TW201241493A - Variable index light extraction layer and method of illuminating with same - Google Patents

Variable index light extraction layer and method of illuminating with same Download PDF

Info

Publication number
TW201241493A
TW201241493A TW101106330A TW101106330A TW201241493A TW 201241493 A TW201241493 A TW 201241493A TW 101106330 A TW101106330 A TW 101106330A TW 101106330 A TW101106330 A TW 101106330A TW 201241493 A TW201241493 A TW 201241493A
Authority
TW
Taiwan
Prior art keywords
layer
light
variable
region
refractive index
Prior art date
Application number
TW101106330A
Other languages
Chinese (zh)
Inventor
David Scott Thompson
Kevin Roman Schaffer
zhao-hui Yang
Audrey Anne Sherman
Michael Alan Meis
en-cai Hao
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW201241493A publication Critical patent/TW201241493A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity

Abstract

A variable index light extraction layer suitable for use in optical applications is described. The variable index light extraction layer has first and second regions with different refractive indices, the regions being disposed such that for light being transported at a supercritical angle in an adjacent layer, the extraction layer can selectively extract the light in a predetermined way based on the geometric arrangement of the first and second regions. Also described are optical films and devices including the variable index light extraction layer, methods of making the extraction layer and methods of illuminating using the extraction layer.

Description

201241493 六、發明說明: 【發明所屬之技術領域】 本申請案概言之係關於適於以預定方式管控光之光學 膜,其中特定應用係與光導組合使用之光學膜。 本申請案涉及與其在同一曰期提出申請且以引用方式併 入本文中之下列美國臨時專利申請案:「Front-Lit Reflective Display Device and Method of Front-Lighting Reflective Display」(美國臨時申請案第61/446,740號)及「Illumination Device and Method of Front-Lighting Reflective Scattering Element」(美國臨時申請案第61/446,712號)。 【先前技術】 照明系統或裝置(例如彼等用於將物體照明或在電子顯 示器系統中提供照明者)利用一或多個光學層來管控由一 或多個光源發射之光。通常,光學層需要具有期望之光學 透射率、光學霾度、光學清晰度或折射率《在許多應用 中,光學層包含與空氣層及光汲取層組合使用之光導以便 由光源發射之光在光導内傳輸,且該空氣層及該汲取層藉 由支持來自該光導之光之全内反射(TIR)及汲取來管控該 光。業内仍需要能夠管控光並適用於薄撓性系統以及大型 系統之光學膜。 【發明内容】 本申請案概言之係關於適用於光學應用中之透明聚合物 膜、其製造方法及使用其將物件照明之方法。更特定而 言,本揭示内容係關於可變折射率光汲取層,該可變折射 162606.doc 201241493 率光沒取層具有諸如折射率、霾度、透光率、清晰度或其 組合等性質有所不同之區域。所揭示之可變折射率光汲取 層可納入各種顯示裝置及一般照明系統中或連同該等顯示 裝置及一般照明系統一起使用。 在一態樣中,本申請案闡述具有第一及第二區域之可變 折射率光汲取層,該第一區域包含奈米空隙聚合材料該 第二區域包含奈米空隙聚合材料及其他材料,該等第一及 第一區域經佈置以便對於在毗鄰層中以超臨界角度傳輸之 光而言,該可變折射率光汲取層基於該等第一及第二區域 之幾何配置以預定方式選擇性汲取該光。 可變折射率光汲取層可用作具有適用於不同應用之光學 性質之咼性能光學層。舉例而言,第一區域可具有小於 約5%之霾度及大於約9〇%之清晰度,及/或該層可具有大 於約90%之透光率。對於另一實例而言,該層可具有小於 約10%之霾度及大於約9〇%之清晰度。第一及第二區域可 在層之橫向平面上係連續的,或其可不連續而配置成圖 案或隨機佈置《可變折射率光汲取層可經設計以展現隨 第一及第二區域之相對面積而變之特定光學性質。舉例 而s ’第二區域可包含層之橫向平面之面積之約5%至約 60〇/〇。 在另一態樣中’本申請案闡述包含佈置於透明基板上之 上述可變折射率光汲取層之光學膜。透明基板可包含光 導°光學膜可具有小於約1〇%之霾度、大於約85%之清晰 度及大於約90%之透光率。亦闡述包含佈置於反射散射基 162606.doc 201241493 板上之可變折射率光没取層之光學膜。 在另I樣中,本申請案闡述製備可變折射率光没取層 之方法其包含.提供具有第一折射率之奈米空隙聚合 層’及將其他材才4印刷於該奈米$隙聚合層丨以便該其他 材料實質上滲透至該奈米空隙聚合層巾,由此形成包含第 ,區域(包含奈米空隙聚合層之一部分)及第二區域(包含奈 米空隙聚合層之另一部分及其他材料)之可變折射率光汲 取層。第-及第二區域經佈置以便對於在毗鄰層中以超臨 界角度傳輸之光而言,可變折射率光汲取層基於該等第一 及第二區域之幾何配置以預定方式選擇性汲取該光。 在另態樣中,本申請案闡述包含光源與光導及可變折 射率光沒取層之組合之光學裝置。 在又一態樣中,本申請案闡述提供光之方法,其包含: 提供光源、光導及包含技術方案丨之可變折射率光汲取層 之光學膜,及使光源與光導光學輕合且使光導與可變折射 率光汲取層光學耦合,從而由光源發射之光在光導内藉由 全内反射傳輸且由可變折射率光汲取層自光導選擇性汲 取。 以上概述並不意欲闡述本揭示内容之每一揭示實施例或 每一實施方式。下文之圖及詳細闞述更具體地例示說明性 實施例。 【實施方式】 在下列闡述中,參照附圖組,該等附圖形成本揭示内容 之一部分且其中展示各種一般及具體實施例。應理解,涵 162606.doc 201241493 蓋其他實施例且可實施其他實施例,此並不背離本發明之 範圍或精神。下列詳細闡述由此並不具有限制意義。圖係 示意性圖式且不必按比例繪製。 一般而言,本文所揭示之可變折射率光汲取層包括至少 兩個不同區或區域,其中可以不同方式管控入射至該層上 之任一角度之光’此乃因該等區域具有不同折射率。可變 折射率光汲取層可用於各種光學膜構造、總成及裝置中, 如(例如)「Front-Lit Reflective Display Device and Method of Front-Lighting Reflective Display」(代理稽案號: 66858US002)及「Illumination Device and Method of Front-201241493 VI. Description of the Invention: [Technical Field of the Invention] The present application generally relates to an optical film suitable for controlling light in a predetermined manner, wherein a specific application is an optical film used in combination with a light guide. The present application is related to the following U.S. Provisional Patent Application, which is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire content /446, 740) and "Illumination Device and Method of Front-Lighting Reflective Scattering Element" (US Provisional Application No. 61/446, 712). [Prior Art] Lighting systems or devices (e.g., those used to illuminate objects or provide illumination in an electronic display system) utilize one or more optical layers to control the light emitted by one or more light sources. Generally, the optical layer needs to have a desired optical transmittance, optical intensity, optical clarity, or refractive index. In many applications, the optical layer includes a light guide that is used in combination with the air layer and the light extraction layer to emit light from the light source in the light guide. The inner layer is transported, and the air layer and the capture layer control the light by supporting total internal reflection (TIR) and extraction of light from the light guide. There is still a need in the industry for optical films that can be controlled and used in thin flexible systems as well as large systems. SUMMARY OF THE INVENTION The present application is generally directed to a transparent polymer film suitable for use in optical applications, a method of making the same, and a method of using the same to illuminate an article. More particularly, the present disclosure relates to a variable refractive index light extraction layer having properties such as refractive index, twist, light transmittance, sharpness, or combinations thereof, of the variable refractive index 162606.doc 201241493 Different areas. The disclosed variable index optical pickup layer can be incorporated into or used with various display devices and general illumination systems. In one aspect, the present application sets forth a variable index optical pickup layer having first and second regions, the first region comprising a nanovoided polymeric material and the second region comprising a nanovoided polymeric material and other materials, The first and first regions are arranged such that, for light transmitted at a supercritical angle in an adjacent layer, the variable index light extraction layer is selected in a predetermined manner based on geometric configurations of the first and second regions Sexually capture the light. The variable index light extraction layer can be used as a germanium performance optical layer having optical properties suitable for different applications. For example, the first region can have a clarity of less than about 5% and a clarity greater than about 9%, and/or the layer can have a light transmission greater than about 90%. For another example, the layer can have a twist of less than about 10% and a sharpness of greater than about 9%. The first and second regions may be continuous in a lateral plane of the layer, or they may be discontinuously configured in a pattern or randomly arranged. The variable index light extraction layer may be designed to exhibit relative to the first and second regions. The specific optical properties vary from area to area. For example, the second region may comprise from about 5% to about 60 Å/Å of the area of the lateral plane of the layer. In another aspect, the present application sets forth an optical film comprising the variable refractive index light extraction layer disposed on a transparent substrate. The transparent substrate can comprise a photoconductive optical film having a twist of less than about 1%, a clarity of greater than about 85%, and a light transmission of greater than about 90%. An optical film comprising a variable refractive index light absorbing layer disposed on a reflective scattering substrate 162606.doc 201241493 is also illustrated. In another example, the present application describes a method of preparing a variable refractive index light absorbing layer comprising: providing a nanovoided polymeric layer having a first refractive index and printing other materials on the nano-gap Polymerizing the layer so that the other material substantially penetrates into the nanovoided polymeric bed, thereby forming a portion comprising the first region (including a portion of the nanovoided polymeric layer) and the second region (including another portion of the nanovoided polymeric layer) And other materials) variable refractive index light extraction layer. The first and second regions are arranged such that for light transmitted at a supercritical angle in the adjacent layer, the variable index light extraction layer selectively captures the predetermined first and second regions based on the geometric configuration of the first and second regions Light. In other aspects, the present application sets forth an optical device comprising a combination of a light source and a light guide and a variable refractive index light absorbing layer. In another aspect, the present application sets forth a method of providing light, comprising: providing a light source, a light guide, and an optical film comprising a variable index light extraction layer of the technical solution, and optically combining the light source with the light guide and The light guide is optically coupled to the variable index light extraction layer such that light emitted by the light source is transmitted by total internal reflection within the light guide and selectively extracted from the light guide by the variable index light extraction layer. The above summary is not intended to describe each disclosed embodiment or each embodiment of the present disclosure. The following figures and detailed descriptions more specifically illustrate illustrative embodiments. [Embodiment] In the following description, reference is made to the accompanying drawings, which form a part of the present disclosure and various general and specific embodiments. It is to be understood that the scope of the invention is not limited by the scope of the invention. The following detailed description is not intended to be limiting. The figures are schematic and are not necessarily drawn to scale. In general, the variable index light scooping layer disclosed herein includes at least two distinct regions or regions in which light incident at any angle on the layer can be controlled in different ways. This is because the regions have different refractions. rate. The variable index light extraction layer can be used in various optical film constructions, assemblies, and devices, such as, for example, "Front-Lit Reflective Display Device and Method of Front-Lighting Reflective Display" (Attorney Code: 66858US002) and " Illumination Device and Method of Front-

Lighting Reflective Scattering Element j (代理標案號 : 67313US002)(二者皆與本文在同一曰期提出申請)中所 述〇 可變折射率光汲取層係用於汲取以超臨界角度在毗鄰層 中穿行之光之光學層,而同時對於入射至該汲取層上之亞 臨界角度光具有較少光散射(甚至沒有光散射)。可變折射 率光汲取層自諸如透明層等毗鄰層汲取光,且可將所汲取 光遞送至物件或元件中以便將物件或元件照明。可變折射 率光汲取層並不具有顯著地或在功能上散射光之特徵。因 此,在透過該層觀看時,如圖8中所展示,該層之相對側 上之影像及物體具有較少失真。理想地,第一及第二區域 中之材料具有不同折射率’且皆具有高透射性與極低霾 度。在可變折射率光汲取層以物理方式附接至光導、反射 散射元件或反射顯示器且進行光學耦合時,該層中之第一 162606.doc 201241493 及第二區域可經成型及配置以得到具有高清晰度、低霾度 及高透光率之層。 可變折射率光汲取層容許光導透明以在存在及不存在照 明之情形下展現較小霾度(甚至沒有霾度)及高清晰度。此 容許觀察反射顯示器上之影像或觀察圖形,其令解析度及 對比度並不顯著減小,且由不同區域散射或繞射之光並不 生成可見光學假影。在傳統光導中,汲取層具有光散射特 徵以引導在光導内藉由光導_之TIR(以等於或大於臨界角 度之角度)傳輸之光離開光導。該等光散射特徵通常包括 没反射印刷之汲取點或結構,該等汲取點或結構佈置於光 導表面上或蝕刻至光導表面中,此導致在透過光導觀看時 觀察品質顯著減小。 除光學益處外,可藉由適於高速、低成本製造之相對簡 單之塗覆及印刷技術來產生可變折射率光汲取層。 本揭不内容概言之係關於聚合光學膜或層,該等聚合光 學膜或層展現高折射率樣光學性f及低折射率樣光學性質 之區域’或以其他方式與光之透射、散射、吸收、折射或 反射相互作用β 1^折射率樣光學性質及低折射率樣光學性 質之區域在光學層之橫向平面上有所變化,亦即,該光學 層係可變折射率光學層。在本揭示内容通篇中,術語「折 射率(index)」通常用於代替折射率(丨以以〇f Γ^Γ&^〇η或 refractive index)。本文所揭示可變折射率光汲取層之橫向 平面可闡述為與該層之至少__個主表面平行之平面。 圖la展tf實例性可變折射率光沒取層_之示意性橫截 162606.doc 201241493 面。該汲取層包括第一區域140&及14肋,該等區域包括奈 米空隙聚合材料。在一些實施例中,奈米空隙聚合材料包 括複數個互連奈米空隙,如w〇 2〇1〇/12〇422 A1 (Kolb等 人)及W0 2010/120468 A1 (Kolb等人)中所述。複數個互連 奈米空隙係分散於黏合劑中之奈米空隙之網絡,其中至少 一些奈米空隙經由空心隧道或空心隧道樣通路彼此連接。 包括互連奈米空隙之奈米空隙聚合材料具有可延伸至材料 之一或多個表面之奈米空隙或孔隙。 可變折射率光汲取層包括佈置於第一區域14〇&與14补之 間之第二區域130。第二區域包括奈米空隙聚合材料及其 他材料。在一些實施例中,此其他材料佔據奈米空隙聚合 材料之空隙體積之至少一部分。在本揭示内容通篇中,橫 截面及平面圖中之虛線用於指示第一及第二區域之一般位 置,然而,該等虛線並不意欲闡述該等區域之間之任一類 邊界。 圖lb展示佈置於透明毗鄰層上之實例性可變折射率光汲 取層之示意性橫截面。光學膜1〇5包括佈置於毗鄰層12〇 (其係透明基板)上之可變折射率光汲取層1〇〇。可變折射率 光汲取層100包括第一區域14〇3及140b及佈置於該等第— 區域之間之第二區域130。 一般而言’藉由所包括材料與區域之折射率之組合來鑑 別區或區域。第一區域包括奈米空隙聚合材料且具有第— 折射率。若實質上所有區域皆包括奈米空隙聚合材料且若 該區域在該層之連續橫向平面上具有土〇〇2内之折射率, 162606.doc 201241493 則將該區域鏗別為第_ 率之方法闡述於下文中。。以層之橫向平面上之折射 第:折二=奈米空隙聚合材料及其他材料,且具有與 夂約。·°3之第二折射率。第-及第二區 '聚合材料係相同材料 可變折射率光沒取層内並㈣實質上納入 約〇.〇3(例如,。3至::第£域之折射率變化至少 3至約〇·5、約〇.05至約0.5或約〇.〇5至 、狀25),則將該材料視為其他材料。 在一些實施财,其他材料與用於形成奈米空隙聚合材 合劑不同。在—些實施例中,其他材料與用於形成 不;;工隙聚合材料之黏合劑相同。若⑴所有區域皆包括奈 米空隙聚合材料,(ii)該區域在可變折射率光汲取層之連 續橫向平面上具有边G2内之折射率,且㈣該區域具有與 第-區域之折射率相差至少約〇 〇3之折射率則將該區域 鑑別為第二區域。 在-些實施例中,可變折射率光汲取層可藉由組合其他 材料與已形成一些期望形狀(例如層)之奈米空隙聚合材料 之部分來製得1足夠其他材料與奈米空隙聚合材料組合 以便得到期望折射率變化,且該變化為至少約〇 〇3 如,約0.03至約0.5、約〇.〇5至約〇·5或約〇.〇5至約〇 25。 可變折射率光汲取層包括第一及第二區域,該等第一及 第二區域經彼此相對佈置以便對於在毗鄰層中以超臨界角 度傳輸之光而言,可變折射率光汲取層基於第一及第二區 域之幾何配置以預定方式選擇性汲取該光。如本文所使 162606.doc 201241493 用’超臨界角度係等於或大於由可變折射率光汲取層之第 一區域與B比鄰層形成之給定界面之臨界角度(藉由第一區 域與贼鄰層之間之折射率差測得)的角度。臨界角度係自 一種介質傳遞至另一較小折射率介質之光線可自兩種介質 間之邊界全反射之最小入射角。 參照圖lb (其係圖la之簡化圖)’由光線15〇及16〇代表之 光藉由TIR在is比鄰層120内傳輸。在此實施例中,第一區域 140a及140b之折射率遠小於界定所示臨界角度θ(;之紕鄰層 之折射率。以由光線150代表之超臨界角度穿行之光撞擊 毗鄰層120與第一區域140b之間之界面,且光線150之此入 射角大於0。’此使得實質上所有光皆在界面處反射。 同樣’在此實施例中’第二區域13 0之折射率近似等於 或大於毗鄰層120之折射率。在此情況下,在界面處沒有 臨界角度且由光線160代表之光通過毗鄰層12〇與第二區域 130之間之界面,由此自毗鄰層汲取至第二區域130中。 因此’對於圖1 a及圖1 b中所展示之實施例而言,第一及 第二區域經彼此相對佈置以便在她鄰層中以超臨界角度傳 輸之光可由可變折射率光汲取層基於第一及第二區域之幾 何配置以預定方式選擇性汲取。 圖lc展示光以亞臨界角度碰撞毗鄰層之光學膜1〇5之示 意性橫截面。由光線180及190代表之光以亞臨界角度碰揸 毗鄰層120之表面170’且光基本上無偏離地穿過層i 2〇及 100。由光線190代表之光穿過第一區域140b,且由光線 180代表之光穿過第二區域130。穿過可變折射率光汲取層 162606.doc -10· 201241493 100之不同區域之光具有較小偏離 主,又有偏離)。此產生 具有低霾度及高清晰度之光學膜( u J如霄例性光學膜I 05), 以便在透過光學膜觀看時相對 〈影像具有較少失真 (甚至沒有失真)。可變折射率光沒取層之第一及第二區域 可具有任一幾何配置以產生期望沒取光圖案。 一般而言,可變折射率紐取層之折射率㈣可以任― 方式有所變化,只要獲得該層之期望光學性能即可。圖2 繪示折射率可在層之橫向平面上有所變化之可變折射率光 沒取層。折射率特徵曲線展示平面圖中之層之距離d之圖 線,距離d對應於層之橫向平面上之距離。圖2展示,在對 應於do之層上之-些初始位置處,層具有對應於第一區域 之第-折射率nl。跨越層之橫向平面進行移動,觀測到第 一折射率nl直至達私為止,其中層之折射率突然增加至 對應於第二區域之第二折射率之n2。繼續跨越層之橫向平 面移動’觀測到第二折射率n2直至達到七為止,盆中層之 折射率突然降低至指示第一區域之…。 分別具有低折射率及高折射率之兩個_第—及第二區 域間之折射率之變化可以諸多方式有所變化。舉例而言, 兩個赴鄰區域之間之折射率變化可為突然性,如同在階梯 函數中。對於另一實例而言,折射率變化可為單調性,其 中折射率連續增加或降低(端視隨著分別自第一區域移動 至第二區域抑或自第二區域移動至第一區域來觀測變 化)。在一些情形下,毗鄰第一及第二區域之第一及第二 折射率隨著階梯函數與單調函數之—些組合而有所變化。 162606.doc -11 - 201241493 可變光汲取層之第一區域之折射率小於第二區域之折射 率。舉例而言,第一折射率可小於約丨4、小於約1 3或小 於約1 _2。第一折射率可為約1 · 15至約丨45、約1 2至約 1.42、約1.2至約1.40或約1.2至約1.35。一般而言,特定第 一及第二折射率以及二者之特定差取決於下文所述可變折 射率光汲取層之期望光學性能。第一及第二區域間之折射 率差大於約0·03。在一些實施例中,第一及第二區域間之 折射率差大於0.05、大於0.1、大於〇.2或大於〇.25。 奈米空隙聚合材料通常包括複數個互連奈米空隙或分散 於黏合劑中之奈米空隙之網絡。複數個奈米空隙或網絡中 之至:>、些奈米空隙經由空心随道或空心隨道樣通路彼此 連接。奈米空隙未必不含所有物質及/或微粒。舉例而 言,在一些情形下,奈米空隙可包含一或多種包含(例如) 黏合劑及/或奈米顆粒之較小纖維樣或線樣物體。所揭示 之一些第一區域包含多個複數個互連奈米空隙或多個奈米 空隙網絡,其中各複數個奈米空隙或網絡中之奈米空隙皆 互連。在一些情形下,除多個複數個互連奈米空隙外,所 揭示之第一區域可包含密閉或未連接奈米空隙部分此意 味著該等奈米空隙並未經由隧道與其他奈米空隙連接。 不米二隙聚合材料經設計以藉助包含複數個奈米空隙來 支持TIR。基在光學透明(澄清及非多孔)毗鄰層中穿行之 光入射至具有高孔隙率之層肖,入#光之反射率在斜角處 比垂直入射時尚很多。在具有較小霾度(甚至沒有霾度)之 奈米空隙第一 ^ ^ ^ ^ Λί ΤΓ ι_ 匕域之晴形下,大於臨界角度之斜角處之反 162606.doc •12· 201241493The ReflectVariable Refractive Index 汲 〇 layer described in the Lighting Reflective Scattering Element j (Proxy No. 67313US002) (both of which are hereby incorporated by reference in the same PCT application) is used to draw through the adjacent layers at supercritical angles. The optical layer of light, while at the same time having less light scattering (or even no light scattering) for subcritical angle light incident on the capture layer. The variable refractive index light extraction layer extracts light from an adjacent layer, such as a transparent layer, and can deliver the extracted light into an object or component to illuminate the object or component. The variable refractive index light extraction layer does not have the characteristic of scattering light significantly or functionally. Thus, as viewed through the layer, as shown in Figure 8, the images and objects on opposite sides of the layer have less distortion. Ideally, the materials in the first and second regions have different refractive indices' and both have high transmission and very low temperature. The first 162606.doc 201241493 and the second region of the layer may be shaped and configured to have the variable refractive index light extraction layer physically attached to the lightguide, reflective scattering element, or reflective display for optical coupling A layer of high definition, low twist and high light transmittance. The variable index light extraction layer allows the light guide to be transparent to exhibit less twist (even without twist) and high definition in the presence and absence of illumination. This allows viewing of the image or viewing pattern on the reflective display, which does not significantly reduce resolution and contrast, and light scattered or diffracted by different regions does not produce visible optical artifacts. In conventional light guides, the capture layer has light scattering characteristics to direct light exiting within the light guide by the TIR of the light guide (at an angle equal to or greater than the critical angle) exiting the light guide. Such light scattering features typically include a pick-up point or structure that does not reflect printing, which is disposed on or etched into the surface of the light guide, which results in a significant reduction in viewing quality as viewed through the light guide. In addition to optical benefits, variable refractive index light extraction layers can be produced by relatively simple coating and printing techniques suitable for high speed, low cost manufacturing. SUMMARY OF THE INVENTION The present disclosure relates to polymeric optical films or layers that exhibit regions of high refractive index-like optical properties and low refractive index-like optical properties or otherwise transmit and scatter with light. The region of the absorption, refraction, or reflection interaction β 1 ^ refractive index-like optical properties and low refractive index-like optical properties varies in the transverse plane of the optical layer, that is, the optical layer is a variable refractive index optical layer. Throughout this disclosure, the term "index" is generally used in place of the refractive index (丨 to 〇f Γ^Γ&^〇η or refractive index). The transverse plane of the variable index optical pickup layer disclosed herein can be illustrated as a plane parallel to at least __ major surfaces of the layer. Figure la shows a schematic cross-section of an example variable refractive index light-free layer _ 162606.doc 201241493 face. The capture layer includes first regions 140 & and 14 ribs, the regions including nanovoided polymeric materials. In some embodiments, the nanovoided polymeric material comprises a plurality of interconnected nanovoids, such as w〇2〇1〇/12〇422 A1 (Kolb et al.) and W0 2010/120468 A1 (Kolb et al). Said. The plurality of interconnected nanovoids are dispersed in a network of nanovoids in the binder, wherein at least some of the nanovoids are connected to each other via a hollow tunnel or a hollow tunnel-like passage. A nanovoided polymeric material comprising interconnected nanovoids has nanovoided voids or pores that extend to one or more surfaces of the material. The variable index light extraction layer includes a second region 130 disposed between the first region 14 & The second region includes nanovoided polymeric materials and other materials. In some embodiments, the other material occupies at least a portion of the void volume of the nanovoided polymeric material. Throughout the disclosure, the cross-sections and dashed lines in the plan view are used to indicate the general positions of the first and second regions, however, such dashed lines are not intended to illustrate any type of boundary between the regions. Figure lb shows a schematic cross section of an exemplary variable index optical pickup layer disposed on a transparent adjacent layer. The optical film 1〇5 includes a variable refractive index light extraction layer 1〇〇 disposed on an adjacent layer 12〇 (which is a transparent substrate). The variable index light scooping layer 100 includes first regions 14〇3 and 140b and a second region 130 disposed between the first regions. In general, a zone or zone is identified by a combination of the refractive indices of the materials and regions included. The first region comprises a nanovoided polymeric material and has a first refractive index. If substantially all regions include a nanovoided polymeric material and if the region has a refractive index within the soil 2 in a continuous transverse plane of the layer, 162606.doc 201241493 then the method of identifying the region as the _ rate Explained below. . Refraction in the transverse plane of the layer: Folding two = nano-voided polymeric material and other materials, and having a singularity. · The second refractive index of °3. The first and second regions 'polymeric materials are in the same material in the variable refractive index light absorbing layer and (iv) substantially incorporated in the 〇. 〇 3 (eg, .3 to:: the range of the refractive index changes of at least 3 to about 〇·5, about 〇.05 to about 0.5 or about 〇.〇5 to, shape 25), the material is considered as other materials. In some implementations, other materials are different from those used to form nanovoided polymeric materials. In some embodiments, the other materials are the same as those used to form the gap polymeric material. If (1) all regions include a nanovoided polymeric material, (ii) the region has a refractive index in the side G2 in a continuous transverse plane of the variable index optical capturing layer, and (4) the region has a refractive index with the first region A refractive index differing by at least about 〇〇3 identifies the region as a second region. In some embodiments, the variable index light extraction layer can be prepared by combining other materials with portions of the nanovoided polymeric material that have formed some desired shape (eg, a layer). The materials are combined to obtain a desired change in refractive index, and the change is at least about 〇〇3, such as from about 0.03 to about 0.5, from about 〇5 to about 55, or from about 〇5 to about 〇25. The variable index light extraction layer includes first and second regions that are disposed opposite one another such that the variable index light extraction layer is for light transmitted at a supercritical angle in an adjacent layer The light is selectively captured in a predetermined manner based on the geometric configuration of the first and second regions. As described herein, 162606.doc 201241493 uses a 'supercritical angle equal to or greater than a critical angle of a given interface formed by the first region of the variable refractive index light extraction layer and the B adjacent layer (by the first region and the thief neighbor) The angle at which the difference in refractive index between the layers is measured). The critical angle is the minimum angle of incidence at which light from one medium to another smaller refractive index medium can be totally reflected from the boundary between the two mediums. Referring to Figure lb (which is a simplified diagram of Figure la), the light represented by rays 15 〇 and 16 传输 is transmitted in the is adjacent layer 120 by TIR. In this embodiment, the refractive indices of the first regions 140a and 140b are much smaller than the refractive index of the adjacent layer defining the critical angle θ shown; the light passing through the supercritical angle represented by the ray 150 strikes the adjacent layer 120 and The interface between the first regions 140b, and the incident angle of the ray 150 is greater than 0. 'This causes substantially all of the light to be reflected at the interface. Also in this embodiment the refractive index of the second region 130 is approximately equal to Or greater than the refractive index of the adjacent layer 120. In this case, there is no critical angle at the interface and the light represented by the ray 160 passes through the interface between the adjacent layer 12 and the second region 130, thereby drawing from the adjacent layer to the first In the second region 130. Thus, for the embodiment shown in Figures 1 a and 1 b, the first and second regions are arranged opposite each other such that light transmitted at a supercritical angle in her adjacent layer can be made variable The refractive index light extraction layer is selectively captured in a predetermined manner based on the geometric configuration of the first and second regions. Figure lc shows a schematic cross section of the optical film 1〇5 of light striking the adjacent layer at a subcritical angle. Representative light The surface 170' of the adjacent layer 120 is struck at a subcritical angle and the light passes through the layers i2 and 100 substantially without deviation. The light represented by the light 190 passes through the first region 140b and is light-received by the light 180. Passing through the second region 130. Light passing through different regions of the variable index light extraction layer 162606.doc -10·201241493 100 has a smaller deviation from the main and offset. This produces an optical film (u J such as an exemplary optical film I 05) having low twist and high definition so as to have less distortion (or even no distortion) relative to the image when viewed through the optical film. The first and second regions of the variable index light wicking layer can have any geometric configuration to produce a desired undocked pattern. In general, the refractive index (iv) of the variable refractive index bonding layer can be varied in any manner as long as the desired optical properties of the layer are obtained. Figure 2 illustrates a variable refractive index light reticle having a refractive index that varies across the transverse plane of the layer. The refractive index profile shows a plot of the distance d of the layers in the plan view, the distance d corresponding to the distance in the transverse plane of the layer. Figure 2 shows that at some initial positions on the layer corresponding to do, the layer has a first index of refraction nl corresponding to the first region. Moving across the transverse plane of the layer, the first index of refraction nl is observed until the privacy is reached, wherein the refractive index of the layer abruptly increases to n2 corresponding to the second index of refraction of the second region. Continue to move across the horizontal plane of the layer. The second index of refraction n2 is observed until it reaches seven, and the refractive index of the middle layer of the basin suddenly drops to indicate the first region. The change in refractive index between the two _-- and second regions, respectively, having a low refractive index and a high refractive index may vary in a number of ways. For example, the change in refractive index between two adjacent regions can be sudden, as in a step function. For another example, the change in refractive index can be monotonic, with the refractive index continuously increasing or decreasing (observing changes as the end moves from the first region to the second region or from the second region to the first region, respectively). ). In some cases, the first and second indices of refraction adjacent the first and second regions vary with some combination of a step function and a monotonic function. 162606.doc -11 - 201241493 The refractive index of the first region of the variable light extraction layer is smaller than the refractive index of the second region. For example, the first index of refraction can be less than about 丨4, less than about 13 or less than about 1 _2. The first index of refraction can range from about 1 · 15 to about 45, from about 12 to about 1.42, from about 1.2 to about 1.40, or from about 1.2 to about 1.35. In general, the particular first and second indices of refraction and the particular difference between the two depend on the desired optical properties of the variable refractive index light extraction layer described below. The difference in refractive index between the first and second regions is greater than about 0.03. In some embodiments, the difference in refractive index between the first and second regions is greater than 0.05, greater than 0.1, greater than 0.2, or greater than 〇.25. Nano void polymeric materials typically comprise a plurality of interconnected nanovoids or a network of nanovoids dispersed in a binder. A plurality of nano-voids or networks: >, some nano-voids are connected to each other via a hollow or hollow-like path. The nanovoids are not necessarily free of all substances and/or particulates. By way of example, in some cases, the nanovoids may comprise one or more smaller fiber-like or wire-like objects comprising, for example, binders and/or nanoparticles. Some of the first regions disclosed include a plurality of interconnected nano-voids or a plurality of nano-voided networks, wherein each of the plurality of nano-voids or nano-voids in the network are interconnected. In some cases, in addition to a plurality of interconnected nanogaid voids, the disclosed first region may comprise a closed or unconnected nanovoid portion, which means that the nanovoids are not tunneled to other nanovoids. connection. The non-rice gap polymeric material is designed to support TIR by including a plurality of nanovoids. The light passing through the optically transparent (clarified and non-porous) adjacent layer is incident on the layer having a high porosity, and the reflectance of the light is much more fashionable at the oblique angle than the normal incidence. In the clear shape of the first ^ ^ ^ ^ Λί ΤΓ ι_ 奈 field of the nanovoid with a small twist (or even no twist), the inverse of the oblique angle above the critical angle 162606.doc •12· 201241493

率、孔隙之形狀及尺寸、孔 折射率、奈米空隙或孔隙之折射 孔隙之空間分佈及光之波長。在 一些情形下,入射至奈米空隙聚合材料層或在奈米空隙聚 合材料層内傳播之光「經歷」或Γ體驗」有效介電常數 Seff及有效折射率neff,其中心^可根據奈米空隙折射率〜、 黏合劑折射率nb及奈米空隙之孔隙率或體積分率「f」來表 示。在該等情形下,層足夠厚且奈米空隙足夠小以便光不 能分辨單一或分離奈米空隙之形狀及特徵。在該等情形 下’至少大部分奈米空隙(例如至少6〇%或7〇%或8〇%或 90〇/〇之奈米空隙)之尺寸不大於約λ/5或不大於約λ/6或不大 於約λ/8或不大於約λ/10或不大於約九/2〇,其中χ係光之波 長。 在一些實施例中’入射至可變光汲取層之所揭示第一區 域中之光係可見光,其波長範圍可為約380 nm至約 750 nm 或約400 nm至約700 nm或約420 nm至約680 nm。在該等情 形下’若至少大部分奈米空隙(例如至少60%或70%或80% 或90%之奈米空隙)之尺寸不大於約70 nm或不大於約60 nm 或不大於約5 0 nm或不大於約40 nm或不大於約30 nm或不 大於約20 nm或不大於約10 nm,則可變光汲取層之第一區 •13· 162606.doc 5 201241493 域具有有效折射率且包含複數個奈米空隙β 在一些情形下,可變折射率光汲取層之所揭示第一區域 足夠厚,以便該區域可適當地具有可根據奈米空隙及黏合 劑之折射率及奈米空隙或孔隙之體積分率或孔隙率來表示 之有效折射率4該等情形下,第—區域之厚度不小於約 100 rnn或不小於約200 nm或不小於約5〇〇 nm或不小於約 700 nm或不小於約1,〇〇〇 nm。 在所揭示第一區4中之奈米冑隙足夠小且該區域足夠厚 時’該第-區域之有效介電常數—可表示如下: eeff = f εν + (1-f) 6b ⑴Rate, shape and size of pores, refractive index of pores, refraction of nanovoids or pores, spatial distribution of pores, and wavelength of light. In some cases, the light that is incident on the nanovoided polymeric material layer or propagated within the nanovoided polymeric material layer "experiences or experiences" the effective dielectric constant Seff and the effective refractive index neff, the center of which can be based on the nanometer The void refractive index 〜, the binder refractive index nb, and the porosity or volume fraction "f" of the nanovoids are expressed. In such cases, the layer is sufficiently thick and the nanovoids are sufficiently small that light cannot resolve the shape and characteristics of the single or separate nanovoids. In such cases, the size of at least a majority of the nanovoids (eg, at least 6〇% or 7〇% or 8〇% or 90〇/〇 of the nanovoids) is no greater than about λ/5 or no greater than about λ/ 6 or no greater than about λ/8 or no greater than about λ/10 or no greater than about nine /2 〇, wherein the wavelength of the lanthanide light. In some embodiments, the light-based visible light incident into the disclosed first region of the variable light extraction layer can range from about 380 nm to about 750 nm or from about 400 nm to about 700 nm or about 420 nm to About 680 nm. In such cases 'if at least a majority of the nanovoids (eg, at least 60% or 70% or 80% or 90% of the nanovoids) have a size no greater than about 70 nm or no greater than about 60 nm or no greater than about 5 0 nm or no more than about 40 nm or no more than about 30 nm or no more than about 20 nm or no more than about 10 nm, then the first region of the variable light extraction layer • 13· 162606.doc 5 201241493 domain has an effective refractive index And comprising a plurality of nanovoids β. In some cases, the first region of the variable index light-extracting layer is sufficiently thick so that the region suitably has a refractive index and a nanometer according to the nanovoid and the binder. The void fraction or the volume fraction of the pores or the porosity indicates the effective refractive index 4. In the case where the first region has a thickness of not less than about 100 rnn or not less than about 200 nm or not less than about 5 〇〇 nm or not less than about 700 nm or not less than about 1, 〇〇〇nm. When the nanopore gap in the disclosed first region 4 is sufficiently small and the region is sufficiently thick, the effective dielectric constant of the first region can be expressed as follows: eeff = f εν + (1-f) 6b (1)

在該等情形下,第―卩枕+ 士 ^ A 弟 £域之有效折射率neff可表示如 下: I nv V w) nb- ^eff ) 在-些情形下,例如在孔隙及黏合劑之折射率間之差 夠小時’第-區域之有效折射率可近似地表示如下: neff = f nv + (1 -f) nb (3) 在該等情形下,第—區敁 匕域之有效折射率係奈米空隙及 合劑之折射率之體積加權 ^5〇0/ „ JJk . 均值。舉例而言,空隙體積 羊為約50/。且黏合劑之 射率為⑽。㈣革為約之第-區域之有效. 圖3係可變折射率光汲 圖,該第-區心a 層之第-區域之示意性橫截, 。°域包-奈米空隙網絡或複數個 及複數個實質上均勾 数個互連“空^In these cases, the effective refractive index neff of the first 卩 + + 士 ^ A £ 可 can be expressed as follows: I nv V w) nb- ^ eff ) In some cases, for example, refraction of pores and binders The difference between the rates is small enough. The effective refractive index of the first region can be approximated as follows: neff = f nv + (1 - f) nb (3) In these cases, the effective refractive index of the first region The volume weighting of the refractive index of the nano-voids and the mixture is ^5〇0/ „ JJk . Mean. For example, the void volume sheep is about 50/. and the adhesion rate of the adhesive is (10). (4) The leather is about the first - The area is effective. Figure 3 is a variable refractive index pupil diagram, the schematic cross-section of the first-region of the first-region a-layer, the domain-packet-nano-void network or a plurality of and a plurality of substantially Tick several interconnects "empty ^

3〇〇包括複數個分散於 位第W W 1ϋ中之互連奈米空隙320 « 162606.doc •14* 201241493 奈米空隙320包含互連奈米空隙32〇A 32〇(^第一及第二主 表面330及332分別係多孔的,如藉由表面孔隙咖⑽所 示,表面孔隙320D-G可提供或可不提供自一個表面延伸至 另-表面或穿過區域厚度之隧道。一些奈米空隙(例如奈 米空隙320B及320C)位於第一區域内部且可通向或可不通 向表面。 空隙320之尺寸d丨通常可藉由選擇適宜之組成及製造過 程來加以控制,例如塗覆、乾燥及固化條件。一般而言, 1可為任一期望值範圍中之任一期望值。舉例而言,在一 些情形下,至少大部分奈米空隙(例如至少6〇%或7〇%或 80%或90%或95%之奈米空隙)之尺寸在期望範圍内。舉例 而言,在一些情形下,至少大部分奈米空隙(例如至少6〇% 或70%或80%或90%或95%之奈米空隙)之尺寸不大於約5〇〇 nm、不大於400 nm、不大於約3〇〇 nm、不大於約2〇〇 nm、不大於約1〇〇 nm、不大於約7〇 nm或不大於約5〇 nm。在一些情形下,一些奈米空隙可足夠小以便改變區域 之折射率,且具有較少或沒有光散射。 黏合劑3 10可包括任一材料,例如聚合物。黏合劑可為 自包括單體之可聚合組合物形成之聚合物,其中該等單體 係使用以下方式進行固化:光化輻射,例如,可見光、紫 外輻射、電子束輻射、熱量及其組合;或可以化學方式或 熱方式引發之各種習用陰離子、陽離子、自由基或其他聚 合技術中之任一者。可使用溶劑聚合、乳液聚合、懸浮液 聚合、整體聚合及諸如此類來實施聚合。有用單體包含分 162606.doc 15 201241493 子量小於約500 g/莫耳之小分子、分子量大於5〇〇 g/莫耳至 約10,000 g/莫耳之寡聚物及分子量大於1〇 〇〇〇以莫耳至約 100,000 g/莫耳之聚合物。 適於實踐本揭示内容之可固化基團之代表性實例包含環 氧基團、烯系不飽和基團、烯烴碳_碳雙鍵、烯丙氧基、 (曱基)丙烯酸酯基團、(曱基)丙烯醯胺基團、氰基酯基 團、乙稀基喊基團、該等基團之組合及諸如此類。單體可 為單功能或多功能且能夠在聚合時形成交聯網絡。如本文 所使用’(甲基)丙稀酸酯係指丙稀酸酯及甲基丙稀酸酯, 且(曱基)丙烯醯胺係指丙烯酿胺及甲基丙烯醯胺。 有用單體包含苯乙烯、α_甲基苯乙烯、經取代苯乙烯、 乙稀基酯、乙稀基喊、Ν-乙烯基-2-β比哈咬酮、(曱基)丙烯 醯胺、Ν-取代(曱基)丙烯醯胺、(曱基)丙烯酸辛基酯、(甲 基)丙稀酸異辛基酯、乙氧基化壬基苯驗(甲基)丙烯酸酯、 (曱基)丙烯酸異壬基酯、二乙二醇(曱基)丙烯酸酯、(甲基) 丙烯酸異莰基酯、(甲基)丙烯酸2-(2-乙氧基乙氧基)乙基 醋、(曱基)丙烯酸2-乙基己基酯、(甲基)丙烯酸月桂基 醋、丁二醇單(甲基)丙烯酸酯、(甲基)丙烯酸p_羧基乙基 醋、(甲基)丙烯酸異丁基酯、脂環族環氧化物、α_環氧化 物、(甲基)丙烯酸2-羥乙基酯、(甲基)丙烯腈、馬來酸 酐、衣康酸、(甲基)丙烯酸異癸基酯、(曱基)丙婦酸十二 烷基酯、(曱基)丙烯酸正丁基酯、(甲基)丙稀酸甲酯、(甲 基)丙稀酸己基酯、(甲基)丙烯酸、Ν-乙烯基己内酿胺、 (甲基)丙稀酸硬脂基S旨、經基功能聚己内g旨(甲基)丙婦酸 162606.doc •16- 201241493 醋、(甲基)丙烯酸羥乙基醋、(甲基)丙烯酸羥甲基醋、(甲 基)丙烯酸羥丙基酯、(甲基)丙烯酸羥基異丙基酯、(甲基) 丙烯馱羥丁基酯、(甲基)丙烯酸羥基異丁基酯、(甲基)丙 烯酸四氫糠基酯、該等之組合及諸如此類。 功能寡聚物及聚合物亦可在本文中統稱為「較高分子量 成份或物質」。適宜較高分子量成份可納入本揭示内容之 組合物中。该等較高分子量成份可提供包含以下之益處: 黏度控制、在固化時減小之收縮、耐久性、撓性、多孔及 無孔基板黏著性、戶外耐候性及/或諸如此類。納入本揭 示内容之流體組合物中之寡聚物及/或聚合物之量可端視 例如以下因素在寬範圍内有所變化:所得組合物之預期用 途、反應性稀釋劑之性質、寡聚物及/或聚合物之性質及 重量平均分子量及諸如此類。寡聚物及/或聚合物本身可 為直鏈、具支鏈及/或環狀。具支鏈寡聚物及/或聚合物之 黏度在在低於具有同等分子量之直鍵對等部分。 實例性可聚合寡聚物或聚合物包含脂肪族聚胺基曱酸 酯、丙烯酸系物、聚酯、聚醯亞胺、聚醯胺、環氧聚合 物、聚苯乙烯(包含苯乙烯之共聚物)及經取代苯乙烯含 有聚矽氧之聚合物、氟化聚合物、該等物質之組合及諸如 此類。對於-些應用而言,聚胺基曱酸醋及丙稀酸醋寡聚 物及/或聚合物可具有改良之耐久性及耐候性特性。該等 材料亦往往易於溶於自輻射可固化(甲基)丙烯酸酯功能單 體形成之反應性稀釋劑中。 因寡聚物及/或聚合物之芳族成份通常往往具有較差耐 162606.doc . ι7 201241493 候性及/或較差抗日光性’故芳族成份可限於小於5重量 %、較佳地小於1重量%,且可實質上不包含於本揭示内容 之寡聚物及/或聚合物及反應性稀釋劑中。因此,直鍵、 具支鍵及/或ί衣狀月曰肪族及/或雜環成份較佳用於形成用於 戶外應用中之寡聚物及/或聚合物。 用於本揭示内容中之適宜輻射可固化寡聚物及/或聚合 物包含但不限於(甲基)丙烯酸酯化胺基曱酸酯(亦即,胺基 甲酸酯(甲基)丙稀酸酯)、(甲基)丙烯酸酯化環氧樹脂(亦 即’環氧(甲基)丙稀酸S旨)、(甲基)丙稀酸醋化聚醋(亦即, 聚酯(曱基)丙烯酸酯)、(曱基)丙烯酸酯化(曱基)丙烯酸系 物、(甲基)丙烯酸酯化聚矽氧、(曱基)丙烯酸酯化聚醚(亦 即’聚醚(甲基)丙烯酸酯)、(曱基)丙烯酸乙烯基酯及(甲 基)丙稀酸醋化油。 用於使奈米空隙層300韌化之材料包含具有高抗拉強度 及高延伸率之樹脂,例如,購自Sartomer公司之CN9893、 CN902、CN9001、CN961 及 CN964 ;及購自 Cytec 之 EBECRYL 4833及Eb8804。適宜韌化材料亦包含「硬」寡 聚丙稀酸酯與「軟」寡聚丙稀酸酯之組合。「硬」丙稀酸 酯之實例包含聚胺基曱酸酯丙烯酸酯(例如EBECRYL 4866)、聚酯丙烯酸酯(例如EBECRYL 838)及環氧丙烯酸酯 (例如 EBECRYL 600、EBECRYL 3200 及 EBECRYL 1608 (購自 Cytec);及 CN2920、CN2261 及 CN9013 (購自 Sartomer公司))。「軟」丙烯酸酯之實例包含購自Cytec之 EBECRYL 8411 ;及購自 Sartomer 公司之 CN959、CN9782 162606.doc •18· 201241493 及CN973。在以㈣固體之5_25重量%範圍(排除溶劑部幻 添加至塗層調配物中時,㈣材料可有效_化奈米空隙 結構化層。 奈米空隙聚合材料可含有或可不含顆粒。顆粒34〇之尺 寸d2可為任-期望值範圍中之期望值^舉例而言,在 —些情形下,至少大部分顆粒(例如至少6〇%或7〇%或8〇% 或90%或95%之顆粒)之尺寸在期望範圍内。舉例而言在 —些情形下,至少大部分顆粒(例如至少6〇%或7〇%或8〇% 或90%或95%之顆粒)之尺寸不大於約5⑽或不大於約3⑽ 或不大於約2 um或不大於約i um或不大於約7〇〇謹或不大 於約500 nm或不大於約200 nm或不大於約1〇〇 nm*不大於 約 50 nm。 在一些情形下,顆粒340之平均粒徑不大於約5 um、不 大於約3 um、不大於約2 um、不大於約丄um、不大於約 700 nm'不大於約500 nm、不大於約2〇〇 nm、不大於約 100 nm或不大於約50 nm。在一些情形下,一些顆粒可足 夠小以便改變區域之折射率,且具有較少或沒有光散射。 在一些情形下,山及/或1足夠小以便改變區域之折射 率,且具有較少或沒有光散射。在該等情形下,舉例而 言’ φ及’或I不大於約λ/5、不大於約λ/6 '不大於約λ/8、 不大於約λ/10、不大於約λ/20 ’其中λ係光之波長。根據另 一實例’在該荨情形下,d!及d2不大於約70 nm、不大於約 60 nm、不大於約50 nm、不大於約40 nm、不大於約30 nm、不大於約20 nm或不大於約1〇 nm。 162606.doc •19- 201241493 不米工隙聚合層中所使用之顆粒之其他性質包含形狀。 顆粒可具有規則形狀(例如球形)或不規則形狀。顆粒可為 狹長顆粒且平均縱橫比不小於約15、不小於約2、不小於 ’勺3不小於約4或不小於約5。在一些情形下,顆粒可呈 珍珠串(例如可自Nissan Chemical獲得之SNOWTEX-PS顆 粒)或球形或非晶型顆粒之聚集鏈(例如發煙二氧化矽)之形 式或形狀》 奈米顆粒可為無機或有機顆粒或其組合。在一些實施例 中’奈米顆粒可為多孔顆粒、空心顆粒、實心顆粒或其組 合。適宜無機奈米顆粒之實例包含二氧化矽及金屬氧化 物,例如氧化鍅、氧化鈦、二氧化鈽、氧化鋁氧化鐵、 氧化釩、氧化銻、氧化錫、氧化鋁/二氧化矽、二氧化矽/ 氧化锆及其組合。奈米顆粒可經表面修飾以便其以化學方 式及/或以物理方式結合至黏合劑。在前一情形下,經表 面修飾之奈米顆粒具有以化學方式與黏合劑進行反應之官 月色性。一般而言,表面修飾已眾所周知且可使用如上文所 引用參考文獻中所述之習用材料及技術來實施。 端視奈米空隙聚合層之期望性質,黏合劑與奈米顆粒之 重量比率範圍可為約30:70、40:60、50:50、55.45、 60··40、70:30、80:20或90:10或更大。奈米顆粒之wt%之較 佳範圍介於約10重量。/。至約60重量%之間,且可取決於所 用奈米顆粒之密度及尺寸。 在空隙網絡320及顆粒340之主要光學效應係影響有效折 射率且將散射光最小化之情形下,因空隙320及顆粒340而 162606.doc •20· 201241493 產生之光學層300之光學霾度不大於約5%或不大於約4%或 不大於約3 ·5%或不大於約4%或不大於約3%或不大於約 2.5%或不大於約2%或不大於約1.5%或不大於約1%。在該 等情形下,光學層之有效介質之有效折射率不大於約14〇 或不大於約1.3 5或不大於約1.3或不大於約1.25或不大於約 1.2或不大於約1.15。 第一區域300除黏合劑310及顆粒340外亦可具有其他材 料。舉例而言,第一區域3〇〇可包含一或多種添加劑(例如 偶合劑)以有助於潤濕上面形成有奈米空隙聚合材料之基 板表面(未明確展示於圖3中)。第一區域3〇〇中之其他實例 性材料包含起始劑(例如一或多種光起始劑)、抗靜電劑' UV吸收劑及釋放劑。 不、米二隙聚合材料通常形成為層。展适佘示空隙聚合材 料層之方法闡述於上文所引用之K〇lb等人之參考文獻中。 在種方法中,f先製備包含複數個顆粒(例如奈来顆粒) 及溶於溶财之可聚合材料之溶液,#巾該可聚合材料可 包含(例如)-或多種類型單體。接下來,藉由(例如)施加 …、或光使可聚σ材料聚合以形成存於溶劑中之可溶聚合物 基質。在-些情形下’在聚合步驟之後,溶劑仍可包含— 些可聚合材料’但濃度較低。接下來,藉由乾燥或蒸發溶 液來去除办劑’從而得到包含分散於聚合物黏合劑3 中 之空隙網絡或複數個空隙似的第—區域则。第一區域另 ::3複數個分散於聚合物中之顆粒34〇。顆粒與黏合劑 …其中該結合可為物理結合或化學結合。 162606.doc -21 - 1 1201241493 一般而言’所形成之奈米空隙聚合層可具有期望孔隙率 或空隙體積’此可取決於可變折射率光汲取層之第一區域 之期望性質。舉例而言’第一區域可具有約20%至約 70%、約30%至約70%或約40%至約70%之空隙體積。在一 些情形下,空隙體積不小於約20%、不小於約30%、不小 於約40%、不小於約50%、不小於約60%、不小於約70〇/〇、 不小於約80%或不小於約90%。 在一些實施例中’第一區域3〇〇具有低光學霾度。在該 等情形下,光學層之光學霾度不大於約10%或不大於約7% 或不大於約5°/。或不大於約4%或不大於約3.5%或不大於約 40/〇或不大於約3%或不大於約2.5%或不大於約2%或不大於 約1.5%或不大於約1 %。第一區域中之霾度變化範圍可為 約1-5%、約1-3%、約1-2%或小於1%。在該等情形下,光 學膜之較小有效折射率可不大於約1.40或不大於約1.35或 不大於約1.3或不大於約1.2或不大於約1.15或不大於約1.1 或不大於約1.05»對於垂直入射至光學層300之光而言, 本文所用之光學霾度定義為偏離垂直方向4度以上之透射 光與總透射光的比率。本文所揭示之霾度值係使用Haze-3〇〇 includes a plurality of interconnected nano-voids 320 scattered in the first WW 1ϋ « 162606.doc •14* 201241493 Nano-voids 320 contain interconnected nano-voids 32〇A 32〇 (^ first and second The major surfaces 330 and 332 are respectively porous, as shown by the surface voids (10), the surface apertures 320D-G may or may not provide a tunnel extending from one surface to the other or through the thickness of the region. (e.g., nanovoids 320B and 320C) are located inside the first region and may or may not be open to the surface. The size d of the void 320 can generally be controlled by selecting a suitable composition and manufacturing process, such as coating, drying. And curing conditions. In general, 1 can be any desired value in any desired range of values. For example, in some cases, at least a majority of the nanovoids (eg, at least 6% or 7% or 80% or The size of 90% or 95% of the nanovoids is within the desired range. For example, in some cases, at least a majority of the nanovoids (eg, at least 6% or 70% or 80% or 90% or 95%) The size of the nanometer void) is not more than about 5 〇〇 nm and not more than 4 00 nm, no more than about 3 〇〇 nm, no more than about 2 〇〇 nm, no more than about 1 〇〇 nm, no more than about 7 〇 nm, or no more than about 5 〇 nm. In some cases, some nano-voids It may be small enough to change the refractive index of the region with little or no light scattering. Adhesive 3 10 may comprise any material, such as a polymer. The binder may be a polymer formed from a polymerizable composition comprising a monomer. Wherein the single systems are cured using actinic radiation, such as visible light, ultraviolet radiation, electron beam radiation, heat, and combinations thereof; or various conventional anions, cations, free radicals that can be chemically or thermally induced Or any of the other polymerization techniques. The polymerization can be carried out using solvent polymerization, emulsion polymerization, suspension polymerization, bulk polymerization, and the like. Useful monomers include 162606.doc 15 201241493 Sub-mass less than about 500 g/mole Small molecule, oligomer having a molecular weight greater than 5 〇〇g/mole to about 10,000 g/mol and a polymer having a molecular weight greater than 1 Torr to about 100,000 g/mole. Representative examples of curable groups disclosed include epoxy groups, ethylenically unsaturated groups, olefin carbon-carbon double bonds, allyloxy groups, (mercapto) acrylate groups, (mercapto) propylene groups. Amidoxime group, a cyano ester group, a vinyl group, a combination of such groups, and the like. The monomer may be monofunctional or multifunctional and capable of forming a crosslinked network upon polymerization. As used herein '(Methyl) acrylate refers to acrylate and methyl acrylate, and (mercapto) propylene amide refers to acrylamide and methacrylamide. The useful monomer contains styrene, _-methyl styrene, substituted styrene, vinyl ester, ethylene sulfonate, fluorene-vinyl-2-β hexazone, (mercapto) acrylamide, hydrazine-substituted (fluorenyl) Acrylamide, octyl (meth) acrylate, isooctyl (meth) acrylate, (meth) acrylate (meth) acrylate, isodecyl (meth) acrylate, Diethylene glycol (mercapto) acrylate, isodecyl (meth) acrylate, 2-(2-ethoxyethoxy) ethyl vinegar (meth) acrylate , (mercapto) 2-ethylhexyl acrylate, lauryl methacrylate, butanediol mono (meth) acrylate, p-carboxyethyl acrylate (meth) acrylate, (meth) acrylate Isobutyl ester, alicyclic epoxide, α_epoxide, 2-hydroxyethyl (meth)acrylate, (meth)acrylonitrile, maleic anhydride, itaconic acid, (meth)acrylic acid Isodecyl ester, (decyl) propionate lauryl ester, (mercapto) n-butyl acrylate, methyl (meth) acrylate, (meth) hexyl acrylate, (A) Acrylic acid, hydrazine-vinyl caprolactam, (meth)acrylic acid stearyl group, trans-functional function, hexamethylene glycol 162606.doc •16- 201241493 vinegar, Hydroxyethyl ketone (meth) acrylate, hydroxymethyl ketone (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyisopropyl (meth) acrylate, (meth) propylene hydroxy hydroxybutyl Ester, hydroxyisobutyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, combinations of these, and the like. Functional oligomers and polymers may also be referred to herein collectively as "higher molecular weight components or materials." Suitable higher molecular weight ingredients can be included in the compositions of the present disclosure. These higher molecular weight components can provide benefits including: viscosity control, reduced shrinkage upon curing, durability, flexibility, porous and non-porous substrate adhesion, outdoor weatherability, and/or the like. The amount of oligomers and/or polymers incorporated into the fluid compositions of the present disclosure may vary over a wide range depending on, for example, the intended use of the resulting composition, the nature of the reactive diluent, oligomerization. Properties and/or polymer properties and weight average molecular weight and the like. The oligomers and/or polymers themselves may be linear, branched and/or cyclic. The viscosity of the branched oligomers and/or polymers is below the direct bond equivalent of the same molecular weight. Exemplary polymerizable oligomers or polymers comprising aliphatic polyamino phthalates, acrylics, polyesters, polyimines, polyamines, epoxy polymers, polystyrene (including copolymerization of styrene) And substituted styrene containing polyoxyl polymers, fluorinated polymers, combinations of such materials, and the like. For some applications, polyamino phthalic acid vinegar and acetoacetate oligomers and/or polymers may have improved durability and weatherability characteristics. These materials are also often readily soluble in reactive diluents formed from self-radiating curable (meth) acrylate functional monomers. The aromatic component of the oligomer and/or polymer generally tends to have poor resistance to 162606.doc. ι7 201241493 and/or poor solar resistance. The aromatic component may be limited to less than 5% by weight, preferably less than 1. % by weight, and may not be substantially included in the oligomers and/or polymers and reactive diluents of the present disclosure. Thus, direct bonds, fulcrums and/or lysate-like aliphatic and/or heterocyclic components are preferred for forming oligomers and/or polymers for use in outdoor applications. Suitable radiation curable oligomers and/or polymers for use in the present disclosure include, but are not limited to, (meth)acrylated amino phthalates (ie, urethane (meth) acrylates) Acid ester), (meth)acrylated epoxy resin (ie, 'epoxy (meth)acrylic acid S), (meth)acrylic acidified polyacetate (ie, polyester (曱) (Acrylate), (fluorenyl) acrylated (fluorenyl) acrylic, (meth)acrylated polyoxyl, (fluorenyl) acrylated polyether (ie, 'polyether (methyl) ) acrylate), vinyl (meth) acrylate and (meth) acrylate vinegar. The material for toughening the nanovoided layer 300 comprises a resin having high tensile strength and high elongation, for example, CN9893, CN902, CN9001, CN961 and CN964 from Sartomer; and EBECRYL 4833 from Cytec and Eb8804. Suitable toughening materials also include combinations of "hard" oligoacrylates and "soft" oligoacrylates. Examples of "hard" acrylates include polyamino phthalate acrylates (such as EBECRYL 4866), polyester acrylates (such as EBECRYL 838), and epoxy acrylates (such as EBECRYL 600, EBECRYL 3200, and EBECRYL 1608). From Cytec); and CN2920, CN2261 and CN9013 (purchased from Sartomer)). Examples of "soft" acrylates include EBECRYL 8411 from Cytec; and CN959, CN9782 162606.doc • 18· 201241493 and CN973 from Sartomer Corporation. The (iv) material may be effective to form a nanovoided structured layer when the solvent is added to the coating formulation in the range of 5-25% by weight of the (iv) solid. The nanovoided polymeric material may or may not contain particles. The size d2 of the crucible may be the desired value in any-expected value range. For example, in some cases, at least a majority of the particles (eg, at least 6% or 7% or 8% or 90% or 95% of the particles) The size is within the desired range. For example, in some cases, at least a majority of the particles (eg, at least 6% or 7% or 8% or 90% or 95% of the particles) are no larger than about 5 (10) Or no more than about 3 (10) or no more than about 2 um or no more than about i um or no more than about 7 〇〇 or no more than about 500 nm or no more than about 200 nm or no more than about 1 〇〇 nm * no more than about 50 In some cases, the average particle size of the particles 340 is no greater than about 5 um, no greater than about 3 um, no greater than about 2 um, no greater than about 丄 um, no greater than about 700 nm ' no greater than about 500 nm, no. More than about 2 〇〇 nm, no more than about 100 nm, or no more than about 50 nm. In some cases, some particles may be sufficient Small to change the refractive index of the region with little or no light scattering. In some cases, the mountains and/or 1 are small enough to change the refractive index of the region with little or no light scattering. In such cases For example, 'φ and ' or I are not greater than about λ/5, not greater than about λ/6 'not greater than about λ/8, not greater than about λ/10, and not greater than about λ/20 'where λ is light Wavelength. According to another example 'in this case, d! and d2 are no greater than about 70 nm, no greater than about 60 nm, no greater than about 50 nm, no greater than about 40 nm, no greater than about 30 nm, no greater than about 20 nm or not more than about 1 〇 nm. 162606.doc •19- 201241493 Other properties of the particles used in the non-gap polymeric layer include shapes. The particles may have a regular shape (eg spherical shape) or an irregular shape. It is an elongate particle and has an average aspect ratio of not less than about 15, no less than about 2, not less than 'spoon 3 not less than about 4 or not less than about 5. In some cases, the granules may be in the form of a string of pearls (for example, available from Nissan Chemical). SNOWTEX-PS particles) or aggregated chains of spherical or amorphous particles (eg fumes) The form or shape of the cerium oxide) The nanoparticle may be an inorganic or organic particle or a combination thereof. In some embodiments, the 'nano particle may be a porous particle, a hollow particle, a solid particle, or a combination thereof. Suitable inorganic nanoparticle Examples include cerium oxide and metal oxides such as cerium oxide, titanium oxide, cerium oxide, aluminum oxide iron oxide, vanadium oxide, cerium oxide, tin oxide, aluminum oxide/cerium dioxide, cerium oxide/zirconia, and the like. A combination thereof. The nanoparticle can be surface modified such that it is chemically and/or physically bonded to the binder. In the former case, the surface-modified nanoparticle has a chemical color reaction with a binder. In general, surface modifications are well known and can be practiced using conventional materials and techniques as described in the references cited above. Depending on the desired properties of the nanovoided polymeric layer, the weight ratio of binder to nanoparticle can range from about 30:70, 40:60, 50:50, 55.45, 60·40, 70:30, 80:20. Or 90:10 or more. A preferred range of wt% of the nanoparticles is between about 10 weights. /. It is between about 60% by weight and may depend on the density and size of the nanoparticles used. In the case where the main optical effects of the gap network 320 and the particles 340 affect the effective refractive index and minimize the scattered light, the optical density of the optical layer 300 generated by the void 320 and the particles 340 is not 162606.doc • 20· 201241493 More than about 5% or no more than about 4% or no more than about 3 · 5% or no more than about 4% or no more than about 3% or no more than about 2.5% or no more than about 2% or no more than about 1.5% or not More than about 1%. In such cases, the effective medium of the optical layer has an effective refractive index of no greater than about 14 Å or no greater than about 1.3 5 or no greater than about 1.3 or no greater than about 1.25 or no greater than about 1.2 or no greater than about 1.15. The first region 300 may have other materials in addition to the binder 310 and the particles 340. For example, the first region 3 can comprise one or more additives (e.g., coupling agents) to aid in wetting the surface of the substrate on which the nanovoided polymeric material is formed (not explicitly shown in Figure 3). Other exemplary materials in the first zone 3 include an initiator (e.g., one or more photoinitiators), an antistatic agent, a UV absorber, and a release agent. No, the rice two-gap polymeric material is usually formed into a layer. A method for exhibiting a voided polymeric material layer is set forth in the reference to K〇lb et al., cited above. In the method, f is prepared by first preparing a solution comprising a plurality of particles (e.g., nai particles) and a soluble polymerizable material, and the polymerizable material may comprise, for example, - or a plurality of types of monomers. Next, the polymerizable sigma material is polymerized by, for example, applying ... or light to form a soluble polymer matrix present in the solvent. In some cases, after the polymerization step, the solvent may still contain some polymerizable materials' but at a lower concentration. Next, the agent is removed by drying or evaporating the solution to obtain a void-containing network or a plurality of void-like first regions dispersed in the polymer binder 3. The first zone is further ::3 plural particles 34 dispersed in the polymer. Particles and binders ... wherein the combination can be a physical bond or a chemical bond. 162606.doc -21 - 1 1201241493 In general, the resulting nanovoided polymeric layer can have a desired porosity or void volume. This can depend on the desired properties of the first region of the variable index light extraction layer. For example, the first region can have a void volume of from about 20% to about 70%, from about 30% to about 70%, or from about 40% to about 70%. In some cases, the void volume is not less than about 20%, not less than about 30%, not less than about 40%, not less than about 50%, not less than about 60%, not less than about 70 Å/〇, not less than about 80%. Or not less than about 90%. In some embodiments the 'first region 3' has a low optical mobility. In such cases, the optical layer has an optical mobility of no greater than about 10% or no greater than about 7% or no greater than about 5 degrees. Or no greater than about 4% or no greater than about 3.5% or no greater than about 40/〇 or no greater than about 3% or no greater than about 2.5% or no greater than about 2% or no greater than about 1.5% or no greater than about 1%. The degree of change in the first region can range from about 1-5%, from about 1-3%, from about 1-2%, or less than 1%. In such cases, the optical film may have a smaller effective refractive index of no greater than about 1.40 or no greater than about 1.35 or no greater than about 1.3 or no greater than about 1.2 or no greater than about 1.15 or no greater than about 1.1 or no greater than about 1.05». For light incident perpendicularly to the optical layer 300, the optical mobility as used herein is defined as the ratio of transmitted light to total transmitted light that is more than 4 degrees from the vertical. The values disclosed in this paper are based on Haze-

Gard Plus 霾度計(BYK_Gardiner,suver SpringS,Md.)根 據ASTM D1003中所述之程序進行量測。 在一些實施例中,第一區域300具有高光學清晰度。對 於垂直入射至第一區域300之光而言,本文所用之光學清 晰度係指比率(TVTd/d+h),其中1^係偏離垂直方向1.6 度至2度之透射光,且丁2係位於距離垂直方向零度至〇 7度 162606.doc •22· 201241493 之間的透射光。本文所揭示之清晰度值係使用來自BYK-Gardiner之Haze-Gard Plus霾度計進行量測。在第一區域 300具有高光學清晰度之情形下,清晰度不小於約80%或 不小於約85%或不小於約90%或不小於約95%。 可藉由將含有溶劑之上述溶液塗覆於基板上來製造第一 區域300之奈米空隙聚合材料。在許多情形下,基板可由 用於輥對輥製程中之任一聚合材料形成。在一些實施例 中,基板層係透明的且具有較小霾度(甚至沒有霾度)及高 清晰度,且係由諸如聚對苯二甲酸乙二酯(pET)、聚碳酸 酯、丙烯酸系物及環烯烴聚合物等聚合物形成。基板亦可 包括透明基板,例如玻璃及其他透明無機材料。基板亦可 包括反射散射基板或材料,例如漫射白色聚合基板、半鏡 基板、聚合基板,W如多層光學膜(例如可自3M獲得之 ESR)、金屬半鏡反射器(例如拉絲紐)。在—些情形下,基 板可包括釋放襯塾以便奈米空隙聚合層则可轉移至另: 基板(例如黏著劑層)上。 對於第-區域包括奈米空隙聚合材料之實施例而言,其 界定第二區域。其他材料駐留於奈米空隙聚合材料 奈米空隙内且其折射率足夠高以便第二區域之折射率大 =:二域之折射率。有用其他材料包含可納入奈 :内二可變折射率光汲取層可視需 之 。〜μ—、 162606.doc -23· 201241493 0.25。 一般而言,其他材料可具有約1.40至2·1之折射率範圍。 其他材料之確切折射率範圍將取決於奈米空隙聚合材料之 折射率以及汲取層自其汲取光之毗鄰層的折射率。出於本 文所述之本發明目#,可變折射率歧取層經設計以自她 鄰透明層波取光。為實施此功能,可變折射率光沒取層之 第-區域之折射率必須小於毗鄰透明層,且可變折射率光 :取層之第二區域之折射率近似等於或大於汲取光之毗鄰 般而3,將其他材料納入在奈米空隙聚合材料之表3 上具有較少或沒有其他材料之奈米空隙聚合材料中_ 例中’其他材料實f上完全填充互連奈米空隙以相 ^沒有空隙體積(小於5%空隙體積)保留於第二區起 内°在-些實施例中’其他材料部分地填充互連奈米 以便保留一些空隙體積。 二 域與第二區域間之期望二;ΓΓ 及第1 空隙體積,而言,第=第具:區域包括特定量之 一區域了具有小於約20%、小价 約⑽、小於約5%或小於約1%之空隙體積。 ]於 實例性其他材料包含小分子、寡聚物及聚合 造奈米空隙聚合㈣之上述材料中之任—者 = 積至二隙=等T文所述方法將其他材料沈 積主余合材料之空隙巾。在— 料係卿/。固體之可聚合材料,且其黏卢-下’其他材 許其他材料滲透至奈米^ 肖條件下容 阳、聚。材枓中由此形成第二區 162606.doc •24· 201241493 域。 其他材料之特定選擇可取決於將其納入奈米空隙聚合層 中之方法。各種方法閣述於下文中。舉例而言,在一些實 施例令,藉由將其他材料沈積於包括奈米空隙聚合材料之 層之表面之所選區或區域上來製造可變折射率光汲取層。 其他材料然後滲透至奈米空隙聚合材料中以便較少或沒有 其他材料保留於層表面上。此實施例可能需要其他材料具 有足夠低黏度且其分子成份之尺寸應足夠小以滲透至奈米 空隙聚合材料之奈米空隙中並穿過該等奈米空隙。 在一些實施例中,藉由將可聚合組合物沈積於包括奈米 空隙聚合材料之層之表面之所選區或區域上來製造可變折 射率光〉及取層。可聚合組合物紐滲透至奈米空隙材料中 以?交少或沒有可聚合組合物保留於層表面上 '然後可藉 由%用方式使可聚合組合物聚合以形成其他材料,由此形 成具有第—材料其他材料之第二區域。在-些情形下, 其他材料兀全渗透穿過奈米空隙聚合材料層之厚度。 第H區域可在可變折射率光没取層之橫向平面上 彼此相對佈置從而以期望方式管控光。舉例而t,第二區 域可包括複數個以-定圖案配置於層之橫向平面上之;二 區域。對於另一訾也丨二 置於層之… έ’第二區域可包括複數個隨機配 、 面上之第二區域。第一或第二區域皆可為 層之橫向平面上之遠^ 匕埤&叮為 連續區域。對於不連續(亦即,俜複數 個區域)之第—或坌_ r ^ 你複數 一第一區域而言,密度可在層 上於任一方向中古a a 寅向十面 變化。舉例而言,第二區域之密度可 162606.doc •25· 201241493 有所變化。若干該 在層之橫向平面上在一個或兩個維度上 等實施例闡述於圖4a-4d、5a及讣中。 根據可變折㈣光沒取層設計實施之功能來測定該層之 最佳厚度。層厚度取決於奈米空隙聚合材料之性質。可變 折射率光汲取層應足夠厚以便第—區域可提供础鄰透明基 板(超臨界光在其中傳播)與佈置於可變折射率光汲取層之 相對側上之另一層之光學隔離。奈米空隙聚合層之厚度應 足夠薄以便其他材料可沈積於該層上並實f上滲透至該層 中’且在-些情形下穿過該層之厚度,由此產生第二區 域在一險形下,可變折射率光汲取層具有大於約5〇〇 nm之厚度,或厚度範圍為約5〇〇 nm至約ι〇〇 約5〇〇 nm至約8 um、約m米至約5⑽或約i⑽至約3⑽。 可變折射率光汲取層支持或促進TIR,且由此該層足夠 厚以便在可變折射率光汲取層之表面發生TIR之光線之漸 逝尾部在層之厚度中並不光學耦合,或光學耦合極少。在 該等情形下’可變折射率光汲取層之厚度不小於約〇 5 um、不小於約! um、不小於約i.i um、不小於約1.2 um、 不小於約1.3 um、不小於約1.4 um、不小於約15 um、不 小於約1 ·7 um或不小於約2 um。足夠厚之可變折射率光沒 取層可防止或減小層厚度中光學模式之漸逝尾部之不期望 光學耦合。 在一些情形下,可變折射率光汲取層具有低光學霾度 (以層之整體性質之形式進行量測在該等情形下,可變 折射率光汲取層之光學霾度不大於約10°/。、不大於約7%、 162606.doc -26· 201241493 不大於約5%、不大於約4%、不大於約3 5%、不大於約 4%、不大於約3%、不大於約2.5%、不大於約2%、不大於 約1.5%或不大於約1%。在該等情形下,可變折射率光沒 取層之減小之有效折射率可不大於約1.4〇、不大於約 1.35、不大於約1.3、不大於約1.2、不大於約115、不大於 約1.1或不大於約1.05。對於垂直入射至給定廣之表面上之 光而言,將本文所用之光學霾度定義為與垂直方向偏離4 度以上之透射光與總透射光之比率。本文所揭示之霾度值 係使用 Haze-Gard Plus 霾度計(BYK_Gardiner,sUverThe Gard Plus oximeter (BYK_Gardiner, supver SpringS, Md.) was measured according to the procedure described in ASTM D1003. In some embodiments, the first region 300 has high optical clarity. For light incident perpendicularly to the first region 300, the optical clarity used herein refers to the ratio (TVTd/d+h), where 1^ is transmitted from the vertical direction of 1.6 to 2 degrees, and the D2 is Transmitted light from zero degrees in the vertical direction to 1627 degrees 162606.doc •22· 201241493. The sharpness values disclosed herein were measured using a Haze-Gard Plus oximeter from BYK-Gardiner. In the case where the first region 300 has high optical clarity, the sharpness is not less than about 80% or not less than about 85% or not less than about 90% or not less than about 95%. The nanovoided polymeric material of the first region 300 can be fabricated by applying the above solution containing the solvent to the substrate. In many cases, the substrate can be formed from any of the polymeric materials used in the roll-to-roll process. In some embodiments, the substrate layer is transparent and has a small twist (even without twist) and high definition, and is composed of, for example, polyethylene terephthalate (pET), polycarbonate, acrylic. A polymer such as a cycloolefin polymer is formed. The substrate may also include a transparent substrate such as glass and other transparent inorganic materials. The substrate may also include a reflective scattering substrate or material, such as a diffuse white polymeric substrate, a semi-mirror substrate, a polymeric substrate, such as a multilayer optical film (e.g., ESR available from 3M), a metal half mirror reflector (e.g., a wire). In some cases, the substrate may include a release liner such that the nanovoided polymeric layer can be transferred to another substrate (e.g., an adhesive layer). For embodiments where the first region comprises a nanovoided polymeric material, it defines a second region. Other materials reside in the nanovoided polymeric material nanovoids and have a refractive index that is sufficiently high that the refractive index of the second region is large =: the refractive index of the two domains. Other useful materials include inclusions that can be included in the inner: two variable refractive index light extraction layer. ~μ—, 162606.doc -23· 201241493 0.25. In general, other materials may have a refractive index range of about 1.40 to 2.1. The exact refractive index range of other materials will depend on the refractive index of the nanovoided polymeric material and the refractive index of the adjacent layer from which the extracted layer draws light. For purposes of the present invention, the variable refractive index acquisition layer is designed to take light from the adjacent transparent layer waves. To perform this function, the refractive index of the first region of the variable refractive index light absorbing layer must be smaller than the adjacent transparent layer, and the variable refractive index light: the refractive index of the second region of the layer is approximately equal to or greater than the adjacent of the extracted light. In general, other materials are incorporated into the nanovoided polymeric material with little or no other materials on Table 3 of the nanovoided polymeric material. In the example, the other materials are completely filled with interconnected nanovoids. ^ No void volume (less than 5% void volume) remains within the second zone. In other embodiments, the 'other materials partially fill the interconnected nanoparticle to retain some void volume. The expectation between the two domains and the second region; ΓΓ and the first void volume, in terms of: the region: the region includes a region of a certain amount having less than about 20%, a small price of about (10), less than about 5%, or Less than about 1% void volume. Any of the above materials of the exemplary other materials comprising small molecules, oligomers, and polymeric nanoparticle void polymerizations (IV) = product to two gaps = equal T method to deposit other materials into the gap of the main residual material towel. In - Department of Secretary /. A solid polymerizable material, and its other materials are infiltrated into the nano- xiao conditions to accommodate the yang and poly. The second zone is thus formed in the material 162606.doc •24· 201241493 domain. The particular choice of other materials may depend on the method of incorporating them into the nanovoided polymeric layer. Various methods are described below. For example, in some embodiments, a variable index optical pickup layer is fabricated by depositing other materials on selected regions or regions of the surface of the layer comprising the nanovoided polymeric material. Other materials then penetrate into the nanovoided polymeric material so that little or no other material remains on the surface of the layer. This embodiment may require that other materials have sufficiently low viscosity and that the molecular composition should be sufficiently small to penetrate into and through the nanovoids of the nanovoided polymeric material. In some embodiments, the variable refractive index light and the layer are produced by depositing the polymerizable composition on selected regions or regions of the surface comprising the layer of nanovoided polymeric material. The polymerizable composition has penetrated into the nanovoided material to? Little or no polymerizable composition remains on the surface of the layer. The polymerizable composition can then be polymerized by % to form other materials, thereby forming a second region having other materials of the first material. In some cases, other materials are fully permeable through the thickness of the nanovoided polymeric material layer. The H-th regions may be arranged opposite each other in a lateral plane of the variable-refractive-index light-extracting layer to control the light in a desired manner. For example, t, the second region may include a plurality of patterns arranged in a predetermined pattern on a lateral plane of the layer; For the other layer, the second region can be included in the second region. The first or second region may be a continuous region on the lateral plane of the layer. For discontinuous (i.e., 俜 个 个 ) ) 你 你 你 你 你 你 你 你 你 你 你 你 你 你 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度 密度For example, the density of the second zone may vary from 162606.doc •25· 201241493. A number of such embodiments in one or two dimensions in the transverse plane of the layer are illustrated in Figures 4a-4d, 5a and 讣. The optimum thickness of the layer is determined by the function of the variable fold (four) light immersion layer design. The layer thickness depends on the nature of the nanovoided polymeric material. The variable index light extraction layer should be sufficiently thick that the first region provides optical isolation of the underlying transparent substrate (where supercritical light propagates) and another layer disposed on the opposite side of the variable index light extraction layer. The thickness of the nanovoided polymeric layer should be sufficiently thin that other materials can be deposited on the layer and penetrate into the layer 'and in some cases through the thickness of the layer, thereby creating a second region In the case of a dangerous shape, the variable refractive index light extraction layer has a thickness greater than about 5 〇〇 nm, or a thickness ranging from about 5 〇〇 nm to about ι 〇〇 about 5 〇〇 nm to about 8 um, about m metre to about 5 (10) or about i (10) to about 3 (10). The variable index light extraction layer supports or promotes TIR, and thus the layer is thick enough that the evanescent tail of the light that undergoes TIR on the surface of the variable index light extraction layer is not optically coupled in the thickness of the layer, or optical Very little coupling. In these cases, the thickness of the variable refractive index light extraction layer is not less than about 5 um, not less than about! Um, not less than about i.i um, not less than about 1.2 um, not less than about 1.3 um, not less than about 1.4 um, not less than about 15 um, not less than about 1 · 7 um or not less than about 2 um. A sufficiently thick variable index light wicking layer prevents or reduces undesirable optical coupling of the evanescent tail of the optical mode in the layer thickness. In some cases, the variable index light extraction layer has a low optical intensity (measured in the form of the overall properties of the layer in which the optical refractive index of the variable index light extraction layer is no greater than about 10[deg.] No more than about 7%, 162606.doc -26· 201241493 no more than about 5%, no more than about 4%, no more than about 35%, no more than about 4%, no more than about 3%, no more than about 2.5%, no more than about 2%, no more than about 1.5% or no more than about 1%. In such cases, the effective refractive index of the variable refractive index light-removed layer may be no more than about 1.4 〇, no more than About 1.35, no more than about 1.3, no more than about 1.2, no more than about 115, no more than about 1.1, or no more than about 1.05. For light incident perpendicularly to a given broad surface, the optical mobility used herein It is defined as the ratio of transmitted light to total transmitted light that is more than 4 degrees from the vertical. The temperature values disclosed in this paper are based on the Haze-Gard Plus 霾度计 (BYK_Gardiner, sUver

Springs,Md.)根據ASTMD1003中所述之程序進行量測。 在一些情形下,可變折射率光汲取層具有高光學清晰 度。本文所用之光學清晰度係針對垂直入射至層之光來定 義且係指比率(TVD/d+T2),其中Tl係偏離垂直方向i 6 度至2度之透射光,且η係位於距離垂直方向零度至〇7度 之間的透射光。本文所揭示之清晰度值係使用來自Βγκ_ Gardiner之Haze-Gard Plus霾度計進行量測。在可變折射率 光汲取層具有高光學清晰度之情形下,清晰度不小於約 80%、不小於約85%、不小於約9〇%或不小於約95〇/^ 可變折射率光汲取層可包括在層之橫向平面上以一些期 望幾何配置彼此相對佈置之第一及第二區域,以便該層提 供期望光學性能特徵。圖钩係展示第一及第二區域之實例 性幾何配置之可變折射率光汲取層之平面圖。可變折射率 光汲取層400包括第一區域41〇(在層中係連續的,如在層 之平面圖中所看到)及第二區域420(其係由使用虛線繪示之 162606.doc -27· 201241493 矩形封閉之離散區域)。 如上所述,本揭示内容通篇使用之虛線指示第一及第二 區域之-般位置,然而,該等虛線並不意欲閱述區域之間 之任-類邊界。如本文所述,藉由將其他材料沈積於奈米 空隙聚合材料上(通常藉由一些印刷方式)來形成第二區 域,從而其他材料在奈米空隙聚合材料中之滲透、芯吸等 取決於用於形成料區域之材才斗之化學性質以及諸如黏 度、潤濕性、溫度等性質。 第二區域420之形狀為實質上具有相同長度及寬度之矩 形或條帶,其在層400之寬度上延伸並自左至右以增加之 頻率佈置。第二區域42〇之折射率比第一區域彻大至少約 〇.〇3。圖4b繪示可變折射率光汲取層彻之折射率特徵曲 線,其中X軸標識在如圖乜中所展示之一些實質上單一位 置%處在層長度下方之位l。折射率特徵曲線展示層彻 之折射率之變化,其包括在分別為〜及〜之第一折射率與 第二折射率之間之圖案。圖毵及牝分別展示所選光學性質 透光率%及清晰度%之特徵曲線,且對於兩種性質而言, 在層之長度下方具有實質上較少變化或沒有變化。° 圖5a展示另一可變折射率光汲取層之平面圖,其展示第 一及第二區域之實例性幾何配置。可變折射率光沒取層 湖包括第-區域51G(在層中係連續的,如在層之平面圖 中所看到)及第二區域52G(其係由使用虛輯示之圓封閉之 離散區域)。圖案亦展示,第二區域52〇之密度可在維 度上有所變化。 162606.doc •28- 201241493 圖5b展示另一可變折射率光没取層t平面圖,其展示第 -及第二區域之實例性幾何配置。可變折射率光汲取層 530包括第一區域54〇(在層中係連續❾,如在層之平面圖 中所看到)及第:區域55G(其係由使用虛線繪示之形狀(在 此情形下係心形)封閉之離散區域)。圖案展示,高折射率 區域之幾何配置並非必須以梯度形式變化,而是其亦可經 圖案化以提供自毗鄰透明層之超臨界光之逐步影像汲取。 可變光汲取層之第一及第二區域之幾何配置經設計以汲 取在毗鄰透明層中傳播之超臨界光’並以預定模式(例如 實質上均勻照明)將該光遞送至位於可變折射率光汲取層 之相對側上之另一層中。 可將可變折射率光汲取層佈置於基板上。基板可包括用 於製造層之支撐件,如PCT申請案第US2011/021053號 (Wolk等人)中所述。在一些實施例中,光學膜包含佈置於 透明基板上之可變折射率光汲取層。如本文所使用,「透 明」意指實質上光學澄清且實質上具有低霾度且無散射。 端視光學膜之期望性質,實例性透明基板具有所需光學性 質。透明基板可包括聚合基板,例如聚酯、聚(甲基)丙烯 酸酯、聚碳酸酯及諸如此類。在一些實施例中,透明基板 包括如下文所述之光導。在一些實施例中,透明基板具有 一定程度之霾度且可提供一定光散射以便光可在正向上朝 向反射散射元件層650散射。 圖6展示實例性照明裝置6 0 0 (包括可變折射率光沒取層) 與由該裝置進行照明之反射散射元件之組合之示意圖β照 162606.doc 29· 201241493 明裝置600包括毗鄰可變光汲取層630佈置之光導610。光 導與可變折射率光汲取層630之頂部表面625光學耦合(由 兩個表面之間之虛線指示)。反射散射元件650(簡明起見以 層形式展示)毗鄰可變折射率光汲取層之相對表面635。反 射散射元件與可變折射率光汲取層635之底部表面光學耦 合(由兩個表面之間之虛線指示)。光源601與光導610光學 福合以便由光源發射之光可進入光導。在一些實施例中, 在光導610之底部表面615與可變折射率光汲取層630之頂 部表面625之間沒有空氣間隙,且在可變折射率光汲取層 63 0之底部表面635與反射散射元件650之間沒有空氣間 隙’從而發生光學耦合。 在一些實施例中’光導610之折射率介於可變折射率光 没取層之第一及第二區域之彼等折射率之間。 根據此實施例,提供光之方法包括:提供光源、光導及 包括可變折射率光汲取層之光學膜;及使光源與光導光學 輕合且使光導與可變折射率光汲取層光學耦合,從而由光 源發射之光在光導内藉由全内反射傳輸且由可變折射率光 汲取層自光導選擇性汲取。 在一些實施例中,可變光汲取層630可直接佈置於反射 散射元件650之表面645上。光導610可藉由若干方法直接 附接至可變光〉及取層之表面625上。如下文所述,光導 可包括熱塑性樹脂材料(例如,丙烯酸系物),且在該等情 形下,可藉由將熔化樹脂澆鑄於可變折射率汲取層之表面 625上來形成光導,或其可藉由插入注入模製製程附接至 162606.doc •30· 201241493 可變折射率汲取層。在一些情形下’光導610包括彈性體 材料以便其可熱層壓至可變折射率汲取層之表面625上。 在一些情形下,光導610包括壓敏性黏著劑(PSA)以便其可 直接層壓至可變折射率汲取層之表面625上。在光導61〇並 非黏著劑之情形下,可使用光學澄清黏著劑將可變折射率 光汲取層之表面625黏著至光導之表面615上。光學澄清黏 著劑闡述於下文中。 光導610可包含任一種適宜 言,光導可包含玻璃、丙烯酸酯(包含聚甲基丙烯酸甲 酯)、聚碳酸酯、聚苯乙烯、苯乙烯甲基丙烯酸酯共聚物 及#合物、環烯烴聚合物(例如可自ζέον Chemicals L.P., L〇uisville,KY 獲得之 ΖΕ〇ΝΕχ 及 ZE〇N〇R)、含氟聚合物、 聚酯(包含聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯 (PEN))及含有PET或PEN或二者之共聚物、聚胺基甲酸 酯、環氧樹脂、聚婦烴(包含聚乙稀、聚丙稀、聚降冰片 烯呈王同立構、無規立構及間同立構立體異構體形式之 聚稀烴及藉由茂金屬聚合產生之聚稀煙)。在一些情形 下,先導可為彈性體材料,例如彈性體聚胺基甲㈣材料 及基於聚石夕氧之聚合物j 笊口物(包含但不限於聚二烷基矽氧烷、 聚矽氧聚脲及聚矽氡聚草醯胺)。 在一些實施例中,光導俜 等係黏彈性先導’如WO 2010/005655 A2 (Sherman等人)中所述。— .^ ^ ^ ^ ^ ^ 舨而g,黏彈性光導包括一 或多種黏彈性材料,守堂 μ « ^ λ*κ ^ .彈性材料在發生變形時展現彈 14及黏I1 生订為。彈性特性 係才曰在去除瞬時負荷之後材料能 162606.doc ,31 . 201241493 夠返回其原始形狀。材料彈性之—種量度稱為張力設定 值,其隨在拉伸材料且隨後在其拉伸之相同條件下使其恢 復(去拉伸)之後剩餘之延伸率而變化。若材料之張力設定 值為〇% ’則在鬆弛後其返回其原始長度,而若張力設定 值為100%,則該材料在鬆弛後之長度為其原始長度之兩 倍。可使用A S T M D 4 i 2量測張力設定值。冑用黏彈性材料 之張力設定值可大於約·、大於約观或大於約5 〇 %或 為約5%至約70%、約1〇%至約7〇%、約3〇%至約7〇%或約 10%至約 60%。 屬於牛頓液體(Newtonian liquid)之黏性材料具有遵守牛 頓定律(Newton’s law)之黏性特性,牛頓定律闡述應力隨 剪切梯度而線性增加。在去除梯度時’液體並不恢復其形 狀。有用黏彈性材料之黏性特性包含材料在合理溫度下之 流動性以便該材料並不分解。 黏彈性光導可具有促進經設計以自該光導汲取光之材料 之至少一部分(例如,光學物件)之充分接觸或潤濕的性 質,以便該黏彈性光導與該光學物件光學耦合。然後可自 黏彈性光導汲取光。黏彈性光導通常較軟,具有柔順性及 撓性。因此,黏彈性光導可具有彈性模數(或儲存模數G,) 以便可獲得充分接觸,且具有黏性模數(或損失模數G”)以 便層並不不合意地流動,且具有關於層之相對阻尼程度之 阻尼係數(G"/G,,tan D)。有用黏彈性材料可具有小於約 300,000 Pa之儲存模數G,(在10拉德/秒(rad/sec)及約⑼^至 約22 C之溫度下量測)。可根據(例如)ASTM D4〇65、 162606.doc -32- 201241493 D4440及D5 279使用動態機械分析來量測材料之黏彈性性 質。 在一些實施例中,黏彈性光導包括如Dalquist準則範圍 (Dalquist criterion line)中所述之PSA層(如 Handbook of Pressure Sensitive Adhesive Technology,第二版,D..Satas 編輯 ’ Van Nostrand Reinhold,New York,1989 中所述)。 黏彈性光導可具有特定剝離力或至少展現在特定範圍内 之剝離力。舉例而言,黏彈性光導之90。剝離力可為約50 g/in至約 3000 g/in、約 300 gAn至約 3000 g/in或約 500 g/in 至約3000 gAn。可使用來自imASS之剝離測試器來量測剝 離力。 在一些實施例中’黏彈性光導包括光學澄清之光導,其 在至少一部分可見光光譜(約400 nm至約700 nm)内具有約 80%至約1〇〇%、約90%至約1〇〇%、約95%至約1〇〇%或約 98%至約1 〇〇%之高透光率。在一些實施例中,黏彈性光導 之霾度值小於約5 %、小於約3 %或小於約1 %。在一些實施 例中,黏彈性光導之霾度值為約〇·〇1%至小於約5%、約 0.01%至小於約3%或約0.01%至小於約。可根據AStm D1 〇〇3使用霾度計來測定透射霾度值。 在一些實施例中’黏彈性光導包括具有高透光率及低霾 度值之光學澄清光導。在至少一部分可見光光譜(約4〇〇 nm至約700 nm)内,高透光率可為約90%至約1〇〇%、約 950/。至約1〇〇%或約99%至約1〇〇%,且霾度值可為約〇 〇1〇/〇 至小於約5%、約0.01%至小於約3%或約Ο.ΟΡΛ至小於約 162606.doc •33- 201241493 1%。黏彈性光導亦可具有約50%至約100%之透光率。 黏彈性光導可具有在約13至約2 6、1 4至約〗7或約i $ 至約1.7範圍内之折射率。選擇用於黏彈性光導之特定折 射率或折射率範圍可取決於照明裝置之總體設計及可使用 該裝置之特定應用。 黏彈性光導材料可包括奈米顆粒,該奈米顆粒可改變黏 彈性光導材料之折射率或影響該黏彈性光導材料之機械性 質。適宜奈米顆粒之尺寸應使得該等顆粒產生期望效應且 不會在光導材料中引入顯著量之散射。 黏彈性光導通常包括至少一種聚合物。黏彈性光導可包 括至少一種PSA。PSA可用於將黏著物黏著在一起並展示 諸如以下性質:(1)強力且持久之黏性,(2)以指壓即可黏 著,(3)具有足夠能力固定於黏著物上,及(4)具有足夠黏 結強度以便可自黏著物乾淨地去除。已發現適合用作壓敏 性黏著劑之材料係經設計並經調配以展示所需黏彈性性質 之聚合物,該黏彈性性質可達成黏性、剝離黏著力及剪切 保持力之期望平衡。獲得各性質之適當平衡並非簡單過 程。對PSA之定量說明可參見上文所引用之DaMquist之參 考文獻。 有用PSA詳細闡述於上文所引用之Sherman等人之參考 文獻中。有用PSA包含源自以下之聚(甲基)丙烯酸酯 PS A .單體A,其包括至少一種單烯系不飽和(曱基)丙烯酸 烷基酯單體,其中該單體之均聚物具有不大於約〇〇c之 Tg;及單體B,其包括至少一種單烯系不飽和自由基可共 162606.doc •34· 201241493 聚強化單體’其中該單體之均聚物之Tg高於單體A(例如, 至少約10°C )。如本文所使用,(甲基)丙烯酸系物係指丙烯 酸系物質及甲基丙烯酸系物質及諸如此類(例如(曱基)丙稀 酸醋)。 在一些實施例中,黏彈性光導包括天然橡膠基PS A及合 成橡膠基PSA、熱塑性彈性體 '增黏熱塑性環氧衍生物、 聚胺基甲酸自旨衍生物、聚胺基甲酸醋丙稀酸醋衍生物、聚 矽氧PSA(例如聚二有機矽氧烷、聚二有機矽氧烷聚草醯胺 及聚矽氧脲嵌段共聚物)。 在一些實施例中’黏彈性光導包括澄清丙烯酸系PSA, 例如’彼等可以轉移膠帶形式獲得者,例如來自3M公司 之VHBTM丙稀酸系膠帶4910F或49 18及3MTM光學透明層壓 黏著劑(8140及8 180系列)。 在一些實施例中,黏彈性光導包括分散於黏著劑基質中 以形成路易斯(Lewis)酸-鹼對之嵌段共聚物。在一些實施 例中’黏彈性光導包括可在零度角下或接近零度角下拉伸 時自基板去除之可拉伸釋放之PSA。 在一些實施例中’光導610可包括其他塗層或在外表面 605上具有塗層之頂部膜。額外塗層或膜可經設計以賦予 光導之表面任一期望性質。塗層之實例包含(例如)硬塗 層、抗反射塗層、防污塗層、無光澤塗層、防霧塗層、耐 劃傷塗層、遮蔽塗層(privacy coating)或其組合.提供增強 耐久性之塗層(例如硬塗層、防霧塗層及耐劃傷塗層)適用 於諸如觸控螢幕感測器、顯示螢幕、圖形應用及諸如此類 162606.doc -35· 201241493 等應用中。遮蔽塗層之實例包含(例如)使觀察變模糊之模 糊或混濁塗層或限制觀察角度之百葉窗膜。在一些情形 下’若提供膜形式之塗層,則期望使用折射率小於光導之 折射率之黏著劑將該膜黏著至光導610之表面605上。另一 選擇為,可將奈米空隙層佈置於光導61〇之頂部表面605與 其他頂部膜之底部之間。 如上所述’可使用光學澄清黏著劑(OCA)將光導610黏 著至可變折射率光汲取層630上。在一些實施例中,〇CA 包括如下PSA:其在至少一部分可見光譜(約4〇〇 nm至約 7〇〇 nm)中具有約80%至約100%、約90%至約1〇〇%、約95% 至約100%或約98%至約100%之高透光率及/或約0 01%至小 於約5❶/。、約〇.〇1%至小於約3%或約〇 〇1%至小於約1%之霜 度值。 在一些實施例中’有用PSA包含彼等於DalqUist準則範 圍中所闡述者(如 Handbook of Pressure Sensitive AdhesiveSprings, Md.) was measured according to the procedure described in ASTM D1003. In some cases, the variable index light extraction layer has high optical clarity. The optical clarity used herein is defined for the light incident perpendicular to the layer and refers to the ratio (TVD/d+T2), where Tl is transmitted from the vertical direction i 6 degrees to 2 degrees, and the η is located at a distance from the vertical. Transmitted light from zero to 〇7 degrees. The sharpness values disclosed herein were measured using a Haze-Gard Plus oximeter from Βγκ_Gardiner. In the case where the variable refractive index light extraction layer has high optical clarity, the definition is not less than about 80%, not less than about 85%, not less than about 9〇%, or not less than about 95〇/^ variable refractive index light. The capture layer can include first and second regions disposed opposite each other in a desired geometric configuration on a lateral plane of the layer such that the layer provides desired optical performance characteristics. The figure hooks show a plan view of a variable index optical pickup layer of an exemplary geometric configuration of the first and second regions. The variable index light extraction layer 400 includes a first region 41〇 (continuous in the layer, as seen in the plan view of the layer) and a second region 420 (which is represented by a dotted line 162606.doc - 27· 201241493 Rectangular closed discrete area). As noted above, the dashed lines used throughout the disclosure indicate the general positions of the first and second regions, however, the dashed lines are not intended to describe any-class boundaries between regions. As described herein, the second region is formed by depositing other materials on the nanovoided polymeric material (usually by some printing means) such that penetration, wicking, etc. of other materials in the nanovoided polymeric material depends on The chemical properties of the materials used to form the material region and properties such as viscosity, wettability, temperature, and the like. The shape of the second region 420 is a rectangle or strip having substantially the same length and width that extends over the width of the layer 400 and is arranged at an increasing frequency from left to right. The refractive index of the second region 42 is at least about 〇.〇3. Figure 4b shows a refractive index profile of the variable index light extraction layer, wherein the X-axis marks a bit 1 below the layer length at some substantially single location % as shown in Figure 。. The refractive index profile shows a change in the refractive index of the layer, which includes a pattern between the first and second refractive indices of 〜 and 〜, respectively. Figures 毵 and 牝 show the characteristic curves of the selected optical properties of % transmittance and % clarity, respectively, and for both properties, there is substantially little or no change below the length of the layer. Figure 5a shows a plan view of another variable index light extraction layer showing an exemplary geometric configuration of the first and second regions. The variable index light-missing lake includes a first-region 51G (continuous in the layer, as seen in the plan view of the layer) and a second region 52G (which is closed by a circle enclosed by a virtual series) region). The pattern also shows that the density of the second region 52〇 can vary in dimension. 162606.doc • 28- 201241493 Figure 5b shows another variable refractive index light absorbing layer t plan view showing an exemplary geometric configuration of the first and second regions. The variable index light extraction layer 530 includes a first region 54〇 (continuously in the layer, as seen in the plan view of the layer) and a: region 55G (which is shaped by a dashed line (here) In the case of a heart-shaped) closed discrete area). The pattern shows that the geometric configuration of the high refractive index region does not have to be varied in a gradient, but it can also be patterned to provide a stepwise image capture of the supercritical light from the adjacent transparent layer. The geometric configuration of the first and second regions of the variable light extraction layer is designed to capture supercritical light propagating in an adjacent transparent layer and deliver the light to a variable refraction in a predetermined pattern (eg, substantially uniform illumination) The rate light is captured in another layer on the opposite side of the layer. The variable index light extraction layer can be disposed on the substrate. The substrate may comprise a support for the manufacture of a layer as described in PCT Application No. US 2011/021053 (Wolk et al.). In some embodiments, the optical film comprises a variable index light extraction layer disposed on a transparent substrate. As used herein, "transparent" means substantially optically clear and substantially low in twist and free of scattering. An exemplary transparent substrate has the desired optical properties in view of the desired properties of the optical film. The transparent substrate may comprise a polymeric substrate such as polyester, poly(meth) acrylate, polycarbonate, and the like. In some embodiments, the transparent substrate comprises a light guide as described below. In some embodiments, the transparent substrate has a degree of twist and provides some light scattering so that light can be scattered in the forward direction toward the reflective scattering element layer 650. 6 shows a schematic diagram of an exemplary illumination device 600 (including a variable refractive index light absorbing layer) in combination with a reflective scattering element illuminated by the device. 161606.doc 29·201241493 Ming device 600 includes adjacent variable The light guide 610 of the light extraction layer 630 is disposed. The light guide is optically coupled to the top surface 625 of the variable index light extraction layer 630 (indicated by the dashed line between the two surfaces). Reflective scattering element 650 (shown in layer form for simplicity) is adjacent to opposing surface 635 of the variable index light extraction layer. The reflective scattering element is optically coupled to the bottom surface of the variable index light extraction layer 635 (indicated by the dashed line between the two surfaces). Light source 601 is optically compliant with light guide 610 so that light emitted by the light source can enter the light guide. In some embodiments, there is no air gap between the bottom surface 615 of the light guide 610 and the top surface 625 of the variable index light extraction layer 630, and the bottom surface 635 of the variable index light extraction layer 63 0 is reflected and scattered. There is no air gap between the elements 650' to cause optical coupling. In some embodiments, the refractive index of the light guide 610 is between the refractive indices of the first and second regions of the variable refractive index light absorbing layer. According to this embodiment, a method of providing light includes: providing a light source, a light guide, and an optical film including a variable index light extraction layer; and optically coupling the light source to the light guide and optically coupling the light guide to the variable index light extraction layer, Thereby the light emitted by the light source is transmitted by total internal reflection within the light guide and selectively extracted from the light guide by the variable index light extraction layer. In some embodiments, the variable light extraction layer 630 can be disposed directly on the surface 645 of the reflective scattering element 650. The light guide 610 can be attached directly to the surface 625 of the variable light and layer by a number of methods. As described below, the light guide may comprise a thermoplastic resin material (eg, an acrylic), and in such cases, the light guide may be formed by casting a molten resin onto the surface 625 of the variable index draw layer, or it may Attached to the 162606.doc • 30· 201241493 variable refractive index capture layer by an insert injection molding process. In some cases the light guide 610 comprises an elastomeric material such that it can be thermally laminated to the surface 625 of the variable index draw layer. In some cases, light guide 610 includes a pressure sensitive adhesive (PSA) such that it can be laminated directly onto surface 625 of the variable index draw layer. In the case where the light guide 61 is not an adhesive, the surface 625 of the variable index light extraction layer can be adhered to the surface 615 of the light guide using an optically clear adhesive. Optical clearing adhesives are set forth below. The light guide 610 may comprise any one, and the light guide may comprise glass, acrylate (including polymethyl methacrylate), polycarbonate, polystyrene, styrene methacrylate copolymer and # compound, cycloolefin polymerization. (eg available from ζέον Chemicals LP, L〇uisville, KY and ZE〇N〇R), fluoropolymers, polyesters (including polyethylene terephthalate (PET), polynaphthalene) Ethylene dicarboxylate (PEN) and copolymers containing PET or PEN or both, polyurethanes, epoxy resins, polyglycols (including polyethylene, polypropylene, polynorbornene are Wang Tongli Polyorganic hydrocarbons in the form of stereoisomers, atactics and syndiotactic stereoisomers and polystyrene produced by metallocene polymerization). In some cases, the lead may be an elastomeric material, such as an elastomeric polyamine (IV) material and a polyoxo-based polymer j mouthpiece (including but not limited to polydialkyloxane, polyoxyl Polyurea and polyfluorene polydecylamine). In some embodiments, the light guide or the like is a viscoelastic leader' as described in WO 2010/005655 A2 (Sherman et al.). — .^ ^ ^ ^ ^ ^ 舨 and g, the viscoelastic light guide comprises one or more viscoelastic materials, 守堂 μ « ^ λ*κ ^ . The elastic material exhibits a spring 14 and a sticky I1 when it is deformed. The elastic properties of the material are 162606.doc, 31 . 201241493 enough to return to its original shape. The measure of material elasticity is called the tension set value which varies with the elongation remaining after the material is stretched and subsequently restored (de-stretched) under the same conditions as it is stretched. If the tension setting of the material is 〇% ', it returns to its original length after relaxation, and if the tension is set to 100%, the length of the material after relaxation is twice its original length. The tension setpoint can be measured using A S T M D 4 i 2 . The tensile setting of the viscoelastic material may be greater than about, greater than about 5% or greater than about 5% to about 70%, from about 5% to about 7%, from about 3% to about 7. 〇% or about 10% to about 60%. The viscous materials belonging to Newtonian liquid have the viscosity characteristics of Newton's law, and Newton's law states that the stress increases linearly with the shear gradient. The liquid does not return to its shape when the gradient is removed. The viscous properties of a useful viscoelastic material include the fluidity of the material at a reasonable temperature so that the material does not decompose. The viscoelastic lightguide can have properties that promote sufficient contact or wetting of at least a portion (e.g., optical article) of the material designed to extract light from the lightguide such that the viscoelastic lightguide is optically coupled to the optical article. The self-adhesive elastic light guide can then be used to extract light. Viscoelastic light guides are generally soft, flexible and flexible. Thus, the viscoelastic lightguide can have an elastic modulus (or storage modulus G) in order to obtain sufficient contact and have a viscous modulus (or loss of modulus G") so that the layer does not undesirably flow, and has The damping coefficient of the relative damping of the layer (G"/G,, tan D). The useful viscoelastic material may have a storage modulus G of less than about 300,000 Pa, (at 10 rad/sec and about (9) ^Measured to a temperature of about 22 C. Dynamic mechanical analysis can be used to measure the viscoelastic properties of materials according to, for example, ASTM D4, 65, 162606.doc -32 - 201241493 D4440 and D5 279. In some embodiments The viscoelastic light guide comprises a PSA layer as described in the Dalquist criterion line (eg, Handbook of Pressure Sensitive Adhesive Technology, Second Edition, edited by D.. Satas, Van Nostrand Reinhold, New York, 1989). The viscoelastic lightguide can have a specific peel force or a peel force that exhibits at least a specific range. For example, a viscoelastic light guide of 90. The peel force can be from about 50 g/in to about 3000 g/in, about 300 gAn to about 3000 g/in or from about 500 g/in to about 3000 gAn. The peel force can be measured using a peel tester from imASS. In some embodiments the 'viscoelastic lightguide comprises an optically clear light guide that is in at least a portion of the visible light spectrum ( From about 80% to about 1%, from about 90% to about 1%, from about 95% to about 1%, or from about 98% to about 1%, from about 400 nm to about 700 nm) High light transmittance. In some embodiments, the viscoelastic lightguide has a twist value of less than about 5%, less than about 3%, or less than about 1%. In some embodiments, the viscosity of the viscoelastic lightguide is about 〇· From 1% to less than about 5%, from about 0.01% to less than about 3%, or from about 0.01% to less than about. The transmission mobility value can be determined using a twistometer according to AStm D1 〇〇 3. In some embodiments, viscous The elastic light guide comprises an optically clear light guide having a high light transmittance and a low twist value. The high light transmittance may be from about 90% to about 1 至少 in at least a portion of the visible light spectrum (about 4 〇〇 nm to about 700 nm). %, about 950/. to about 1% or about 99% to about 1%, and the twist value may be from about 1〇/〇 to less than about 5%, from about 0.01% to less than about 3%. Or about Ο.ΟΡ To less than about 162606.doc • 33- 201241493 1%. Viscoelastic lightguide it may also have a light transmittance of about 50% to about 100% of the. The viscoelastic lightguide can have a refractive index ranging from about 13 to about 26, 14 to about 7, or about i$ to about 1.7. The particular refractive index or range of refractive indices selected for the viscoelastic lightguide can depend on the overall design of the illumination device and the particular application in which the device can be used. The viscoelastic photoconductive material can include nanoparticles that modify the refractive index of the viscoelastic photoconductive material or affect the mechanical properties of the viscoelastic photoconductive material. Suitable nanoparticles are sized such that the particles produce the desired effect and do not introduce significant amounts of scattering into the photoconductive material. A viscoelastic lightguide typically comprises at least one polymer. The viscoelastic lightguide can comprise at least one PSA. PSA can be used to adhere adhesives together and exhibit properties such as: (1) strong and long-lasting viscosity, (2) adhesion by finger pressure, (3) sufficient ability to be fixed to the adhesive, and (4) ) has sufficient bonding strength to be cleanly removed from the adhesive. Materials suitable for use as pressure sensitive adhesives have been found to be designed and formulated to exhibit the desired viscoelastic properties of the polymer which achieves the desired balance of tack, peel adhesion and shear retention. Getting the right balance of properties is not a simple process. A quantitative description of PSA can be found in the reference to DaMquist cited above. Useful PSA is described in detail in the references cited above by Sherman et al. Useful PSAs comprise a poly(meth)acrylate PS A derived from a monomer A comprising at least one monoethylenically unsaturated alkyl (meth) acrylate monomer, wherein the homopolymer of the monomer has Tg of not more than about 〇〇c; and monomer B, which includes at least one monoethylenically unsaturated radical, may be a total of 162606.doc • 34· 201241493 poly-enhanced monomer, wherein the homopolymer of the monomer has a high Tg In monomer A (for example, at least about 10 ° C). As used herein, (meth)acrylic refers to acrylic and methacrylic materials and the like (e.g., (mercapto) acrylic acid vinegar). In some embodiments, the viscoelastic lightguide comprises a natural rubber based PS A and a synthetic rubber based PSA, a thermoplastic elastomer 'tackifying thermoplastic epoxy derivative, a polycarbamic acid self-derived derivative, a polyurethane acetoacetate A vinegar derivative, a polyoxyn PSA (for example, a polydiorganosiloxane, a polydiorganotoxime polyoxazamide, and a polyoxymethylene urea block copolymer). In some embodiments, the 'viscoelastic lightguides include clarified acrylic PSAs, such as 'these can be obtained in the form of transfer tapes, such as VHBTM acrylic tape 4910F or 49 18 and 3MTM optically clear lamination adhesives from 3M Company ( 8140 and 8 180 series). In some embodiments, the viscoelastic lightguide comprises a block copolymer dispersed in an adhesive matrix to form a Lewis acid-base pair. In some embodiments, a viscoelastic lightguide comprises a stretchable release PSA that is removable from the substrate when stretched at or near zero degrees. In some embodiments, the light guide 610 can include other coatings or a top film having a coating on the outer surface 605. Additional coatings or films can be designed to impart any desired properties to the surface of the light guide. Examples of the coating include, for example, a hard coat layer, an anti-reflective coating, an antifouling coating, a matt coating, an anti-fog coating, a scratch resistant coating, a privacy coating, or a combination thereof. Durable coatings (such as hardcoats, anti-fog coatings, and scratch-resistant coatings) are suitable for applications such as touch screen sensors, display screens, graphics applications, and the like, 162606.doc -35· 201241493 . Examples of masking coatings include, for example, a blushing or turbid coating that obscures the viewing or a louver film that limits the viewing angle. In some cases, if a coating in the form of a film is provided, it is desirable to adhere the film to the surface 605 of the light guide 610 using an adhesive having a refractive index less than that of the light guide. Alternatively, a nanovoided layer can be disposed between the top surface 605 of the light guide 61〇 and the bottom of the other top film. The light guide 610 can be adhered to the variable index light extraction layer 630 using an optical clearing adhesive (OCA) as described above. In some embodiments, 〇CA includes a PSA having from about 80% to about 100%, from about 90% to about 1%, in at least a portion of the visible spectrum (about 4 〇〇 nm to about 7 〇〇 nm) A high light transmittance of from about 95% to about 100% or from about 98% to about 100% and/or from about 0.01% to less than about 5 Å. , about 〇. 〇 1% to less than about 3% or from about % % 1% to less than about 1% of the frost value. In some embodiments the 'useful PSA contains ones that are equal to those described in the DalqUist criteria range (eg Handbook of Pressure Sensitive Adhesive).

Technology,第二版,D. Satas 編輯,Van N〇strand Reinhold,New York,1989中所闡述)。PSA可具有特定剝離 力或至少展示在特定範圍内之剝離力。舉例而言,psA之 90剝離力可為約1〇 g/in至約3〇〇〇 g/in、約3〇〇 “〖η至約 3000 g/in或約 500 g/in至約 3〇〇〇 g/in。可使用來自 imass 之剝離測試器來量測剝離力。 0CA可具有在約13至約2 6、h4至約1 7或約1 5至約1 7 範圍内之折射率。選擇用於〇CA之特定折射率或折射率範 圍可取決於包括光導及可變折射率光汲取層之光學膜之總 162606.doc •36- 201241493 體設計。一般而言,OCA之折射率應近似等於或大於光導 之折射率,且介於可變折射率光汲取層630之第一區域及 第二區域之折射率之間。 用作OCA之PSA可包括上文針對黏彈性光導所述之材料 中之任一者。作為PSA之其他實例性OCA包含增黏熱塑性 環氧樹脂(如US 7,005,394 (Ylitalo等人)中所述)、聚胺基 甲酸酯(如US 3,718,712 (Tushaus)中所述)、聚胺基甲酸酯 丙烯酸酯(如US 2006/0216523 (Shusuke)中所述)。在一些 實施例中,黏著劑包括澄清丙烯酸系PSA,例如,彼等可 以轉移膠帶形式獲得者,例如來自3M公司之VHB™丙烯酸 系膠帶4910F 及4918、WO 2004/0202879 中所闡述之 3MTM 光學澄清層壓黏著劑(8 140及8180系列)及3MTM光學澄清層 壓黏著劑(8171 CL及8172 CL)。有用OCA亦闡述於US 201 1/0039099 (Sherman等人)中。在一些實施例中,OCA 可包括具有微結構化黏著劑表面以容許在施加至光導之表 面後進行空氣沖掃之PSA,如(例如)US 2007/0212535 (Sherman等人)中所述。 黏著劑可包括可拉伸釋放之PSA。若可拉伸釋放之PSA 係在零度角或接近零度角下拉伸,則其係可自基板去除之 PSA。在一些實施例中,用於光學膠帶中之黏著劑或拉伸 釋放PSA當在1拉德/秒及-17t下量測時剪切儲存模數小於 約10 MPa,或當在1拉德/秒及-17°C下量測時為約〇.〇3 MPa 至約10 MPa »若期望拆卸、再加工或再循環,則可使用可 拉伸釋放之PSA。 162606.doc •37· 201241493 在一些實施例中,可拉伸釋放之PSA可包括基於聚矽氧 之PSA,如U.S. 6,569,521 Bl(Sheridan等人)或美國臨時申 請案第 61/020423 號(63934US002,Sherman 等人)及第 61/036501 號(64151US002,Determan 等人)中所述。該等基 於聚矽氧之PSA包含MQ增黏樹脂與聚矽氧聚合物之組合 物。舉例而言,可拉伸釋放之PSA可包含MQ增黏樹脂及 選自由以下組成之群之彈性體聚矽氧聚合物:基於脲之聚 矽氧共聚物、基於草醯胺之聚矽氧共聚物、基於醯胺之聚 矽氧共聚物、基於胺基甲酸酯之聚矽氧共聚物及其混合 物。 在一些實施例中,可拉伸釋放之PSA可包括基於丙烯酸 酯之 PSA,如 WO 2010/078346 (Yamanaka 等人)及 WO 2010/077541 (Tran等人)中所述。該等基於丙烯酸酯之PSA 包含丙烯酸酯、無機顆粒及交聯劑之組合物。該等PSA可 為單層或多層。 在一些實施例中,黏著劑層可包括多功能烯系不飽和矽 氧烷聚合物與一或多種乙烯基單體之固化反應產物,如US 7,862,898 (Sherman 等人)及 US 7,892,649 (Sherman等人)中 所述。 在一些實施例中,在將照明裝置600置於反射散射元件 上時,可有益地使用自潤濕黏著劑,如WO 2010/132176 (Sherman等人)及 WO 2009/085662 (Sherman等人)中所述。 實例性PSA包括衍生自包括聚醚鏈段之寡聚物及/或單體 之聚合物,其中35重量%至85重量%之聚合物包括鏈段。 162606.doc •38· 201241493 該等黏著劑闡述於us 2007/0082969 A1(Malik等人)中。另 實例性PSA包括自由基可聚合之基於胺基甲酸醋或基於 脲之寡聚物與自由基可聚合之基於矽氧烷之鏈段共聚物的 反應產物;該等黏著劑闡述於美國臨時申請案 61/410510(Tapio等人)中。 PSA可視需要包含一或多種添加劑’例如奈米顆粒、塑 化劑、鏈轉移劑、起始劑、抗氧化劑、穩定劑、黏度改良 劑及抗靜電劑。 在一些實施例中,將密封層佈置於可變折射率光汲取層 上以將可變折射率光汲取層中之污染物滲透降至最低。舉 例而s,可將密封層佈置於可變折射率光汲取層上以便其 位於可變折射率光汲取層與黏著劑層之間。對於另一實例 而言,可將密封層佈置於可變折射率光汲取層上以便其位 於可變折射率光汲取層與光導之間,且密封層之折射率近 似等於或大於光導之折射率。 適宜密封層包含可基於丙烯酸或丙烯酸酯之壓敏性黏著 劑聚合物及共聚物、苯乙烯丁二烯或苯乙烯異戊二稀型共 聚物熱塑性樹脂及類似聚合物,只要其不含顯著分率之能 夠滲透至奈米空隙第一區域中之低分子量種類即可。其他 聚合物密封層可為熱活化黏著聚合物(包含丙烯酸系物、 丙稀酸系物-乙酸乙烯酯、共聚物、嵌段共聚物、EVA共聚 物、聚醯胺、聚酯、聚乙烯聚合物及共聚物、聚異丁烯、 聚丙烯聚合物及共聚物、聚胺基曱酸酯聚合物及共聚物) 及其他聚合物(包含Surlyn塑膠、乙酸乙烯酯及聚二氟亞乙 162606.doc -39· 201241493 烯聚合物、其合金、共聚物及具有酸鹽基團之衍生物)β 該等材料可使用直接膜層壓進行層壓,藉由熔融塗覆進行 施加或藉由任一適宜塗覆方法自聚合物之水性或溶劑性乳 液或分散液進行塗覆。用作密封層之適宜聚合分散液之兩Technology, Second Edition, edited by D. Satas, as explained in Van N〇strand Reinhold, New York, 1989). The PSA can have a specific peel force or at least exhibit a peel force within a particular range. For example, the 90 peel force of psA can range from about 1 〇g/in to about 3 〇〇〇g/in, about 3 〇〇 "η to about 3000 g/in or about 500 g/in to about 3 〇. 〇〇g/in. Peeling force can be measured using a peel tester from imass. 0CA can have a refractive index in the range of from about 13 to about 26, from h4 to about 17 or from about 15 to about 17. The particular refractive index or range of refractive indices selected for 〇CA may depend on the total design of the optical film comprising the lightguide and the variable index light extraction layer. In general, the refractive index of the OCA should be Approximately equal to or greater than the refractive index of the light guide and between the refractive indices of the first region and the second region of the variable index light extraction layer 630. The PSA used as the OCA may include the above for the viscoelastic lightguide Any of the materials. Another exemplary OCA as PSA comprises a tackified thermoplastic epoxy resin (as described in US 7,005,394 (Ylitalo et al)), a polyurethane (such as in US 3,718,712 (Tushaus)). Said), polyurethane acrylate (as described in US 2006/0216523 (Shusuke). In some embodiments, sticky The coatings include clarified acrylic PSAs, for example, those that can be obtained in the form of transfer tapes, such as the 3MTM optical clear laminating adhesives described in VHBTM Acrylic Tapes 4910F and 4918 from 3M Company, WO 2004/0202879 (8) 140 and 8180 series) and 3MTM optical clear laminating adhesives (8171 CL and 8172 CL). Useful OCA is also described in US 201 1/0039099 (Sherman et al.). In some embodiments, OCA may include microstructures. The surface of the adhesive is allowed to allow PSA to be air purged after application to the surface of the light guide as described, for example, in US 2007/0212535 (Sherman et al.). The adhesive may comprise a stretch release PSA. The stretch release PSA is stretched at or near zero angle, which is the PSA that can be removed from the substrate. In some embodiments, the adhesive or stretch release PSA used in the optical tape is pulled at 1 The shear storage modulus at de/sec and -17t is less than about 10 MPa, or about 〇3 MPa to about 10 MPa when measured at 1 rad/sec and -17 °C. Stretch release is expected if disassembly, rework or recycling is desired PSA. 162606.doc • 37· 201241493 In some embodiments, the stretch release PSA may comprise a polyoxyl-based PSA, such as US 6,569,521 Bl (Sheridan et al.) or US Provisional Application No. 61/020423 (63934 US002, Sherman et al.) and 61/036501 (64151 US002, Determan et al.). The polyoxyl-based PSA comprises a combination of an MQ tackifying resin and a polyoxyalkylene polymer. For example, the stretch release PSA may comprise an MQ tackifying resin and an elastomeric polyoxyloxy polymer selected from the group consisting of urea-based polyoxyalkylene copolymers, grassy amine-based polyoxyloxy copolymers. , a guanamine-based polyoxyloxy copolymer, a urethane-based polyoxyloxy copolymer, and mixtures thereof. In some embodiments, the stretch release PSA may comprise an acrylate based PSA as described in WO 2010/078346 (Yamanaka et al.) and WO 2010/077541 (Tran et al.). The acrylate-based PSAs comprise a combination of acrylates, inorganic particles, and crosslinkers. The PSAs can be single or multiple layers. In some embodiments, the adhesive layer can comprise a cured reaction product of a multifunctional ethylenically unsaturated siloxane polymer with one or more vinyl monomers, such as US 7,862,898 (Sherman et al.) and US 7,892,649 (Sherman et al. Said). In some embodiments, a self-wetting adhesive may be beneficially used when placing the illumination device 600 on a reflective scattering element, as in WO 2010/132176 (Sherman et al.) and WO 2009/085662 (Sherman et al). Said. Exemplary PSAs include polymers derived from oligomers and/or monomers comprising polyether segments, wherein from 35 to 85% by weight of the polymer comprises segments. 162606.doc •38· 201241493 These adhesives are described in us 2007/0082969 A1 (Malik et al.). Further exemplary PSAs include reaction products of free-radically polymerizable ureido-based or urea-based oligomers with free-radically polymerizable oxyalkylene-based segmented copolymers; Case 61/410510 (Tapio et al.). The PSA may optionally contain one or more additives such as nanoparticles, plasticizers, chain transfer agents, initiators, antioxidants, stabilizers, viscosity modifiers, and antistatic agents. In some embodiments, a sealing layer is disposed on the variable index light extraction layer to minimize contaminant penetration in the variable index light extraction layer. For example, a sealing layer can be disposed on the variable index light extraction layer so as to be positioned between the variable index light extraction layer and the adhesive layer. For another example, the sealing layer can be disposed on the variable index light extraction layer such that it is between the variable index light extraction layer and the light guide, and the refractive index of the sealing layer is approximately equal to or greater than the refractive index of the light guide. . Suitable sealing layers comprise acrylic or acrylate based pressure sensitive adhesive polymers and copolymers, styrene butadiene or styrene isoprene copolymer thermoplastic resins and similar polymers, as long as they do not contain significant points The rate can penetrate into the low molecular weight species in the first region of the nanovoid void. Other polymer sealing layers may be heat activated adhesive polymers (including acrylics, acrylics - vinyl acetate, copolymers, block copolymers, EVA copolymers, polyamines, polyesters, polyethylenes). And copolymers, polyisobutylene, polypropylene polymers and copolymers, polyamine phthalate polymers and copolymers) and other polymers (including Surlyn plastics, vinyl acetate and polydifluoroethylene 162606.doc - 39· 201241493 Ether polymer, alloys, copolymers and derivatives thereof with acid salt groups) β These materials can be laminated by direct film lamination, applied by melt coating or by any suitable coating The coating process is applied from an aqueous or solvent based emulsion or dispersion of the polymer. Two suitable polymerization dispersions for use as a sealing layer

個實例係NEOCRYL Α-614 及 NEOPAC R-9699 (可自 DSM 6401 JH Heerlen,荷蘭獲得)。 圖7展示包括可變折射率光汲取層之實例性光學膜之示 意性橫截面圖。光學膜700包括佈置於透明基板74〇上之可 變折射率光汲取層730。第一光學澄清黏著劑層77〇佈置於 可變折射率光汲取層730上且與透明基板相對,且第一釋 放襯墊775佈置於層770上且與層730相對。第二光學澄清 黏著劑層760佈置於透明基板740上且與可變折射率光没取 層730相對,且第二釋放襯墊765佈置於層76〇上且與透明 基板740相對。 釋放襯墊通常具有用於與黏著劑層接觸之低黏著表面。 第一及/或第一釋放襯塾可包括紙(例如牛皮紙)或聚合膜 (例如聚(氣乙烯)、聚酯、聚烯烴)、乙酸纖維素、乙烯乙 酸乙烯酯、聚胺基甲酸酯及諸如此類。釋放襯墊可經釋放 劑(例如含有聚矽氧之材料或含有氟碳化合物之材料)之層 塗覆。釋放襯墊可包括經聚乙烯(其經含有聚矽氧之材料 塗覆)塗覆之紙或聚合膜。實例性釋放襯墊包含以商標「% 3〇」及「Τ-10」購自CP膜公司之襯墊,其具有位於聚對苯 一甲酸乙二酯膜上之聚矽氧釋放塗層。實例性釋放襯墊包 含結構化釋放襯墊。實例性釋放襯墊包含彼等稱為微結構 162606.doc •40- 201241493 化釋放襯塾中之任一者,該等微結構化釋放襯墊用於賦予 黏著劑層之表面微結構。微結構化表面可有助於黏著劑層 與施加黏著劑層之表面之間之空氣排出。 光源與光導光學耦合以便來自光源之至少一些光可進入 光導中。舉例而言,光源可與光導光學耦合以便由該光源 發射之光之大於1 %、大於1 0%、大於20%、大於3〇%、大 於40〇/〇、大於5〇〇/0、大於9〇〇/0或約i 00〇/〇進入該光導中。對 於另一實例而言,光源可與光導光學耦合以便由該光源發 射之光之約1%至約10%、約1%至約2〇%、約至約30%、 約1%至約40。/❶、約1%至約50%、約1%至約1〇〇%、約至 約100°/。、約50%至約1〇〇%或約p/D至約1〇〇%進入該光導 中。光源可發射具有隨機或特定角分佈之光。 光源可包括任一適宜光源。實例性光源包含線性光源, 例如冷陰極螢光燈及點光源(例如發光二極體(led)) ^實 例性光源亦包含有機發光裝置(OLED)、白熾燈泡、螢光 燈泡、鹵素燈、UV燈泡、紅外線源、近紅外線源、雷射 或化學光源。一般而言’由光源發射之光可為可見或不可 見光。可使用至少一個光源。舉例而言,可使用i至約 10,000個光源。光源可包括位於光導邊緣或光導邊緣附近 之一列LED。光源可包括配置於電路中之led以便自LED 發射之光連續或均勻地將光導之期望區域照明。光源可 包括發射不同色彩光之LED以便各種色彩可在光導内混 合0 「LED」係指發射光(無論可見、紫外或紅外)之二極 162606.doc •41 - 201241493 體。其包含以「LED」出售之非相干經封閉或經囊封半導 體裝置,無論習用或超輻射變化形式。若LED發射非可見 光(例如紫外光),且在一些情形下,若其發射可見光,則 其經封裝以包含磷光體(或其可將遠程佈置之磷光體照明) 以將短波長光轉化成較長波長可見光,在一些情形下得到 發射白光之裝置。 「led晶粒」係呈其最基本形式(亦即,呈藉由半導體 處理程序製得之個別組件或晶片形式)的LED。組件或晶片 可包含適於電力應用之電接觸以激勵裝置。組件或晶片之 個別層及其他功能元件通常係以晶圓級形成,且然後可將 成品晶圓切成個別零件以得到大量LED晶粒。 多色彩光源(無論是否用於產生白光)在光總成中可呈多 種形式,其中對光導輪出區或表面之色彩及光亮度均勻性 具有不同效應。在一種方式中,將多個LED晶粒(例如,發 射紅光、綠光及藍光之晶粒)全部彼此緊鄰安裝於引線框 或其他基板上,且然後一起囊封於單一囊封劑材料中以形 成單一封裝,其亦可包含單一透鏡組件。此一源可經控制 以發射個別色彩中之任一者或同時發射所有色彩。在另一 方式中,對於給定再循環空腔而言,經個別地封裝之 LED(其中每個封裝僅具有一個LED晶粒及一種發射色彩) 可簇集在一起,該簇含有發射不同色彩(例如藍色/黃色、 紅色/綠色/藍色、紅色/綠色/藍色/白色或紅色/綠色/藍色/ 青色/黃色)之經封裝LED之組合。亦可使用琥珀色LED。 在再一方式中,該等經個別地封裝之多色彩LED可以一或 162606.doc -42- 201241493 多個線型、陣列或其他圖案定位。 右需要’可使用其他可見光發射體(例如線性冷陰極螢 光燈(CCFL)或熱陰極螢光燈(HCFL))代替離散LED源或連 同其一起作為所揭示背光之照明源。此外,舉例而言,可 使用混合系統’例如,(CCFL/LED),其包含冷白光及暖 白光;CCFL/HCFL,例如彼等發射不同光譜者。光發射體 之組合可廣泛變化,且包含LED與CCFL及複數個光發射 體’例如多個CCFL、多個不同色彩CCFL及LED與CCFL。 光源亦可包含雷射、雷射二極體、電漿光源或有機光發射 二極體(單獨或與其他類型光源(例如,LED)組合)》 舉例而言’在一些應用中,可期望使用不同光源(例如 長圓柱形CCFL)或使用沿其長度發射光且耦合至遠端主動 組件(例如LED晶粒或齒素燈泡)之線性表面發射光導代替 離散光源列,且對其他列光源採取類似方式。該等線性表 面發射光導之實例揭示於美國專利第5,845,038號(Lundin 等人)及第6,367,941號(Lea等人)中。亦已知光纖耦合型雷 射二極體及其他半導體發射體,且在彼等情形下,光纖波 導之輸出末端可視為光源,此係針對其置於所揭示再循環 空腔中或以其他方式位於背光之輸出區後面而言。其他具 有小發射區之被動光學組件(例如透鏡、偏向器、窄光導 及發出自主動組件(例如燈泡或LED晶粒)接收之光之類似 物)亦係如此。此一被動組件之一實例係模製囊封劑或側 發射型封裝LED之透鏡。任一適宜側發射型LED可用於一 或多個光源,例如,Luxe〇nTM LED(可自Lumileds,San 162606.doc -43- 201241493Examples are NEOCRYL Α-614 and NEOPAC R-9699 (available from DSM 6401 JH Heerlen, The Netherlands). Figure 7 shows a schematic cross-sectional view of an exemplary optical film comprising a variable index light extraction layer. Optical film 700 includes a variable index light extraction layer 730 disposed on a transparent substrate 74A. The first optically clear adhesive layer 77 is disposed on the variable index light extraction layer 730 and opposite the transparent substrate, and the first release liner 775 is disposed on the layer 770 and opposite the layer 730. The second optical clarifying adhesive layer 760 is disposed on the transparent substrate 740 opposite to the variable index light absorbing layer 730, and the second release liner 765 is disposed on the layer 76 且 opposite to the transparent substrate 740. Release liners typically have a low adhesion surface for contact with the adhesive layer. The first and/or first release liner may comprise paper (eg, kraft paper) or a polymeric film (eg, poly(ethylene), polyester, polyolefin), cellulose acetate, ethylene vinyl acetate, polyurethane And so on. The release liner can be coated with a layer of a release agent such as a material containing polyoxymethylene or a material containing fluorocarbon. The release liner can comprise a paper or polymeric film coated with polyethylene (coated with a material containing polyoxymethylene). Exemplary release liners include liners available from CP Films under the trademarks "% 3" and "Τ-10" having a polyoxynized release coating on a polyethylene terephthalate film. An exemplary release liner comprises a structured release liner. Exemplary release liners comprise any of these referred to as microstructures 162606.doc • 40-201241493 release liners for imparting surface microstructure to the adhesive layer. The microstructured surface can facilitate air drainage between the adhesive layer and the surface to which the adhesive layer is applied. The light source is optically coupled to the light guide such that at least some of the light from the light source can enter the light guide. For example, the light source can be optically coupled to the light guide such that greater than 1%, greater than 10%, greater than 20%, greater than 3〇%, greater than 40〇/〇, greater than 5〇〇/0, greater than the light emitted by the light source. 9〇〇/0 or approximately i 00〇/〇 enters the light guide. For another example, the light source can be optically coupled to the light guide such that from about 1% to about 10%, from about 1% to about 2%, from about to about 30%, from about 1% to about 40, of the light emitted by the light source. . /❶, about 1% to about 50%, about 1% to about 1%, and about 100°/. About 50% to about 1% or about p/D to about 1% of the light enters the light guide. The light source can emit light having a random or specific angular distribution. The light source can include any suitable light source. Exemplary light sources include linear light sources, such as cold cathode fluorescent lamps and point sources (eg, light emitting diodes). Example light sources also include organic light emitting devices (OLEDs), incandescent light bulbs, fluorescent light bulbs, halogen lamps, UVs. Light bulb, infrared source, near infrared source, laser or chemical source. In general, light emitted by a light source can be visible or invisible. At least one light source can be used. For example, i to about 10,000 light sources can be used. The light source can include a column of LEDs located near the edge of the light guide or near the edge of the light guide. The light source can include a led disposed in the circuit to illuminate a desired area of the light guide continuously or uniformly from the light emitted by the LED. The light source can include LEDs that emit light of different colors so that various colors can be mixed within the light guide. 0 "LED" refers to the second pole of the emitted light (whether visible, ultraviolet or infrared) 162606.doc •41 - 201241493. It includes non-coherent sealed or encapsulated semiconductor devices sold as "LEDs", whether of conventional or super-radiative variations. If the LED emits non-visible light (eg, ultraviolet light), and in some cases, if it emits visible light, it is packaged to contain a phosphor (or it can illuminate a remotely disposed phosphor) to convert short-wavelength light into Long-wavelength visible light, in some cases, a device that emits white light. "LED die" is the LED in its most basic form (i.e., in the form of individual components or wafers made by semiconductor processing procedures). The component or wafer may contain electrical contacts suitable for power applications to energize the device. Individual layers and other functional components of the component or wafer are typically formed at the wafer level, and the finished wafer can then be diced into individual parts to obtain a large number of LED dies. Multi-color sources (whether or not used to produce white light) can take many forms in the light assembly, with different effects on the color and brightness uniformity of the light guide wheel or surface. In one approach, a plurality of LED dies (eg, dies that emit red, green, and blue light) are all mounted in close proximity to one another on a leadframe or other substrate, and then encapsulated together in a single encapsulant material. To form a single package, it can also include a single lens assembly. This source can be controlled to emit any of the individual colors or to simultaneously emit all of the colors. In another approach, for a given recirculating cavity, individually packaged LEDs (where each package has only one LED die and one emission color) can be clustered together, the cluster containing different colors of emission A combination of packaged LEDs (eg blue/yellow, red/green/blue, red/green/blue/white or red/green/blue/cyan/yellow). Amber LEDs are also available. In still another mode, the individually packaged multi-color LEDs can be positioned in one or more lines, arrays, or other patterns. The right need can be used in place of or in addition to other visible light emitters (e.g., linear cold cathode fluorescent lamps (CCFLs) or hot cathode fluorescent lamps (HCFLs)) as the illumination source for the disclosed backlights. Further, for example, a hybrid system can be used, for example, (CCFL/LED), which includes cool white light and warm white light; CCFL/HCFL, such as those that emit different spectra. The combination of light emitters can vary widely and includes LEDs and CCFLs and a plurality of light emitters' such as multiple CCFLs, multiple different color CCFLs, and LEDs and CCFLs. The light source may also include a laser, a laser diode, a plasma source, or an organic light emitting diode (alone or in combination with other types of light sources (eg, LEDs).] For example, in some applications, it may be desirable to use A different source of light (eg, a long cylindrical CCFL) or a linear surface emitting lightguide that emits light along its length and coupled to a remote active component (eg, an LED die or a lenticular bulb) replaces the discrete source column and takes a similar approach to other column sources the way. Examples of such linear surface emitting light guides are disclosed in U.S. Patent Nos. 5,845,038 (Lundin et al.) and 6,367,941 (Lea et al.). Fiber-coupled laser diodes and other semiconductor emitters are also known, and in these cases, the output end of the fiber waveguide can be considered a light source for placement in the disclosed recirculation cavity or otherwise Located behind the output area of the backlight. Other passive optical components with small emitters (such as lenses, deflectors, narrow light guides, and the like that are emitted from active components (such as light bulbs or LED dies)) are also the same. An example of such a passive component is a lens of a molded encapsulant or a side emissive package LED. Any suitable side-emitting LED can be used for one or more light sources, for example, Luxe〇nTM LED (available from Lumileds, San 162606.doc -43- 201241493

Jose,CA獲得)或闡述於(例如)US 7,525,126 (Leatherdale 等 人)及 US 2007/025 7270 (Lu等人)中之LED。 進入光導中之光可經準直以便其以小於50度、小於40 度、小於30度、小於20度或小於10度之角度入射至光導與 另一介質間之界面上,其中入射角係針對光導注入界面之 垂直表面進行量測。存在許多產生準直光之方式,包含但 不限於:1.提供具有高度準直透鏡之LED光源或源;2.提 供佈置於反射楔内侧之LED光源或源,其中該楔具有小於 20度、小於15度或小於10度之内部角;3.提供如下LED光 源或源:其中將該等LED光源佈置於接近經設計以將光準 直至期望注入角度之複合式拋物面收光器之焦點處;4.提 供如下LED光源或源:其中垂直於光導平面進行發射且先 入射至經設計以使注入至光導中之光準直之半拋物面鏡 上;及5.提供經佈置以在光導表面上發射光之LED光源或 源,其中該光導具有表面浮雕結構以僅容許處於超臨界角 度之光進入該光導中。 一般而言,反射散射元件650可包含各種材料、總成及/ 或裝置。實例性反射散射元件闡述於「Illumination Device and Method of Front-Lighting Reflective Scattering Element」(代 理槽案號:67313US002)及「Front-Lit Reflective Display Device and Method of Front-Lighting Reflective Display」’(代理棺案 號:6685 8US002)(與本文在同一曰期提出申請)中。 製備可變折射率光汲取層之方法包括:提供具有第一折 射率之奈米空隙聚合層;及將其他材料印刷於奈米空隙聚 162606.doc • 44- 201241493 合層上以便其他材料實質上滲透至奈米空隙聚合層中,由 此形成包括第一區域(包括奈米空隙聚合層之一部分)及第 二區域(包括奈米空隙聚合層之另一部分及其他材料)之可 變折射率光汲取層;其中第一及第二區域經佈置以便對於 在毗鄰層中以超臨界角度傳輸之光而言,可變折射率光汲 取層基於第一及第二區域之幾何配置以預定方式選擇性汲 取該光。 印刷可包括非衝擊印刷或衝擊印刷及數位或模擬印刷。 舉例而言’可使用柔性版印刷將其他材料(亦稱為其他材 料或另一材料)印刷於奈米空隙聚合層上,其中具有填充 有其他材料之坑之凹版輥將該材料轉移至具有擁有期望形 狀配置之印模的柔性版輥上。使奈米空隙聚合材料層通過 印模並與印模接觸’該印模有效壓印或印刷具有其他材料 之網片’由此將其他材料自柔性版輥之圖案轉移至奈米空 隙層之表面上^其他材料然後滲透至奈米空隙層中,在一 些情形下,其滲透奈米空隙層之整個厚度。在大部分情形 下,藉由固化(例如使用uv輻射進行固化)來將材料硬 化。此製程可在間歇印刷製程或連續親對輥製程(其中使 包括奈米空隙聚合層之連續網片通過柔性版輥,此使得 在奈米空隙層上印刷其他材料之重複圓案或連續圖案)中 實施。 印刷亦可包括其他製程’包含但不限於旋轉凹板印刷、 絲網印刷、喷墨印刷(可使用基於水性、溶劑或固體之墨 水)、凸版印刷、平版印刷、使用熱敏性基板之熱轉移方 162606.doc -45· 201241493 法、熱染料轉移及染料昇華印刷、點矩陣式印刷及使用菊 花輪之印刷。 實例 按接收狀態使用下列材料。 組份 固體% 量(g) A-174二氧化矽,Nalco2327, Ondeo Nalco Chemical 公司 43.40 482.84 脂肪族胺基甲酸酯丙烯酸酯,可自Sartomer公司以 CN 9893形式獲得 100.00 42.67 異戊四醇三丙稀酸S旨,可自Sartomer公司以SR 444形式 獲得 100.00 167.69 異丙醇,可自Sartomer公司以IPA形式獲得 250.03 乙酸乙醋,可自Sigma-Aldrich獲得 … 250.03 光起始劑,可自BASF公司以IRGACURE 184形式獲得 100.00 5.84 光起始劑,可自BASF公司以IRGACURE 819形式獲得 100.00 1.12 實例1 塗層調配物之製備 根據上表中所展示之量,將下列物質添加至1升寬口琥 珀色瓶中:5.70 g CN 9893、22.40 g SR 444、5.84 g IRGACURE 184及 1.12 g IRGACURE 819。將瓶蓋上並振 盪2小時以溶解CN9893 (批料係澄清的)。此溶液稱為樹脂 預混合物。 將下列物質添加至2000 mL聚瓶(poly bottle)中:482.84 g經A-174處理之NALC0 2327及樹脂預混合物。藉由在兩 個瓶之間來回轉移批料來混合兩種組份。最終使批料存在 於2000 mL瓶中。向2000 mL瓶中添加IRGACURE 184及 IRGACURE 819 〇將溶液振盪30分鐘以溶解光起始劑。所 162606.doc -46- 201241493 得批料係半透明之低黏度分散液。 使用乙酸乙酯與丙二醇曱基醚之50/5 0摻合物(可自D〇 Chemical以DOWANOL PM形式獲得)將上述批料稀釋$、約 17.7重量%固體。 奈米空隙聚合層之製備 使用狹槽模具以3.1 m/ min之線速度將上述塗層調配物 塗覆於50 um PET 膜(MELINEX 617,可自〇111>01^獲得) 上。濕塗層厚度約為14 um。在惰性室(<50 ppm 〇2)中’以 相同線速度使用UV輻射在395 nm及850 mJ/cm2之劑量(藉 由可自Cree公司獲得之UV-LED來提供UV輻射)下來將滿塗Jose, CA) or LEDs as described, for example, in US 7,525,126 (Leatherdale et al.) and US 2007/025 7270 (Lu et al.). Light entering the light guide may be collimated such that it is incident on the interface between the light guide and the other medium at an angle of less than 50 degrees, less than 40 degrees, less than 30 degrees, less than 20 degrees, or less than 10 degrees, wherein the angle of incidence is The vertical surface of the light guide injection interface is measured. There are many ways to generate collimated light, including but not limited to: 1. providing an LED source or source with a highly collimating lens; 2. providing an LED source or source disposed inside the reflective wedge, wherein the wedge has less than 20 degrees, An internal angle of less than 15 degrees or less than 10 degrees; 3. providing an LED source or source in which the LED sources are disposed near a focus of a compound parabolic receiver designed to align the light to a desired angle of implantation; 4. Providing an LED source or source wherein the emission is perpendicular to the plane of the light guide and is incident on a semi-parabolic mirror that is designed to collimate light implanted into the light guide; and 5. is arranged to emit light on the surface of the light guide An LED light source or source, wherein the light guide has a surface relief structure to allow only light at a supercritical angle to enter the light guide. In general, reflective scattering element 650 can comprise a variety of materials, assemblies, and/or devices. Exemplary reflective scattering elements are described in "Illumination Device and Method of Front-Lighting Reflective Scattering Element" and "Front-Lit Reflective Display Device and Method of Front-Lighting Reflective Display" (agent file) No.: 6685 8US002) (Apply in the same period as this article). A method of preparing a variable refractive index light extraction layer includes: providing a nanovoided polymeric layer having a first refractive index; and printing other materials on the nanovoid poly 162606.doc • 44-201241493 layer so that other materials are substantially Permeating into the nanovoided polymeric layer, thereby forming variable refractive index light comprising a first region (including a portion of the nanovoided polymeric layer) and a second region (including another portion of the nanovoided polymeric layer and other materials) a layer; wherein the first and second regions are arranged such that, for light transmitted at a supercritical angle in an adjacent layer, the variable index light extraction layer is selectively selected in a predetermined manner based on geometric configurations of the first and second regions Draw the light. Printing can include non-impact printing or impact printing as well as digital or analog printing. For example, other materials (also known as other materials or another material) can be printed on the nanovoided polymeric layer using flexographic printing, in which a gravure roll having pits filled with other materials transfers the material to possession It is desirable to have a shape-configured stamp on the flexographic roll. Passing the nanovoided polymeric material layer through the stamp and in contact with the stamp 'This stamp effectively embosses or prints the web with other materials' thereby transferring other materials from the pattern of the flexographic roll to the surface of the nanovoided layer The other material then penetrates into the nanovoided layer, which in some cases penetrates the entire thickness of the nanovoided layer. In most cases, the material is hardened by curing (e.g., curing using uv radiation). The process can be in a batch printing process or a continuous peer-to-roll process (where a continuous web comprising a nanovoided polymeric layer is passed through a flexographic roll, which results in a repeating or continuous pattern of other materials printed on the nanovoided layer) Implemented in the middle. Printing may also include other processes 'including but not limited to rotary gravure printing, screen printing, inkjet printing (available using aqueous, solvent or solid based inks), letterpress, lithographic, thermal transfer using a heat sensitive substrate 162606 .doc -45· 201241493 Method, thermal dye transfer and dye sublimation printing, dot matrix printing and printing using daisy wheel. Example Use the following materials as received. Component % solids (g) A-174 cerium oxide, Nalco 2327, Ondeo Nalco Chemical Company 43.40 482.84 Aliphatic urethane acrylate, available from Sartomer Corporation as CN 9893 100.00 42.67 Isopentyl alcohol tripropyl Dilute acid S, available from Sartomer as SR 444 in the form of 100.00 167.69 isopropanol, available from Sartomer in the form of IPA 250.03 ethyl acetate, available from Sigma-Aldrich... 250.03 Photoinitiator available from BASF 100.00 5.84 photoinitiator was obtained as IRGACURE 184 as available from BASF Corporation in the form of IRGACURE 819. 100.00 1.12 Example 1 Preparation of Coating Formulations The following materials were added to 1 liter wide mouth amber according to the amounts shown in the above table. In the color bottle: 5.70 g CN 9893, 22.40 g SR 444, 5.84 g IRGACURE 184 and 1.12 g IRGACURE 819. The bottle was capped and shaken for 2 hours to dissolve CN9893 (batch clarified). This solution is called a resin premix. The following materials were added to a 2000 mL poly bottle: 482.84 g A-174 treated NALC0 2327 and resin premix. The two components were mixed by transferring the batch back and forth between the two bottles. The batch was eventually left in a 2000 mL bottle. IRGACURE 184 and IRGACURE 819 were added to a 2000 mL vial and the solution was shaken for 30 minutes to dissolve the photoinitiator. 162606.doc -46- 201241493 The batch is a translucent low viscosity dispersion. The above batch was diluted by $, about 17.7% by weight solids using a 50/5 blend of ethyl acetate and propylene glycol decyl ether (available from D〇 Chemical as DOWANOL PM). Preparation of nanovoided polymeric layer The above coating formulation was applied to a 50 um PET film (MELINEX 617, available from 〇111 > 01^) using a slot die at a line speed of 3.1 m/min. The wet coating thickness is approximately 14 um. In the inert chamber (<50 ppm 〇2), use UV radiation at the same line speed at 395 nm and 850 mJ/cm2 (with UV radiation available from Cree to provide UV radiation) Paint

層部分地在線固化。然後將部分固化之塗層試樣在70°C T 2 於9米烘箱中乾燥,且在氮吹掃氣氛下,最終使用236瓦/cm Fusion Η燈泡(可自Fusion UV Systems公司獲得)進4亍固 化。所得奈米空隙聚合層具有約2.5 um之厚度。透光率為 94.8%,霾度為0.66%且清晰度為99.9% ’如使用BYK Gardner Haze Gard Plus (Columbia, MD)所量測。奈米空隙 層之折射率介於1.20與1.22之間,如使用Metricon棱鏡耦 合器(Metricon公司,Pennington, NJ)所量測。 可變折射率光汲取層之形成 使用間接凹版印刷製程利用UV可固化澄清墨水(UV OP1005 GP Varnish,來自Nazdar,Shawnee,KS)來印刷奈 米空隙聚合層。基於界定梯度線圖案之pdf影像(如藉由光 學建模及光線追蹤所測定),製造具有200 um寬線之梯度 圖案之柔性版工具(Southern Graphics Systems,Brooklyn 162606.doc 47· 201241493The layer is partially cured in-line. The partially cured coating sample was then dried in a 9 meter oven at 70° CT 2 and finally 234 watt/cm Fusion Η bulb (available from Fusion UV Systems) in a nitrogen purge atmosphere. Cured. The resulting nanovoided polymeric layer has a thickness of about 2.5 um. The light transmittance was 94.8%, the twist was 0.66%, and the sharpness was 99.9%' as measured using BYK Gardner Haze Gard Plus (Columbia, MD). The refractive index of the nanovoided layer was between 1.20 and 1.22 as measured using a Metricon prism coupler (Metricon, Pennington, NJ). Formation of Variable Index Light Draw Layer The nanovoided polymeric layer was printed using an UV curable clarified ink (UV OP1005 GP Varnish, from Nazdar, Shawnee, KS) using an indirect gravure process. A flexographic tool with a gradient pattern of 200 um wide lines based on a pdf image defining a gradient line pattern (as determined by optical modeling and ray tracing) (Southern Graphics Systems, Brooklyn 162606.doc 47· 201241493

Park, MN)。確定凹版輥(錐形及9 um3/um2)之速率以得到 約9.65 um之濕塗層。以1〇米/分鐘進行印刷,且在印刷之 後在氮吹掃氣氛下使用236 Watt/cm2 Fusion Η燈泡(可自 FUSlon UV Systems公司獲得)實施高強guv固化。所得印 刷層係包括以下之光學膜:第一區域,其具有第一折射率 且包括奈米空隙聚合材料;及第二區域,其中奈米空隙填 充或部分填充有固化澄清墨水,該等第二區域具有大於第 一區域之第二折射率。將具有第一及第二區域之可變折射 率光汲取層佈置於DuPont 617 PET基板上。使用Βγκ Gardner Haze Gard Plus在兩侧(一側係低密度之第二高折 射率區域且一側係高密度之高折射率區域)上量測位於ΡΕτ 上之可變折射率光汲取層之光學性質。對於低密度側而 言,透光率為94.9%,霾度為2.88%,清晰度為99.2°/。。對 於尚密度側而言,透光率為94.4%,霾度為5.09%,清晰度 為97.6°/。(注意:並不針對菲涅耳反射(Fresnei refiecti〇n)來 校正透光率)。測得固化墨水之折射率約為丨525,如使用 Metricon棱鏡耦合器在平坦固化試樣上所量測(用於量測折 射率之光波長為589 nm)。 前打光反射顯示裝置 獲得包括PSA層(VHB丙烯酸系膠帶4918,來自3M公司) 之光導’其具有90 mm X 120 mm之面積及2 mm之厚度。 在光導之一個主表面上佈置50 um PET膜之透明保護層。 將在上面佈置可變折射率光汲取層之PET基板直接黏著至 光導之相對主表面上。使可變光汲取層之暴露面與壓敏性 162606.doc •48- 201241493 黏者劑(SOKEN 2147,可自 s〇ken Chemical and Engineering 有限公司’日本獲得)結合以用作密封層。使用自潤濕黏 著劑將此總成(保護層面朝上)黏著至電泳電子書(Kindle,Park, MN). The rate of the gravure roll (taper and 9 um3/um2) was determined to give a wet coating of about 9.65 um. Printing was carried out at 1 nm/min, and high-strength gum curing was carried out using a 236 Watt/cm2 Fusion Η bulb (available from FUSlon UV Systems) under nitrogen purge atmosphere after printing. The resulting printed layer comprises an optical film having a first index having a first index of refraction and comprising a nanovoided polymeric material; and a second region wherein the nanovoid is filled or partially filled with a cured clear ink, the second The region has a second index of refraction that is greater than the first region. A variable refractive index light extraction layer having first and second regions was disposed on a DuPont 617 PET substrate. Measuring the optical properties of the variable index optical pickup layer on ΡΕτ on both sides (the second high refractive index region with a low density on one side and the high refractive index region on the other side) using Βγκ Gardner Haze Gard Plus nature. For the low density side, the light transmittance was 94.9%, the twist was 2.88%, and the sharpness was 99.2 °/. . For the still density side, the light transmittance was 94.4%, the twist was 5.09%, and the sharpness was 97.6 °/. (Note: The light transmittance is not corrected for Fresnei refiecti〇n). The cured ink was measured to have a refractive index of about 525, as measured on a flat cured sample using a Metricon prism coupler (the wavelength of the light used to measure the refractive index was 589 nm). Front light-reflecting display device A light guide comprising a PSA layer (VHB acrylic tape 4918 from 3M Company) having an area of 90 mm X 120 mm and a thickness of 2 mm was obtained. A transparent protective layer of 50 um PET film was placed on one of the major surfaces of the light guide. The PET substrate on which the variable index light extraction layer is disposed is directly adhered to the opposite major surfaces of the light guide. The exposed surface of the variable light extraction layer was combined with pressure sensitivity (SOKEN 2147, available from s〇ken Chemical and Engineering Co., Ltd., Japan) for use as a sealing layer. Use a self-wetting adhesive to attach the assembly (protection side up) to the electrophoresis e-book (Kindle,

Amazon)之觀察面板上(參見pCT US2010/031689及WO 2009/085662)。 獲得光引擎總成且其係由2〇個安裝於聚光圈中之邊射型 白色LED(NSSW230T,來自Nichia)構成。包括多層聚合鏡 膜之兩個反射器(Vikiiiti™ ESR,來自3M公司)亦包含於聚 光圈中以形成光學楔從而將自led發射之光準直。在聚光 圈中建立約10。之微小角度以提供光學準直。來自led引 擎之光經設計以發射至空氣間隙區域中,以便以超臨界角 度將光沿顯示器之垂直軸之左側注入至光導之邊緣中。此 產生如下前打光反射顯示裝置:其中在透過具有可變折射 率光及取層之光導總成觀看時,前燈總成並不負面影響顯 示器上之影像(亦即具有較少影像失真,甚至沒有失真)β 開啟照明裝置之LED,從而產生反射顯示裝置(亦即’ 反射顯示面板,如圖9 a中可看到)之均勻照明。 對比實例1 沒有可變折射率光汲取層之前打光反射顯示裝置 如上文針對實例丨所述來組裝前打光反射顯示裝置,只 是不包含位於PET支撐件上之可變折射率光汲取層。使用 自潤濕黏著劑將PSA光導黏著至電子書之觀察面板上。使 用自潤濕黏著劑以在此後自電子書去除光導時促進總成之 再加工。圖9b展示前打光裝置之影像且立即顯而易見,顯 I62606.doc • 49- 201241493 示器上之亮度均勻性較差。 實例2 塗層調配物之製備 根據上表中所展示之量,將下列物質添加至1升寬口琥 珀色瓶中:5.70 g CN 9893、22.40 g SR 444、5.84 g IRGACURE 184及 1.12 g IRGACURE 819。將瓶蓋上並振 盪2小時以溶解CN9893 (批料係澄清的p此溶液稱為樹脂 預混合物。 將下列物質添加至2000 mL聚瓶中:482.84 g經A-174 處理之NALCO 2327及樹脂預混合物。藉由在兩個瓶之間 來回轉移批料來混合兩種組份。最終使批料存在於2000 mL瓶中。向 2000 mL瓶中添加IRGACURE 184及 IRGACURE 819。將溶液振盪30分鐘以溶解光起始劑。所得批料係半 透明之低黏度分散液。 使用乙酸乙酯與丙二醇甲基醚之50/50摻合物(可自Dow Chemical以DOWANOL PM形式獲得)將上述批料稀釋至約 17.7重量°/〇固體。 奈米空隙聚合層之製備 使用狹槽模具以3.1 m/ min之線速度將上述塗層調配物 塗覆於 50 um PET膜(MELINEX 617,可自 DuPont獲得) 上。濕塗層厚度約為8.1 um。在惰性室(<50 ppm 02)中, 以相同線速度使用UV輻射在395 nm及850 mJ/cm2之劑量 (藉由可自Cree公司獲得之UV-LED來提供UV輻射)下來將 濕塗層部分地在線固化。然後將部分固化之塗層試樣在 162606.doc •50· 201241493 70°C下於9米烘箱中乾燥,且在氮吹掃氣氛下,最終使用 236 瓦/cm2 Fusion Η燈泡(可自 Fusion UV Systems公司獲得) 進行固化。所得奈米空隙聚合層具有1,3 um之厚度。透光 率為96.4°/。,霾度為1.33%且清晰度為99.7%,如使用BYK gardner Haze Gard Plus (Columbia, MD)所量測。奈米空隙 層之折射率介於1.20與1.22之間,如在589 nm下使用 Metricon稜鏡耦合器(Metricon公司,Pennington,NJ)所量 測。 可變折射率光汲取層之形成 使用間接凹版印刷製程利用UV可固化澄清墨水(uv OP1005 GP Varnish’ 來自Nazdar,Shawnee,KS)來印刷奈 米空隙聚合層。基於界定藉由光學光線追蹤建模測得之點 圖案之pdf景{像’製造具有隨機丨〇〇 um梯度點圖案(在該圖 案之左邊緣處’在X方向上(自左至右)具有第二區域之密度 梯度且在y方向上具有不同密度,如圖中所展示)之柔性 版工具(Southern Graphics Systems)。確定凹版輥(錐形及9 umVum2)之速率以得到約9.65 um之濕塗層。以1〇米/分鐘 進行印刷,且在印刷之後在氮吹掃氣氛下使用236 Watt/cm2 Fusion Η燈泡(可自Fusi〇n uv 3州刪公司獲得) 實施高強度UV固化。所得印刷層係包括以下之光學膜: 第-區域,其具有第-折射率且包括奈米空隙聚合材料; 及第-區域’丨中奈米空隙填充或部分填充有固化澄清墨 水’該等第二區域具有大於第一區域之第二折射率。將具 有第-及第二區域之可變折射率光汲取層佈置於Dup〇nt 162606.doc 201241493 617 PET基板上且展示於圖8中。使用Βγκ Gardner以找 Gard Plus在兩側(一側係低密度之第二高折射率區域且一 側係尚密度之高折射率區域)上量測位於pET上之可變折射 率光汲取層之光學性質。對於低密度側而言,透光率為 96.6%,霾度為3.56%,清晰度為95.6%。對於高密度側而 5 ’透光率為95.8°/。,霾度為6.82%,清晰度為89.9%(注 意·並不針對菲埋耳反射來校正透光率)。測得固化墨水 之折射率約為1.525,如使用Metricon棱鏡耦合器在平坦固 化試樣上所量測(用於量測折射率之光波長為589 nm)。 前打光反射顯示裝置 獲得包括PSA層(VHB丙稀酸系膠帶4918,來自3M公司) 之光導,其具有90 mmxl20 mm之面積及2 mm之厚度。在 光導之一個主表面上佈置50 um PET膜之透明保護層❶將 在上面佈置可變折射率光汲取層之PET基板直接黏著至光 導之相對主表面上。使可變光汲取層之暴露面與壓敏性黏 著劑(SOKEN 2147’ 可自 Soken Chemical and Engineering 有 限公司’日本獲得)結合以用作密封層。使用自潤濕黏著 劑將此總成(保護層面朝上)黏著至電泳電子書(Kindle,On the observation panel of Amazon) (see pCT US2010/031689 and WO 2009/085662). The light engine assembly was obtained and consisted of 2 edge-emitting white LEDs (NSSW230T from Nichia) mounted in a bezel. Two reflectors comprising a multilayer polymeric mirror (VikiiitiTM ESR from 3M Company) are also included in the aperture to form an optical wedge to collimate the light emitted from the LED. Establish approximately 10 in the spot. A slight angle to provide optical alignment. Light from the LED engine is designed to be emitted into the air gap region to inject light along the left side of the vertical axis of the display into the edge of the light guide at a supercritical angle. This produces a front light-reflecting display device in which the headlight assembly does not adversely affect the image on the display (ie, has less image distortion, when viewed through a light guide assembly having variable refractive index light and layering) Even without distortion) β turns on the LEDs of the illumination device, resulting in uniform illumination of the reflective display device (i.e., the 'reflective display panel, as seen in Figure 9a). Comparative Example 1 Light-reflecting display device without variable refractive index light-harvesting layer The front light-reflecting display device was assembled as described above for the example, except that the variable-refractive-index light-harvesting layer on the PET support was not included. The PSA light guide is adhered to the viewing panel of the e-book using a self-wetting adhesive. A self-wetting adhesive is used to facilitate reprocessing of the assembly when the light guide is removed from the e-book thereafter. Figure 9b shows the image of the front lighter and is immediately apparent, showing a poor brightness uniformity on the I62606.doc • 49- 201241493. Example 2 Preparation of Coating Formulations The following materials were added to a 1 liter wide-mouth amber bottle according to the amounts shown in the above table: 5.70 g CN 9893, 22.40 g SR 444, 5.84 g IRGACURE 184 and 1.12 g IRGACURE 819 . The bottle was capped and shaken for 2 hours to dissolve CN9893 (batch is clarified p This solution is called resin premix. The following materials were added to 2000 mL poly bottles: 482.84 g A-174 treated NALCO 2327 and resin pre- Mixture. Mix the two components by transferring the batch back and forth between the two bottles. Finally, the batch is in a 2000 mL bottle. Add IRGACURE 184 and IRGACURE 819 to the 2000 mL bottle. Shake the solution for 30 minutes. The photoinitiator was dissolved. The resulting batch was a translucent, low viscosity dispersion. The above batch was diluted using a 50/50 blend of ethyl acetate and propylene glycol methyl ether (available from Dow Chemical as DOWANOL PM). To about 17.7 wt/〇 solid. Preparation of nanovoided polymeric layer The above coating formulation was applied to a 50 um PET film using a slot die at a line speed of 3.1 m/min (MELINEX 617, available from DuPont) The wet coating thickness is approximately 8.1 um. In the inert chamber (<50 ppm 02), UV radiation is used at the same line speed at 395 nm and 850 mJ/cm2 (by UV available from Cree) -LED to provide UV radiation) down the wet coating section Solidified on-line. The partially cured coating sample was then dried in a 9-meter oven at 162606.doc •50· 201241493 70°C, and the 236 W/cm2 Fusion Η bulb was finally used in a nitrogen purge atmosphere. (Available from Fusion UV Systems) Curing. The resulting nanovoided polymeric layer has a thickness of 1,3 um. The light transmittance is 96.4 ° /, the twist is 1.33% and the sharpness is 99.7%, such as using BYK Measured by the Gardner Haze Gard Plus (Columbia, MD). The refractive index of the nanovoided layer is between 1.20 and 1.22, as measured at 589 nm using a Metricon(R) coupler (Metricon, Pennington, NJ). The formation of a variable refractive index light extraction layer is performed using an indirect gravure printing process using a UV curable clarified ink (uv OP1005 GP Varnish 'from Nazdar, Shawnee, KS) to print a nanovoided polymeric layer based on definition by optical ray tracing. The pdf scene of the embossed dot pattern {like' is manufactured with a random 丨〇〇um gradient dot pattern (at the left edge of the pattern 'in the X direction (from left to right) having a density gradient of the second region and In the y direction Different densities, shown in the figures) of the flexographic tool (Southern Graphics Systems). The rate of the gravure roll (taper and 9 um Vum2) was determined to give a wet coating of about 9.65 um. Printing was carried out at 1 nm/min, and high-intensity UV curing was carried out using a 236 Watt/cm2 Fusion Η bulb (available from Fusi〇n uv 3) after printing in a nitrogen purge atmosphere. The resulting printed layer comprises the following optical film: a first region having a first refractive index and comprising a nanovoided polymeric material; and a first region 'in the middle of the nanoparticle void filled or partially filled with a cured clear ink' The two regions have a second index of refraction that is greater than the first region. The variable index optical pickup layer having the first and second regions is disposed on a Dup〇nt 162606.doc 201241493 617 PET substrate and is shown in FIG. Using Βγκ Gardner to find Gard Plus on the two sides (one side of the low-density second high-refractive-index area and one side of the high-refractive-index area) is measured on the pET. Optical properties. For the low density side, the light transmittance was 96.6%, the twist was 3.56%, and the sharpness was 95.6%. For the high density side, the 5' transmittance is 95.8°/. The twist is 6.82% and the sharpness is 89.9% (note that the light transmittance is not corrected for the Philippine buried ear reflection). The cured ink was measured to have a refractive index of about 1.525 as measured on a flat cured sample using a Metricon prism coupler (the wavelength of the light used to measure the refractive index was 589 nm). Front light-reflecting display device A light guide comprising a PSA layer (VHB acrylic tape 4918 from 3M Company) having an area of 90 mm x 20 mm and a thickness of 2 mm was obtained. A transparent protective layer of 50 um PET film is disposed on one major surface of the light guide, and the PET substrate on which the variable index light extraction layer is disposed is directly adhered to the opposite major surfaces of the light guide. The exposed face of the variable light extraction layer was combined with a pressure sensitive adhesive (SOKEN 2147' available from Soken Chemical and Engineering Co., Ltd. Japan) to serve as a sealing layer. Use a self-wetting adhesive to attach this assembly (protection layer up) to the electrophoresis e-book (Kindle,

Amazon)之觀察面板上;參見 WO 2010/132176 (Sherman 等 人)及WO 2009/085662 (Sherman等人)。製造光引擎總成且 其係由3個安裝於聚光圈中之邊射型白色led(NSSW230T, 來自Nichia)構成。包括多層聚合鏡膜之兩個反射器 (Vikuiti™ ESR,來自3M公司)亦包含於聚光圈中以形成光 學楔從而將自LED發射之光準直。在聚光圈中建立約1〇。 I62606.doc •52- 201241493 之微小角度以提供光學準直。來自LED引擎之光經設計以 發射至空氣間隙區域中,以便以超臨界角度將光沿顯示器 之水平頂部邊緣注人至光導之邊緣中。此產生如下前打光 反射顯示裝置.其中在關斷前燈下透過具有可變折射率光 汲取層之光導總成觀看時,前燈總成並不負面影響顯示器 上之影像(亦即具有較少影像失真,甚至沒有失真),如圖 11 a中可看到。 開啟照明裝置之LED,從而產生反射顯示裝置(亦即, 反射顯示面板,如圖11 b中可看到)之均勻照明。在照明裝 置上使用 Prometric 照相機(可自 Radiant imaging,Redm〇nd, WA獲得)量測亮度均勻性。圖12a展示前打光裝置之影像 及軸向亮度隨位置而變化之圖線。顯示器均勻性大於 75〇/〇,如使用式((max _min)/maxxi〇〇o/〇)所量測。 對比實例2 沒有可變折射率光沒取層之前打光反射顯示裝置 如上文針對實例2所述來組裝前打光反射顯示裝置,只 是不包含位於PET支撐件上之可變折射率光汲取層。使用 自潤濕黏著劑將PSA光導黏著至電子書之觀察面板上。(使 用自潤濕黏著劑以在此後自電子書去除光導時促進總成之 再加工)。在照明裝置上使用Prometric照相機(可自Radiant Imaging,Redmond, WA獲得)量測亮度均勻性。圖l2b展示 前打光裝置之影像及轴向免度隨位置而變化之圖綠^。立即 顯而易見,顯示器均勻性較差。亮度均勻性小於5%,如 使用式((max -min)/maxx100〇/〇)所量測。 162606.doc -53- 201241493 實例3 塗層調配物之製備 根據上表中所展示之量,將下列物質添加至1升寬口琥 珀色瓶中:5.70 g CN 9893、22.40 g SR 444、5.84 g IRGACURE 184及 1.12 g IRGACURE 819。將瓶蓋上並振 盪2小時以溶解CN9893 (批料係澄清的)。此溶液稱為樹脂 預混合物。 將下列物質添加至2000 mL聚瓶中:482.84 g經A-174 處理之NALCO 2327及樹脂預混合物。藉由在兩個瓶之間來 回轉移批料來混合兩種組份。最終使批料存在於2000 mL 瓶中。向 2000 mL瓶中添加 IRGACURE 184及 IRGACURE 819。將溶液振盪30分鐘以溶解光起始劑。所得批料係半 透明之低黏度分散液。 使用乙酸乙酯與丙二醇曱基醚之50/50摻合物(可自Dow Chemical以DOWANOL PM形式獲得)將上述批料稀釋至約 17.7重量%固體。 奈米空隙聚合層之製備 使用狹槽模具以3.1 m/ min之線速度將上述塗層調配物 塗覆於50 um PET膜(MELINEX 617,可自 DuPont獲得) 上。濕塗層厚度約為14 um。在惰性室(<50 ppm 〇2)中,以 相同線速度使用UV輻射在395 nm及850 mJ/cm2之劑量(藉 由可自Cree公司獲得之UV-LED來提供UV輻射)下來將濕塗 層部分地在線固化。然後將部分固化之塗層試樣在70°C下 於9米烘箱中乾燥,且在氮吹掃氣氛下,最終使用236瓦/cm2 162606.doc -54- 201241493On the viewing panel of Amazon; see WO 2010/132176 (Sherman et al.) and WO 2009/085662 (Sherman et al.). The light engine assembly was fabricated and consisted of three edge-emitting white LEDs (NSSW230T from Nichia) mounted in a bezel. Two reflectors including a multilayer polymeric mirror (VikuitiTM ESR from 3M) are also included in the bezel to form an optical wedge to collimate the light emitted from the LED. Establish approximately 1 inch in the spotlight. I62606.doc • 52- 201241493 is a small angle to provide optical alignment. Light from the LED engine is designed to be launched into the air gap region to inject light along the horizontal top edge of the display into the edge of the light guide at a supercritical angle. This produces a front light-reflecting display device in which the headlight assembly does not adversely affect the image on the display when viewed under the headlights through the light guide assembly having the variable index light extraction layer (ie, having a comparison) Less image distortion, even no distortion), as seen in Figure 11a. The LEDs of the illumination device are turned on to produce uniform illumination of the reflective display device (i.e., the reflective display panel, as seen in Figure 11b). Luminance uniformity was measured on a lighting fixture using a Prometric camera (available from Radiant imaging, Redm〇nd, WA). Figure 12a shows a plot of the image and axial brightness of the front lighting device as a function of position. The display uniformity is greater than 75 〇 / 〇, as measured using the formula ((max _min) / maxxi〇〇o / 〇). Comparative Example 2 The light-reflecting display device was assembled before the variable refractive index light-free layer was assembled as described above for Example 2 except that the variable refractive index light-collecting layer on the PET support was not included. . The PSA light guide is adhered to the viewing panel of the e-book using a self-wetting adhesive. (Using a self-wetting adhesive to facilitate reprocessing of the assembly when the light guide is removed from the e-book thereafter). Luminance uniformity was measured on a lighting fixture using a Prometric camera (available from Radiant Imaging, Redmond, WA). Figure 12b shows the image of the front lighting device and the axial degree of change with position. Immediately, the display is less uniform. The brightness uniformity is less than 5%, as measured by the formula ((max - min) / max x 100 〇 / 〇). 162606.doc -53- 201241493 Example 3 Preparation of Coating Formulations The following materials were added to a 1 liter wide-mouth amber bottle according to the amounts shown in the above table: 5.70 g CN 9893, 22.40 g SR 444, 5.84 g IRGACURE 184 and 1.12 g IRGACURE 819. The bottle was capped and shaken for 2 hours to dissolve CN9893 (batch clarified). This solution is called a resin premix. The following materials were added to a 2000 mL poly bottle: 482.84 g A-174 treated NALCO 2327 and resin premix. The two components were mixed by transferring the batch between the two bottles. The batch is finally stored in a 2000 mL bottle. Add IRGACURE 184 and IRGACURE 819 to the 2000 mL bottle. The solution was shaken for 30 minutes to dissolve the photoinitiator. The resulting batch was a translucent, low viscosity dispersion. The above batch was diluted to about 17.7 wt% solids using a 50/50 blend of ethyl acetate and propylene glycol decyl ether (available from Dow Chemical as DOWANOL PM). Preparation of nanovoided polymeric layer The above coating formulation was applied to a 50 um PET film (MELINEX 617, available from DuPont) using a slot die at a line speed of 3.1 m/min. The wet coating thickness is approximately 14 um. In an inert chamber (<50 ppm 〇2), UV radiation is used at the same line speed at 395 nm and 850 mJ/cm2 (with UV radiation available from Cree to provide UV radiation). The coating partially cures in-line. The partially cured coating sample was then dried in a 9 m oven at 70 ° C and finally used in a nitrogen purge atmosphere at 236 W/cm 2 162606.doc -54 - 201241493

Fusion H燈泡(可自Fusion UV Systems公司獲得)進行固 化。所得奈米空隙聚合層具有2.3 um之厚度。透光率為 95.8%,霾度為2.49%且清晰度為99.9%,如使用BYK gardner Haze Gard Plus (Columbia, MD)所量測。奈米空隙 層之折射率介於1.20與1.22之間,如在589 nm下使用 Metricon稜鏡耦合器(Metricon公司,Pennington,NJ)所量 測。 可變折射率光汲取層之形成The Fusion H bulb (available from Fusion UV Systems) is cured. The resulting nanovoided polymeric layer had a thickness of 2.3 um. The light transmittance was 95.8%, the twist was 2.49%, and the sharpness was 99.9%, as measured using BYK gardner Haze Gard Plus (Columbia, MD). The refractive index of the nanovoided layer is between 1.20 and 1.22, as measured at 589 nm using a Metricon(R) coupler (Metricon, Pennington, NJ). Formation of variable refractive index light extraction layer

使用間接凹版印刷製程利用UV可固化澄清墨水(UV OP1005 GP Varnish’ 來自Nazdar,Shawnee, KS)來印刷奈 米空隙聚合層》基於界定藉由光學光線追蹤建模測得之點 圖案之pdf影像’製造具有隨機1 〇〇 um梯度點圖案之柔性 版工具(Southern Graphics Systems)。喊定凹版報(錐形 及9 um /um )之速率以得到約9.65 um之濕塗層。以1〇米/ 分鐘進行印刷,且在印刷之後在氮吹掃氣氛下使用236 Watt/cm2 Fusion Η燈泡(可自 Fusi()n uv 8叫_公司獲得) 實施尚強度UV固化。所得印刷層係包括以下之光學膜: 第區域,其具有第一折射率且包括奈米空隋:聚合材料; 及第-區域’纟中奈米空隙填充或部分填充有固化澄清墨 水,該等第二區域具有大於第一區域之第二折射率。將具 有第及第一區域之可變折射率光没取層佈置於〇up〇nt ET基板上。使用 BYK Gardner Haze Gard pius在兩側 (側係低密度之第二高折射率區域且一側係高密度之高 折射率區域)上量測位於PET上之可變折射率光汲取層之光 162606.doc -55· 201241493 學性質。對於低密度側而言,透光率為96 2。/❶,霾度為 5_64°/。,清晰度為97.5%。對於高密度側而言,透光率為 95.8%,霾度為9.1 8%,清晰度為94.4°/。(注意:並不針對菲 涅耳反射來校正透光率)。測得固化墨水之折射率約為 1.525,如使用Metricon稜鏡耦合器在平坦固化試樣上所量 測(用於量測折射率之光波長為589 nm) » 實例4 使用來自實例1-3之每一光學膜(位於pet上之可變折射 率光汲取層)組裝兩個不同光學物件以用於評估光學性質 之目的》 具有密封層之可變折射率光汲取層之光學性質: 藉由將密封層層壓於可變折射率光汲取層之暴露表面 (與PET基板相對之側面)上來形成第一光學物件。密封層 係壓敏性黏著劑(Soken 2147,可自Soken Chemical and Engineering有限公司,曰本獲得)。在Soken PSA密封層之 相對侧上層壓50微米PET膜。對於使用來自實例1-3之可變 折射率光汲取層之每一光學物件而言,使用BYK Gardner Haze Gard Plus在可變折射率光汲取層之兩側(一側係低密 度之第二高折射率區域且一側係高密度之高折射率區域) 上來量測透光率、霾度及清晰度。量測結果分別展示於表 1及表2中。 162606.doc -56- 201241493 表ι·具有高密度之第二區域之區之光學性質 實例 圊案 透光率% 霾度 (%) 清晰度 ί%、 1 1-D線 y-梯度 91.0 1.84 98.1 2 2-D點 x,y梯度 92.0 3.35 92.1 3 2-D點 y·梯度 91.9 6.96 95.7 表2.具有低密度之第二區域之區之光學性質 實例 圖案 透光率% 霾度 (%) 清晰度 (%) 1 1-D線 y-梯度 91.0 1.99 99.2 2 2-D點 x,y梯度 92.3 1.87 95.6 3 2-D點 y-梯度 91.7 4.38 98.2 具有可變折射率光汲取層之光導總成之光學性質: 藉由將黏彈性光導層壓於可變折射率光汲取層之暴露表 面(與PET基板相對之側面)上來形成第二光學物件。黏彈 性光導係厚度為2 mm之壓敏性黏著劑(psa) (VHB丙烯酸 系膠帶4918’來自3M公司)》在光導之相對主表面上佈置 50 um PET膜之透明保護層。對於使用來自實例1-3之可變 折射率光沒取層之每一光學物件而言,使用BYK Gardner Haze Gard Plus在可變折射率光汲取層之兩側(一側係低密 度之第二高折射率區域且一側係高密度之高折射率區域) 上來量測透光率、霾度及清晰度。量測結果分別展示於表 3及表4中。表5展示用於光學構造中之pet膜(DuPont 617) 及具有層壓至兩個表面之PET之PSA光導的參考量測。 I62606.doc -57- 201241493 表3.具有高密度之第二區域之區之光學性質 實例 圖案 透光率% 霾度 (%) 清晰度 (ΟΑΛ 1 1_D線 y-梯度 90.3 1.91 ---四 98.5 2 2-D點 x,y梯度 91.0 3.76 91.6 3 2-D點 y·梯度 90.6 6.80 ------ 95.8 表4.具有低密度之第二區域之區之光學性質 實例 圖案 透光率% 霾度 清晰度 (%) (%\ 1 1-D線 y-梯度 90.3 1.61 99.0 2 2-D點 x,y梯度 90.3 2.37 96.8 3 2-D點 y-梯度 90.1 4.16 98.2 表5.參考量測: 實例 圖案 透光率% 霾度 (%) 清晰度 (%) 參考1 PET膜 92.8 0.67 100 參考2 在兩側上具有PET膜 之PSA光導 90.9 0.59 — 99.4 本文中引用之所有參考文獻及出版物之整體内容皆以引 用方式明確地併入本揭示内容中,除非達到與本揭示内容 直接相矛盾之程度。儘管本文已闡釋及闡述具體實施例, 但彼等熟習此項技術者應瞭解,可使用許多種替代及/或 等價之實施方式來替代所顯示及闡述之具體實施例,此並 不背離本揭示内容之範圍。本申請案意欲涵蓋本文所論述 具體實施例之任一改變或變化。因此,意欲使本揭示内容 162606.doc -58- 201241493 僅由申請專利範圍及其等價内容來限定。 【圖式簡單說明】 圖la展示實例性可變折射率光汲取層之示意性橫截面。 圖lb-lc展示佈置於透明毗鄰層上之實例性可變折射率 . 光汲取層之示意性橫截面。 圖2繪示折射率可在層之橫向平面上有所變化之可變折 射率光沒取層。 圖3係可變折射率光汲取層之第一區域之示意性橫截面 圖。 圖4a係展示第一及第二區域之實例性幾何配置之可變折 射率光汲取層之平面圖。 圖4b繪示圖4a中所展示之可變折射率光汲取層之折射率 特徵曲線。 圖4c及4d分別展示圖4a中所展示之可變光汲取層之所選 光學性質透光率%及清晰度%之特徵曲線。 圖5a及5b展示可變折射率光汲取層之平面圖,其展示第 一及第二區域之實例性幾何配置。 圖6展示實例性照明裝置之示意圖,該實例性照明裝置 包括可變折射率光汲取層與光源及反射散射元件之組合。 圖7展不包括可變折射率光汲取層之實例性光學膜之示 意性橫截面圖。 圖8展示光學膜之輥,該光學膜包括佈置於透明基板上 之可變折射率光汲取層。 圖9a展示具有前燈且不具有可變折射率汲取層之反射顯 162606.doc •59· 201241493 示裝置。 圖9b展示具有前燈且包含可變折射率光汲取層之反射顯 示裝置。 圖10展示用於柔性版工具之隨機1〇〇 um梯度點圖案。 圖11a展示具有前燈且具有可變折射率光汲取層之反射 顯示裝置》 圖lib展示具有前燈且具有可變折射率光汲取層之反射 顯示裝置。 圖12a展示藉由前燈照明且具有可變折射率光汲取層之 反射顯示裝置之Prometric影像及隨位置而變化之軸向亮度 曲線。 圖12b展示藉由前燈照明且沒有可變折射率光汲取層之 反射顯示裝置之Prometric影像及隨位置而變化之軸向亮度 曲線。 【主要元件符號說明】 100 可變折射率光汲取層 105 光學膜 120 毗鄰層 Π0 第二區域 140a 第一區域 140b 第一區域 150 光線 16〇 光線 !7〇 表面 162606.doc •60- 201241493 180 光線 190 光線 300 第一區域 310 黏合劑 320 奈米空隙 320A 互連奈米空隙 320B 互連奈米空隙 320C 互連奈米空隙 320D 表面孔隙 320E 表面孔隙 320F 表面孔隙 320G 表面孔隙 330 第一主表面 332 第二主表面 340 顆粒 400 可變折射率光汲取層 410 第一區域 420 第二區域 500 可變折射率光汲取層 510 第一區域 520 第二區域 530 可變折射率光汲取層 540 第一區域 550 第二區域 162606.doc -61 - 201241493 600 照明裝置 601 光源 605 外表面 610 光導 615 底部表面 625 頂部表面 630 可變折射率光汲取層 635 相對表面 645 表面 650 反射散射元件層 700 光學膜 730 可變折射率光汲取層 740 透明基板 760 第二光學澄清黏著劑層 765 第二釋放襯墊 770 第一光學澄清黏著劑層 775 第一釋放襯墊 162606.doc -62-Using an indirect gravure process using UV curable clarified ink (UV OP1005 GP Varnish 'from Nazdar, Shawnee, KS) to print a nanovoided polymeric layer based on a pdf image defining a dot pattern measured by optical ray tracing modeling' A Southern Edition Systems tool with a random 1 〇〇um gradient dot pattern was fabricated. The rate of the gravure (cone and 9 um / um) was called to obtain a wet coating of about 9.65 um. Printing was carried out at 1 nm/min, and after the printing, a 236 Watt/cm2 Fusion Η bulb (available from Fusi () n uv 8 _ company) was used under a nitrogen purge atmosphere to perform a still UV curing. The resulting printed layer comprises the following optical film: a first region having a first index of refraction and comprising a nanovoid: a polymeric material; and a first region, wherein the nanovoid void is filled or partially filled with a solidified clarified ink, The second region has a second index of refraction that is greater than the first region. A variable refractive index light absorbing layer having the first and first regions is disposed on the 〇up〇nt ET substrate. Using BYK Gardner Haze Gard pius to measure the light of the variable refractive index light-collecting layer on PET on both sides (the second high-refractive-index region with a low density and the high-density region of high density on one side) .doc -55· 201241493 The nature of the study. For the low density side, the light transmittance was 96 2 . /❶, the width is 5_64°/. The resolution is 97.5%. For the high density side, the light transmittance is 95.8%, the twist is 9.18%, and the sharpness is 94.4°/. (Note: The transmittance is not corrected for Fresnel reflection). The cured ink was measured to have a refractive index of approximately 1.525 as measured on a flat cured specimen using a Metricon(R) coupler (wavelength for measuring refractive index is 589 nm) » Example 4 Using Examples 1-3 Each optical film (variable refractive index light extraction layer on pet) assembles two different optical objects for the purpose of evaluating optical properties. Optical properties of a variable index optical pickup layer having a sealing layer: A first optical article is formed by laminating a sealing layer on the exposed surface (the side opposite the PET substrate) of the variable index light extraction layer. The sealing layer is a pressure sensitive adhesive (Soken 2147, available from Soken Chemical and Engineering Co., Ltd., 曰本). A 50 micron PET film was laminated on the opposite side of the Soken PSA sealing layer. For each optical article using the variable index light extraction layer from Examples 1-3, BYK Gardner Haze Gard Plus was used on both sides of the variable index light extraction layer (one side was the second highest in low density) The refractive index region and the high-density high-refractive-index region on one side are measured to measure light transmittance, twist, and sharpness. The measurement results are shown in Tables 1 and 2, respectively. 162606.doc -56- 201241493 Table ι. Optical Properties of Zones with High Density of Second Zone Example Light Transmittance % Twist (%) Sharpness %%, 1 1-D Line y-Gradient 91.0 1.84 98.1 2 2-D point x, y gradient 92.0 3.35 92.1 3 2-D point y·gradient 91.9 6.96 95.7 Table 2. Optical properties of the region of the second region with low density Example pattern transmittance % ( (%) Clear Degree (%) 1 1-D line y-gradient 91.0 1.99 99.2 2 2-D point x, y gradient 92.3 1.87 95.6 3 2-D point y-gradient 91.7 4.38 98.2 Light guide assembly with variable index light extraction layer Optical Properties: A second optical article is formed by laminating a viscoelastic lightguide onto an exposed surface of the variable index light extraction layer (the side opposite the PET substrate). A pressure-sensitive adhesive (psa) having a viscoelastic light guide thickness of 2 mm (VHB acrylic tape 4918' from 3M Company) was provided with a transparent protective layer of 50 um PET film on the opposite main surface of the light guide. For each optical article using the variable refractive index light absorbing layer from Examples 1-3, BYK Gardner Haze Gard Plus is used on both sides of the variable index light extraction layer (one side is low density second) The high refractive index region and the high refractive index region on the side of the high refractive index are measured to measure light transmittance, twist and sharpness. The measurement results are shown in Tables 3 and 4, respectively. Table 5 shows reference measurements for a pet film (DuPont 617) in an optical construction and a PSA light guide with PET laminated to both surfaces. I62606.doc -57- 201241493 Table 3. Optical properties of the region of the second region with high density Example pattern transmittance % ( (%) Sharpness (ΟΑΛ 1 1_D line y-gradient 90.3 1.91 --- four 98.5 2 2-D point x, y gradient 91.0 3.76 91.6 3 2-D point y·gradient 90.6 6.80 ------ 95.8 Table 4. Optical properties of the region of the second region with low density Example pattern transmittance % Resolution (%) (%\ 1 1-D line y-gradient 90.3 1.61 99.0 2 2-D point x, y gradient 90.3 2.37 96.8 3 2-D point y-gradient 90.1 4.16 98.2 Table 5. Reference measurement : Example pattern transmittance % 霾 (%) Resolution (%) Reference 1 PET film 92.8 0.67 100 Reference 2 PSA light guide with PET film on both sides 90.9 0.59 — 99.4 All references and publications cited herein The entire content of the disclosure is expressly incorporated by reference to the extent of the present disclosure, unless it is to the extent of the present disclosure. Use a variety of alternatives and/or equivalent implementations in place of the specifics shown and described The present invention is not intended to be limited to the scope of the present disclosure. The present application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Accordingly, the disclosure is intended to make the disclosure only 162606.doc-58-201241493 And equivalents thereof are defined. [Simplified Schematic] Figure la shows a schematic cross section of an exemplary variable index optical pickup layer. Figure lb-lc shows an exemplary variable refractive index disposed on a transparent adjacent layer. A schematic cross section of the light extraction layer. Figure 2 illustrates a variable refractive index light reticle layer having a refractive index that varies across the transverse plane of the layer. Figure 3 is a first region of the variable index light extraction layer. Figure 4a is a plan view showing a variable refractive index light extraction layer of an exemplary geometric configuration of the first and second regions. Figure 4b is a view showing the variable refractive index light extraction layer shown in Figure 4a. The refractive index characteristic curve. Figures 4c and 4d respectively show the characteristic optical transmittance % and % clarity of the variable optical pickup layer shown in Figure 4a. Figures 5a and 5b show variable refractive index light. Draw the level of the layer The figure shows an exemplary geometric configuration of the first and second regions.Figure 6 shows a schematic diagram of an exemplary illumination device comprising a variable index light extraction layer in combination with a light source and a reflective scattering element. A schematic cross-sectional view of an exemplary optical film that does not include a variable index light extraction layer is shown. Figure 8 shows a roll of an optical film comprising a variable index light extraction layer disposed on a transparent substrate. Figure 9a shows a reflective display with a headlight and without a variable index indexing layer 162606.doc • 59· 201241493. Figure 9b shows a reflective display device having a headlight and including a variable index light extraction layer. Figure 10 shows a random 1 um gradient dot pattern for a flexographic tool. Figure 11a shows a reflective display device having a headlight and having a variable index light extraction layer. Figure lib shows a reflective display device having a headlight and having a variable index light extraction layer. Figure 12a shows a Prometric image of a reflective display device illuminated by a headlight and having a variable index light extraction layer and an axial brightness curve that varies with position. Figure 12b shows the Prometric image of the reflective display device illuminated by the headlights without the variable index light extraction layer and the axial brightness curve as a function of position. [Main component symbol description] 100 Variable refractive index light extraction layer 105 Optical film 120 Adjacent layer Π0 Second region 140a First region 140b First region 150 Light 16 〇 Light! 7 〇 Surface 162606.doc • 60- 201241493 180 Light 190 Light 300 First Area 310 Adhesive 320 Nano Space 320A Interconnect Nano Space 320B Interconnect Nano Space 320C Interconnect Nano Space 320D Surface Pore 320E Surface Pore 320F Surface Pore 320G Surface Pore 330 First Main Surface 332 Two major surfaces 340 particles 400 variable index light extraction layer 410 first region 420 second region 500 variable refractive index light extraction layer 510 first region 520 second region 530 variable refractive index light extraction layer 540 first region 550 Second area 162606.doc -61 - 201241493 600 Illumination device 601 Light source 605 Outer surface 610 Light guide 615 Bottom surface 625 Top surface 630 Variable index light extraction layer 635 Opposite surface 645 Surface 650 Reflective scattering element layer 700 Optical film 730 Variable Refractive index light extraction layer 740 transparent substrate 760 second optical clear adhesive layer 765 Two release liner 770 first optical clear adhesive layer 775 first release liner 162606.doc -62-

Claims (1)

201241493 七、申請專利範圍: 1. -種可變折射率光汲取層’其具有第一及第二區域,該 第一區域包括奈米空隙聚合材料,該第二區域包括奈米 空隙聚合材料及其他材料,該等第一及第二區域經佈置 以便對於在毗鄰層中以超臨界角度傳輸之光而言,該可 變折射率光汲取層基於該等第一及第二區域之幾何配置 以預定方式選擇性j:及取該光。 2. 如請求項丨之可變折射率光汲取層,其中該第一區域具 有第折射率,該第二區域具有第二折射率,且該等第 一與第二折射率間之差為約〇 〇3至約〇 5。 3. 如請求項1之可變折射率光汲取層,其中該奈米空隙聚 合材料包括互連奈米空隙。 4. 如請求項1之可變折射率光汲取層,其中該第一區域具 有小於約1.4之第一折射率。 5. 如請求項1之可變折射率光汲取層,其中該第一區域具 有約20%至約60%之空隙體積。 6·如請求項1之可變折射率光汲取層,其中該第一區域具 有小於約5%之霾度及大於約90%之清晰度。 7·如請求項1之可變折射率光汲取層,其中該第二區域具 有小於約20%之空隙體積。 8.如請求項1之可變折射率光汲取層,其中該層具有大於 約90%之透光率。 9_如請求項1之可變折射率光汲取層,其中該層具有小於 約10%之霾度及大於約90%之清晰度。 162606.doc 201241493 201241493 ίο. 11. 12. 13. 14. 15. 16. 17. 如請求項1之可變折射率 ,羊先汲取層,其中該第二區域包 括複數個在該層之橫向平而 懷门十面上配置成圖案之第二區域。 如請求項1之可變折射率弁 甘+#妨 括複數個第二區域,且該尊g r^ ο 士 域包 , ^ 且β4第二區域之密度在該層之橫 向平面上在兩個維度上有所 月求項1之可變折射率光汲取層,其中該第二區域包 括複數個第—區域’且該等第二區域佔該層之橫向平面 之面積之約5%至約60〇/〇。 如請求们之可變折射率光汲取層,其中該等第一及第 二區域透射不同波長之光。 一種光學膜,其包括佈置於透明基板上之如請求項工之 可變折射率光汲取層。 如晴求項14之光學膜,其中該透明基板包括光導。 如明求項14之光學膜,其中該膜具有小於約丨〇%之霾 度、大於約85°/。之清晰度及大於約9〇%之透光率。 一種製備可變折射率光汲取層之方法,其包括: 提供具有第一折射率之奈米空隙聚合層;及 將其他材料印刷於該奈米空隙聚合層上以便該其他材 料實質上滲入該奈米空隙聚合層, 由此形成可變折射率光汲取層,其包括含有該奈米空 隙聚合層之一部分之第一區域及含有該奈米空隙聚合層 之另一部分及該其他材料之第二區域; 其中該等第一及第二區域經佈置以便對於在毗鄰層中 以超臨界角度傳輸之光而言,該可變折射率光汲取層基 I62606.doc 201241493 於該等第一及第二區域之幾何配置以預定方式選擇性汲 取該光。 18. 19. 20. 一種光學裝置,其包括如請求項14之光學膜與光源之組 合0 一種提供光之方法,其包括: 提供光源' 光導及包括如請求項1之可變折射率光汲 取層之光學膜;及 使該光源與該光導光學耦合且使該光導與該可變折射 率光汲取層光學耦合,以便使由該光源發射之光藉由全 内反射在S亥光導内傳輸並由該可變折射率光没取層自該 光導選擇性;及取。 一種光學膜,其包括佈置於反射散射基板上之如請求項 1之可變折射率光汲取層。 162606.doc201241493 VII. Patent Application Range: 1. A variable refractive index light extraction layer having first and second regions, the first region comprising a nanovoided polymeric material, the second region comprising a nanovoided polymeric material and In other materials, the first and second regions are arranged such that, for light transmitted at a supercritical angle in an adjacent layer, the variable index light extraction layer is based on geometric configurations of the first and second regions The predetermined mode selects j: and takes the light. 2. The variable index optical pickup layer of claim ,, wherein the first region has a first index of refraction, the second region has a second index of refraction, and a difference between the first and second indices of refraction is about 〇〇3 to about 〇5. 3. The variable index optical pickup layer of claim 1 wherein the nanovoided polymeric material comprises interconnected nanovoids. 4. The variable index optical pickup layer of claim 1 wherein the first region has a first index of refraction of less than about 1.4. 5. The variable index optical pickup layer of claim 1 wherein the first region has a void volume of from about 20% to about 60%. 6. The variable index optical pickup layer of claim 1 wherein the first region has a twist of less than about 5% and a sharpness greater than about 90%. 7. The variable index optical pickup layer of claim 1 wherein the second region has a void volume of less than about 20%. 8. The variable index optical pickup layer of claim 1 wherein the layer has a light transmission greater than about 90%. 9_ The variable index optical pickup layer of claim 1, wherein the layer has a twist of less than about 10% and a sharpness of greater than about 90%. 162606.doc 201241493 201241493 ίο. 11. 12. 13. 14. 15. 16. 17. 17. In the variable refractive index of claim 1, the sheep first draws a layer, wherein the second region comprises a plurality of transverse planes in the layer The second area of the pattern is arranged on the tenth side of Huaimen. The variable refractive index of claim 1 妨 + + # 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括The variable refractive index light extraction layer of claim 1 wherein the second region comprises a plurality of first regions and wherein the second regions comprise from about 5% to about 60 Å of the area of the lateral plane of the layer /〇. A variable refractive index light extraction layer, such as the ones, wherein the first and second regions transmit light of different wavelengths. An optical film comprising a variable index optical pickup layer as claimed on a transparent substrate. The optical film of claim 14, wherein the transparent substrate comprises a light guide. The optical film of item 14, wherein the film has a temperature of less than about 丨〇% and greater than about 85°. Sharpness and light transmittance greater than about 9%. A method of preparing a variable refractive index light extraction layer, comprising: providing a nanovoided polymeric layer having a first refractive index; and printing other materials on the nanovoided polymeric layer such that the other material substantially infiltrates into the nanosphere a moire polymeric layer, thereby forming a variable index optical extraction layer comprising a first region comprising a portion of the nanovoided polymeric layer and another portion comprising the nanovoided polymeric layer and a second region of the other material Where the first and second regions are arranged such that for light transmitted at a supercritical angle in an adjacent layer, the variable index light extraction layer base I62606.doc 201241493 is in the first and second regions The geometric configuration selectively captures the light in a predetermined manner. 18. 19. 20. An optical device comprising the combination of an optical film and a light source as claimed in claim 1 0, a method of providing light, comprising: providing a light source 'light guide and including variable index light extraction as claimed in claim 1 An optical film of the layer; and optically coupling the light source to the light guide and optically coupling the light guide to the variable index light extraction layer such that light emitted by the light source is transmitted through the total internal reflection in the S-light guide The variable refractive index light is not taken from the photoconductive selectivity; An optical film comprising a variable index light extraction layer of claim 1 disposed on a reflective scattering substrate. 162606.doc
TW101106330A 2011-02-25 2012-02-24 Variable index light extraction layer and method of illuminating with same TW201241493A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161446642P 2011-02-25 2011-02-25

Publications (1)

Publication Number Publication Date
TW201241493A true TW201241493A (en) 2012-10-16

Family

ID=45937533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101106330A TW201241493A (en) 2011-02-25 2012-02-24 Variable index light extraction layer and method of illuminating with same

Country Status (2)

Country Link
TW (1) TW201241493A (en)
WO (1) WO2012116199A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696116B (en) * 2018-06-13 2020-06-11 美商尼斯迪格瑞科技環球公司 Printed leds and wavelength conversion area on objects to provide optical security feature

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116129A1 (en) 2011-02-25 2012-08-30 3M Innovative Properties Company Front-lit reflective display device
WO2012158414A1 (en) 2011-05-13 2012-11-22 3M Innovative Properties Company Back-lit transmissive display having variable index light extraction layer
WO2013184385A1 (en) 2012-06-04 2013-12-12 3M Innovative Properties Company Variable index light extraction layer with microreplicated posts and methods of making the same
US8834004B2 (en) 2012-08-13 2014-09-16 3M Innovative Properties Company Lighting devices with patterned printing of diffractive extraction features
US8944662B2 (en) 2012-08-13 2015-02-03 3M Innovative Properties Company Diffractive luminaires
CN104797882A (en) 2012-08-24 2015-07-22 3M创新有限公司 Variable index light extraction layer and method of making the same
KR20160030202A (en) 2013-07-02 2016-03-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Flat light guide
US9519096B2 (en) * 2013-12-23 2016-12-13 3M Innovative Properties Company Pressure sensitive adhesive light guides
US11107972B2 (en) 2018-12-11 2021-08-31 Facebook Technologies, Llc Nanovoided tunable optics

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US584503A (en) 1897-06-15 Check and waste box or protector
US2042308A (en) 1934-09-20 1936-05-26 Morton Salt Co Filter
FR1590694A (en) 1968-09-20 1970-04-20
US3718712A (en) 1971-03-01 1973-02-27 Minnesota Mining & Mfg Pressure-sensitive adhesives based on cyclic terpene urethane resin
US7005394B1 (en) 1998-07-10 2006-02-28 3M Innovative Properties Company Tackified thermoplastic-epoxy pressure sensitive adhesives
AU750659B2 (en) 1999-02-24 2002-07-25 3M Innovative Properties Company Illumination device for producing predetermined intensity patterns
US6569521B1 (en) 2000-07-06 2003-05-27 3M Innovative Properties Company Stretch releasing pressure sensitive adhesive tape and articles
WO2004022879A1 (en) 2002-09-05 2004-03-18 Cappar Limited A composite tile
US20060216523A1 (en) 2003-08-19 2006-09-28 Shunsuke Takaki Pressure-sensitive adhesive tape and pressure-sensitive adhesive composition for medical adhesive tape
EP1684913A4 (en) 2003-10-27 2007-08-08 Adhesives Res Inc Poly (alkylene oxide) polymer-based pressure sensitive adhesive and tapes formed therefrom
US7862898B2 (en) 2005-09-08 2011-01-04 3M Innovative Properties Company Adhesive composition and articles made therefrom
US7892649B2 (en) 2005-09-08 2011-02-22 3M Innovative Properties Company Microstructured adhesive article and articles made therefrom
US9555602B2 (en) 2006-03-10 2017-01-31 3M Innovative Properties Company Method for preparing microstructured laminating adhesive articles
US20070257270A1 (en) 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with wedge-shaped optical element
US7525126B2 (en) 2006-05-02 2009-04-28 3M Innovative Properties Company LED package with converging optical element
DE102006045324A1 (en) 2006-09-22 2008-04-03 Linde Ag Device for rapid freezing of substances
KR101503561B1 (en) 2007-12-27 2015-03-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Urea-based pressure sensitive adhesives
EP2250228B1 (en) 2008-02-21 2014-10-08 3M Innovative Properties Company Temporarily repositionable pressure sensitive adhesive blends
EP2313800A4 (en) 2008-07-10 2014-03-19 3M Innovative Properties Co Viscoelastic lightguide
EP2379660A1 (en) 2008-12-31 2011-10-26 3M Innovative Properties Company Stretch releasable adhesive tape
US20110268929A1 (en) 2008-12-31 2011-11-03 Tran Thu-Van T Stretch Releasable Adhesive Tape
WO2010120468A1 (en) 2009-04-15 2010-10-21 3M Innovative Properties Company Process and apparatus for a nanovoided article
JP2012523959A (en) 2009-04-15 2012-10-11 スリーエム イノベイティブ プロパティズ カンパニー Processes and equipment for coatings with fewer defects
CN102449508B (en) * 2009-04-15 2014-12-17 3M创新有限公司 Optical film
US8733983B2 (en) * 2009-05-12 2014-05-27 Panasonic Corporation Sheet and light-emitting device
US9296933B2 (en) 2009-05-15 2016-03-29 3M Innovative Properties Company Urethane-based pressure sensitive adhesives
CN201478518U (en) 2009-07-23 2010-05-19 富士康(昆山)电脑接插件有限公司 Card edge connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI696116B (en) * 2018-06-13 2020-06-11 美商尼斯迪格瑞科技環球公司 Printed leds and wavelength conversion area on objects to provide optical security feature

Also Published As

Publication number Publication date
WO2012116199A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
TW201241493A (en) Variable index light extraction layer and method of illuminating with same
TWI548912B (en) Front-lit reflective display device and method of front-lighting reflective display
TW201245633A (en) Illumination article and device for front-lighting reflective scattering element
JP6541571B2 (en) Variable refractive index light extraction layer and method of manufacturing the same
JP6208913B1 (en) Optical structure incorporating light guide and low refractive index film
TWI541559B (en) Back-lit transmissive display having variable index light extraction layer
CN102712140B (en) Optical films with microstructured low refractive index nanovoided layers and methods therefor
US8469551B2 (en) Light extraction films for increasing pixelated OLED output with reduced blur
JP5725680B2 (en) Adhesive composition
JP6407660B2 (en) (Meth) acrylic resin composition and (meth) acrylic resin film using the same
JP5343492B2 (en) Optical sheet
US20200002545A1 (en) Photocurable coating composition and application thereof
KR101587351B1 (en) Light-scattering adhesive film, polarizing plate and liquid crystal display device
KR20170037953A (en) Organic el light-emitting device
JP6586805B2 (en) Edge light type backlight and liquid crystal display device
CN102540719B (en) For forming the activation-energy-ray-curable resin composition of pattern in light guide plate
KR20150086564A (en) Optical diffusion element