TW201244523A - Electrical resistance heater and heater assemblies - Google Patents

Electrical resistance heater and heater assemblies Download PDF

Info

Publication number
TW201244523A
TW201244523A TW100126765A TW100126765A TW201244523A TW 201244523 A TW201244523 A TW 201244523A TW 100126765 A TW100126765 A TW 100126765A TW 100126765 A TW100126765 A TW 100126765A TW 201244523 A TW201244523 A TW 201244523A
Authority
TW
Taiwan
Prior art keywords
heating element
heater
electrical
heating
sinusoidal
Prior art date
Application number
TW100126765A
Other languages
Chinese (zh)
Inventor
Ronald L Colvin
Sr Dennis Goodwin
Jeff Mittendorf
Charles J Moretti
John W Rose
Earl Blake Samuels
Original Assignee
Lawrence Advanced Semiconductor Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lawrence Advanced Semiconductor Technologies Llc filed Critical Lawrence Advanced Semiconductor Technologies Llc
Publication of TW201244523A publication Critical patent/TW201244523A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Abstract

Electrical resistance heater and heater assemblies are described. According to one embodiment, the heater comprises a sinusoidal heating element that provides substantially constant heating. According to another embodiment, the heater comprises a heating element and one or more press-fit coupled electrical adapters. Methods and systems are also disclosed.

Description

201244523 六、發明說明: 【發明所屬之技術領域】 本發明係關於電阻加熱器、加熱器組件、以及它們的 使用應用方法,例如,處理基板;更明確地說,係關於熱 處理用於電子裝置與光學電子裝置的基板。 相關申請案之交互參照 本申請案主張Ronald L. Colvin等人於2010年7月30 曰所提申的美國專利申請案序號第61/369,077號的權利, 其檔案編號為LAS-002,標題為「電阻加熱器及加熱器組件 (ELECTRICAL RESISTANCE HEATER AND HEATER ASSEMBLIES)」。本申請案和下面案件有關:Ronald L. Colvin等人於2010年7月29曰所提申的美國專利申請案 序號第61/369,047號的權利,其檔案編號為LAS-001,標 題為「基板處理設備及系統(SUBSTRATE PROCESSING APPARATUSES AND SYSTEMS)」;Ronald L. Colvin 等人 於2010年7月30日所提申的美國專利申請案序號第 61/369,072號,其檔案編號為LAS-003,標題為「利用康達 效應來化學處理基板的系統、設備及方法(SYSTEMS, APPARATUSES, AND METHODS FOR CHEMICALLY PROCESSING SUBSTRATES USING THE COANDA EFFECT)」;2000年4月17曰所提申的美國專利案第 6,331,212號;以及2001年7月7日所提申的美國專利案第 6,774,060號。本文以引用的方式將所有此等申請案與專利 201244523 案的内容完整併入。 【先前技術】 基板的熱處理被使用在許多應用中,例如,現代微電 子裝置t造。該些處理包含化學氣相沉積(cvd)以及蟲晶半 導體積(例如,石夕爲晶法、鍺化石夕蟲晶法、以及化合物半 導體,日曰曰法)之類的處理。該些處理通常會利用一或多種氣 體來實施,用以在基板(例如,半導體晶圓、平面顯示器基 才太陽他電池基板、以及其它基板)的表面造成反應。 【發明内容】 本發明試圖提供能夠克服熱處理及處理儀器中的一或 夕項缺陷的電阻加熱器、加熱器組件及方法。本發明的一 觀..係種加熱器或加熱器組件。本發明的另一項觀點 係一種在一基板上實施熱處理的方法。 心瞭解的係,本發明的應用並不受限於下面說明所 θ出或圖中所不之器件的構造細節以及排列。本發明可能 八匕實施例並且能夠以各種方式來實行與實現。此 外’還應該瞭解的係、’本文中所運用的措辭及術語僅係為 達說明的目的而不應被視為具有限制意義。 【實施方式】 —除非在申請專利範圍或本說明書中其它地方提出不同 :疋^ $則’下面所定義的用詞皆適用於本發明。不論 疋否月確表不,本文中的所有數值皆被定義為具有「大約 (々)」的修飾意義β Γ大約(ab〇ut)」一詞大體上係指一 數值la圍,熟f本技術的人士會將其視為等效於所列之數 ⑧ 4 201244523 子’用以產生實質上相同的特性、功能、結果、…等。由一 低數值和一高數值所示的數值範圍會被定義為包含該數值 範圍裡面所納入的所有數字以及該數值範圍裡面所納入的 所有子範圍。舉例來說,範圍10至15包含,但是並不受 限於 ’ 10、10.1、10·47、n、u 75 至 12 2、12 5、13 至 13·8、14、14.025、以及 15。 下文中將以熱處理基板(例如,半導體晶圓或是用於電 子及/或光電子裝置的其它基板)為背景來討論本發明之實 施例的操作。然而,應該瞭解的係,根據本發明的實施例 基本上可以被用來實施任何熱處理。 現在參考圖1,圖中所示的係根據本發明一實施例的電 阻加熱器220的後視圖。加熱器22〇係由一正弦加熱元件 222所構成,其具有被設置成用以描述一内徑226的複數個 ::波谷224以及被設置成用以描述一外徑23〇的複數個波峰 228換σ之,加熱器220會構成一環體或是一環體區段, 其具有内徑226以及外徑23〇,俾使得加熱器22〇成為環 形’其為-圓形或一圓形的一部分。正弦加熱元# 222的 剖面寬度係徑向位置的第一函數而正弦加熱元件如的剖 面厚度則係徑向位置的第二聽,俾使得正弦力口熱元件功 會在每一個徑向位置處提供一實質上恆定的熱通量並且在 正弦加熱元件222的相向側表面234與236之間形成—實 質上惶定的間隔232。正弦加熱元件⑵的相向側表面之間 的間隔232會保持在—選定的值定值處並且可以在下面需 求所決疋的限制下保持在最小值:防止發生弧光放電 '熱 201244523 膨脹與收縮限制、以及製造限制。加熱元件222可以表示 成從内226延伸至外徑230的複數個輪輻233。 ,正弦加熱元件222的剖面面積係由大體上位於每一個 =位置處之正弦加熱元件222的剖面寬度乘以大體上位 :母:個徑向位置處之正弦加熱元件如的剖面厚度來給 二::面面積會以要被加熱的表面的尺寸以及瓦數需求 = 向位置改變。決定該正弦加熱元件之剖面面 因素如τ••該正弦加熱元❹的«次數、該正 =熱元件的電阻係數、該正弦加熱元件之相向侧之間的 W 以及5亥正弦加熱元件的長度。 厚二":面Γ,該加熱元件在每-個徑向位置處的剖面 ”丨面寬度係該正弦加熱元件上的徑向位置的函數 :度可以的函數形式來表示,其中r為該正弦加 二通的::位置而fl為函數,係用來表示倒數關 加熱疋件上的徑向位置而&為函數。因此 弦201244523 VI. Description of the Invention: [Technical Field] The present invention relates to an electric resistance heater, a heater assembly, and a method of using the same, for example, processing a substrate; more specifically, relating to heat treatment for an electronic device and A substrate for an optical electronic device. RELATED APPLICATIONS This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of "ELECTRICAL RESISTANCE HEATER AND HEATER ASSEMBLIES". This application is related to the following: the rights of U.S. Patent Application Serial No. 61/369,047, the entire disclosure of which is incorporated herein by reference. U.S. Patent Application Serial No. 61/369,072, filed on Jul. 30, 2010, to the name of LAS-003, titled LAS-003, titled LAS-003, titled LAS-003, titled LAS-003 "SYSTEMS, APPARATUSES, AND METHODS FOR CHEMICALLY PROCESSING SUBSTRATES USING THE COANDA EFFECT"; US Patent Case No. 6, which was filed on April 17, 2000, No. 331,212; and U.S. Patent No. 6,774,060, filed on Jul. 7, 2001. All of these applications and the contents of patent 201244523 are fully incorporated herein by reference. [Prior Art] The heat treatment of the substrate is used in many applications, for example, modern microelectronic devices. These treatments include chemical vapor deposition (cvd) and treatment of the crystallite semiconducting volume (e.g., Shihua crystal method, bismuth fossil crystal method, and compound semiconductor, Nikko method). These processes are typically performed using one or more gases to cause a reaction on the surface of a substrate (e.g., a semiconductor wafer, a flat panel display, a solar cell substrate, and other substrates). SUMMARY OF THE INVENTION The present invention seeks to provide an electrical resistance heater, heater assembly and method that overcomes one or the deficiencies in heat treatment and processing equipment. An aspect of the invention is a heater or heater assembly. Another aspect of the present invention is a method of performing heat treatment on a substrate. The application of the present invention is not limited to the construction details and arrangement of the devices described below or illustrated in the drawings. The present invention is capable of embodiments and can be practiced and implemented in various ways. Further, the words "and the terms" and "terms" used herein are used for the purpose of description and are not to be considered as limiting. [Embodiment] - Unless otherwise stated in the scope of the patent application or elsewhere in the specification: 疋^ $ then the terms defined below apply to the present invention. Regardless of whether or not the month is confirmed, all the values in this paper are defined as having a modified meaning of "about (々)". β Γ (ab〇ut) generally refers to a value of la, cooked f The person skilled in the art will consider it to be equivalent to the listed number 8 4 201244523 ' to produce substantially the same characteristics, functions, results, ... and so on. A range of values indicated by a low value and a high value is defined as including all numbers included in the range of values and all subranges included in the range. For example, the ranges 10 to 15 include, but are not limited to, '10, 10.1, 10·47, n, u 75 to 12 2, 12 5, 13 to 13·8, 14, 14.025, and 15. The operation of embodiments of the present invention will be discussed hereinafter in the context of heat treating substrates (e.g., semiconductor wafers or other substrates for electronic and/or optoelectronic devices). However, it should be understood that embodiments in accordance with the present invention can be used to substantially perform any heat treatment. Referring now to Figure 1, there is shown a rear elevational view of a resistor heater 220 in accordance with an embodiment of the present invention. Heater 22 is comprised of a sinusoidal heating element 222 having a plurality of: hulls 224 configured to describe an inner diameter 226 and a plurality of peaks 228 configured to describe an outer diameter 23 〇. For σ, the heater 220 will form a ring or a ring section having an inner diameter 226 and an outer diameter 23〇, such that the heater 22 turns into a ring which is a part of a circle or a circle. The section width of the sinusoidal heating element #222 is the first function of the radial position and the thickness of the section of the sinusoidal heating element is the second position of the radial position, so that the sinusoidal heat element function is at each radial position. A substantially constant heat flux is provided and a substantially constant spacing 232 is formed between the opposing side surfaces 234 and 236 of the sinusoidal heating element 222. The spacing 232 between the opposing side surfaces of the sinusoidal heating element (2) will remain at a selected value and can be kept to a minimum under the constraints of the following requirements: to prevent arcing from occurring 'Hot 201244523 Expansion and contraction limits And manufacturing restrictions. Heating element 222 can be represented as a plurality of spokes 233 that extend from inner 226 to outer diameter 230. The cross-sectional area of the sinusoidal heating element 222 is multiplied by the cross-sectional width of the sinusoidal heating element 222, which is located substantially at each = position, by the general position: the thickness of the sinusoidal heating element at a radial position, such as the thickness of the section, is given to two: : The area of the surface will vary depending on the size of the surface to be heated and the wattage requirement = position. Determine the cross-sectional factor of the sinusoidal heating element such as τ•• the number of times of the sinusoidal heating element, the positive = the resistivity of the thermal element, the W between the opposite sides of the sinusoidal heating element, and the length of the 5 sinusoidal heating element . Thickness ": facet, the profile of the heating element at each radial position" the width of the facet is a function of the radial position on the sinusoidal heating element: the degree can be expressed as a function, where r is the The sine plus two-way:: position and fl is a function, which is used to indicate the radial position on the heating element of the countdown and the & function.

件的剖面面積具有⑽"驗))的函數形式。U 對本發明的某些實施例來說,該正弦加 厚度係推導自下面的等式: 的u彳面The cross-sectional area of the piece has a functional form of (10) "test). U For some embodiments of the invention, the sinusoidal thickness is derived from the following equation:

,r為該加熱元件上的徑向 ;ri為該加熱元件的内徑; t = 2^ Γί20ίί/(2τΓ r2〇-Sr) 其中t為該加熱元件的剖面厚度 位置,7Γ為數學常數中的圓周率 t 201244523 ti為初始試驗厚度;G為幾何係數,其等於該加熱元件輪輻 的角寬度除以該加熱器的角大小;而S為該加熱元件的相 向側表面之間的間隔。更明確地說,(與r為變數,而冗、 rm以及S皆駿值參數。知悉—加熱器的該等數值 參數,便可以徑向位置的函數來計算厚度。 熟習本技術的人士將會瞭解,等式i以及該等數值參 數雖然係用以取得才艮撼·太益^ Λ, ^ 取传根據本發明一或多個實施例之加熱器維 X數值代表符的唯—方式的結果;不過,熟習本技術的 士依照本說明書之揭示内容便會瞭解其它方式。等式⑴ 的推導係利用數學常數π、設 飞寻式(1) 該加熱器的外徑、設計者選擇擇參數ri、設計者選擇 S來H1及設計者選擇參數 者選擇Μ , 处的初始武驗厚度1也是設計 必須以反料算來推敲 的電更適用於要配合該加熱器使用 選擇失數 與電流能力。該電源的能力也是設計者 k擇參數。下面會在一範例加熱者 反覆計算程序。 丫肀楗出一種可能的 尚右加熱器的加熱器厚度資料和秤向/ w 已知的話,亦T u i1 二向位置的函數係 參數或等效:推導一雷同於等式⑴之等式的該等數值 h數。此等情形的進-步簡化等式的形式如下 (1.1) t=A/(Br2-Sr) 其中t、 以及S和上 面所提出的相同,八與B則係結合上 201244523 面所提出之數值參數中的一或多者所產生的數值。 對本發明的某些實施例來說,該正弦加熱元件的剖面 寬度係推導自下面的等式: w=2 κ Gr-S 、 其中w為該加熱元件的剖面寬度;r為該加熱元件上的徑向 位置;7Γ為數學常數中的圓周率;〇為幾何係數,其等於該 加熱元件輪輻的角寬度除以該加熱器的角大小;而S為該 加熱元件的相向侧表面之間的間隔。在本發明的一或多個 實施例中會利用該加熱元件輪輻的角寬度、該加熱器的角 大小、以及該間隔等設計者指定數值來算出以徑向位置為 函數的該加熱元件的寬度。 有各式各樣的材料可用於正弦加熱元件222。根據本發 明的一實施例,正弦加熱元件222包括一耐火導電體。正 弦加熱元件2 2 2可咸包括石墨’例如,熱解石墨。亦可以 作進一步的改質,例如,以碳化矽之類的材料來塗佈熱解 石墨用以產生正弦加熱元件222,舉例來說,其具有塗佈著 碳化矽的熱解石墨導體》可用於正弦加熱元件222的其它 材料的範例包含,但是並不受限於:鎳鉻合金、鉬、組、 鎢、以及用於電阻加熱的其它材料。 根據本發明的一實施例,正弦加熱元件222的相向側 表面之間的間隔232會在正弦加熱元件222之操作期間處 於真空或是被氣體填充。 8 201244523 圖1所示的電阻加熱器220包括兩個非必要的電接點 238匕們約略處於正弦加熱元件222的每一個末端處。應 5亥瞭解的係,電加熱器22G亦可使用其它手段來達成接觸 的目的。圖1中實施例所示的電接點238可能係一被加工 製作成正弦加熱元件222之一部分的垂片。必要時,電接 點238會被配向成實質上垂直於電阻加熱器22〇的表面。 熟習本技術的人士依照本發明便會明白,電接點238亦可 以採用其它配向。電接點238可被用來施加Dc或ac電流, 使其流過正弦加熱元件2 2 2。 現在參考圖丨·1,圖中所示的係一電阻加熱器220-1的 透視圖電阻加熱器220-1基本上和圖i中所述的電阻加熱 !§' 220相同,不同的係,電阻加熱器Mod包含一非必要的 電轉接器240,其會耦合蜿蜒狀電導體222之每一個末端的 ·:電接點238 〇 根據本發明的一實施例,電轉接器24〇會被形成以按 壓配接(press-fit)(在本技術熟知稱為干涉配接頭 (interference fit))耦合至電接點238。對本發明的某些實施 例來說,蜿蜒狀加熱元件222可能係由熱解石墨製成;必 要時’在該些實施例中,電轉接器24〇亦可能係由熱解石 墨所製成。視情況,電轉接H 24〇亦可能係由同樣適合電 連接但非熱解石墨的材料所製成。 本案發明人已經發現,在按壓配接耦合配置以及碳化 矽塗佈製程中,使用石墨作為正弦加熱元件222並且使用 石墨作為電轉接H 240,可以在本發明的實^列中發生加乘 201244523 的好處。更明被I山 一 也說’將一碳化矽熱塗料塗敷至正弦加熱 一 與按壓配接耦合的電轉接器240會以低接觸阻值 在正弦加熱元# 222以及電轉接器240.之間產生-機械性 強烈的連結°因此’會形成—導電性的強烈機械性的連結, 而且除了杈壓配接耦合之外,不需要複雜的加工步驟便可 以達成。 用於形成該等碳化矽塗料的沉積條件和通常用於塗佈 石墨的條件相同。-般來說,-矽源以及-碳源會在攝氏 1200度的高溫處進行反應,以便產生碳化石夕沉積塗料。 現在參考圖1-2以及圖卜3,圖1-2中所示的係適用於 本發明—或多個實施例的電轉接ϋ 24G.1 #透視圖,而圖 1-3則為剖面透視圖。電轉接器24〇1係一實質上剛性的主 體’其係由一合宜的電導體製成,例如,石墨或是適合用 於電阻加熱器之電接點的其它材料。電轉接器240-1具有一 螺孔240-2,其具有螺紋用以進行螺旋連接。電轉接器 具有一按壓配接孔240-3,其會被配置成用以和電阻加熱器 (例如,但是並不受限於電阻加熱器22〇)的電接點進行按壓 配接搞合。 現在參考圖2’圖中所示的係根據本發明一實施例的電 阻加熱器242的後視圖。加熱器242係由一正弦加熱元件 222所構成,其具有被設置成用以描述一内徑226的複數個 波谷224以及被設置成用以描述一外徑23〇的複數個波峰 228。換言之,加熱器242會構成一環體區段,其具有内徑 226以及外裡230,俾使得加熱器242成為一圓形的—部 10 201244523 分。正弦加熱元件222 %剖面寬度係徑向位置的第-函數 而正弦加熱元件222的剖面厚度則係徑向位置的第二函 數丄俾使得正弦加熱元件222會在每一個徑向位置處提供 一實質上恆定的熱通量並且在正弦加熱元件222的相向側 表面234與236之間形成„實質上㈣的間隔232。正弦加 熱兀件222的相向側表面之間的間% 232會保持在一選定 的惶定值處並且可以在下面需求所決定的限制下保持在最 小值.防止發生狐光放電、熱膨服與收縮限制、以及 限制。 & 正弦加熱元件222的剖面面積係由大體上位於每一個 徑向位置處之正弦加熱元件222的剖面寬度乘以大體上位 於每-個徑向位置處之正弦加熱元件222的剖面厚度來私 定。該剖面面積會以要被加熱的表面的尺寸以及瓦數需求 為基礎保持在-選定的恆定值處。決定該正弦加熱元件之 ^面積的額外因素如下.該正弦加熱元件中的振盈次 數、該加熱元件的電阻係數、該正弦加熱元件之相向側之 間的間隔、以及該正弦加熱元件的長度。 如上面所不,該加熱兀件在每—個徑向位置處的剖 厚度和剖面寬度係該正弦加熱元件上的徑向位置的函數。 厚度通常可以⑽的函數形式來表示,其中…亥正弦力 熱元件上的徑向位置而以函數…員係用來表:倒數; 係。寬度通常可以f2⑴的函數形式來表示,其中『為該正弦 加熱元件上的徑向位置而f2為函數。因此,該正弦=弦 件的剖面面積具有(f1(1/r))(f2(r))的函數形式❶ …几 201244523 厚度=Γ=:::例來說’心加熱— (1) t=2TT ri2Gti/(2^ r2G.Sr) 其中t為該加熱元件的剖面 又’ r為6玄加熱元件上的和<向 立置;“數學常數中的圓周率、為元件 U初始試驗厚度;G為幾何係數,其等於該加熱二: 的角寬度除以該加熱器的角大小;而s為該加熱元件的相 向側表面之間的間隔。更明確地說,為變數,而冗、 ~^1及^數值參數。知悉—加熱器的該等數值 參數,便可以徑向位置的函數來計算厚度。 熟習本技術的人士將會瞭解,等式i以及該等數值參 數雖然係用以取得根據本發明_或多個實施例之加熱器維 度的數值代表符的唯—方式的結& ;不過,熟習本技術的 人士依照本說明書之揭示内容便會瞭解其它方式。等式⑴ 的推導係㈣數學常^ '設計者選擇參數n、設計者選擇 該加熱器的外徑、設計者選擇參數G、以及設計者選擇參數 S來完成。該加熱元件在内徑處的初始試驗厚度^也是設計 者選擇參數,但是必要時,可能必須藉由反覆計算來推敲 ti,俾使得該加熱元件的阻值更適用於要配合該加熱器使用 的電源的70整電壓與電流能力。該電源的能力也是設計者 選擇參數。下面會在一範例加熱器設計中提出一種可能的 反覆計算程序。 12 201244523 :若-加熱器的加熱器厚度資料和徑向位置的 已知的话,亦可以推莫 係 失數同於等式⑴之等式的該等數值 參數或4效常數。此等情形的進—步簡化等式的形式如下值 (1.1) t=A/(Br2-Sr) -中t r以及S和上面所提出的相同,a與B則係結 面所提出之數值參數中的一或多者所產生的數值。。 對本發明的某些實施例來說,該正弦加熱元件的剖面 寬度係推導自下面的等式:r is the radial direction of the heating element; ri is the inner diameter of the heating element; t = 2^ Γί20ίί/(2τΓ r2〇-Sr) where t is the cross-sectional thickness position of the heating element, 7 Γ is the mathematical constant The pi t 201244523 ti is the initial test thickness; G is the geometric coefficient equal to the angular width of the heating element spoke divided by the angular extent of the heater; and S is the spacing between the opposing side surfaces of the heating element. More specifically, (and r is a variable, and redundancy, rm, and S are all parameters. Knowing the numerical parameters of the heater, the thickness can be calculated as a function of the radial position. Those skilled in the art will It is understood that the equation i and the numerical parameters are used to obtain the result of the only way to obtain the heater dimension X value representative according to one or more embodiments of the present invention. However, those skilled in the art will understand other ways in accordance with the disclosure of this specification. The derivation of equation (1) utilizes the mathematical constant π, the fly-through type (1) the outer diameter of the heater, and the designer's choice of parameters. Ri, the designer chooses S to H1 and the designer chooses the parameter to choose Μ, where the initial test thickness 1 is also designed to be counter-calculated to be more suitable for use with the heater to select the number of losses and current capability. The power capability of the power supply is also the designer's choice of parameters. The following will repeat the calculation procedure in an example heater. Pull out a possible heater thickness data for the right heater and the scale / w is known, also T u i1 The function of the two-way position is a parameter or equivalent: a derivative of the same value h of the equation of equation (1). The form of the further simplification of the equation is as follows (1.1) t=A/(Br2 -Sr) where t, and S are the same as those set forth above, and eight and B are combined with values produced by one or more of the numerical parameters set forth in 201244523. For certain embodiments of the present invention, The cross-sectional width of the sinusoidal heating element is derived from the following equation: w = 2 κ Gr-S , where w is the cross-sectional width of the heating element; r is the radial position on the heating element; 7 Γ is in the mathematical constant The circumference ratio; 〇 is a geometric coefficient equal to the angular width of the heating element spoke divided by the angular extent of the heater; and S is the spacing between the opposing side surfaces of the heating element. In one or more embodiments of the invention The width of the heating element as a function of radial position is calculated using the angular width of the heating element spoke, the angular extent of the heater, and the designer-specified value. There is a wide variety of materials available for use. Sinusoidal heating element 222. According to In one embodiment of the invention, the sinusoidal heating element 222 includes a refractory electrical conductor. The sinusoidal heating element 2 2 2 may include graphite 'for example, pyrolytic graphite. It may be further modified, for example, with tantalum carbide or the like. Materials to coat pyrolytic graphite to produce sinusoidal heating elements 222, for example, having pyrolytic graphite conductors coated with tantalum carbide. Other examples of materials that may be used for sinusoidal heating elements 222 include, but are not limited to, In: nickel-chromium alloy, molybdenum, group, tungsten, and other materials for electrical resistance heating. According to an embodiment of the invention, the spacing 232 between the opposing side surfaces of the sinusoidal heating element 222 will operate at the sinusoidal heating element 222. The vacuum is filled or filled with gas. 8 201244523 The electrical resistance heater 220 shown in FIG. 1 includes two non-essential electrical contacts 238 that are approximately at each end of the sinusoidal heating element 222. According to the system known to 5H, the electric heater 22G can also use other means to achieve the purpose of contact. The electrical contacts 238 shown in the embodiment of Figure 1 may be a tab that is fabricated into a portion of the sinusoidal heating element 222. If necessary, the electrical contacts 238 are oriented to be substantially perpendicular to the surface of the resistive heater 22A. Those skilled in the art will appreciate in light of the present invention that electrical contacts 238 may also employ other alignments. Electrical contacts 238 can be used to apply a DC or ac current through the sinusoidal heating element 2 22 . Referring now to FIG. 1, the perspective resistance heater 220-1 of the one-resistance heater 220-1 is substantially the same as the resistance heating §'220 described in FIG. The resistive heater Mod includes an optional electrical adaptor 240 that couples each end of the braided electrical conductor 222 to: an electrical contact 238. According to an embodiment of the invention, the electrical adapter 24A It will be formed to be coupled to the electrical contacts 238 by a press-fit (known as an interference fit in the art). For certain embodiments of the present invention, the braided heating element 222 may be made of pyrolytic graphite; if necessary, in these embodiments, the electrical adapter 24 may also be made of pyrolytic graphite. to make. Depending on the situation, the electrical transfer H 24〇 may also be made of a material that is also suitable for electrical connection but not pyrolytic graphite. The inventors of the present invention have found that in the press-fit coupling configuration and the niobium carbide coating process, graphite is used as the sinusoidal heating element 222 and graphite is used as the electrical transfer H 240, which can be added in the actual column of the present invention 201244523 the benefits of. It is more obvious that I. I also said that 'applying a carbonized tantalum hot coating to the sinusoidal heating one and the press-fit coupling electrical adapter 240 will have a low contact resistance at the sinusoidal heating element #222 and the electrical adapter 240. There is a strong mechanical bond between the two, which results in a strong mechanical connection of electrical conductivity and, in addition to the press-fit coupling, can be achieved without complicated processing steps. The deposition conditions used to form the tantalum carbide coatings are the same as those typically used for coating graphite. In general, the source and source of carbon will react at a high temperature of 1200 degrees Celsius to produce a carbonized stone deposition coating. Referring now to Figures 1-2 and Figures 3, the drawings shown in Figures 1-2 are suitable for use in the present invention - or multiple embodiments of the electrical transfer ϋ 24G.1 # perspective view, while Figures 1-3 are profiles perspective. Electrical adapter 24〇1 is a substantially rigid body' that is made of a suitable electrical conductor, such as graphite or other material suitable for use with electrical contacts of electrical resistance heaters. The electrical adapter 240-1 has a threaded bore 240-2 that is threaded for helical connection. The electrical adapter has a press-fitted aperture 240-3 that is configured to be press-fitted with an electrical contact of a resistive heater (e.g., but not limited to the resistive heater 22A). Referring now to Figure 2', there is shown a rear elevational view of a resistor heater 242 in accordance with an embodiment of the present invention. Heater 242 is comprised of a sinusoidal heating element 222 having a plurality of valleys 224 configured to describe an inner diameter 226 and a plurality of peaks 228 configured to describe an outer diameter 23". In other words, the heater 242 will form a ring section having an inner diameter 226 and an outer rim 230 such that the heater 242 becomes a circular portion 10 201244523 points. The 222-degree cross-sectional width of the sinusoidal heating element is the first function of the radial position and the cross-sectional thickness of the sinusoidal heating element 222 is the second function of the radial position such that the sinusoidal heating element 222 provides a substantial at each radial position. A constant heat flux is applied and a substantially (four) spacing 232 is formed between the opposing side surfaces 234 and 236 of the sinusoidal heating element 222. The inter-% 232 between the opposing side surfaces of the sinusoidal heating element 222 remains in a selected The rating is at a minimum and can be kept to a minimum under the constraints determined by the requirements below. Preventing the occurrence of fox discharge, thermal expansion and shrinkage limitations, and limitations. & The cross-sectional area of the sinusoidal heating element 222 is generally located The cross-sectional width of the sinusoidal heating element 222 at each radial position is multiplied by the cross-sectional thickness of the sinusoidal heating element 222 located substantially at each radial position. The cross-sectional area will be the size of the surface to be heated. And the wattage requirement is maintained at a selected constant value. The additional factors determining the area of the sinusoidal heating element are as follows. The vibration in the sinusoidal heating element The number of times, the resistivity of the heating element, the spacing between the opposite sides of the sinusoidal heating element, and the length of the sinusoidal heating element. As above, the thickness of the heating element at each radial position and The width of the profile is a function of the radial position on the sinusoidal heating element. The thickness can usually be expressed as a function of (10), where the position of the sinusoidal thermal element is the radial position and is used by the function to indicate the reciprocal; The width can usually be expressed as a functional form of f2(1), where "the radial position on the sinusoidal heating element and f2 is a function. Therefore, the cross-sectional area of the sine = string has (f1(1/r)) (f2( r)) The form of the function 几 ... 201244523 Thickness = Γ =::: For example, 'heart heating — (1) t = 2TT ri2Gti / (2^ r2G.Sr) where t is the profile of the heating element and 'r It is the sum on the 6-histor heating element; <tilt; the pi in the mathematical constant, the initial test thickness of the component U; G is the geometric coefficient, which is equal to the angular width of the heating two: divided by the angular size of the heater And s is between the opposing side surfaces of the heating element Septum. More specifically, for variables, and redundant, ~^1 and ^ numeric parameters. Knowing the values of the heater, the thickness can be calculated as a function of the radial position. Those skilled in the art will appreciate that equation i and the numerical parameters are used to obtain a unique-style knot & of a numerical value representative of a heater dimension in accordance with the present invention or embodiments; however, Those skilled in the art will recognize other ways in light of the disclosure of this specification. The derivation of equation (1) is a mathematical constant. The designer selects the parameter n, the designer selects the outer diameter of the heater, the designer selects the parameter G, and the designer selects the parameter S to complete. The initial test thickness of the heating element at the inner diameter is also a designer's choice parameter, but if necessary, it may be necessary to push ti by repeated calculations so that the resistance of the heating element is more suitable for use with the heater. 70 full voltage and current capability of the power supply. The power capability of the power supply is also the designer's choice of parameters. A possible repetitive calculation procedure is presented below in an example heater design. 12 201244523: If the heater thickness data and radial position of the heater are known, the numerical parameters or the 4-effect constants of the equation (1) can also be deduced. The form of the further simplification equation for these cases is as follows (1.1) t = A / (Br2 - Sr) - where tr and S are the same as those set forth above, and a and B are the numerical parameters proposed by the tying plane The value produced by one or more of them. . For some embodiments of the invention, the cross-sectional width of the sinusoidal heating element is derived from the following equation:

w=2 n Gr-S (2) 其沖w為該加熱元件的剖面寬度;加熱元件上的徑向 位置;冗為數學常數中的圆周率;G為幾何係數,其等於該 加熱元件輪輻的角寬度除以該加熱器的角大小;而s為該 力:熱元件的相向側表面之間的間%。在本發明的一或多個 貫施例中會利用該加熱元件輪韓的角寬度、該加熱器的角 大小、以及該間隔等設計者指定數值來算出以徑向位置為 函數的該加熱元件的寬度。 有各式各樣的材料可用於正弦加熱元件22八根據本發 明的一實施例,正弦加熱元件222包括一耐火導電體。正 弦加熱元件222可能包括石墨,例如,模塑石墨。亦可以 作進一步的改質,例如,以碳化矽之類的材料來塗佈石墨 13 201244523 用以產生正弦加熱元件222,舉例來說,其具有塗佈著碳化 石夕的石墨導體。可用於正弦加熱元件222的其它材料的範 例包含,但是並不受限於:鎳鉻合金、鉬、钽、鎢、以及 用於電阻加熱的其它材料。 圖2所示的電阻加熱器242包括兩個非必要的電接點 238,它們約略處於正弦加熱元件222的每一個末端處。應 該瞭解的係,電加熱器22〇亦可使用其它手段來達成接觸 的目的。圖2中實施例所示的電接點238可能係一被加工 製作成正弦加熱元件222之一部分的垂片。必要時,電接 ’ 238會被配向成貫質上垂直於電阻加熱器22〇的表面。 貧,、s本技術的人士依照本發明便會明白,電接點8亦可 以採用其它配向。電接點238可被用來施加dc或ac電流, 使其流過正弦加熱元件222。 圖2所示的係波峰228的一非必要配置。明確地說 ? 2 *中雖然顯示兩個波峰短於週遭的波峰;不過,亦可 ▲等皮峰中的—或多者短於週遭的波峰。此種非必要 夠破用來容納可用於操作與監視電阻加熱$⑷的 224 1例如,附接結構、感測器、固持器。亦可對波 224做雷同的修正。 、㈣現:參考圖Π,^中所示的係電阻加熱器242·1的益 =:電阻加熱…基本上和圖2中所述的電阻加^ 的係,電阻加熱器…包含-非必要的, 接點238。〃會輕合婉蜒狀電導體222之每-個末端的輩 ⑧ 14 201244523 * .根據本發明的一實施例,電轉接器24〇會被形成以將 按壓配接(在本技術熟知稱為干涉配接頭)耦合至電接點 23 8對本發明的某些實施例來說,蜿蜒狀加熱元件可 此係由石墨製成;必要時,在該些實施例中,電轉接器屬 亦可此係由石墨所製成。視情況,電轉接器240亦可能係 由同樣適合電連接但非石墨的材料所製成。 現在參考圖3,圖中所示的係根據本發明一實施例的加 熱器組件244的前視圖。加熱器組件244包括複數個電阻 加熱器,它們的形狀為環體或是環體區段。更明確地說, 加熱,組件244包括一位於中心的第一加熱器246。視情 況,第一加熱器246可能係一環體加熱器或是一環體加熱 器中的一區段。另-種選擇性作法係,第-加熱器246可 能係一基本上和如圖1中所述之電阻加熱器220或是如圖2 中所,述之多個電阻加熱器242之組合相同的環體加熱器。 或者第加熱器246亦可能具有上面所述之電阻加熱器 220以及電阻加熱器242以外的配置。圖3中所示之本發明 的實施例具有第一加熱器246,其包含一加熱元件,其具有 和電阻加熱器220以及電阻加熱器242不同的配置。 加熱器組件244還進一步包括一圍繞第一加熱器246 的電阻加熱器220 〇電阻加熱器220基本上和圖i所述之電 阻加熱器220相同。 加熱器組件244還進一步包括12個電阻加熱器242, 匕們具有四分之一環體區段的形狀並且會被設置成用以形 成一貫質上圓形受熱區的實質上平面的同心環陣列。電阻 15 201244523 加熱器242基本上和圖4所述之電阻加熱器242相同。應 °玄瞭解的係,本發明的其它實施例亦可能並不使用12個電 阻加熱器242而使用其它數量的電阻加熱器242,而且環體 加熱器以及環體加熱器區段的組合方式亦可能不同於圖5 所述者。明確地說,在本發明的實施例中可能會使用12個 以上的電阻加熱器242,或者在根據本發明實施例的加熱器 組件中亦可能會使用12個以下的電阻加熱器242。同樣地, 在根據本發明實施例的加熱器組件中可能會使用一個以上 的電阻加熱器220’或者在本發明的實施例中亦可能沒有使 用任何電阻加熱器220。 根據本發明實施例的加熱器組件包含選擇自由下面所 組成之群中的至少一電阻加熱器:電阻加熱器22〇、電阻加 熱器220-1、電阻加熱器242、以及電阻加熱器μ]」。 現在參考圖3-1,圖中所示的係根據本發明一實施例的 加熱器組件244-1的後視圖。加熱器組件244_丨包括複數個 電阻加熱器,它們的形狀為環體或是環體區段。更明確地 說’加熱器組件244-1包括一位於中心的第一加熱器 246-1。第一加熱器246-1包括實質上如上面所述的電接點 (在圖3-1中看不見電接點)以及電轉接器(例如,實質上如上 面所述之被耦合至該等電接點的電轉接器24〇_1)β視情況, 第一加熱器246-1可能係一環體加熱器或是一環體加熱器 中的一區段。另一種選擇性作法係,第一加熱器2粍丨可能 係一基本上和如圖1-1中所述之電阻加熱器2204或是如圖 2-1中所述之多個電阻加熱器242_丨之組合相同的環體加熱 16 201244523 器。或者’第-加熱器24“亦可能具有上面所述之電阻加 熱器220-“乂及電阻加熱器242-1以外的配置。目中所 示之本發明的實施例具有第-加熱器246],其包含一加熱 元件’其具有和電阻加熱器22(M以及電阻加熱器2仏^ 同的配置。 加熱器la # 244-1冑進一纟包括一圍繞第一加熱器 246-i的電阻加熱器22〇_丨。電阻加熱器Mo」基本上和圖 所述之電阻加熱器220」相同。電阻加熱器2204的電 轉接器24〇-丨亦顯示在圖3-1中。 加熱益組件244-1還進一步包括12個電阻加熱器 242-卜它們具有四分之一環體區段的形狀並且會被設置成 用以形成一實質上圓形受熱區的實質上平面的同心環陣 歹J電阻加熱器242-1基本上和圖2_丨所述之電阻加熱器 242-..1相同。電阻加熱器242-1的電轉接器24(m亦顯示在 圖3-1中。 根據本發明另一貫施例的設備係一包括一石墨加熱元 件的電阻加熱器。該石墨加熱元件具有一或多個石墨電接 點。該電阻加熱器還進一步包括一或多個石墨電轉接器, 例如,上面所述的電轉接器24〇以及電轉接器24〇_i。該等 —或多個電轉接器會被按壓配接耦合至該等一或多個石墨 電接點。該電阻加熱器還進一步包含一層碳化矽,用以塗 佈該加熱元件及電轉接器。該碳化矽塗料係在將該等一或 夕個石墨電接點按壓配接耦合至該等一或多個電轉接器之 後才會被塗敷。該碳化矽塗料可以利用一高溫化學氣相沉 17 201244523 積製程來塗敷。 上面所述的設備可以用於根據本發明實施例的各式各 樣處理。現在參考圖4,圖中所示的係根據本發明—實施例 的示範性處理流程圖248。示範性處理流程圖248包括—連 _非竭盡的步驟,亦可於其中加入額外的步驟(圖中並未顯 不)。熟習本技術的人士便會明瞭許多變化例修正例、以 及替代例。圖4所示之用於熱處理—❹個基板的示範性 處理流程圖248包括提供一基板248_2;提供一加熱器或加 熱器組件248-4,如上面所述以及圖}、圖^、圖2、圖 2-1、圖3 '以及圖3_丨中所示。適用於示範性處理流程圖 248的加熱器的特定範例為電阻加熱器22〇、電阻加熱器 22(M、電阻加熱器242、電阻加熱器242-丨、以及第一加熱 器246-卜示範性處理流程圖248還進一步包括利用該加熱 器或加熱組件來將該基板加熱至一處理溫度及/或保持—處 理溫度2 4 8 - 6。 必要時,示範性處理流程圖248可能還包含本發明額 外實施例的一或多個修正例。示範性修正例可能包含,伸 是並不受限於下面所述者。提供一能夠固持該等—或多個 基板的處理反應室,俾使得會在該處理反應室之中實施熱 處理。提供複數個基板,以便進行實質上同步的基板處理。 在加熱該基板248-6期間旋轉該基板。提供一基板248_2包 含一包括一半導體晶圓的基板。提供一基板248_2包含—用 於製造電子及/或光電子裝置的基板。 本發明的實施例還包含用以成長各種材料(例如,元素 18 201244523 材料化δ物、化合物半導體、以及化合物介電材料)層的 方法與設備》 接著要提出的係可以用來設計根據本發明一實施例的 ,、’、器的示範性程序。此種設計的加熱器的配置雷同於圖1 中所不的環形加熱器。該加熱器的輸入資料如了 :内徑: 2.75英寸,外徑· 4 85英吋;相向側表面之間的間隔:〇._ 夬吋,加熱器材料:電阻係數約0.00049歐姆英吋的模塑石 墨’加熱器角大小:實質上為36〇。;輪輕數量:ι〇ι個; 輪輻+間隔的角寬度:3.545度;區段長度:〇·21英吋;而 初始试驗厚度:0.135英吋。此範例的輸入資料會配合等式 ⑴與等式⑺來計算以等於該區段長度的數額遞增的;個^ 向,置處的加熱元件剖面寬度以及加熱元件剖面厚度,以 便提供從該加熱器的内徑至外徑範圍中的計算。該等計算 如表1中所示。在此範例中’會在該等輪韓中的_者°中的 1個等間隔徑向位置處(它們包含内徑與外徑)來實施該等 計算。 表1中還顯示額外的相關計算,例如,以徑向位 函數的該加熱元件的剖面面積以及該等分段長三 的電阻。Μ等區段長度的電阻總和便是該輪輻的總電阻, 而且乘以輪輻的數量之後便決定該加熱元件的總電阻 :::還有助於向設計者顯示一種能夠用來修正該加二 :::的可能方式,俾使得其更匹配該電源能 希; t使用帛。明確地說,一設計者能夠選擇不同的初二 驗厚度並且重錢行料計算,^取得該加熱= 201244523 電阻,以便和配合一電源供應器來使用的 』77丨帀或最佳電阻 作比較。此反覆處理會㈣進行直到該加熱元件的總電阻 和配合該電源來使用的電阻達到最佳或所希匹配為止。 在前面的說明書中雖然已經參考特定的音 巧订弋的貫施例說明過 本發明;然而,熟習本技術的人士便會明白, 1文f η白,可以進行各 種修正與變更’其並不會脫離在下面申請專利範圍之中所 提出之本發明的範嘴。據此,說明書以及圖式應被視為解 釋性而沒有限制的意義,而且,所有此等修正皆希望涵蓋 在本發明的範疇裡面。 上面雖然已經針對特定的實施例說明過本發明的好 處、其它優點、以及問題的解決方案;然而,該等好處、 優點、問題的解決方案以及可以導致任何好處、優點、或 解決方案發生或突顯其重要性之㈣(多個)元件均不應被 視為任何或所有申請專利範圍的關鍵、必要、或基本特點 或元件。 本文中所使用的「包括」、「包含」、「具有」、「至 少一者」#用詞或是它們的任何其它變化用肖皆希望且有 非竭盡包容之意。舉例來說,—包括4件列表的處理、 方法'物品、或是設備未必僅受限於該些元件,還可能包 含沒有明確列出或並非此處理、方法、物。。口、或是設備固 有的其它元H步言之’除非明4提及具有相反之意, 否則或(〇Γ)」所指的係包容性或(inclusive or)而不是竭 盡吐或(excluslve or) 舉例來說下面任何一者皆符合條件 A或B: A為真(或存在)而B為偽(或不存在)、a為偽(或不 20 201244523 存在)而B為真(或存在)、π 本文維妙¢3 兩者皆為真(或存在)。 不又雖然已經說明並圖解本 過,顯見的係 X月的特定實施例;不 ,_ 1糸’可以對本文中明確闻加 細即進行變更, _解與說明的實施例的 幻的合法等 ^申請專利範圍以及它 疇。 攻範圍之中所定義之本發明的真實精神與範 21 201244523 計算的輸入資料 輪輕數置 101 區段電阻 (歐姆) 0.0045 0.0048 0.0052 0.0055 0.0058 0.0062 0.0065 0.0069 0.0072 0.0076 0.0079 輪輻電阻(歐姆)0.0681 加熱器電阻(歐姆)6.8773 角寬度(度) 3.545 加熱器元件 剖面厚度 七吋) 0.2085 0.1733 0.1464 0.1253 0.1085 0.0949 0.0837 0.0744 0.0666 ' 0.0599 0.0542 螽A 梁2 0.135 加熱器元件 剖面寬度 (英吋) 0.1101 0.1231 0.1361 0.1491 0.1621 0.1751 0.1881 0.201 1 0.2141 0.2271 0.2401 0.00049 /—N 幣t V0钵 ^ t 0.02297 1 | 0.02134 0.01993 0.01869 0.01760 0.01662 0.01575 0.01497 !_ 0.01426 0.01361 0.01302 區段長度 (英吋) CN 〇 試驗厚度 (英吋) 0.135 0.117 0.102 0.089 0.079 0.071 0.063 0.057 0.052 0.047 0.043 外徑 (英吋) 4.85 區段寬度 (英吋) 0.1701 1 | 0.1831 0.1961 0.2091 0.2221 0.2351 0.2481 0.2611 0.2741 0.2871 0.3001 内徑 (英吋) 卜 (N 周長 (英吋) 17.28 18.60 19.92 寸 CN »—Η <Ν v〇 yn CN (N 00 oo cn CN o CN (N 26.52 27.83 in On <N 30.47 徑向位置 (英吋) 卜 (N 2.96 卜 cn 〇〇 ΓΟ cn m O 00 〇 寸 4.22 4.43 4.64 00 寸 ⑧ 201244523 【圖式簡單說明】 圖1所示的係本發明一實施例的後視圖。 圖1-1所不的係本發明一實施例的透視後視圖。 圖I-2所不的係根據本發明一實施例的電轉接器的遂 視圖® 圖1-3所示的係根據本發明一實施例的電轉接器的透 視剖視圖。 圖2所不的係用於本發明一實施例的後視圖。 圖2-1所示的係本發明一實施例的透視後視圖。 圖3所不的係本發明一實施例的前視圖。 圖3 -1所示的係本發明一實施例的後視圖。 圖4所示的係本發明一實施例的處理流程圖。 熟練的技術人士便會明白,圖中所示的元件係以簡化 與π楚為目的來顯示而沒有依照比例繪製。舉例來說,圖 中某些το件的維度可能會相對於其它元件被放大,以便幫 助改善對本發明之實施例的理解。 【主要元件符號說明】 220 電阻加熱 220-1 電阻加熱 222 正弦加熱 224 波谷 226 内徑 228 波峰 230 外徑 器 器 元件/蜿蜒狀電導體 23 201244523 232 間隔 233 輪輻 234 相向側表面 236 相向側表面 238 電接點 240 電轉接器 240-1 電轉接器 240-2 螺孔 240-3 按壓配接孔 242 電阻加熱器 242-1 電阻加熱器 244 加熱器組件 244-1 加熱器組件 246 第一加熱器 246-1 第一加熱器 248 處理流程圖 248-2 步驟 248-4 步驟 248-6 步驟 24w=2 n Gr-S (2) The rush w is the cross-sectional width of the heating element; the radial position on the heating element; the redundancy is the pi in the mathematical constant; G is the geometric coefficient equal to the angle of the spoke of the heating element The width is divided by the angular extent of the heater; and s is the force: the % between the opposing side surfaces of the thermal element. In one or more embodiments of the present invention, the heating element is calculated using a corner width of the heating element, an angular extent of the heater, and a designer-specified value such as the spacing to calculate the heating element as a function of radial position. The width. A wide variety of materials are available for the sinusoidal heating element 22. According to an embodiment of the invention, the sinusoidal heating element 222 includes a refractory electrical conductor. The sinusoidal heating element 222 may comprise graphite, for example, molded graphite. Further modifications may be made, for example, by coating the graphite with a material such as tantalum carbide 13 201244523 for producing a sinusoidal heating element 222, for example, having a graphite conductor coated with carbon carbide. Examples of other materials that may be used for the sinusoidal heating element 222 include, but are not limited to, nichrome, molybdenum, tantalum, tungsten, and other materials for electrical resistance heating. The resistive heater 242 shown in Figure 2 includes two optional electrical contacts 238 that are approximately at each end of the sinusoidal heating element 222. It should be understood that the electric heater 22 can also use other means to achieve the purpose of contact. The electrical contacts 238 shown in the embodiment of Figure 2 may be a tab that is fabricated into a portion of the sinusoidal heating element 222. If necessary, the electrical contacts 238 will be aligned to a surface that is perpendicular to the resistance heater 22A. Lean, the person skilled in the art will appreciate in light of the present invention that the electrical contacts 8 may also employ other alignments. Electrical contact 238 can be used to apply a dc or ac current through sinusoidal heating element 222. An unnecessary configuration of the system peak 228 shown in FIG. Specifically, 2 * shows that the two peaks are shorter than the surrounding peaks; however, ▲ and other peaks may be shorter than the surrounding peaks. This is not necessary to accommodate the 224 1 that can be used to operate and monitor the resistance heating $(4), for example, the attachment structure, the sensor, the holder. It is also possible to make similar corrections to wave 224. (4) Present: Refer to Figure Π, the resistance of the resistance heater 242·1 shown in ^ is: resistance heating... basically the resistance plus the system described in Figure 2, the resistance heater... contains - not necessary , contact 238. 〃 轻 〃 每 每 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 For interference fittings) coupled to electrical contacts 23 8 For certain embodiments of the invention, the braided heating elements may be made of graphite; if necessary, in these embodiments, the electrical adapters It can also be made of graphite. Depending on the situation, the electrical adapter 240 may also be made of a material that is also suitable for electrical connection but not graphite. Referring now to Figure 3, there is shown a front elevational view of a heater assembly 244 in accordance with an embodiment of the present invention. Heater assembly 244 includes a plurality of electrical resistance heaters that are shaped as a ring or a ring segment. More specifically, heating, assembly 244 includes a centrally located first heater 246. The first heater 246 may be a ring heater or a section of a ring heater, as appropriate. Alternatively, the first heater 246 may be substantially the same as the combination of the resistive heater 220 as described in FIG. 1 or the plurality of resistive heaters 242 as described in FIG. Ring heater. Alternatively, the heater 246 may have a configuration other than the resistance heater 220 and the resistance heater 242 described above. The embodiment of the invention illustrated in Figure 3 has a first heater 246 that includes a heating element having a different configuration than the resistive heater 220 and the resistive heater 242. The heater assembly 244 further includes a resistive heater 220 surrounding the first heater 246. The resistive heater 220 is substantially identical to the resistive heater 220 illustrated in FIG. The heater assembly 244 further includes twelve resistive heaters 242 having the shape of a quarter of the ring segments and configured to form a substantially planar concentric annular array of consistently rounded heated regions. . Resistor 15 201244523 The heater 242 is substantially identical to the electric resistance heater 242 illustrated in FIG. Other embodiments of the present invention may also use 12 resistance heaters 242 instead of 12 other resistance heaters 242, and the combination of the ring heater and the ring heater section may also be used. May differ from what is shown in Figure 5. In particular, more than 12 resistance heaters 242 may be used in embodiments of the present invention, or 12 or less resistance heaters 242 may be used in heater assemblies in accordance with embodiments of the present invention. Likewise, more than one resistive heater 220' may be used in a heater assembly in accordance with embodiments of the present invention or any resistive heater 220 may not be used in embodiments of the present invention. The heater assembly according to an embodiment of the present invention includes at least one resistance heater selected from the group consisting of: a resistance heater 22A, a resistance heater 220-1, a resistance heater 242, and a resistance heater μ] . Referring now to Figure 3-1, there is shown a rear elevational view of heater assembly 244-1 in accordance with an embodiment of the present invention. The heater assembly 244_丨 includes a plurality of electrical resistance heaters that are in the form of a ring or a ring segment. More specifically, the heater assembly 244-1 includes a centrally located first heater 246-1. First heater 246-1 includes an electrical contact substantially as described above (an electrical contact is not visible in Figure 3-1) and an electrical adapter (e.g., substantially coupled to the same as described above) The electrical adapter of the isoelectric contact 24〇_1) β, as the case may be, the first heater 246-1 may be a ring heater or a section of a ring heater. Alternatively, the first heater 2 may be a resistive heater 2204 substantially as described in FIG. 1-1 or a plurality of resistive heaters 242 as described in FIG. 2-1. _ 丨 组合 combination of the same ring body heating 16 201244523. Alternatively, the 'first heater' may have the configuration other than the resistance heater 220-"" and the resistance heater 242-1 described above. The embodiment of the invention shown herein has a first heater 246] comprising a heating element 'which has the same configuration as the resistance heater 22 (M and the resistance heater 2). Heater la # 244- 1 further comprises a resistance heater 22〇_丨 surrounding the first heater 246-i. The resistance heater Mo" is substantially the same as the resistance heater 220" shown in the figure. Electrical relay of the resistance heater 2204 The device 24〇-丨 is also shown in Figure 3-1. The heating benefit component 244-1 further includes 12 resistive heaters 242 - which have the shape of a quarter ring segment and are configured to The substantially planar concentric annular array J resistance heater 242-1 forming a substantially circular heated region is substantially the same as the resistive heater 242-..1 described in FIG. 2_丨. The resistance heater 242-1 The electrical adapter 24 (m is also shown in Figure 3-1. Another apparatus according to the present invention is an electrical resistance heater comprising a graphite heating element having one or more graphite electrical connections. The electric resistance heater further includes one or more graphite electrical adapters, for example, The electrical adapter 24A and the electrical adapter 24A_i. The or more electrical adapters are press-fitted to the one or more graphite electrical contacts. Still further comprising a layer of tantalum carbide for coating the heating element and the electrical adapter. The tantalum carbide coating is coupled to the one or more electrical turns by press-bonding the one or more graphite electrical contacts The binder is then applied. The tantalum carbide coating can be applied using a high temperature chemical vapor deposition process. The apparatus described above can be used in a variety of treatments in accordance with embodiments of the present invention. Referring to Figure 4, there is shown an exemplary process flow diagram 248 in accordance with the present invention - an embodiment. The exemplary process flow diagram 248 includes a non-exhaustive step, and additional steps may be added thereto (in the figure) It will be apparent to those skilled in the art that many variations of the modifications and alternatives will be apparent. The exemplary process flow diagram 248 for heat treating a substrate as shown in Figure 4 includes providing a substrate 248_2; a heater or heater assembly 2 48-4, as described above and illustrated in Figures}, Figure 2, Figure 2, Figure 2-1, Figure 3' and Figure 3_丨. A specific example of a heater suitable for use in the exemplary process flow diagram 248 is The resistive heater 22A, the resistive heater 22 (M, the resistive heater 242, the resistive heater 242-丨, and the first heater 246), the exemplary process flow diagram 248, further includes utilizing the heater or heating assembly The substrate is heated to a processing temperature and/or a holding-treatment temperature of 2 4 8 - 6. Where necessary, the exemplary process flow diagram 248 may also include one or more modifications of additional embodiments of the invention. It may be included, and the extension is not limited to those described below. A processing chamber is provided which is capable of holding the or more substrates, such that heat treatment is performed in the processing chamber. A plurality of substrates are provided for substantially simultaneous substrate processing. The substrate is rotated during heating of the substrate 248-6. A substrate 248_2 is provided comprising a substrate including a semiconductor wafer. A substrate 248_2 is provided comprising a substrate for fabricating an electronic and/or optoelectronic device. Embodiments of the present invention also include methods and apparatus for growing layers of various materials (eg, element 18 201244523 materialized delta, compound semiconductor, and compound dielectric materials). The following lines may be used to design according to the present invention. An exemplary procedure for an embodiment of the present invention. The configuration of the heater of this design is similar to that of the ring heater shown in Figure 1. The heater input data is: inner diameter: 2.75 inches, outer diameter · 4 85 inches; spacing between opposite side surfaces: 〇._ 夬吋, heater material: modulus of resistance of about 0.00049 ohms Plastic graphite 'heater angle size: substantially 36 〇. Light weight: ι〇ι; spoke + interval angular width: 3.545 degrees; section length: 〇 · 21 inches; and initial test thickness: 0.135 inches. The input data for this example will be calculated in accordance with equations (1) and (7) to be incremented by an amount equal to the length of the segment; the orientation of the heating element profile and the thickness of the heating element profile to provide from the heater Calculation of the inner diameter to the outer diameter range. These calculations are shown in Table 1. In this example, the calculations are performed at an equally spaced radial position (which includes the inner and outer diameters) of the _ of the same. Additional correlation calculations are also shown in Table 1, for example, the cross-sectional area of the heating element as a radial bit function and the resistance of the segments three long. The sum of the resistances of the lengths of the segments is the total resistance of the spokes, and multiplying the number of spokes determines the total resistance of the heating element::: also helps to show the designer a way to correct the addition ::: The possible way, 俾 makes it more compatible with the power supply; t uses 帛. Specifically, a designer can choose different first and second thicknesses and calculate the weight of the material, and obtain the heating = 201244523 resistance to compare with the 77 丨帀 or optimal resistance used with a power supply. . This repetitive processing will proceed to (4) until the total resistance of the heating element and the resistance used in conjunction with the power supply are optimally matched. Although the present invention has been described in the foregoing specification with reference to a specific embodiment of the invention, it will be understood by those skilled in the art that various modifications and changes can be made. It will be apparent from the scope of the invention as set forth in the scope of the claims below. Accordingly, the specification and the drawings are to be construed as illustrative and not limiting, and all such modifications are intended to be included within the scope of the invention. The benefits, other advantages, and solutions of the present invention have been described above with regard to specific embodiments; however, such benefits, advantages, solutions to problems, and any benefits, advantages, or solutions may occur or highlight The (four) (multiple) components of their importance shall not be considered as a critical, necessary, or essential feature or component of any or all of the scope of the patent application. The words "including", "including", "having", "minimum one" or any other changes used herein are intended to be inclusive and inclusive. For example, the processing, method 'article, or device' that includes the four-part list is not necessarily limited to the elements, and may include items that are not explicitly listed or are not. . Or the intrinsic other elements of the H-thword 'unless the reference to 4 has the opposite meaning, otherwise or (〇Γ)" refers to the inclusive or inclusive or not exhaustive (excluslve or For example, any of the following meets the condition A or B: A is true (or exists) and B is pseudo (or non-existent), a is pseudo (or not 20 201244523 exists) and B is true (or exists) π This article is a true (or exist). Although it has been illustrated and illustrated, the specific embodiment of the X-month is obvious; no, _ 1糸' can be changed in detail in the text, and the illusion of the embodiment is explained. ^ The scope of the patent application and its domain. The true spirit and scope of the invention defined in the scope of attack 21 201244523 Calculated input data wheel light number set 101 Section resistance (ohm) 0.0045 0.0048 0.0052 0.0055 0.0058 0.0062 0.0065 0.0069 0.0072 0.0076 0.0079 Spoke resistance (ohm) 0.0681 heater Resistance (ohm) 6.8773 angular width (degrees) 3.545 Heater element profile thickness seven 吋) 0.2085 0.1733 0.1464 0.1253 0.1085 0.0949 0.0837 0.0744 0.0666 ' 0.0599 0.0542 螽A Beam 2 0.135 Heater element profile width (inch) 0.1101 0.1231 0.1361 0.1491 0.1621 0.1751 0.1881 0.201 1 0.2141 0.2271 0.2401 0.00049 /—N Coin t V0钵^ t 0.02297 1 | 0.02134 0.01993 0.01869 0.01760 0.01662 0.01575 0.01497 !_ 0.01426 0.01361 0.01302 Section length (English) CN 〇 Test thickness (English) 0.135 0.117 0.102 0.089 0.079 0.071 0.063 0.057 0.052 0.047 0.043 Outer diameter (inch) 4.85 Section width (inch) 0.1701 1 | 0.1831 0.1961 0.2091 0.2221 0.2351 0.2481 0.2611 0.2741 0.2871 0.3001 Inner diameter (English) Bu (N circumference (English) 17.28 18.60 19.92 inch C N »—Η <Ν v〇yn CN (N 00 oo cn CN o CN (N 26.52 27.83 in On <N 30.47 radial position (English) Bu (N 2.96 卜 cn cn m O 00 〇英寸4.22 4.43 4.64 00 inch 8 201244523 [Simplified illustration of the drawings] Fig. 1 is a rear view of an embodiment of the invention. Fig. 1-1 is a perspective rear view of an embodiment of the invention. 2 is a perspective view of an electrical adapter in accordance with an embodiment of the present invention. FIGS. 1-3 are perspective cross-sectional views of an electrical adapter in accordance with an embodiment of the present invention. 2 is a rear view of an embodiment of the present invention. 2-1 is a perspective rear view of an embodiment of the present invention. Figure 3 is a front elevational view of an embodiment of the present invention. Figure 3-1 is a rear elevational view of an embodiment of the present invention. 4 is a process flow diagram of an embodiment of the present invention. Those skilled in the art will appreciate that the elements shown in the figures are shown for simplicity and for the purpose of illustration. For example, the dimensions of some of the elements in the figures may be exaggerated relative to the other elements in order to improve the understanding of the embodiments of the invention. [Main component symbol description] 220 resistance heating 220-1 resistance heating 222 sinusoidal heating 224 trough 226 inner diameter 228 wave crest 230 outer diameter device element / braided electrical conductor 23 201244523 232 interval 233 spoke 234 opposite side surface 236 opposite side surface 238 Electrical Contact 240 Electrical Adapter 240-1 Electrical Adapter 240-2 Screw Hole 240-3 Pressing Adapter Hole 242 Resistance Heater 242-1 Resistance Heater 244 Heater Assembly 244-1 Heater Assembly 246 A heater 246-1 first heater 248 process flow chart 248-2 step 248-4 step 248-6 step 24

Claims (1)

201244523 七、申請專利範圍: 1.一種電阻加熱器,其包括—正弦加熱元件,該正弦加 熱元件具有被設置成用以描述一外徑的複數個波峰以及被 設置成用以描述一内徑的複數個波谷,該加熱元件的剖面 寬度係徑向位置的第一函數而該加熱元件的剖面厚度則係 徑向位置的帛二函數,俾使得該加熱元件會在每—個徑向 位置處提供—實質上,以的熱通量並且在該加熱元㈣相 向側表面之間形成一實質上恆定的間隔。 2.如申請專利範圍第丨項的電阻加熱器,其中該正弦加 熱元件會被配置成用以加熱一實質平坦的表面。0 器,其十該正弦加 ,其中r為該加熱 3 ·如申凊專利範圍第1項的電阻加熱 j元件的剖面厚度具有f(l/r)的函數形式 器上的徑向位置。 熱器,其中該正弦加 ,其中r為該加熱器 4.如申请專利範圍第1項的電阻加 熱元件的剖面寬度具有f⑴的函數形式 上的徑向位置。 5·如申請專利範圍第&quot;員的電阻加熱器,其 ’“:牛的剖面面積具有⑴⑽他⑼的函數形式。/ 〇 一.如申請專利範圍第丨項的電阻加熱盆 熱元件的剖面厚度係推導自下面的等式、…亥正弦加 其中, ^=2 π ri2Gti/(2^ r2G-Sr) 為該加熱元件的剖面厚度, 為δ亥加熱元件上的徑向位置, 25 201244523 π為數學常數中的圓周率, ri為3亥加熱元件的内經, t i為初始試驗厚度, G為幾何係數,其等於該加熱元件之 除以該加熱器的角大小,以及 &quot;&quot;田的角寬度 S為該加熱元件的相向側表面之間的間p。 7.如申請專利範圍第1項的電阻加熱器,其: 熱元件的剖面寬度係推導自下面的等式:、該正弦加 w=2 7Γ Gr-S 其中, w為該加熱元件的剖面寬度, r為該加熱元件上的徑向位置, π為數學常數中的圓周率, 元件輪輻的角寬度除 G為幾何係數,其等於該加熱 以該加熱器的角大小,以及 的間隔。 其中該加熱元 S為該加熱元件的相向側表面之間 8.如申請專利範圍第1項的電阻加熱器 件包括—耐火導電體。 9.如申請專利範圍第 件包括石,墨。 1項的電阻加熱器 其中該加熱元 其中該加熱 其中該加熱 料:錄鉻合 10. 如申請專利範圍第丨項的電阻加熱器, 元件包括塗佈著碳化矽的石墨。 11. 如申請專利範圍第1項的電阻加熱器, 元件包括—選擇自由下面所組成之群令的材 ⑧ 26 201244523 金、钥、组、以及鶴。 12. 如申請專利範圍第1項的電阻加熱器,其中該正弦 加熱元件的相向側表面之間的間隔係處於真空或是被氣體 填充。 13. 如申請專利範圍第1項的電阻加熱器,其進一步包 括多個電接點和予以按壓配接耦合的多個電轉接器。 •如申請專利範圍第&quot;員的電阻加熱器,其進一步包 括多個電接點和予以按壓配接搞合的多個電轉接器以及一 被塗敷至該加熱元件及該等電轉接器的熱沉積塗料。 15. 如申請專利範圍第μ的電阻加熱器,其進 括多個石墨電接點以及和按壓 接耦合到它們的多個石墨 電轉接以及一被塗數$兮„ 、一山 坌敷至忒加熱兀件及該等電轉接器的熱 &gt;儿積碳化碎塗料。 …、 16. —種用於處理基板的系 銘if!筮,s °豕糸統包括如申請專利 範圍第1項的至少一加熱器。 17. —種加熱器組件,其包括 、一 7 T 口月寻利軏圍第1項的 至乂 電阻加熱器。 18. —種電阻加熱器,其包括: 石墨加熱元件,其具有多個石墨電接點; 多個石墨電轉接器’其等會被按 轉合 墨電接點;以及 聊。至a寺石 一熱沉積碳化矽塗層。 種熱處理基板的方法,該方法包括. 揭1供一或多個基板; 27 201244523 提供-電阻加熱器,其包括一正弦加熱元件,, 加熱元件具有被設置成用以描述一外徑的複數個波::弦 被設置成用以描述一内徑的複數個波谷及 ^ ”,、八· 1千的剖 面又係控向位置的第一函數而該加熱元件的剖面厚度則 係徑向位置的第二函數,俾使得該加熱元件會在每—個徑 向位置處提供一實質上恆定的熱通量並且在該加熱元件的 相向側表面之間形成一實質上恆定的間隔;以及 利用S亥加熱器來加熱該等一或多個基板。 20.如申請專利範圍第19項的方法,其進一步包括在該 加熱期間旋轉該等一或多個基板。 21.如申請專利範圍第ip項的方法,其中該等一或多個 基板包括半導體晶圓。 22·如申請專利範圍第19項的方法,其中該等一或多個 基板包括用於製造電子及/或光電元件的基板。 八、圖式: (如次頁) 28 ⑧201244523 VII. Patent application scope: 1. An electric resistance heater comprising: a sinusoidal heating element having a plurality of peaks arranged to describe an outer diameter and arranged to describe an inner diameter a plurality of troughs, the cross-sectional width of the heating element being a first function of the radial position and the cross-sectional thickness of the heating element being a function of the radial position, such that the heating element is provided at each radial position - In essence, a heat flux is applied and a substantially constant spacing is formed between the opposing side surfaces of the heating element (four). 2. The electric resistance heater of claim </RTI> wherein the sinusoidal heating element is configured to heat a substantially flat surface. 0, which is ten sinusoidal plus, where r is the heating. 3. The resistive heating of the elemental element of claim 1 is the radial position on the functional form of the f(l/r). A heater, wherein the sinusoidal addition, wherein r is the heater 4. The cross-sectional width of the resistance heating element of claim 1 has a radial position in the form of a function of f(1). 5. For example, if the resistance heater of the applicant's patent range is &quot;": the cross-sectional area of the cow has the functional form of (1) (10) he (9). / 〇 1. The section of the resistance heating basin of the patent application category 丨The thickness is derived from the following equation, where the sine is added, ^=2 π ri2Gti/(2^ r2G-Sr) is the cross-sectional thickness of the heating element, which is the radial position on the heating element, 25 201244523 π For the pi in the mathematical constant, ri is the inner diameter of the 3 hai heating element, ti is the initial test thickness, and G is the geometric coefficient, which is equal to the angular division of the heating element divided by the heater, and &quot;&quot; The angular width S is the distance p between the opposite side surfaces of the heating element. 7. The electric resistance heater of claim 1, wherein: the cross-sectional width of the thermal element is derived from the following equation: w=2 7Γ Gr-S where w is the cross-sectional width of the heating element, r is the radial position on the heating element, π is the pi in the mathematical constant, and the angular width of the component spokes is divided by G as the geometric coefficient, which is equal to The heating is The angular size of the heater, and the interval therebetween, wherein the heating element S is between the opposite side surfaces of the heating element. 8. The electric resistance heating device according to claim 1 includes a fire-resistant electrical conductor. The first part of the range includes stone, ink. The electric resistance heater of item 1 is the heating element, wherein the heating material is heated: the chromium alloy is 10. The electric resistance heater according to the scope of the patent application, the component comprises coated with lanthanum carbide. Graphite 11. If the electric resistance heater of the first application of the patent scope, the components include: - select the material of the group consisting of the following 8 26 201244523 gold, key, group, and crane. 12. If the scope of patent application is 1 The electric resistance heater of the item, wherein the space between the opposing side surfaces of the sinusoidal heating element is in a vacuum or filled with a gas. 13. The electric resistance heater according to claim 1, further comprising a plurality of electric contacts And a plurality of electrical adapters that are coupled to be press-fitted. • A resistive heater as claimed in the patent application, which further includes a plurality of electrical contacts and Pressing and fitting a plurality of electrical adapters and a thermal deposition coating applied to the heating element and the electrical adapters. 15. Graphite electrical contacts and a plurality of graphite electrical switches coupled to them and a number of coated wires, a heat applied to the heat exchanger and the electrical adapters Carbonized crushed paint. ..., 16. A system for processing a substrate, if, 筮, s ° includes at least one heater as in the first item of the patent application. 17. A heater assembly comprising: a 7T port to find the first to the resistance heater. 18. An electric resistance heater comprising: a graphite heating element having a plurality of graphite electrical contacts; a plurality of graphite electrical adapters 'which are pressed to switch the ink contacts; and a chat. To a temple stone a thermal deposition of tantalum carbide coating. A method of heat treating a substrate, the method comprising: providing one or more substrates; 27 201244523 providing a resistance heater comprising a sinusoidal heating element, the heating element having a plurality of outer diameters configured to describe an outer diameter The wave::string is set to describe a plurality of valleys of an inner diameter and ^", and the profile of eight thousand is the first function of the position of the control and the thickness of the section of the heating element is the radial position. a second function, such that the heating element provides a substantially constant heat flux at each radial position and a substantially constant spacing between opposing side surfaces of the heating element; and utilizing S A heater for heating the one or more substrates. 20. The method of claim 19, further comprising rotating the one or more substrates during the heating. 21. As claimed in claim ip The method, wherein the one or more substrates comprise a semiconductor wafer. The method of claim 19, wherein the one or more substrates comprise an electronic and/or photovoltaic element. The substrate of the piece. Eight, the pattern: (such as the next page) 28 8
TW100126765A 2010-07-30 2011-07-28 Electrical resistance heater and heater assemblies TW201244523A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US36907710P 2010-07-30 2010-07-30

Publications (1)

Publication Number Publication Date
TW201244523A true TW201244523A (en) 2012-11-01

Family

ID=45530765

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126765A TW201244523A (en) 2010-07-30 2011-07-28 Electrical resistance heater and heater assemblies

Country Status (2)

Country Link
TW (1) TW201244523A (en)
WO (1) WO2012016230A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105634B2 (en) * 1990-08-14 1994-12-21 日本碍子株式会社 Semiconductor wafer heating device
KR100197201B1 (en) * 1995-05-11 1999-06-15 모리노리오 Sheet-like heating material
US5970214A (en) * 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
GB2353456B (en) * 1999-08-13 2004-08-25 Strix Ltd Electric heaters
JP2002373846A (en) * 2001-06-14 2002-12-26 Ibiden Co Ltd Ceramic heater and hot plate unit for semiconductor manufacturing and inspection apparatus
JP2005032933A (en) * 2003-07-10 2005-02-03 Hitachi Kokusai Electric Inc Substrate processor

Also Published As

Publication number Publication date
WO2012016230A3 (en) 2012-05-03
WO2012016230A2 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
EP0964433B1 (en) Multiple-layered ceramic heater
CA2381597C (en) Circuit pattern of resistance heating elements and substrate-treating apparatus incorporating the pattern
EP2111727B1 (en) Encapsulated graphite heater and process
TW575934B (en) A heating apparatus
WO1998051127A1 (en) Deposited resistive coatings
KR20070049543A (en) Ceramics heater and method for manufacturing the ceramics heater
US11490464B2 (en) Heater unit
JP2008270198A (en) Heating device
BRPI0720719A2 (en) HEATING ELEMENT WITH SELF-REGULATING ELECTRIC RESISTANCE
CN105379415A (en) Coated graphite heater configuration
CN110547041A (en) Sheath heater
CN106255244A (en) A kind of thin film heater improving temperature field uniformity
Kang et al. Highly flexible, hydrophobic, and large area plasma‐polymer‐fluorocarbon/Cu/SiNx transparent thin film heater and thermotherapy pad application
EP3187024B1 (en) Specific heater circuit track pattern coated on a thin heater plate for high temperature uniformity
US20120145701A1 (en) Electrical resistance heater and heater assemblies
Wang et al. Bush‐Shaped Vertical Graphene/Nichrome Wire for Blackbody‐Like Radiative Heating
TWM492529U (en) Substrate support assembly using substrate support pedestal with heater
WO2017117873A1 (en) Double-sided thick film heating element having high thermal conductivity
TW201244523A (en) Electrical resistance heater and heater assemblies
KR100979278B1 (en) Heat generation sheet and fabrication method thereof
US20170238368A1 (en) Flexible resistive heating element
GB2472809A (en) Electric water heater
TWI636702B (en) Carbon heater and method for manufacturing carbon heater
JP4307237B2 (en) Film heater and manufacturing method thereof
JP2819018B2 (en) Resistance heating heater