氧共聚物、基於醯胺之聚 矽氧共聚物、基於胺基甲酸酯之聚矽氧共聚物及其混合 物。 在一些實施例中,可拉伸釋放之PSA可包括基於丙烯酸 酯之 PSA,如 WO 2010/078346 (Yamanaka 等人)及 WO 2010/077541 (Tran等人)中所述。該等基於丙烯酸酯之PSA 包含丙烯酸酯、無機顆粒及交聯劑之組合物。該等PSA可 為單層或多層。 在一些實施例中,黏著劑層可包括多官能烯系不飽和矽 氧烷聚合物與一或多種乙烯基單體之固化反應產物,如US 7,862,898 (Sherman 等人)及 US 7,892,649 (Sherman 等人)中 所述。 162607.doc -37- 201245633 在一些實施例中’在將照明裝置600置於反射散射元件 上時’可有益地使用自潤濕黏著劑,如W〇 2010/132176 (Sherman等人)及 WO 2009/085662 (Sherman等人)中所述。 實例性PSA包括衍生自包括聚醚鏈段之寡聚物及/或單體 之聚合物’其中35重量%至85重量%之聚合物包括鏈段。 該等黏著劑闡述於US 2007/0082969 Al(Malik等人)中。另 一貫例性PSA包括自由基可聚合之基於胺基甲酸酯或基於 脲之寡聚物與自由基可聚合之基於矽氧烷之鏈段共聚物的 反應產物;該等黏著劑闡述於美國臨時申請案6i/4i〇5i〇 (Tapio等人;代理檔案號:67015US002)中。 PSA可視需要包含_或多種添加劑,例如奈米顆粒、增 塑劑、鍵轉移劑、起始劑、抗氧化劑、穩定劑、黏度改良 劑及抗靜電劑。 頁苑例中 町β π增伸置於可變折射率光汲取 上以將可變折射率敍取層中之污染物渗透降至最低。 例而言’可將密封層佈置於可變折射率光沒取層上以便 位於可變折射率光汲取層與黏著劑層之間。對於另一實1 而言’可將密封層佈置於可變折射率紐取層上 於:變折射率光汲取層與光導之間,且密封層之折射^ 似專於或大於光導之折射率。 適宜密封層包含可基於丙婦酸或丙 劑聚合物及共聚物、笨乙稀 :敏㈣Μ 聚物埶塑性榭μα 丰c烯異戍二烯型兵 夠滲透至奈米空隙第 考刀羊之- 〈低刀千里物質即可。皇他 162607.doc •38· 201245633 密封層聚合物可為熱活化黏著聚合物(包含丙烯酸系物' 丙烯酸系物-乙酸乙烯酯、共聚物、嵌段共聚物、EVA共聚 物、聚醯胺、聚酯、聚乙烯聚合物及共聚物、聚異丁烯、 聚丙烯聚合物及共聚物、聚胺基甲酸酯聚合物及共聚物) 及其他聚合物(包含Surlyn塑膠、乙酸乙烯酯及聚二氟亞乙 稀聚合物、其合金、共聚物及具有酸鹽基團之衍生物)。 該等材料可使用直接膜層壓進行層壓,藉由熔融塗覆進行 施加或藉由任一適宜塗覆方法自聚合物之水性或溶劑性乳 液或分散液進行塗覆。用作密封層之適宜聚合分散液之兩 個實例係NEOCRYL A-614及 NEOPAC R-9699 (可自 DSM 6401 JH Heerlen,荷蘭獲得)。 光源與光導光學耦合以便來自光源之至少一些光可進入 光導中。舉例而言’光源可與光導光學耦合以便由該光源 發射之光之大於1%、大於1〇%、大於2〇%、大於3〇%、大 於40%、大於50%、大於90%或約100%進入該光導中。對 於另一實例而言,光源可與光導光學耦合以便由該光源發 射之光之約1%至約10%、約1%至約2〇%、約1%至約3〇%、 約1%至約40%、約1%至約50%、約1%至約1〇〇%、約1%至 約100%、約50%至約1〇0%或約1%至約1〇〇%進入該光導 中。光源可發射具有隨機或特定角分佈之光。 光源可包括任-適宜光源。實例性光源包含線性光源, 例如冷陰極螢光燈及點光源(例如發光二極體(LEd))。實 例性光源亦包含有機發光裝置(QLED)、白熾燈泡營光 燈泡、齒素燈、UV燈泡、紅外線源、近紅外線源、雷射 162607.doc -39· 201245633 或化學光源。一般而言’由光源發射之光可為可見或不可 見光。可使用至少一個光源。舉例而言,可使用I至約 10,000個光源。光源可包括位於光導邊緣或光導邊緣附近 之一列LED。光源可包括配置於電路中之led以便自LED 發射之光連續或均勻地將光導之期望區域照明。光源可包 括發射不同色彩光之LED以便各種色彩可在光導内混合。 「LED」係指發射光(無論可見、紫外或紅外)之二極 體。其包含以「LED」出售之非相干經封閉或經囊封半導 體裝置’無論習用或超輻射變化形式。若led發射非可見 光(例如紫外光),且在一些情形下,若其發射可見光,則 其經封裝以包含鱗光體(或其可將遠程佈置之構光體照明) 以將短波長光轉化成較長波長可見光,在一些情形下得到 發射白光之裝置。 「LED晶粒」係呈其最基本形式(亦即,呈藉由半導體 處理程序製得之個別組件或晶片形式)的LED。組件或晶片 可包含適於電力應用之電接觸以激勵裝置。組件或晶片之 個別層及其他功能元件通常係以晶圓級形成且然後可將 成品晶圓切成個別零件以得到大量[ED晶粒。 多色衫光源(無論是否用於產生白光)在光總成中可呈多 種形式’纟中對光導輸出區或表面之色彩及光亮度均勻性 具有不同效應。在一種方式中,將多個LED晶粒(例如,發 =紅光、綠光及藍光之晶粒)全部彼此緊鄰安裝於引線框 或=他基板上,且然後—起囊封於單—囊封劑材料中以形 ' 于裝其亦可包含單一透鏡組件。此一源可經控制 162607.doc 201245633 以發射個別色彩中之任一者或同時發射所有色彩。在另一 方式中,對於給疋再循環空腔而言,經個別地封裝之 LED(其中每個封裝僅具有一個LED晶粒及一種發射色彩) 可簇集在一起,該簇含有發射不同色彩(例如藍色/黃色、 紅色/綠色/藍色、紅色/綠色/藍色/白色或紅色/綠色/藍色/ 月色/黃色)之經封裝LED之組合。亦可使用琥珀色LED。 在再一方式甲,該等經個別地封裝之多色彩^££)可以一或 多個線型、陣列或其他圖案定位。 若需要,可使用其他可見光發射體(例如線性冷陰極螢 光燈(CCFL)或熱陰極螢光燈(HCFL))代替離散LED源或連 同其一起作為所揭示背光之照明源。此外,舉例而言,可 使用混合系統’例&,(CCFL/LED),其包含冷白光及暖 白光’ CCFL/HCFL ’例如彼等發射不同光譜者。光發射體 之組合可廣泛變化,且包含LED與CCFL&複數個光發射 體,例如多個CCFL、多個不同色彩CCFL及LED與CCFL。 光源亦可包含雷射、雷射二極體、電漿光源或有機光發射 二極體(單獨或與其他類型光源(例如,LED)組合)。 舉例而言,在一些應用中,可期望使用不同光源(例如 長圓柱形CCFL)或使用沿其長度發射光且搞合至遠端主動 組件(例如LED晶粒或函素燈泡)之線性表面發射光導代替 離散光源列,且對其他列光源採取類似方式。該等線性表 面發射光導之實例揭示於美國專利第5,845,〇38號(1^1^^ 等人)及第6,367,941號(Lea等人)中》亦已知光纖耦合型雷 射二極體及其他半導體發射體,且在彼等情形下,光纖波 I62607.doc 4] 201245633 導之輸出末端可視為光源’此係針對其置於所揭示再循環 空腔中或以其他方式位於背光之輸出區後面而言。其他具 有小發射區之被動光學組件(例如透鏡、偏向器、窄光導 及發出自主動組件(例如燈泡或LED晶粒)接收之光之類似 物)亦係如此。此一被動組件之一實例係模製囊封劑或側 發射型封裝LED之透鏡。任一適宜側發射型led可用於一 或多個光源,例如,LuxeonTM LED(可自Lumileds,San Jose,CA 獲得)或闡述於(例如)US 7,525,126 (Leatherdale 等 人)及 US 2007/0257270 (Lu等人)中之LED。 進入光導中之光可經準直以便其以小於5〇度、小於4〇 度、小於30度、小於20度或小於1〇度之角度入射至光導與 另一介質間之界面上,其中入射角係針對光導注入界面之 垂直表面進行量測。存在許多產生準直光之方式,包含但 不限於.1·提供具有高度準直透鏡之LED光源或源;2提 供佈置於反射楔内側之LED光源或源,其中該楔具有小於 20度、小於15度或小於1〇度之内部角;3提供如下led光 源或源:其中將該等LED光源佈置於接近經設計以將光準 直至期望注入角度之複合式拋物面收光器之焦點處;4提 供如下LED光源或源:#中垂直於光導平面進行發射且光 入射至經設計以使注人至光導中之光準直之半抛物面鏡 上;及5·提供經佈置以在光導表面上發射光之led光源或 源,其中該光導具有表面浮雕結構以僅容許處於超臨界角 度之光進入該光導中。 製備可變折射率光汲取居夕古,& 兀*次取層之方法包括·提供具有第一折 162607.doc •42· 201245633 =之奈米空隙聚合層;及將其他材料印㈣奈米空隙聚 以便其他材料實質上滲透至奈米空隙聚合層中,由 此形成包括第一區域(包括奈米空隙聚合層之一部分)及第 包括奈米空隙聚合層之另-部分及其他材料)之可 變折射率光汲取層;並 '、甲第及第一區域經佈置以便對於 在眺鄰層中以超臨界角度傳輸之光而言,可變折射率光汲 取層基於第-及第二區域之幾何配置以預定方式選擇性汲 取該光。 印刷可包括非衝擊印刷或衝擊印刷及數位或模擬印刷。 J而。可使用柔性版印刷將其他材料(亦稱為其他材 料或另-材料)印刷於奈米空隙聚合層上,其中具有填充 有其他材料之坑之凹版輥將該材料轉移至具有擁有期望形 狀配置之印模的柔性版輕上。使奈米空隙聚合材料層通過 印模並與印模接觸,該印模有效壓印或印刷具有其他材料 之網片,由此將其他材料自柔性版輥之圖案轉移至奈米空 隙層之表面上。其他材料然後滲透至奈米空隙層中,在— 些情形下’其滲透奈米空隙層之整個厚度。在大部分情形 下’藉由固化(例如使用uv輕射進行固化)來將材料硬化。 此製程可在間歇印刷製程或連續輥對輥製程(其中使包括 奈米空隙聚合層之連續網片通過柔性版輥,此使得在奈米 空隙層上印刷其他材料之重複圖案或連續圖案)中實施。 印刷亦可包括其他製程,包含但不限於旋轉凹板印刷、 絲網印刷、噴墨印刷(可使用基於水性、溶劑或固體之墨 火)凸版印刷、平版印刷、使用熱敏性基板之熱轉移方 162607.doc •43· 201245633 法、熱染料轉移及染料昇華印刷、點矩陣式印刷及使用菊 才匕輪之印刷。 一般而言,反射散射元件650可包含各種材料、總成及/ 或裝置。一般而言,反射散射元件650經設計以接收自可 變折射率光汲取層630遞送之光並將其反射回以穿過汲取 層並穿過光導610之外表面605。反射散射元件650可經選 擇以便穿過光導610之外表面605發射期望光分佈。在一些 情形下,反射散射元件650經選擇以便入射至反射散射元 件65 0之光轉變成實質性朗伯(lambertian)區光源。 一般而言’若該元件展現漫射或半鏡反射,則將其視為 反射散射元件。漫反射係如下表面光反射:入射光線係以 許多個角度反射而非如同鏡面反射之情形僅以一個角度反 射。照明之理想漫反射表面在環繞表面之半球中在所有方 向上皆具有相等亮度(朗伯反射)。半鏡反射係如下表面光 反射:入射光線以多個角度反射而非如同鏡面反射器之情 形僅以一個角度反射。在許多情形下’半鏡反射器主要具 有正向散射’其中反射光係圍繞鏡面反射角擴散,其中至 少大於5%的在2度外部之反射光係以鏡面角為中心。在_ 些情形下,大於約50%的自任一角度入射之光經反射在以 入射角為中心之2度圓錐的外部。 適用於反射散射元件650之材料包含漫反射及半鏡反射 材料及表面《如本文所定義之反射散射元件具有漫反射或 半鏡反射。對於漫反射材料而言,具有入射角之單—入射 光線係以許多個角度反射而非如同鏡面反射之情形僅以一 162607.doc • 44· 201245633 個角度反射。照明之理想漫反射表面在環繞表面之半球中 在所有方向上皆具有相等亮度(朗伯反射)。通常,漫反射 材料反射光以便光線在正向及反向兩個方向上散射(反向 散射意味著將光引導回其來自之方向)。半鏡反射材料係 it供度反射之材料,但對於單一入射光線而言,光之反射 光線係在窄角度範圍内反射。通常,正向引導自半鏡反射 材料反射之光且小部分光反向反射至其入射方向。在本文 所述發明之一些情形下,反射散射元件650提供自光導遞 送之光之漫反射’以便大於10%之反射光在由入射光之角 度範圍所界定之角度範圍的外側。 適且反射散射元件包含任一散射材料,例如,灰泥、白 色紙、纖維材料(例如非織造纖維墊片及布料)、無機物填 充之白色反射聚合物(無機顆粒填充之聚合物,例如聚 酯、聚烯烴及諸如此類)、陶瓷材料、結晶表面(例如大理 石、天然石英或石塊)及空隙聚合物材料(例如彼等使用相 分離技術(例如溶劑誘導之相分離及熱誘導之相分離)製得 者)。任一空隙聚合材料皆可適於作為反射散射元件。在 些貫加例中,反射散射元件包括圖形,例如符號、標記 物或圖片。半鏡反射散射材料之實例包含粗糙反射金屬表 面、結構化鏡面反射表面、在鏡面反射表面上具有漫射塗 層之鏡面反射表面(例如,增強之鏡面反射器(例如來自3m 公司之Vikuiti™ESR),其包括表面上具有漫射塗層之多層 光學膜)。一些實例包含拉絲鋁及鉻、藉由壓印、「錘 擊」、物理或化學蝕刻或賦予表面粗糙度之任一其他方法 162607.doc 45· 201245633 修飾之金厲表面。另一選擇為,可將漫射塗層施加於鏡面 反射器上或以獨立式元件形式放置。可將具有表面結構或 粗糙度之膜置於鏡面材料上或層壓至鏡面材料上。反射^The PSA described in Mew York, 1989 may have a specific peel force or at least exhibit a peel force within a particular range. For example, 90 of PSA. The peel force can range from about 10 g/in to about 3000 gAn, from about 300 gAn to about 3000 gAn* 162607.doc -35 to 201245633 from about 500 g/in to about 3000 g/in. The peel force can be measured using a peel tester from IMASS. The OCA can have a refractive index in the range of from about 1.3 to about 2.6, from 1.4 to about 1.7, or from about 1 to 5 to about 1 > The particular refractive index or range of refractive indices selected for OCA may depend on the overall design of the optical film comprising the lightguide and the variable index light extraction layer. In general, the refractive index of the 'OCA should be approximately equal to or greater than the refractive index of the light guide' and between the refractive indices of the first and second regions of the variable index light extraction layer 630. The PS A used as the OCA may include any of the materials described above for the viscoelastic light guide. Other exemplary oxime CAs as PSAs include tackified thermoplastic epoxy resins (as described in US 7,005,394 (Ylitalo et al.), polyamino phthalates (as described in US 3,718,712 (Tushaus)), polyamines. Formate acrylate (as described in US 2006/0216523 (Shusuke)). In some embodiments the 'adhesives include clarified acrylic PSAs, for example, those that can be obtained in the form of transfer tapes, such as VHBTM acrylic tapes 4910F and 4918 from 3M Company, 3MTM as set forth in WO 2004/0202879 Optically clear laminating adhesive (8140 and 8180 series) and 3MTM optical clear laminating adhesive (8171 CL and 8172 CL). Useful OCA is also described in US 201 1/0039099 (Sherman et al.). In some embodiments, OC A can include a PSA having a microstructured adhesive surface to permit air flushing after application to the surface of the light guide, as described, for example, in US 2007/0212535 (Sherman et al.). The adhesive may include a stretchable release PS A. If the stretch release PS A is stretched at or near zero angle, it can be removed from the substrate by 162607.doc -36 - 201245633 PSA. In some embodiments, the adhesive or stretch release PSA used in the optical tape has a shear storage modulus of less than about 10 MPa when measured at 1 rad/sec and -17 ° C, or when pulled at 1 Demeased in de/sec and -17 ° C from about 0.03 MPa to about 10 MPa ^ If disassembly, rework or recycling is desired, a stretch release PSA can be used. In some embodiments, the stretch release PSA may comprise a polyoxyl-based PSA, such as US 6,569,521 Bl (Sheridan et al.) or US Provisional Application No. 61/020423 (63934 US002, Sherman et al.) and 61. /03 6501 (64151118002, 〇6161 '111311 et al.). The polyoxyl-based PSA comprises a combination of an MQ tackifying resin and a polyoxyalkylene polymer. For example, the stretch release PSA may comprise an MQ tackifying resin and an elastomeric polyoxyloxy polymer selected from the group consisting of urea-based polyoxyalkylene copolymers, grassy amine-based polyoxyloxy copolymers. , a guanamine-based polyoxyloxy copolymer, a urethane-based polyoxyloxy copolymer, and mixtures thereof. In some embodiments, the stretch release PSA may comprise an acrylate based PSA as described in WO 2010/078346 (Yamanaka et al.) and WO 2010/077541 (Tran et al.). The acrylate-based PSAs comprise a combination of acrylates, inorganic particles, and crosslinkers. The PSAs can be single or multiple layers. In some embodiments, the adhesive layer can comprise a cured reaction product of a polyfunctional ethylenically unsaturated alkoxylate polymer with one or more vinyl monomers, such as US 7,862,898 (Sherman et al.) and US 7,892,649 (Sherman et al. Said). 162607.doc -37- 201245633 In some embodiments 'self-wetting adhesives can be beneficially used when placing illumination device 600 on a reflective scattering element, such as W〇2010/132176 (Sherman et al.) and WO 2009. /085662 (Sherman et al.). Exemplary PSAs include polymers derived from oligomers and/or monomers comprising polyether segments, wherein from 35 to 85% by weight of the polymer comprises segments. Such adhesives are described in US 2007/0082969 Al (Malik et al.). Further consistent PSAs include reaction products of free-radical polymerizable urethane-based or urea-based oligomers with free-radically polymerizable oxyalkylene-based segmented copolymers; Temporary application 6i/4i〇5i〇 (Tapio et al; agency file number: 67015US002). The PSA may optionally contain _ or a plurality of additives such as nano granules, plasticizers, bond transfer agents, starters, antioxidants, stabilizers, viscosity improvers, and antistatic agents. In the case of the page, the β π-extension is placed on the variable-refractive-index light extraction to minimize the penetration of contaminants in the variable-refractive-index layer. For example, a sealing layer may be disposed on the variable refractive index light absorbing layer so as to be positioned between the variable refractive index light absorbing layer and the adhesive layer. For the other one, 'the sealing layer can be disposed on the variable refractive index bonding layer between the variable refractive index light extraction layer and the light guide, and the refractive index of the sealing layer is specific to or greater than the refractive index of the light guide. . Suitable sealing layer comprises polymer and copolymer based on bupropion acid or propionate, stupid ethylene: sensitive (four) Μ polymer 埶 plastic 榭μα rich c-ene isodecene type soldier penetrates into the nano-void - <Low knife can be used for thousands of miles.皇 162 607.doc •38· 201245633 The sealing layer polymer can be a heat activated adhesive polymer (including acrylic 'acrylic acid - vinyl acetate, copolymer, block copolymer, EVA copolymer, polyamine, Polyester, Polyethylene Polymers and Copolymers, Polyisobutylene, Polypropylene Polymers and Copolymers, Polyurethane Polymers and Copolymers) and Other Polymers (including Surlyn Plastics, Vinyl Acetate and Polydifluorocarbons) A vinylene polymer, an alloy thereof, a copolymer, and a derivative having an acid salt group). The materials may be laminated using direct film lamination, applied by melt coating or coated from an aqueous or solvent emulsion or dispersion of the polymer by any suitable coating method. Two examples of suitable polymeric dispersions for use as the sealing layer are NEOCRYL A-614 and NEOPAC R-9699 (available from DSM 6401 JH Heerlen, The Netherlands). The light source is optically coupled to the light guide such that at least some of the light from the light source can enter the light guide. For example, a light source can be optically coupled to the light guide such that greater than 1%, greater than 1%, greater than 2%, greater than 3%, greater than 40%, greater than 50%, greater than 90%, or approximately less than the light emitted by the light source 100% enters the light guide. For another example, the light source can be optically coupled to the light guide such that from about 1% to about 10%, from about 1% to about 2%, from about 1% to about 3%, about 1% of the light emitted by the light source Up to about 40%, from about 1% to about 50%, from about 1% to about 1%, from about 1% to about 100%, from about 50% to about 1.0% or from about 1% to about 1% Enter the light guide. The light source can emit light having a random or specific angular distribution. The light source can include any suitable light source. Exemplary sources include linear sources such as cold cathode fluorescent lamps and point sources such as light emitting diodes (LEd). Exemplary light sources also include organic light-emitting devices (QLEDs), incandescent light bulbs, acne lamps, UV bulbs, infrared sources, near-infrared sources, lasers, 162607.doc -39· 201245633 or chemical sources. In general, light emitted by a light source can be visible or invisible. At least one light source can be used. For example, from 1 to about 10,000 light sources can be used. The light source can include a column of LEDs located near the edge of the light guide or near the edge of the light guide. The light source can include a led disposed in the circuit to illuminate a desired area of the light guide continuously or uniformly from the light emitted by the LED. The light source can include LEDs that emit different colors of light so that the various colors can be mixed within the light guide. "LED" means a diode that emits light (whether visible, ultraviolet or infrared). It comprises a non-coherently sealed or encapsulated semiconductor device sold as "LED", either in conventional or super-radiative form. If the LED emits non-visible light (eg, ultraviolet light), and in some cases, if it emits visible light, it is packaged to contain scales (or it can illuminate a remotely disposed light-emitting body) to convert short-wavelength light It is a longer wavelength visible light, and in some cases a device that emits white light. "LED dies" are LEDs in their most basic form (i.e., in the form of individual components or wafers made by semiconductor processing procedures). The component or wafer may contain electrical contacts suitable for power applications to energize the device. Individual layers and other functional components of the component or wafer are typically formed at the wafer level and the finished wafer can then be diced into individual parts to obtain a large number of [ED grains. Multicolor shirt sources (whether or not used to produce white light) can take a variety of forms in the light assembly, which have different effects on the color and brightness uniformity of the light output area or surface. In one mode, a plurality of LED dies (eg, dies = red, green, and blue dies) are all mounted next to each other on a lead frame or a substrate, and then encapsulated in a single-capsule The sealant material may also comprise a single lens assembly in the form of a package. This source can be controlled by 162607.doc 201245633 to emit any of the individual colors or to simultaneously emit all colors. In another approach, the individually packaged LEDs (where each package has only one LED die and one emission color) can be clustered together for a given recirculation cavity, the cluster containing different colors for emission A combination of packaged LEDs (eg blue/yellow, red/green/blue, red/green/blue/white or red/green/blue/moon/yellow). Amber LEDs are also available. In still another mode, the individually packaged multi-colors can be positioned in one or more line patterns, arrays, or other patterns. If desired, other visible light emitters (e.g., linear cold cathode fluorescent lamps (CCFLs) or hot cathode fluorescent lamps (HCFLs)) may be used in place of or in conjunction with the discrete LED sources as illumination sources for the disclosed backlights. Further, for example, a hybrid system 'Example &, (CCFL/LED), which includes cool white light and warm white light 'CCFL/HCFL', for example, which emit different spectra, may be used. The combination of light emitters can vary widely and includes LEDs and CCFL&a plurality of light emitters, such as multiple CCFLs, multiple different color CCFLs, and LEDs and CCFLs. The light source can also include a laser, a laser diode, a plasma source, or an organic light emitting diode (alone or in combination with other types of sources (eg, LEDs)). For example, in some applications, it may be desirable to use different light sources (eg, long cylindrical CCFLs) or use linear surface emission that emits light along its length and fits into a remote active component (eg, an LED die or a light bulb) The light guide replaces the discrete source columns and takes a similar approach to the other column sources. Examples of such linear surface-emitting light guides are disclosed in U.S. Patent Nos. 5,845, 〇38 (1^1^^ et al.) and 6,367,941 (Lea et al.), which are also known as fiber-coupled laser diodes and Other semiconductor emitters, and in these cases, the output end of the fiber optic wave I62607.doc 4] 201245633 can be considered as a light source 'this is placed in the disclosed recirculation cavity or otherwise located in the output area of the backlight Later, Other passive optical components with small emitters (such as lenses, deflectors, narrow light guides, and the like that are emitted from active components (such as light bulbs or LED dies)) are also the same. An example of such a passive component is a lens of a molded encapsulant or a side emissive package LED. Any suitable side-emitting type led can be used for one or more light sources, for example, LuxeonTM LEDs (available from Lumileds, San Jose, CA) or as described, for example, in US 7,525,126 (Leatherdale et al.) and US 2007/0257270 LED in (Lu et al.). Light entering the light guide may be collimated such that it is incident on the interface between the light guide and another medium at an angle of less than 5 degrees, less than 4 degrees, less than 30 degrees, less than 20 degrees, or less than 1 degree, wherein incidence The horn is measured for the vertical surface of the light guide injection interface. There are many ways to produce collimated light, including but not limited to.1. providing an LED source or source with a highly collimating lens; 2 providing an LED source or source disposed inside the reflective wedge, wherein the wedge has less than 20 degrees, less than An internal angle of 15 degrees or less; 3 provides a led light source or source in which the LED light sources are disposed at a focal point close to a composite parabolic receiver designed to align the light to a desired injection angle; Providing an LED source or source that emits light perpendicular to the plane of the light guide and that is incident on a semi-parabolic mirror that is designed to collimate light incident into the light guide; and 5. provides for emitting light on the surface of the light guide A led light source or source, wherein the light guide has a surface relief structure to allow only light at a supercritical angle to enter the light guide. The method for preparing a variable-refractive-index optical enthalpy, & 兀* sub-layering includes: providing a nano-voided polymeric layer having a first fold of 162607.doc • 42·201245633 = and printing other materials (four) nanometers The voids are concentrated such that other materials substantially penetrate into the nanovoided polymeric layer, thereby forming a first region (including a portion of the nanovoided polymeric layer) and a further portion comprising the nanovoided polymeric layer and other materials) a variable index light extraction layer; and a, a first and a first region are arranged such that for light transmitted at a supercritical angle in the neighborhood layer, the variable index light extraction layer is based on the first and second regions The geometric configuration selectively captures the light in a predetermined manner. Printing can include non-impact printing or impact printing as well as digital or analog printing. J and. Other materials (also known as other materials or other materials) may be printed on the nanovoided polymeric layer using flexographic printing, wherein a gravure roll having pits filled with other materials transfers the material to have a desired shape configuration. The flexographic version of the stamp is light. Passing a layer of nanovoided polymeric material through a stamp and contacting the stamp, the stamp effectively imprinting or printing a web having other materials, thereby transferring other materials from the pattern of the flexographic roll to the surface of the nanovoided layer on. The other material then penetrates into the nanovoided layer, which in some cases penetrates the entire thickness of the nanovoided layer. In most cases, the material is hardened by curing (for example, curing using uv light shot). The process can be in a batch printing process or a continuous roll-to-roll process in which a continuous web comprising a nanovoided polymeric layer is passed through a flexographic roll, which results in a repeating pattern or a continuous pattern of other materials printed on the nanovoided layer. Implementation. Printing may also include other processes including, but not limited to, rotary gravure printing, screen printing, inkjet printing (available using aqueous, solvent or solid inks), relief printing, lithography, thermal transfer using a heat sensitive substrate 162607 .doc •43· 201245633 Method, thermal dye transfer and dye sublimation printing, dot matrix printing and printing using the daisy wheel. In general, reflective scattering element 650 can comprise a variety of materials, assemblies, and/or devices. In general, reflective scattering element 650 is designed to receive light reflected from variable index light extraction layer 630 and reflect it back through the capture layer and through outer surface 605 of light guide 610. Reflective scattering element 650 can be selected to emit a desired light distribution through outer surface 605 of light guide 610. In some cases, reflective scattering element 650 is selected such that light incident on reflective scatter element 65 0 is converted to a substantially lambertian zone source. In general, if the element exhibits a diffuse or semi-mirror reflection, it is considered a reflective scattering element. The diffuse reflection is the surface light reflection as follows: the incident light is reflected at many angles and is reflected at only one angle as in the case of specular reflection. The ideal diffuse surface of illumination has equal brightness (Lambertian reflection) in all directions in the hemisphere surrounding the surface. The half mirror reflection is the surface light reflection: the incident light is reflected at multiple angles and is reflected at only one angle as in the case of a specular reflector. In many cases the 'half-mirror reflector has predominantly forward scattering' where the reflected light is spread around the specular reflection angle, with at least 5% of the reflected light outside of 2 degrees centered at the specular angle. In some cases, greater than about 50% of the light incident from any angle is reflected outside of the 2 degree cone centered at the angle of incidence. Materials suitable for reflective scattering element 650 include diffuse and semi-mirror reflective materials and surfaces. Reflective scattering elements as defined herein have diffuse or half mirror reflections. For diffusely reflective materials, the single-incident ray with incident angle is reflected at many angles rather than specularly reflected at only one angle of 162607.doc • 44· 201245633. The ideal diffuse surface of illumination has equal brightness (Lambertian reflection) in all directions in the hemisphere surrounding the surface. Typically, diffusely reflective materials reflect light so that the light scatters in both forward and reverse directions (backscattering means directing light back to where it came from). A semi-mirror reflective material is a material that provides a degree of reflection, but for a single incident ray, the reflected light of the light is reflected over a narrow range of angles. Typically, light reflected from the semi-mirror reflective material is forward directed and a small portion of the light is retroreflected to its direction of incidence. In some instances of the invention described herein, reflective scattering element 650 provides diffuse reflection of light delivered from the light guide such that greater than 10% of the reflected light is outside of the range of angles defined by the angular extent of the incident light. Suitable reflective scattering elements comprise any scattering material, for example, stucco, white paper, fibrous materials (such as nonwoven fibrous mats and cloth), inorganic filled white reflective polymers (inorganic particle filled polymers such as polyester) , polyolefins and the like, ceramic materials, crystalline surfaces (such as marble, natural quartz or stones) and voided polymeric materials (eg, they are phase separated (eg solvent induced phase separation and thermally induced phase separation)) Winner). Any void polymeric material can be suitable as the reflective scattering element. In some additions, the reflective scattering elements include graphics such as symbols, markers or pictures. Examples of half mirrored reflective scattering materials include a rough reflective metal surface, a structured specular reflective surface, and a specular reflective surface with a diffuse coating on the specularly reflective surface (eg, an enhanced specular reflector (eg, VikuitiTM ESR from 3M Corporation) ), which comprises a multilayer optical film having a diffuse coating on its surface). Some examples include brushed aluminum and chrome, by embossing, "hammering", physical or chemical etching, or any other method of imparting surface roughness. 162607.doc 45· 201245633 Modified gold surface. Alternatively, a diffuse coating can be applied to the specular reflector or placed as a freestanding component. A film having a surface structure or roughness can be placed on the mirror material or laminated to the mirror material. Reflection ^
射元件可採用.墨水、塗料或塗層之形式。藉由諸如數位I 刷、絲印等方法製得之印刷圖形係反射散射元件。經刷塗 之壁係反射散射元件。 在一些情形下,反射散射元件包括反射顯示器,如(例 ^O) rpront-Lit Reflective Display Device and Method 〇f Front-Lighting Reflective Dispiay」(代理檔案號: 66858US002)(其與本文在同一曰期提出申請)中所述。 如上所述,光導610及反射散射元件65〇分別與可變折射 率光汲取層之頂部及底部表面625及635光學耦合。在許多 情形下,此光學耦合意味著在可變折射率光汲取層63〇、 光導610及反射散射元件65〇之間沒有空氣間隙。 圖7展示實例性照明總成之示意圖,該實例性照明總成 包括可變光汲取層與反射散射元件之組合。在此實施例 中,可變折射率光汲取層73〇係在納入照明總成中之透明 基板740上製得。可變折射率光汲取層730之表面725與光 導710光學耦合,且透明基板740之底部側742與反射散射 %件750光學耦合。適宜透明基板如上所述。 在許多情形下’可變折射率光汲取層730與光導710及反 射散射元件750之間之光學耦合意味著在層表面之間沒有 空氣間隙(亦即在表面715與725之間沒有空氣間隙且在表 面742與745之間沒有空氣間隙)。可使用任一方式(例如藉 162607.doc •46- 201245633 由使用光學澄清壓敏性黏著劑)將透明基板74〇之表面742 黏著至反射散射元件750之表面745。透明基板74〇可具有 一定程度之霾度且可提供一定光散射,只要散射光主要在 朝向反射散射元件750之正向方向上即可。 圖8、9、l〇a-i〇d及π展示實例性照明總成之示意性橫 截面圖,該實例性照明總成包括與光導及反射散射元件光 學耦合之可變折射率光汲取層。圖8展示照明總成8〇〇,其 中可變折射率光汲取層8 3 0直接形成於反射散射元件8 5 〇之 表面上。光導810藉助光學澄清黏著劑84〇(其可為pSA)直 接黏著至可變光汲取層830上。黏著層840優先地具有低霾 度、同先學清晰度及向透光率。 圖9展示照明總成9 0 0,其中可變折射率光汲取層9 3 〇形 成於光導910之表面上。反射散射元件95〇藉助光學澄清黏 著劑940(其可為PSA)附接至可變折射率光沒取層930上。 黏著層940可具有低霾度、高光學清晰度及高透光率。另 一遥擇為’黏著劑層940可具有一定程度之霾度且可提供 一定光散射’只要散射光主要在朝向反射散射元件層95〇 之正向方向上即可。 圖1 0 a展示照明總成1 〇 〇 〇 ’其中可變折射率光沒取層 1030佈置於透明基板1040上。可變折射率光汲取層1〇3〇藉 由黏者劑層1070黏著至光導1010上。對於在光導中傳 播之光之一或多種波長而言’黏著劑層1〇7〇優先具有低霾 度、高光學清晰度及高透光率。上面佈置有可變折射率沒 取層之透明基板1040藉由黏著劑層1 060黏著至反射散射元 162607.doc -47 · 201245633 件層1050上。黏著劑層1060可具有低霾度、高光學清晰度 及高透光率。另一選擇為,黏著劑層1060可具有一定程度 之霾度且可提供一定光散射,只要散射光主要在朝向反射 散射元件層1050之正向方向上即可。 圖1 Ob展示照明總成1 〇8〇,其中與圖1 〇a中所展示之照明 總成1000相比,佈置於透明基板1〇4〇上之可變折射率光沒 取層1030之定向發生倒轉。可變折射率光汲取層1〇3〇可藉 由黏著劑層1060黏著至反射散射元件層1050上,黏著劑層 1060可具有低霾度、高光學清晰度及高透光率,或其可具 有一定程度之霾度且可提供一定光散射,只要散射光主要 在朝向反射散射元件層1 050之正向方向上即可。上面佈置 有可變折射率光汲取層之透明基板1 〇4〇藉由黏著劑層丨〇7〇 結合至光導1010。對於在光導1〇1〇中傳播之光之一或多種 波長而言,黏著劑層1070優先具有低霾度、高光學清晰度 及向透光率。 圖l〇c展示與圖l〇a中所展示之照明總成1000類似之照明 總成1090,只是總成1090包括佈置於可變折射率汲取層 1030與黏著劑層1070之間之密封層1〇95。圖l〇d展示與圖 1 Ob中所展示之照明總成1 〇8〇類似之照明總成1096,只是 總成1096包括佈置於可變折射率光汲取層丨〇3〇與黏著劑層 1060之間之密封層1〇95。密封層可用於將如上所述之可變 折射率光汲取層之污染降至最低。可用作密封層之適宜材 料如上所述。 一般而言,對於圖10a-10d中所展示之照明總成而言, 162607.doc -48- 201245633 此鄰光導uno之黏著劑層1070之折射率應近似等於或大於 光導之折射^在圖1Qet,密封層1G95之折射率亦應具 有近似等於或大於光導之折射率。 一般而言,佈置於可變折射率汲取層與光導間之任—層 之折射率應近似等於或大於光導之折射率。同樣,一般而 言,可變折射率光没取層之第二區域之折射率應近似等於 或大於光導之折射率,且第一區域之折射率應小於光導之 折射率。 圖η展示照明總成1100,其包括與可變折射率光沒取層 1130光學輕合之光導1110 ’且其他層119G佈置於可變折射 率光汲取層與反射散射元件115〇之間以便可變折射率光沒 取層與反射散射元件光學耦合。其他層可包括例如以下材 料:UV吸收劑、υν穩㈣、染料、下轉換材料(例如勞光 團)、奈米磷光體、量子點或光學增亮劑。 一般而言’佈置於可變折射率光絲層與反射散射元件 之間之任—層皆可具有低霾度、高光學清晰度及高透光 率,或其可具有一定程度之霾度且可提供一定光散射,只 要散射光主要在朝向反射散射元件之正向方向上即可。一 般而3 m可變折射率光汲取層與反射散射元件之間 之任-層皆可包含上文針對其他層所述之材料。一般而 言’可變折射率光汲取層與反射散射元件之間之任一層皆 可包括其他材料,例如uv吸收劑、uv穩定劑、染料、下 轉換材料(例如勞光團)、奈米磷光體、量子點或光學增亮 劑。反射散射元件亦可包括其他材料,例如uv吸收劑、 162607.doc •49· 201245633 uv穩定劑、染料、下轉換材料(例如螢光團)、奈米磷光 體、量子點或光學增亮劑。 圖12展示包括可變折射率光汲取層之實例性光學膜之示 意性橫截面圖《光學膜1200包括佈置於透明基板124〇上之 可變折射率光汲取層123(^第一光學澄清黏著劑層127〇佈 置於可變折射率光汲取層1230上且與透明基板相對,且第 一釋放襯墊1275佈置於層1270上且與層123〇相對。第二光 學澄清黏著劑層1260佈置於透明基板124〇上且與可變折射 率光汲取層123〇相對,且第二釋放襯墊1265佈置於層126〇 上且與透明基板1240相對。此光學膜12〇〇可連同光導及反 射散射元件層一起使用以製造用於一般照明應用(例如工 作照明、室内照明、櫥櫃照明及汽車内部照明)或用於背 光照明應用(例如適用於移動手持式電腦監測器及筆記本 及TV及數位標誌應用之液晶顯示器之背光照明、任一其 他透射式透明顯示器類型及藉由任一方式製得之圖形(例 如藉由任一印刷方法製得之圖形)之背光照明)之照明裝 置,或可作為前燈與反射顯示裝置及圖形一起使用以製造 前照明反射顯示裝置或圖形。 釋放襯墊通常具有用於與黏著劑層接觸之低黏著表面。 第一及/或第二釋放襯墊可包括紙(例如牛皮紙)或聚合膜 (例如聚(氣乙烯)、聚酯、聚烯烴)、乙酸纖維素、乙烯乙 酸乙烯酯、聚胺基甲酸酯及諸如此類。釋放襯墊可經釋放 劑(例如含有聚矽氧之材料或含有氟碳化合物之材料)之層 塗覆。釋放襯墊可包括經聚乙烯(其經含有聚矽氧之材料 162607.doc -50· 201245633 塗覆)塗覆之紙或聚合膜。實例性釋放襯墊包含以商標「τ_ 3〇」及Τ-10」購自CP Films公司之襯墊,其具有位於聚 對苯二曱酸乙二酿膜上之聚石夕氧釋放塗層。實例性釋放襯 墊包3結構化釋放襯墊。實例性釋放襯墊包含彼等稱為微 結構化釋放襯墊中之任一者’該等微結構化釋放襯墊用於 賦予黏著劑層之表面微結構。微結構化表面可有助於黏著 劑層與施加黏著劑層之表面之間之空氣排出。 圖13a展示實例性光學膜及照明物件之示意性橫截面 圖,該照明物件包括與光導光學耦合之可變折射率光汲取 層。光學膜1300包括照明物件13〇1及釋放襯墊1375。照明 物件1301包括佈置於透明基板134〇上之光導及佈置於 光導上之保護外層1330且與透明基板相對。透明基板丨34〇 之相對側與光導1310光學耦合。可變折射率光汲取層135〇 佈置於透明基板1340上且與光導相對,且黏著劑層1〇7〇佈 置於可變折射率光汲取層上且與透明基板相對。在此實施 例中光導1310較佳地包括如上所述之a ^可選密封層 1360佈置於可變折射率光汲取層135〇與黏著劑層丨37〇之 間。釋放襯墊1375佈置於黏著劑層137〇之外表面上。實例 性密封層及釋放襯墊如上所述。 照明物件1301可具有小於約10%之霾度值、大於約85% 之光學清晰度及大於約90%之透光率。在一些情形下,照 明物件1301可具有小於約7%之霾度值、大於約9〇%之光學 /月晰度及大於約92%之透光率。可使用Haze_Gard pius霾 度計(可自ΒΥΚ-Gardiner獲得)來量測光學透射率、清晰度 162607.doc •51 · 201245633 及霾度。 圖13b展示實例性照明裝置139〇之示意圖,照明裝置 1390包括圖i3a中所展示之照明物件與光源及反射散射元 件之組合。自照明物件1301去除釋放襯墊,且然後將物件 施加至反射散射元件1380上。 對於上述照明物件或裝置中之任一者而言,物件或裝置 之、结構無需為如圖中所展示之平坦或平面結構β物件或裝 置之結構可為彎曲的,至多且包含彎曲成管形並自末端打 光’且其中光沿徑向向外發射(例如CCFL光源)。另一選擇 為’物件或裝置之結構可使光成形為1 D隧道形。一般而 言’物件及裝置之結構可採用彎曲形狀(包含複曲率)且可 應用於彎曲顯示器及一般照明及裝飾照明中。 實例 按接收狀態使用下列材料。 組份 固體% 量(g) Α-174二氧化矽,Naic〇2327, Ondeo Nalco Chemical 公司 43.40 482.84 脂肪族胺基曱酸酿丙稀酸g旨,可自Sartomer公 司以CN 9893形式獲得 100.00 42.67 異戊四醇三丙稀酸S旨,可自Sartomer公司以 SR 444形式獲得 100.00 167.69 異丙醇,可自Sartomer公司以IPA形式獲得 250.03 乙酸乙S旨,可自Sigma·Aldrich獲得 250.03 光起始劑,可自BASF公司以IRGACURE 184 形式獲得 100.00 5.84 光起始劑,可自BASF公司以IRGACURE 819 形式獲得 100.00 1.12 實例1 塗層調配物之製備 162607.doc •52· 201245633 根據上表中所展示之量’將下列物質添加至1升寬口琥 珀色瓶中:5.70 g CN 9893、22.40 g SR 444、5.84 g IRGACURE 184及 1,12 g IRGACURE 819。將瓶蓋上並振 盪2小時以溶解CN9893 (批料係澄清的)。此溶液稱為樹脂 預混合物。 將下列物質添加至2000 mL聚瓶(p〇ly bottle)中:482.84 g經A-174處理之NALC0 2327及樹脂預混合物。藉由在兩 個瓶之間來回轉移批料來混合兩種組份。最終使批料存在 於2000 mL瓶中。向2000 mL瓶中添加IRGACURE 184及 IRGACURE 819。將溶液振盪30分鐘以溶解光起始劑。所 得批料係半透明之低黏度分散液。 使用乙酸乙酯與丙二醇曱基醚之50/50摻合物(可自Dow Chemical以DO WANOL PM形式獲得)將上述批料稀釋至約 1 7 · 7重量%固體。 奈米空隙聚合層之製備 使用狹槽模具以3 1 m/ min之線速度將上述塗層調配物 塗覆於 50 um PET 膜(MELINEX 617,可自 DuPont 獲得) 上。濕塗層尽度約為14 u m。在惰性室(< 5 0 p p m Ο 2)中,以 相同線速度使用UV輻射在395 nm及850 mJ/cm2之劑量(藉 由可自Cree公司獲得之υν-LED來提供UV輻射)下來將濕塗 層部分地在線固化。然後將部分固化之塗層試樣在7〇°c下 於9米烘箱中乾燥,且在氮吹掃氣氛下,最終使用236瓦/ cm2 Fusion Η燈泡(可自Fusi〇n UV Systems公司獲得)進行 固化。所得奈米空隙聚合層具有約25 um之厚度。透光率 162607.doc -53- 201245633 為94.8%,霾度為0.66%且清晰度為99.9%,如使用BYK Gardner Haze Gard Plus (Columbia, MD)所量測。奈米空隙 層之折射率介於1.20與1.22之間’如使用Metricon稜鏡搞 合器(Metricon公司,Pennington, NJ)所量測。 可變折射率光汲取層之形成The firing element can take the form of an ink, paint or coating. The printed pattern obtained by a method such as digital I brush, silk screen printing or the like is a reflective scattering element. The brushed walls reflect the scattering elements. In some cases, the reflective scattering element comprises a reflective display, such as rpront-Lit Reflective Display Device and Method 〇f Front-Lighting Reflective Dispiay (agent file number: 66858US002) (which is proposed in the same period as this article) Said in the application). As described above, the light guide 610 and the reflective scattering element 65 are optically coupled to the top and bottom surfaces 625 and 635 of the variable refractive index light extraction layer, respectively. In many cases, this optical coupling means that there is no air gap between the variable index light extraction layer 63, the light guide 610, and the reflective scattering element 65. 7 shows a schematic diagram of an example illumination assembly that includes a combination of a variable light extraction layer and a reflective scattering element. In this embodiment, the variable index light extraction layer 73 is made on a transparent substrate 740 incorporated into the illumination assembly. Surface 725 of variable index light extraction layer 730 is optically coupled to light guide 710, and bottom side 742 of transparent substrate 740 is optically coupled to reflective scattering % member 750. Suitable transparent substrates are as described above. In many cases, the optical coupling between the variable index light extraction layer 730 and the light guide 710 and the reflective scattering element 750 means that there is no air gap between the layer surfaces (ie, there is no air gap between the surfaces 715 and 725 and There is no air gap between surfaces 742 and 745). The surface 742 of the transparent substrate 74 can be adhered to the surface 745 of the reflective scattering element 750 using either means (e.g., by using an optically clear pressure sensitive adhesive by 162607.doc • 46-201245633). The transparent substrate 74 can have a degree of twist and provide some light scattering as long as the scattered light is predominantly in the forward direction toward the reflective scattering element 750. Figures 8, 9, l〇a-i〇d and π show schematic cross-sectional views of an exemplary illumination assembly including a variable index optical pickup layer optically coupled to a light guide and a reflective scattering element. Figure 8 shows an illumination assembly 8A in which a variable index light extraction layer 830 is formed directly on the surface of the reflective scattering element 85. The light guide 810 is adhered directly to the variable light extraction layer 830 by means of an optical clearing adhesive 84 (which may be pSA). The adhesive layer 840 preferentially has a low degree of tweeting, the same learning clarity, and a light transmittance. Figure 9 shows an illumination assembly 900 in which a variable index light extraction layer 9 3 is formed on the surface of the light guide 910. The reflective scattering element 95 is attached to the variable index light immersion layer 930 by means of an optically clear adhesive 940, which may be a PSA. The adhesive layer 940 can have low twist, high optical clarity, and high light transmittance. Alternatively, the adhesive layer 940 may have a degree of twist and provide some light scattering as long as the scattered light is predominantly in the forward direction toward the reflective scattering element layer 95. Figure 10a shows the illumination assembly 1 〇 〇 ’ ' where the variable index light absorbing layer 1030 is disposed on the transparent substrate 1040. The variable index light extraction layer 1 is adhered to the light guide 1010 by the adhesive layer 1070. The adhesive layer 1 〇 7 〇 has a low degree of susceptibility, high optical clarity, and high light transmittance for one or more wavelengths of light propagating in the light guide. The transparent substrate 1040 on which the variable refractive index etch layer is disposed is adhered to the reflective scatter element 162607.doc -47 · 201245633 layer 1050 by the adhesive layer 1 060. Adhesive layer 1060 can have low twist, high optical clarity, and high light transmission. Alternatively, the adhesive layer 1060 can have a degree of twist and provide some light scattering as long as the scattered light is predominantly in the forward direction toward the reflective scattering element layer 1050. Figure 1 Ob shows an illumination assembly 1 〇 8 〇 in which the orientation of the variable index light absorbing layer 1030 disposed on the transparent substrate 1 〇 4 相比 is compared to the illumination assembly 1000 shown in Fig. 1 〇a. An inversion occurred. The variable refractive index light extraction layer 1 〇 3 黏 can be adhered to the reflective scattering element layer 1050 by the adhesive layer 1060 , and the adhesive layer 1060 can have low twist, high optical clarity and high light transmittance, or It has a certain degree of twist and can provide some light scattering as long as the scattered light is mainly in the forward direction toward the reflective scattering element layer 1 050. The transparent substrate 1 on which the variable refractive index light extraction layer is disposed is bonded to the light guide 1010 by the adhesive layer 丨〇7〇. For one or more wavelengths of light propagating in the light guide, the adhesive layer 1070 preferably has low twist, high optical clarity, and transmittance. Figure 1A shows an illumination assembly 1090 similar to the illumination assembly 1000 shown in Figure 10a, except that the assembly 1090 includes a sealing layer 1 disposed between the variable index extraction layer 1030 and the adhesive layer 1070. 〇95. FIG. 1D shows an illumination assembly 1096 similar to the illumination assembly 1 〇 8 展示 shown in FIG. 1 Ob, except that the assembly 1096 includes a variable index light extraction layer 丨〇 3 〇 and an adhesive layer 1060. The sealing layer between the layers is 1〇95. The sealing layer can be used to minimize contamination of the variable index light extraction layer as described above. Suitable materials for use as the sealing layer are as described above. In general, for the illumination assembly shown in Figures 10a-10d, 162607.doc -48- 201245633 the refractive index of the adhesive layer 1070 of the adjacent optical guide uno should be approximately equal to or greater than the refractive index of the light guide ^ Figure 1 Qet The refractive index of the sealing layer 1G95 should also have a refractive index approximately equal to or greater than that of the light guide. In general, the refractive index of any of the layers disposed between the variable refractive index extraction layer and the light guide should be approximately equal to or greater than the refractive index of the light guide. Similarly, in general, the refractive index of the second region of the variable refractive index light absorbing layer should be approximately equal to or greater than the refractive index of the light guide, and the refractive index of the first region should be less than the refractive index of the light guide. Figure η shows an illumination assembly 1100 comprising a light guide 1110' optically coupled to a variable index light absorbing layer 1130 and the other layer 119G being disposed between the variable index light extraction layer and the reflective scattering element 115A so that The variable refractive index light absorbing layer is optically coupled to the reflective scattering element. Other layers may include, for example, the following materials: UV absorbers, osmium (four), dyes, down conversion materials (e.g., troglomeres), nanophosphors, quantum dots, or optical brighteners. In general, any layer disposed between the variable refractive index filament layer and the reflective scattering element can have low twist, high optical clarity, and high light transmittance, or it can have a certain degree of twist and A certain amount of light scattering can be provided as long as the scattered light is mainly in the forward direction toward the reflective scattering element. Typically, any of the layers between the 3 m variable index optical pickup layer and the reflective scattering elements may comprise the materials described above for the other layers. In general, any layer between the variable refractive index light extraction layer and the reflective scattering element may include other materials such as uv absorbers, uv stabilizers, dyes, down conversion materials (eg, Raoguang), nano phosphorescence. Body, quantum dots or optical brighteners. Reflective scattering elements can also include other materials such as uv absorbers, 162607.doc • 49· 201245633 uv stabilizers, dyes, down conversion materials (such as fluorophores), nanophosphor, quantum dots or optical brighteners. 12 shows a schematic cross-sectional view of an exemplary optical film including a variable index light extraction layer. The optical film 1200 includes a variable index light extraction layer 123 disposed on a transparent substrate 124 ( (1) first optically clear adhesion The agent layer 127 is disposed on the variable index light extraction layer 1230 and opposite to the transparent substrate, and the first release liner 1275 is disposed on the layer 1270 opposite to the layer 123. The second optically clear adhesive layer 1260 is disposed on The transparent substrate 124 is on the upper side and opposite to the variable index light extraction layer 123A, and the second release liner 1265 is disposed on the layer 126A and opposite to the transparent substrate 1240. The optical film 12 can be combined with the light guide and the reflection scattering Component layers are used together for manufacturing general lighting applications (eg work lighting, interior lighting, cabinet lighting and automotive interior lighting) or for backlighting applications (eg for mobile handheld computer monitors and notebook and TV and digital signage applications) Backlighting of liquid crystal displays, any other type of transmissive transparent display, and graphics made by any means (eg, by any printing method) Graphical backlighting, or can be used as a headlight with reflective display devices and graphics to create a front-illuminated reflective display device or graphic. The release liner typically has a low adhesion surface for contact with the adhesive layer. The first and/or second release liner may comprise paper (eg, kraft paper) or a polymeric film (eg, poly(ethylene), polyester, polyolefin), cellulose acetate, ethylene vinyl acetate, polyurethane And the like. The release liner may be coated with a layer of a release agent, such as a material containing a polyoxygen or a material containing a fluorocarbon. The release liner may comprise a polyethylene (which is a material containing polyfluorene oxide 162607. Doc -50· 201245633 coated) coated paper or polymeric film. The example release liner comprises a liner available from CP Films under the trademarks "τ_ 3〇" and Τ-10", which has a polyphenylene terephthalate An aggregate release coating on a bismuth citrate film. An exemplary release liner package 3 structured release liner. An exemplary release liner comprises any of these referred to as a microstructured release liner. 'The microstructures The release liner is used to impart a surface microstructure to the adhesive layer. The microstructured surface can facilitate air venting between the adhesive layer and the surface on which the adhesive layer is applied. Figure 13a shows an exemplary optical film and illumination article. A cross-sectional view of the illumination article includes a variable index optical pickup layer optically coupled to the light guide. The optical film 1300 includes an illumination object 13〇1 and a release liner 1375. The illumination object 1301 includes a light guide disposed on the transparent substrate 134〇 And a protective outer layer 1330 disposed on the light guide and opposite to the transparent substrate. The opposite side of the transparent substrate 丨34〇 is optically coupled to the light guide 1310. The variable index light extraction layer 135 is disposed on the transparent substrate 1340 and opposite to the light guide, and The adhesive layer 1〇7〇 is disposed on the variable index light extraction layer and opposed to the transparent substrate. In this embodiment, the light guide 1310 preferably includes a ^ optional sealing layer 1360 as described above disposed between the variable index light extraction layer 135 〇 and the adhesive layer 丨 37 。. A release liner 1375 is disposed on the outer surface of the adhesive layer 137. Exemplary sealing layers and release liners are as described above. Illuminating article 1301 can have a twist value of less than about 10%, an optical clarity of greater than about 85%, and a light transmittance of greater than about 90%. In some cases, the illuminated article 1301 can have a twist value of less than about 7%, an optical/monthly clarity of greater than about 9%, and a light transmission of greater than about 92%. The Haze_Gard pius oximeter (available from ΒΥΚ-Gardiner) can be used to measure optical transmittance, clarity 162607.doc •51 · 201245633 and temperature. Figure 13b shows a schematic diagram of an exemplary illumination device 139 that includes the illumination object shown in Figure i3a in combination with a light source and a reflective scatter element. The release liner is removed from the illumination article 1301 and the article is then applied to the reflective scattering element 1380. For any of the above-described illuminating objects or devices, the structure of the article or device need not be a flat or planar structure as shown in the figure. The structure of the article or device may be curved, at most and include a curved tube shape. And illuminating from the end 'and where the light is emitted radially outward (eg CCFL light source). Another option is that the structure of the article or device allows the light to be shaped into a 1 D tunnel. In general, the structure of objects and devices can be curved (including complex curvature) and can be applied to curved displays and general lighting and decorative lighting. Example Use the following materials as received. Component % solids (g) Α-174 cerium oxide, Naic 〇 2327, Ondeo Nalco Chemical Company 43.40 482.84 Aliphatic amino phthalic acid acrylic acid, available from Sartomer Corporation in the form of CN 9893 100.00 42.67 Pentaerythritol triacrylic acid S, 100.00 167.69 isopropanol available from Sartomer as SR 444, 250.03 acetic acid from Sartomer, 250.03 photoinitiator from Sigma Aldrich 100.00 5.84 photoinitiator can be obtained from BASF in the form of IRGACURE 184, available from BASF in the form of IRGACURE 819. 100.00 1.12 Example 1 Preparation of the coating formulation 162607.doc •52· 201245633 According to the above table Amount 'Add the following to a 1 liter wide-mouth amber bottle: 5.70 g CN 9893, 22.40 g SR 444, 5.84 g IRGACURE 184 and 1,12 g IRGACURE 819. The bottle was capped and shaken for 2 hours to dissolve CN9893 (batch clarified). This solution is called a resin premix. The following materials were added to a 2000 mL p〇ly bottle: 482.84 g of A-174 treated NALC0 2327 and a resin premix. The two components were mixed by transferring the batch back and forth between the two bottles. The batch was eventually left in a 2000 mL bottle. Add IRGACURE 184 and IRGACURE 819 to a 2000 mL bottle. The solution was shaken for 30 minutes to dissolve the photoinitiator. The batch obtained was a translucent, low viscosity dispersion. The above batch was diluted to about 177 wt% solids using a 50/50 blend of ethyl acetate and propylene glycol decyl ether (available from Dow Chemical as DO WANOL PM). Preparation of nanovoided polymeric layer The above coating formulation was applied to a 50 um PET film (MELINEX 617, available from DuPont) using a slot die at a line speed of 3 1 m/min. The wet coating finish is about 14 u m. In an inert chamber (< 50 ppm Ο 2), UV radiation at 395 nm and 850 mJ/cm2 (with UV radiation available from Cree) at the same line speed will be used. The wet coating partially cures in-line. The partially cured coating sample was then dried in a 9 m oven at 7 ° C and finally a 236 W/cm 2 Fusion Η bulb (available from Fusi〇n UV Systems) under a nitrogen purge atmosphere. Curing is carried out. The resulting nanovoided polymeric layer has a thickness of about 25 um. The light transmittance was 162607.doc -53 - 201245633 was 94.8%, the twist was 0.66% and the sharpness was 99.9%, as measured using BYK Gardner Haze Gard Plus (Columbia, MD). The refractive index of the nanovoided layer is between 1.20 and 1.22' as measured using a Metricon(R) (Metricon, Pennington, NJ). Formation of variable refractive index light extraction layer
使用間接凹版印刷製程利用UV可固化澄清墨水(UV OP1005 GP Varnish,來自 Nazdar,Shawnee,KS)來印刷奈 米空隙聚合層。基於界定梯度線圖案之pdf影像(如藉由光 學建模及光線追蹤所測定)’製造具有2〇〇 um寬線之梯度 圖案之柔性版工具(Southern Graphics Systems,Brooklyn Park,MN)。確定凹版輥(錐形及9 um3/um2)之速率以得到 約9 · 65 um之濕塗層。以1 〇米/分鐘進行印刷,且在印刷之 後在氮吹掃氣氛下使用236 Watt/cm2 Fusion Η燈泡(可自 Fusion UV Systems公司獲得)實施高強度uv固化。所得印 刷層係包括以下之光學膜:第一區域,其具有第一折射率 且包括奈米空隙聚合材料;及第二區域,其中奈米空隙填 充或部分填充有固化澄清墨水,該等第二區域具有大於第 一區域之第二折射率。將具有第一及第二區域之可變折射 率光汲取層佈置於DuPont 617 PET基板上。使用BYK Gardner Haze Gard Plus在兩側(一側係低密度之第二高折 射率區域且一側係高密度之高折射率區域)上量測位於pET 上之可變折射率光汲取層之光學性質。對於低密度側而 言’透光率為94_9。/〇,霾度為2.88%,清晰度為99.2%。對 於尚密度側而言,透光率為94.4%,霾度為5.09% ,清晰度 162607.doc -54- 201245633 為97·6%(>主,¾ .並不針對菲》圼耳反射(presnei refiecti〇n)來 校正透光率)。測得固化墨水之折射率約為丨525,如使用 Metricon稜鏡耦合器在平坦固化試樣上所量測(用於量測折 射率之光波長為589 nm)。 前打光反射顯示裝置 獲得包括PSA層(VHB丙烯酸系膠帶4918,來自3M公司) 之光導,其具有90 mmxl20 mm之面積及2 mm之厚度。在 光導之一個主表面上佈置50 um PET膜之透明保護層。將 在上面佈置可變折射率光汲取層之PET基板直接黏著至光 導之相對主表面上。使可變光沒取層之暴露面與壓敏性黏 著劑(S0KEN 2147,可自 Soken Chemical and Engineering 有限公司,日本獲得)結合以用作密封層。使用自潤濕黏 著劑將此總成(保護層面朝上)黏著至電泳電子書(Kindle,The nanovoided polymeric layer was printed using an indirect gravure process using UV curable clear ink (UV OP1005 GP Varnish, from Nazdar, Shawnee, KS). A flexographic tool (Southern Graphics Systems, Brooklyn Park, MN) having a gradient pattern of 2 um wide lines was fabricated based on a pdf image defining the gradient line pattern (as determined by optical modeling and ray tracing). The rate of the gravure roll (taper and 9 um3/um2) was determined to give a wet coating of about 9 · 65 um. Printing was performed at 1 mil/min and high intensity uv curing was performed using a 236 Watt/cm2 Fusion Η bulb (available from Fusion UV Systems) under nitrogen purge after printing. The resulting printed layer comprises an optical film having a first index having a first index of refraction and comprising a nanovoided polymeric material; and a second region wherein the nanovoid is filled or partially filled with a cured clear ink, the second The region has a second index of refraction that is greater than the first region. A variable refractive index light extraction layer having first and second regions was disposed on a DuPont 617 PET substrate. The optical properties of the variable index optical pickup layer on pET were measured on both sides (the second high refractive index region with low density on one side and the high refractive index region on one side) using BYK Gardner Haze Gard Plus nature. For the low density side, the light transmittance is 94_9. /〇, the twist is 2.88%, and the resolution is 99.2%. For the still density side, the light transmittance is 94.4%, the twist is 5.09%, and the resolution is 162607.doc -54 - 201245633 is 97.6% (> main, 3⁄4. not for Philippine) Presnei refiecti〇n) to correct the light transmittance). The cured ink was measured to have a refractive index of about 525, as measured on a flat cured sample using a Metricon(R) coupler (the wavelength of light used to measure the refractive index was 589 nm). Front light-reflecting display device A light guide comprising a PSA layer (VHB acrylic tape 4918 from 3M Company) having an area of 90 mm x 20 mm and a thickness of 2 mm was obtained. A transparent protective layer of 50 um PET film was placed on one of the major surfaces of the light guide. The PET substrate on which the variable index light extraction layer is disposed is directly adhered to the opposite major surfaces of the light guide. The exposed face of the variable light absorbing layer was combined with a pressure sensitive adhesive (S0KEN 2147, available from Soken Chemical and Engineering Co., Ltd., Japan) to serve as a sealing layer. Use a self-wetting adhesive to attach the assembly (protection side up) to the electrophoresis e-book (Kindle,
Amazon)之觀察面板上(參見pct US 2010/031689及WO 2009/085662) 〇 獲得光引擎總成且其係由20個安裝於聚光圈中之邊射型 白色LED(NSSW230T ’來自Nichia)構成。包括多層聚合鏡 膜之兩個反射器(Vikuiti™ ESR,來自3M公司)亦包含於聚 光圈中以形成光學楔從而將自LED發射之光準直。在聚光 圈中建立約ίο。之微小角度以提供光學準直。來自LED引 擎之光經設計以發射至空氣間隙區域中,以便以超臨界角 度將光沿顯示器之垂直軸之左側注入至光導之邊緣中。此 產生如下刚打光反射顯示裝置:其中在透過具有可變折射 率光汲取層之光導總成觀看時,前燈總成並不負面影響顯 162607.doc •55- 201245633 示器上之影像(亦即具有較少影像失真,甚至沒有失真) 開啟照明裝置之led,從而產生反射贿-壯β 。 度王汉射顯不裝置(亦即, 反射顯示面板,如圖14a中可看到)之均勻照明。 對比實例1 沒有可變折射率光汲取層之前打光反射顯示裝置 如上文針對實例丨所述來組裝前打光反射顯示裝置,只 是不包含位於PET支樓件上之可變折射率光沒取層。使用、 自潤濕黏著劑將PSA光導黏著至電子書之觀察面板上。使 用自潤濕黏著劑以在此後自電子書去除光導時促進總成之 再加工。圖14b展示前打光裝置之影像且立即顯而易見, 顯示器上之亮度均勻性較差。 實例2 塗層調配物之製備 根據上表中所展示之量,將下列物質添加至丨升寬口琥 雖色瓶中:5.70 g CN 9893、22.40 g SR 444 ' 5 84 g IRGACURE 184及 1.12 g IRGACURE 819。將觀蓋上並振 盈2小時以溶解CN9893 (批料係澄清的)。此溶液稱為樹脂 預混合物。On the viewing panel of Amazon) (see pct US 2010/031689 and WO 2009/085662) 〇 The light engine assembly is obtained and consists of 20 edge-emitting white LEDs (NSSW230T ' from Nichia) mounted in the bezel. Two reflectors including a multilayer polymeric mirror (VikuitiTM ESR from 3M Company) are also included in the aperture to form an optical wedge to collimate the light emitted from the LED. Create about ίο in the spotlight. A slight angle to provide optical alignment. Light from the LED engine is designed to be emitted into the air gap region to inject light at the supercritical angle along the left side of the vertical axis of the display into the edge of the light guide. This produces a light-reflecting display device in which the headlight assembly does not adversely affect the image on the display when viewed through a light guide assembly having a variable index light extraction layer ( That is, there is less image distortion, even without distortion. The LED of the lighting device is turned on, thereby generating a reflection bribe-strong β. The uniform illumination of the device (ie, the reflective display panel, as seen in Figure 14a). Comparative Example 1 A light-reflecting display device was assembled without a variable-refractive-index light-harvesting layer. The front light-reflecting display device was assembled as described above for the example, except that the variable refractive index light on the PET support member was not taken. Floor. The PSA light guide is adhered to the viewing panel of the e-book using a self-wetting adhesive. A self-wetting adhesive is used to facilitate reprocessing of the assembly when the light guide is removed from the e-book thereafter. Figure 14b shows the image of the front lighter and is immediately apparent, with poor brightness uniformity on the display. Example 2 Preparation of Coating Formulations According to the amounts shown in the above table, the following materials were added to the swelled wide-mouth amber bottle: 5.70 g CN 9893, 22.40 g SR 444 ' 5 84 g IRGACURE 184 and 1.12 g IRGACURE 819. The view was covered and incubated for 2 hours to dissolve CN9893 (batch clarified). This solution is called a resin premix.
將下列物質添加至2000 mL聚瓶中:482 84 g經八_174處 理之NALCO 2327及樹脂預混合物。藉由在兩個瓶之間來 回轉移批料來混合兩種組份《最終使批料存在於2〇〇〇 mLThe following materials were added to a 2000 mL poly bottle: 482 84 g of NALCO 2327 treated with eight _174 and a resin premix. Mix the two components by transferring the batch between the two bottles. "The final batch is present in 2 〇〇〇 mL.
瓶中。向2000 mL瓶中添加 irgacure 184 及 IRGACURE 819。將溶液振盪30分鐘以溶解光起始劑。所得批料係半 透明之低黏度分散液。 162607.doc -56 - 201245633 使用乙酸乙酯與丙二醇曱基醚之50/5 0摻合物(可自Dow Chemical以DOWANOL PM形式獲得)將上述批料稀釋至約 17.7重量%固體。 奈米空隙聚合層之製備 使用狹槽模具以3 · 1 m/ min之線速度將上述塗層調配物 塗覆於50 um PET膜(MELINEX 617,可自 DuPont獲得) 上。濕塗層厚度約為8.1 um。在惰性室(<50 ppm 02)中, 以相同線速度使用UV輻射在395 nm及850 mJ/cm2之劑量 (藉由可自Cree公司獲得之UV-LED來提供UV輻射)下來將 濕塗層部分地在線固化。然後將部分固化之塗層試樣在 70°C下於9米烘箱中乾燥,且在氮吹掃氣氛下,最終使用 236 瓦 /cm2 Fusion Η燈泡(可自 Fusion UV Systems公司獲得) 進行固化。所得奈米空隙聚合層具有1.3 um之厚度。透光 率為96.4% ’霾度為1.33%且清晰度為99.7%,如使用byk gardner Haze Gard Plus (Columbia,MD)所量測。奈米空隙 層之折射率介於1.20與1.22之間,如在589 nm下使用 Metricon梭鏡麵合器(Metricon公司,Pennington, NJ)所量 測。 可變折射率光汲取層之形成In the bottle. Add irgacure 184 and IRGACURE 819 to the 2000 mL bottle. The solution was shaken for 30 minutes to dissolve the photoinitiator. The resulting batch was a translucent, low viscosity dispersion. 162607.doc -56 - 201245633 The above batch was diluted to about 17.7% by weight solids using a 50/5 0 blend of ethyl acetate and propylene glycol decyl ether (available from Dow Chemical as DOWANOL PM). Preparation of nanovoided polymeric layer The above coating formulation was applied to a 50 um PET film (MELINEX 617, available from DuPont) using a slot die at a line speed of 3 · 1 m/min. The wet coating thickness is approximately 8.1 um. In an inert chamber (<50 ppm 02), the UV radiation is applied at the same line speed at 395 nm and at a dose of 850 mJ/cm2 (with UV radiation available from Cree to provide UV radiation). The layer is partially cured in-line. The partially cured coating samples were then dried in a 9 meter oven at 70 ° C and finally cured using a 236 W/cm 2 Fusion Η bulb (available from Fusion UV Systems) under a nitrogen purge atmosphere. The resulting nanovoided polymeric layer had a thickness of 1.3 um. The light transmission was 96.4% 霾 1.33% and the resolution was 99.7% as measured by byk gardner Haze Gard Plus (Columbia, MD). The refractive index of the nanovoided layer is between 1.20 and 1.22, as measured at 589 nm using a Metricon shuttle mirror combiner (Metricon, Pennington, NJ). Formation of variable refractive index light extraction layer
使用間接凹版印刷製程利用UV可固化澄清墨水(UV OP1005 GP Varnish,來自 Nazdar,Shawnee, KS)來印刷奈 米空隙聚合層。基於界定藉由光學光線追縱建模測得之點 圖案之pdf影像’製造具有隨機1 〇〇 um梯度點圖案(在該圖 案之左邊緣處,在X方向上(自左至右)具有第二區域之密度 162607.doc -5Ί- 201245633 梯度且在y方向上具有不同密度’如圖⑸中所展示)之柔 性版工具(Southern Graphies Syst_卜確定凹版棍(雜形 及9 Um3/Um2)之速率以得到約9.65⑽之濕塗層。以1〇米/ 分鐘進行印刷,且在印刷之後在氮吹掃氣氛下使用236 Watt/cm2 Fusion η燈泡(可自—uv公司獲得) 實施高強度UV固化。所得印刷層係包括以下之光學膜: 第-區域’其具有第一折射率且包括奈米空隙聚合材料; 及第-區域’丨中奈米空隙填充或部分填充有固化澄清墨 水,該等第二區域具有大於第一區域之第二折射率。將具 有第一及第二區域之可變折射率光汲取層佈置於Dup〇nt 617 PET基板上且展示於圖15b中。使用ΒγκHazeThe nanovoided polymeric layer was printed using an indirect gravure process using UV curable clear ink (UV OP1005 GP Varnish from Nazdar, Shawnee, KS). Based on a pdf image defining a dot pattern measured by optical ray tracing modeling, a pattern having a random 1 〇〇um gradient dot is produced (at the left edge of the pattern, in the X direction (from left to right) has a Density of the two regions 162607.doc -5Ί- 201245633 Gradient and different density in the y direction 'as shown in (5)) Flexible version of the tool (Southern Graphies Syst_ Bu determined gravure stick (hybrid and 9 Um3 / Um2) Rate to obtain a wet coating of about 9.65 (10). Printing at 1 mil / min, and using a 236 Watt/cm2 Fusion η bulb (available from uv) after printing in a nitrogen purge atmosphere UV curing. The resulting printed layer comprises the following optical film: a first region 'having a first refractive index and comprising a nanovoided polymeric material; and a first-region 'nano void intercalated or partially filled with a cured clear ink, The second regions have a second index of refraction greater than the first region. The variable index light scooping layer having the first and second regions is disposed on a Dup〇nt 617 PET substrate and is shown in Figure 15b. Using ΒγκHaze
Gard Plus在兩側(一側係低密度之第二高折射率區域且一 側係尚社、度之尚折射率區域)上量測位於pET上之可變折射 率光波取層之光學性質。對於低密度側而言,透光率為 96.6% ’霾度為3.56% ’清晰度為95.6°/。。對於高密度側而 言,透光率為95_8% ’霾度為6.82%,清晰度為89.9%(注 意:並不針對菲涅耳反射來校正透光率)。測得固化墨水 之折射率約為1.525 ’如使用Metricon稜鏡耦合器在平坦固 化試樣上所量測(用於量測折射率之光波長為589 nm)。 前打光反射顯示裝置 獲得包括PSA層(VHB丙稀酸系膠帶49 1 8,來自3]\4公司) 之光導,其具有90 mmxl20 mm之面積及2 mm之厚度。在 光導之一個主表面上佈置50 um PET膜之透明保護層。將 在上面佈置可變折射率光汲取層之PET基板直接黏著至光 I62607.doc -58· 201245633 導之相對主表面上。使可變光汲取層之暴露面與壓敏性黏 著劑(SOKEN 2147,可自 Soken Chemical and Engineedng 有限公司,日本獲得)結合以用作密封層。使用自潤濕黏 著劑將此總成(保s蔓層面朝上)黏著至電泳電子書(Kin£jie, Amazon)之觀察面板上(參見PCT uS 2010/〇3 1689及w〇 2009/085662)。製造光引擎總成且其係由3個安裝於聚光圈 中之邊射型白色LED(NSSW230T ,來自Nichia)構成。包括 多層聚合鏡膜之兩個反射器(Vikuiti™ ESR,來自3M公司) 亦包含於聚光圈中以形成光學楔從而將自LED發射之光準 直。在聚光圈中建立約1 〇。之微小角度以提供光學準直。 來自LED引擎之光經設計以發射至空氣間隙區域中,以便 以超臨界角度將光沿顯示器之水平頂部邊緣注入至光導之 邊緣十。此產生如下前打光反射顯示裝置:其中在關斷前 燈下透過具有可變折射率光汲取層之光導總成觀看時,前 燈總成並不負面影響顯示器上之影像(亦即具有較少影像 失真,甚至沒有失真),如圖16a中可看到。 開啟照明裝置之LED ,從而產生反射顯示裝置(亦即, 反射顯示面板’如圖16b中可看到)之均勻照明。在照明裝 置上使用p隨etrie照相機(可自Radiant Imaging,㈣则毗 數獲得)量測亮度均勻性。圖W展示前打光裝置之影像 及軸向亮度隨位置而變化之圖線。顯示器均勾性大於 75/〇 如使用式((max_min)/maxxi〇〇%)所量測。 對比實例2 沒有可變折射率光没取層之前打光反射顯示裝置 162607.doc s •59- 201245633 如上文針對實例2所述來組裝前打光反射顯示裝置,只 是不包含位於PET支撐件上之可變折射率光汲取層。使用 自潤濕黏著劑將PSA光導黏著至電子書之觀察面板上。(使 用自潤濕黏著劑以在此後自電子書去除光導時促進總成之 再加工)。在照明裝置上使用Prometric照相機(可自Radiant Imaging, Redmond, WA獲得)量測亮度均勻性。圖17b展示 前打光裝置之影像及軸向亮度隨位置而變化之圖線。立即 顯而易見,顯示器均勻性較差。亮度均勻性小於5%,如 使用式((max -min)/maxx 1 00%)所量測。 實例3 塗層調配物之製備 根據上表中所展示之量,將下列物質添加至1升寬口琥 珀色瓶中·· 5.70 g CN 9893、22.40 g SR 444、5.84 g IRGACURE 184及 1.12 g IRGACURE 819。將瓶蓋上並振 盪2小時以溶解CN9893 (批料係澄清的)。此溶液稱為樹脂 預混合物。The Gard Plus measures the optical properties of the variable refractive index light wave layer on the pET on both sides (the second high refractive index region on one side and the refractive index region on the other side). For the low density side, the light transmittance was 96.6% and the twist was 3.56%. The resolution was 95.6 °/. . For the high-density side, the light transmittance is 95_8% '霾' is 6.82%, and the sharpness is 89.9% (note: the light transmittance is not corrected for Fresnel reflection). The refractive index of the cured ink was measured to be about 1.525 Å as measured on a flat cured sample using a Metricon(R) coupler (the wavelength of light used to measure the refractive index was 589 nm). Front light-reflecting display device A light guide comprising a PSA layer (VHB acrylic tape 49 1 8 from 3]\4 company) having an area of 90 mm x 20 mm and a thickness of 2 mm was obtained. A transparent protective layer of 50 um PET film was placed on one of the major surfaces of the light guide. The PET substrate on which the variable index light extraction layer is disposed is directly adhered to the opposite main surface of the light I62607.doc - 58 · 201245633. The exposed face of the variable light extraction layer was combined with a pressure sensitive adhesive (SOKEN 2147, available from Soken Chemical and Engineedng Co., Ltd., Japan) to serve as a sealing layer. Use a self-wetting adhesive to adhere the assembly (protecting the vine layer upwards) to the observation panel of the electrophoresis e-book (Kin£jie, Amazon) (see PCT uS 2010/〇3 1689 and w〇2009/085662) . A light engine assembly was fabricated and consisted of three edge-emitting white LEDs (NSSW230T from Nichia) mounted in a bezel. Two reflectors (VikuitiTM ESR from 3M Company) including a multilayer polymeric mirror film are also included in the bezel to form an optical wedge to align the light emitted from the LED. Establish approximately 1 在 in the spotlight. A slight angle to provide optical alignment. Light from the LED engine is designed to be launched into the air gap region to inject light at the supercritical angle along the horizontal top edge of the display to the edge of the light guide ten. This produces a front light-reflecting display device in which the headlight assembly does not adversely affect the image on the display when viewed under the turned-off headlight through the light guide assembly having the variable index light extraction layer (ie, having a comparison) Less image distortion, even no distortion), as seen in Figure 16a. The LEDs of the illumination device are turned on to produce uniform illumination of the reflective display device (i.e., the reflective display panel is visible in Figure 16b). Luminance uniformity was measured on a lighting device using a p-equip camera (available from Radiant Imaging, (four)). Figure W shows a plot of the image of the front lighter and the axial brightness as a function of position. The display is more than 75/〇 if measured using ((max_min)/maxxi〇〇%). Comparative Example 2: Light-reflecting display device without variable refractive index light before layer 162607.doc s • 59- 201245633 As before, the front light-reflecting display device was assembled as described in Example 2 except that it was not contained on the PET support member. A variable index light extraction layer. The PSA light guide is adhered to the viewing panel of the e-book using a self-wetting adhesive. (Using a self-wetting adhesive to facilitate reprocessing of the assembly when the light guide is removed from the e-book thereafter). Luminance uniformity was measured on a lighting fixture using a Prometric camera (available from Radiant Imaging, Redmond, WA). Figure 17b shows a plot of the image and axial brightness of the front lighter as a function of position. Immediately, the display is less uniform. The brightness uniformity is less than 5%, as measured using the formula ((max - min) / maxx 1 00%). Example 3 Preparation of Coating Formulations The following materials were added to a 1 liter wide-mouth amber bottle according to the amounts shown in the above table. 5.70 g CN 9893, 22.40 g SR 444, 5.84 g IRGACURE 184 and 1.12 g IRGACURE 819. The bottle was capped and shaken for 2 hours to dissolve CN9893 (batch clarified). This solution is called a resin premix.
將下列物質添加至2000 mL聚瓶中:482.84 g經A-174處 理之NALCO 2327及樹脂預混合物。藉由在兩個瓶之間來 回轉移批料來混合兩種組份。最終使批料存在於2000 mL 瓶中。向 2000 mL瓶中添加 IRGACURE 184 及 IRGACURE 819。將溶液振盪30分鐘以溶解光起始劑。所得批料係半 透明之低黏度分散液。 使用乙酸乙酯與丙二醇甲基醚之50/50摻合物(可自Dow Chemical以DOWANOL PM形式獲得)將上述批料稀釋至約 162607.doc -60· 201245633 17 _ 7重量%固體。 奈米空隙聚合層之製備 使用狹槽模具以3.1 m/min之線速度將上述塗層調配物塗 覆於 50 um PET膜(MELINEX 617,可自 DuPont 獲得)上。 濕塗層厚度約為14 um。在惰性室(<50 ppm 〇2)中,以相同 線速度使用UV轄射在395 nm及850 mJ/cm2之劑量(藉由可 自Cree公司獲得之UV_LED來提供UV輻射)下來將濕塗層部 分地在線固化。然後將部分固化之塗層試樣在70〇c下於9 米烘箱中乾燥,且在氮吹掃氣氛下,最終使用236瓦/ cm2 Fusion Η燈泡(可自Fusion UV Systems公司獲得)進行固 化。所得奈米空隙聚合層具有2.3 um之厚度。透光率為 95_8°/〇’霾度為2.49%且清晰度為99.9%,如使用8丫反 gardner Haze Gard Plus (Columbia,MD)所量測。奈米空隙 層之折射率介於1·20與1.22之間,如在589 nm下使用 Metricon稜鏡耦合器(Metricon公司,Pennington, NJ)所量 測。 可變折射率光汲取層之形成The following materials were added to a 2000 mL poly bottle: 482.84 g of A-174 treated NALCO 2327 and resin premix. The two components were mixed by transferring the batch between the two bottles. The batch is finally stored in a 2000 mL bottle. Add IRGACURE 184 and IRGACURE 819 to the 2000 mL bottle. The solution was shaken for 30 minutes to dissolve the photoinitiator. The resulting batch was a translucent, low viscosity dispersion. The above batch was diluted to about 162607.doc - 60 · 201245633 17 _ 7 wt% solids using a 50/50 blend of ethyl acetate and propylene glycol methyl ether (available from Dow Chemical as DOWANOL PM). Preparation of nanovoided polymeric layer The above coating formulation was applied to a 50 um PET film (MELINEX 617, available from DuPont) using a slot die at a line speed of 3.1 m/min. The wet coating thickness is approximately 14 um. In the inert chamber (<50 ppm 〇2), the UV ray is applied at the same line speed at 395 nm and 850 mJ/cm2 (with UV radiation from Cree to provide UV radiation). The layer is partially cured in-line. The partially cured coating samples were then dried in a 9 meter oven at 70 ° C and finally cured using a 236 watt / cm 2 Fusion Η bulb (available from Fusion UV Systems) under a nitrogen purge atmosphere. The resulting nanovoided polymeric layer had a thickness of 2.3 um. The light transmittance was 95_8 ° / 〇 ' twist of 2.49% and the sharpness was 99.9% as measured using an 8 丫 anti-Gardner Haze Gard Plus (Columbia, MD). The refractive index of the nanovoid layer is between 1.20 and 1.22, as measured at 589 nm using a Metricon(R) coupler (Metricon, Pennington, NJ). Formation of variable refractive index light extraction layer
使用間接凹版印刷製程利用UV可固化澄清墨水(UV OP1005 GP Varnish,來自 Nazdar,Shawnee,KS)來印刷奈 米空隙聚合層。基於界定藉由光學光線追蹤建模測得之點 圖案之pdf影像,製造具有隨機1〇〇 um梯度點圖案之柔性 版工具(Southern Graphics Systems)。確定凹版輥(錐形及9 um3/um2)之速率以得到約9.65 um之濕塗層。以1〇米/分鐘 進行印刷’且在印刷之後在氮吹掃氣氛下使用236 I62607.doc *61 - 201245633The nanovoided polymeric layer was printed using an indirect gravure process using UV curable clear ink (UV OP1005 GP Varnish, from Nazdar, Shawnee, KS). A Southern Edition Systems tool with a random 1 〇〇 um gradient dot pattern was fabricated based on a pdf image defining the pattern of dots measured by optical ray tracing modeling. The rate of the gravure roll (taper and 9 um3/um2) was determined to give a wet coating of about 9.65 um. Printing at 1 mm/min' and using 236 I62607.doc *61 - 201245633 after printing in a nitrogen purge atmosphere
Watt/cm Fusion Η燈泡(可自Fusi〇n uv以❿邮公司獲得) 貫施向強度UV固化o所得印刷層係包括以下之光學膜: 第一區域,其具有第一折射率且包括奈米空隙聚合材料; 及第二區域,其中奈米空隙填充或部分填充有固化澄清墨 水,該等第二區域具有大於第一區域之第二折射率。將具 有第一及第二區域之可變折射率光汲取層佈置於Dup〇nt 617 PET基板上。使用 BYK Gardner Haze Gard Plus在兩側 (一側係低密度之第一南折射率區域且一側係高密度之高 折射率區域)上量測位於PET上之可變折射率光汲取層之光 學性質。對於低密度側而言,透光率為96 2%,霾度為 5.64%,清晰度為97.5%。對於高密度側而言,透光率為 95.8%,霾度為9.1 8%,清晰度為94.4°/。(注意:並不針對菲 >里耳反射來校正透光率)。測得固化墨水之折射率約為 1.525,如使用Metricon稜鏡耦合器在平坦固化試樣上所量 測(用於量測折射率之光波長為589 nm)。 實例4 使用來自實例1 -3之每一光學膜(位於pET上之可變折射 率光沒取層)組裝兩個不同光學物件以用於評估光學性質 之目的。 具有密封層之可變折射率光汲取層之光學性質: 藉由將密封層層壓於可變折射率光汲取層之暴露表面 (與PET基板相對之側面)上來形成第一光學物件。密封層 係壓敏性黏著劑(Soken 2147,可自Soken Chemical andWatt/cm Fusion Η bulb (available from Fusi〇n uv from ❿ 公司) The printed layer obtained by intensive UV curing o comprises the following optical film: a first region having a first refractive index and including nano a voided polymeric material; and a second region, wherein the nanovoids are filled or partially filled with a solidified clear ink, the second regions having a second index of refraction greater than the first region. A variable index light extraction layer having first and second regions is disposed on the Dup〇nt 617 PET substrate. Measurement of the optical properties of the variable index optical pickup layer on PET using BYK Gardner Haze Gard Plus on both sides (a low density first south refractive index region on one side and a high density high refractive index region on one side) nature. For the low density side, the light transmittance was 96 2%, the twist was 5.64%, and the sharpness was 97.5%. For the high density side, the light transmittance is 95.8%, the twist is 9.18%, and the sharpness is 94.4°/. (Note: The ray is not corrected for fluorescing <rear reflection). The cured ink was measured to have a refractive index of about 1.525 as measured on a flat cured sample using a Metricon(R) coupler (the wavelength of the light used to measure the refractive index was 589 nm). Example 4 Two different optical articles were assembled using each of the optical films from Example 1-3 (variable refractive index light immersion layer on pET) for the purpose of evaluating optical properties. Optical properties of the variable index light extraction layer having a sealing layer: The first optical article is formed by laminating a sealing layer on the exposed surface (the side opposite the PET substrate) of the variable refractive index light extraction layer. Sealing layer is a pressure sensitive adhesive (Soken 2147, available from Soken Chemical and
Engineering有限公司’日本獲得)。在“让⑶”八密封層之 I62607.doc -62· 201245633 相對側上層塵50微米PET膜。對於使用來自實例1 _3之可變 折射率光汲取層之每一光學物件而言,使用BYK Gardner Haze Gard Plus在可變折射率光汲取層之兩侧(一側係低密 度之第二向折射率區域且一側係高密度之高折射率區域) 上來量測透光率、霾度及清晰度。量測結果分別展示於表 1及表2中。 表1·具有高密度之第二區域之區之光學性質 實例 圖案 透光率% 霾度 (%) 清晰度 (%) 1 1-D線 y-梯度 91.0 1.84 98.1 2 2-D點 x,y梯度 92.0 3.35 92.1 3 2-D點 y-梯度 91.9 6.96 95.7 表2.具有低密度之第二區域之區之光學性質 實例 圖案 透光率°/〇 霾度 (%) 清晰度 (%) 1 1-D線 y-梯度 91.0 1.99 99.2 2 2-D點 x,y梯度 92.3 1.87 95.6 3 2-D點 y-梯度 91.7 4.38 98.2 具有可變折射率光汲取層之光導總成之光學性質: 藉由將黏彈性光導層壓於可變折射率光汲取層之暴露表 面(與PET基板相對之側面)上來形成第二光學物件。黏彈 性光導係厚度為2 mm之壓敏性黏著劑(PSA) (VHB丙烯酸 系膠帶4918,來自3M公司)。在光導之相對主表面上佈置 50 urn PET膜之透明保護層。對於使用來自實例i_3之可變 162607.doc -63· 201245633 折射率光汲取層之每一光學物件而言,使用BYK GardnerEngineering Co., Ltd.'s obtained in Japan. On the opposite side of the "Let (3)" eight seal layer I62607.doc -62· 201245633 on the opposite side of the dust layer 50 micron PET film. For each optical article using the variable index light extraction layer from Example 1_3, BYK Gardner Haze Gard Plus is used on both sides of the variable index light extraction layer (one side is low density second direction refraction) The rate region and the high-density high-refractive-index region on one side are measured to measure light transmittance, twist, and sharpness. The measurement results are shown in Tables 1 and 2, respectively. Table 1. Optical properties of the region of the second region having a high density Example pattern transmittance % 霾 (%) Resolution (%) 1 1-D line y-gradient 91.0 1.84 98.1 2 2-D point x, y Gradient 92.0 3.35 92.1 3 2-D point y-gradient 91.9 6.96 95.7 Table 2. Optical properties of the region of the second region with low density Example pattern transmittance °/twist (%) Sharpness (%) 1 1 -D line y-gradient 91.0 1.99 99.2 2 2-D point x, y gradient 92.3 1.87 95.6 3 2-D point y-gradient 91.7 4.38 98.2 Optical properties of light guide assembly with variable index light extraction layer: by A viscoelastic lightguide is laminated to the exposed surface of the variable index light extraction layer (the side opposite the PET substrate) to form a second optical article. A viscoelastic photoconductive system with a thickness of 2 mm of pressure sensitive adhesive (PSA) (VHB acrylic tape 4918 from 3M Company). A transparent protective layer of 50 urn PET film was placed on the opposite major surface of the light guide. For each optical object using the variable 162607.doc -63· 201245633 refractive index capture layer from example i_3, use BYK Gardner
Haze Gard Plus在可變折射率光汲取層之兩側(一側係低密 度之第二高折射率區域且一側係高密度之高折射率區域) 上來量測透光率、霾度及清晰度。量測結果分別展示於表 3及表4中。表5展示用於光學構造中之pET膜(Dup〇nt 617) 及具有層壓至兩個表面之PET之ps A光導的參考量測。 表3.具有高密度之第二區域之區之光學性質 實例 圖案 透光率% 霾度 (%) 清晰度 (%) 1 1-D線 y-梯度 90.3 1.91 98.5 2 2-D點 x,y梯度 91.0 3.76 ------- 91.6 3 2-D點 y_梯度 90.6 6.80 95.8 表4.具有低密度之第二區域之區之光學性質 實例 圖案 透光率% 霾度 (%) 清晰度 (%\ 1 1-D線 y-梯度 90.3 1.61 --」/〇J 99.0 2 2-D點 x,y梯度 90.3 2.37 ----- 96.8 2-D點 y-梯度 90.1 4.16 98.2 表5 ·參考量測: 實例 圓案 透光率% 霾度+ (%) 參考1 _PET 膜 92.8 0.67 參考2 在兩側上具有PET 膜之PSA光導 90.9 0.59 99.4 队π〜主菔咫容皆以 方式明確地併入本揭示内容中,除非達到與本揭示内 I62607.doc -64 - 201245633 直接相矛盾之程度。儘管本文已闡釋及闡述具體實施例, 但彼等熟習此項技術者應瞭解,可使用許多種替代及/或 等價之實施方式來替代所顯示及闡述之具體實施例,此並 不背離本揭示内容之範圍。本申請案意欲涵蓋本文所論述 具體實施例之任一改變或變化。因此,意欲使本揭示内容 僅由申請專利範圍及其等價内容來限定。 【圖式簡單說明】 在下列闡述中,參照附圖組,該等附圖形成本揭示内容 之一部分且其中展示各種一般及具體實施例。應理解涵 蓋其他實施例且可實施其他實施例,此並不背離本發明之 範圍或精神。下列詳細闡述由此並不具有限制意義。圖係 示意性圖式且不必按比例繪製。 圖la展示實例性可變折射率紐取層之示意性橫截面。 圖lb-lc展示佈置於透明毗鄰層上之實例性可變折射率 光汲取層之示意性橫截面。 圖2繪示折射率可在層之橫向平面上有所變化之可變折 射率光汲取層。 圖 圖3係可變折射率光汲取層之第 區域之示意性橫截面 區域之貫例性幾何配置之可變折 圖4a係展示第一及第 射率光汲取層之平面圖 之折射率 圖4bl會示圖4a中所展 特徵曲線。 不之可變折射率光汲取層 圖4c及4d分別展示圖4a中所展示之可變光沒取層之所選 162607.doc •65· 201245633 光學性質透光率。/。及清晰度%之特徵曲線。 圖5a及5b展示可變折射率光汲取層之平面圖,其展示第 一及第二區域之實例性幾何配置。 圖6展示貫例性照明裝置之示意圖,該實例性照明裝置 包括可變折射率光汲取層與光源及反射散射元件之組合。 圖7展示實例性照明總成之示意圖,該實例性照明總成 包括可變光汲取層與反射散射元件之組合。 圖8、9、l〇a-l〇d及11展示實例性照明總成之示意性橫 截面圖,該實例性照明總成包括與光導及反射散射元件光 學耦合之可變折射率光汲取層。 圖12展示包括可變折射率光沒取層之實例性光學膜之示 意性橫截面圖。 圖13a展示實例性光學膜及照明物件之示意性橫截面 圖’該照明物件包括與光導光料合之可變折射率光沒取 層0 圖13b展示實例性照明裝置之示意圖,該實例性照明 置包括圖Ua中所展示之照明物件與光源及反射散射元 之組合。 圖…及14b分別展示具有前燈且具有及不具有可變折; 率汲取層之反射顯示裝置。 圖15a展示實例性柔性版工具之隨機梯度點圖案。 圖W展示光學膜之輥’該光學膜包括佈置於透明仏 上之可變折射率光汲取層。 W分別展示具有前燈且具有可變折射率汲㈣ 162607.doc •66· 201245633 之反射顯示裝置,其中將燈關斷及導通。 圖l:7a及Pb分別展示反射顯示裝置之Pr〇metric影像及軸 向亮度隨位置變化之相應圖,線,該等反射顯 光且具有及不具有可變折射率汲取層。 、怖刖打 【主要元件符號說明】 100 可變折射率光汲取層 105 光學膜 120 邮匕鄰層 130 第 >一區域 140a 第一區域 140b 第一區域 150 光線 160 光線 170 表面 180 光線 190 光線 300 第一區域 310 黏合劑 320 奈米空隙 320A 互連奈米空隙 320B 互連奈米空隙 320C 互連奈米空隙 320D 表面孔隙 320E 表面孔隙 162607.doc -67- 201245633 320F 表面孔隙 320G 表面孔隙 330 第一主表面 332 第二主表面 340 顆粒 400 可變折射率光汲取層 410 第一區域 420 第二區域 500 可變折射率光汲取層 510 第一區域 520 第二區域 530 可變折射率光汲取層 540 第一區域 550 第二區域 600 照明裝置 601 光源 605 外表面 610 光導 615 底部表面 625 頂部表面 630 可變折射率光汲取層 635 相對表面 645 表面 650 反射散射元件層 162607.doc -68- 201245633 710 光導 715 表面 725 表面 730 可變折射率光汲取層 740 透明基板 742 底部側 745 表面 750 反射散射元件 800 照明總成 810 光導 830 可變折射率光汲取層 840 光學澄清黏著劑 850 反射散射元件 900 照明總成 910 光導 930 可變折射率光汲取層 940 光學澄清黏著劑 950 反射散射元件 1000 照明總成 1010 光導 1030 可變折射率光汲取層 1040 透明基板 1050 反射散射元件層 1060 黏著劑層 162607.doc ·69- 201245633 1070 黏著劑層 1080 照明總成 1090 照明總成 1095 密封層 1096 照明總成 1100 照明總成 1110 光導 1130 可變折射率光汲取層 1150 反射散射元 1190 其他層 1200 光學膜 1230 可變折射率光汲取層 1240 透明基板 1260 第二光學澄清黏著劑層 1265 第二釋放襯塾 1270 第一光學澄清黏著劑層 1275 第一釋放襯墊 1300 光學膜 1301 照明物件 1310 光導 1330 保護外層 1340 透明基板 1350 可變折射率光汲取層 1360 密封層 162607.doc •70- 201245633 1370 黏著劑層 1375 釋放襯墊 1380 反射散射元件 1390 照明裝置 162607.doc - 71 -Haze Gard Plus measures light transmittance, twist and clarity on both sides of the variable-refractive-index light-extracting layer (one is a low-density second high-refractive-index region on one side and a high-density, high-refractive-index region on one side) degree. The measurement results are shown in Tables 3 and 4, respectively. Table 5 shows the reference measurements for the pET film (Dup〇nt 617) used in the optical construction and the ps A light guide with PET laminated to both surfaces. Table 3. Optical properties of the region of the second region having a high density Example pattern transmittance % 霾 (%) Resolution (%) 1 1-D line y-gradient 90.3 1.91 98.5 2 2-D point x, y Gradient 91.0 3.76 ------- 91.6 3 2-D point y_gradient 90.6 6.80 95.8 Table 4. Optical properties of the region of the second region with low density Example pattern transmittance % ( (%) Sharpness (%\ 1 1-D line y-gradient 90.3 1.61 --" /〇J 99.0 2 2-D point x, y gradient 90.3 2.37 ----- 96.8 2-D point y-gradient 90.1 4.16 98.2 Table 5 · Reference measurement: Example round transmittance % + + (%) Reference 1 _PET film 92.8 0.67 Reference 2 PSA light guide with PET film on both sides 90.9 0.59 99.4 Team π ~ main content are clearly Incorporating the present disclosure, unless it is directly attained to the extent of the present disclosure, I62607.doc-64 - 201245633. Although specific embodiments have been illustrated and described herein, those skilled in the art will appreciate that many can be used. The alternatives and/or equivalents are intended to be substituted for the specific embodiments shown and described, without departing from the scope of the disclosure. It is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, the disclosure is intended to be limited only by the scope of the claims and the equivalents thereof. The drawings form a part of the present disclosure and are intended to be illustrative of the various embodiments of the invention. The drawings are schematic and are not necessarily drawn to scale. Figure la shows a schematic cross section of an exemplary variable refractive index snap layer. Figure lb-lc shows an exemplary can be placed on a transparent adjacent layer. A schematic cross section of a variable refractive index light extraction layer. Figure 2 illustrates a variable refractive index light extraction layer having a refractive index that varies across the transverse plane of the layer. Figure 3 is a variable refractive index optical pickup layer The variable profile 4a of the exemplary geometrical configuration of the schematic cross-sectional area of the region shows the refractive index of the plan view of the first and first radiance light extraction layers. Figure 4b1 shows the representation in Figure 4a. The characteristic curve is not shown. The variable refractive index light extraction layers are shown in Figures 4c and 4d, respectively, showing the selection of the variable light absorbing layer shown in Figure 4a. 162607.doc • 65· 201245633 Optical Properties Transmittance. And a definition curve of % clarity. Figures 5a and 5b show plan views of a variable index light extraction layer showing exemplary geometric configurations of the first and second regions. 6 shows a schematic diagram of a conventional illumination device that includes a variable index light extraction layer in combination with a light source and a reflective scattering element. 7 shows a schematic diagram of an example illumination assembly that includes a combination of a variable light extraction layer and a reflective scattering element. Figures 8, 9, l〇a-l〇d and 11 show schematic cross-sectional views of an exemplary illumination assembly including a variable index optical pickup layer optically coupled to a light guide and a reflective scattering element. Figure 12 shows a schematic cross-sectional view of an exemplary optical film comprising a variable index light absorbing layer. Figure 13a shows a schematic cross-sectional view of an exemplary optical film and illuminating article. The illuminating article includes a variable index light absorbing layer that is fused with a light guide. Figure 13b shows a schematic of an exemplary illuminating device. The combination includes the illumination object shown in Figure Ua and a combination of light source and reflective scatter element. Figures... and 14b respectively show a reflective display device having a headlight with and without a variable fold; rate capture layer. Figure 15a shows a random gradient dot pattern of an example flexographic tool. Figure W shows a roll of an optical film. The optical film comprises a variable index light extraction layer disposed on a transparent crucible. W shows a reflective display device with a headlight and a variable refractive index 四 (4) 162607.doc • 66· 201245633, in which the lamp is turned off and on. Figure 1 : 7a and Pb respectively show the Pr〇metric image of the reflective display device and the corresponding map of the axial brightness as a function of position, the lines, the reflected light and with and without the variable refractive index capture layer.刖 刖 【 主要 主要 主要 主要 主要 主要 主要 主要 主要 主要 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 105 105 105 105 105 105 105 105 105 105 105 300 First Zone 310 Adhesive 320 Nanopore 320A Interconnected Nanovoids 320B Interconnected Nanovoids 320C Interconnected Nanovoids 320D Surface Porosity 320E Surface Porosity 162607.doc -67- 201245633 320F Surface Pore 320G Surface Pore 330 A major surface 332 a second major surface 340 particles 400 a variable index light extraction layer 410 a first region 420 a second region 500 a variable index light extraction layer 510 a first region 520 a second region 530 a variable refractive index light extraction layer 540 first region 550 second region 600 illumination device 601 light source 605 outer surface 610 light guide 615 bottom surface 625 top surface 630 variable index light extraction layer 635 opposite surface 645 surface 650 reflective scattering element layer 162607.doc -68- 201245633 710 Light guide 715 surface 725 surface 730 variable index light extraction layer 740 Transparent substrate 742 bottom side 745 surface 750 reflective scattering element 800 illumination assembly 810 light guide 830 variable index light extraction layer 840 optical clearing adhesive 850 reflective scattering element 900 illumination assembly 910 light guide 930 variable index light extraction layer 940 optical Clear Adhesive 950 Reflective Scattering Element 1000 Illumination Assembly 1010 Light Guide 1030 Variable Index Light Capture Layer 1040 Transparent Substrate 1050 Reflective Scatter Element Layer 1060 Adhesive Layer 162607.doc ·69- 201245633 1070 Adhesive Layer 1080 Illumination Assembly 1090 Illumination Assembly 1095 Sealing layer 1096 Illumination assembly 1100 Illumination assembly 1110 Light guide 1130 Variable refractive index Light extraction layer 1150 Reflective scattering element 1190 Other layers 1200 Optical film 1230 Variable refractive index Light extraction layer 1240 Transparent substrate 1260 Second optical clear adhesion Agent layer 1265 second release liner 1270 first optical clear adhesive layer 1275 first release liner 1300 optical film 1301 illumination object 1310 light guide 1330 protective outer layer 1340 transparent substrate 1350 variable refractive index light extraction layer 1360 sealing layer 162607.doc •70- 201245 633 1370 Adhesive layer 1375 Release liner 1380 Reflective scattering element 1390 Illumination unit 162607.doc - 71 -
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161446712P | 2011-02-25 | 2011-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201245633A true TW201245633A (en) | 2012-11-16 |
Family
ID=46025868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101106328A TW201245633A (en) | 2011-02-25 | 2012-02-24 | Illumination article and device for front-lighting reflective scattering element |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201245633A (en) |
WO (1) | WO2012116215A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103354917B (en) | 2011-02-25 | 2016-08-10 | 3M创新有限公司 | Front illuminated reflection display device |
KR101888222B1 (en) | 2011-05-13 | 2018-08-13 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Back-lit transmissive display having variable index light extraction layer |
US9651728B2 (en) | 2012-06-04 | 2017-05-16 | 3M Innovative Properties Company | Variable index light extraction layer with microreplicated posts and methods of making the same |
US8834004B2 (en) | 2012-08-13 | 2014-09-16 | 3M Innovative Properties Company | Lighting devices with patterned printing of diffractive extraction features |
US8944662B2 (en) | 2012-08-13 | 2015-02-03 | 3M Innovative Properties Company | Diffractive luminaires |
EP2888524A1 (en) | 2012-08-24 | 2015-07-01 | 3M Innovative Properties Company | Variable index light extraction layer and method of making the same |
WO2015005959A1 (en) * | 2013-04-01 | 2015-01-15 | Patrick Baudisch | A touchscreen capable of fingerprint recognition |
KR20160030202A (en) | 2013-07-02 | 2016-03-16 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Flat light guide |
WO2017137653A1 (en) * | 2016-02-09 | 2017-08-17 | Nanocomp Oy Ltd | Light guide with plurality of light channels |
WO2020123539A1 (en) * | 2018-12-11 | 2020-06-18 | Flex Lighting Ii, Llc | Front illumination lightguide with a diffusely reflective release liner |
US11773016B2 (en) * | 2018-12-14 | 2023-10-03 | Corning Incorporated | Diffuse reflector and methods of use |
EP4191132A4 (en) * | 2020-07-28 | 2024-08-14 | Nitto Denko Corp | Lighting-device light guide member, lighting device, and building material |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2042308A (en) | 1934-09-20 | 1936-05-26 | Morton Salt Co | Filter |
FR1590694A (en) | 1968-09-20 | 1970-04-20 | ||
US3718712A (en) | 1971-03-01 | 1973-02-27 | Minnesota Mining & Mfg | Pressure-sensitive adhesives based on cyclic terpene urethane resin |
US5845038A (en) | 1997-01-28 | 1998-12-01 | Minnesota Mining And Manufacturing Company | Optical fiber illumination system |
US7005394B1 (en) | 1998-07-10 | 2006-02-28 | 3M Innovative Properties Company | Tackified thermoplastic-epoxy pressure sensitive adhesives |
JP4394839B2 (en) | 1999-02-24 | 2010-01-06 | スリーエム イノベイティブ プロパティズ カンパニー | Lighting device that produces a predetermined intensity pattern |
US6569521B1 (en) | 2000-07-06 | 2003-05-27 | 3M Innovative Properties Company | Stretch releasing pressure sensitive adhesive tape and articles |
US7927703B2 (en) | 2003-04-11 | 2011-04-19 | 3M Innovative Properties Company | Adhesive blends, articles, and methods |
US20060216523A1 (en) | 2003-08-19 | 2006-09-28 | Shunsuke Takaki | Pressure-sensitive adhesive tape and pressure-sensitive adhesive composition for medical adhesive tape |
WO2005044470A1 (en) | 2003-10-27 | 2005-05-19 | Adhesives Research, Inc. | Poly (alkylene oxide) polymer-based pressure sensitive adhesive and tapes formed therefrom |
US7892649B2 (en) | 2005-09-08 | 2011-02-22 | 3M Innovative Properties Company | Microstructured adhesive article and articles made therefrom |
US7862898B2 (en) | 2005-09-08 | 2011-01-04 | 3M Innovative Properties Company | Adhesive composition and articles made therefrom |
US9555602B2 (en) | 2006-03-10 | 2017-01-31 | 3M Innovative Properties Company | Method for preparing microstructured laminating adhesive articles |
US7525126B2 (en) | 2006-05-02 | 2009-04-28 | 3M Innovative Properties Company | LED package with converging optical element |
US20070257270A1 (en) | 2006-05-02 | 2007-11-08 | 3M Innovative Properties Company | Led package with wedge-shaped optical element |
DE102006045324A1 (en) | 2006-09-22 | 2008-04-03 | Linde Ag | Device for rapid freezing of substances |
WO2009085662A2 (en) | 2007-12-27 | 2009-07-09 | 3M Innovative Properties Company | Urea-based pressure sensitive adhesives |
JP5475691B2 (en) | 2008-02-21 | 2014-04-16 | スリーエム イノベイティブ プロパティズ カンパニー | Temporarily repositionable pressure sensitive adhesive formulation |
CN102124384B (en) | 2008-07-10 | 2016-10-12 | 3M创新有限公司 | Viscoelastic lightguide |
WO2010006102A2 (en) * | 2008-07-10 | 2010-01-14 | 3M Innovative Properties Company | Retroreflective articles and devices having viscoelastic lightguide |
EP2379660A1 (en) | 2008-12-31 | 2011-10-26 | 3M Innovative Properties Company | Stretch releasable adhesive tape |
CN102325850B (en) | 2008-12-31 | 2014-03-12 | 3M创新有限公司 | Stretch releasable adhesive tape |
JP5671003B2 (en) | 2009-04-15 | 2015-02-18 | スリーエム イノベイティブ プロパティズ カンパニー | Process and apparatus for nano hollow articles |
US20120021134A1 (en) | 2009-04-15 | 2012-01-26 | 3M Innovative Properties Company | Process and apparatus for coating with reduced defects |
WO2010131430A1 (en) * | 2009-05-12 | 2010-11-18 | パナソニック株式会社 | Sheet and light-emitting device |
WO2010132176A2 (en) | 2009-05-15 | 2010-11-18 | 3M Innovative Properties Company | Urethane-based pressure sensitive adhesives |
CN201478518U (en) | 2009-07-23 | 2010-05-19 | 富士康(昆山)电脑接插件有限公司 | Card edge connector |
-
2012
- 2012-02-23 WO PCT/US2012/026374 patent/WO2012116215A1/en active Application Filing
- 2012-02-24 TW TW101106328A patent/TW201245633A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2012116215A1 (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201245633A (en) | Illumination article and device for front-lighting reflective scattering element | |
US10139550B2 (en) | Variable index light extraction layer and method of making the same | |
TWI548912B (en) | Front-lit reflective display device and method of front-lighting reflective display | |
TWI541559B (en) | Back-lit transmissive display having variable index light extraction layer | |
JP6208913B1 (en) | Optical structure incorporating light guide and low refractive index film | |
TW201241493A (en) | Variable index light extraction layer and method of illuminating with same | |
US9304243B2 (en) | Illumination device having viscoelastic lightguide | |
JP6586805B2 (en) | Edge light type backlight and liquid crystal display device | |
WO2023140194A1 (en) | Optical member, method for producing same, and optical element |