TW201243966A - Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief - Google Patents

Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief Download PDF

Info

Publication number
TW201243966A
TW201243966A TW101101694A TW101101694A TW201243966A TW 201243966 A TW201243966 A TW 201243966A TW 101101694 A TW101101694 A TW 101101694A TW 101101694 A TW101101694 A TW 101101694A TW 201243966 A TW201243966 A TW 201243966A
Authority
TW
Taiwan
Prior art keywords
insulating layer
layer
conductive layer
semiconductor die
semiconductor
Prior art date
Application number
TW101101694A
Other languages
Chinese (zh)
Other versions
TWI528466B (en
Inventor
Yao-Jian Lin
Pandi C Marimuthu
Kang Chen
Hin Hwa Goh
Yu GU
Il-Kwon Shim
Rui Huang
Seng Guan Chow
Jian-Min Fang
Xia Feng
Original Assignee
Stats Chippac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/333,739 external-priority patent/US8456002B2/en
Application filed by Stats Chippac Ltd filed Critical Stats Chippac Ltd
Publication of TW201243966A publication Critical patent/TW201243966A/en
Application granted granted Critical
Publication of TWI528466B publication Critical patent/TWI528466B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.

Description

201243966 六、發明說明·· 【發明所屬之技術領域】 本發明一般關於半導體裝置,尤其關於形成具有沉積 在半導體晶粒上用於應力緩和的絕緣層之晶圓層級晶片尺 度封裝(wafer level chip scale package ’ WLCSP)的半導體裝 置和方法* 【先前技術】 半導體裝置通常出現於現代的電子產品。半導體裝置 的電元件數量和密度多所變化。個別的半導體裝置一般包 含一種電元件’譬如發光二極體(light emitting diode, LED)、小訊號電晶體、電阻、電容、電感以及功率金屬氧 化物半導體場效電晶體(metal 〇xide semie()nduet()r field effect transistor,MOSFET)。整合的半導體裝置典型而言包 含數以百計到數以百萬計的電元件。整合的半導體裝置範 例包括難制器、微處理n、電荷搞合裝置(charged_c〇upied device CCD)、太陽此電池以及數位微反射鏡裝置⑷g“al micro-mirror device,DMD)。 半導體裝置執仃廣泛的功能,例如高速計算、傳送和 接收電磁訊號、控制電子裝置…光轉換成電力、產生 以用於電視顯示。半導體裝置出現於娛樂、通訊、 功率轉換、網路、電腦、消費性 也出現於軍事用途、航㈣體裝置 半導體裳置利用丰㈣心、辦公設備。 料的電性質。半導體材料的 201243966 原子結構允許藉由施加電場或基礎電流或經由摻雜過程來 操控其導電度。摻雜把雜f引人半導體材料心調 制半導體裝置的導電度。 半導體裝置包含主動和被動電結構。主動結構包括雙 極和場效電晶冑,其控制電流的流動。藉由改變摻雜程度 和施加電場或基礎電流,則電晶體促進或限制電流的流 動。被動結構包括電阻、電容、電感’其在電壓和電产之 間產生執行多樣電功能所必需的關係。被動和主動結構電 連接以形成電路’其使半導體裝置能夠執行高逮計算和其 他有用的功能。 半導體裝置一般使用二複雜的製程來製造,亦即前端 製造和後端製造,纟涉及數以百計的步驟。前端製造涉及 ,半導體晶圓的表面上形成多個晶粒。每個晶粒典型而言 β同的並包含電連接纟動和被動元件所形成的電 路。後端製造涉及從完成的晶圓單離出單獨的晶粒,並且 封裝晶粒以提供結構支持和環境隔離。在此所用的「半導體 晶粒」(semiconductor die) 一詞是指該詞的單數和複數形 》據此可以心單一半導體裝置和多個半導體裝置。 半導體製造的一項目標是要製造較小的半導體裝置。 較j的裝置典型而言消耗較少的功率、具有更高的性能表 現、可以更有效率地製造。此外,較小的半導體裝置具有 較:的佔據面I* ’此對於較小的末端產品是合意的。較小 的曰a粒尺寸可以藉由改善前端製程而達成,其造成的晶粒 具有較小、更兩密度的主動和被動元件。後端製程可以藉 201243966 由改善交互電連接和封裝材料而達成具有較小佔據面積的 半導體裝置封裝。 於傳統的扇出晶圓層級晶片尺度封裝(fan 〇ut wafer level chip scale package,F〇 WLCSp),具有接觸墊的半導 體晶粒乃安裝於載體。包封物沉積於半導體晶粒和載體 上。然後移除載體,並且把組合互連結構形成於包封物和 半導體晶粒上。半導體晶粒於形成互連結構的期間受到龜 裂、彎翹和其他損傷。組合互連結構的重分布層在應力下 易於龜裂尤其疋於溫度循環(temperature cycling,TC)和 遞進入晶粒。龜裂問題在具有超低介電常數⑷之絕緣層的 裝於電路板上的溫度循環(temperature cyc丨es⑽州, TCOB)期間,該龜裂可以傳遞穿過絕緣層到半導體晶粒和接 觸墊而造成缺陷。龜裂可以從半導體晶粒的邊緣和側壁傳201243966 VI. INTRODUCTION OF THE INVENTION TECHNICAL FIELD The present invention relates generally to semiconductor devices, and more particularly to forming a wafer level chip scale having an insulating layer deposited on a semiconductor die for stress relaxation. Semiconductor device and method of package 'WLCSP> * [Prior Art] Semiconductor devices are commonly found in modern electronic products. The number and density of electrical components of semiconductor devices vary widely. Individual semiconductor devices typically include an electrical component such as a light emitting diode (LED), a small signal transistor, a resistor, a capacitor, an inductor, and a power metal oxide semiconductor field effect transistor (metal 〇xide semie(). Nduet()r field effect transistor, MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include a hard-to-manufacture device, a micro-processing n, a charge-capping device (CCD), a solar cell, and a digital micro-mirror device (4) g "al micro-mirror device (DMD)." A wide range of functions, such as high-speed computing, transmitting and receiving electromagnetic signals, control electronics...light conversion to electricity, generation for television display. Semiconductor devices appear in entertainment, communications, power conversion, networking, computers, and consumer In military applications, the use of semiconductor devices in the military (four) body device utilizes the electrical properties of the materials. The electrical properties of the materials. The atomic structure of the semiconductor material 201243966 allows the conductivity to be manipulated by applying an electric field or a base current or via a doping process. The conductivity of the semiconductor device is modulated by a semiconductor device. The semiconductor device includes active and passive electrical structures. The active structure includes bipolar and field effect transistors, which control the flow of current by changing the doping level and When an electric field or a base current is applied, the transistor promotes or limits the flow of current. Passive structure Including resistors, capacitors, inductors, which create the necessary relationship between voltage and electrical output to perform diverse electrical functions. Passive and active structures are electrically connected to form a circuit that enables the semiconductor device to perform high-accuracy calculations and other useful functions. Semiconductor devices are typically fabricated using two complex processes, namely front-end fabrication and back-end fabrication, involving hundreds of steps. Front-end fabrication involves the formation of multiple grains on the surface of a semiconductor wafer. For example, β is the same and contains circuitry that electrically connects the sway and passive components. Back-end fabrication involves separating individual dies from the completed wafer and packaging the dies to provide structural support and environmental isolation. The term "semiconductor die" as used herein refers to the singular and plural forms of the word, whereby a single semiconductor device and a plurality of semiconductor devices can be used. One goal of semiconductor manufacturing is to make smaller semiconductor devices. Devices other than j typically consume less power, have higher performance, and can be manufactured more efficiently. In addition, smaller semiconductor devices have a more occupied surface I*' which is desirable for smaller end products. The smaller 曰a grain size can be achieved by improving the front end process, which results in smaller, more dense active and passive components. The back-end process can be used to achieve a semiconductor device package with a small footprint by improving the electrical connection and packaging materials by 201243966. In a conventional fan-level wafer level chip scale package (F〇 WLCSp), a semiconductor die having a contact pad is mounted on a carrier. The encapsulant is deposited on the semiconductor grains and the carrier. The carrier is then removed and the combined interconnect structure is formed over the encapsulant and the semiconductor die. Semiconductor grains are subject to cracking, buckling, and other damage during the formation of the interconnect structure. The redistribution layer of the combined interconnect structure is prone to cracking under stress, especially due to temperature cycling (TC) and ingress into the grains. Cracking Problem During the temperature cycling (temperature cyc丨es (10) state, TCOB) on an insulative layer with an ultra-low dielectric constant (4), the crack can pass through the insulating layer to the semiconductor die and contact pads. And caused defects. Cracks can be transmitted from the edges and sidewalls of semiconductor grains

Fo-WLCSP是常見的。Fo-WLCSP is common.

【發明内容】 當形成WLCSSUMMARY OF THE INVENTION When forming WLCS

201243966 體晶粒和包封物上。互連結構電連接到第一導電層,並且 第-絕緣層於形成互連結構的期間提供應力緩和。 於另-具體態樣,本發明是製作半導體裝置的方法, 其包括以下㈣:提供半導體晶粒;形成第―導電層於半 導體晶粒的表面上;形成第—絕緣層於半導體晶粒和第一 導電層上;沉積包封物於半導體晶粒上;以及形成互連結 構於半導體晶粒和包封物上。互連結構電連接到第一導電 層,並且第一絕緣層於形成互連結#的期間提供應力緩和。 於另一具體態樣,本發明是製作半導體裝置的方法, 其包括以下步冑:提供半導體晶粒;形成第一導電層於半 導體晶粒的表面上;沉積包封物於半導體晶粒上;形成第 一絕緣層於半導體晶粒和第一導電層上;以及形成互連結 構於半導體晶粒和包封物上。互連結構電連接到第一導電 層’並且第一絕緣層於形成互連結才冓的期間提供應力緩和。 於另一具體態樣,本發明是半導體裝置,其包括半導 體晶粒和形成於半導體晶粒表面上的第一導電層。包封物 沉積於半導體晶粒上。第一絕緣層形成於半導體晶粒和第 導電層上。互連結構形成於半導體晶粒和包封物上◊互 連結構電連接到第一導電層,並且第一絕緣層於形成互連 結構的期間提供應力緩和。 【實施方式】 於底下參考圖式的敘述,本發明是以一或更多個具體 態樣來描述,纟中相同的數字代表相同或類似的元件。雖 201243966 然本發明是以達到本發明目的之最佳模式來敘述,熟於此 技藝者將體會出其打算涵蓋可以包括於本發明精神和範圍 裡的替代方案、修改和等效者,就如 凡仰以下揭不和圖式所支 持之所附申請專利範圍及其等效者所界定的。 半導體裝置一般使用二複雜的製程來製造:前端製造 和後端製造。前端製造涉及在半導體晶圓的表面上形成多 個晶粒。晶圓上的每個晶粒包含主動和被動電元件,其係 電連接以形成具有功能的電路。例如電晶體和二極體的主 動電元件具有控制電流流動的能力。例如電容電感電 阻、變壓器的被動電元件則在電壓和電流之間產生執行電 路功能所必需的關係。 被動和主動元件藉由一系列的製程步驟而形成於半導 體晶圓的表面上,包括摻雜、沉積、光微影術、蝕刻、平 坦化。摻雜藉由例如離子植入或熱擴散的技術而把雜質引 入半導體材料裡。摻雜過程修改了主動裝置之半導體材料 的導電度,而把半導體材料轉變為絕緣體、導體,或者回 應於電場或基礎電流而動態改變半導體材料的導·電度。電 晶體包含變化摻雜種類和程度的安排區域,其係必須的以 使電晶體在施加電場或基礎電流時能夠促進或限制電流的 流動。 主動和被動元件是由具有不同電性質的多層材料所形 成°諸層可以由各式各樣的沉積技術所形成,該技術部分 是由所要沉積的材料類型所決定。舉例而言,薄膜沉積可 月涉及化學氣相沉積(chernical vapor deposition,CVD)、物 201243966 . 理氣相〉儿積(Physical vaP〇r deposition,PVD)、電解電鍍、 • 無電鍍等過程。每層一般會做出圖案以形成主動元件、被 動元件或元件之間電連接的部分。 諸層可以使用光微影術來做出圖案,其涉及沉積光敏 材料(譬如光阻)於要做出圖案的層上。圖案使用光而從光罩 轉移至光阻。於-具體態樣,使用溶劑來移除光阻圖案受 到光的部分’而暴露出要做出圖案之部分的底層。於另一 具體態樣,使用溶劑來移除光阻圖案未受到光的部分(負光 阻),而暴露出要做出圖案之部分的底層。再移除光阻的剩 餘者,則留下做出圖案的層。另外可以選擇的是某些種類 的材料使用例如無電鑛和電解電錢的技術,而直接沉積材 料到之前沉積/敍刻過程所形成的區域或孔洞裡以做㈣ 做出圖案是基本的操作,其移除半導體晶圓表面上的 邠刀頂層。部分的半導體晶圓可以使用光微影術、光罩、 遮罩、氧化物或金屬移除、照相和刻板、微蝕印術來移除。 先微影術包括於光柵或光罩中形成圖案以及把圖案轉移到 =晶圓的表面層裡。光微影術以二步驟的過程而在半 導體曰曰圓的表面上形成主動和被動元件的水平維产 光栅或遮罩上的圖案轉移到光阻層裡。光阻是: ’當其曝光時會經歷結構和㈣的 質的改變過程乃發生成負作用光阻或正作用光阻:=性 : = 圓表面裡,刻移除半導體晶圓頂:未 U覆…分時便發生了轉移。光阻的化學性質致使 9 201243966 光阻保持實質π好如初並且抵抗化學触刻溶液所做的移 除而此同時,半導體晶圓頂層未被光阻覆蓋的部分則被 移除。形成、曝光、移除光阻的過程以及移除部分半導體 曰曰圓的過程可以根據所用的特定阻劑和想要的結果來加以 修改。 於負作用光阻’光阻曝光而於已知為聚合的過程中從 可溶的狀態改變為不可溶的狀態。於聚合,未聚合的材料 暴露於光線或能量來源’並且聚合物形成抗蝕刻的交聯材 料。於大部分的負阻劑’聚合物是聚異戊二烯。以化學溶 劑或顯影劑移除可溶的部分(亦即未曝光的部分),則於阻劑 層中留下對應於光柵上不透明圖案的孔洞。遮罩的圖案若 存在於不透明的區域則稱之為明場(clear field)遮罩。 於正作用光阻,光阻曝光而於已知為光溶化的過程中 從比較不可溶的狀態改變成極為可溶的狀態。於光溶化, 比較不可溶的阻㈣露於適當的光能而轉變為比較可溶的 狀態。阻劑的光溶化部分可以於顯影過程中由溶劑所移 除。基本的正光阻聚合物是紛甲齡聚合物,也稱為齡甲駿 清漆㈣Kt學溶劑或顯影劑移除可溶的部分(亦即曝光 的部分),則於阻劑層㈣下對應於光柵上透明圖案的孔 洞。遮罩的®案若存在於透明的區域則稱之為暗場 (dark-field)遮罩。 移除半導體晶圓未被光阻覆蓋的頂部之後,移除光阻 的剩餘部份’巾留下做出圖案的層。另外可選擇的是某扭 種類的材料使用例如無電鑛和電解電鑛的技術,而直接二 10 201243966 積材料到之前沉積/蝕刻過程所形成的區域或孔洞裡以做 出圖案。 沉積薄膜材料於既存圖案上可以放大底下的圖案並且 產生不均勻平坦的表面。均勻平坦的表面乃需要用來製造 較小的、更緊密堆疊的主動和被動元件。平坦化可以用來 移除晶圓表面的材料並且產生均句平坦的表面。平坦化涉 及以拋光墊來拋光晶圓的表面。研磨材料和靠性化學品 於拋光期間添加於晶圓表面。結合研磨劑的機械作用和化 學品的腐料用則移除了任何不規則的表面型態,導致均 勻平坦的表面。 …罚从平一化完成 一〜从π日日四取砀早獨的晶 粒’然後封裝晶粒以達到結構支持和環境隔離。為了單一 化晶粒,晶圓沿著稱為錄道或鑛線的晶圓非功能性區域加 以刻劃和折斷0晶圓传用發Μ 。 研日曰圓使用雷射切割工具或鋸片來單一化。 之後’单獨的晶粒安裝於封裝基板’其包括針聊或 以用於與其他的系統元件做互連。形成於半導 2的接觸墊然後連接㈣裝裡的接㈣。電連接可^ 用焊料凸塊、銷栓凸塊、導電膏或接合線來製 二=製材料則沉積於封裝上以提供: 離。完成的封裝然後插入電系統,並且半 二電, 性便可用於其他的系統元件。 、置的功能 圖二示範的電子裝置5。具有晶片載體 板(printed circuit b〇ard \ 丨冲』罨路 裝在其表面上。電子裝置二52’而有多個半導體封裝安 置5〇可以具有一種半導體封裝或多 201243966 種半導體封裝,此視用途而^ β &了示範,不同種類的半 導體封裝顯示於圖1。 電子裝置50可以是單獨的系統,其使用半導體封裝以 執行一或更多種電功能,另外可以選擇的是電子裝置5〇是 更大系統的次元件。舉例而言,電子裝置5〇可以是行動電 冶、個人數位助理(pers〇na| digital assistant,pDA)、數位 攝影機(digital video camera,Dvc)或其他電子通訊裝置的 一部分。另外可以選擇的是電子裝置5〇是圖形卡、網路介 面卡或其他訊號處理卡,其可以插入電腦。半導體封裝可 以包括微處理器、記憶體、特定應用積體電路(appHcati〇n specific integrated circuit ’ ASIC)、邏輯電路、類比電路、 RF電路、個別分離的裝置或其他的半導體晶粒或電元件。 迷你化和減重對於這些產品是基本的,以便被市場所接 受。半導體裝置之間的距離必須縮減以達到更高密度。 於圖1,PCB 52提供一般基板以結構支持和交互電連 接安裝於PCB上的半導體封裝。傳導訊號線54使用蒸鍍、 電解電鍍、無電鍍、網印或其他適合的金屬沉積過程而形 成於PCB 52的表面上或諸層裡。訊號線54提供半導體封 裝、安裝的元件、其他外部系統元件之間各者的電溝通。 訊说線54也板供電力和接地連接至每個半導體封裝。 於某些具體態樣,半導體裝置具有二個封裝層級。第 一層級封裝是用於機械和電附著半導體晶粒於中間載體的 技術》第二層級封裝涉及機械和電附著中間載體於PCB。 於其他具體態樣’半導體裝置可以僅具有第一層級封裝, 12 201243966 其中晶粒直接機械和電安裝於PCb。 為了示範說明,幾種第一層級封裝(包括接合線封裳% 和覆晶58)乃顯示於PCB 52上。此外,幾種第二層級封裝, 包括球柵格陣列(ball grid array , BGA) 6〇、凸塊晶片載體 (bump chip carrier,BCC) 62、雙排腳封裝(‘丨 in_iine package DIP) 64、接點栅格陣列(ian(j grid array,lga) 66、 多晶片模組(multi-chip module,MCM) 68、四面扁平無引線 封裝(quad flat n〇n-leaded package,QFN) 7〇、四面扁平封 裝72,乃顯示安裝於pCB52i。視系統需求而定,建構為 第一和第二層級封裝型式之任意組合的半導體封裝的任何 組合以及其他電子元件都可以連接於PCB 52。於某些具體 態樣’電子裝置50包括單一附著的半導體封裝,而其他具 體態樣需要多個互連的封裝。藉由結合__或更多個半導體 封裝於單-基板上,製造商可以把預先製造的元件併入電 子裝置和系統裡。因為半導體封裝包括精密的功能性,所 &電子裝置可以使用比較便宜的元件和流線的製程來製 、所侍的裝置不太可能失效,並且製造上也比較不昂貴, 以致消費者的花費也較低。 p圖2C顯不範例性的半導體封裝。圖2a示範安裝於 2上之DIP 64的進—步細節。半導體晶粒74包括含 有類比或數位電路的作用 卞用£域,該等電路乃實現成晶粒裡 形成的主動裝置、姑叙壯 曰1 被動裝置、導電層、介電層,並且依據 日曰粒的電設計而交互 ,,+A €運接。舉例而言,電路可以包括形 成於半導體晶粒74之作用F β 戸用區域裡的一或更多個電晶體、二 13 201243966 冬體f感、電谷、電阻、其他的電路元件。接觸墊%是 由導電材料(例如,、銅(Cu)、錫(sn)、錄㈤)、金㈣ 或銀(Ag))所做的—或更多層,並且電連接於半導體晶粒μ 中所形成的電路疋件。於組合⑽“的期間,半導體晶粒 74使用金矽共晶層或黏著材料(例如熱環氧樹脂或環氧樹 脂)而安裝於中間載體78 °封裝體包括絕緣性封裝材料,例 如聚合物或陶-充。導線8〇和接合線以提供半導體晶粒Μ 和CB 52之間的交互電連接。包封物沉積於封裝上以 避免渔氣和顆粒進入封裝而污染晶粒74或接合線82,來保 護不受環境影響。 ,圖2b示範安裝於PCB52上之bcc62的進一步細節。 半導體b曰粒88使用底填物或環氧樹脂黏著材料%而安裝 於載體90上。接合線94提供接觸塾%和%之間的$ 一 層、封裝的互連。模製化合物或包封物⑽沉積於半導體 曰曰粒88和接合線94上以提供用於裝置的實體支持和電隔 離接觸墊1 02使用適合的金屬沉積過程(例如電解電鍍或 無電錄)而形以PCB52的表面上以避免氧化。接觸墊1〇2 電連接於PCB 52中的-或更多條傳導訊號線M。凸塊1〇4 形成於BCC 62的接觸墊98和pcB 52的接觸塾1〇2之間。 於圖2c,半導體晶粒58面向下而安裝於中間載體⑴& 其為覆晶型式的第—居紐·ί+ λ\* i^· j. 罘層級封裝。半導體晶粒58的作用區域 8包3類比或數位電路’其實現成依據晶粒的電設計而形 成的主動裝置、被動裝置,層、介電層。舉例而言, 電路可以包括作用區域108裡的一或更多個電晶體、二極 14 201243966 體、電感、電容、電阻、其他的電路元件。半導體晶粒58 經由凸塊110而電連接和機械連接於載體1〇6。 BGA 60乃電連接和機械連接於pCB 52,其為使用凸塊 1 12之BGA型式的第二層級封裝。半導體晶粒58經由凸塊 110、訊號線II4、凸塊112而電連接於pCB 52的傳導訊號 線54。模製化合物或包封物i丨6沉積於半導體晶粒58和載 體106上以提供用於裝置的實體支持和電隔離。覆晶半導 體裝置提供從半導體晶粒58上之主動裝置到pcB 52上之 導電路線的短導電路徑,以便減少訊號傳遞距離、降低電 容、改善整體電路的表現。於另一具體態樣,半導體晶粒 58可以使用覆晶型式的第—層級封裝、無中間载體1〇6而 直接機械和電連接於PCB 52。 圖3a顯示半導體晶圓12〇,其具有基板材料122 (例如 矽、鍺、砷化鎵、磷化銦或碳化矽)以支持結構。多個半導 體晶粒或構件124形成於晶圓12〇上而由上述之非作用 的、晶粒間的晶圓區域或鋸道126所分開。鋸道126提供 切割區域以單一化半導體晶圓12〇成個別的半導體晶粒 124。 曰曰 圖3b顯示半導體晶圓12〇的部分截面圖。每個半導體 晶粒124#有㈣128和作用表们3〇,後*包含類比或數 位電路’其實現成依據晶粒的電設計和功能而形成於晶粒 裡並且交互電連接的主動裝置、被動裝置、導電層、:電 層。舉例而言,電路可以包括形成在作用區域裡的一 或更多個電晶H、二極體和其他電路元件以實現類比電路 15 201243966 或數位電路,例如數位訊號處理器(dighal signal processor ’ DSP)' ASIC、記憶體或其他訊號處理電路。半 導體晶粒124也可以包含整合的被動裝置(integrated passive device,iPD),例如電感、電容、電阻以用於rf訊 號處理。 導電層132使用PVD、CVD、電解電鍍、無電鍍過程 或其他適合的金屬沉積過程而形成於作用表面13〇上。導 電層132可以是一或更多層的a卜Cu、Sn、Ni、Au、Ag 或其他適合的導電材料。導電層132運作為接觸墊,其電 連接到作用表面130上的電路。接觸墊132可以離半導體 晶粒124邊緣有一第一距離而邊靠邊地配置,如圖3b所 示。另外可選擇的是接觸墊132乃於多列中偏移,致使第 一列的接觸墊配置成離晶粒邊緣為第一距離,而與第一列 交錯之第二列的接觸墊則配置成離晶粒邊緣為第二距離。 於圖3c ’絕緣或介電層134使用旋塗、喷塗、印刷、 層0 PVD、CVD、燒結或熱氧化而形成於作用表面130 和導電層132上》絕緣層134包含一或更多層的二氧化矽 (sad、氮化矽(Si3N4)、氮氧化矽(si〇N)、五氧化钽(丁七〇5)、 氧化鋁(AhO3)、苯並環丁烯(BCB)、聚亞醯胺(ρι)、聚苯並 噁唑(PB0)、聚合物基底的介電膜、有機聚合物膜或其他具 有類似絕緣和結構性質的材料。可以透過光阻層進行蝕刻 過程而移除部分的絕緣層134以暴露導電層132。 於圖3d ’絕緣或介電層1 36使用旋塗、噴塗、印刷、 層合、PVD、CVD、燒結或熱氧化而形成於絕緣層134上。 16 201243966 於一具體態樣’絕緣層13 6乃施加成絕緣層1 3 4上的毯覆 層。絕緣層136包含一或更多層的Si〇2、si3N4、SiQN、201243966 Body grain and encapsulation. The interconnect structure is electrically connected to the first conductive layer, and the first insulating layer provides stress relaxation during formation of the interconnect structure. In another embodiment, the present invention is a method of fabricating a semiconductor device comprising the following (4): providing a semiconductor die; forming a first conductive layer on a surface of the semiconductor die; forming a first insulating layer on the semiconductor die and a conductive layer; depositing an encapsulation on the semiconductor die; and forming an interconnect structure on the semiconductor die and the encapsulant. The interconnect structure is electrically connected to the first conductive layer, and the first insulating layer provides stress relaxation during formation of the interconnect junction #. In another embodiment, the present invention is a method of fabricating a semiconductor device comprising the steps of: providing a semiconductor die; forming a first conductive layer on a surface of the semiconductor die; depositing an encapsulant on the semiconductor die; Forming a first insulating layer on the semiconductor die and the first conductive layer; and forming an interconnect structure on the semiconductor die and the encapsulant. The interconnect structure is electrically connected to the first conductive layer ' and the first insulating layer provides stress relaxation during the formation of the interconnect junction. In another embodiment, the invention is a semiconductor device comprising a semiconductor die and a first conductive layer formed on a surface of the semiconductor die. The encapsulant is deposited on the semiconductor die. A first insulating layer is formed on the semiconductor die and the first conductive layer. The interconnect structure is formed on the semiconductor die and the encapsulant, the interconnect structure is electrically connected to the first conductive layer, and the first insulating layer provides stress relaxation during formation of the interconnect structure. The present invention is described in terms of one or more specific embodiments, and the same numerals represent the same or similar elements. While the present invention has been described in its preferred embodiments, the embodiments of the invention are intended to be The scope of the appended claims and the equivalents thereof are defined by the following claims. Semiconductor devices are typically fabricated using two complex processes: front-end manufacturing and back-end manufacturing. Front end fabrication involves the formation of multiple dies on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components that are electrically connected to form a functional circuit. For example, the active electrical components of the transistors and diodes have the ability to control the flow of current. For example, a capacitive inductive resistor or a passive electrical component of a transformer creates the necessary relationship between voltage and current to perform a circuit function. The passive and active components are formed on the surface of the semiconductor wafer by a series of processing steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the conductivity of the semiconductor material of the active device, converting the semiconductor material into an insulator, a conductor, or dynamically changing the conductivity of the semiconductor material in response to an electric field or a base current. The transistor contains an arrangement of varying doping species and extents that is necessary to enable the transistor to promote or limit the flow of current when an electric field or base current is applied. Active and passive components are formed from multiple layers of material having different electrical properties. The layers can be formed by a wide variety of deposition techniques, depending in part on the type of material to be deposited. For example, thin film deposition may involve chernical vapor deposition (CVD), material 201243966. Physical vaP〇r deposition (PVD), electrolytic plating, and electroless plating. Each layer is typically patterned to form the active component, the driven component, or the portion of the electrical connection between the components. The layers can be patterned using photolithography, which involves depositing a photosensitive material (such as a photoresist) on the layer to be patterned. The pattern is transferred from the reticle to the photoresist using light. In a specific aspect, a solvent is used to remove the portion of the photoresist pattern that is exposed to light' to expose the underlying portion of the portion to be patterned. In another embodiment, a solvent is used to remove the portion of the photoresist pattern that is not exposed to light (negative photoresist) and expose the underlying portion of the portion of the pattern to be patterned. Removing the rest of the photoresist leaves the patterned layer. Alternatively, some types of materials can be used, such as electroless or electrolysis, and the material is deposited directly into the area or hole formed by the previous deposition/synthesis process. (4) Patterning is the basic operation. It removes the top layer of the file on the surface of the semiconductor wafer. Some of the semiconductor wafers can be removed using photolithography, photomasks, masks, oxide or metal removal, photography and stereotyping, and microetching. First lithography involves patterning in a grating or reticle and transferring the pattern into the surface layer of the wafer. Photolithography is a two-step process that forms a horizontal dimension of the active and passive components on the surface of the semiconductor dome. The pattern on the grating or mask is transferred into the photoresist layer. The photoresist is: 'When it is exposed, it undergoes structural changes and (4) the qualitative change process occurs as a negative or positive acting photoresist: = Sex: = In the round surface, the semiconductor wafer top is removed: Not U The transfer took place in a time-sharing manner. The chemical nature of the photoresist causes the 9 201243966 photoresist to remain substantially π and resists removal by the chemical etch solution while the portion of the top of the semiconductor wafer that is not covered by the photoresist is removed. The process of forming, exposing, removing the photoresist, and removing portions of the semiconductor dome can be modified depending on the particular resist used and the desired result. The negative-acting photoresist is exposed to a photoresist and changed from a soluble state to an insoluble state in a process known as polymerization. Upon polymerization, the unpolymerized material is exposed to light or energy sources' and the polymer forms an etch-resistant crosslinked material. Most of the negative resister 'polymers are polyisoprene. Removal of the soluble portion (i.e., the unexposed portion) with a chemical solvent or developer leaves holes in the resist layer corresponding to the opaque pattern on the grating. If the pattern of the mask exists in an opaque area, it is called a clear field mask. In the case of a positive acting photoresist, the photoresist is exposed to a state which is known to be photolytic, and changes from a relatively insoluble state to an extremely soluble state. In the case of photolysis, the relatively insoluble resistance (4) is exposed to appropriate light energy and converted into a relatively soluble state. The photodissolved portion of the resist can be removed from the solvent during development. The basic positive-resistance polymer is a gradual ageing polymer, also known as the ageing varnish (4) Kt solvent or developer removes the soluble portion (ie, the exposed portion), corresponding to the grating under the resist layer (4) A hole in the transparent pattern. A masked case is called a dark-field mask if it exists in a transparent area. After removing the top of the semiconductor wafer that is not covered by the photoresist, the remaining portion of the photoresist is removed to leave a patterned layer. Alternatively, a twisted type of material can be used to pattern, for example, electroless or electrowinning techniques, while directly forming material into the area or hole formed by the previous deposition/etching process. Depositing the thin film material on the existing pattern can magnify the underlying pattern and create a non-uniform flat surface. A evenly flat surface is required to make smaller, tightly packed active and passive components. Flattening can be used to remove material from the wafer surface and create a flat surface. Flattening involves polishing the surface of the wafer with a polishing pad. Abrasive materials and relying chemicals are added to the wafer surface during polishing. The mechanical action of the abrasive combined with the chemical's corrosion removes any irregular surface pattern resulting in a uniform, flat surface. ...the penalty is completed from the normalization. One ~ from the π day four take the early crystals' and then encapsulate the grains to achieve structural support and environmental isolation. To singulate the die, the wafer is scribed and broken along a non-functional area of the wafer called a track or mine. The research day is rounded using a laser cutting tool or a saw blade. The 'single die is then mounted on the package substrate' which includes a pin-up or for interconnection with other system components. The contact pads formed in the semiconducting 2 are then connected to the junction (4) in the (4) package. Electrical connections can be made using solder bumps, pin bumps, conductive pastes or bond wires. The material is deposited on the package to provide: The completed package is then plugged into the electrical system and half of the power is used for other system components. The function of the device is shown in Fig. 2 as an exemplary electronic device 5. A printed circuit board (printed circuit) is mounted on the surface thereof. The electronic device is 52' and has a plurality of semiconductor packages. The semiconductor device can have a semiconductor package or a plurality of 201243966 semiconductor packages. Uses and β & exemplification, different kinds of semiconductor packages are shown in Figure 1. The electronic device 50 may be a separate system that uses a semiconductor package to perform one or more electrical functions, and optionally an electronic device 5 〇 is the secondary component of a larger system. For example, the electronic device 5 can be a mobile electro-metallurgy, a digital assistant (pDA), a digital video camera (Dvc), or other electronic communication. A part of the device. Alternatively, the electronic device 5 is a graphics card, a network interface card or other signal processing card, which can be inserted into the computer. The semiconductor package can include a microprocessor, a memory, and a specific application integrated circuit (appHcati). 〇n specific integrated circuit ' ASIC), logic circuit, analog circuit, RF circuit, separate device Other semiconductor dies or electrical components. Miniaturization and weight reduction are essential for these products to be accepted by the market. The distance between semiconductor devices must be reduced to achieve higher density. In Figure 1, PCB 52 provides a general substrate. The semiconductor package mounted on the PCB is structurally supported and electrically connected. The conductive signal line 54 is formed on the surface or layers of the PCB 52 by evaporation, electrolytic plating, electroless plating, screen printing or other suitable metal deposition process. Signal line 54 provides electrical communication between the semiconductor package, mounted components, and other external system components. The wire 54 is also connected to each semiconductor package by power and ground. In some embodiments, the semiconductor device There are two package levels. The first level package is a technology for mechanically and electrically attaching semiconductor chips to an intermediate carrier. The second level package involves mechanically and electrically attaching the intermediate carrier to the PCB. In other specific aspects, the semiconductor device may only Has a first level package, 12 201243966 where the die is directly mechanically and electrically mounted to the PCb. For illustrative purposes, several The level package (including bond wire seal % and flip chip 58) is shown on PCB 52. In addition, several second level packages, including ball grid array (BGA) 6〇, bump wafer carrier ( Bumper carrier carrier (BCC) 62, double-row package ('丨in_iine package DIP) 64, contact grid array (ian (j grid array, lga) 66, multi-chip module (MCM) 68 The quad flat n〇n-leaded package (QFN) 7-inch, four-sided flat package 72 is shown to be mounted on the pCB52i. Depending on the needs of the system, any combination of semiconductor packages constructed as any combination of the first and second level package types, as well as other electronic components, may be coupled to the PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other specific aspects require multiple interconnected packages. By incorporating __ or more semiconductor packages on a single-substrate, manufacturers can incorporate pre-fabricated components into electronic devices and systems. Because semiconductor packages include sophisticated functionality, & electronic devices can be fabricated using relatively inexpensive components and streamlined processes, the devices being serviced are less likely to fail, and are less expensive to manufacture, resulting in consumer expense. Also lower. Figure 2C shows a non-exemplary semiconductor package. Figure 2a illustrates the further steps of the DIP 64 installed on 2. The semiconductor die 74 includes an array of functions including analog or digital circuits, which are implemented as active devices formed in the die, a passive device, a conductive layer, a dielectric layer, and according to the Japanese The electrical design of the particles interacts, +A € transport. For example, the circuit may include one or more transistors formed in the region of the F 戸 region of the semiconductor die 74, and a circuit element of the winter body, the valley, the resistor, and the like. The contact pad % is made of a conductive material (for example, copper (Cu), tin (sn), recording (f), gold (four) or silver (Ag)) - or more layers, and is electrically connected to the semiconductor die μ The circuit components formed in the process. During the combination (10), the semiconductor die 74 is mounted on the intermediate carrier using a metal eutectic layer or an adhesive material (eg, thermal epoxy or epoxy). The 78° package includes an insulating packaging material such as a polymer or The conductors are bonded to the wires to provide an electrical connection between the semiconductor die Μ and the CB 52. The encapsulant is deposited on the package to prevent the fish and particles from entering the package and contaminating the die 74 or bond wires 82. To protect against environmental influences, Figure 2b illustrates further details of bcc 62 mounted on PCB 52. Semiconductor b particles 88 are mounted on carrier 90 using a bottom filler or epoxy adhesive material. Bond wire 94 provides contact Between % and % of a layer, package interconnect. Molding compound or encapsulant (10) is deposited on semiconductor germanium 88 and bond wires 94 to provide physical support for the device and electrically isolated contact pads 102 The surface of the PCB 52 is shaped to avoid oxidation using a suitable metal deposition process (e.g., electrolytic plating or electroless recording). The contact pads 1〇2 are electrically connected to - or more of the conductive signal lines M in the PCB 52. Bumps 1 〇4 formation The contact pad 98 of the BCC 62 is in contact with the contact 塾1〇2 of the pcB 52. In Fig. 2c, the semiconductor die 58 is facing down and is mounted on the intermediate carrier (1) & it is a flip-chip type - 纽纽·ί+ λ\ * i^· j. 罘 level packaging. The active area of the semiconductor die 58 is a three-class analog or digital circuit that is implemented as an active device, passive device, layer, dielectric layer formed according to the electrical design of the die. The circuit may include one or more transistors in the active region 108, a diode, a capacitor, a capacitor, a resistor, and other circuit components. The semiconductor die 58 is electrically and mechanically connected via the bump 110. Carrier 1〇6. BGA 60 is electrically and mechanically coupled to pCB 52, which is a second level package using a BGA version of bumps 12. The semiconductor die 58 is via bumps 110, signal lines II4, bumps 112. Electrically coupled to the conductive signal line 54 of the pCB 52. A molding compound or encapsulant i6 is deposited over the semiconductor die 58 and the carrier 106 to provide physical support and electrical isolation for the device. The flip chip semiconductor device provides the semiconductor Active device on die 58 to pcB 52 The short conductive path of the conductive path is used to reduce the signal transmission distance, reduce the capacitance, and improve the performance of the overall circuit. In another embodiment, the semiconductor die 58 can use a flip-chip type of first-level package without an intermediate carrier. 1〇6 is directly mechanically and electrically connected to the PCB 52. Figure 3a shows a semiconductor wafer 12A having a substrate material 122 (e.g., germanium, germanium, gallium arsenide, indium phosphide or tantalum carbide) to support the structure. Semiconductor dies or features 124 are formed on wafer 12 and separated by the inactive, inter-die wafer regions or saw streets 126 described above. The saw streets 126 provide a dicing area to singulate the semiconductor wafer 12 into individual semiconductor dies 124. Figure 3b shows a partial cross-sectional view of the semiconductor wafer 12A. Each of the semiconductor dies 124# has (four) 128 and an active surface, and the rear* includes an analog or digital circuit that implements an active device, a passive device that is formed in the die and is electrically connected in accordance with the electrical design and function of the die. , conductive layer,: electrical layer. For example, the circuit may include one or more electro-crystals H, diodes, and other circuit components formed in the active region to implement analog circuit 15 201243966 or a digital circuit, such as a dighal signal processor 'DSP )' ASIC, memory or other signal processing circuit. The semiconductor die 124 may also include an integrated passive device (iPD) such as an inductor, capacitor, or resistor for rf signal processing. Conductive layer 132 is formed on active surface 13A using PVD, CVD, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 132 can be one or more layers of a Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 132 operates as a contact pad that is electrically coupled to circuitry on active surface 130. Contact pads 132 may be disposed at a first distance from the edge of semiconductor die 124 while being edged, as shown in Figure 3b. Alternatively, the contact pads 132 are offset in a plurality of columns such that the contact pads of the first column are disposed at a first distance from the edge of the die, and the contact pads of the second column interleaved with the first column are configured to A second distance from the edge of the grain. 3c' The insulating or dielectric layer 134 is formed on the active surface 130 and the conductive layer 132 using spin coating, spray coating, printing, layer 0 PVD, CVD, sintering or thermal oxidation. The insulating layer 134 comprises one or more layers. Cerium oxide (sad, tantalum nitride (Si3N4), niobium oxynitride (si〇N), antimony pentoxide (butazone 5), alumina (AhO3), benzocyclobutene (BCB), poly Amidoxime (ρι), polybenzoxazole (PB0), a dielectric substrate dielectric film, an organic polymer film or other material having similar insulating and structural properties. The etching process can be performed through the photoresist layer to remove portions. The insulating layer 134 is exposed to expose the conductive layer 132. The insulating or dielectric layer 136 is formed on the insulating layer 134 by spin coating, spraying, printing, lamination, PVD, CVD, sintering or thermal oxidation, as shown in Fig. 3d. In a specific aspect, the insulating layer 13 6 is applied as a blanket layer on the insulating layer 132. The insulating layer 136 comprises one or more layers of Si〇2, si3N4, SiQN,

Ta2〇5、Al2〇3、BCB、PI、PB0、聚合物基底的介電膜、有 機聚合物膜或其他具有類似絕緣和結構性質的材料。絕緣 層136則被固化。絕緣層136運作成應力緩和層,以於稍 後形成組合互連結構的期間以及為了可靠度而減少龜裂、 彎翹或其他對半導體晶粒124之作用表面13〇和導電層132 的損傷。尤其,絕緣層136具有的性質為在室溫大於1〇〇 百萬帕(MPa)的高拉伸強度、在室溫於2〇〜15〇%之間的高伸 長率、厚度為2〜30微米(μιη)。 圖36顯示沒有絕緣層134的具體態樣,亦即絕緣層(Μ 形成於作用表面130和導電層132上以用於應力緩和。 於圖3f,半導體晶圓12〇使用切割工具⑶(例如鋸 片、噴射水柱或雷射)而經由鑛道126單一化成個別的半導 體晶粒12 4。 ,圖钧〜41;關聯於圖1和Wc來示範形成WLCSp的過 ό、有'儿積在半導體晶粒上的絕緣層以用於應力緩 和。圖4a顯示暫時的其也+_ 材料(例如咬、聚合物 G,其包含犧牲性基底 ° 乳化鈹或其他適合的低成本剛性材 而U結構。介面層或雙面谬帶142形成於載體14。上 =時接著結合膜絲刻停止層。來自圖μ的半導 使用撿拾和放置操作而定位和安裝於介面層-和戟體140上,作田主 體晶粒124安裝於恭興面130則指向載體。® 4b顯示半導 ? 140以示範部分的重構或重組晶圓 17 201243966 144。 於圖4c ’包封物或模製化合物146使用糊膏印刷、壓 縮模製、轉移模製、液態包封物模製、真空層纟、旋塗或 其他適合的施加器而沉積於半導體晶粒124和载體 上。包封物146可以是聚合性複合材料,例如具有填料的 環氧樹脂、具有填料的環氧丙烯酸酯或具有適當填料的聚 合物》包封物146是非導電的並且保護半導體裝置免於外 部環境的元素和污染物。 於圖4d,載體14〇和介面層142藉由化學姓刻、機械 剝除、CMP、機械研磨、熱烘烤、紫外光、雷射掃描或渔 式脫除而移除,以暴露絕緣層136和包封物146。移除載體 140之後,包封物146提供用於半導體晶粒124的結構支 持。部分的絕緣層134和136藉由具有圖案化光阻層的蝕 刻過程(未顯示)而移除以暴露導電層132。蝕刻過程也移除 部分的包封物146而達到低於絕緣層136表面的程度,如 圖4d所示。另外可選擇的是部分的絕緣層134和136藉由 使用雷射148的雷射直接燒蝕(丨aser direct aMati〇n,lda) 而移除以暴露導電層132。蝕刻或LDA之後,絕緣層134 和136維持重疊著導電層132。 於另一具體態樣,沉積包封物146於半導體晶粒124 上之後才形成絕緣層134和136 ^於此情況,移除部分的包 封物146以暴露作用表面130和導電層132 ^絕緣層134和 136然後形成於暴露的作用表面13〇和導電層132上。部分 的絕緣層134和136藉由LDA或蝕刻而移除以暴露導電層 18 201243966 132» 於圖4e,絕緣或鈍化層ι5〇使用Pvd、CVD、印刷、 旋塗、喷塗、網印或層合而形成於包封物146和絕緣層i36 上。絕緣層150包含一或更多層的Si〇2、Si3N4、Si〇N、Ta2〇5, Al2〇3, BCB, PI, PB0, a dielectric film of a polymer substrate, an organic polymer film or other material having similar insulating and structural properties. The insulating layer 136 is then cured. The insulating layer 136 operates as a stress relaxation layer to reduce cracking, buckling or other damage to the surface 13 of the semiconductor die 124 and the conductive layer 132 during the formation of the combined interconnect structure and for reliability. In particular, the insulating layer 136 has properties of high tensile strength greater than 1 〇〇 MPa at room temperature, high elongation between 2 〇 and 15 〇% at room temperature, and thickness 2 to 30. Micron (μιη). Figure 36 shows a specific aspect without the insulating layer 134, i.e., an insulating layer (Μ is formed on the active surface 130 and the conductive layer 132 for stress relaxation. In Figure 3f, the semiconductor wafer 12 is using a cutting tool (3) (for example, a saw) The sheet, the jet of water or the laser) is singulated into individual semiconductor crystals 12 through the mine channel 126. Figure 钧41; associated with Figure 1 and Wc to demonstrate the formation of WLCSp, which has a semiconductor crystal The insulating layer on the granules is used for stress relaxation. Figure 4a shows the temporary _ material (eg bite, polymer G, which contains a sacrificial substrate emulsified enamel or other suitable low cost rigid material and U structure. Interface A layer or double-sided tape 142 is formed on the carrier 14. The upper layer is then bonded to the film wire stop layer. The semi-guide from Figure μ is positioned and mounted on the interface layer and the body 140 using a pick and place operation, the field body The die 124 is mounted on the Gongxing surface 130 and is directed to the carrier. The ® 4b displays a semiconducting 140 to the exemplary portion of the reconstructed or reconstituted wafer 17 201243966 144. Figure 4c 'The encapsulant or molding compound 146 is printed using a paste , compression molding, transfer molding The liquid encapsulant is molded, vacuum layered, spin coated or other suitable applicator deposited on the semiconductor die 124 and the carrier. The encapsulant 146 may be a polymeric composite such as an epoxy with a filler, The epoxy acrylate having a filler or the polymer encapsulant 146 with a suitable filler is non-conductive and protects the semiconductor device from elements and contaminants of the external environment. In Figure 4d, the carrier 14 and the interface layer 142 are chemically bonded. The engraving, mechanical stripping, CMP, mechanical grinding, hot baking, ultraviolet light, laser scanning or fishing removal is removed to expose the insulating layer 136 and the encapsulant 146. After the carrier 140 is removed, the encapsulation is performed. The material 146 provides structural support for the semiconductor die 124. portions of the insulating layers 134 and 136 are removed by an etching process (not shown) having a patterned photoresist layer to expose the conductive layer 132. The etching process also removes portions. The encapsulant 146 reaches a level below the surface of the insulating layer 136, as shown in Figure 4d. Alternatively, portions of the insulating layers 134 and 136 are directly ablated by laser using a laser 148 (丨aser direct aMati〇n And removing to expose the conductive layer 132. After etching or LDA, the insulating layers 134 and 136 remain overlapping the conductive layer 132. In another embodiment, the deposition of the encapsulant 146 onto the semiconductor die 124 is formed. Insulating layers 134 and 136. In this case, a portion of the encapsulant 146 is removed to expose the active surface 130 and the conductive layer 132. The insulating layers 134 and 136 are then formed on the exposed active surface 13 and the conductive layer 132. The insulating layers 134 and 136 are removed by LDA or etching to expose the conductive layer 18 201243966 132» to Figure 4e, and the insulating or passivation layer ι5 is using Pvd, CVD, printing, spin coating, spray coating, screen printing or lamination. It is formed on the encapsulant 146 and the insulating layer i36. The insulating layer 150 includes one or more layers of Si 〇 2, Si 3 N 4 , Si 〇 N,

Ta2〇s、Ah〇3、聚合物介電膜或其他具有類似絕緣和結構性 質的材料。部分的絕緣層15〇是以具有圖案化光阻層的蝕 刻過程所移除以暴露導電層13^另外可選擇的是部分的絕 緣層150以及絕緣層134和136藉由使用雷射148的lda 而移除以暴露導電層132。 於圖4f,導電層152使用pvD、CVD、濺鍍、電解電 鍍、無電鍍過程或其他適合的金屬沉積過程來做出圖案而 形成於絕緣層150和導電層132上》導電層152可以是一 或更多層的入1、(:11、811、1^、八11、八§或其他適合的導電 材料。部分的導電層152沿著絕緣層150而水平延伸並且 平行於半導體晶粒124的作用表面130以側向重新分布電 互連到導電層132。導電層152運作成扇出的重分布層 (redistribution layer,RDL)以用於半導體晶粒124的電訊 號。部分的導電層152電連接到導電層132。其他部分的導 電層152是電相通或電隔離的,此視半導體晶粒124的連 接性而定。 於圖4g,絕緣或鈍化層154使用PVD、CVD、印刷、 旋塗 '喷塗、網印或層合而形成於絕緣層15 〇和導電層i 5 2 上。絕緣層154可以是一或更多層的Si〇2、Si3N4 ' si〇N、 Ta2〇5、AhO3、聚合物介電膜或其他具有類似絕緣和結構性 19 201243966 二材料。部分的絕…54是以具有圖案化光阻 :Γ=Γ暴露導電層152。另外可選擇的是部分的絕 緣層m使用雷射148的LDA所移除以暴露導電層⑸。 於圖4h,導電凸塊材料使用蒸鍍、電解電鍍、無電鍍、 球滴或網印過程而沉積於暴露的導電I 152上。凸塊材: 可以是A卜Sn、Ni、Au、Ag、pb、則、Cu、焊料及其組合, 而可選用助熔劑。舉例而言’凸塊材料可以是共晶s"扑、 高鉛焊料或無鉛焊料。凸塊材料使用適當的附著或結合過 程而結合於導電層152。於-具體態樣,凸塊材料藉由加熱 材料到高於其熔點而重熔以形成焊球或凸塊156。於某些用 途,凸塊156重熔二次以改善對導電層152的電接觸。凸 塊156也可以壓縮結合於導電層152。凸塊156代表可以形 成於導電層1 52上的一種互連結構。互連結構也可以使用 銷栓凸塊、微凸塊或其他電互連。 絕緣層150和154、導電層152、凸塊156的組合構成 了形成於半導體晶粒124和包封物146上的組合互連結構 158 ^額外的絕緣層和rdl可以形成於組合互連結構158 以互連到半導體晶粒124 »重組晶圓144以鑛片或雷射切割 工具159經過包封物146和組合互連結構158而單一化成 個別的 Fo_WLCSP 160。 圖5顯示單一化之後的f〇_wLCSP 160。半導體晶粒124 經由組合互連結構158 (其包括導電層152和凸塊156)而電 連接到外部裝置。於一具體態樣,在從晶圓120單一化之 前,絕緣層136形成於半導體晶粒124上。絕緣層136的 20 201243966 性質(亦即在室溫大於100 白萬帕的局拉伸強度、在室溫於 20〜150%之間的高伸長率、 厚度為2〜30微米)提供應力緩 和’以於形成組合互連结禮〗^ β /廿a 構158 (其包括絕緣層150和154、 導電層152)的期間減少龜裂、 /觀奴、彎翹和其他對晶粒的損傷。 圖6顯示基於圖3而盔 句無絕緣層134的f〇-WLCSP 162。 半導體晶粒124經由組合互遠仕进,<〇 , # ^ A運結構158 (其包括導電層152 和凸塊156)而電連接到外部裝置。於-具體態樣,在從晶 圓120早一化之前,絕緣形成於半導體晶粒124上。 絕緣層136的性質(亦即在室溫大於1GG百萬帕的高拉伸強 f在至皿於20〜150%之間的高伸長率、厚度為2〜3〇微米) 提供應力緩和,以於形成組合互連結構158(其包括絕緣層 15〇和154、導電層152)的期間減少龜裂、變勉和其他對晶 粒的損傷。 圖7a〜7g關聯於圖1和2a〜2C來示範形成WLCSp的另 -過程,纟具有沉積料導體晶粒上的、絕緣層以用於應力 緩和》接續自圖3a,絕緣或介電層17〇使用旋塗、喷塗、 印刷、層合、PVD、CVD、燒結或熱氧化而形成於作用表面 130上,如圖7a所示。絕緣層17〇包含一或更多層的Si〇2、 Si3N4、SiON、Ta2〇5、Al2〇3、BCB、ρι、pB〇、聚合物基底 的介電膜、有機聚合物膜或其他具有類似絕緣和結構性質 的材料。於一具體態樣,絕緣層17〇是以3吣或Si〇N。部 分的絕緣層17〇藉由具有圖案化光阻層的蝕刻過程而移除 以暴露作用表面130。 導電層172使用PVD、CVD、電解電鍍、無電鍍過程 21 201243966 或其他適當的金屬沉積過程而形成於絕緣層17〇和作用表 面130上。導電層172可以是一或更多制A卜Cu、Sn、 N!、Au、Ag或其他適合的導電材料。導電層i72運作成接 觸墊’其重#著絕緣層17〇並且電連接到作用表面13〇上 的電路。 於圖7b,絕緣或介電層176使用旋塗、喷塗、印刷、 層0 PVD、CVD、燒結或熱氧化而形成於絕緣層i 7〇和導 電層172上。於―具體態樣’絕緣層176乃施加成絕緣層 170和導電| ! 72上的毯覆層。絕緣層176包含一或更 的 Si02、Si3N4、Si〇N、Ta2〇5、Al2〇3、BCB ρι 刚、 聚合物基底的介電膜、有機聚合物膜或其他具有類似絕緣 和結構性質的材料。絕緣層176則被固化、絕緣層176運 作成應力緩和層,以於稍後形成組合互連結構的期間減少 龜裂、彎勉或其他對半導體晶粒124之作用表自13〇和導 =層172的損傷。尤其’絕緣層m具有的性質為在室溫 一於100百萬帕的高拉伸強度、在室溫於2〇〜15〇%之間的 尚伸長率、厚度為2〜30微米。 半導體晶圓120使用切宝彳工且】7R , (例如鑛片、喷射水 柱或雷射)而經由鑛道126單—化成個別的半導體晶粒124。 圖暫時的基板或_18Q,其包含犧牲性基底 石夕、聚合物、氧化鍵或其他適合的低成本剛性材 :)支:寺結構。介面層或雙面膠帶182形成於載體Η。上 二為暫時接著結合膜或㈣停止層。來自_ Mb的半導 體晶粒m使用撿拾和放置操作而定位和安裝於介面層182 22 201243966 和載體180上’作用表* i3〇則指向載體。安裝於載體_ 的半導體晶粒124構成了重組晶圓丄84。 一於圖7d’包封物或模製化合物186使用糊膏印刷、壓 縮模氯轉移模製、液態包封物模製、真空層合、旋塗或 其他適合的施加器而沉積於半導體晶粒124和載體18〇 上。包㈣186可以是聚合性複合材料,例如具有填料的 環氧樹脂、具有填料的環氧丙稀酸醋或具有適當填料的聚 合物。包封物186是非導電的並且保護半導體裝置免於外 部環境的元素和污染物。 於圖7e’載體180和介面層182藉由化學#刻、機械 剝除、CMP、機械研磨、熱烘烤、紫外光、雷射掃描或渥 式脫除而移除,以暴露絕緣層i 76和包封物〖86 ^移除載體 18〇之後,包封物186提供用於半導體晶粒124的結構支 持。部分的絕緣層176是以具有圖案化光阻層的蝕刻過程 所移除以暴露導電| ! 72。蝕刻過程也移除部分的包封物 1 86而達到低於絕緣層丨76表面的程度。另外可選擇的是部 分的絕緣層176使用雷射188的LDA所移除以暴露導電層 172。蝕刻或LDA之後,絕緣層176維持重疊著導電層172。 於圖7f,絕緣或鈍化層19〇使用pVd、CVD、印刷、 旋塗、喷塗、網印或層合而形成於包封物1 86、絕緣層1 76、 導電層172上。絕緣層19〇包含一或更多層的Si〇2、Μ#*、 SiON、Ta2〇5、八12〇3、聚合物介電膜或其他具有類似絕緣 和結構性質的材料。部分的絕緣層丨9〇是以具有圖案化光 阻層的蝕刻過程所移除以暴露導電層172。另外可選擇的是 23 201243966 部分的絕緣層1 90藉由LDA而移除以暴露導電層1 72。 導電層192使用PVD、CVD、濺鍵、電解電鍵、無電 鍵過程或其他適合的金屬沉積過程來做出圖案而形成於絕 緣層190和導電層172上。導電層192可以是一或更多層 的A卜Cu、Sn、Ni、Au、Ag或其他適合的導電材料。部 分的導電層192沿著絕緣層1 90而水平延伸並且平行於半 導體晶粒124的作用表面130以側向重新分布電互連到導 電層172。導電層192運作成扇出RDL以用於半導體晶粒 124的電訊號。部分的導電層192電連接到導電層1 72。其 他部分的導電層192是電相通或電隔離的,此視半導體晶 粒124的連接性而定。 於圖7g,絕緣或鈍化層194使用PVD、CVD、印刷、 旋塗、喷塗、網印或層合而形成於絕緣層19〇和導電層1 92 上。絕緣層194可以是一或更多層的si〇2、Si3N4、Si〇N、Ta2〇s, Ah〇3, polymer dielectric films or other materials with similar insulation and structural properties. A portion of the insulating layer 15 is removed by an etching process having a patterned photoresist layer to expose the conductive layer. Further, a portion of the insulating layer 150 and the insulating layers 134 and 136 are used by using the laser 148. The removal is to expose the conductive layer 132. In FIG. 4f, the conductive layer 152 is patterned on the insulating layer 150 and the conductive layer 132 using pvD, CVD, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. The conductive layer 152 may be a Or more layers of 1, (11, 811, 1^, VIII, VIII, or other suitable conductive material. A portion of the conductive layer 152 extends horizontally along the insulating layer 150 and is parallel to the semiconductor die 124 The active surface 130 is electrically interconnected laterally to the conductive layer 132. The conductive layer 152 operates as a fan-out redistribution layer (RDL) for the electrical signal of the semiconductor die 124. A portion of the conductive layer 152 is electrically Connected to conductive layer 132. Other portions of conductive layer 152 are electrically or electrically isolated, depending on the connectivity of semiconductor die 124. In Figure 4g, insulating or passivation layer 154 is PVD, CVD, printed, spin coated 'spraying, screen printing or laminating is formed on the insulating layer 15 and the conductive layer i 5 2 . The insulating layer 154 may be one or more layers of Si 〇 2, Si 3 N 4 ' si 〇 N, Ta 2 〇 5, AhO 3 , polymer dielectric film or other similar insulation and structure 19 201243966 Two materials. Part of the ... 54 is to have a patterned photoresist: Γ = Γ exposed conductive layer 152. Alternatively, part of the insulating layer m is removed using the LDA of the laser 148 to expose the conductive layer (5) In Figure 4h, the conductive bump material is deposited on the exposed conductive I 152 using an evaporation, electrolytic plating, electroless plating, ball drop or screen printing process. The bump material: may be A, Sn, Ni, Au, Ag , pb, then, Cu, solder and combinations thereof, and optionally flux. For example, 'bump material can be eutectic s" puff, high lead solder or lead-free solder. Bump material using appropriate adhesion or bonding process In combination with the conductive layer 152. In particular, the bump material is remelted by heating the material above its melting point to form solder balls or bumps 156. For some applications, the bumps 156 are remelted twice. The electrical contact to the conductive layer 152 is improved. The bump 156 can also be compression bonded to the conductive layer 152. The bump 156 represents an interconnect structure that can be formed on the conductive layer 152. The interconnect structure can also use pin bumps, Microbumps or other electrical interconnections. Insulation layers 150 and 154, leads The combination of layer 152 and bumps 156 constitutes a combined interconnect structure 158 formed on semiconductor die 124 and encapsulant 146. Additional insulating layers and rd1 may be formed in combined interconnect structure 158 to interconnect to the semiconductor die 124 » Reconstituted wafer 144 is singulated into individual Fo_WLCSPs 160 by slab or laser cutting tool 159 via encapsulant 146 and combined interconnect structure 158. Figure 5 shows f〇_wLCSP 160 after singulation. Semiconductor die 124 is electrically coupled to an external device via a combined interconnect structure 158 that includes conductive layer 152 and bumps 156. In one embodiment, insulating layer 136 is formed over semiconductor die 124 prior to singulation from wafer 120. 20 201243966 properties of insulating layer 136 (ie, local tensile strength at room temperature greater than 100 MPa, high elongation at room temperature between 20 and 150%, thickness 2 to 30 microns) provide stress relaxation' In order to form a composite interconnection ^^β /廿a structure 158 (which includes the insulating layers 150 and 154, the conductive layer 152), cracks, / slaves, bends, and other damage to the crystal grains are reduced. Figure 6 shows the f〇-WLCSP 162 based on Figure 3 without the insulating layer 134. The semiconductor die 124 is electrically coupled to the external device via a combination of <〇, #^ A transport structure 158 (which includes conductive layer 152 and bump 156). In a particular aspect, the insulation is formed on the semiconductor die 124 prior to pre-evolving from the wafer 120. The properties of the insulating layer 136 (i.e., a high tensile strength f greater than 1 GG MPa at room temperature, a high elongation between 20 and 150%, and a thickness of 2 to 3 Å micrometers) provide stress relief to Cracks, enthalpy and other damage to the grains are reduced during formation of the combined interconnect structure 158 (which includes the insulating layers 15A and 154, the conductive layer 152). Figures 7a to 7g are associated with Figures 1 and 2a to 2C to illustrate another process for forming WLCSp having an insulating layer on the deposited conductor die for stress relaxation. Continued from Figure 3a, insulating or dielectric layer 17 The crucible is formed on the active surface 130 using spin coating, spray coating, printing, lamination, PVD, CVD, sintering or thermal oxidation, as shown in Figure 7a. The insulating layer 17A comprises one or more layers of Si〇2, Si3N4, SiON, Ta2〇5, Al2〇3, BCB, ρι, pB〇, a dielectric substrate dielectric film, an organic polymer film or the like Materials of insulating and structural properties. In one embodiment, the insulating layer 17 is 3 吣 or Si 〇 N. A portion of the insulating layer 17 is removed by an etching process having a patterned photoresist layer to expose the active surface 130. Conductive layer 172 is formed on insulating layer 17 and active surface 130 using PVD, CVD, electrolytic plating, electroless plating process 21 201243966 or other suitable metal deposition process. Conductive layer 172 can be one or more of A, Cu, Sn, N!, Au, Ag, or other suitable electrically conductive material. The conductive layer i72 operates as a contact pad which is in the vicinity of the insulating layer 17 and electrically connected to the circuit on the active surface 13A. In Figure 7b, an insulating or dielectric layer 176 is formed over the insulating layer i7 and the conductive layer 172 using spin coating, spray coating, printing, layer 0 PVD, CVD, sintering or thermal oxidation. The "specific" insulating layer 176 is applied as a blanket layer on the insulating layer 170 and on the conductive |! The insulating layer 176 comprises one or more SiO 2 , Si 3 N 4 , Si 〇 N, Ta 2 〇 5, Al 2 〇 3, BCB ρ ι, a dielectric film of a polymer substrate, an organic polymer film or other material having similar insulating and structural properties. . The insulating layer 176 is cured and the insulating layer 176 operates as a stress relaxation layer to reduce cracking, bending or other effects on the semiconductor die 124 during later formation of the combined interconnect structure. 172 damage. In particular, the insulating layer m has a property of high tensile strength at room temperature of 100 MPa, elongation at room temperature of 2 Torr to 15% by weight, and thickness of 2 to 30 μm. The semiconductor wafer 120 is singulated into individual semiconductor dies 124 via a mine track 126 using a cut-off and 7R, (e.g., a pellet, a jet of water, or a laser). Figure Temporary substrate or _18Q, which contains a sacrificial substrate, a polymer, an oxidized bond or other suitable low-cost rigid material :) Branch: Temple structure. An interface layer or double-sided tape 182 is formed on the carrier. The upper two is a temporary bonding film or a (four) stopping layer. The semiconductor grains m from _Mb are positioned and mounted on the interface layer 182 22 201243966 and the carrier 180 using a pick and place operation, and the action table * i3 指向 is directed to the carrier. The semiconductor die 124 mounted on the carrier _ constitutes a reconstituted wafer cassette 84. Figure 7d 'The encapsulant or molding compound 186 is deposited on the semiconductor die using paste printing, compression mode chlorine transfer molding, liquid encapsulation molding, vacuum lamination, spin coating or other suitable applicator. 124 and carrier 18 are on top. The package (d) 186 may be a polymeric composite such as an epoxy resin having a filler, a propylene acrylate having a filler, or a polymer having a suitable filler. The encapsulant 186 is non-conductive and protects the semiconductor device from elements and contaminants in the external environment. The carrier 180 and the interface layer 182 of FIG. 7e are removed by chemical etching, mechanical stripping, CMP, mechanical polishing, thermal baking, ultraviolet light, laser scanning, or erbium removal to expose the insulating layer i 76. The encapsulant 186 provides structural support for the semiconductor die 124 after the encapsulant 86 ^ removes the carrier 18 . A portion of the insulating layer 176 is removed by an etch process with a patterned photoresist layer to expose the conductive | The etching process also removes portions of the encapsulant 186 to a level below the surface of the insulating layer 丨76. Alternatively, a portion of the insulating layer 176 is removed using the LDA of the laser 188 to expose the conductive layer 172. After etching or LDA, insulating layer 176 remains superposed on conductive layer 172. In FIG. 7f, an insulating or passivation layer 19 is formed on the encapsulant 186, the insulating layer 176, and the conductive layer 172 using pVd, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 19 includes one or more layers of Si 2 , Μ #*, SiON, Ta 2 〇 5, 八 12 〇 3, a polymer dielectric film or other materials having similar insulating and structural properties. A portion of the insulating layer 9 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 172. Alternatively, the insulating layer 1 90 of part 23 201243966 is removed by LDA to expose the conductive layer 172. Conductive layer 192 is patterned over insulating layer 190 and conductive layer 172 using PVD, CVD, sputtering, electrolytic keying, electroless bonding processes, or other suitable metal deposition processes. Conductive layer 192 can be one or more layers of A, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. A portion of the conductive layer 192 extends horizontally along the insulating layer 190 and is electrically interconnected parallel to the active surface 130 of the semiconductor die 124 to the conductive layer 172 in a lateral redistribution. Conductive layer 192 operates to fan out RDL for electrical signals of semiconductor die 124. A portion of the conductive layer 192 is electrically connected to the conductive layer 172. Other portions of conductive layer 192 are electrically or electrically isolated, depending on the connectivity of semiconductor wafer 124. In Figure 7g, an insulating or passivation layer 194 is formed over the insulating layer 19 and the conductive layer 192 using PVD, CVD, printing, spin coating, spray coating, screen printing or lamination. The insulating layer 194 may be one or more layers of si〇2, Si3N4, Si〇N,

TajO5、Ah〇3、聚合物介電膜或其他具有類似絕緣和結構性 質的材料。部分的絕緣層194是以具有圖案化光阻層的蝕 刻過程所移除以暴露導電層192 ^另外可選擇的是部分的絕 緣層194藉由LD A而移除以暴露導電層192。 導電凸塊材料使用蒸鍍、電解電鍍、無電鍍、球滴或 網印過程而沉積於暴露的導電層192上。凸塊材料可以是 Al、Sn、Ni、Au、Ag、pb、Bi、Cu、焊料及其組合,而可 選用助熔劑。舉例而言,凸塊材料可以是共晶Sn/Pb、高鉛 焊料或無錯焊料。凸塊材料使用適當的附著或結合過程而 結合於導電層192。於-具體態樣,凸塊材料藉由加熱材料 24 201243966 到尚於其熔點而重熔以形成焊球或凸塊196。於某些用途, 凸塊196重溶二次以改善對導電層丨92的電接觸。凸塊1 % 也可以壓縮結合於導電層192。凸塊196代表可以形成於導 電層1 92上的一種互連結構。互連結構也可以使用銷栓凸 塊、微凸塊或其他電互連。 絕緣層190和194、導電層192、凸塊196的組合構成 了形成於半導體晶粒124和包封物1 86上的組合互連結構 1 98。額外的絕緣層和RDL可以形成於組合互連結構】μ 以互連到半導體晶粒丨24。重組晶圓丨84以鋸片或雷射切割 工具200經過包封物186和組合互連結構198而單一化成 個別的 Fo-WLCSP 202 » 圖8顯不單一化之後的F0_wlcsP 202。半導體晶粒124 、’’至由組σ互連結構198 (其包括導電層192和凸塊1 96)而電 連接到外部裝置。於一具體態樣,在從晶圓120單一化之 刖,絕緣層176形成於半導體晶粒124上。絕緣層176的 性質(亦即在室溫大於1 00百萬帕的高拉伸強度、在室溫於 20〜150%之間的高伸長率、厚度為2〜3〇微米)提供應力緩 和,以於形成組合互連結構198 (其包括絕緣層19〇和194、 導電層192)的期間減少龜裂、彎翹和其他對晶粒的損傷。 圖9a〜9g關聯於圖1和2a〜2c來示範形成WLCSP的過 程,其具有沉積在半導體晶粒上的多個絕緣層以用於應力 緩和。接續自圖3a,絕緣或介電層2 1 〇使用旋塗、喷塗、 印刷、層合、PVD、CVD、燒結或熱氧化而形成於作用表面 130上,如圖9a所示。於一具體態樣,絕緣層乃施加 25 201243966 成作用表面130上的毯覆層。絕緣層21〇包含一或更多層 的 Si〇2、Si3N4、Si〇N、Ta2〇5、Ai2〇3、BCB、p卜 聚合物基底的介電膜、有機聚合物膜或其他具有類似絕緣 寿、。構fi質的材料。絕緣層2 j 〇則被固化。絕緣層2 i 〇運 作成第-應力緩和層,以於稍後形成組合互連結構的期間 減少龜裂、彎勉或其他對半導體晶粒m之作用表面13〇 :導電層212的損傷。尤其,絕緣層210具有的性質為在 室溫大於100百萬帕的高拉伸強度、在室溫於20〜150%之 間的高伸長率、厚度為2〜3〇微米。 導電層212使用pVD、CVD、電解電鑛、無電鑛過程 或其他適當的金屬沉積過程而形成於絕緣層2iq上。㈣ 層212可以是一或更多層# A卜Cu、Sn、Ni、Au、Ag或 其他適σ的導電材料。導電I 212運作成電連接到作用表 面130上之電路的接觸墊。 於圖9b,,絕緣或介電層216使用旋塗、喷塗、印刷、 層& VD C VD、燒結或熱氧化而形成於絕緣層2 1 0和導 電層212上。於—具體態樣,絕緣層216乃施加成絕緣層 210和導電層212上的毯覆層。絕緣層2丨6包含-或更多層 的 Si〇2 Si3N4、SiON、Ta2〇5、Al2〇3 ' BCB、PI、PB0、 聚合物基底的介電膜、有機聚合物膜或其他具有類似絕緣 和結構性質的材制·。a Λ 4絕緣層216則被固化。絕緣層2 16運 作成第二應力緩和層,以於稍後形成組合互連結構的期間 減少龜裂、靑勉或其他對半導體晶粒124之作用表面13〇 和導電層212的損傷。尤其,絕緣層216具有的性質為在 26 201243966 至孤大於100百萬帕的高拉伸強度、在室溫於〜15〇%之 間的高伸長率、厚度為2〜30微米。 半導體晶圓120使用切割工具2丨8 (例如鋸片、噴射水 柱或雷射)而經由鋸道126單一化成個別的半導體晶粒12扣 圖9c顯示暫時的基板或載體22〇,其包含犧牲性基底 材料(例如矽、聚合物、氧化鈹或其他適合的低成本剛性材 料)以支持結構。介面層或雙面膠帶222形成於載體22〇上 而做為暫時接著結合膜或蝕刻停止層。來自圖9a〜%的半 導體晶粒124使用撿拾和放置操作而定位和安裝於介面層 222和載體220上,作用表面13〇則指向載體。安裝於載體 220的半導體晶粒124構成了重组晶圓224。 、於圖9d,包封物或模製化合物226使用糊膏印刷、壓 縮模製、轉移模製、液態包封物模製、真空層合、旋塗或 其他適合的施加器而沉積於半導體晶粒124和載體 上。包封物226可以是聚合性複合材料,例如具有填料的 環氧樹脂、具有填料的環氧丙烯酸酯或具有適當填料的聚 合物。包封物226是非導電的並且保護半導體裝置免於外 部環境的元素和污染物。 於圖9e,載體220和介面層222藉由化學蝕刻、機械 剝除、CMP、機械研磨、熱烘烤、紫外光、雷射掃描或溼 式脫除而移除,以暴露絕緣層216和包封物226。移除載體 220之後,包封物226提供用於半導體晶粒124的結構支 持。部分的絕緣層216是以具有圖案化光阻層的蝕刻過程 所移除以暴露導電層212。蝕刻過程也移除部分的包封物 27 201243966 2 2 6而達到低於絕緣層2 1 6表面的程度。另外可選擇的是部 分的絕緣層2 1 6使用雷射228的LDA所移除以暴露導電層 2 1 2 »蝕刻或LDA之後,絕緣層2 1 6維持重疊著導電層2 1 2。 於圖9f,絕緣或鈍化層230使用PVD、CVD、印刷、 旋塗、喷塗、網印或層合而形成於包封物226、絕緣層2 1 6、 導電層212上。絕緣層230包含一或更多層的si〇2、Si3N4、TajO5, Ah〇3, polymer dielectric film or other materials with similar insulation and structural properties. A portion of the insulating layer 194 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 192. Alternatively, a portion of the insulating layer 194 is removed by LD A to expose the conductive layer 192. The conductive bump material is deposited on the exposed conductive layer 192 using an evaporation, electrolytic plating, electroless plating, ball drop or screen printing process. The bump material may be Al, Sn, Ni, Au, Ag, pb, Bi, Cu, solder, and combinations thereof, and a flux may be selected. For example, the bump material can be eutectic Sn/Pb, high lead solder or error free solder. The bump material is bonded to the conductive layer 192 using a suitable attachment or bonding process. In a specific aspect, the bump material is remelted by heating material 24 201243966 to its melting point to form solder balls or bumps 196. For some applications, the bumps 196 are re-dissolved twice to improve electrical contact to the conductive layer 92. The bump 1% can also be compression bonded to the conductive layer 192. Bumps 196 represent an interconnect structure that can be formed on conductive layer 192. The interconnect structure can also use pin bumps, microbumps, or other electrical interconnects. The combination of insulating layers 190 and 194, conductive layer 192, and bumps 196 constitutes a combined interconnect structure 1 98 formed on semiconductor die 124 and encapsulant 186. Additional insulating layers and RDL may be formed in the combined interconnect structure μ to interconnect to the semiconductor die 24 . The reconstituted wafer cassette 84 is singulated into individual Fo-WLCSPs 202 by the saw blade or laser cutting tool 200 via the encapsulant 186 and the combined interconnect structure 198. Figure 8 shows the F0_wlcsP 202 after singulation. The semiconductor dies 124, '' are electrically connected to the external device by a set of σ interconnect structures 198 (which include a conductive layer 192 and bumps 196). In one embodiment, an insulating layer 176 is formed over the semiconductor die 124 after singulation from the wafer 120. The properties of the insulating layer 176 (i.e., high tensile strength greater than 100 MPa at room temperature, high elongation between 20 and 150% at room temperature, and thickness 2 to 3 Å) provide stress relief. To reduce cracking, buckling, and other damage to the grains during formation of the composite interconnect structure 198 (which includes the insulating layers 19A and 194, the conductive layer 192). Figures 9a through 9g illustrate the process of forming a WLCSP having a plurality of insulating layers deposited on a semiconductor die for stress relaxation in conjunction with Figures 1 and 2a-2c. Following Figure 3a, an insulating or dielectric layer 2 1 is formed on the active surface 130 by spin coating, spraying, printing, lamination, PVD, CVD, sintering or thermal oxidation, as shown in Figure 9a. In one embodiment, the insulating layer is applied to the blanket layer on the active surface 130 of 201243966. The insulating layer 21 includes one or more layers of Si〇2, Si3N4, Si〇N, Ta2〇5, Ai2〇3, BCB, a dielectric film of a polymer substrate, an organic polymer film or the like having similar insulation. life,. Constructive material. The insulating layer 2 j 〇 is cured. The insulating layer 2 i is formed into a first stress relaxation layer to reduce cracks, bends, or other effects on the surface of the semiconductor die m: the damage of the conductive layer 212 during the later formation of the combined interconnect structure. In particular, the insulating layer 210 has properties of high tensile strength at room temperature of more than 100 MPa, high elongation at room temperature of 20 to 150%, and thickness of 2 to 3 Å. The conductive layer 212 is formed on the insulating layer 2iq using pVD, CVD, electrolytic ore, electroless ore plating, or other suitable metal deposition process. (d) Layer 212 may be one or more layers of A, Cu, Sn, Ni, Au, Ag or other suitable sigma conductive material. Conductive I 212 operates as a contact pad that is electrically connected to circuitry on active surface 130. In Figure 9b, an insulating or dielectric layer 216 is formed over the insulating layer 210 and the conductive layer 212 using spin coating, spray coating, printing, layer & VD C VD, sintering or thermal oxidation. In a specific aspect, the insulating layer 216 is applied as a blanket layer on the insulating layer 210 and the conductive layer 212. The insulating layer 2丨6 comprises -or more layers of Si〇2 Si3N4, SiON, Ta2〇5, Al2〇3' BCB, PI, PB0, dielectric substrate dielectric film, organic polymer film or other similar insulation And structural properties of the material. a Λ 4 insulating layer 216 is cured. The insulating layer 2 16 operates as a second stress relaxation layer to reduce cracking, ruthenium or other damage to the surface 13A and the conductive layer 212 of the semiconductor die 124 during the later formation of the combined interconnect structure. In particular, the insulating layer 216 has properties of high tensile strength from 26 201243966 to lone greater than 100 megapascals, high elongation between room temperature and -15% at room temperature, and thickness of 2 to 30 microns. The semiconductor wafer 120 is singulated into individual semiconductor dies 12 via saw streets 126 using a dicing tool 2 丨 8 (eg, a saw blade, a jet of water, or a laser). Figure 9c shows a temporary substrate or carrier 22 〇 that includes sacrificial A substrate material (such as tantalum, polymer, yttria or other suitable low cost rigid material) to support the structure. An interface layer or double-sided tape 222 is formed on the carrier 22 to serve as a temporary bonding film or etch stop layer. The semiconductor die 124 from Figures 9a-% is positioned and mounted on the interface layer 222 and carrier 220 using a pick and place operation with the active surface 13〇 directed toward the carrier. The semiconductor die 124 mounted on the carrier 220 constitutes a reconstituted wafer 224. In Figure 9d, the encapsulant or molding compound 226 is deposited on the semiconductor crystal using paste printing, compression molding, transfer molding, liquid encapsulation molding, vacuum lamination, spin coating, or other suitable applicator. Granules 124 and on the carrier. The encapsulant 226 may be a polymeric composite such as an epoxy resin having a filler, an epoxy acrylate having a filler, or a polymer having a suitable filler. The encapsulant 226 is non-conductive and protects the semiconductor device from elements and contaminants of the external environment. In Figure 9e, the carrier 220 and the interface layer 222 are removed by chemical etching, mechanical stripping, CMP, mechanical polishing, thermal baking, ultraviolet light, laser scanning, or wet removal to expose the insulating layer 216 and the package. Seal 226. After the carrier 220 is removed, the encapsulant 226 provides structural support for the semiconductor die 124. A portion of the insulating layer 216 is removed by an etch process having a patterned photoresist layer to expose the conductive layer 212. The etching process also removes part of the encapsulant 27 201243966 2 2 6 to a level below the surface of the insulating layer 2 16 . Alternatively, a portion of the insulating layer 2 16 is removed using the LDA of the laser 228 to expose the conductive layer. 2 1 2 » After etching or LDA, the insulating layer 2 16 maintains the conductive layer 2 1 2 overlapping. In FIG. 9f, an insulating or passivation layer 230 is formed on the encapsulant 226, the insulating layer 216, and the conductive layer 212 using PVD, CVD, printing, spin coating, spray coating, screen printing, or lamination. The insulating layer 230 includes one or more layers of si〇2, Si3N4,

SiON、Ta2〇5、Ah〇3、聚合物介電膜或其他具有類似絕緣 和結構性質的材料。部分的絕緣層2 3 0是以具有圖案化光 阻層的蝕刻過程所移除以暴露導電層212。另外可選擇的是 部分的絕緣層230藉由LDA而移除以暴露導電層212。 導電層232使用pvd、CVD'減鑛、電解電鑛、無電 鍍過程或其他適合的金屬沉積過程來做出圖案而形成於絕 緣層230和導電層212上。導電層232可以是一或更多層 的Al、Cu、Sn、Ni、Au ' Ag或其他適合的導電材料。部 刀的導電層2 3 2沿著絕緣層2 3 0而水平延伸並且平行於半 導體晶粒124的作用表面130以側向重新分布電互連到導 電層212。導電層232運作成扇出RDL以用於半導體晶粒 124的電訊號。部分的導電層232電連接到導電層212 ^其 他P刀的導電層232是電相通或電隔離的,此視半導體晶 粒124的連接性而定。 於圖9g ’絕緣或鈍化層234使用ρν〇、cvd、印刷、 旋塗、噴塗、網印或層合而形成於絕緣層230和導電層232 上絕緣層234可以是一或更多層的Si〇2、以爪' si〇N 'SiON, Ta2〇5, Ah〇3, polymer dielectric films or other materials with similar insulating and structural properties. A portion of the insulating layer 230 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 212. Alternatively, a portion of the insulating layer 230 is removed by the LDA to expose the conductive layer 212. Conductive layer 232 is formed on insulating layer 230 and conductive layer 212 using a pvd, CVD 'mining, electrolytic electrowinning, electroless plating process, or other suitable metal deposition process to pattern. Conductive layer 232 can be one or more layers of Al, Cu, Sn, Ni, Au'Ag, or other suitable electrically conductive material. The conductive layer 2 3 2 of the blade extends horizontally along the insulating layer 230 and is electrically interconnected to the conductive layer 212 in a lateral redistribution parallel to the active surface 130 of the semiconductor die 124. Conductive layer 232 operates to fan out RDL for electrical signals of semiconductor die 124. A portion of the conductive layer 232 is electrically coupled to the conductive layer 212. The conductive layer 232 of the other P-die is electrically or electrically isolated, depending on the connectivity of the semiconductor wafer 124. In FIG. 9g, the insulating or passivation layer 234 is formed on the insulating layer 230 and the conductive layer 232 by using ρν〇, cvd, printing, spin coating, spray coating, screen printing or lamination. The insulating layer 234 may be one or more layers of Si. 〇 2, with the claw 'si〇N '

Ta2〇5、Al2〇3、聚合物介電膜或其他具有類似絕緣和結構性 28 201243966 質的材料。部分的絕緣層234是以具有圖案化光阻層的蝕 刻過程所移除以暴露導電層232 »另外可選擇的是部分的絕 緣層234藉由[DA而移除以暴露導電層232。 導電凸塊材料使用蒸鍍、電解電鍍、無電鍍、球滴或 網印過程而沉積於暴露的導電層232上。凸塊材料可以是 Al、Sn、Ni、au、Ag、Pb、Bi、、焊料及其組合,而可 選用助炫劑。舉例而言,凸塊材料可以是共晶Sn/Pb、高鉛 焊料或無紐焊料。凸塊材料使用適當的附著或結合過程而 結合於導電層232。於一具體態樣,凸塊材料藉由加熱材料 到尚於其熔點而重熔以形成焊球或凸塊236。於某些用途, 凸塊236重熔二次以改善對導電層232的電接觸。凸塊236 也可以壓縮結合於導電層232。凸塊236代表可以形成於導 電層232上的一種互連結構。互連結構也可以使用銷栓凸 塊、微凸塊或其他電互連。 絕緣層230和234、導電層232、凸塊236的組合構成 了形成於半導體晶粒124和包封物226上的組合互連結構 238 °額外的絕緣層和rdl可以形成於組合互連結構238 以互連到半導體晶粒124。重組晶圓224以鋸片或雷射切割 工具240經過包封物226和組合互連結構238而單一化成 個別的 Fo-WLCSP 242。 圖10顯示單一化之後的Fo-WLCSP 242。半導體晶粒 124經由組合互連結構238 (其包括導電層232和凸塊236) 而電連接到外部裝置。於一具體態樣,在從晶圓120單一 化之前’絕緣層210和216形成於半導體晶粒124上。絕 29 201243966 緣層21G~ 216的性質(亦即在室溫大⑤⑽百萬帕的高拉 伸強度 '在室溫於20〜150❶/。之間的高伸長率、厚度為=3〇 微米)提供二層的應力緩和,以於形成組合互連結構幻^其 包括絕緣層230和234、導電層232)的期間減少龜裂、彎翹 和其他對晶粒的損傷。 圖11顯不的具體態樣具有二個邊靠邊的半導體晶粒而 配置於F〇-wLCSP25Mp—半導體晶粒124a是以圖3a〜3f 所述的方式而形成。另一半導體晶粒124b是以圖9a〜9b所 述的方式而形成《二個邊靠邊的半導體晶粒124a、124b則 由包封物2 5 2所覆蓋,類似於圖4 c和9 d。組合互連結構2 5 4 以類似於圖4e〜4h和9f〜9g的方式而形成於半導體晶粒124a 和124b、絕緣層136和216、包封物252上。組合互連結 構254包括絕緣層256、導電層258、絕緣層260、凸塊262。 圖12a〜121關聯於圖1和2a〜2c來示範形成WLCSP的 過程’其具有沉積在半導體晶粒上和晶粒中形成之通道裡 的絕緣層以用於應力緩和。接續自圖3 a,多個通道或凹槽 27〇藉由使用雷射272的LDA而形成於半導體晶圓120的 錄道126裡並且部分延伸到作用表面丨3〇裡,如圖丨2a所 不°通道270的寬度大於鋸道126的寬度。於一具體態樣, 通道270的深度為5~20微米,並且沿著一或更多個鋸道126 而延伸或者完全圍繞著半導體晶粒124的周圍。圖12b顯 示半導體晶圓120的平面圖,其通道270形成完全圍繞著 半導體晶粒124的周圍。 於圖12c,絕緣或介電層274使用旋塗、喷塗、印刷、 30 201243966 層合、PVD'CVD、燒結或熱氧化而形成於作用表面ι3〇 上。絕緣層274包含一或更多層的Si〇2、si3N4、si〇N、Ta2〇5, Al2〇3, polymer dielectric film or other material with similar insulation and structure 28 201243966. A portion of the insulating layer 234 is removed by an etch process with a patterned photoresist layer to expose the conductive layer 232. Alternatively, a portion of the insulating layer 234 is removed by [DA to expose the conductive layer 232. The conductive bump material is deposited on the exposed conductive layer 232 using an evaporation, electrolytic plating, electroless plating, ball drop or screen printing process. The bump material may be Al, Sn, Ni, au, Ag, Pb, Bi, solder, and combinations thereof, and a lubricant may be used. For example, the bump material can be eutectic Sn/Pb, high lead solder, or no solder. The bump material is bonded to the conductive layer 232 using a suitable attachment or bonding process. In one embodiment, the bump material is remelted by heating the material to its melting point to form solder balls or bumps 236. For some applications, bumps 236 are remelted twice to improve electrical contact to conductive layer 232. Bumps 236 can also be compression bonded to conductive layer 232. Bumps 236 represent an interconnect structure that can be formed on conductive layer 232. The interconnect structure can also use pin bumps, microbumps, or other electrical interconnects. The combination of insulating layers 230 and 234, conductive layer 232, bumps 236 constitutes a combined interconnect structure 238 formed on semiconductor die 124 and encapsulant 226. Additional insulating layers and rd1 may be formed in combined interconnect structure 238. To interconnect to the semiconductor die 124. Reconstituted wafer 224 is singulated into individual Fo-WLCSPs 242 by saw blade or laser cutting tool 240 via encapsulant 226 and combined interconnect structure 238. Figure 10 shows the Fo-WLCSP 242 after singulation. Semiconductor die 124 is electrically coupled to an external device via a combined interconnect structure 238 that includes conductive layer 232 and bumps 236. In one embodiment, the insulating layers 210 and 216 are formed on the semiconductor die 124 prior to singulation from the wafer 120.绝29 201243966 The properties of the edge layer 21G~ 216 (that is, the high tensile strength at room temperature of 5 (10) MPa), the high elongation between 20 and 150 Å at room temperature, and the thickness = 3 〇 micron) Two layers of stress relaxation are provided to reduce cracking, buckling, and other damage to the grains during formation of the combined interconnect structure including insulating layers 230 and 234, conductive layer 232). The embodiment shown in Fig. 11 has two semiconductor dies on the sides and is disposed on the F 〇-w LCSP 25Mp - the semiconductor dies 124a are formed in the manner described in Figs. 3a to 3f. The other semiconductor die 124b is formed in the manner described in Figures 9a-9b. The two edge-biased semiconductor dies 124a, 124b are covered by an encapsulant 252, similar to Figures 4c and 9d. The combined interconnect structure 2 5 4 is formed on the semiconductor dies 124a and 124b, the insulating layers 136 and 216, and the encapsulant 252 in a manner similar to that of Figs. 4e to 4h and 9f to 9g. The composite interconnect structure 254 includes an insulating layer 256, a conductive layer 258, an insulating layer 260, and bumps 262. Figures 12a-121 relate to Figures 1 and 2a to 2c to demonstrate the process of forming a WLCSP having an insulating layer deposited on a semiconductor die and in a via formed in the die for stress relaxation. Following Fig. 3a, a plurality of channels or recesses 27 are formed in the track 126 of the semiconductor wafer 120 by using the LDA of the laser 272 and partially extend into the active surface 丨3〇, as shown in Fig. 2a. The width of the non-channel 270 is greater than the width of the sawway 126. In one embodiment, the channel 270 has a depth of 5 to 20 microns and extends along one or more saw streets 126 or completely surrounds the periphery of the semiconductor die 124. Figure 12b shows a plan view of a semiconductor wafer 120 with channels 270 formed to completely surround the periphery of the semiconductor die 124. In Figure 12c, an insulating or dielectric layer 274 is formed on the active surface ι3 使用 using spin coating, spray coating, printing, 30 201243966 lamination, PVD 'CVD, sintering or thermal oxidation. The insulating layer 274 includes one or more layers of Si〇2, si3N4, si〇N,

Ta205、Al2〇3、BCB、PI、PBO、聚合物基底的介電膜、有 機聚合物膜或其他具有類似絕緣和結構性質的材料。於— 具體態樣’絕緣層274是Si#4或SiON。部分的絕緣層274 是以具有圖案化光阻層的蝕刻過程所移除以暴露作用表面 130 ° 導電層276使用PVD、CVD、電解電鑛、無電鑛過程 或其他適當的金屬沉積過程而形成於絕緣層274和作用表 面13〇上。導電層276可以是一或更多層# a卜cu、sn、Ta205, Al2〇3, BCB, PI, PBO, polymeric substrate dielectric films, organic polymer films or other materials having similar insulating and structural properties. The - insulating layer 274 is Si #4 or SiON. A portion of the insulating layer 274 is removed by an etching process with a patterned photoresist layer to expose the active surface 130 °. The conductive layer 276 is formed using PVD, CVD, electrolytic ore, electroless ore processes, or other suitable metal deposition processes. The insulating layer 274 and the active surface 13 are on top. The conductive layer 276 may be one or more layers # a cu, sn,

Ni、Au、Ag或其他適合的導電材料。導電層276運作成接 觸墊’其重疊著絕緣層274並且電連接到作用表面13〇上 的電路。 於圖12d ’絕緣或介電層278使用旋塗、喷塗、印刷、 層。PVD、CVD、燒結或熱氧化而形成於絕緣層和導 電層276上以及形成於通道27"里。於一具體態樣,絕緣 層278乃施加成絕緣層274和導電層m上的毯覆層。絕 緣層278包含一或更多層的_2、Si3N4、Si0N、Ta2〇5、Ni, Au, Ag or other suitable conductive material. Conductive layer 276 operates as a contact pad' which overlaps insulating layer 274 and is electrically coupled to circuitry on active surface 13A. Spin-on, spray, print, and layer are used in Figure 12d's insulating or dielectric layer 278. PVD, CVD, sintering or thermal oxidation is formed on the insulating layer and the conductive layer 276 and in the via 27". In one embodiment, the insulating layer 278 is applied as an insulating layer 274 and a blanket layer on the conductive layer m. The insulating layer 278 comprises one or more layers of _2, Si3N4, SiONO, Ta2 〇 5,

Al2〇3 BCB、PI、PB〇、聚合物基底的介電膜、有機聚合 物膜或其他具有類似絕緣和結構性質的材料。絕緣層川 則被固化。絕緣層278運作成應力緩和層,以於猶後形成 =互連結構的期間減少龜裂、„或其他對半導體晶粒 278 Π乍用表面130和導電層276的損傷。尤其,絕《緣層 278具有的性質為在室,、β 勹隹至狐大於1〇〇百萬帕高拉伸強度、在室 31 201243966 溫於20〜150%之間的高伸長率、厚度為2〜3〇微米。絕緣層 278延伸進入通道27〇,藉由於稍後形成組合互連結構的期 間減少龜裂、f翹或其他損傷來保護半導體晶粒124相鄰 於作用表面1 3 〇的側壁邊緣。 半導體晶圓120使用切割工具279 (例如鋸片、喷射水 柱或雷射)而經由鑛道126單—化成個別的半導體晶粒⑵。 圖126顯示暫時的基板或載體28〇,其包含犧牲性基底 材料(例如碎、聚合物、氧化皱或其他適合的低成本剛性材 料)以支持結構。介面層或雙面膠帶282形成於載體28〇上 而做為暫時接著結合膜或蝕刻停止層。來自圖】h〜丨2d的 半導體sa 124使用撿拾和放置操作而定位和安裝於介面 層282和載體28〇上,作用表面13〇則指向載體。圖以 顯示半導體晶# m安裝於載體28〇以示範部分的重構或 重組晶圓284。 於圖12g,包封物或模製化合物286使用糊膏印刷 '壓 縮模製、轉移模製 '液態包封物模製、真空層纟、旋塗或 其他適合的施加器而沉積於半導體晶粒124和載體 上。包封物286可以是聚合性複合材料,例如具有填料的 裒氧樹月曰、具有填料的環氧丙烯酸酯或具有適當填料的聚 。物。包封物286是非導電的並且保護半導體裝置免於外 環境的元素和污染物。 於圖12h,載體280和介面層282藉由化學姓刻、機械 剝除、CMP、機械研磨、熱烘烤、紫外光、雷射掃描或渔 式脫除而移除,以暴露絕緣層278和包封物286。移除載體 32 201243966 280之後’包封物286提供用於半導體晶粒i24的結 持。部分的絕緣層278是s i 疋具有圖案化光阻層的蝕刻過程 所移除以暴露導電層276。敍刻過程也移除部分的包封物 286而達到低於絕緣層278表面的程度。另外可選擇的是部 分的絕緣層278使用雷射288 6f;LDA所移除以暴露導電層 276。蝕刻或LDA之後’絕緣層278維持重疊著導電層u6。 於圓12i,絕緣或鈍化層29〇使用pvD、cvd、印刷、 旋塗、喷塗、網印或層合而形成於包封物咖、絕緣層謂、Al2〇3 BCB, PI, PB〇, a dielectric film of a polymer substrate, an organic polymer film or other material having similar insulating and structural properties. The insulating layer is cured. The insulating layer 278 operates as a stress relaxation layer to reduce cracking during the formation of the interconnect structure, or other damage to the surface 130 and the conductive layer 276 of the semiconductor die 278. In particular, the edge layer 278 has the properties of high tensile strength in the chamber, β 勹隹 to fox greater than 1 〇〇 MPa, high elongation in the chamber 31 201243966 between 20 and 150%, thickness 2 to 3 〇 micron The insulating layer 278 extends into the via 27 〇 to protect the sidewalls of the semiconductor die 124 adjacent to the active surface 13 3 by reducing cracking, f-warping or other damage during the later formation of the combined interconnect structure. The circle 120 is singulated into individual semiconductor dies (2) via a mine 126 using a cutting tool 279 (eg, a saw blade, a jet of water, or a laser). Figure 126 shows a temporary substrate or carrier 28 that contains a sacrificial base material ( For example, a crushed, polymer, oxidized wrinkle or other suitable low cost rigid material to support the structure. The interface layer or double-sided tape 282 is formed on the carrier 28〇 as a temporary bonding film or etch stop layer. ~ The 2d semiconductor sa 124 is positioned and mounted on the interface layer 282 and the carrier 28 using a pick and place operation, and the active surface 13 is directed to the carrier. The figure shows the semiconductor crystal #m mounted on the carrier 28 to reconstruct the exemplary portion. Or reconstituting the wafer 284. In Figure 12g, the encapsulant or molding compound 286 is printed using a paste 'compression molding, transfer molding' liquid encapsulation molding, vacuum lamination, spin coating or other suitable applicator It is deposited on the semiconductor die 124 and the carrier. The encapsulant 286 can be a polymeric composite such as a enamel tree with a filler, an epoxy acrylate with a filler, or a polymer with a suitable filler. The material 286 is non-conductive and protects the semiconductor device from elements and contaminants of the external environment. In Figure 12h, the carrier 280 and the interface layer 282 are chemically etched, mechanically stripped, CMP, mechanically ground, thermally baked, ultraviolet light. , laser scanning or fish removal to remove to expose the insulating layer 278 and the encapsulant 286. After the carrier 32 201243966 280 is removed, the 'encapsulant 286 provides for the bonding of the semiconductor die i24. Part of the insulation 278 is an etch process with a patterned photoresist layer removed to expose the conductive layer 276. The engraving process also removes portions of the encapsulant 286 to a level below the surface of the insulating layer 278. Alternatively, A portion of the insulating layer 278 is removed using a laser 288 6f; the LDA is removed to expose the conductive layer 276. After the etch or LDA, the insulating layer 278 is maintained overlying the conductive layer u6. For the circle 12i, the insulating or passivation layer 29 is pvd, cvd , printing, spin coating, spray coating, screen printing or lamination to form in the envelope, coffee, insulation,

導電層276上。絕緣層29〇包含一或更多層的叫、叫IOn the conductive layer 276. The insulating layer 29〇 contains one or more layers called

SiON、Ta2〇5、Al2〇3、聚合物介電膜或其他具有類似絕緣 和結構性質的材料。部分的絕緣層29〇是以具有圖案化光 阻層的蝕刻過程所移除以暴露導電層276。另外可選擇的是 部分的絕緣層290使用雷射288的LDA所移除以暴露導電 層 276。 於圓12j,導電層292使用PVD、CVD、濺鍍、電解電 鑛、無電鑛過程或其他適合的金屬沉積過程來做出圖案而 形成於絕緣層290和導電層276上。導電層292可以是一 或更多層# Al、Cu、Sn、Ni、Au、Ag或其他適合的導電 材料。部分的導電層292沿著絕緣層29〇而水平延伸並且 平行於半導體晶粒124的作用表® 130以側向重新分布電 互連^導電層276。導電層292運作成扇出现以用於半 導體粒124的電訊號。部分的導電層292電連接到導電 曰 其他。卩为的導電層292是電相通或電隔離的,此視 半導體晶粒124的連接性而定。 33 201243966 於圖I2k,絕緣或鈍化層294使用pvD、cvd、印刷、 旋塗、喷塗、網印或層合而形成於絕緣層29Q和導電層州 上。絕緣層294可以是-或更多層的Si〇2、叫乂、8伽、 Ta2〇5 Al2〇3、聚合物介電膜或其他具有類似絕緣和結構性 質的材料》部分的絕㈣294是以具有圖案化光阻層的蝕 刻過程所移除以暴露導電層292。另外可選擇的是部分的絕 緣層294藉由LDA而移除以暴露導電層292。 於圖12卜導電凸塊材料使用蒸鍍、電解電鍍、無電鍍、 球滴或網印過程而沉積於暴露的導電層292上。凸塊材料 可以是Al、Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料及其組合, 而可選用助熔劑。舉例而言,凸塊材料可以是共晶Sn / Μ、 高鉛焊料或無鉛焊料^凸塊材料使用適當的附著或結合過 程而結合於導電層292。於一具體態樣,凸塊材料藉由加熱 材料到高於其熔點而重熔以形成焊球或凸塊29^於某些用 途,凸塊296重熔二次以改善對導電層292的電接觸。凸 塊296也可以壓縮結合於導電層292。凸塊296代表可以形 成於導電層292上的一種互連結構。互連結構也可以使用 銷栓凸塊、微凸塊或其他電互連。 絕緣層290和294、導電層292、凸塊296的組合構成 了形成於半導體晶粒124和包封物286上的組合互連結構 298。額外的絕緣層和RDL可以形成於組合互連結構298 以互連到半導體晶粒124。重組晶圓284以鋸片或雷射切割 工具300經過包封物286和組合互連結構298而單一化成 個別的 Fo-WLCSP 302。 34 201243966 圖13顯不單一化之後的Fo-WLCSP 302。半導體晶粒 1 24經由、、且σ互連結構298 (其包括導電層292和凸塊296) 而電連接到外部裝置。於一具體態樣,在從晶圓12〇單一 化之刖,絕緣層278形成於半導體晶粒124上。絕緣層278 的性質(亦即在室溫大於1 00百萬帕的高拉伸強度、在室溫 於20〜150%之間的高伸長率、厚度為2〜3〇微米)提供應力緩 和,以於形成組合互連結構298 (其包括絕緣層29〇和294、 導電層292)的期間減少龜裂、彎翹和其他對晶粒的損傷。 此外,絕緣層278延伸進入通道270,藉由於形成組合互連 結構298的期間減少龜裂、彎翹或其他損傷來保護半導體 晶粒124相鄰於作用表面130的側壁邊緣。 圖14a〜14k關聯於圖1和2a〜2c來示範形成WLCSP的 另一過程’其絕緣層沉積在晶粒和包封物上以及沉積於晶 粒中所形成的通道裡。接續自圖3a,導電層310使用PVD、 CVD、電解電鍍、無電鍍過程或其他適當的金屬沉積過程 而形成於作用表面130上’如圖14a所示。導電層310可以 疋一或更多層的Al、Cu、Sn、Ni、Au、Ag或其他適合的 導電材料》導電層310運作成電連接到作用表面13〇上之 電路的接觸墊。於此具體態樣’導電層31〇具有高表面梨 態’譬如大於0.6微米。 多個通道或凹槽312藉由使用雷射314的LDA而形成 於半導體晶圓12 〇的鑛道12 6裡並且部分延伸到作用表面 130裡。通道312的寬度大於鋸道126的寬度。於―具體態 樣,通道3 12的深度為5〜20微米,並且沿著一或更多個鋸 35 201243966 道120而延伸或者完全圍繞著半導體晶粒124的周圍。圖 14b顯不半導體晶圓12〇的平面圖,其通道312形成完全圍 繞著半導體晶粒1 24的周圍。 於圖14c ’絕緣或介電層3 16使用旋塗、喷塗、印刷、 層合、PVD、CVD、燒結或熱氧化而保形施加於作用表面 130和導電層312上。絕緣層316包含一或更多層的以〇2、 Sl3N4、SiON、Ta2〇5、Al2〇3、BCB、ρι、pB〇、聚合物基底 的介電膜、有機聚合物膜或其他具有類似絕緣和結構性質 的材料。絕緣層316遵循作用表面13〇和導電層312的起 伏輪廓。絕緣層316具有高表面型態以覆蓋導電層31〇。 於圖14d,暫時平坦化層318使用旋塗、噴塗、印刷、 層合、PVD、CVD、燒、结或熱氧化而形成於絕緣層3 i 6和導 電層310上以及形成於通道312裡。於一具體態樣,平坦 化層318乃施加成整個半導體晶圓12〇上的毯覆層而無圖 案化。平坦化層318包含一或更多層的Si〇2、Si3N4、Si〇N、 Τ&2〇5、Al2〇3、BCB、PI、PB〇、聚合物基底的介電膜、有 機聚合物膜或其他具有類似絕緣和結構性質的材料。暫時 平坦化層318延伸進入通道312。 半導體晶圓120使用切割工具3 19 (例如鋸片、喷射水 柱或雷射)而經由鑛道126單—化成個別的半導體晶粒124。 圖He顯示暫時的基板或載體32〇,其 材一、聚合物、氧化皱或其他適合的低 料)以支持結構。介面層或雙面膠帶322形成於載體上 而做為暫時接著結合膜或蝕刻停止層。來自圖⑷〜⑷的 36 201243966 半導體晶粒1 24使用拾私^¥ & 之用撿軋和放置操作而定位和安裝於介面 層322和載體320上’作用表面13〇則指向載體。安裝於 載體32G的半導體晶粒124構成了重組晶圓324。 於圖14f &封物或模製化合物326使用糊膏印刷、壓 縮模製、轉移模製、液態包封物模製、真空層纟、旋塗或 其他適合的施加器而沉積於半導體晶粒124 #載體32〇 上包封⑯326可以是聚合性複合材料,例如具有填料的 環氧樹脂、具有填料的環氧丙烯酸自旨或具有適當填料的聚 合物。包封物326是非導電的並且保護半導體裝置免於外 部環境的元素和污染物。 於圖14g,載體32〇和介面層322藉由化學蝕刻、機械 剝除、CMP、機械研磨、熱烘烤、紫外光、雷射掃描或渔 式脫除而移除’以暴露平坦化層318和包封物326。移除載 體320之後,包封物326提供用於半導體晶粒124的 支持。 ° 於圖14h,暫時平坦化層318藉由溼式化學脫除過程或 具有圖案化光阻層的蝕刻過程而完全移除,以暴露絕緣層 3 16、導電層3 1 〇、通道3 ! 2。部分的絕緣層3 j 6是以具有 圖案化光阻層的蝕刻過程所移除以暴露導電層3丨〇。另外可 選擇的疋部分的絕緣層3丨6使用雷射328的LDA所移除以 暴露導電層3 10。敍刻或LDA之後’絕緣層3 1 6維持重叠 著導電層3 10。 於圖14ι,絕緣或鈍化層330使用PVD、CVD、印刷、 旋塗喷塗、網印或層合而形成於包封物326和絕緣層3 j 6 37 201243966 上以及形成於通道3〗9 * ,a ^ ^ 艰道312裡。絕緣層33〇包含—或SiON, Ta2〇5, Al2〇3, polymer dielectric films or other materials with similar insulating and structural properties. A portion of the insulating layer 29 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 276. Alternatively, a portion of the insulating layer 290 is removed using the LDA of the laser 288 to expose the conductive layer 276. In circle 12j, conductive layer 292 is patterned over PVD, CVD, sputtering, electrolytic ore, electroless ore, or other suitable metal deposition process to form insulating layer 290 and conductive layer 276. Conductive layer 292 can be one or more layers #Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. A portion of the conductive layer 292 extends horizontally along the insulating layer 29 and parallels the active surface of the semiconductor die 124 to laterally redistribute the electrical interconnects 276. Conductive layer 292 operates as a fan for the presence of electrical signals for semiconductor particles 124. A portion of the conductive layer 292 is electrically connected to the conductive 曰 other. The conductive layer 292 is electrically or electrically isolated, depending on the connectivity of the semiconductor die 124. 33 201243966 In Figure I2k, an insulating or passivation layer 294 is formed on the insulating layer 29Q and the conductive layer state using pvD, cvd, printing, spin coating, spray coating, screen printing or lamination. The insulating layer 294 may be - or more layers of Si 〇 2, 乂 乂, 8 gamma, Ta 2 〇 5 Al 2 〇 3, polymer dielectric film or other materials having similar insulating and structural properties. An etch process with a patterned photoresist layer is removed to expose conductive layer 292. Alternatively, a portion of the insulating layer 294 is removed by the LDA to expose the conductive layer 292. The conductive bump material is deposited on the exposed conductive layer 292 using an evaporation, electrolytic plating, electroless plating, ball drop or screen printing process. The bump material may be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, and a flux may be selected. For example, the bump material can be a eutectic Sn / Μ, high lead solder or lead-free solder bump material bonded to conductive layer 292 using a suitable attachment or bonding process. In one embodiment, the bump material is remelted by heating the material above its melting point to form solder balls or bumps. For some purposes, the bumps 296 are remelted twice to improve the electrical conductivity of the conductive layer 292. contact. The bumps 296 can also be compression bonded to the conductive layer 292. Bumps 296 represent an interconnect structure that can be formed on conductive layer 292. The interconnect structure can also use pin bumps, microbumps, or other electrical interconnects. The combination of insulating layers 290 and 294, conductive layer 292, and bumps 296 constitute a combined interconnect structure 298 formed over semiconductor die 124 and encapsulant 286. Additional insulating layers and RDL may be formed in the combined interconnect structure 298 to interconnect to the semiconductor die 124. Reconstituted wafer 284 is singulated into individual Fo-WLCSPs 302 by saw blade or laser cutting tool 300 via encapsulant 286 and combined interconnect structure 298. 34 201243966 Figure 13 shows the Fo-WLCSP 302 after simplification. Semiconductor die 1 24 is electrically coupled to an external device via a sigma interconnect structure 298 that includes conductive layer 292 and bumps 296. In one embodiment, an insulating layer 278 is formed over the semiconductor die 124 after singulation from the wafer 12. The properties of the insulating layer 278 (i.e., high tensile strength at room temperature greater than 100 MPa, high elongation between 20 and 150% at room temperature, thickness 2 to 3 Å micrometers) provide stress relief, To reduce cracking, warping, and other damage to the grains during formation of the composite interconnect structure 298, which includes the insulating layers 29A and 294, the conductive layer 292. In addition, insulating layer 278 extends into channel 270 to protect semiconductor die 124 adjacent sidewall edges of active surface 130 by reducing cracking, warping, or other damage during formation of composite interconnect structure 298. Figures 14a-14k are associated with Figures 1 and 2a-2c to illustrate another process for forming a WLCSP whose insulating layer is deposited on the grains and encapsulant and deposited in the channels formed in the grains. Following Figure 3a, conductive layer 310 is formed on active surface 130 using PVD, CVD, electrolytic plating, electroless plating, or other suitable metal deposition process' as shown in Figure 14a. Conductive layer 310 can operate one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 310 operates to electrically connect to the contact pads of the circuitry on active surface 13A. In this specific aspect, the conductive layer 31 has a high surface pear state, e.g., greater than 0.6 μm. A plurality of channels or recesses 312 are formed in the land 12 of the semiconductor wafer 12 and partially extend into the active surface 130 by using the LDA of the laser 314. The width of the channel 312 is greater than the width of the saw blade 126. In a particular aspect, channel 3 12 has a depth of 5 to 20 microns and extends along one or more saws 35 201243966 tracks 120 or completely surrounds the periphery of semiconductor die 124. Figure 14b shows a plan view of a semiconductor wafer 12A with channels 312 formed to completely surround the periphery of semiconductor die 146. The insulating or dielectric layer 3 16 is conformally applied to the active surface 130 and the conductive layer 312 using spin coating, spray coating, printing, lamination, PVD, CVD, sintering or thermal oxidation. The insulating layer 316 comprises one or more layers of 〇2, Sl3N4, SiON, Ta2〇5, Al2〇3, BCB, ρι, pB〇, a dielectric substrate dielectric film, an organic polymer film or the like having similar insulation. And structural properties of the material. The insulating layer 316 follows the undulating profile of the active surface 13A and the conductive layer 312. The insulating layer 316 has a high surface type to cover the conductive layer 31A. In FIG. 14d, the temporary planarization layer 318 is formed on the insulating layer 3i6 and the conductive layer 310 and formed in the via 312 by spin coating, spray coating, printing, lamination, PVD, CVD, firing, junction or thermal oxidation. In one embodiment, the planarization layer 318 is applied as a blanket over the entire semiconductor wafer 12 without patterning. The planarization layer 318 includes one or more layers of Si〇2, Si3N4, Si〇N, Τ&2〇5, Al2〇3, BCB, PI, PB〇, a dielectric substrate dielectric film, and an organic polymer film. Or other materials having similar insulating and structural properties. Temporary planarization layer 318 extends into channel 312. The semiconductor wafer 120 is singulated into individual semiconductor dies 124 via a mine track 126 using a cutting tool 3 19 (e.g., a saw blade, a jet of water, or a laser). Figure He shows a temporary substrate or carrier 32, which is a material, a polymer, an oxidized wrinkle or other suitable low material to support the structure. An interface layer or double-sided tape 322 is formed on the carrier as a temporary bonding film or etch stop layer. 36 201243966 from Figures (4) to (4) The semiconductor die 1 24 is positioned and mounted on the interface layer 322 and the carrier 320 by a rolling and placing operation using a pick-up and placing operation. The semiconductor die 124 mounted on the carrier 32G constitutes a reconstituted wafer 324. 14f & seal or molding compound 326 is deposited on the semiconductor die using paste printing, compression molding, transfer molding, liquid encapsulation molding, vacuum lamination, spin coating or other suitable applicator The 124 #carrier 32 〇 upper encapsulation 16326 may be a polymeric composite material such as an epoxy resin having a filler, an epoxy acrylate having a filler, or a polymer having a suitable filler. Encapsulant 326 is non-conductive and protects the semiconductor device from elements and contaminants in the external environment. In FIG. 14g, the carrier 32 and the interface layer 322 are removed by chemical etching, mechanical stripping, CMP, mechanical polishing, thermal baking, ultraviolet light, laser scanning, or fish removal to expose the planarization layer 318. And encapsulant 326. After the carrier 320 is removed, the encapsulant 326 provides support for the semiconductor die 124. ° Figure 14h, the temporary planarization layer 318 is completely removed by a wet chemical removal process or an etching process with a patterned photoresist layer to expose the insulating layer 3 16 , the conductive layer 3 1 〇, the channel 3 ! 2 . A portion of the insulating layer 3 j 6 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 3 . Further, the optional insulating portion 3丨6 of the germanium portion is removed using the LDA of the laser 328 to expose the conductive layer 3 10 . After the etch or LDA, the insulating layer 3 16 maintains the conductive layer 3 10 overlapping. In FIG. 14 , the insulating or passivation layer 330 is formed on the encapsulant 326 and the insulating layer 3 j 6 37 201243966 using PVD, CVD, printing, spin coating, screen printing or lamination, and formed on the channel 3 9 * , a ^ ^ hard road 312. Insulation layer 33〇 contains - or

Si02、Si3N4、Si〇N τη 夕嘴的 Ν、Ta205、Al2〇3、有機聚合物或其他且 有類似絕緣和結構性質的材料。絕㈣330則被固化。絕 緣層330運作成應力緩和層,以於形成組合互連結構的期 間減少龜裂、灣麵或其他對半導體晶請之作用表面13〇 和導電層3 1G的損傷。尤其,絕緣層33()具有的性質為在 室溫大於100百菡岫沾古4*从私a 曰禺帕的问拉伸強度、在室溫於2〇〜15〇%之 間的高伸長率、於半導體晶粒124上的厚度為5〜3〇微米以 及於包封物326上的厚度為2〜35微米。絕緣層33〇延伸進 入通道312,藉由於形成組合互連結構的期間減少龜裂、彎 翹或其他損傷來保護半導體晶粒124相鄰於作用表面 的侧壁邊緣。部分的絕緣層33〇是以具有圖案化光阻層的 蝕刻過程所移除以暴露導電層3丨卜另外可選擇的是部分的 絕緣層330使用雷射328的LDA所移除以暴露導電層31〇。 於圓14j ’導電層332使用PVD、CVD '濺鍍、電解電 鍍、無電鍍過程或其他適合的金屬沉積過程來做出圊案而 形成於絕緣層330和導電層31〇上。導電層332可以是一 或更多層的Al、Cu、Sn、Ni、Au、Ag或其他適合的導電 材料。部分的導電層332沿著絕緣層330水平延伸並且平 行於半導體晶粒124的作用表面丨3〇以侧向重新分布電互 連到導電層310。導電層332運作成扇出rdl以用於半導 體晶粒124的電訊號》部分的導電層332電連接到導電層 310。其他部分的導電層332是電相通或電隔離的,此視半 導體晶粒124的連接性而定。 38 201243966 於圖14k,絕緣或鈍化層334使用pVD、CVD、印刷、 旋塗、喷塗、網印或層合而形成於絕緣層33〇和導電層Μ: 上。絕緣層334可以是一或更多層的si〇2、Si3N4、Si〇N、Si02, Si3N4, Si〇N τη Ν, Ta205, Al2〇3, organic polymer or other materials with similar insulating and structural properties. The absolute (four) 330 is cured. The insulating layer 330 operates as a stress relaxation layer to reduce cracking, bay surface or other damage to the surface 13〇 and the conductive layer 3 1G of the semiconductor crystal during the formation of the combined interconnect structure. In particular, the insulating layer 33() has a property of a tensile strength of more than 100 Å at room temperature and a high elongation between 2 〇 and 15 〇% at room temperature. The ratio, the thickness on the semiconductor die 124 is 5 to 3 Å and the thickness on the encapsulant 326 is 2 to 35 microns. The insulating layer 33〇 extends into the channel 312 to protect the semiconductor die 124 adjacent to the sidewall edge of the active surface by reducing cracking, buckling or other damage during formation of the composite interconnect structure. A portion of the insulating layer 33 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 3. Alternatively, a portion of the insulating layer 330 is removed using the LDA of the laser 328 to expose the conductive layer. 31〇. The conductive layer 332 is formed on the insulating layer 330 and the conductive layer 31 by using a PVD, CVD 'sputtering, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 332 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. A portion of the conductive layer 332 extends horizontally along the insulating layer 330 and is parallel to the active surface 半导体3 of the semiconductor die 124 to laterally redistribute electrical interconnections to the conductive layer 310. The conductive layer 332 operates to fan out rdl for electrically connecting the conductive layer 332 of the electrical signal portion of the semiconductor die 124 to the conductive layer 310. The other portions of conductive layer 332 are electrically or electrically isolated, depending on the connectivity of semiconductor die 124. 38 201243966 In FIG. 14k, an insulating or passivation layer 334 is formed on the insulating layer 33 and the conductive layer p using pVD, CVD, printing, spin coating, spray coating, screen printing or lamination. The insulating layer 334 may be one or more layers of si〇2, Si3N4, Si〇N,

Ta2〇5、ΑΙΑ3、聚合物介電膜或其他具有類似絕緣和結構性 質的材料。部分的絕緣層334是以具有圖案化光阻層的蝕 刻過程所移除以暴露導電層332。另外可選擇的是部分的絕 緣層334藉由LDA而移除以暴露導電層332。 導電凸塊材料使用蒸鍍、電解電鍍、無電鍍、球滴或 網印過程而沉積於暴露的導電層332上。凸塊材料可以是 A卜Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料及其組合,而可 選用助熔劑。舉例而言,凸塊材料可以是共晶Sn / Pb、高 鉛焊料或無鉛焊料。凸塊材料使用適當的附著或結合過程 而結合於導電層332 ^於一具體態樣,凸塊材料藉由加熱材 料到高於其熔點而重熔以形成焊球或凸塊336。於某些用 途,凸塊336重熔二次以改善對導電層332的電接觸。凸 塊336也可以壓縮結合於導電層332。凸塊336代表可以形 成於導電層332上的一種互連結構。互連結構也可以使用 銷栓凸塊、微凸塊或其他電互連。 絕緣層33 0和334、導電層332、凸塊336的組合構成 了形成於半導體晶粒124和包封物326上的組合互連結構 338。額外的絕緣層和rdL可以形成於組合互連結構338 以互連到半導體晶粒124。重組晶圓324以鋸片或雷射切割 工具340經過包封物326和組合互連結構338而單一化成 個別的 Fo-WLCSP 342。 39 201243966 圖1 5顯示單一化之後的Fo-WLCSP 342。半導體晶粒 I24經由組合互連結構3;3 8 (其包括導電層332和凸塊336) 而電連接到外部裝置。絕緣層330的性質(亦即在室溫大於 1〇〇百萬帕的高拉伸強度、在室溫於20〜150%之間的高伸長 率、厚度為2〜3 0微米)提供應力緩和,以於形成組合互連結 構338 (其包括絕緣層334和導電層332)的期間減少龜裂、 彎翹和其他對晶粒的損傷。此外,絕緣層33〇延伸進入通 道3 12,藉由於形成組合互連結構3 3 8的期間減少龜裂或其 他損傷來保護半導體晶粒124相鄰於作用表面130的側壁 邊緣。通道312中的絕緣材料330也於形成組合互連結構 3 3 8的期間減少彎翹。 圖16a〜16d關聯於圖!和2a〜2C來示範形成WLCSp的 過程,其具有沉積在晶粒和包封物上以及沉積在晶粒和包 封物中形成之通道裡的絕緣層以用於應力緩和。接續自圖 14h’部分的包封物326是使用雷射346的所移除,以 於相鄰於通道312的包封物中形成通道㈣,如圖^所 示。通道348沿著半導體晶124的—或更多側而延伸或 者完全圍繞著晶粒的周圍。 於圖16b,絕緣或鈍化層35〇使用pvD ' 、印刷 定塗噴塗、網印或層合而形成於包封物和絕緣層3 上以及形成於通道31”里。絕緣層35〇包含一或更多層1Ta2〇5, ΑΙΑ3, polymer dielectric film or other materials with similar insulation and structural properties. A portion of the insulating layer 334 is removed by an etch process with a patterned photoresist layer to expose the conductive layer 332. Alternatively, a portion of the insulating layer 334 is removed by LDA to expose the conductive layer 332. The conductive bump material is deposited on the exposed conductive layer 332 using an evaporation, electrolytic plating, electroless plating, ball drop or screen printing process. The bump material may be A, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, and a flux may be selected. For example, the bump material can be eutectic Sn / Pb, high lead solder or lead free solder. The bump material is bonded to the conductive layer 332 using a suitable attachment or bonding process. The bump material is remelted by heating the material above its melting point to form solder balls or bumps 336. For some purposes, bumps 336 are reflowed twice to improve electrical contact to conductive layer 332. The bumps 336 can also be compression bonded to the conductive layer 332. Bumps 336 represent an interconnect structure that can be formed on conductive layer 332. The interconnect structure can also use pin bumps, microbumps, or other electrical interconnects. The combination of insulating layers 307 and 334, conductive layer 332, and bumps 336 constitute a combined interconnect structure 338 formed over semiconductor die 124 and encapsulant 326. Additional insulating layers and rdL may be formed in the combined interconnect structure 338 to interconnect to the semiconductor die 124. Reconstituted wafer 324 is singulated into individual Fo-WLCSPs 342 by saw blade or laser cutting tool 340 via encapsulant 326 and combined interconnect structure 338. 39 201243966 Figure 1 5 shows the Fo-WLCSP 342 after singulation. The semiconductor die I24 is electrically connected to the external device via the combined interconnect structure 3; 38 (which includes the conductive layer 332 and the bumps 336). The properties of the insulating layer 330 (i.e., high tensile strength greater than 1 MPa at room temperature, high elongation between 20 and 150% at room temperature, thickness 2 to 30 microns) provide stress relief To reduce cracking, warping, and other damage to the grains during formation of the combined interconnect structure 338, which includes the insulating layer 334 and the conductive layer 332. In addition, the insulating layer 33 extends into the vias 3 12 to protect the semiconductor die 124 adjacent to the sidewall edges of the active surface 130 by reducing cracking or other damage during formation of the interconnect interconnect structure 338. The insulating material 330 in the channel 312 also reduces bending during the formation of the combined interconnect structure 338. Figures 16a to 16d are associated with the figure! And 2a to 2C to demonstrate the process of forming WLCSp having an insulating layer deposited on the crystal grains and the encapsulant and deposited in the channels formed in the crystal grains and the envelope for stress relaxation. The encapsulant 326 continued from the portion 14h' of FIG. 14 is removed using the laser 346 to form a channel (4) adjacent to the encapsulation of the channel 312, as shown in FIG. Channel 348 extends along the - or more sides of semiconductor crystal 124 or completely surrounds the periphery of the die. In Fig. 16b, an insulating or passivation layer 35 is formed on the encapsulant and insulating layer 3 and formed in the via 31" using pvD', print coating, screen printing or lamination. The insulating layer 35 includes one or More layers 1

Si〇2、Si3N4、SiON、T。r\ 2 5、Al2〇3、有機聚合物或其他 有類似絕緣和結構性質的材料。絕緣;I 350則被固化。 緣層35G運作成應力緩和層,以於形成組合互連結構的 40 201243966 間減少龜裂、f趣或其他對半導體晶粒124之作用表面i3〇 和導電層310的損傷。尤其,絕緣層350具有的性質為在 室溫大於-百萬帕的高拉伸強度、在室溫於2。〜= 間的高伸長率、在包封物326上的厚度為2〜3〇微米。絕緣 層350延伸進入通道312和348,藉由於形成組合互連結構 的期間減少龜裂、彎翹或其他損傷來保護半導體晶粒124 相鄰於作用表φ 13G的側壁邊緣。部分的絕緣層35〇是以 具有圖案化光阻層的蝕刻過程所移除以暴露導電層3ι〇。另 外可選擇的是部分的絕緣層35〇使用雷射⑽# lda所移 除以暴露導電層31〇。 於圖16c’導電層352使用pVD、cvd、濺鍍、電解電 鍍、無電鍍過程或其他適合的金屬沉積過程來做出圖案而 形成於絕緣層350和導電層310上。導電層352可以是一 或更多層# A卜Cu、Sn、Ni、Au、Ag或其他適合的導電 材料。部分的導電層352沿著絕緣層35〇而水平延伸並且 平行於半導體晶粒124的作用表面13〇以側向重新分布電 互連到導電層310。導電層352運作成扇出RDL以用於半 導體晶粒124的電訊號。部分的導電層352電連接到導電 層310。其他部分的導電層352是電相通或電隔離的,此視 半導體晶粒124的連接性而定。 於圖16d ’絕緣或鈍化層354使用Pvd、CVD、印刷、 旋塗、喷塗、網印或層合而形成於絕緣層35〇和導電層352 上。絕緣層354可以是一或更多層的Si〇2、si3N4、Si〇N、 Ta2〇5、ΑΙΑ3、聚合物介電膜或其他具有類似絕緣和結構性 201243966 質的材料。部分的絕緣層354是以具有圖案化光阻層的蝕 刻過程所移除以暴露導電層352。另外可選擇的是部分的絕 緣層354藉由LDA而移除以暴露導電層352。 導電凸塊材料使用蒸鍍、電解電鍍 '無電鍍、球滴或 網印過程而沉積於暴露的導電層352上。凸塊材料可以是 A卜Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料及其組合,而可 選用助熔劑。舉例而言,凸塊材料可以是共晶Sn /外、高 鉛焊料或無鉛焊料。凸塊材料使用適當的附著或結合過程 而結合於導電層352。於一具體態樣,凸塊材料藉由加熱材 料到尚於其熔點而重熔以形成焊球或凸塊356。於某些用 途,凸塊356重熔二次以改善對導電層352的電接觸。凸 塊356也可以壓縮結合於導電層352。凸塊350代表可以形 成於導電層352上的一種互連結構。互連結構也可以使用 銷栓凸塊、微凸塊或其他電互連。 絕緣層350和354、導電層352、凸塊356的組合構成 了 I成於半導體晶粒124和包封物326上的組合互連結構 3 5 8。額外的絕緣層和RDL可以形成於組合互連結構3 y 以互連到半導體晶粒124。重組晶圓324以鋸片或雷射切割 工具360經過包封物326和組合互連結構358而單一化成 個別的 Fo-WLCSP 362。 圖17顯示單一化之後的Fo-WLCSP 362。半導體晶粒 124經由組合互連結構358 (其包括導電層352和凸塊356) 而電連接到外部裝置。絕緣層350的性質(亦即在室溫大於 100百萬帕的高拉伸強度、在室溫於20〜150%之間的高伸長 42 201243966 率、厚度為2〜30微求)提供應力緩和,以於形成組合互連社 構35”其包括絕緣層354和導電層352)的期間減少龜裂、 彎翹和其他對晶粒的損傷。此外’絕緣層Μ。延伸進入通 道3 i 2和3 4 8 ’藉由於形成組合互連結構3 5 裂或其他損傷來保護半導體晶粒124相鄰於作用表面= 的側壁邊緣。通道312# 348中的絕緣材料35g也於形成 組合互連結構358的期間減少彎翹。 圖18a〜18j關聯於圖1和2a〜2c來示範形成WLCSp& 過程,其具有沉積在晶粒和包封物上以及沉積在包封物中 形成之通道裡的絕緣層以用於應力緩和。接續自目h,導 電層370使用PVD、CVD、電解電鍍、無電鍍過程或其他 適當的金屬沉積過程而形成於作用表面13〇上如圖… 所示。導電層370可以是一或更多層的MmSi〇2, Si3N4, SiON, T. r\ 2 5, Al2〇3, organic polymers or other materials with similar insulating and structural properties. Insulation; I 350 is cured. The edge layer 35G operates as a stress relaxation layer to reduce cracking, miscellaneous or other damage to the surface i3〇 and the conductive layer 310 of the semiconductor die 124 during formation of the composite interconnect structure 40 201243966. In particular, the insulating layer 350 has a property of a high tensile strength of more than - million Pa at room temperature and a temperature of 2 at room temperature. The high elongation between ~= and the thickness on the encapsulant 326 is 2 to 3 μm. The insulating layer 350 extends into the channels 312 and 348 to protect the sidewalls of the semiconductor die 124 adjacent to the surface of the active surface φ 13G by reducing cracking, warping or other damage during formation of the composite interconnect structure. A portion of the insulating layer 35 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 3ι. Alternatively, a portion of the insulating layer 35 is removed using a laser (10) # lda to expose the conductive layer 31. The conductive layer 352 of Fig. 16c' is patterned on the insulating layer 350 and the conductive layer 310 by patterning using pVD, cvd, sputtering, electrolytic plating, electroless plating, or other suitable metal deposition process. Conductive layer 352 can be one or more layers of A, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. A portion of the conductive layer 352 extends horizontally along the insulating layer 35 and is parallel to the active surface 13 of the semiconductor die 124 to be laterally redistributed to the conductive layer 310. Conductive layer 352 operates to fan out RDL for electrical signals of semiconductor die 124. A portion of the conductive layer 352 is electrically connected to the conductive layer 310. Other portions of conductive layer 352 are electrically or electrically isolated, depending on the connectivity of semiconductor die 124. The insulating or passivation layer 354 is formed on the insulating layer 35A and the conductive layer 352 using Pvd, CVD, printing, spin coating, spray coating, screen printing or lamination in Fig. 16d. The insulating layer 354 may be one or more layers of Si〇2, si3N4, Si〇N, Ta2〇5, ΑΙΑ3, a polymer dielectric film or other material having similar insulation and structural properties. A portion of the insulating layer 354 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 352. Alternatively, a portion of the insulating layer 354 is removed by LDA to expose the conductive layer 352. The conductive bump material is deposited on the exposed conductive layer 352 using an evaporation, electrolytic plating 'electroless plating, ball drop or screen printing process. The bump material may be A, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, and a flux may be selected. For example, the bump material can be eutectic Sn / outer, high lead solder or lead free solder. The bump material is bonded to the conductive layer 352 using a suitable attachment or bonding process. In one embodiment, the bump material is remelted by heating the material to its melting point to form solder balls or bumps 356. For some uses, bumps 356 are reflowed twice to improve electrical contact to conductive layer 352. The bumps 356 can also be compression bonded to the conductive layer 352. Bumps 350 represent an interconnect structure that can be formed on conductive layer 352. The interconnect structure can also use pin bumps, microbumps, or other electrical interconnects. The combination of insulating layers 350 and 354, conductive layer 352, and bumps 356 constitutes a combined interconnect structure 358 formed on semiconductor die 124 and encapsulant 326. Additional insulating layers and RDL may be formed in the combined interconnect structure 3y to interconnect to the semiconductor die 124. Reconstituted wafer 324 is singulated into individual Fo-WLCSPs 362 by saw blade or laser cutting tool 360 via encapsulant 326 and combined interconnect structure 358. Figure 17 shows Fo-WLCSP 362 after singulation. Semiconductor die 124 is electrically coupled to an external device via a combined interconnect structure 358 that includes conductive layer 352 and bumps 356. The properties of the insulating layer 350 (i.e., high tensile strength at room temperature greater than 100 megapascals, high elongation 42 201243966 at room temperature between 20 and 150%, thickness 2 to 30 micro-seeking) provide stress relief In order to reduce the cracking, warping and other damage to the crystal grains during the formation of the combined interconnect fabric 35" including the insulating layer 354 and the conductive layer 352. Further, the 'insulating layer Μ extends into the channel 3 i 2 and 3 4 8 'protects the sidewalls of the semiconductor die 124 adjacent to the active surface = by forming a combined interconnect structure 35 or other damage. The insulating material 35g in the via 312 # 348 also forms the combined interconnect structure 358 Figures 18a to 18j are associated with Figures 1 and 2a to 2c to demonstrate the formation of a WLCSp& process having an insulating layer deposited on the die and encapsulant and deposited in a channel formed in the encapsulant For stress relaxation. Connected from the eye h, the conductive layer 370 is formed on the active surface 13 使用 using PVD, CVD, electrolytic plating, electroless plating process or other suitable metal deposition process as shown in the figure. The conductive layer 370 can be Is one or more layers of Mm

Au、Ag或其他適合的導電材料。導電層37〇運作成電連接 到作用表面130上之電路的接觸墊。 於圖18b,絕緣或介電層372使用旋塗、喷塗、印刷、 層合、PVD、CVD、燒結或熱氧化而保形施加於作用表面 130和導電層370上。絕緣層372包含一或更多層的si〇2、Au, Ag or other suitable conductive material. The conductive layer 37 is operated to electrically connect to the contact pads of the circuitry on the active surface 130. In Figure 18b, insulating or dielectric layer 372 is conformally applied to active surface 130 and conductive layer 370 using spin coating, spray coating, printing, lamination, PVD, CVD, sintering, or thermal oxidation. The insulating layer 372 includes one or more layers of si 〇 2

Sl3N4、SiON、Ta2〇5、Al2〇3、BCB、ρι、pB〇、聚合物基底 的介電膜、有機聚合物膜或其他具有類似絕緣和結構性質 的材料。絕緣層372遵循作用表面13〇和導電層37〇的起 伏輪廓。 於圖18c,暫時平坦化層374使用旋塗、喷塗、印刷、 層合、P VD、C VD、燒結或熱氧化而形成於絕緣層3 72和導 43 201243966 電層370上。於一具體態樣,平坦化層374乃施加成整個 半導體晶圓120上的毯覆層而無圖案化。平坦化層374包 含一或更多層的 Si02、Si3N4、SiON、Ta205、Al2〇3、BCB、 PI、PBO '聚合物基底的介電膜、有機聚合物膜或其他具有 類似絕緣和結構性質的材料。 半導體晶圓120使用切割工具376 (例如鋸片、喷射水 柱或雷射)而經由鋸道126單一化成個別的半導體晶粒124。 圖18d顯示暫時的基板或載體38〇,其包含犧牲性基底 材料(例如矽、聚合物、氧化鈹或其他適合的低成本剛性材 料)以支持結構。介面層或雙面膠帶382形成於載體38〇上 而做為暫時接著結合膜或蝕刻停止層。來自圖i 8a〜丨8c的半 導體晶粒124使用撿拾和放置操作而定位和安裝於介面層 382和載體380上,作用表面13〇則指向載體。安裝於載體 3 8 0的半導體晶粒! 2 4構成了重組晶圓3 8 4。 於圖18e,包封物或模製化合物386使用糊膏印刷、壓 縮模製、轉移模製、液態包封物模製、真空層纟、旋塗或 其他適合的施加器而沉積於半導體晶粒124和載體38〇 上。包封物386可以是聚合性複合材料,例如具有填料的 環氧樹脂、具有填料的環氧丙烯酸酯或具有適當填料的聚 合物》包封物386是非導電的並且保護半導體裝置免於外 部環境的元素和污染物。 ^ ^ "叫/百么秸田字蚀刻、機桢 剝除、CMP、機械研磨、熱烘烤、紫外光、雷射掃描或逕 式脫除而移除’以暴露平坦化層374和包封物386。移除載 201243966 • 體380之後,包封物386提供用於半導體晶粒124的結構 支持。 β 於圖18g,暫時平坦化層374藉由溼式化學脫除過程或 具有圖案化光阻層的蝕刻過程而完全移除,以暴露絕緣層 3 72和導電層37〇。部分的包封物386是使用雷射^”的 所移除以於相鄰於絕緣層372的包封物中形成通道388。通 道388沿著半導體晶粒124的一或更多側而延伸或者完全 圍繞晶粒的周圍。此外,部分的絕緣層372是以具有圖案 化光阻層的蝕刻過程所移除以暴露導電層37〇。另外可選擇 的是部分的絕緣層372使用雷射387的LDA所移除以暴露 導電層37G。㈣或LDA之後’絕緣層372維持重疊著導 電層370。 於圖18h ’絕緣或鈍化層39〇使用Pvd、CVD、印刷、 旋塗、喷塗、網印或層合而形成於包封物386、絕緣層、 導電層370上以及形成於通道388裡。絕緣層39〇包含一 或更多層的 Si〇2、Si3N4、SiON、Ta2〇5、Al2〇3、有機聚合 物或其他具有類似絕緣和結構性質的材料。絕緣層39〇 = 被固化。絕緣層390運作成應力緩和層,以於形成組合互 連結構的期間減少龜裂、彎翹或其他對半導體晶粒124之 作用表面130和導電層372的損傷。尤其,絕緣層39〇具 有的性質為在室溫大於100百萬帕的高拉伸強度、在室溫 於20〜150%之間的高伸長率、於半導體晶粒124上的厚度 為2〜30微米以及於包封物386上的厚度為2〜35微米。^ 緣層390延伸進入通道388’藉由於形成組合互連結構的期 45 201243966 間減少龜裂、彎翹或其他損傷來保護半導體晶粒124相鄰 於作用表面130的側壁邊緣。部分的絕緣層39〇是以具有 圖案化光阻層的蝕刻過程所移除以暴露導電層37〇。另外可 選擇的是部分的絕緣層390使用雷射387的LDA所移除以 暴露導電層370。 於圖18i ’導電層392使用PVD、CVD、濺鍍、電解電 鑛、無電鍍過程或其他適合的金屬沉積過程來做出圖案而 形成於絕緣層390和導電層370上。導電層392可以是一 或更多層的Al、Cu、Sn、Ni、Au、Ag或其他適合的導電 材料。部分的導電層392沿著絕緣層390而水平延伸並且 平行於半導體晶粒1 24的作用表面1 3〇以側向重新分布電 互連到導電層370。導電層392運作成扇出rdL以用於半 導體晶粒124的電訊號。部分的導電層392電連接到導電 層3 70 〇其他部分的導電層392是電相通或電隔離的,此視 半導體晶粒12 4的連接性而定》 於圖18j,絕緣或鈍化層394使用PVD、CVD、印刷、 旋塗、喷塗、網印或層合而形成於絕緣層39〇和導電層392 上。絕緣層394可以是一或更多層的Si〇2、8丨3仏、Si〇N、Sl3N4, SiON, Ta2〇5, Al2〇3, BCB, ρι, pB〇, a dielectric film of a polymer substrate, an organic polymer film or other material having similar insulating and structural properties. The insulating layer 372 follows the undulating profile of the active surface 13A and the conductive layer 37A. In Figure 18c, the temporary planarization layer 374 is formed on the insulating layer 3 72 and the conductive layer 201243966 electrical layer 370 using spin coating, spray coating, printing, lamination, P VD, C VD, sintering, or thermal oxidation. In one embodiment, the planarization layer 374 is applied as a blanket over the entire semiconductor wafer 120 without patterning. The planarization layer 374 comprises one or more layers of SiO 2 , Si 3 N 4 , SiON, Ta 205, Al 2 〇 3, BCB, PI, PBO 'polymer dielectric film, organic polymer film or other similar insulating and structural properties. material. The semiconductor wafer 120 is singulated into individual semiconductor dies 124 via saw streets 126 using a cutting tool 376 (e.g., saw blade, jet water column, or laser). Figure 18d shows a temporary substrate or carrier 38(R) comprising a sacrificial substrate material (e.g., tantalum, polymer, yttria or other suitable low cost rigid material) to support the structure. An interface layer or double-sided tape 382 is formed on the carrier 38〇 as a temporary bonding film or etch stop layer. The semiconductor die 124 from Figures i 8a - 8c is positioned and mounted on the interface layer 382 and carrier 380 using a pick and place operation with the active surface 13 指向 directed to the carrier. Semiconductor die mounted on carrier 380! 2 4 constitutes a reconstituted wafer 384. In Figure 18e, the encapsulant or molding compound 386 is deposited on the semiconductor die using paste printing, compression molding, transfer molding, liquid encapsulation molding, vacuum lamination, spin coating, or other suitable applicator. 124 and carrier 38 are on top. The encapsulant 386 can be a polymeric composite material, such as an epoxy resin with a filler, an epoxy acrylate with a filler, or a polymer with a suitable filler. The encapsulant 386 is non-conductive and protects the semiconductor device from the external environment. Elements and contaminants. ^ ^ "Call/Baitiantian word etching, machine stripping, CMP, mechanical grinding, hot baking, UV light, laser scanning or radial removal to remove 'to expose the planarization layer 374 and package Seal 386. Encapsulation 386 provides structural support for semiconductor die 124 after removal of 201243966 • body 380. β In Fig. 18g, the temporary planarization layer 374 is completely removed by a wet chemical removal process or an etching process with a patterned photoresist layer to expose the insulating layer 372 and the conductive layer 37A. A portion of the encapsulant 386 is removed using a laser to form a channel 388 adjacent the encapsulation of the insulating layer 372. The channel 388 extends along one or more sides of the semiconductor die 124 or Completely surrounding the periphery of the die. Further, a portion of the insulating layer 372 is removed by an etching process having a patterned photoresist layer to expose the conductive layer 37. Alternatively, a portion of the insulating layer 372 may be laser 387. The LDA is removed to expose the conductive layer 37G. (d) or after the LDA 'the insulating layer 372 maintains the conductive layer 370 overlapping. Figure 18h 'Insulation or passivation layer 39〇 using Pvd, CVD, printing, spin coating, spraying, screen printing Or lamination is formed on the encapsulant 386, the insulating layer, the conductive layer 370, and formed in the channel 388. The insulating layer 39 includes one or more layers of Si 〇 2, Si 3 N 4 , SiON, Ta 2 〇 5, and Al 2 〇 3. An organic polymer or other material having similar insulating and structural properties. The insulating layer 39〇 = cured. The insulating layer 390 operates as a stress relieving layer to reduce cracking, warping or other during formation of the combined interconnect structure. The surface 130 and the surface of the semiconductor die 124 The damage of the electrical layer 372. In particular, the insulating layer 39 has a high tensile strength of more than 100 MPa at room temperature, a high elongation between 20 and 150% at room temperature, and a semiconductor die 124. The thickness is 2 to 30 microns and the thickness on the encapsulant 386 is 2 to 35 microns. The edge layer 390 extends into the channel 388' by reducing the cracking and bending of the period 45 201243966. Or other damage to protect the semiconductor die 124 adjacent to the sidewall edge of the active surface 130. A portion of the insulating layer 39 is removed by an etch process having a patterned photoresist layer to expose the conductive layer 37. Alternatively A portion of the insulating layer 390 is removed using the LDA of laser 387 to expose the conductive layer 370. Figure 18i 'The conductive layer 392 uses PVD, CVD, sputtering, electrolytic ore, electroless plating, or other suitable metal deposition process. A pattern is formed to form on the insulating layer 390 and the conductive layer 370. The conductive layer 392 may be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable conductive material. Part of the conductive layer 392 Extending horizontally along the insulating layer 390 and The active surface 13 平行 parallel to the semiconductor die 1 24 is laterally redistributed electrically interconnected to the conductive layer 370. The conductive layer 392 operates to fan out rdL for the electrical signal of the semiconductor die 124. A portion of the conductive layer 392 The conductive layer 392 electrically connected to the conductive layer 3 70 is electrically or electrically isolated, depending on the connectivity of the semiconductor die 124. Figure 18j, the insulating or passivation layer 394 uses PVD, CVD, printing Formed on the insulating layer 39A and the conductive layer 392 by spin coating, spray coating, screen printing or lamination. The insulating layer 394 may be one or more layers of Si 〇 2, 8 丨 3 仏, Si 〇 N,

TajO5、八丨2〇3、聚合物介電膜或其他具有類似絕緣和結構性 質的材料。部分的絕緣層394是以具有圖案化光阻層的蚀 刻過程所移除以暴露導電層392。另外可選擇的是部分的絕 緣層394藉由LDA而移除以暴露導電層392。 導電凸塊材料使用蒸鍍、電解電鍍、無電鍍、球滴或 網印過程而沉積於暴露的導電層392上。凸塊材料可以是 46 201243966 A1、Sn、Ni、AU、Ag、Pb、Bi、Cu、焊料及其組合,而可 選用助熔劑。舉例而言,凸塊材料可以是共晶Sri / Pb、高 錯焊料或無船焊料。凸塊材料使用適當的附著或結合過程 而結合於導電層392。於一具體態樣,凸塊材料藉由加熱材 料到高於其熔點而重熔以形成焊球或凸塊396。於某些用 途’凸塊396重熔二次以改善對導電層392的電接觸。凸 塊396也可以壓縮結合於導電層392。凸塊396代表可以形 成於導電層392上的一種互連結構。互連結構也可以使用 銷栓凸塊、微凸塊或其他電互連。 絕緣層390和394、導電層392、凸塊396的組合構成 了形成於半導體晶粒12 4和包封物3 8 6上的組合互連結構 3 98。額外的絕緣層和rDl可以形成於組合互連結構3 98 以互連到半導體晶粒124。重組晶圓384以鋸片或雷射切割 工具400經過包封物386和組合互連結構398而單一化成 個別的 Fo-WLCSP 402。 圖19顯示單一化之後的f〇-WLCSP 402。半導體晶粒 124經由組合互連結構398 (其包括導電層392和凸塊396) 而電連接到外部裝置。絕緣層390的性質(亦即在室溫大於 100百萬帕的高拉伸強度、在室溫於20〜150%之間的高伸長 率、厚度為2〜30微米)提供應力緩和,以於形成組合互連結 構398 (其包括絕緣層394和導電層392)的期間減少龜裂、 彎翹和其他對晶粒的損傷。此外,絕緣層39〇延伸進入通 道3 88,藉由於形成組合互連結構398的期間減少龜裂或其 他損傷來保護半導體晶粒124相鄰於絕緣層372的側壁邊 47 201243966 緣。通道3 8 8中的絕緣材料3 9 〇 的期間減少彎翹。 也於形成組合互連結構 398TajO5, gossip 2〇3, polymer dielectric film or other materials with similar insulation and structural properties. A portion of the insulating layer 394 is removed by an etch process with a patterned photoresist layer to expose the conductive layer 392. Alternatively, a portion of the insulating layer 394 is removed by LDA to expose the conductive layer 392. The conductive bump material is deposited on the exposed conductive layer 392 using an evaporation, electrolytic plating, electroless plating, ball drop or screen printing process. The bump material may be 46 201243966 A1, Sn, Ni, AU, Ag, Pb, Bi, Cu, solder, and combinations thereof, and a flux may be selected. For example, the bump material can be eutectic Sri / Pb, high fault solder or no ship solder. The bump material is bonded to the conductive layer 392 using a suitable attachment or bonding process. In one embodiment, the bump material is remelted by heating the material above its melting point to form solder balls or bumps 396. The bump 396 is re-melted twice in some use to improve electrical contact to the conductive layer 392. The bumps 396 can also be compression bonded to the conductive layer 392. Bump 396 represents an interconnect structure that can be formed on conductive layer 392. The interconnect structure can also use pin bumps, microbumps, or other electrical interconnects. The combination of insulating layers 390 and 394, conductive layer 392, and bumps 396 constitutes a combined interconnect structure 3 98 formed over semiconductor die 124 and encapsulant 386. Additional insulating layers and rD1 may be formed in the combined interconnect structure 3 98 to interconnect to the semiconductor die 124. Reconstituted wafer 384 is singulated into individual Fo-WLCSPs 402 by saw blade or laser cutting tool 400 via encapsulant 386 and combined interconnect structure 398. Figure 19 shows f〇-WLCSP 402 after singulation. Semiconductor die 124 is electrically coupled to an external device via a combined interconnect structure 398 that includes conductive layer 392 and bumps 396. The properties of the insulating layer 390 (i.e., high tensile strength greater than 100 MPa at room temperature, high elongation between 20 and 150% at room temperature, thickness 2 to 30 microns) provide stress relief for The formation of the composite interconnect structure 398 (which includes the insulating layer 394 and the conductive layer 392) reduces cracking, warping, and other damage to the grains. In addition, the insulating layer 39 extends into the vias 386 to protect the semiconductor die 124 from adjacent the sidewalls 47 201243966 of the insulating layer 372 by reducing cracking or other damage during formation of the interconnect interconnect structure 398. The period of the insulating material 3 9 中 in the channel 3 8 8 reduces the bending. Also forming a combined interconnect structure 398

雖然已經詳細示範本發明的_ 而熟於此技藝者將體會到可以對男P 或更多個具體態樣, 些具體態樣做出修改 調適, 而不偏離本發明如列於後面 然 和 之申請專利範圍的範鳴 【圖式簡單說明】 圖1示範PCB,其具有安奘私甘主 开八畀女裝於其表面之不同種類的 裝; 圖2a〜2c示範安褒於PCB之代表性半導體封裝的進— 步細節; 圖3a〜3f示範半導體晶圓,其具有由鑛道所分開的多個 半導體晶粒; 圖4a〜4h示範形成WLCSP的過程,其具有沉積在半導 體晶粒上以用於應力緩和的絕緣層; 圖5示範根據圖4a〜4h的Fo-WLCSP,其具有沉積在半 導體晶粒上以用於應力緩和的絕緣層; 圖6示範根據圖3e的Fo-WLCSP,其具有沉積在半導 體晶粒上以用於應力緩和的絕緣層; 圖7a〜7g示範形成WLCSP的另一過程,其具有沉積在 半導體晶粒上以用於應力緩和的絕緣層; 圖8示範根據圖7a〜7g的Fo-WLCSP,其具有沉積在半 導體晶粒上以用於應力緩和的絕緣層; 圖9a〜9g示範形成WLCSP的過程’其具有沉積在半導 48 201243966 體晶粒上以用於應力緩和的多個絕緣層; 圖10示範根據圖9a〜9g的Fo-WLCSP,其具有沉積在 半導體晶粒上以用於應力緩和的絕緣層; 圖11示範具有二個半導體晶粒的Fo-WLCSP,其各具 有沉積在半導體晶粒上以用於應力緩和的絕緣層; 圖12a~121示範形成WLCSP的過程,其具有沉積在半 導體晶粒上以及在晶粒中所形成的通道裡以用於應力緩和 的絕緣層; 圖13示範根據圖12a〜121的Fo-WLCSP,其具有沉積 在半導體晶粒上以及在晶粒中所形成的通道裡以用於應力 緩和的絕緣層; 圖14a〜14k示範形成WLCSP的另一過程,其具有沉積 在aa粒和包封物上以及在晶粒中所形成的通道裡的絕緣 層; 圖15示範根據圖14a〜14k的F0_WLCSP,其具有沉積 在晶粒和包封物上以及在晶粒中所形成的通道裡的絕緣 層; 圖16a〜16d示範形成WLCSp的過程,其具有沉積在晶 粒和包封物上以及在晶粒和包封物巾所形成的通道裡的絕 緣層; 圖17不範根據圖16a〜16d的,其具有沉積 在半導體晶粒和包封物卜1:2;8/_0|^_ 匕对物上以及在日日粒中所形成的通道裡 絕緣層; 圖範形成WLCSp的過程,其具有沉積在晶 49 201243966 粒和包封物上以及在包封物令所形成的通道裡的絕緣層 以及 圖19示範根據圖i8a〜18j•的f〇_wLCSP,其具有沉積 在晶粒和包封物上以及在包封物中所形成的通道裡的絕緣 層。 、、 【主要元件符號說明】 50 52 54 56 58 電子裝置 印刷電路板 傳導訊號線 接合線封裝 覆晶 60 62 64 66 68 70 球柵格陣列 凸塊晶片載體 雙排腳封裝 接點栅格陣列 夕晶片模組 72 74 76 78 80 四面扁平無引線封裴 四面扁平封裝 半導體晶粒 接觸墊 中間载體 導線 接合線 50 82 201243966 84 包封物 88 半導體晶粒 90 載體 92 底填物或環氧樹脂黏著材料 94 接合線 96 接觸墊 98 接觸墊 100 模製化合物或包封物 102 接觸墊 104 凸塊 106 中間載體 108 作用區域 110、 112 凸塊 114 訊號線 116 模製化合物或包封物 120 半導體晶圓 122 基板材料 124、 124a、 124b半導體晶粒或構件 126 非作用之晶粒間的晶圓區域或鋸道 128 背面 130 作用表面 132 導電層 134、 136 絕緣或介電層 138 切割工具 201243966 140 暫時的基板或載體 142 介面層或雙面膠帶 144 重構或重組晶圓 146 包封物或模製化合物 148 雷射 150 絕緣或鈍化層 152 導電層 154 絕緣或鈍化層 156 焊球或凸塊 158 組合互連結構 160 、 162 Fo-WLCSP 170 絕緣或介電層 172 導電層 176 絕緣或介電層 178 切割工具 180 暫時的基板或載體 182 介面層或雙面膠帶 184 重組晶圓 186 包封物或模製化合物 188 雷射 190 絕緣或鈍化層 192 導電層 194 絕緣或鈍化層 196 焊球或凸塊 52 201243966 198 組合互連結構 200 鋸片或雷射切割工具 202 Fo-WLCSP 210 絕緣或介電層 212 導電層 216 絕緣或介電層 218 切割工具 220 暫時的基板或載體 222 介面層或雙面勝帶 224 重組晶圓 226 包封物或模製化合物 228 雷射 230 絕緣或鈍化層 232 導電層 234 絕緣或鈍化層 236 焊球或凸塊 238 組合互連結構 240 鋸片或雷射切割工具 242 、 250 Fo-WLCSP 252 包封物 254 組合互連結構 256 絕緣層 258 導電層 260 絕緣層 53 201243966 262 凸塊 270 通道或凹槽 272 雷射 274 絕緣或介電層 276 導電層 278 絕緣或介電層 279 切割工具 280 暫時的基板或載體 282 介面層或雙面膠帶 284 重構或重組晶圓 286 包封物或模製化合物 288 雷射 290 絕緣或鈍化層 292 導電層 294 絕緣或鈍化層 296 焊球或凸塊 298 組合互連結構 300 鋸片或雷射切割工具 302 Fo-WLCSP 310 導電層 312 通道或凹槽 314 雷射 316 絕緣或介電層 318 暫時平坦化層 54 201243966 319 切割工具 320 暫時的基板或載體 322 介面層或雙面膠帶 324 重組晶圓 326 包封物或模製化合物 328 雷射 330 絕緣或鈍化層 332 導電層 334 絕緣或鈍化層 336 焊球或凸塊 338 組合互連結構 340 鋸片或雷射切割工具 342 Fo-WLCSP 346 雷射 348 通道 350 絕緣或鈍化層 352 導電層 354 絕緣或鈍化層 356 焊球或凸塊 358 組合互連結構 360 鋸片或雷射切割工具 362 Fo-WLCSP 370 導電層 372 絕緣或介電層 55 201243966Although the present invention has been exemplified in detail, those skilled in the art will appreciate that modifications may be made to the male P or more specific aspects, without departing from the invention as set forth below. Fan Ming of the scope of patent application [Simple description of the diagram] Figure 1 shows the PCB, which has different types of equipment on the surface of the 奘 奘 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 代表性 代表性FIGS. 3a to 3f illustrate a semiconductor wafer having a plurality of semiconductor dies separated by a bead; FIGS. 4a to 4h exemplify a process of forming a WLCSP having a deposition on a semiconductor die Insulating layer for stress relaxation; FIG. 5 exemplifies Fo-WLCSP according to FIGS. 4a to 4h, which has an insulating layer deposited on a semiconductor die for stress relaxation; FIG. 6 exemplifies the Fo-WLCSP according to FIG. 3e, An insulating layer deposited on a semiconductor die for stress relaxation; FIGS. 7a-7g illustrate another process of forming a WLCSP having an insulating layer deposited on a semiconductor die for stress relaxation; FIG. 7a~7g of Fo -WLCSP having an insulating layer deposited on the semiconductor die for stress relaxation; Figures 9a to 9g demonstrate a process of forming a WLCSP having a plurality of deposited on the semi-conductive 48 201243966 bulk grains for stress relaxation Insulating layer; Figure 10 illustrates Fo-WLCSP according to Figures 9a to 9g having an insulating layer deposited on a semiconductor die for stress relaxation; Figure 11 illustrates a Fo-WLCSP having two semiconductor grains, each having An insulating layer deposited on a semiconductor die for stress relaxation; FIGS. 12a-121 illustrate a process of forming a WLCSP having insulation deposited on a semiconductor die and in a via formed in the die for stress relaxation Figure 13 illustrates a Fo-WLCSP according to Figures 12a-121 having an insulating layer deposited on a semiconductor die and in a via formed in the die for stress relaxation; Figures 14a-14k exemplify the formation of a WLCSP Another process having an insulating layer deposited on the aa particles and the encapsulant and in the channels formed in the grains; Figure 15 illustrates F0_WLCSP according to Figures 14a-14k, having deposited on the grains and encapsulant And Insulating layers in the channels formed in the grains; Figures 16a to 16d demonstrate the process of forming WLCSp with insulation deposited on the grains and encapsulant and in the channels formed by the grains and encapsulating sheets Figure 17 is not according to Figures 16a to 16d, which has a deposition on the semiconductor die and the encapsulant 1:2; 8/_0|^_ 匕 on the object and in the channel formed in the day grain Insulating layer; the process of forming WLCSp, which has an insulating layer deposited on the grain and encapsulation of the crystal 49 201243966 and in the channel formed by the encapsulation, and FIG. 19 is exemplified according to the figure i8a~18j• _wLCSP having an insulating layer deposited on the die and encapsulant and in the channels formed in the encapsulant. , [Main component symbol description] 50 52 54 56 58 Electronic device printed circuit board conductive signal wire bond wire package flip chip 60 62 64 66 68 70 ball grid array bump wafer carrier double row package junction grid array Wafer Module 72 74 76 78 80 Four-sided flat leadless package Four-sided flat package Semiconductor die contact pad Intermediate carrier wire bond wire 50 82 201243966 84 Encapsulant 88 Semiconductor die 90 Carrier 92 Underfill or epoxy adhesive Material 94 Bonding Line 96 Contact Pad 98 Contact Pad 100 Molding Compound or Encapsulant 102 Contact Pad 104 Bump 106 Intermediate Carrier 108 Active Area 110, 112 Bump 114 Signal Line 116 Molding Compound or Encapsulant 120 Semiconductor Wafer 122 substrate material 124, 124a, 124b semiconductor die or member 126 inactive inter-die wafer region or saw blade 128 back surface 130 surface conductive layer 134, 136 insulating or dielectric layer 138 cutting tool 201243966 140 temporary Substrate or carrier 142 interface layer or double sided tape 144 to reconstitute or reconstitute wafer 146 Encapsulant or Molding Compound 148 Laser 150 Insulation or Passivation Layer 152 Conductive Layer 154 Insulation or Passivation Layer 156 Solder Ball or Bump 158 Combined Interconnect Structure 160, 162 Fo-WLCSP 170 Insulation or Dielectric Layer 172 Conductive Layer 176 Insulation or Dielectric Layer 178 Cutting Tool 180 Temporary Substrate or Carrier 182 Interlayer or Double Sided Tape 184 Reconstituted Wafer 186 Encapsulant or Molding Compound 188 Laser 190 Insulation or Passivation Layer 192 Conductive Layer 194 Insulation or Passivation Layer 196 Solder Ball or Bump 52 201243966 198 Combined Interconnect Structure 200 Saw Blade or Laser Cutting Tool 202 Fo-WLCSP 210 Insulation or Dielectric Layer 212 Conductive Layer 216 Insulation or Dielectric Layer 218 Cutting Tool 220 Temporary Substrate or Carrier 222 Interface Layer or double-sided tape 224 Reconstituted wafer 226 Encapsulant or molding compound 228 Laser 230 Insulation or passivation layer 232 Conductive layer 234 Insulation or passivation layer 236 Solder ball or bump 238 Combined interconnect structure 240 Saw blade or thunder Shot cutting tool 242, 250 Fo-WLCSP 252 encapsulant 254 combined interconnect structure 256 insulating layer 258 conductive layer 260 insulating layer 53 20124 3966 262 Bump 270 Channel or Groove 272 Laser 274 Insulation or Dielectric Layer 276 Conductive Layer 278 Insulation or Dielectric Layer 279 Cutting Tool 280 Temporary Substrate or Carrier 282 Interlayer or Double Sided Tape 284 Reconstituted or Reconstituted Wafer 286 Encapsulant or molding compound 288 Laser 290 Insulation or passivation layer 292 Conductive layer 294 Insulation or passivation layer 296 Solder balls or bumps 298 Combined interconnect structure 300 Saw blade or laser cutting tool 302 Fo-WLCSP 310 Conductive layer 312 channel or groove 314 laser 316 insulating or dielectric layer 318 temporary planarization layer 54 201243966 319 cutting tool 320 temporary substrate or carrier 322 interface layer or double-sided tape 324 reconstituted wafer 326 encapsulant or molding compound 328 Laser 330 Insulation or Passivation Layer 332 Conductive Layer 334 Insulation or Passivation Layer 336 Solder Ball or Bump 338 Combined Interconnect Structure 340 Saw Blade or Laser Cutting Tool 342 Fo-WLCSP 346 Laser 348 Channel 350 Insulation or Passivation Layer 352 Conductive Layer 354 Insulation or Passivation Layer 356 Solder Ball or Bump 358 Combined Interconnect Structure 360 Saw Blade or Laser Cutting Tool 362 Fo-WLCSP 370 Conductive layer 372 Insulation or dielectric layer 55 201243966

374 暫時平坦化層 376 切割工具 380 暫時的基板或載體 382 介面層或雙面膠帶 384 重組晶圓 386 包封物或模製化合物 387 雷射 388 通道 390 絕緣或鈍化層 392 導電層 394 絕緣或鈍化層 396 焊球或凸塊 398 組合互連結構 400 鋸片或雷射切割工具 402 Fo-WLCSP 56374 Temporary planarization layer 376 Cutting tool 380 Temporary substrate or carrier 382 Interface layer or double-sided tape 384 Reconstituted wafer 386 Encapsulant or molding compound 387 Laser 388 Channel 390 Insulation or passivation layer 392 Conductive layer 394 Insulation or passivation Layer 396 Solder Ball or Bump 398 Combined Interconnect Structure 400 Saw Blade or Laser Cutting Tool 402 Fo-WLCSP 56

Claims (1)

201243966 七、申請專利範圍: 1· 一種製作半導體裝置的方法,其包括: 提供半導體晶粒; 形成第一導電層於該半導體晶粒的表面上; 沉積包封物於該半導體晶粒上; 形成第一絕緣層於該半導體晶粒和該第一導電層上; 以及 形成互連結構於該半導體晶粒和該包封物上,其中該 互連結構電連接到該第一導電層,並且該第一絕緣層於形 成該互連結構的期間提供應力緩和。 2. 如申請專利範圍第1項的方法,其進一步包括: 形成第一通道於該半導體晶粒中;以及 形成S玄第一絕緣層於該半導體晶粒和該第一導電層上 以及於該第一通道裡。 3. 如申請專利範圍第2項的方法,其進一步包括: 形成第一通道於該包封物中;以及 形成該第一絕緣層於該半導體晶粒和該第一導電層上 以及於該第二通道裡。 4. 如申請專利範圍第1項的方法,其進一步包括: 形成通道於該半導體晶粒中; 在沉積該包封物和形成該第一絕緣層之前,形成第二 絕緣層於δ亥半導體晶粒和該第一導電層上; 形成第二絕緣層於該第二絕緣層上以及於該通道裡; 沉積該包封物於該半導體晶粒上; 57 201243966 移除該第二絕緣層以暴露該第二絕緣層;以及 形成該第一絕緣層於該半導體晶粒和該第一導電層上 以及於該通道裡。 5. 如申請專利範圍第1項的方法,其進一步包括: 在沉積該包封物和形成該第—絕緣層之前,形成第二 絕緣層於該半導體晶粒和該第一導電層上; 形成第三絕緣層於該第二絕緣層上; 沉積該包封物於半導體晶粒上; 形成通道於該包封物中; 移除該第三絕緣層以暴露該第二絕緣層;以及 形成該第一絕緣層於該半導體晶粒和該第一導電層上 以及於該通道裡。 6. 如申請專利範圍第Μ的方法,其中該第—絕緣層具 有在室溫的拉伸強度大於100百萬帕、在室溫的伸長率在 20-150%之間以及2〜3〇微米的厚度的特徵。 7. 如申請專利範圍第i項的方法’其中形成互連結構包 括: 形成第二導電層於該第一絕緣層上;以及 形成第一絕緣層於該第一絕緣層和該第二導電声上。 8. —種半導體裝置,其包括: 半導體晶粒; 第一導電層,其形成於該半導體晶粒的表面上; 包封物’其沉積於該半導體晶粒上; 第一絕緣層,其形成於該半導體晶粒和該第一導電層 58 201243966 上;以及 互連結構,其形成於該半導體晶粒和該包封物上,其 令該互連結構電連接到該第一導電層,並且該第一絕緣層 於形成該互連結構的期間提供應力緩和。 9. 如申請專利範圍第8項的半導體裝置,其進一步包括 形成於該半導體晶粒中的第一通道,其中該第一絕緣層形 成於該半導體晶粒和該第一導電層上以及於該第一通道 裡。 10. 如申請專利範圍第9項的半導體裝置,其進一步包 括於》亥包封物中的第二通道,其中該第一絕緣層形成於該 半導體晶粒和該第一導電層上以及於該第二通道裡。 11·如申請專利範圍第9項的半導體裝置,其進一步包 括於該包封物中的通道,其中該第一絕緣層形成於該半導 體晶粒和該第一導電層上以及於該通道裡。 12.如申請專利範圍第8項的半導體裝置,其中第一絕 緣層具有在室溫的拉伸強度大於1〇〇百萬帕、在室溫的伸 長率在20〜150%之間以及2〜3〇微米的厚度的特徵。 八、圖式: (如次頁) 59201243966 VII. Patent application scope: 1. A method for fabricating a semiconductor device, comprising: providing a semiconductor die; forming a first conductive layer on a surface of the semiconductor die; depositing an encapsulant on the semiconductor die; forming a first insulating layer on the semiconductor die and the first conductive layer; and an interconnect structure on the semiconductor die and the encapsulant, wherein the interconnect structure is electrically connected to the first conductive layer, and the The first insulating layer provides stress relaxation during formation of the interconnect structure. 2. The method of claim 1, further comprising: forming a first channel in the semiconductor die; and forming a first insulating layer on the semiconductor die and the first conductive layer and In the first channel. 3. The method of claim 2, further comprising: forming a first channel in the encapsulant; and forming the first insulating layer on the semiconductor die and the first conductive layer and in the In the second channel. 4. The method of claim 1, further comprising: forming a channel in the semiconductor die; forming a second insulating layer on the δ-he semiconductor crystal before depositing the encapsulant and forming the first insulating layer Forming a second insulating layer on the second insulating layer and in the channel; depositing the encapsulant on the semiconductor die; 57 201243966 removing the second insulating layer to expose The second insulating layer; and the first insulating layer is formed on the semiconductor die and the first conductive layer and in the channel. 5. The method of claim 1, further comprising: forming a second insulating layer on the semiconductor die and the first conductive layer before depositing the encapsulant and forming the first insulating layer; a third insulating layer on the second insulating layer; depositing the encapsulant on the semiconductor die; forming a channel in the encapsulant; removing the third insulating layer to expose the second insulating layer; and forming the A first insulating layer is on the semiconductor die and the first conductive layer and in the via. 6. The method of claim </ RTI> wherein the first insulating layer has a tensile strength at room temperature of greater than 100 MPa, an elongation at room temperature of between 20 and 150%, and 2 to 3 Å. The characteristics of the thickness. 7. The method of claim i wherein the forming the interconnect structure comprises: forming a second conductive layer on the first insulating layer; and forming a first insulating layer on the first insulating layer and the second conductive sound on. 8. A semiconductor device comprising: a semiconductor die; a first conductive layer formed on a surface of the semiconductor die; an encapsulant deposited on the semiconductor die; a first insulating layer formed On the semiconductor die and the first conductive layer 58 201243966; and an interconnect structure formed on the semiconductor die and the encapsulant, the interconnect structure being electrically connected to the first conductive layer, and The first insulating layer provides stress relaxation during formation of the interconnect structure. 9. The semiconductor device of claim 8, further comprising a first via formed in the semiconductor die, wherein the first insulating layer is formed on the semiconductor die and the first conductive layer and In the first channel. 10. The semiconductor device of claim 9, further comprising a second channel in the envelope, wherein the first insulating layer is formed on the semiconductor die and the first conductive layer and In the second channel. 11. The semiconductor device of claim 9, further comprising a channel in the encapsulant, wherein the first insulating layer is formed on the semiconductor die and the first conductive layer and in the via. 12. The semiconductor device of claim 8, wherein the first insulating layer has a tensile strength at room temperature of greater than 1 MPa, an elongation at room temperature of between 20 and 150%, and 2~ 3 〇 micron thickness characteristics. Eight, the pattern: (such as the next page) 59
TW101101694A 2011-01-21 2012-01-17 Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief TWI528466B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161435223P 2011-01-21 2011-01-21
US201161443157P 2011-02-15 2011-02-15
US13/333,739 US8456002B2 (en) 2007-12-14 2011-12-21 Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief

Publications (2)

Publication Number Publication Date
TW201243966A true TW201243966A (en) 2012-11-01
TWI528466B TWI528466B (en) 2016-04-01

Family

ID=46901869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101101694A TWI528466B (en) 2011-01-21 2012-01-17 Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief

Country Status (3)

Country Link
CN (1) CN102709200B (en)
SG (1) SG182921A1 (en)
TW (1) TWI528466B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548006B (en) * 2014-02-21 2016-09-01 台灣積體電路製造股份有限公司 Method of forming semiconductor device
EP3175481B1 (en) * 2014-07-28 2021-07-21 Intel Corporation A multi-chip-module semiconductor chip package having dense package wiring
US11791266B2 (en) 2018-09-14 2023-10-17 Mediatek Inc. Chip scale package structure and method of forming the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620413B2 (en) 2012-10-02 2017-04-11 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using a standardized carrier in semiconductor packaging
US9496195B2 (en) 2012-10-02 2016-11-15 STATS ChipPAC Pte. Ltd. Semiconductor device and method of depositing encapsulant along sides and surface edge of semiconductor die in embedded WLCSP
US9704824B2 (en) 2013-01-03 2017-07-11 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming embedded wafer level chip scale packages
US9721862B2 (en) 2013-01-03 2017-08-01 STATS ChipPAC Pte. Ltd. Semiconductor device and method of using a standardized carrier to form embedded wafer level chip scale packages
TWI658543B (en) * 2013-12-05 2019-05-01 新加坡商史達晶片有限公司 Semiconductor device and method of using a standardized carrier in semiconductor packaging
CN108461487A (en) * 2017-02-17 2018-08-28 联发科技股份有限公司 Semiconductor device
CN110379721A (en) * 2019-07-30 2019-10-25 中芯集成电路(宁波)有限公司 Fan-out package method and encapsulating structure
CN113436979B (en) * 2021-06-15 2024-02-27 矽磐微电子(重庆)有限公司 Semiconductor packaging method
WO2023272643A1 (en) * 2021-06-30 2023-01-05 深南电路股份有限公司 Package chip and manufacturing method therefor, and rewired package chip and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841193A (en) * 1996-05-20 1998-11-24 Epic Technologies, Inc. Single chip modules, repairable multichip modules, and methods of fabrication thereof
JP4285707B2 (en) * 2003-12-25 2009-06-24 カシオ計算機株式会社 Semiconductor device
CN101192550A (en) * 2006-12-01 2008-06-04 矽品精密工业股份有限公司 Semiconductor packaging member and method for fabricating the same
US20080217761A1 (en) * 2007-03-08 2008-09-11 Advanced Chip Engineering Technology Inc. Structure of semiconductor device package and method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548006B (en) * 2014-02-21 2016-09-01 台灣積體電路製造股份有限公司 Method of forming semiconductor device
US9601355B2 (en) 2014-02-21 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Via structure for packaging and a method of forming
US10134700B2 (en) 2014-02-21 2018-11-20 Taiwan Semiconductor Manufacturing Company, Ltd. Via structure for packaging and a method of forming
US10461051B2 (en) 2014-02-21 2019-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. Via structure for packaging and a method of forming
US10734341B2 (en) 2014-02-21 2020-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Via structure for packaging and a method of forming
US11410953B2 (en) 2014-02-21 2022-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Via structure for packaging and a method of forming
EP3175481B1 (en) * 2014-07-28 2021-07-21 Intel Corporation A multi-chip-module semiconductor chip package having dense package wiring
US11791266B2 (en) 2018-09-14 2023-10-17 Mediatek Inc. Chip scale package structure and method of forming the same

Also Published As

Publication number Publication date
TWI528466B (en) 2016-04-01
SG182921A1 (en) 2012-08-30
CN102709200A (en) 2012-10-03
CN102709200B (en) 2016-08-03

Similar Documents

Publication Publication Date Title
US11251154B2 (en) Thin 3D fan-out embedded wafer level package (EWLB) for application processor and memory integration
US10217873B2 (en) Semiconductor device and method of forming semiconductor die with active region responsive to external stimulus
TW201243966A (en) Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief
US9318380B2 (en) Semiconductor device and method of forming stacked semiconductor die and conductive interconnect structure through an encapsulant
US10622293B2 (en) Semiconductor device and method for forming a low profile embedded wafer level ball grid array molded laser package (EWLB-MLP)
US9666500B2 (en) Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief
US10068877B2 (en) Semiconductor device and method of forming WLCSP with semiconductor die embedded within interconnect structure
US9607958B2 (en) Semiconductor device and method for forming openings and trenches in insulating layer by first LDA and second LDA for RDL formation
US9865525B2 (en) Semiconductor method and device of forming a fan-out PoP device with PWB vertical interconnect units
TWI602276B (en) Semiconductor device and method for forming semiconductor package having build-up interconnect structure over semiconductor die with different cte insulating layers
US9281259B2 (en) Semiconductor device and method of forming thick encapsulant for stiffness with recesses for stress relief in FO-WLCSP
US9824923B2 (en) Semiconductor device and method of forming conductive pillar having an expanded base
US10050004B2 (en) Fully molded peripheral package on package device
TW201415585A (en) Semiconductor device and method of depositing encapsulant along sides and surface edge of semiconductor die in embedded WLCSP
WO2017087427A1 (en) Fully molded peripheral package on package device