TW201243115A - Rectangular silica container for production of polycrystalline silicon ingot, porous silica plate and method for producing same - Google Patents

Rectangular silica container for production of polycrystalline silicon ingot, porous silica plate and method for producing same Download PDF

Info

Publication number
TW201243115A
TW201243115A TW100144699A TW100144699A TW201243115A TW 201243115 A TW201243115 A TW 201243115A TW 100144699 A TW100144699 A TW 100144699A TW 100144699 A TW100144699 A TW 100144699A TW 201243115 A TW201243115 A TW 201243115A
Authority
TW
Taiwan
Prior art keywords
porous
raw material
container
material powder
square
Prior art date
Application number
TW100144699A
Other languages
Chinese (zh)
Inventor
Shigeru Yamagata
Original Assignee
Shinetsu Quartz Prod
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011049356A external-priority patent/JP5762777B2/en
Priority claimed from JP2011067263A external-priority patent/JP5762784B2/en
Application filed by Shinetsu Quartz Prod filed Critical Shinetsu Quartz Prod
Publication of TW201243115A publication Critical patent/TW201243115A/en

Links

Abstract

The present invention is a rectangular silica container for producing a polycrystalline silicon ingot by solidifying a silicon melt. The rectangular silica container for the production of a polycrystalline silicon ingot is configured by combining plane-parallel porous silica plates that are formed of porous silica. The bulk density of the porous silica plates is lower in the inner portions than in the surface portions of the plane-parallel surfaces. Consequently, impurity contamination of the silicon melt and the polycrystalline silicon ingot is suppressed and an extremely low-cost rectangular silica container for the production of a polycrystalline silicon ingot having excellent mold releasability is provided.

Description

201243115 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種用以將矽熔液凝固而製造多晶矽晶 棒的方形(方槽型)二氧化矽容器。 【先前技術】 對於太陽能電池(太陽能發電裝置)的需求近年來急 速增加’目前正尋求具有較低成本且高轉換效率的太陽能 電池。 構成太1%能電池的光起電(photovoltaic)部的材料之 一,有多晶矽。多晶矽大多是藉由使矽熔液冷卻而凝固, 而被製造成多晶矽的晶棒(晶塊)。用以將矽熔液凝固而製 造多晶矽晶棒的容器,是使用二氧化矽(siUca)製容器或 石墨製容器。 ° 3 針對用以使矽熔液於容器内凝固而製造多晶矽晶棒的 容器’為了防止多晶矽晶棒在矽熔液凝固時與該容器熔接 (黏著)在一起,而在容器的内表面預先形 以形成脫模層的脫模劑,使用了各種材料。例如在專。,用 獻1巾,記載著在由石英玻璃所構成的矽熔融用:文 層上,由包含Si、Si3N4、Si3N4+Si〇2或 的内 ^ ^]3N4 + Si η 的脫模劑漿料來形成脫模層。又,專利文獻2中“ ^ 2 種由二氧化矽所構成的矽鑄造用鑄模,其内面形栽著一 氮化矽的脫模材層。又,專利文獻3中載· 了含有 執者一種脫模層, 201243115 其是由多扎質氮化石夕或多孔質氡氣 文獻4〜6中則記载著一種脫模層, 成。又,專利 "**、包含具有 SiOx〇Y( γ Υ>0)的組成的固體粒子。 由二氡化矽原料粉一體成型並 相六。。,/,,Α 冗、· α而成的二氧化矽大 形合益(例如參照專利文獻7〜 方 且特別是容器的一邊 的尺寸大於30cm的大型二氧化硬 邊 挪上认 方形容器中,由於成型斗 驟或燒結步驟中的熱變形、埶收 丄u ^ 叹縮很大,所以僅能獲得尺 寸精確度差的二氧化矽方形容器。 而且’以電爐等所進杆 的燒結步驟,由於是批次式的 听以有成本會升高的問題。 又’在由碳化石夕(Sic)、氮化石夕(si3N4)、碳(〇等 二氧化㈣外的料_成型並燒結而成的方形容器(例 如參照專利文獻1G、U)中,則會在容器中高濃度地含有 Li、Na、K等驗金屬元素或Ti、&、以、犯、cu、zn、^。、201243115 VI. Description of the Invention: [Technical Field] The present invention relates to a square (square groove type) cerium oxide container for solidifying a cerium melt to produce a polycrystalline twin rod. [Prior Art] Demand for solar cells (solar power generation devices) has rapidly increased in recent years. At present, solar cells having lower cost and high conversion efficiency are being sought. One of the materials constituting the photovoltaic portion of the 1% energy battery is polycrystalline germanium. Most of the polycrystalline germanium is an ingot (crystal ingot) which is formed into a polycrystalline crucible by solidifying the crucible melt. The container for solidifying the tantalum melt to produce a polycrystalline twin rod is a container made of cerium oxide (siUca) or a container made of graphite. ° 3 A container for producing a polycrystalline twin rod for solidifying the tantalum melt in a container. In order to prevent the polycrystalline twin rod from being welded (adhered) to the container during solidification of the tantalum melt, the inner surface of the container is pre-shaped. Various materials were used to form a release agent for the release layer. For example, in the special. With a towel, a mold release agent slurry containing Si, Si3N4, Si3N4+Si〇2 or the inner ^^3N4 + Si η is described on the layer of yttrium melting composed of quartz glass. To form a release layer. Further, in Patent Document 2, "the mold for casting of tantalum consisting of cerium oxide is formed by a mold release layer of tantalum nitride in the inner surface. Further, Patent Document 3 contains a type of the mold. Release layer, 201243115 It is described as a release layer from the multi-stranded nitride or the porous helium documents 4 to 6. Further, the patent "** contains SiOx〇Y (γ) Solid particles of the composition of Υ>0). The bismuth dioxide is formed by the bismuth bismuth bismuth raw material powder, and the bismuth dioxide is formed by the hexahydrate bismuth (see, for example, Patent Document 7~) In particular, in the case of a large-sized dioxide hardened side having a size larger than one side of the container of more than 30 cm, it is only possible to obtain a rectangular container in the shape of a square, which is obtained by a hot deformation or a large amount of squeezing in the forming step or the sintering step. A cerium oxide square container with poor dimensional accuracy. Moreover, the sintering step of the rod that is fed by an electric furnace or the like has a problem that the cost is increased due to the batch type of listening. Further, in the case of carbonized stone (Sic), Nitrile sill (si3N4), carbon (bismuth and other materials other than dioxide (4)_formed and sintered In the square container (see, for example, Patent Documents 1G and U), the metal element such as Li, Na, or K or Ti, &, 、, cu, zn, and ^ are contained in the container at a high concentration.

Au等過渡金屬元素,之後’在方形容器中將矽(si)金屬 熔融並固化處理時,會發生這些雜質金屬元素擴散、污染 矽金屬的問題。 ' [先前技術文獻] (專利文獻) 專利文獻 1 曰 本特 開 專利文獻 2 曰 本特 開 專利文獻 3 曰 本特 開 專利文獻 4 曰 本特 開 專利文獻 5 曰 本特開 專利文獻 6 曰 本特 開 2005-271058 號公報 2005-125380 號公報 2009- 215137 號公報 2010- 208866 號公報 2010-77003 號公報 2010-77005 號公報 4 201243115 專利文獻7 :曰本特開2〇〇2_362932號公報 專利文獻8 :曰本特開2〇〇413138〇號公報 專利文獻9 :日本特開2〇〇9 269792號公報 專利文獻1 〇 :日本特開平i 〇_丨947 1 8號公報 專利文獻11 :曰本特開20〇9_2749〇5號公報 【發明内容】 [發明所欲解決之問題] 如前述,在用以使矽熔液於容器内凝固而製造多曰曰石 晶棒的容器中,一般會在容器的内表面預先形成脫模:矽 然而,使用一種在多晶矽晶棒中會成為雜質的材料來作為 脫模劑時,由於脫模層剝離並摻入矽熔液等原因,而有無 法避免雜質混入多晶矽晶棒中的問題。 …、 另一方面,如果不使用脫模劑,則在矽熔液凝固時, 多晶矽晶棒會與該容器熔接在一起,當冷卻時、取出時等 的時候,t有多晶石夕晶棒的表面部分發生破損的問題。’結 果,例如在由多晶矽晶棒來製造太陽能電池時,會由於戶^ 製造的太陽能電池的品質劣化、良率降低,而造成所製造 的太陽能電池成本升高。 ,又’為了獲得較多的受光面帛,太陽能電池也必須大 '、而為了獲得較大的多晶矽晶棒,容納矽炼液的二氧 生夕谷器也必須大型化。在這樣的大的二氧化矽容器的製 &上’必須用大型的裝f ’而導致容器製造成本顯著地增 201243115 大0 本發明是鑑於上述 -晶棒製造用方形—=而完成’目的是提供-種多晶 液及…晶棒,且—::Γ器,其能抑制雜質污染# 且脫模性優異、成本極低。 本發明的目的也在於提供一種多孔新 體及其製造方法,該多 貝一氧化矽板 多晶矽晶棒製造用方开, 氧化矽板體是用以構成上述 释裝也用方形二氧化矽容器。 [解決問題之技術手段] 本發明是為了解決上述 矽晶棒t ^提供了—種多晶 製造多晶石夕曰= 夕容器’是用以將石夕溶液凝固而 是將* 二氧切容11,其特徵在於: 氧化=^孔質二氧切所構成的平行平板狀多孔質二 板體的容積=合而構成,其中,前述多孔質二氧切 分更内部的部分中較低。 兩千仃千面的比表面部 石夕板樣的方形二氧化石夕容器,則因為多孔質二氧化 體的办積密度在兩平行平 分中較低^ 、b表面部分更内部的部 :低’所以能從裝有所製造的多晶 化石夕容器中,輕易地取出該多晶石夕曰掩而^4方H 因為昤T丄 a 7日日棒而無破損。而且, 4 由二氧化矽所構成的容器以外,苴他都;ς # 模劑,所w Afc 4 卜再他都不使用脫 晶棒)。 ㈣污染所容納的♦(料液及多晶石夕 而且,這樣的二氧化矽容器, 合而成,所以相較於一體成型的容。。因為疋將板體加以經 製造成本。 、态,能顯著地減低容器 201243115 前述方形二氧化矽容器, 刀的至少一部份中含有脫模促進劑 述多晶矽晶棒脫模。 能作成在内側表面部 該脫模促進劑促進前 這樣的方形二When a transition metal element such as Au is melted and solidified in a square container, the diffusion of the impurity metal element and the contamination of the base metal occur. [Prior Art Document] (Patent Document) Patent Document 1 曰本特开专利文件 2 曰本特开专利文件 3 曰本特开专利文件 4 曰本特开专利文件 5 曰本特开专利文件6 曰本Japanese Laid-Open Patent Publication No. 2005-125380, No. 2005-125380, No. 2010- 207, 137, No.曰 特 特 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 〇〇 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 丨 丨 丨 丨 丨 丨 丨 丨 1 1 1 1 1 1 1 1 1 1 1 1 JP-A No. 20〇9_2749〇5 SUMMARY OF INVENTION [Problems to be Solved by the Invention] As described above, in a container for producing a multi-smectite ingot by solidifying a tantalum melt in a container, it is generally The inner surface of the container is preliminarily demolded: However, when a material which becomes an impurity in the polycrystalline twin rod is used as the release agent, it is unavoidable because the release layer is peeled off and the cerium is mixed. The problem of mixing into the polycrystalline twin rod. ..., on the other hand, if the mold release agent is not used, the polycrystalline twin rod will be welded to the container when the tantalum melt solidifies, and when there is cooling, when it is taken out, etc., there is a polycrystalline stone ingot The surface part is broken. As a result, for example, when a solar cell is manufactured from a polycrystalline twin rod, the quality of the solar cell to be manufactured is increased due to deterioration in quality of the solar cell manufactured by the manufacturer and a decrease in yield. In addition, in order to obtain a large number of light-receiving surfaces, the solar cells must be large, and in order to obtain a large polycrystalline twin rod, the dioxins containing the smelting liquid must also be enlarged. In the manufacture of such a large cerium oxide container, it is necessary to use a large-sized assembly f', resulting in a significant increase in the manufacturing cost of the container. 201243115 Large. The present invention is made in view of the above--the square rod for the manufacture of the ingot is completed. It is a kind of polycrystalline liquid and...ingot, and:::Γ, which can suppress impurity pollution# and has excellent mold release property and low cost. It is also an object of the present invention to provide a porous novel body which is used for the production of a polycrystalline cerium oxide plate and a method for producing the same, which is used for constituting the above-mentioned release and also using a square cerium oxide container. [Technical means for solving the problem] The present invention is to solve the above-mentioned twin rod t ^ provides a kind of polycrystalline manufacturing polycrystalline stone 曰 容器 container is used to solidify the Shi Xi solution but to * dioxin 11. The volume of the parallel plate-shaped porous two-plate body formed by oxidation = hole dioxotomy is combined, wherein the porous dioxate is lower in the inner portion. The square dioxide dioxide container of the surface of the surface of the surface of the surface of the surface is lower in the two parallel bisectors 'Therefore, it is possible to easily take out the polycrystalline stone from the polycrystalline fossil container that is manufactured, and cover it with 4 square meters H because the 昤T丄a 7 rods are not damaged. Moreover, 4 other than the container made of cerium oxide, 苴 other; ς # mold agent, w Afc 4 卜 and then he does not use the detachment rod). (4) The ♦ (liquid and polycrystalline stone contained in the pollution) and such a cerium oxide container are combined, so that compared with the one-piece molding capacity, the slab is subjected to manufacturing cost. The container of the above-mentioned square cerium oxide container can be remarkably reduced, and at least a part of the knives contains a release promoter to release the polycrystalline strontium rod. The square shape can be formed on the inner surface portion before the release promoting agent is promoted.

容器,能顯著地減低容器製造成本。 、 二氧化矽容器,因為多孔質 又,刖述多孔質二氧化矽板體的容積密度,較佳是1 〜2.U)g/Cm3’前述多孔質二氧化石夕板體的兩平行平面的自 表面起深入3 mm厚度的部分的容積密度,較佳是大於中 心部分的厚度3 mm的部分的容積密度,且兩者之間具有 〇.〇5 g/cm3以上的差值。 若設為這樣的多孔質二氧化矽板體的容積密度及表面 部分與中心部分的容積密度,則能保持多晶矽晶棒製造用 方形二氧化矽容器的強度,並且又能較為提高脫模性。 又,前述方形二氧化矽容器,較佳是其A1濃度是3〜 5〇〇 wt.ppm,且 OH 基濃度是 5〜500 wt ppm。 若作成含有這樣的濃度的A1及OH基的方形二氧化石夕 容器’則即便使用二氡化矽純度稍低而便宜的二氧化石夕原 201243115 料,也能充分地防止雜質擴散至所容納的矽。 又,前述方形二氧化石夕容器中所含有的Li、Na、K的 各自的濃度較佳是1〜100 wt.ppm,Ti、Cr、Fe、Ni、Cu、Containers can significantly reduce container manufacturing costs. The cerium dioxide container, because of the porous nature, cites the bulk density of the porous cerium oxide plate, preferably 1 to 2. U) g / Cm3 'the two parallel planes of the porous SiO2 slab The bulk density of the portion deeper than 3 mm from the surface is preferably the bulk density of the portion larger than the thickness of the central portion of 3 mm, and has a difference of 〇.5 g/cm3 or more therebetween. When the bulk density of the porous ceria plate body and the bulk density of the surface portion and the central portion are set, the strength of the square ceria container for producing a polycrystalline twin rod can be maintained, and the mold release property can be improved. Further, the above-mentioned square ceria container preferably has an A1 concentration of 3 to 5 Å wt. ppm and an OH group concentration of 5 to 500 wt ppm. When a square dioxide dioxide container having such a concentration of A1 and OH groups is formed, even if a rare earth dioxide having a slightly lower purity and a cheaper amount of the dioxide is used, it is possible to sufficiently prevent impurities from diffusing into the accommodated material. Hey. Further, the respective concentrations of Li, Na, and K contained in the square dioxide dioxide container are preferably 1 to 100 wt. ppm, Ti, Cr, Fe, Ni, Cu,

Zn、Mo、Au的各自的濃度較佳是〇 〇i〜5 〇 W㈣。 如此’若Li、Na、K的夂6 aa-曲办e 的各自的濃度疋100 wt. ppm以下, 且 Ti、Cr、Fe、Ni、Cu、\λ ▲The respective concentrations of Zn, Mo, and Au are preferably 〇 〇 i 〜 5 〇 W (four). Thus, if Li, Na, K, 夂6 aa- 曲 e e each has a concentration of 疋100 wt. ppm or less, and Ti, Cr, Fe, Ni, Cu, \λ ▲

Zn、Mo、Αιι的各自的濃度是5 〇 wt.ppm以下,則能抑制雜質擴散至所容納的石夕。又,在本 發明的容器中,Li、Na、K的各自的濃度可以是 以上^士、犯心^〇士的各自的濃度 可以是0.01 wt.ppm以上铉祥从卞a , ' 知樣的不咼的純度,而能降低製造 成本。 :,本發明提供—種多孔質二氧化石夕板體,其特徵在 、·疋由多孔質二氧切所構成的平行平板狀多孔質 化碎板體,用以構成方形二 w 办哭—氧化矽谷益,該方形二氧化矽 小用於將石夕熔液凝固而製造多晶石夕晶棒,其中,該多 孔質二氧化矽板體的容積密度 〇Λ 平而λα Α * 又疋l60〜2·10 g/cm3,兩平行 的自表面起深入3mm屋_从λιτ \ 心部厚度的。卩分的容積密度,大於t ’刀的厚度3mm的部公沾々 〇 3 、各積密度’且兩者之間且有 .〇5 g/cm以上的密度差值。 ,、有 若是這樣的多孔質二 成方形二氧切容器。==雜’則能“組合而構 晶…製造用方形二氧::容—器氧化::二作為, 各納的矽(矽熔液及多晶 貞^所 低。 曰曰棒),且脫模性優異、成本極 201243115 此時’前述多孔質二氧化矽板體,可以作成在表面部 分的至少一部份中含有脫模促進劑,該脫模促進劑促進前 述多晶矽晶棒脫模。 這樣的多孔質二氧化矽板體,也能組合而構成方形二 氧化石夕容器。此時,該方形二氧切容器能作為—種多晶 矽晶棒製造用方形二氧化矽容器,其能充分地防止雜質污 染所容納的矽,且脫模性優異、成本極低。 又,則述多孔質二氧化矽板體,較佳是其Al濃度是3 〜5〇〇Wt.PPm,且 0H 基濃度是 5〜5〇〇wt ppm。 若是以這樣的濃度來含有AUOH基,則多孔質二氧 化石夕板體在組合而作成方形二氧切容㈣,即便使用二 氧化矽純度稍低而便宜的-氣 的一氧化矽原料,也能充分地防止 雜質擴散至所容納的石夕。When the respective concentrations of Zn, Mo, and Αι are 5 〇 wt. ppm or less, it is possible to suppress the diffusion of impurities to the accommodated stone. Further, in the container of the present invention, the respective concentrations of Li, Na, and K may be above, and the respective concentrations of the sinisters may be 0.01 wt. ppm or more. Unsatisfactory purity can reduce manufacturing costs. The present invention provides a porous corrude slab body characterized by a parallel plate-shaped porous slab body composed of porous dioxotomy, which is used to form a square two w crying-方形 益 益 , 该 该 , , , , , 该 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 ~2·10 g/cm3, two parallel from the surface to the depth of 3mm house _ from λιτ \ heart thickness. The bulk density of the enthalpy is greater than the thickness of the t ′ knives of 3 mm, the density of each of the 积 3 , and the density of the ’ 5 g/cm or more. , if there is such a porous two-square square dioxy-cut container. == Miscellaneous 'can be combined and crystallized...made with square dioxane::capacitor-oxidation:: two as the enthalpy of each nano 矽 (矽 melt and polycrystalline 贞 ^ low. 曰曰 rod), and Excellent release property, cost pole 201243115 At this time, the porous ceria plate body may be formed to contain a release promoter in at least a part of the surface portion, and the release promoter promotes release of the polycrystalline twin rod. Such a porous ceria plate body can also be combined to form a square dioxide dioxide container. In this case, the square dioxo container can be used as a square ceria container for producing a polycrystalline twin rod, which can sufficiently It prevents the impurities from contaminating the contained crucible, and has excellent mold release property and extremely low cost. Further, the porous ceria plate body preferably has an Al concentration of 3 to 5 〇〇 Wt. PPm and a concentration of 0H. It is 5 to 5 〇〇 wt ppm. If the AUOH group is contained at such a concentration, the porous SiO 2 layer is combined to form a square dioxane (4), which is inexpensive even if the ruthenium dioxide is used with a slightly lower purity. - gas cerium oxide raw material can also fully prevent impurities Spread to the stone eve that is accommodated.

一 1 ”1 S 句的 LI、jNa、K 的各自的濃度較佳是1〇〇 7 Λ Wt.PPm,Ti、Cr、Fe、Ni、Cu、The respective concentrations of LI, jNa, and K of a 1 "1 S sentence are preferably 1 〇〇 7 Λ Wt. PPm, Ti, Cr, Fe, Ni, Cu,

Zn、Mo、Au的各自的濃度較佳 从 ^U.Ol'S.Owt.ppm。 右疋运樣的雜質濃度的多 制製造成纟,而且在組合而作成氧切板體,則能抑 能充分地抑制雜質擴散至所容納的::氧切容器時’也 又,本發明提供一種多孔 法,其特徵在於: 負一氡化矽板體的製造方 是用以製造由多孔質二氧化 孔質二氧化矽板體的方法,a 構成的平行平板狀多 月述多孔暂_ 以構成方形二氧化矽容3!,姑 M —氧化矽板體是用 命 孩方形-乾 一氧化矽容器是用於將 9 201243115 石夕溶液凝固而製曰 該多孔質二氧化矽 w夕晶石夕晶棒,其中 板體的製造方法包含: 製乍一备 一化矽粉來作為原料粉的步驟 將配置於t 4 & 部的氣氛,取代 以上的惰性氣體 ' 、電加熱爐内的熔融容器的内 成包含氮氣、氖备 卜产 斤 吼乳、氬氣、氪氣的任一種 氣氛的步驟; 氛,溶融容器的内部保持於前述惰性氣體氣 Μ述原料粉供給至前述熔融容器中的步驟; 壓力二邊將前述溶融容器内部的前述惰性氣體氣氛的 :力保持於-大氣麗以上’一邊將該溶融容器的溫度加軌 c以上’而使前述原料粉溶融、軟化的步驟;以及 二邊使前料融、軟化後的二氧切玻璃(silica glass) 自則述熔融容器的下部通過成型工具而成型為平行平板 狀’一邊連續拉出的步驟。 右根據這樣的製造方法,則能使所製造的多孔質二氧 化矽板體的容積密度,在兩平行平面的比表面部分更内部 的部分中較低。亦即,藉由在包含氮氣、氖氣、氬氣、氪 氣的任一種以上的惰性氣體氣氛中進行原料粉的熔融、軟 化’而能使熔融狀態的二氧化矽玻璃内含有氣泡。藉由使 熔融狀態的二氧化石夕玻璃通過成型工具而成型為平行平板 狀’而能製造一種多孔質二氧化矽板體,其板體的表面部 分的氣泡少於中心部分的氣泡。而且,這樣進行而製造出 來的多孔質二氧化矽板體’其成本低,能組合而構成方形 二氧化矽容器。這樣的方形二氧化石夕容器,能作為一種多 10 201243115 ,其能抑制雜質污染所 且脫模性優異、成本極 晶矽晶棒製#田 氣乂用方形二氧化矽容器 容蜗的}5夕( > (夕溶液及多晶矽晶棒), 低。 jt匕日洋 . 至少一 a 可以在前述多孔質二氧化矽板體的表面部分的 中’含有脫模促進劑,該脫模促進劑促進前述 夕日曰矽晶棒脫模。 右像每樣地在多孔質二氧化矽板體的表面、 一部份中含右代★ # s 刀巧主 有促進多B曰矽晶棒脫模的脫模促進劑,則藉由 '將夕孔質—氧化石夕板體的表面中的含有脫模促進劑的表 面設為内側的方式來構成方形二氧切容H,該方形二氧 切^器就會因為多孔質二氧切板體所具有的有關上述 T積密度的構成、與脫模促進劑的存在,而能作為—種多 晶矽晶棒製造用方形二氧化矽容器,其能充分地防止雜質 巧染所容納的矽’且脫模性優異、成本極低。 又,本發明的多孔質二氧化矽板體的製造方法中,可 以在製作冑述原肖粉的步驟中製作第一原才斗粉與第二原料 粉’刖述第-原料粉是由粒徑G GG3〜3 G随的二氧化石夕 粉所構成,前述第二原料粉是由平均粒徑小於前述第—原 料粉的二氧化矽粉所構成,該平均粒徑是以質量基準累積 分佈的50〇/〇中的粒徑值來比較而得,並且,在將前述原料 粉供給至前述熔融容器中的步驟中,將前述第一原料粉的 供給位置設於前述熔融容器内的中央側而進行供給,且將 前述第二原料粉供給至比前述熔融容器内的前述第—原料 粉的供給位置更外側的位置。 ’ 201243115 1對樣’藉由製作平均粒徑不同的兩種原料粉,並將 "對於炫融容器的供 製诰—链, 供、,。位置°又為如上所述,而能較確實地 夕孔質二氧化矽板體,該多孔皙_ 矣而加八 Λ夕札質一氧化矽板體的 表面部分的氣泡少於中心部分的氣泡。 前述LI’此時可以藉由在前述第二原料粉中添加(播雜) 模促進劑’而含有前述脫模促進劑。 可以^在本發明的多孔質二氧化妙板體的製造方法中, 皙_4“ 夕孔質-氧化矽板體之後,藉由對該多孔 質-氧化矽板體的表面部分的至少 a 述脫模促進劑,而含有 〃、佈(塗覆)則 J叩3有則述脫模促進劑。 若藉由這些方法,則能敕饈 體的m “"較簡易地在多孔質二氧化矽板 體的表面部分的至少一 脫模促進劑。 巾3有促進多晶石夕晶棒脫模的 又,前述原料粉所含有的1知、 較佳是設為1〜1〇〇 wt η ‘、, 分曰幻晨度 .Pm,刖述原料粉所含有的Ti、Cr、 Fe、Nl、Cu、Zn、Mo、Au 的各 〜5.0wt.ppme 自的道度,較佳是設為0.01 原料粉所含有的雜 抑制製造成本,同時在將所 'D,,則能 將所製造的板體加以組合而作成方 形一氧化矽容器時,能充分 _ 也抑制雜質擴散至所容納的矽》 又,刖述熔融容器中的氣袭备 被%以上。 的_氣體,較佳是設為氮氣80 若設為這樣的氣氛氣體,則能較確實地使多孔質-氧 化石夕板體的容積密度,在 吏多孔質-氧 仃平面的比表面部分更内部 12 201243115 的部分中較低。 [功效] 本發明的多晶石夕晶棒製 使多孔質二氧切板體的容積:::二氡切容器,藉由 部分更内部的部分中較低在度在兩平行平面的比表面 棒的方形二氧切從裝有所製造的多… 破損。又,除了由 Λ地取出该多晶石夕晶棒而無 不使用脫模劑時,Μ:石夕所構成的容器以外,當其他都 多晶石夕日棒)月匕卩雜質巧染所收納的石夕(石夕炼液及 平行平:的比矣,當多孔質二氧化石夕板體的容積密度在兩 卞灯十面的比表面部分 -备几a〜 更内的部分中較低,並且在方形 一氧化矽容器的内側表面八 曰功日& p刀的至少一部份中含有促進多 =二脫!的脫模促進劑時,能充分地防止雜質污染所 、’且能從裝有所製造的多晶矽晶棒的方形二氧 化石夕容器中,輕易地取出該多_晶棒而無破損。又 樣的二氧化石夕容器,因為是將板體加以組合而成,所以相 較於-體成型的容器,能顯著地減低容器製造成本。 又’若為本發明的多孔質 種多孔質二氧化矽板體,其是 矽晶棒製造用方形二氧化矽容 二氧化矽板體’則能作為一 用以構成像上述這樣的多晶 器。 又,若依循本發明的多孔質三氧切板體的製造方 法,則能便宜地製造像上述這樣的二氧化矽板體。 如上所述,藉由本發明,而能製造高品質且低成本的 方形的多晶碎晶棒’該多晶妙晶棒特別是極為適合用於太 陽能電池。 13 201243115 【實施方式】 [實施發明的較佳形態] . 本發明中,針對能獲得適合於例如太陽能電池用的方 • 形多晶矽晶棒的多晶矽晶棒製造用方形二氧化矽容器,以The respective concentrations of Zn, Mo, and Au are preferably from ^U.Ol'S.Owt.ppm. The multi-fabrication of the impurity concentration of the right-handed sample is made into a crucible, and when combined to form an oxygen-cut plate, it is possible to suppress the diffusion of impurities to the contained: oxygen-cut container. A porous method, characterized in that: a negative bismuth ruthenium plate is produced by a method for producing a porous porositized ruthenium dioxide plate, and a parallel plate-shaped multi-monthly porous _ Forming a square cerium oxide capacity 3!, 姑M- 矽 矽 是 是 是 用 - - - - - - - - - - - - - - - - - - - - - - 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 The crystal rod, wherein the method for manufacturing the plate body comprises: the step of preparing the bismuth powder as the raw material powder, and disposing the atmosphere in the t 4 & part, replacing the above inert gas', the melting container in the electric heating furnace The step of forming an atmosphere containing nitrogen, argon, argon, or xenon; and maintaining the inside of the molten container in the inert gas gas to supply the raw material powder to the molten container Pressure a step of dissolving and softening the raw material powder by maintaining the force of the inert gas atmosphere in the inside of the melting vessel at a temperature above the atmosphere of the molten vessel, and adding or removing the temperature of the molten vessel; Silica glass which has been melted and softened is a step of continuously drawing out from the lower portion of the melting vessel by a molding tool into a parallel flat plate shape. According to such a manufacturing method, the bulk density of the produced porous cerium oxide plate body can be made lower in the portion of the two parallel planes which is more inside than the surface portion. In other words, by melting and softening the raw material powder in an inert gas atmosphere containing at least one of nitrogen gas, helium gas, argon gas, and helium gas, bubbles can be contained in the molten cerium oxide glass. A porous ceria plate body can be produced by forming a molten silica stone into a parallel plate shape by a molding tool, and the surface portion of the plate body has fewer bubbles than the central portion. Further, the porous ceria plate body manufactured as described above has a low cost and can be combined to form a square ceria container. Such a square dioxide dioxide eve container can be used as a kind of 10 201243115, which can suppress impurity pollution and has excellent mold release property, and the cost of the crystal crystallization bar is made of a square cerium oxide container.夕 (> (solution and polycrystalline twin rod), low. jt匕日洋. At least one a may contain a release promoter in the surface portion of the porous ceria plate, the release promoter Promote the demolding of the above-mentioned celestial crystal rods. The right image contains the right generation on the surface of the porous erbium dioxide plate, and some parts of the 右 ★ ★ ★ # # # 促进 促进 促进 促进 促进 促进 促进 促进 促进 促进In the mold release accelerator, the square dioxane H is formed by setting the surface containing the release promoter in the surface of the matte-oxidized stone plate body to the inside, and the square dioxane is formed. Because of the structure of the above-mentioned T-density and the presence of the release promoter, the porous dioxane plate can be used as a square ceria container for the production of polycrystalline twin rods. Prevents the impurities from being dyed by the impurities and has excellent mold release property. Further, in the method for producing a porous ceria plate body of the present invention, the first raw material powder and the second raw material powder can be produced in the step of producing the original raw material powder. The powder is composed of a dioxide powder of G GG3~3 G, and the second raw material powder is composed of cerium oxide powder having an average particle diameter smaller than that of the first raw material powder, and the average particle diameter is Comparing the particle diameter values in the 50 〇/〇 of the mass-based cumulative distribution, and supplying the raw material powder to the molten container, the supply position of the first raw material powder is set to the molten container The supply is performed on the center side of the inside, and the second raw material powder is supplied to a position outside the supply position of the first raw material powder in the molten container. '201243115 1 By sample' by making an average particle diameter Two kinds of raw material powders, and will be used for the smelting and melting of the container, and the position is also as described above, and the porphyrin dioxide can be more reliably矣 加 Λ Λ Λ Λ Λ The bubble of the surface portion of the plate body is smaller than the bubble of the central portion. The aforementioned LI' may contain the above-mentioned release promoter by adding (dispersion) the mold accelerator to the second raw material powder. In the method for producing a porous oxidized oxidized plate body of the invention, after the 皙4" 孔 质 - 矽 矽 矽 , , , , , , , 脱 脱 脱 脱 脱 至少 脱 至少 至少 脱 脱 脱 脱 脱 脱 脱 脱 脱 脱 脱 脱In addition, when 〃 and cloth (coating) are contained, J叩3 has a releasing agent. If these methods are used, the m" of the carcass can be easily used in the porous cerium oxide plate. At least one release promoter of the surface portion. The towel 3 has a function of promoting demolding of the polycrystalline stone, and the raw material powder is preferably 1 to 1 〇〇wt η ',曰幻晨度.Pm, the degree of each of ~5.0wt.ppme of Ti, Cr, Fe, Nl, Cu, Zn, Mo, and Au contained in the raw material powder is preferably set to 0.01 raw material powder. Containing the impurities to suppress the manufacturing cost, and at the same time, the "D" can be combined to form a square oxidized The container can be sufficiently suppressed _ impurity diffusion into the silicon contained "and, cut off the feet of gas in said melting vessel is above prepared attack%. The gas is preferably set to nitrogen gas 80. If it is such an atmosphere gas, the bulk density of the porous-oxidized oxide plate body can be more reliably made in the specific surface portion of the porous porphyrin-oxygen 仃 plane. Internal 12 is lower in the 201243115 section. [Efficacy] The polycrystalline stone ingot of the present invention is formed by making a volume of a porous dioxate plate::: a double-cut container, by a portion of a more inner portion having a lower specific surface in two parallel planes The bar-shaped dioxotomy is made from the built-in... broken. In addition, when the polycrystalline stone ingot is taken out from the sputum and the mold release agent is used, Μ: other than the container formed by Shi Xi, when other polycrystalline stones are used, the moon 匕卩 impurities are dyed and stored. Shi Xi (Shi Xi refining liquid and parallel flat: the specific density of the porous silica dioxide slab body is lower in the partial surface part of the two lamps than the surface part - a few a ~ And when at least a part of the inner surface of the square yttrium oxide container and the p-type knives contains a release promoting agent that promotes multiple=two off!, the impurity contamination can be sufficiently prevented, and The poly-crystalline rod is easily taken out from the square dioxide dioxide vessel containing the produced polycrystalline twin rods without damage. The same type of dioxide dioxide container is formed by combining the plates. Compared with the body-formed container, the container manufacturing cost can be remarkably reduced. Further, if it is the porous seed porous ceria plate body of the present invention, it is a square cerium oxide-capped cerium oxide for the production of a twin bar. The plate body can be used as a polycrystalline body like the above Further, according to the method for producing a porous tri-oxygen cut sheet of the present invention, the above-described ceria plate body can be produced at a low cost. As described above, according to the present invention, high quality and low quality can be produced. The cost of a square polycrystalline microcrystalline rod is particularly suitable for use in a solar cell. 13 201243115 [Embodiment] [Preferred Embodiment of the Invention] In the present invention, it is possible to obtain a suitable A square-shaped cerium oxide container for the production of a polycrystalline strontium rod of a square-shaped polycrystalline strontium rod for solar cells,

下述目的作為課題。 B 第 作成一種具有優異的脫模性的方形二氧化矽容 器(提升脫模性)。亦即,藉由使方形二氧切容器内容納 的石夕 '谅^液固而费^ θ z.b a J-*. 口而“多曰曰矽晶棒後,⑼方形二氧化矽容器 中輕易地取出多晶矽晶棒。 =,作成-種能防止雜f污染的方形:氧化_容 i氧化二Γ更在製造多晶石夕時的高溫下,也能抑制方形 六器所/料有的各種雜f金屬元素往方形二氧化石夕 果可充八,“ 液及夕-矽晶棒)移動、擴散,結 b地防止雜質污染料液及多晶石夕晶棒。 質污::二低成本來實現上述的優異的脫模性、防止雜 杀 亦即’在方形-条VL a 件成本,而且能使用便Γ石谷器的製造上,能減低零 時間連續地進行S ':的二氧化石夕原料’並且以較短的 消耗。 1型,而減少能量 以下參照圖<來詳細地說 定於這些例子。 务月’但本發明並不限 第1圖是表示本發 夕 石夕容器的—例的概略情形。第夕;:a二製造用方形二氧化 圖(a)疋概略俯視圖,第】 201243115 圖(b)是概略剖面圖β 如第1圖(a)及第!圖(1)) Μ的形狀是方形(又稱為方#型、):發明的二氧切容器 疋側部(側壁部)11與底部2!所構成 二〇, 的方形二氧化矽容器1〇, 且,本發明 ^ t 由十灯千板狀的多孔皙-备 矽板體所組合而構成。具體而言,如第 -氣化 所示,4個側1丨丨及(a)及第1圖(b) 個側°PU及1個底部2!分別是由平 多孔質二氧化矽妬栌私桃』、 丁订十板狀的 軋化石夕板體所構成,本發明的方形二氧 1 〇則是將該此多孔晳_备_ 谷器 夕孔質-氧化矽板體加以組合而構成。 構成本發明的方形二氧化石夕容器10的多孔質 矽板體的組合方法並無特別限定' 會往内側倒下。例如,如第】圖所-又成在組合時不 肤哲,第1圖所不,可以是將平行平板 f質一氧化矽板體的各個組合部分設為斜面,將該斜 面彼此面對面而進行組合(磨 , 傲按0 (磨砂破螭接頭 (ground glass joint))型)。 第2圖是表示本發明的多晶石夕晶棒製造用方形二氧化 石夕容器的另一例的概略情形。第2圖⑷是概略俯視圖,第 2圖(b)是概略剖面圖。如第2圖所示,也可以是將平行平 板狀多孔質二氧化矽板體的各個組合部分形成為能嵌 形式’來進行組合(嵌合型)。 入 又,方形的各側部及底部,並不限於分別以丨片多孔 質二氧化矽板體來組裝’如第3圖、第4圖所示,能以複 數片多孔質二氧化矽板體來構成各側部及底部。另外,第 3圖(a)是概略俯視圖,第3圖(b)是概略剖面圖,第*圖卜) 15 201243115 是概略俯視圖,第4圖(b)是概略剖面圖。此情況,方形容 器的8個側部〜、1113及2個底部仏川,分別是由平 订平板狀的多孔質二氧化石夕板體所構成。 如上述,本發明的多孔質二氧化石夕板體是平行平板 狀’在本發明說明巾,所謂的平行平板狀,是指平板狀形 ,的表面卜面積大的2個平坦表面略呈平行的意思。但 疋’如第1圖〜第4阁糾- .τ 圖所不,在平板狀形狀的周圍部也可 以作成用以組合的形狀。 又,第5圖是表示本發明的方形:氧切容器的設 置例子。第5圖⑷是概略俯視圖,第5圖⑻是概略剖面圖。 第5圖中如第!圖所示,是表示以研磨接合型組合來構 成方形二氧切容器1G的例子來作為代表但也可以是其 他組合形態,例如也可以是如第2圖〜第4圖所示的構成。 如第5圖所示’構成方形二氧化矽容器10的多孔質二 氧化石夕板體,可以藉由碳製等的承受體8〇(δ_ρ㈣來固 定。 像這樣φ夕孔質二氧化石夕板體所組合而構成的本發 ,的方形一氧化矽谷器1〇,是用以將矽熔液凝固而製造方 形夕S日梦日B棒的谷g。因此,相較於將容器整體以一體成 :的方式來製造的情形,能顯著地減低製造成本。而且, 右所製造的多晶矽晶棒是方形,則能將其切片而獲得方形 :多日曰矽曰曰圓’相較於將由圓柱狀多晶矽晶棒切片而成的 :曰圓作為太陽能電池的情形,方形的多晶矽晶圓不會浪費 受光面積,極適合於太陽能電池。 201243115 進而本發明的方形二氧化矽容器其多孔質二氧 匕夕板體的令積狁纟’在兩平行平面的比表面部分更内部 的部分中較低。亦即,I昭 右參‘、、、第1圖〜第4圖來說明,則 構成側部的多孔質二氧化石夕拓辦;, 乳化/板體11、lla、Ub,其板體内 部的部分的容積密度低於側部内表面i2、i2a、i2b及側部 外表面13、13a、l3b66AR八 卞 _ 的部刀。而且,構成底部的多孔質二 氧化石夕板體21、21a、21b,触知* ’其板體内部的部分的容積密度 低於底部内表面22、22a、22b及底部外表面23、仏、咖 的部分。 像k樣,本發明藉由使多孔質二氧化石夕板體的容積密 度’在兩平行平面的比表面部分更内部的部分(較具體而 5 ’是自表面起大約深入超過3職的部分)中較低(亦 即’氣泡量多)’而將多孔質二氧切板體的中心部分的強 度設定為較低。當在這樣的方形二氧切容器中使石夕溶液 凝固而製造多晶矽晶棒時’目為適當地保持容器本身的強 度’所以能製造出一種依照方形二氧切容器的形狀而成 形的特定形狀的多晶石夕晶棒。而且,從容器剝下多晶石夕晶 棒時’因為多孔質二氣化石夕把辦& & * Μ軋化矽板體的内部的部分的強度較 弱’所以能輕易地敢中容a a吐 自地取出夕曰曰矽晶棒而不會使多晶矽晶棒的 表面部分缺損或在表面產生微裂縫。 7 &,右有必要,也 能輕易地破壞方形二氧化矽容器 竹夕日日矽晶棒從容器中 取出。 本發明的方形二氧化矽容器10, 口苟除了由二氧化々 所構成的容器以外,可以不使用由 丹他材枓(例如碳化矽 17 201243115 (SiC)、氮化石夕(Si3N4)、碳(c) 所以能抑制由脫模劑本身所產生=的脫模劑’ (矽熔液及多a々s ’質禾所容納的矽 夕阳矽晶棒)的情況。而且,▲ 容器,因為是將板體加以組合而成,所:的二氧化石夕 的容器,能顯著Μ、ά 相h於一體成型 肩者地減低容器製造成本。 本發明的方形二氧化矽容器^ 〇, 部分的至少〜部份令進而含有促進多^作成在内侧表面 氧化㈣圖來說明,則所謂的方形二 少…。的内側的表面,是指 ⑶及底部内表面22、22a、22b。内表面12、Ua、 氧化從容器中剝T多晶發晶棒時,除了多孔質_ 氧切板體的内部的部分的強度較 :- 進劑,所以能較輕易地取出多晶 :3有脫模促 婊沾主工加、 矽日日棒而不會使多晶矽晶 為多孔質二氧化㈣…產生微裂縫…,此時也因 有必要,也L 的内部的部分的強度較弱,所以若 棒從容器取出。 ㈣-氧化硬容器而將多晶梦晶 本發明中所能使用的脫模促進劑,可以列 ((Sr)、鋇(Ba)等 ; 鹽、氣化物“ X化合物(例如硫酸 化矽1 鹽、齒化物等)的形態含有於方形二氧 过, 中。本發明中所能使用的脫模促進劑,除了上 述以外,還可以列舉碳化矽备 于了上 氧化石夕一山>0 氮化石夕(⑽、氮 (z y> 〇)、氧化鎂(MgO)、氧化鍅 、zr〇2)、碳(C)。 201243115 本ι明中較合適的脫模促進劑,是鹼土金屬元素 以㈤)' 心⑽)、Ba(鋇)。藉由使方形二氧化石夕容器10的 内側表面部分含有Ca、Sr、Ba,在將矽熔液容納至方形二 氧,夕谷器10中並使其緩緩冷卻、凝固而作成多晶矽晶棒 的裝k過私中’該方形二氧化石夕容器的内表面層會自二 氧化石夕玻璃轉換成方石英(eristGbali⑷或蛋白石(。㈣等的 /曰曰相而引發微裂縫的生成。結果,因 卻、凝固的…晶㈣方㈣切如G的内側= ^接’所以從方形二氧切容器1G取下多晶碎晶棒時, 2=棒而不會使多晶石夕晶棒破損、或在多晶石夕晶棒的 P刀發生凹凸的形成或漸進性的裂縫。 相較於U'Na'K等鹼金屬元素,鹼土金屬元素 二ar與偏析係數之間的相關關係,而較少被混入藉 疑固所製造的多…棒,亦即,能減少對於多晶 觀;:而製程污染。從對於…晶棒的擴散污染較少的 =:,又特別…為本發”所使用的脫模促進劑 促進Si切容器Μ的内側表面部分之中,含有脫模 側表面=上述’只要是方形二氧切容器1。的内 邠刀的至少一部份即可, 器"的至容納一使其凝二方=切容 二二 =設為含有脫模促進劑的範圍,更佳是將方形 進劑的範圍!5 Μ的内側表面部分整體均設為含有脫模促 19 201243115 使方形一氧化矽容器的内側表面部分含有脫模促進劑 的方法,有下祕t、+ . ^ 法·將脫模促進劑塗佈(塗覆)於構成 方,一氧化矽谷器的多孔質二氧化矽板體的表面的方法、 /疋在裝&多孔質—氧化石夕板體時預先將脫模促進劑添加 (捧雜)於原料粉令的方法。從成本的觀點而言,將硫酸 鋇或氯化鎖等的水沒你备& 、 尺/合液盒佈於方形二氧化矽容器的内表面 並使其乾燥的手法較為低成本且有效。 關於脫模促進劑的塗佈濃度,當使用Ca、Sr、Ba等驗 土金屬元素作為脫模促進劑時,ca、Sr、Ba等鹼土金屬元 、的口。十值較佳疋設為50〜綱〇 pg/cm2,更佳是設為1〇〇 〜1000 pg/cm2 0 並且’構成方形二氧化矽容器10的多孔質二氧化矽板 的谷積费度,較佳是j 6〇〜2 1〇 g/cm3 (此意味著在多孔 質-氧化石夕板體的整體中的容積密度是位於此範圍内,亦 即,容積密度的下限是Wg/W以上,上限是210g/cm3 乂下)多孔質二氧化矽板體的兩平行平面的自表面起深入 3 _厚度的部分的容積密度,較佳是大於中心部分的厚度 3麵的部分的容積密度’且兩者之間具有0 05 g/cm3以上 :差值。若設為這樣的容積密度’則能保持多晶矽晶棒製 :用方形二氧化矽容器的強度’並且又能較為提高脫模 另外,多孔質二氧化矽板體的容積密度,更佳是設於 l70〜2.〇Og/cm3的範圍内。又,表面部分與中心部分:間 以上。 X㈣度的差值’更佳是設為0.lg/cm3以上,特佳是設 為0.2 g/Cm3以上。 20 201243115 構成方形二氧化石夕容器1〇的各個多孔質二氧化石夕板 體的相當於容器内側的表面(亦即,第1圖〜第4圖的12、 的部分,其容積密度^21〇〆 以下的值,則多晶石夕晶棒與方形二氧切容器Π)之間的熔 接情形不會過強’能充分地具有脫模性。 另方面,構成方形二氧化矽容器1〇的各個多孔質二 氧化石夕板體的中心部分的容積密度,若是i 6〇 g/cm3以: 的值’則能更加提相模性,且不會發生容器強度降低太 多的情形。而且,多:暂-隹,, 夕孔質一氧化矽板體的中心部分的容積 密度若是UO g/em3以下,則方形二氧切容器内所製造 的多晶石夕晶棒與二氧化石夕容器之間的熔接情形會變弱,且 容器強度會適度地降低,所以能較為提升脫模性。因此, 多孔質二氧切板體的中心部分的厚纟3 _的部分的容 積密度’較佳是設於“。叫…/一亦即,在多孔質二 氧化石夕板體的中心部分的厚《3 _的部分中,容積密度 的下限是1·60 g/em3以上’容積密度的上限是i ^ 乂下)更佳疋设於ι·7〇〜!·85 g/cm3的範圍内。 一又,方形二氧化矽容器10,較佳是其μ(鋁)濃度(Ai 凡素濃度)是3〜500 wt.PPm且OH基濃度是5〜500The following objectives are the subject. B The first is a square cerium oxide container (extracting mold release property) with excellent mold release property. That is, by making the square dioxin-cut container contain the stone eve 'forgive liquid and cost ^ θ zb a J-*. mouth and "multiple crystallization rods, (9) square bismuth oxide container is easy The polycrystalline twin rod is taken out. =, it is made into a kind of square which can prevent the pollution of the impurity f: the oxidation _ _ 氧化 氧化 氧化 Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多 多The hetero-f metal element can be filled into the square dioxide dioxide, and the "liquid and eve-deuterium rod" can move and diffuse, and the b-layer prevents the impurity from contaminating the liquid and the polycrystalline stone. Smell: 2 low cost to achieve the above-mentioned excellent release property, prevent miscellaneous killing, that is, 'in the square-strip VL a piece cost, and can be used in the manufacture of the sticky stone barn, can reduce the zero time continuously S ': the raw material of the dioxide dioxide and the shorter consumption. Type 1 and reduction of energy are described in detail below with reference to the drawings <RTIgt; The present invention is not limited to the present invention. Fig. 1 is a schematic view showing an example of the case of the present invention. The first eve;: a two square bismuth for manufacturing Fig. (a) 疋 a schematic plan view, the first] 201243115 Fig. (b) is a schematic cross-sectional view β as shown in Fig. 1 (a) and the first! Fig. (1)) The shape of the crucible is a square (also referred to as a square type). The invented dioxo container has a side portion (side wall portion) 11 and a bottom portion 2! Further, the present invention is composed of a combination of a ten-plate-shaped porous crucible-prepared crucible body. Specifically, as shown by the first gasification, the four sides 1丨丨 and (a) and the first figure (b) side °PU and one bottom 2! are respectively made of flat porous ceria. The squash is made up of a ten-plate-shaped rolled fossil slab, and the square dioxin of the present invention is formed by combining the porous yttrium-yttrium-yttrium-yttria plate. . The method of assembling the porous iridium plate body constituting the square oxidized stone oxide container 10 of the present invention is not particularly limited to "falling inward". For example, as shown in the first drawing, it is not a matter of the combination, and the first figure is not. It may be that the respective combined portions of the parallel plate f-type cerium oxide plate body are beveled, and the inclined faces are faced to each other. Combination (grinding, proud of 0 (ground glass joint) type). Fig. 2 is a schematic view showing another example of a rectangular silica dioxide container for producing a polycrystalline stone ingot according to the present invention. Fig. 2 (4) is a schematic plan view, and Fig. 2 (b) is a schematic cross-sectional view. As shown in Fig. 2, each of the combined portions of the parallel plate-shaped porous ceria plate body may be formed into an insertable form (combination type). In addition, the sides and the bottom of the square are not limited to being assembled by the porous porous ceria plate body respectively. As shown in Fig. 3 and Fig. 4, a plurality of porous ceria plates can be used. To form each side and bottom. In addition, Fig. 3(a) is a schematic plan view, Fig. 3(b) is a schematic cross-sectional view, Fig. 5b is a schematic plan view, and Fig. 4(b) is a schematic cross-sectional view. In this case, the eight side portions ~, 1113, and the two bottoms of the square container are each formed of a flat plate-shaped porous silica stone slab. As described above, the porous silica stone slab of the present invention is in the form of a parallel plate. In the present invention, the so-called parallel plate shape refers to a flat plate shape, and the two flat surfaces having a large surface area are slightly parallel. the meaning of. However, 疋', as shown in Fig. 1 to Fig. 4, can be formed in a shape to be combined in the peripheral portion of the flat shape. Further, Fig. 5 is a view showing an example of the arrangement of the square: oxygen-cut container of the present invention. Fig. 5 (4) is a schematic plan view, and Fig. 5 (8) is a schematic cross-sectional view. In the fifth picture, as the first! As shown in the figure, the square dioxodes container 1G is exemplified by a combination of the polishing and bonding type. However, other combinations may be employed. For example, the configuration may be as shown in Figs. 2 to 4 . As shown in Fig. 5, the porous SiO2 constituting the rectangular cerium oxide container 10 can be fixed by a support body 8 〇 (δ_ρ(四) such as carbon. Such a φ 孔 质 二 二 夕 夕The square oxidized glutinous rice granules of the present invention, which is formed by combining the slabs, is used to solidify the bismuth melt to produce a valley g of the square s day S day B. Therefore, compared with the whole container In the case of manufacturing in one way, the manufacturing cost can be significantly reduced. Moreover, if the polycrystalline twin rod produced by the right is square, it can be sliced to obtain a square: a multi-day round is compared with The cylindrical polycrystalline twin rod is sliced: in the case of a solar cell, the square polycrystalline silicon wafer does not waste the light receiving area, and is very suitable for a solar cell. 201243115 Further, the square cerium oxide container of the present invention has a porous dioxin. The accumulation of the 板 板 plate body is lower in the portion of the two parallel planes that is more internal than the surface portion. That is, I 昭 右 参 、,,,,,,,,,,,,,,, Porous dioxide dioxide ; emulsification / plate body 11, lla, Ub, the volume density of the inner part of the plate body is lower than the side inner surface i2, i2a, i2b and the side outer surface 13, 13a, l3b66AR gossip _. The porous corrudeite slabs 21, 21a, 21b constituting the bottom are tactilely ** the bulk density of the inner portion of the plate body is lower than that of the bottom inner surface 22, 22a, 22b and the bottom outer surface 23, 仏, 咖In the present invention, by the fact that the bulk density of the porous silica dioxide slab is more internal than the surface portion of the two parallel planes (more specifically, the 5' is about 3 deeper than the surface from the surface. The lower part (ie, 'a large amount of bubbles') sets the strength of the central portion of the porous dioxy-cut plate body to be lower. When the solution is solidified in such a square dioxo container When manufacturing a polycrystalline twin rod, the purpose is to properly maintain the strength of the container itself, so that a polycrystalline quartz crystal rod of a specific shape formed in accordance with the shape of the square dioxygen cut container can be produced. Moreover, the polycrystalline crystal is peeled off from the container. Shi Xijing rod when 'because porous The gasification of the fossils and the && * rolling the inner part of the slab is weaker, so it is easy to dare to speak aa spit from the ground to remove the enamel crystal rod without the polycrystalline twin rod Part of the surface is defective or micro-cracks are formed on the surface. 7 & right, it is also necessary to easily destroy the square cerium oxide container, and the day-old strontium rod is taken out from the container. The square cerium oxide container 10 of the present invention, In addition to the container made of cerium oxide, the sputum can be inhibited by the release agent itself without using a tantalum material (for example, strontium carbide 17 201243115 (SiC), nitridium (Si3N4), carbon (c). The case of the release agent of the = 矽 矽 及 及 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In addition, the container of the ▲ is a combination of the slabs of the sulphur dioxide, which can significantly reduce the manufacturing cost of the container. In the square cerium oxide container of the present invention, at least a portion of the portion of the cerium dioxide container further contains a plurality of layers which are oxidized on the inner surface (Fig. 4). The inner surface refers to (3) and the bottom inner surface 22, 22a, 22b. When the inner surface 12, Ua, oxidizes the T polycrystalline hair rod from the container, the strength of the inner portion of the porous oxidized plate body is relatively simpler than that of the oxidizing plate: The mold release promotes the smear of the main work, and the rods of the day do not cause the polycrystalline twins to be porous (4) to generate micro-cracks... and at this time, because of the necessity, the strength of the inner portion of L is weak, so If the rod is removed from the container. (4) - Oxidizing a hard container and using polycrystalline crystals as a release promoter which can be used in the present invention, (Sr), barium (Ba), etc.; salt, vapor "X compound (for example, barium sulfate 1 salt) In addition to the above, the release promoter which can be used in the present invention may be exemplified by the above-mentioned oxidized lanthanum and the oxidized cerium. Fossil eve ((10), nitrogen (z y > 〇), magnesium oxide (MgO), cerium oxide, zr 〇 2), carbon (C) 201243115 The appropriate release promoter in this ι明, is an alkaline earth metal element (5)) 'Heart (10)), Ba (钡). By causing the inner surface portion of the square dioxide dioxide container 10 to contain Ca, Sr, Ba, the crucible melt is accommodated in the square dioxane, and the valley device 10 The inner surface layer of the square dioxide dioxide oxidized glass is converted into cristobalite (eristGbali (4) or opal (. (4), etc.) by slowly cooling and solidifying it into a polycrystalline twin rod. / 曰曰 phase and the formation of micro-cracks. As a result, due to, solidified ... crystal (four) square (four) cut as G The inner side = ^ connection', so when the polycrystalline crushing rod is removed from the square dioxo container 1G, 2 = the rod does not break the polycrystalline stone ingot, or the P knife in the polycrystalline silicon ingot occurs. The formation of irregularities or progressive cracks. Compared with the alkali metal elements such as U'Na'K, the correlation between the alkaline earth metal elements ar and the segregation coefficient is less mixed with the more , that is, it can reduce the polycrystalline view; and the process pollution. From the diffusion of the ingot to the ingot =:, and especially... the release accelerator used in the present invention promotes the Si-cut container The inner surface portion includes the mold release side surface = the above-mentioned as long as it is at least a part of the inner boring tool of the square dioxocontainer container 1, and the device is accommodating one to make it condense=cutting 22 = set to the range containing the release accelerator, more preferably the range of the square injection! 5 Μ of the inner surface part of the whole is set to contain release release 19 201243115 The inner surface of the square yttrium oxide container contains The method of demolding accelerator has the following secrets, +. ^ Method · Coating release agent (coating) The method for forming the surface of the porous ceria plate body of the cerium oxide cerium, and preliminarily adding the release promoter to the raw material powder when loading and pulsing the porous oxidized slab The method of ordering, from the viewpoint of cost, the water such as barium sulfate or chlorinated lock is not used in the preparation of the square and the liquid mixture container on the inner surface of the square ceria container and drying it. The coating concentration of the release accelerator is preferably a port of an alkaline earth metal such as ca, Sr or Ba when a soil metal element such as Ca, Sr or Ba is used as a release promoter.疋 is 50 to 〇 pg/cm 2 , more preferably 1 〇〇 to 1000 pg/cm 2 0 and 'the storage cost of the porous cerium oxide plate constituting the square cerium oxide container 10 is preferably j 6〇~2 1〇g/cm3 (This means that the bulk density in the whole of the porous-oxidized oxide plate body is within this range, that is, the lower limit of the bulk density is Wg/W or more, and the upper limit is 210g/cm3 underarm) Two parallel planes of the porous yttria plate from the surface to the depth of 3 _ thickness Bulk density, bulk density is preferably part of the third surface is larger than the thickness of the central portion "and having 0 05 g / cm3 or more therebetween: a difference. If it is set to such a bulk density, it can maintain the polycrystalline twin rod: the strength of the square cerium oxide container can be improved, and the bulk density of the porous cerium oxide plate body is more preferably provided. L70~2. Within the range of Og/cm3. Also, the surface portion and the center portion are more than one. The difference ' of X (four) degrees is more preferably set to 0. lg/cm 3 or more, and particularly preferably set to 0.2 g/cm 3 or more. 20 201243115 The surface of each of the porous silica dioxide slabs constituting the square arsenic dioxide container is equivalent to the surface of the inside of the container (that is, the portion of the first to fourth figures, 12), and its bulk density is 21 With the following values, the fusion between the polycrystalline quartz crystal ingot and the square dioxygenated container (不会) is not too strong, and the mold release property can be sufficiently obtained. On the other hand, the bulk density of the central portion of each of the porous silica-containing slabs constituting the rectangular cerium oxide container 1 能 can be further improved in phase contrast if i 6 〇g/cm 3 is: A situation occurs where the strength of the container is reduced too much. Moreover, more: temporary-隹,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The welding condition between the containers is weakened, and the strength of the container is moderately lowered, so that the mold release property can be improved. Therefore, the bulk density ' of the portion of the thickness of the central portion of the porous dioxy-cut plate body is preferably set to "....", that is, at the central portion of the porous silica dioxide plate. In the thick part of "3 _, the lower limit of the bulk density is 1·60 g/em3 or more. 'The upper limit of the bulk density is i ^ 乂.) It is better to set it within the range of ι·7〇~!·85 g/cm3. Further, the square ceria container 10 preferably has a μ (aluminum) concentration (Ai concentration) of 3 to 500 wt. PPm and an OH group concentration of 5 to 500.

Wt.PPm。4 了防止雜質污染,較佳是在方形二氧化石夕容器 1〇中同時含有ai元素與0H基。A1濃度更佳是設為1〇〜Wt.PPm. 4 To prevent impurity contamination, it is preferred to contain both the ai element and the 0H group in the square dioxide dioxide container. The A1 concentration is better set to 1〇~

Wt.PPm,〇H基濃度更佳是設為30〜300 wt.ppm。 這些A卜OH s,會防止多孔質二氧化碎板體中的雜 質金屬元素且特別是u(經)、,,卸)等驗金屬元素 21 201243115 或 Ti(銥)、Cr(絡)Fe(鐵)、Ni(錄)、Cu(銅)、zn(鋅)、m〇(翻)、Wt. PPm, the 〇H group concentration is more preferably set to 30 to 300 wt. ppm. These A OH s will prevent the impurity metal elements in the porous dioxide plate and especially the u (manufacture), and unloading metal elements 21 201243115 or Ti (铱), Cr (complex) Fe ( Iron), Ni (recorded), Cu (copper), zn (zinc), m〇 (turned),

Au(金)等過渡金屬元素在二氧化妙中移動、擴散,該些雜 質金屬元素被認為會使光照射下的多晶矽的載子壽命降 低、或當將多晶石夕晶棒作為太陽能電池材料時會使轉換效 率降低。此機制的詳細情形雖然尚未明朗,但可推論是藉 由A1原子來取代Si原子,由於其配位數不同,所以會抓 住雜質金屬元素的陽離子(cati〇n)而保持二氧化矽玻璃網 絡中的電荷平衡,並因為這樣的作用而防止吸附、擴散。 又,可推論是OH基藉由氫離子與雜質金屬離子的取代, 而產生吸附這些雜質金屬元素或防止這些雜質金屬元素擴 散的效果。 右Ai的濃度是 W 1 Μ碩認到具有〜 分的雜質污染防止效果。另一方面,# A1的濃度是· wt.PPm以下,則能抑制由於A1或八丨2〇3而對要製造的多晶 石夕晶棒造成污染的情況。 又’若OH基的濃度是5 wt.ppm以上,則可以確認到 具有充分的雜質污染防止效果。另一方面,若〇h的濃度 是5〇0 W卩下,則多孔質二氧化石夕板體在高溫下的黏 度也不會降低太多。〇Η基,會構成Si與0的二氧化石夕玻 璃網目結構亦即玻璃網络的終端部()。 由於此理由,高濃度地含有0H|,被認為容易引起多孔 質二氧化矽板體在高溫下變形。 上述⑷與OH基的雜質污染防止效果,即便只有Μ 或 OH基的杯—„ . 也可以確認到某種程度的效果,但藉由 22 201243115 此兩種的組合則可使效果大幅地提升。因此,作為構成方 . 形二氧化矽容器10的多孔質二氧化矽板體的原料的二氧 化矽粉,其純度即便是Si〇2為99 9〜99 999 wt%這種較低 • 的純度,也能製造出一種方形二氧化矽容器10,其能合乎 本發明的目的。較具體而言’例如當二氧化矽原料粉的純 度(si〇2的純度)是99.99 wt %以上,u、⑽、&的各自 的濃度是 1 〜i 00 wt.ppm,Ti、Cr、Fe、Ni、Cu、Zn、、Transition metal elements such as Au (gold) move and diffuse in the oxidation, and the impurity metal elements are considered to reduce the carrier life of the polycrystalline germanium under light irradiation, or when the polycrystalline quartz crystal rod is used as a solar cell material. This will reduce the conversion efficiency. Although the details of this mechanism are not yet clear, it can be inferred that the Si atom is replaced by the A1 atom. Because of its different coordination number, the cation (cati〇n) of the impurity metal element is retained to maintain the cerium oxide glass network. The charge balance in the medium prevents adsorption and diffusion due to such an action. Further, it can be inferred that the OH group is substituted by a hydrogen ion and an impurity metal ion to produce an effect of adsorbing these impurity metal elements or preventing the diffusion of these impurity metal elements. The concentration of the right Ai is W 1 Μ and the effect of preventing impurity contamination with ~ minutes. On the other hand, when the concentration of #A1 is less than or equal to wt. PPm, it is possible to suppress contamination of the polycrystalline quartz crystal rod to be produced due to A1 or gossip. Further, when the concentration of the OH group is 5 wt. ppm or more, it is confirmed that the impurity contamination preventing effect is sufficient. On the other hand, if the concentration of 〇h is 5 〇 0 W ,, the viscosity of the porous SiO2 plate at a high temperature does not decrease too much. The ruthenium base will constitute the Si and 0 SiO2 mesh structure, that is, the terminal portion of the glass network (). For this reason, it is considered that the porous cerium oxide plate body is easily deformed at a high temperature by containing 0H| at a high concentration. The above-mentioned (4) and OH-based impurity contamination preventing effect can be confirmed to some extent even if only the Μ or OH-based cup is used. However, by 22 201243115, the combination of the two can greatly improve the effect. Therefore, the purity of the cerium oxide powder as a raw material of the porous cerium oxide plate body of the cerium oxide container 10 is such that the purity of the Si 〇 2 is 99 9 to 99 999 wt%. It is also possible to manufacture a square cerium oxide container 10 which can meet the object of the present invention. More specifically, for example, when the purity of the cerium oxide raw material powder (the purity of si 〇 2) is 99.99 wt% or more, u, The respective concentrations of (10), & are 1 to i 00 wt. ppm, Ti, Cr, Fe, Ni, Cu, Zn,

Au的各自的濃度是0.01〜5.〇wt ppmB^,在製造多孔質二 氧化石夕板體時藉由同時適量地含有乂與〇h基而能藉由 本發明的方形二氧化石夕容器來充分地防止製程污染(i進 行各製程时驟中所產生的污染)來製造多晶⑽棒。若是 此種經充分地防止製程污染的多晶石夕晶棒,則在製造太陽 能發電裝置(太陽能電池)日寺,能大幅地提高其光電轉換 效率。 參照圖式來說明製w 上所說明的多孔質二氧化矽板 體的方法。 (第1態樣) 首先’ 5兒明本發明的笛 的製造方法。 -樣的多孔質二氧化梦板體 ⑴原料粉(二氧切粉)的調製、準備 的成1先不製:二氧化碎粉作為原料粉。為了降低製造時 的成本’不一疋必須佶 料粉(高純度水晶粉、…所使用的高純度二氧化石夕原 二氧化石夕破璃粉),如上度天然石英粉、超高純度合成 較佳是使用二氧化矽(Si〇2 ) 23 201243115 純度為99.9〜〇00 二氧化的純度較低的二氧切原料粉。 粉,但並不限=二佳是使用低成本的晶質天然石英 不限疋於必須僅使用晶質天 可以將晶質天然石英粉作 …例如,也 上),再混合非晶質… 刀(例如重量比為5〇%以 成一產“沾—氧化矽粉(熔融天然石英破螭粉、人 成-氧化石夕玻璃粉)等來作為原料粉。又 粉的粒徑,例如較# s 軋化夕原料 用粒徑為〇·01〜3咖的粒徑較大 的原料粉(較佳I 〇】 較大 …^ 職),但並不限定於必須僅使用 此種粒徑的原料#。& 例如,也可以是在粒徑為〇 〇1〜 的粒徑較大的原料粉中, 古 m 混cr冋活性且粒徑為〇丨〜 左右的微小粒徑的合成二氧 g 孔1匕7坡磲粉而成的原料粉,或 疋/¾ σ更多種類的:氧切粉來作為原料粉。 又,作為原料粉,士可以^六賊 乜T以依照—氧化矽容器的使用目The respective concentrations of Au are 0.01 to 5. 〇wt ppm B^, which can be obtained by the square dioxide dioxide container of the present invention by simultaneously containing an appropriate amount of ruthenium and osmium groups in the production of a porous smectite plate. The polycrystalline (10) rod is manufactured by sufficiently preventing process contamination (i. by performing the contamination generated in each process). In the case of such a polycrystalline stone ingot which is sufficiently prevented from being polluted by the process, the photoelectric conversion efficiency can be greatly improved in the manufacture of a solar power generation device (solar cell). A method of producing a porous ceria plate body described in w will be described with reference to the drawings. (First aspect) First, the manufacturing method of the flute of the present invention will be described. - A porous porous dioxide dream plate body (1) Preparation of raw material powder (dioxygen cut powder), preparation of 1 is not made: dioxide powder as a raw material powder. In order to reduce the cost of manufacturing, it is necessary to dilute the powder (high-purity crystal powder, high-purity silica dioxide used in the original Xiyang dioxide dioxide powder), the above natural quartz powder, ultra-high purity synthesis Preferably, cerium oxide (Si〇2) 23 201243115 is used. The purity is 99.9~〇00. Powder, but not limited = two good is the use of low-cost crystalline natural quartz is not limited to the use of crystal only natural crystal powder can be used ... for example, also), and then mixed with amorphous... (For example, the weight ratio is 5〇% to form a raw material of “dinc-cerium oxide powder (melted natural quartz broken powder, artificial-oxidized stone glass powder), etc.), and the particle size of the powder, for example, #s For the rolling raw material, the raw material powder having a larger particle diameter of 〇·01~3 coffee (preferably I 〇) is larger, but not limited to the raw material which must be used only. For example, in the raw material powder having a large particle diameter of 〇〇1~, a synthetic dioxohole having a small particle diameter of 〇丨~ and having a particle size of 〇丨~ may be used. 1匕7 磲 磲 powder raw material powder, or 疋 / 3⁄4 σ more types: oxygen cutting powder as raw material powder. Also, as a raw material powder, can be six thieves T to follow - Use

的、或者依照使熔融溫度降低的 m L 、^ 厌降低的目的,而使用非晶質熔融 天」石英玻璃叙、合成二氧化珍玻璃粉等來代替晶質二氧 化石夕粉。但是’當使用這些玻璃粉作為主原料時,較佳是 將粒徑設為如上述般的。.〇1〜3mm的較大粒徑,更佳是設 為 〇. 1 〜1 mm。 由減少雜質的觀點而言,原料粉的二氧化石夕(si〇2 ) 純度較佳是如上述般地設為99·9 wt.%以上,更佳是設為 99.99 wt.%以上。特別是,如上所述,較佳是將&仏又、κ 的各自的濃度设為100 wt.ppm以下且將Ti、Cr、Fe、Ni、 Cu、Zn、Mo、Au的各自的濃度設為5 〇wtppm以下。 又,若是本發明的方形二氧化矽容器的製造方法則 24 201243115 即便將原料粉的二氧化矽純度如上述舻执达 杈叹為 99.999 wt 〇/。 以下的較低純度的原料粉,所製造的方 ' J歹形一氧化矽容器 能充分地防止雜質污染矽熔液或多晶矽曰 y日日棒。因此,能以 低於以往的成本來製造多晶矽晶棒製 衣知用方形二氧化矽容 器0 粒徑為0.0卜3 mm的較大粒徑原料的製作上,例如可 以如以下般地將⑦石塊粉碎、整粒而製作,但並不限定於 此。 首先,將直徑為10〜100 mm左右的天然石夕石塊(天 然產出的水晶、石英、矽石、矽質岩石、蛋白石等),在大 氣氣氛下、600〜l〇〇(TC的溫度區域中加熱小時左 右。接著,將該天然石夕石塊投入至水中而急速冷卻後,取 出並使其乾燥。藉由此處理’可以較容易地進行後續的藉 由粉碎機等所進行的粉碎、整粒的處理,但也可以不進行 此加熱急冷處理而直接進行粉碎處理。 接著,將該天然矽石塊藉由粉碎機等進行粉碎、整粒, =粒徑調整為例如〇·〇3〜3 mm、較佳是〇〜!匪,而獲 得天然矽石粉。 接著,將此天然矽石粉投入至具有傾斜角度的由二氧 化石夕玻璃製管所構成的旋f中,將f的内部設為氯化氣 CI)或3有氯(Cl2)氣的氣氛,藉由在7〇〇〜11〇〇。〇加 “、、1 〇〇小時左右,來進行高純度化處理。但是,在無須 门’屯度的夕晶⑪晶棒製造用途上’也可以不進行此高純度 化處理而直接進行後續處理。 25 201243115 在以上步驟之後所 粉。從成本的觀點而言 化石夕粉來作為主要的原 獲得的原料粉,是晶質的二氧化矽 ’較佳是使用這樣的天然晶質二氧 料粉。 又為了提升多孔質二氧化石夕板體的对熱變形性,以 使原料私含有A1 ( A1元素)為佳。對原料粉添加μ的方 法並無特別限^’例如能將金屬A1或其鹽(硝酸銘、破酸 紹氣化銘等)直接混合於原料粉中,或是使其溶解混合 :水,醇類令之後’再混合於原料粉中。所添加的Μ的 θ疋如刖豸較佳是使所製造的多孔質二氧化矽板體的 Α1濃度成為3〜綱wt.ppm,更佳是使αι濃度成為ι〇〜1〇〇 wt.ppm。 (2)原料粉加熱處理用電爐 接著,說明投入原料粉而進行熱處理的電加熱爐。電 加熱爐的概略剖面圖是表示於第6圖、第7圖。第7圖是 從與第6圖垂直的方向觀看時的剖面圖。 此電加熱爐200 ’是由下述所構成:原料粉供給口 2〇3,用以投入原料粉並加以熔融、軟化的熔融容器(較佳 是姻、鶴等高熔•點金屬_,但並不限定於此)208 ;用以 將熔融容器208加熱的加熱手段(電阻加熱、高頻率感應 加熱等是可利用的方法)2〇7;隔熱材2〇9,其隔絕朝外側 釋放的熱量,該熱量是由加熱手段207所產生;用以調整 原料粉經加熱而熔融軟化後的熔融二氧化矽體的流動的整 抓m具2 1 〇,用以調整整流治具2丨〇的位置的整流治具位 26 201243115 置調整棒201;熔融二氧化矽體的成型工具(較佳是翻、 鎢等高熔點金屬製工具,但並不限定於此)212 ;炫融容器 内的氣氛氣體進氣及排氣口 202,其用以調整熔融容器2〇8 内的氣氛氣體;熔融容器外氣氛氣體進氣及排氣口 2〇4, 其用以調整電加熱爐内的熔融容器208外側的氣氛氣體; 加熱手段氣氛氣體進氣及排氣口 2〇5等❶整流治具2ι〇與 成型工具2 12之間,可以如圖所示般地形成間隙2丨丨,又, 也可以使整流治具210與成型工具212彼此密著。 電加熱爐的下部,則配置有:多孔質二氧化矽板體取 出^ 213、多孔質二氧切板體取出室内氣氛氣體進氣及 排氣口 214、多孔質二氧化矽板體拉出輥216等。 此電加熱爐的基本結構或運轉條件,已揭示於日本特 開平1-320234號公報、特開平2_29674q號公報、特開平 6-24785號公報等文獻中。但是,這些文獻所記載的習知的 電加熱爐’是設計為用以製造不含氣泡的透明棒狀或管狀 二氧化石夕玻璃的電加熱爐’其與本發明的用以製造含氣泡 的平行平板狀多孔質二氧切板體的電加熱爐結構並不相 同第個差異點,是電加熱爐的形狀及溶融容器的形狀。 :了製造平行平板狀的多孔質二氧切板體,本發明所能 使用的電加献爐,装丑彡灿 …爐Μ狀較佳是略圓柱形至略橢圓柱形, 熔融容器208亦同。第二彻兰θ 一差“點,是將二氧化矽原料粉 Π時的氣氛氣體的種類、塵力。在本發明中,為了使多 氣化石夕板體含有氣泡,而將氮氣、线、氮氣、氮 …任-種以上的惰性氣體設為一大氣壓以上的壓力。這 27 201243115 些氣體,是^^# μ l _ β 子半住大於風或氦的惰性氣體。第三個差異 熔融一氧化矽體成型的成型工具的形狀。在本發 】 為了將熔融二氧化矽體加以成型為平行平板狀,成 里/、212的開口部的形狀是略長方形(參照第6圖、第 7圖的成型工具212)。 (3 )原料粉的熔融、成型 使用如第6圖、第7圖所示的電加熱爐,來製造本發 月的多孔I —氧化石夕板體。具體而言,是如以下般地進行。 (a) 溶融容器内部的氣氛氣體調整 百先,將配置於電加熱爐内的熔融容器2〇8的内部的 氣氛取代成包含氮氣、氖氣、1氣、氪氣的任-種以上 的惰性氣體氣氛。從成本的觀點而言,較佳是將主成分設 為氣氣疋8。ν〇ι.%以上。又,為了延長在高溫下的容器的 壽命’有時亦混合氫氣1〜4 v〇 1. %來使用。 (b) 電加熱爐内(熔融容器的外側)的氣氛氣體調整 另外’電加熱爐内的熔融容器208的外側,較佳是也 取代成包含氮氣、氖氣、氬氣、氪氣等惰性氣體。從成本 的觀點而言,較佳是將主成分設為氮氣是8〇 ν〇ι%以上。 又,為了延長在高溫下的熔融容器2〇8或加熱手段2〇7的 筹命’有時亦混合氫氣1〜4vol. %來使用。 (c )原料粉對於電加熱爐内的熔融容器的供給 一邊將熔融容器208的内部保持於上述惰性氣體氣 氛’一邊將原料粉供給至熔融容器2〇8中。可以從第6圖、 28 201243115 第7圖中配置於電加熱爐上部的原料粉供給口 2〇3,供給 經如上述般調整成規定粒徑、規定純度後的原料粉2〇6。 (d )對原料粉加熱所致的熔融、軟化 接著’一邊將熔融容器208的内部的惰性氣體氣氛的 壓力保持於一大氣壓以上,一邊將熔融容器2〇8的溫度加 熱至1700t以上,藉此使原料粉206熔融、軟化。此加熱 的溫度範圍’會隨著藉由電阻加熱法或高頻率感應加熱法 等來進行加熱的加熱手段207,以及原料粉的結構、例如 是晶質二氧化矽或者是非晶質二氧化矽,而有若干不同, 較佳是設為noVC〜23〇〇。〇,更佳是設為18〇〇β(:〜21〇〇 t:。 (e )熔融軟化後的二氧化矽玻璃體的成型 接著,一邊使熔融、軟化後的二氧化矽玻璃,自熔融 容器208的下部通過成型工具212而成型為平行平板狀, 一邊連續拉出。 如上述,熔融谷器208的底部,配置有:用以將熔融 而成的二氧化矽體亦即二氧化矽玻璃加以整流的整流治具 210與成型工具212。原料粉206的供給及溶融、軟化初 期,整流治具210是以栓塞住的方式密著於成型工具212。 在原料粉206經充分加熱軟化而成為含有氣泡的二氧化石夕 玻璃體的時間·點’將整流治具210往上部拉升。此時,藉 由控制整流治mo肖成型工具212之間的間隙、211的尺 寸、或控制溶融容胃208㈣氣體壓力,而能將規定尺寸 的平行平板狀多孔質二氧化石夕板體215往多孔質二氧化石夕 29 201243115 板體拉出方向217拉出。多孔質二氧化矽板體的尺寸精確 度,可以藉由控制下述條件而提高:熔融容器的溫度氣 氛氣體壓力、整流治具21〇與成型工具212之間的間;: 的尺寸、多孔質二氧化矽板體215的拉出速度等。連續拉 出的多孔質二氧化發板體215的剖面尺寸,例如可以設為 寬 100〜1000 mm、厚 1〇〜30 mm。 藉由這樣地設定,而能使多孔質二氧化矽板體215的 容積密度在兩平行平面的比表面部分更内部的部分中較 低。亦即’使多孔質二氧化石夕板體215從炼融容器鹰的 下部通過成型工具212並拉出時’多孔質二氧切板體的 表面部分的溫度高於内部的溫度,而軟化成二氧化石夕玻璃 (黏度降低),表面部分的氣泡含量相對地減少。而且,冷 卻期間,由於氣泡向外擴散,以致多孔f :氧切板體^ 的表面附近的氣泡減少’另一方面,内部的部分則由於氣 泡幾乎未減少’所以能作成表面附近的容積密度相對較 高、内部的容積密度則相對較低。多孔f二氧切板體川 的容積密度UW),可以藉由調整原料粉的粒徑或熔融 容器208内的氣體種類、壓力等’而控制於規定的值。 ⑺多孔質二氧切板體的精加卫、及脫模促進劑的塗佈 在從電加熱爐下部連續地製造出的平行平板狀多孔質 二氧化矽板體2 1 5到遠楣金且痒从 】建規疋長度的時間點,將其切斷。接 著,視需要而進行多孔質二氧化石夕板體的端部的切斷、研 削、研磨’而獲得一種多 __ 夕孔質一氧化矽板體,其形狀、尺 寸能使用於多晶⑦晶棒製造用組裝式方形二氧切容器。 201243115 可以藉由對這樣地進行而獲得的多質二氧化石夕板體 的表面的至少一部份進行塗佈(塗覆),來使其含有脫模促 進劑。若脫模促進劑是水溶性物質,則可以藉由將脫模促 '劑的水分液以噴塗等方式塗佈於多孔質二氧化石夕板體表 面後加以乾燥等,來使多孔質二氧化石夕板體含有脫模促進 劑,若脫模促進劑是不可溶性物質,則可以藉由將脫模促 進劑的微粒子與溶劑混合,同樣地喷塗於板體表面後加以 乾燥等’來使多孔質二氧化矽板體含有脫模促進劑。 如w使用Ca、Sr、Ba等鹼土金屬元素來作為脫模 促進劑時’藉由將Ca、Sr、Ba中的至少i種以上的化合物 I a a液以喷霧方式、氣刷(ak bfush)方式等來塗佈於多孔 質二氧化錢體的至少—部份的表面上後加以乾燥,來進 行塗佈處理。塗佈濃度較佳是將Ca、Sr、Ba等臉土金屬元 素的合計值設為5G〜5()()(^g/em2,更佳是設為⑽〜胸 |J-g/cm2 ° 另外,當使此多孔質二氧化石夕板體的表面部分含有脫 ;促進劑的處理是藉由上述塗佈來進行時,較佳是在組合 多孔=二氧化矽板體而構成方形二氧化矽容器後才進行。 多孔質二氧化石夕板體所含的〇H基濃度的調整,可以 藉由下述來進行:原料粉種類的選定;改變原料粉的乾燥 ㈣或溶融步驟中的氣氛、溫度、時間條件。纟中,較佳 ^在^孔質二氧化石夕板體中含有5〜5〇〇败啊的濃度, 佳是设於3〇〜3〇〇 wt.ppm的範圍内。 將如以上般地製造而成的平行平板狀多孔質二氧化石夕 31 201243115 板體,例如如第 成為方形-敦1 製等的承受體8〇内組合而 熱,則多:質:10。藉由這樣的配置來將整體加 形二氧化心51 Μ ^接’而^單地使方 y谷15 10 —體化。 二52::單獨或辅助性地使用如曰本特表 孔質所述的含有Si°2的接合體,來將各多 孔質-氧化矽板體彼此接合。 采將各夕 、罘2態樣) 以下說明本發明的第2態樣的多孔 製造方法。因从太以跡 m氧切板體的 以省略對同2 與上述第1態樣相同,所 读略對同-步驟進行再次說明,而 說明。 子日共點為中心予以 ⑴原料粉(二氧化石夕粉)的調製、準備 二平均 原科Γ作:二為二:3.°mm的二氧切粉來作為第一 ί疋,在第一原料粉的二 〜3.0mm的粒徑範圍内含刀,.003 又,製作平均粒徑小於第―:二的:氧切粉。 為第二原料粉,該平均粒徑是以質量二:化㈣來作 中的粒徑值(D5。)來比較而得。土準累積分佈的5〇% 質量基準累積分佈的5〇%中的粒徑值 明書t亦僅稱為「乎均粒徑 5°)(在本說 疋藉由粒徑分佈測定來決Alternatively, or in accordance with the purpose of lowering the melting temperature, m L and anodine, an amorphous molten quartz glass, a synthetic bismuth glass powder, or the like is used instead of the crystalline silica powder. However, when these glass frits are used as the main raw material, it is preferred to set the particle diameter as described above. The larger particle size of 〇1 to 3 mm is more preferably set to 〇. 1 to 1 mm. The purity of the raw material powder of the raw material powder is preferably 99.9% by weight or more, more preferably 99.99 wt.% or more, from the viewpoint of reducing impurities. In particular, as described above, it is preferred to set the respective concentrations of & 仏 and κ to 100 wt. ppm or less and to set the respective concentrations of Ti, Cr, Fe, Ni, Cu, Zn, Mo, and Au. It is 5 〇 wtppm or less. Further, in the method for producing a square ceria container of the present invention, 24 201243115, even if the purity of the raw material powder of ceria is as described above, the sigh is 99.999 wt 〇 /. The following lower-purity raw material powders are produced in a square-shaped J-shaped niobium oxide container to sufficiently prevent impurities from contaminating the crucible or polycrystalline crucible. Therefore, it is possible to manufacture a large-sized raw material having a square cerium oxide container 0 having a particle size of 0.0b 3 mm at a lower cost than the conventional one. For example, the following seven stones can be used. The block is pulverized and granulated, but is not limited thereto. First, a natural stone stone block (naturally produced crystal, quartz, vermiculite, enamel rock, opal, etc.) with a diameter of about 10 to 100 mm, in an atmospheric atmosphere, 600~l〇〇 (temperature zone of TC) After the heating is carried out for a few hours, the natural stone stone is poured into water and rapidly cooled, and then taken out and dried. By this treatment, the subsequent pulverization and pulverization by a pulverizer or the like can be easily performed. The granules may be directly subjected to the pulverization treatment without performing the heating and quenching treatment. Next, the natural gangue block is pulverized and sized by a pulverizer or the like, and the particle size is adjusted to, for example, 〇·〇3 to 3 Mm, preferably 〇~!匪, to obtain natural vermiculite powder. Next, the natural vermiculite powder is put into a spiral f composed of a corrugated glass tube having an inclined angle, and the inside of f is set to The atmosphere of chlorinated gas CI) or 3 with chlorine (Cl2) gas is used at 7〇〇~11〇〇. Adding ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 25 201243115 After the above steps, the powder is used. From the viewpoint of cost, fossil powder is the main raw material powder obtained, which is crystalline cerium dioxide. It is preferred to use such natural crystalline dioxide powder. In order to improve the thermal deformability of the porous silica stone, it is preferable to make the raw material contain A1 (A1 element). The method of adding μ to the raw material powder is not particularly limited, for example, metal A1 or The salt (nitrate, sulphuric acid, etc.) is directly mixed in the raw material powder, or it is dissolved and mixed: water, and the alcohol is then 'remixed in the raw material powder. Preferably, the Α1 concentration of the porous ceria plate to be produced is 3 to wt. ppm, and more preferably the concentration of α1 is ι〇1 to 1 wt. ppm. (2) Heating of the raw material powder The electric furnace for treatment is followed by the introduction of the raw material powder for heat treatment An electric heating furnace. A schematic cross-sectional view of the electric heating furnace is shown in Fig. 6 and Fig. 7. Fig. 7 is a cross-sectional view when viewed from a direction perpendicular to Fig. 6. This electric heating furnace 200' is composed of In the above description, the raw material powder supply port 2〇3 is used to melt the raw material powder and melt and soften it (preferably, high melting point metal such as marriage or crane, but is not limited thereto) 208; A heating means (resistance heating, high-frequency induction heating, etc., which is available) for heating the melting vessel 208 is used; the heat insulating material 2〇9 is insulated from the heat released to the outside, which is heated by the heating means 207 Produced; a regulating device for adjusting the flow of the molten cerium oxide body after the raw material powder is heated and melted and softened, and a rectifying fixture position for adjusting the position of the rectifying fixture 2 2012 26 201243115 The adjusting rod 201; a molding tool for melting the cerium oxide body (preferably, a high melting point metal tool such as tumbling or tungsten), but is not limited thereto; 212; an atmosphere gas inlet and exhaust port 202 in the smelting container, It is used to adjust the atmosphere gas in the melting vessel 2〇8; melting The external atmosphere gas inlet and exhaust ports 2〇4 are used to adjust the atmosphere gas outside the melting vessel 208 in the electric heating furnace; the heating means atmosphere gas inlet and exhaust ports 2〇5 and so on the rectifying fixture 2ι Between the crucible and the molding tool 2 12, a gap 2 形成 may be formed as shown in the figure, or the rectifying jig 210 and the molding tool 212 may be adhered to each other. The lower portion of the electric heating furnace is provided with a porous The erbium dioxide plate body is removed 213, the porous dioxane plate body is taken out, the indoor atmosphere gas inlet and exhaust port 214, the porous erbium dioxide plate pull-out roller 216, etc. The basic structure of the electric heating furnace or The operating conditions are disclosed in documents such as Japanese Laid-Open Patent Publication No. Hei 1-320234, Japanese Patent Publication No. Hei. No. Hei. However, the conventional electric heating furnace described in these documents is an electric heating furnace designed to produce a transparent rod-shaped or tubular smectite glass without bubbles, which is used for the production of bubbles containing the present invention. The electric heating furnace structure of the parallel flat porous oxygen-cutting plate body is not the same as the first difference, and is the shape of the electric heating furnace and the shape of the molten container. : The production of a parallel plate-shaped porous dioxy-cut plate body, the electric heating furnace which can be used in the invention, is ugly... the furnace shape is preferably a slightly cylindrical shape to a slightly elliptical cylindrical shape, and the molten container 208 is also with. In the present invention, in order to make the multi-gas fossil slab body contain bubbles, nitrogen gas, a line, Nitrogen, nitrogen, etc. Any one or more kinds of inert gases are set to a pressure of one atmosphere or more. These 27 201243115 some gases are ^^# μ l _ β sub-half inert gases larger than wind or helium. The third difference melts one In the present invention, in order to shape the molten cerium oxide body into a parallel flat plate shape, the shape of the opening portion of the inner ridge / 212 is slightly rectangular (see Fig. 6 and Fig. 7). Molding tool 212) (3) Melting and molding of the raw material powder The electric heating furnace shown in Fig. 6 and Fig. 7 is used to manufacture the porous I-oxidized stone plate of the present month. Specifically, It is carried out as follows: (a) The atmosphere in the inside of the melting vessel is adjusted first, and the atmosphere inside the melting vessel 2〇8 disposed in the electric heating furnace is replaced with nitrogen, helium, gas, and helium. Any kind of inert gas atmosphere above. From the perspective of cost In addition, it is preferable to use the main component as the gas gas 疋8. ν〇ι.% or more. In order to extend the life of the container at a high temperature, it is sometimes mixed with hydrogen 1 to 4 v 〇 1. %. (b) The atmosphere in the electric heating furnace (outside of the melting vessel) is adjusted to the outside of the melting vessel 208 in the other electric heating furnace, preferably also substituted with nitrogen, helium, argon, helium, etc. From the viewpoint of cost, it is preferable to set the main component to be nitrogen gas of 8 〇 〇% or more. Further, in order to prolong the preparation of the melting vessel 2 〇 8 or the heating means 2 〇 7 at a high temperature In some cases, hydrogen is mixed with 1 to 4 vol. %. (c) The raw material powder is supplied to the molten container in the electric heating furnace while the inside of the molten container 208 is held in the inert gas atmosphere', and the raw material powder is supplied to the molten container. 2〇8. The raw material powder supply port 2〇3 disposed in the upper portion of the electric heating furnace in Fig. 6 and 28 201243115, Fig. 7 can be supplied to the raw material powder 2 which has been adjusted to a predetermined particle diameter and a predetermined purity as described above. 〇 6. (d) Melting and softening due to heating of raw material powder When the pressure of the inert gas atmosphere inside the melting vessel 208 is maintained at an atmospheric pressure or higher, the temperature of the melting vessel 2〇8 is heated to 1,700 t or more, whereby the raw material powder 206 is melted and softened. There are several differences between the heating means 207 which is heated by the resistance heating method or the high frequency induction heating method, and the structure of the raw material powder, for example, crystalline cerium oxide or amorphous cerium oxide. Preferably, it is set to noVC~23〇〇. 〇, more preferably, it is set to 18〇〇β(:~21〇〇t: (e) The molding of the cerium oxide glass body after melt softening is followed by melting and softening. The subsequent cerium oxide glass is formed into a parallel flat plate shape from the lower portion of the melting vessel 208 by the molding tool 212, and is continuously pulled out. As described above, the bottom of the molten granule 208 is provided with a rectifying jig 210 for rectifying the molten cerium oxide body, that is, cerium oxide glass, and a molding tool 212. At the initial stage of supply, melting, and softening of the raw material powder 206, the rectifying jig 210 is adhered to the molding tool 212 in a plugged manner. The rectifying jig 210 is pulled up to the upper portion when the raw material powder 206 is sufficiently softened by heating to become a bubble-containing silica stone. At this time, by controlling the gap between the rectification mo-forming tool 212, the size of the 211, or controlling the gas pressure of the melted stomach 208 (4), the parallel plate-shaped porous silica stone slab 215 of a predetermined size can be moved toward Porous carbon dioxide eve 29 201243115 The plate pull-out direction 217 is pulled out. The dimensional accuracy of the porous ceria plate body can be improved by controlling the temperature of the molten vessel, the gas pressure of the atmosphere, and the space between the rectifying jig 21 and the molding tool 212; The drawing speed of the cerium oxide plate 215 or the like. The cross-sectional dimension of the porous oxidized hair-emitting body 215 which is continuously drawn can be, for example, 100 to 1000 mm in width and 1 to 30 mm in thickness. By setting in this way, the bulk density of the porous ceria plate body 215 can be made lower in the portion of the two parallel planes which is more internal than the surface portion. That is, when the porous silica dioxide slab 215 is pulled out from the lower portion of the smelting container eagle through the molding tool 212, the temperature of the surface portion of the porous dioxoid plate body is higher than the internal temperature, and softened into The silica dioxide glass (reduced viscosity), the bubble content of the surface portion is relatively reduced. Moreover, during the cooling, the bubbles are outwardly diffused, so that the bubbles near the surface of the porous f: oxygen cutting plate body are reduced. On the other hand, the inner portion is almost not reduced due to the bubble, so that the bulk density near the surface can be made relatively The higher, internal bulk density is relatively low. The bulk density UW of the porous f-diode plate can be controlled to a predetermined value by adjusting the particle size of the raw material powder, the type of gas in the molten vessel 208, the pressure, and the like. (7) The fine-cutting of the porous dioxy-cut plate body and the application of the release-promoting agent to the parallel flat porous ceria plate body 2 1 5 continuously manufactured from the lower portion of the electric heating furnace Itching is cut off from the time point when the length of the rule is established. Then, if necessary, the end portion of the porous silica stone plate is cut, ground, and polished to obtain a multi---------------------------------- Assembled square dioxygenated containers for the manufacture of ingots. 201243115 A mold release promoter can be contained by coating (coating) at least a part of the surface of the multi-mass dioxide substrate obtained in this manner. When the mold release accelerator is a water-soluble substance, the moisture of the mold release agent can be applied to the surface of the porous silica stone by spraying or the like, followed by drying, etc., to cause the porous dioxide to be oxidized. The stone slab body contains a mold release accelerator, and if the mold release accelerator is an insoluble matter, the fine particles of the release accelerator may be mixed with a solvent, sprayed on the surface of the plate, and dried. The porous ceria plate body contains a release accelerator. When w is an alkaline earth metal element such as Ca, Sr or Ba as a release promoter, 'a bfush is sprayed by a compound I aa of at least one of Ca, Sr, and Ba. A method or the like is applied to at least a part of the surface of the porous dioxide body, followed by drying to carry out a coating treatment. The coating concentration is preferably such that the total value of the surface metal elements such as Ca, Sr, and Ba is 5G to 5 () () (^g/em2, more preferably (10) to chest|Jg/cm2 °. When the surface portion of the porous silica dioxide plate is contained, the treatment of the accelerator is carried out by the above coating, preferably by combining a porous = cerium oxide plate to form a square cerium oxide container. The adjustment of the 〇H group concentration contained in the porous SiO2 plate can be carried out by selecting the type of the raw material powder, changing the drying of the raw material powder (4), or the atmosphere and temperature in the melting step. Time conditions. In the middle, it is better to have a concentration of 5~5 〇〇 in the porphyrin dioxide slab, preferably in the range of 3〇~3〇〇wt.ppm. The parallel plate-shaped porous silica dioxide manufactured in the above-mentioned Japanese Patent Publication No. 31 201243115, for example, is a combination of a heat-receiving body 8 such as a square-tan 1 system, and the like: With such a configuration, the overall shaped oxidized core 51 is connected to the singularity of the square y valley 15 10 . 2 52:: alone or The porous-cerium oxide plate body is bonded to each other by using a joint containing Si° 2 as described in the present invention. The present invention will be described below. The second aspect of the porous manufacturing method. Since the o-cutting plate body is omitted, the same as the above-described first aspect will be omitted, and the same steps will be described again. The sub-day is centered on the center (1) preparation of the raw material powder (cerium dioxide powder), preparation of the second average original production: two for two: 3. °mm dioxy-cut powder as the first 疋, in the first A raw material powder contains a knife in a particle size range of two to 3.0 mm, and .003, and an oxygen cut powder having an average particle diameter smaller than that of the first:: two. In the case of the second raw material powder, the average particle diameter is obtained by comparing the particle diameter value (D5.) in the mass two (four). 〇 土 土 土 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 质量 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明

S 32 201243115 JIS R 1639-1 (精密陶 •顆粒粒徑分佈)的篩 疋。粒杈分佈測定’例如是藉由遵循 瓷一顆粒特性的測定方法—第丨部 分法或雷射繞射/散射法來進行。 、,例如,第-原料粉可以將粒徑範圍設為〇」〜3 〇随、 :均粒徑設為〇·2 μη〇,第二原料粉可以將粒徑 圍設為〇.01〜〇.3随、平均粒徑設為〇.〇4随(40_)。 又,[原料粉及第二原料粉的二氧切純度及雜質 濃度,較佳是都設於與上述第丨態樣相同的範圍内。 第一原料粉及第二原料粉的製作方法,可以與第丨態 樣相同,例如可以藉由將矽石塊粉碎、整粒而製作,但= 不限定於此。 又,為了提升多孔質二氧化矽板體的耐熱變形性,較 佳是使第一原料粉及第二原料粉含有A1 ( A1元素),此點 亦與第1態樣相同。 此第2態樣中,為了使製造後的多孔質二氡化矽板體 含有脫模促進劑’也可以藉由在第二原料粉中添加(摻雜) 脫模促進劑來使板體含有脫模促進劑。脫模促進劑的濃 度’例如當使用Ca、Sr、Ba等驗土金屬元素來作為脫模促 進劑時’在多孔質二氧化矽板體的自内表面起深入2 mm 為止之處,各元素的合計值較佳是設為5〇〜5 000 wt.ppm, 更佳是設為100〜1000 wt.ppm。 (2 )原料粉加熱處理用電爐 接者,說明投入第一原料粉及第一原料粉而進行熱處 33 201243115 理的電加熱爐。電加熱爐的概略剖面圖是表示於第8圖、 第9圖。第9圖是從與第8圖垂直的方向觀看時的到面圖。 此電加熱爐300,必須具備在將原料粉供給至熔融容器中 時將第一原料粉與第二原料粉的各自的供給位置設於規定 位置的必要結構。 此電加熱爐,包含下述構件:第一原料粉供給口 303a; 第二原料粉供給口職;用以投入兩原料粉並加以熔融、 軟化的炼融容器(較佳是顧、鶴等高炫點金屬掛鋼,但並 不限定於此)308;用以將熔融容器3〇8加熱的力口熱手段(電 阻加熱、高頻率感應加熱等是可利用的方法)抓,·隔熱材 3〇9,其隔絕朝外側釋放的熱量,該熱量是由加熱手段術 所產生H氧切㈣成型玉具(較佳是铜、鶴等高 炫點金屬製工具’但並不限定於此)312;炼融容器内的氣 進氣及排氣口 302,其用以調整炼融容H 308内的 乳乱氣體;熔融容器外氣氛氣體進氣及排氣口 3〇5,其用 以調整電加熱爐内的熔融容器 8圖、第9圖所-哲 卜側的氧乱乳體。如第 圍第 不’第-原料粉供給口 3〇3b,是構成為包 圍第原料粉供給口 303a的形態。 第8圖、第9圖中,是袅干 所示的整产、、…Μ 備如第6圖、第7圖 的整机冶具時的情形。在本發明中,可以 整原料粉經加熱而熔融軟化而成 ’、 的整流治具,也可以如第8圖…一氧切體的流動 與第i能# _第9圖般不具備整流治具。 與第1態樣同樣地’將成型 略長方# ^ ^ , 2的開口部的形狀設為 長…又’成型工具312的下方具備一嫁融容器底部 34 201243115 的開關板322,其能往箭號323的方向移動。 電加熱爐300的下部,則配置有:多孔質二氧化矽板 體取出至313、多孔質二氧化梦板體取出室内氣氛氣體進 氣及排氣口 314、多孔質二氧化矽板體拉出輥3〗6等。 (3)原料粉的熔融、成型 使用如第8圖、第9圖所示的電加熱爐,來製造本發 月的夕孔質一氧化石夕板體。具體而言,是如以下般地進行。 (a)炫融容器内部的氣氛氣體調整 首先’將配置於電加熱爐内的熔融容器3〇8的内部的 氣氛,取代成包含氮氣、氖氣、氬氣、氪氣的任一種以上 的惰性氣體氣氛。從成本的觀點而言,較佳是將主成分設 為氮氣是80 v〇l. %以上。又,為了延長在高溫下的容器的 可命’有時亦混合氫氣1〜4 vol.%來使用。 (b )電加熱爐内(熔融容器的外側)的氣氛氣體調整 另外’電加熱爐内的熔融容器308的外側,較佳是也 取代成包含氮氣、氖氣、氬氣、氪氣等惰性氣體。從成本 的觀點而言’較佳是將主成分設為氮氣是80 vol.%以上。 又’為了延長在高溫下的熔融容器308或加熱手段3〇7的 可命’有時亦混合氫氣1〜4 vol.%來使用。 (c )對電加熱爐内的熔融容器,供給第一原料粉及第二原 料粉 —邊將熔融容器308的内部保持於上述惰性氣體氣 氛’—邊將原料粉供給至熔融容器308中。 35 201243115 此時,將第-原料粉306a的供給位置設於溶融容器 3〇8内的中央側而進行供給,並且將第二原料粉鳩供哈 至比熔融容器308内的第一原料粉306a的供給位置更外側 的位置。這樣的原料粉的供給,可以藉由下述來進行:從 配置於第8圖 '第9圖所示的電加熱爐3〇〇的上部的第一 原料粉供給口 3〇3a及第二原料粉供給口 3〇几,分別供給 如上述般經調整於規定的粒徑範圍及 純度的第-原料粉购及第二原料粉规b。 (d )對原料粉加熱所致的熔融、軟化 接著,邊將熔融容器3〇8内部的惰性氣體氣氛的壓 力保持於-大氣壓以上,一邊將熔融Μ 3〇"溫度加熱 至1 70(TC以上,藉此使第一原料粉3〇6a及第二原料粉 熔融、軟化。藉此,原料粉成為熔融二氧化矽玻璃體Μ丨&、 321b。熔融容器308内的中心側的二氧化矽玻璃體32U, 疋乂來自粒徑較粗的第一原料粉3〇6a的二氧化石夕成分居 夕,熔融容器308内的周圍側的二氧化矽玻璃體321b,則 、來自粒徑較細的第二原料粉3 〇 6 b的二氧化石夕成分居多。 又如上述,於第二原料粉中含有脫模促進劑時,第 一原料畚306b在此步驟中熔融、軟化時,熔融容器3〇8内 的周圍侧的二氧化矽玻璃體321b中會含有較多脫模促進 劑。 (e )溶融軟化後的二氧化矽玻璃體的成型 接著’一邊使熔融、軟化後的二氧化矽玻璃,自熔融 谷器308的下部通過成型工具312而成型為平行平板狀, 36 201243115 一邊連續朝下方(箭號317的方向)拉出。 如上述,熔融容器308的底部,配置有:熔融而成的 二氡化矽體亦即二氧化矽玻璃的成型工具312及開關板 在初期,開關板322是以栓塞住的方式密著於成型工 具312。在原料粉經充分加熱軟化而成為多孔質二氧化石夕 玻璃體的時間點,使開關板322往橫向移動。此時,藉由 控制開關板322往橫向的移動量、成型工具312的間^ 寸、或控制溶融容器308内的氣體壓力,而能將規定尺寸 的平行平板狀多孔質二氧切板體⑴取出。多孔質二氧 t石夕板體315的尺寸精確度,可以藉由控制下述條件而提 同.熔融容器308的溫度、氣氛氣體壓力、開關板322的 =:、成型工具312的間隙尺寸 '多孔質二氧切板 5的拉出速度等。又,多孔質二氧化石夕板體315的容 積被度UW),可以藉由調整第一原料粉及第二原料粉 :平均粒徑、粒徑範圍及粒徑分佈設定,或是調整溶融容 308内的氣體種類、氣體壓力等,而控制於規定的值。 藉由上述方式,能使多孔質二氧化石夕板體315的容積 费度在兩平行平面的表 表面刀更内部的部分中較低。特 疋在这個態樣中’因為使用具有兩種平均粒徑的 叔,所以能容易地使多孔質二氧化石夕板體315的兩 部分與㈣的部分的密度差較大1別是, 合易地貫現使表面部分盥 為以上广…之間的容積密度的差成 又,多孔質二氧化石夕板體的容積密度,較佳是如上述 37 201243115 般地作成1.60〜2.1〇g/cm3,但依 月办而疋,也可作成1.40 〜2.20 g/cm。若是藉由柹闲 ^ 2 m ^ 八 種平均粒徑的原料粉的 第態樣,^較容易地實現這樣的多孔質二氧切板體。 田么又s t亡述般’在第二原枓粉中含有脫模促進劑時, ,”、熔融谷S 308内的周圍側的二氧切玻璃體3川中含 :進劑’所以能使拉出的多孔質二氧化碎板體 的外側亦即表面侧中含有脫模促進劑。 (f)多孔質二氧化矽板體的精 及脫模促進劑的塗佈 :、第h樣同樣地’在從電加熱爐下部連續地製造出 的平仃平板狀多孔質二氧化妙板 間點,將其切斷。接著,視需規定長度的時 按者視需要而進行多孔質二氧 體的端部的切斷、研削、研磨, 坊故挪… ⑽而獲仵-種多孔質二氧化 方形二氧切容器。 多日日夕日日棒製造用组裝式 =這樣地進行而獲得的多孔f二氧切板體,可以 、第1態樣同樣地,藉由於其表 Γ涂薄> , 丹表面的至少—部份進行塗佈 (塗覆),來使其含有脫模促進劑 右,7、β 逛劑而且,脫模促進劑的含 可以疋將其添加至第二原料粉 -备k 7叶杨並且將其塗佈於多孔質 -氧化矽板體表面,或者也可以僅進行其中任一手法。 說明使用本發明的多晶矽晶棒 3| ^ ^ 方形一氧化珍容 器來進订乡晶石夕晶棒的製造的方法的例子。 首先,在本發明的方形二氧 即熔融功虱化矽谷15中,投入原料亦 Ρ熔岫矽。接著,將熔融矽加 熔液。 …保恤,而作成規定溫度的 38 201243115 將石夕溶液冷卻以使其凝固而製造多晶石夕晶棒之後,從 方形二氧切容器中取出多晶石夕晶棒。在本發明中,藉由 控制方形—氡化矽谷器的容積密度’ @能將該容器的強度 =地,定於低強度而使其容易破壞,藉此能容易地取出 夕S曰夕曰曰棒❿且能防止多晶石夕晶棒的破損。並且,藉由 存,脫模促進劑,而能較有效地從方形二氧化⑦容器中取 出多晶碎晶棒’而且能防止多晶⑦晶棒的破損。 之後,將所取出的多晶石夕晶棒加以切片、研磨成規定 厚度’而作成多晶矽基板。 [實施例] 以下表示本發明的實施例及比較例以較具體地說明 本發明’但本發明並不限定於此。 (實施例1 ) 依照本發明的多孔質二氧化矽板體的製造方法(第1 態樣h如以下般地製造多孔質二氧化矽板體,並進而製造 方形二氧化矽容器。 首先’如以下般地製作原料粉。 準備天然石夕石50 kg,在大氣氣氛下以i〇〇0°C、1〇小 時的條件加熱後’投入至裝有純水的水槽中而急速冷卻。 將其乾燥後’使用粉碎機加以粉碎,而作成粒徑是1 〇〇〜 1000 μιτι、二氧化矽純度是99 99 wt.%、總重量是4〇 kg的 二氧化石夕粉(天然石英粉)。 接著’在此原料粉中以水溶液的形式添加硝酸鋁並加 39 201243115 以乾燥,而使其含有A1。 接著’使用此原料粉,藉由如第6圖、第7圖所示的 電加熱爐(向頻率感應加熱)而製造多孔質二氧化石夕板體。 亂氣氣體疋没為含有3°/。氫氣的氣氣氣乳(氣氣為97%)。 另外,多孔質一氧化石夕板體的尺寸,是設為縱250mm X橫390 mmx厚度10 mm(用於側部)、縱400 mmx橫4〇〇 mm X厚度1 〇 mm (用於底部)。 將如此地進行而製造成的平行平板狀多孔質二氧化矽 板體的周圍部進行加工,並如第5圖所示地將5片板體加 以組合而作成方形二氧化矽容器1〇。組合後的方形二氧化 矽容器的尺寸,成為40〇χ4〇〇χ高度260 mm。 (實施例2) 與實施例1幾乎同樣地進行而製造多孔質二氧化石夕板 體’並進而製造方形二氧化石夕纟器n,將冑件變更為 以下條件。 將原料粉的粒徑加粗,而作成綱〜测μηι。因此 氣泡容易進人多孔質二氧切板體中,容積密度降低。 又,將原料粉中含有的Α1濃度設為10倍。 (實施例3) 與貫施例2幾乎同樣地進行而製造多孔質二氧化石夕板 體,並進Μ造㈣二氧切容器。但是,將 以下條件。 - 3000 μιη 0 容積密度降 將原料粉的粒徑進一步加粗,而作成 因此’氣泡容易進入多孔質二氧化矽板體 201243115 低。 (實施例4) 與實施例2幾乎同樣地進行而製造多孔質二氧化矽板 體’並進而製造方形二氧化矽容器。但是,將條件變更為 以下條件。 將原料粉的二氧化矽純度設為高純度,而成為99 999 wt.% 〇 又’原料粉中不添加A卜 (實施例5) 與實施例2幾乎同樣地進行而製造多孔質二氧化石夕板 體’並進而製造方形二氧化矽容器。但是,將條件變更為 以下條件。 將原料粉的二氧化矽純度設為低純度,而成為99.9S 32 201243115 JIS R 1639-1 (Precision pottery • particle size distribution) sieve. The measurement of the particle size distribution is carried out, for example, by following the measurement method of the characteristics of the porcelain-particles - the third portion method or the laser diffraction/scattering method. For example, the first raw material powder may have a particle size range of 〇"~3 〇, : the average particle size is 〇·2 μη〇, and the second raw material powder may have a particle size circumference of 〇.01~〇 .3 with, the average particle size is set to 〇.〇4 with (40_). Further, it is preferable that the distillate purity and the impurity concentration of the raw material powder and the second raw material powder are both in the same range as the above-described first aspect. The first raw material powder and the second raw material powder can be produced in the same manner as in the first embodiment, and can be produced, for example, by pulverizing and granulating the vermiculite. However, the present invention is not limited thereto. Further, in order to improve the heat deformation resistance of the porous ceria plate body, it is preferable that the first raw material powder and the second raw material powder contain A1 (A1 element), which is also the same as the first aspect. In the second aspect, the plate body may be contained by adding (doping) a release promoter to the second raw material powder in order to contain the release accelerator in the porous tantalum ruthenium plate after production. Demoulding accelerator. The concentration of the release promoter is, for example, when a soil metal element such as Ca, Sr or Ba is used as a release promoter, 'the element is deeper than 2 mm from the inner surface of the porous ceria plate body, each element The total value is preferably set to 5 〇 to 5 000 wt. ppm, more preferably set to 100 to 1000 wt. ppm. (2) The electric furnace for heat treatment of the raw material powder is described as an electric heating furnace in which the first raw material powder and the first raw material powder are charged and heat-treated 33 201243115. A schematic cross-sectional view of the electric heating furnace is shown in Figs. 8 and 9. Fig. 9 is a plan view as seen from a direction perpendicular to Fig. 8. In the electric heating furnace 300, it is necessary to have a configuration in which the respective supply positions of the first raw material powder and the second raw material powder are set to predetermined positions when the raw material powder is supplied to the melting vessel. The electric heating furnace comprises the following components: a first raw material powder supply port 303a; a second raw material powder supply port; a smelting container for inputting two raw material powders to be melted and softened (preferably, a crane, a crane, etc.) Hyun point metal hanging steel, but not limited to this) 308; force hot-spot means for heating the molten container 3〇8 (resistance heating, high-frequency induction heating, etc. are available), heat insulation material 3〇9, which is isolated from the heat released to the outside, which is produced by heating means H-cut (four) forming jade (preferably copper, crane and other high-point metal tools 'but not limited to this) 312; an air intake and exhaust port 302 in the refining vessel for adjusting the disordered gas in the smelting capacity H 308; and an atmosphere gas inlet and exhaust port 3〇5 outside the melting vessel for adjusting The molten container 8 in the electric heating furnace is shown in Fig. 9 and the oxygen chaotic emulsion on the side of the Zheb side. The first raw material powder supply port 3〇3b is configured to surround the first raw material powder supply port 303a. In Fig. 8 and Fig. 9, the whole process of the whole machine, as shown in Fig. 6 and Fig. 7, is shown in Fig. 8 and Fig. 7. In the present invention, the entire raw material powder may be melted and softened by heating to form a rectifying jig, or as shown in Fig. 8 ... the flow of the oxygen-cutting body and the i-th energy # _ ninth figure do not have the rectification With. Similarly to the first aspect, the shape of the opening portion of the slightly elongated square #^^, 2 is set to be long. Further, under the molding tool 312, a switch plate 322 of the bottom 34 of the container container 201243115 is provided. The direction of the arrow 323 moves. In the lower portion of the electric heating furnace 300, the porous ceria plate body is taken out to 313, the porous oxidized dream plate body is taken out, the indoor atmosphere gas intake and exhaust port 314, and the porous ceria plate body is pulled out. Roll 3 〗 6 and so on. (3) Melting and molding of the raw material powder The electric heating furnace shown in Figs. 8 and 9 was used to manufacture the oxidized stone of the present day. Specifically, it is performed as follows. (a) Atmosphere gas adjustment inside the smelting container First, the atmosphere inside the melting vessel 3〇8 disposed in the electric heating furnace is replaced with any one or more inert gases including nitrogen gas, helium gas, argon gas, and helium gas. Gas atmosphere. From the viewpoint of cost, it is preferred to set the main component to be nitrogen gas of 80 v〇l.% or more. Further, in order to extend the life of the container at a high temperature, it may be used by mixing hydrogen gas by 1 to 4 vol.%. (b) The atmosphere in the electric heating furnace (outside of the melting vessel) is adjusted to the outside of the melting vessel 308 in the electric heating furnace, and is preferably replaced by an inert gas containing nitrogen, helium, argon or helium. . From the viewpoint of cost, it is preferred that the main component is nitrogen gas of 80 vol.% or more. Further, in order to extend the life of the melting vessel 308 or the heating means 3〇7 at a high temperature, it may be mixed with hydrogen gas by 1 to 4 vol.%. (c) The first raw material powder and the second raw material powder are supplied to the melting vessel in the electric heating furnace, and the raw material powder is supplied to the melting vessel 308 while the inside of the melting vessel 308 is held in the inert gas atmosphere. 35 201243115 At this time, the supply position of the first raw material powder 306a is supplied to the center side in the melting vessel 3〇8, and the second raw material powder is supplied to the first raw material powder 306a in the molten container 308. The supply position is more laterally located. The supply of the raw material powder can be carried out by the first raw material powder supply port 3〇3a and the second raw material disposed on the upper portion of the electric heating furnace 3〇〇 shown in FIG. The powder supply port 3 is supplied with the first raw material powder and the second raw material powder gauge b adjusted to a predetermined particle size range and purity as described above. (d) Melting and softening by heating of the raw material powder, and then maintaining the pressure of the inert gas atmosphere inside the melting vessel 3〇8 at -atmospheric pressure, and heating the melting enthalpy to a temperature of 1 70 (TC) As a result, the first raw material powder 3〇6a and the second raw material powder are melted and softened, whereby the raw material powder becomes molten cerium oxide glass body amp & 321b. The center side cerium oxide in the melting vessel 308 The glass body 32U, the cerium oxide from the first raw material powder 3〇6a having a relatively large particle diameter, and the cerium oxide glass body 321b on the peripheral side in the molten container 308 are from the finer particle size Further, when the second raw material powder contains a release promoter, the first raw material 畚 306b is melted and softened in this step, and the molten container 3 is melted. The cerium oxide glass body 321b on the peripheral side of the inside of 8 contains a large amount of mold release accelerator. (e) The formation of the cerium oxide glass body after melt softening is followed by the self-melting of the molten and softened cerium oxide glass. The lower part of the barn 308 passes The tool 312 is formed into a parallel flat plate shape, and 36 201243115 is continuously pulled downward (in the direction of arrow 317). As described above, the bottom of the melting vessel 308 is provided with a melted diterpenoid body, that is, two. In the initial stage of the molding tool 312 and the switch plate of the yttria glass, the switch plate 322 is adhered to the molding tool 312 in a plugged manner. When the raw material powder is sufficiently heated and softened to become a porous silica stone at the time of the glass body, The switch plate 322 is moved laterally. At this time, the parallel plate-shaped porous of a predetermined size can be controlled by controlling the amount of movement of the switch plate 322 in the lateral direction, the interval of the molding tool 312, or controlling the gas pressure in the molten container 308. The size of the porous dioxygen slab (1) is taken out. The dimensional accuracy of the porous dioxin slab 315 can be improved by controlling the following conditions: the temperature of the melting vessel 308, the atmospheric gas pressure, and the switch plate 322 = : the gap size of the molding tool 312, the drawing speed of the porous dioxane plate 5, etc. Further, the volume of the porous silica dioxide slab 315 is UW), and the first raw material powder and the first raw material powder can be adjusted. two The average particle diameter, particle size distribution and particle diameter range is set, or adjust the melting capacity of the gas species within 308, the gas pressure, controlled to a predetermined: material powder. By the above manner, the volumetric cost of the porous silica stone slab 315 can be made lower in the inner portion of the surface of the two parallel planes. In this aspect, 'because the unterriage having two average particle diameters is used, the difference in density between the two portions of the porous SiO2 slab 315 and the portion (4) can be easily made larger, The difference in bulk density between the surface portions and the surface of the porous silica dioxide is preferably 1.60 to 2.1 〇g as described in the above-mentioned 37 201243115. /cm3, but it can be done from 1.40 to 2.20 g/cm. Such a porous dioxane plate body can be easily realized by the first aspect of the raw material powder having an average particle diameter of 2 m ^ 2 ^ ^. In the case where the second mold powder contains a mold release accelerator, "the dioxic glass body 3 in the vicinity of the molten valley S 308 contains: the agent" so that it can be pulled out. The outer side of the porous oxidized shredder body, that is, the surface side contains a mold release accelerator. (f) The coating of the porous cerium oxide plate and the release promoter: the same as the h-th sample The flat plate-shaped porous oxidized slab between the lower portion of the electric heating furnace is cut and cut. Then, if necessary, the end of the porous dioxide is carried out as needed. (10) Obtained a porous-type oxidized square dioxo-contained container for multi-day and day-to-day rod manufacturing assembly type = porous f-diox obtained in this way The cutting plate body can be coated (coated) with at least a part of the surface of the Dan by the coating of the surface of the first surface, as in the first aspect, so as to contain the release promoter right, 7, And the release agent may be added to the second raw material powder - prepared k 7 leaf poplar and coated It is disposed on the surface of the porous-cerium oxide plate, or it may be carried out only by any one of the methods. It is explained that the polycrystalline twin rod 3| ^ ^ square-oxidized container of the present invention is used for the manufacture of the home crystal ingot. An example of the method. First, in the square dioxane of the present invention, that is, the molten masticated glutinous rice, the raw material is also melted. Then, the molten enthalpy is added to the molten metal. ..., and the specified temperature is 38 201243115 After cooling the Shixia solution to solidify it to produce a polycrystalline quartz crystal rod, the polycrystalline quartz crystal rod is taken out from the square dioxo container. In the present invention, by controlling the volume of the square-deuterated tantalum The density '@ can set the strength of the container = the ground to a low strength to make it easy to break, thereby being able to easily take out the 曰 曰 曰曰 ❿ ❿ and prevent the damage of the polycrystalline slab. By depositing and releasing the mold release agent, the polycrystalline crushed rod can be taken out from the square dioxide 7 container more effectively and the damage of the polycrystalline 7 crystal rod can be prevented. Thereafter, the removed polycrystalline crystal is crystallized. The rod is sliced and ground to a specified thickness Further, a polycrystalline germanium substrate is prepared. [Examples] Hereinafter, the present invention will be described more specifically by way of examples and comparative examples of the present invention. However, the present invention is not limited thereto. (Example 1) Porous cerium oxide according to the present invention In the first aspect, a porous ceria plate is produced as follows, and a square ceria container is further produced. First, a raw material powder is prepared as follows. A natural stone stone 50 kg is prepared. After heating in an air atmosphere at i〇〇0 ° C for 1 hour, it is put into a water tank filled with pure water and rapidly cooled. After drying, it is pulverized using a pulverizer, and the particle size is 1 〇〇~1000 μιτι, the purity of cerium oxide is 99 99 wt.%, and the total weight is 4 〇kg of cerium oxide powder (natural quartz powder). Next, aluminum nitrate was added as an aqueous solution in this raw material powder and added to 39 201243115 to be dried to contain A1. Then, using this raw material powder, a porous silica stone slab was produced by an electric heating furnace (induction heating by frequency) as shown in Figs. 6 and 7. The gas is not contained at 3°/. Hydrogen gas gas emulsion (97% gas). In addition, the size of the porous nitric oxide slab is set to 250 mm in length X 390 mm in width x 10 mm in thickness (for side), 400 mm in length, 4 mm in width, X thickness in thickness, 1 mm (for bottom) . The peripheral portion of the parallel flat porous ceria plate body produced in this manner was processed, and as shown in Fig. 5, five plates were combined to form a square ceria container. The size of the combined square ruthenium dioxide container is 40 〇χ 4 〇〇χ height 260 mm. (Example 2) A porous silica stone slab was produced in the same manner as in Example 1, and a square sulphur dioxide apparatus n was further produced, and the mash was changed to the following conditions. The particle size of the raw material powder is made thicker, and it is made into a class to measure μηι. Therefore, the bubbles are easily introduced into the porous dioxane plate body, and the bulk density is lowered. Further, the concentration of cerium 1 contained in the raw material powder was set to 10 times. (Example 3) A porous silica stone plate was produced in the same manner as in Example 2, and a (4) dioxo container was fabricated. However, the following conditions will apply. - 3000 μιη 0 Bulk Density Drop The particle size of the raw material powder is further thickened, so that the bubble easily enters the porous ceria plate body 201243115 low. (Example 4) A porous ceria plate body was produced in the same manner as in Example 2, and a square ceria container was further produced. However, the conditions are changed to the following conditions. The purity of the raw material powder was set to be high purity, and it was 99 999 wt.%. Further, A was not added to the raw material powder (Example 5). The porous silica was produced in almost the same manner as in Example 2. The slab body 'and further manufactures a square cerium oxide container. However, the conditions are changed to the following conditions. The purity of the raw material powder of cerium oxide is set to a low purity, and becomes 99.9.

Wt·%。 又,將原料粉中含有的A1濃度設為5倍(相較於實施 例1而為50倍)。 (實施例6) 與實施例2幾乎同樣地進行而製造多孔質二氧化矽板 體’並進而製造方形:氧化♦容器。但是,將原料粉的溶 融氣體氣氛設為八!《是1〇〇%的氣氛。 (實施例7) 氧化矽板體的製造方法(第2 質一氧化石夕板體’並進而製造 依照本發明的多孔質二氧 態樣)’如以下般地製造多孔質 方形二氧化矽容器。 201243115 首先,製作第一原料粉。準備天然 / a M) kg,在大氣 氣氛下以100(TC、10小時的條件加熱後 、’又 仅入至裝有純水 的水槽中而急速冷卻。將其乾燥後,使用 ' π物碎機加以粉碎, 而作成粒徑範圍是⑽〜咖㈣、二氧切純度是99 99 败%、總重量是4〇4的二氧化石夕粉(天然石英粉)。平均 粒徑(質量基準累積分佈的50%中的粒徑值,仏〇)是 μιη。 第二原料粉亦藉由與第一原料粉同樣的步驟而製作, 但將其作成粒徑範圍是1〇〜5()()μπι、平均粒徑是刚㈣。 接著’在此第-原料粉及第二原料粉中以水溶液的形 式添加硝酸鋁並加以乾燥,而使其含有Α卜 接著,使用此第一原料粉及第二原料粉,藉由如第8 圖、第9圖所示的電加熱爐(高頻率感應加熱)而製造多 ^質二氧切板體。氣氛氣體是設為含有3%氫氣的氮氣氣 氛(氮氣為97% > 另外,多孔質二氧切板體的尺寸,是設為縱2〇〇随 X橫 400 mmx厚度 1〇 _。 將如此地進行而製造成的平行平板狀多孔質二氧化石夕 體的周圍。P進行加工,並如第3圖所示般將片板體加 以組合而作成方形二氧切容器1Ge組合後的方形二氧化 石夕谷器的尺寸’成為400X400x高度400 mm。 (實施例8) :、實細例7幾乎同樣地進行而製造多孔質二氧化矽板 體並進而製造方形二氧化石夕容器。但是’將條件變更為 42 201243115 以下條件。 將第原料粉及第二原料粉的粒徑加粗。具體而言, 將第一原料粉作成粒徑範圍是200〜2〇〇〇μπι、平均粒徑是 700 μιη,並將第二原料粉作成粒徑範圍是ι〇〜6〇〇 、平 均粒徑是150 μηι 〇 又,將第一原料粉及第二原料粉中含有的Α1濃度設為 10倍。 (實施例9) 與實施例8同樣地進行,但是,將第一原料粉及第二 原料粉進一步加粗(將第一原料粉作成粒徑範圍是3〇〇〜 3_叫、平均粒徑是91〇㈣,並將第二原料粉作成粒徑 範圍是10〜700声、平均粒徑是22〇叫),而製造多孔質 二氧化矽板體’並進而製造方形二氧化石夕容器。 (實施例10 ) 戍丁丨叫徠的步驟,而製造多孔質 运仃興貫施例 化矽板體,並進而製造方形二氧化矽灾 乳化矽谷益。但是,將條件 變更為以下條件。 將第一原料粉及第二原料粉的- 町—軋化矽純度設為 99.999 wt.%。 又’不進行使第一原料粉及第二原料 r针粉含有A1的步 驟0 (實施例11 ) 進行與實施例7幾乎同樣的步驟,而製造多孔質二氡 化石夕板體,並進而製造方形二氧切容器。但是,將條件 43 201243115 變更為以下條件。 將第一原料粉的二氧化矽純度設為低純度(99 9 wt.%)’並將粒徑加粗(粒徑範圍是200〜2〇〇〇 μηι、平均 粒徑是680 μιη )。另一方面,第二原料粉是設為與實施例7 相同。 又’因為將二氧化矽純度設為低純度’所以將第一原 料粉及第二原料粉中含有的Α1濃度設為相較於實施例7而 為3 〇倍左右。 (比較例1 ) 相較於實施例1,將比較例1變更為以下條件,而製 造二氧化矽板體,並進而製造方形二氧化矽容器。 將原料粉加以高純度化(二氧化矽純度為99 9999 =)’並將粒徑設為5〇〜则又,將炼融氣體氣氛 -為1是80%、He是2〇%。藉此,幾乎無氣泡進入多孔 質一氧化矽板體中,二氧化矽板體呈透明。 又’原料粉中不添加A1。 (比較例2) a相較於比較例i,將比較例2變更為以下條件,而製 氣化矽板體,並進而製造方形二氧化矽容器。 將原料粉的二氧化矽純度設為與實施 的 99.99 wt.%。 3、6 同樣 (貫施例12 ) 方法(第1 並進而製造 依照本發明的多孔質二氧化矽板體的 態樣)’如以下般地製造多孔f二氧化石夕板 44 201243115 方形二氧化石夕容器。 首先,如以下般地製作原料粉。 準備天然矽石50 kg,在大氣氣氛下以1〇〇〇〇c、1〇小 夺的條件加熱後,投入至裝有純水的水槽中而急速冷卻。 將其乾燥後,使用粉碎機加以粉碎,而作成粒徑是ι〇〇〜 1000 μΠ1、二氧化矽純度是99.99 wt.%、總重量是4〇 kg的 二氧化矽粉(天然石英粉)。 接著,在此原料粉中以水溶液的形式添加硝酸鋁並加 以乾燥,而使其含有A1。 接著,使用此原料粉,藉由如第6圖、第7圖所示的 電加熱爐(高頻率感應加熱)而製造多孔質二氧化矽板體。 氣氛氣體是設為含有3%氫氣的氮氣氣氛(氮氣為97%)。 另外,多孔質二氧化矽板體的尺寸,是設為縱2〇〇 mm X橫 400 mmx厚度 。 將如此地進行而製造成的平行平板狀多孔質二氧化矽 板體的周圍部進行加工,並如第3圖所示般將ι〇片板體加 以組合而作成方形二氧化矽容器1〇。組合後的方形二氧化 矽容器的尺寸,成為縱4〇〇><橫4〇〇χ高度4〇〇①坩。於此方 形一氧化矽容器的内側表面部分的整體,以喷霧方式來塗 佈氣化鋇水溶液並使其乾燥。 (實施例13 ) 與實施例12幾乎同樣地進行而製造多孔質二氧化矽 板體’並進而製造方形二氧化石夕容器。但是,將條件變更 為以下條件。 45 201243115 =料粉的粒徑加粗,而作成2。。〜2〇〇〇_。因此, 易進人多孔f二氧切板體中,容積密度降低。 又’將原料粉中含有的A1濃度設為1〇倍。 (實施例1 4 ) ’、貫施例13冑乎同樣地進行而製造多孔質 ::下:r造方形二一,,將條件變更 將原料粉的粒輕進一步加粗,而作成则〜则〇叫。 低此’氣泡容易進入多孔質二氧切板體中,容積密度降 (實施例15 ) 與實施例13 g乎同樣地進行而製造多孔質二氧化石夕 ,並進而製造方形二氧化碎容器。但是,將條件變更 馬以下條件。 將原料粉的二氧化矽純度設為高純度,而成為99 999 又’原料粉中不添加A1。 (實施例16 ) 與實施例13 g乎同樣地進行而製造多孔質二氧化矽 ,並進而製造方形二氧化矽容器。但是,將條件 芍以下條件。 乂"字原料粉的二氧化矽純度設為低純度,而成為99.9 又 ,將原料粉中含有的A1濃度設為5倍(相較於實施 46 201243115 例12而為50倍)。 (實施例1 7 ) 体吧進仃而製造多孔質 興貫孢例 板體,並進而製造方形二氡化石夕容器。但是,將原料粉的 炼融氣體氣氣設為Ar是1 〇〇%的氣氡。 (實施例1 8 ) 依照本發明的多孔質二氧切板體的製造方法(第^ 態樣),如以下般地製造多孔質二氧化石夕板體,並進,而製造 方形二氧化矽容器》 首先’製作第-原料粉。準備天然矽石5〇 kg,在大氣 氣氛下以1000 c、1 0小時的條件加熱後,投入至裝有純水 的水槽中而急速冷卻。將其乾燥後,使用粉碎機加以粉碎, 而作成粒徑範圍是100〜1〇〇〇μηι、二氧化石夕純度是9㈣ 札%、總重量是4〇kg的二氧化㈣(天然石英粉 一原料粉的平均粒徑(質量基準累積分佈的5〇%t的粒徑 值 ’ D50)是 530 μηι。 第二原料粉亦藉由與第一原料粉同樣的步驟而製作, 但將其作成粒徑範圍是IG〜5^m、平均粒徑丨_叩。 接在此第-原料粉中以水溶液的形式添 _酸鋇細^㈣形式添加㈣ 圖:圖原料粉及第二原料粉,藉由… 孔質一氧 乱说氧體是設為含有3%氫氣的氮氣氣 47 201243115 氛(氮氣為97% )。 另外’多孔質二氧化石夕板體的尺寸,是設為縱200 _ x橫 400 mmx厚度 1〇 mm。 將如此地進行而製造成的平行平板狀多孔質二氧化石夕 板體的周圍。p進行加工,並如第3圖所示般將Μ片板體加 以組合而作成方形二氧切容器1G。組合後的方形二氧化 碎容器的尺寸’成為縱橫彻X高度400 mm。於此方 形二氧化矽容器的内側表面部分不塗佈脫模促進劑。 (實施例1 9 ) 〃實施例1 8幾乎同樣地進行而製造多孔質二氧化石夕 板體’並進而製造方形二氧化梦容器。但是,將條件變更 將第原料&及第二原料粉的粒徑加粗。具體而言, 將第一原料粉作成粒徑範圍是2〇〇〜2_叫、平均粒徑是 700 μπι ’並將第二原料粉作成粒徑範圍是^〜_叫、平 均粒控是1 5 0 μηι。 又’將第一原料粉及第-盾輕土、a a 物夂第—原枓粉中含有的A1濃度設為 10倍。而且,亦將第二原料粉中 付杨中含有的Ba濃度設為10倍。 (實施例20) 與實施例19同樣地進行,但是,將第-原料粉及第二 原科粉進—步加粗(將第—原料粉作絲徑範圍是300〜 、平均粒徑是,並將第二原料粉作成㈣ 範圍…爾㈣、平均粒徑是22〇 —,而製造多孔質 -氧化矽板體’並進而製造方形二氧化矽容器。 48 201243115 (實施例21 ) 進行與實施例19幾乎同樣的步驟,而製造多孔質二氡 化矽板體,並進而製造方形二氧化矽容器。佴是,將條件 變更為以下條件。 將第一原料粉及第二原料粉的二氧化矽純度設為 99.999 wt.%。 又,使第一原料粉及第二原料粉中不含有Α1β但是, 使第一原料粉含有B a。 (實施例22) 進行與實施例19幾乎同樣的步驟,而製造多孔質二氧 化石夕板體’並進而製造方形二氧切容器。但是,將條件 變更為以下條件。 將第一原料粉的二氧化矽純度設為低純度(99 9 wt.%),並將粒徑加粗(粒徑範圍是2⑼〜2〇〇〇、平均 粒徑是680 μηι)。Wt·%. Further, the A1 concentration contained in the raw material powder was set to 5 times (50 times as compared with Example 1). (Example 6) A porous ceria plate body was produced in the same manner as in Example 2, and a square: oxidized ♦ container was further produced. However, the atmosphere of the molten gas of the raw material powder is set to eight! "It is an atmosphere of 1% by weight. (Example 7) A method for producing a cerium oxide plate body (second oxidized oxidized slab body and further producing a porous dioxic state according to the present invention) 'Manufacture of a porous square cerium oxide container as follows . 201243115 First, make the first raw material powder. Prepare natural / a M) kg, and after rapid heating in 100 ° (TC, 10 hours under air conditions, 'only enter the water tank filled with pure water and rapidly cool. After drying it, use ' π shredded The machine is pulverized, and the particle size range is (10) ~ coffee (four), the purity of the dioxygen cut is 99 99%, and the total weight is 4 〇 4 of the dioxide powder (natural quartz powder). The average particle size (quality basis accumulation The particle diameter value in 50% of the distribution, 仏〇) is μιη. The second raw material powder is also produced by the same procedure as the first raw material powder, but it is made into a particle size range of 1 〇 5 5 () () Μπι, the average particle diameter is just (four). Next, 'in this first-raw material powder and the second raw material powder, aluminum nitrate is added as an aqueous solution and dried to contain a crucible, and then the first raw material powder and the first The second raw material powder is produced by an electric heating furnace (high-frequency induction heating) as shown in Fig. 8 and Fig. 9. The atmosphere gas is a nitrogen atmosphere containing 3% hydrogen gas ( Nitrogen is 97% > In addition, the size of the porous dioxate plate is set to vertical 2〇〇 with X horizontal 40 0 mmx thickness 1〇_. The periphery of the parallel plate-shaped porous silica stone produced in this manner is processed. P is processed, and the sheet body is combined to form a square shape as shown in Fig. 3. The size of the square dioxide dioxide granules after the combination of the oxygen-cutting container 1Ge is 400×400x and the height is 400 mm. (Example 8): The actual thin example 7 is produced in almost the same manner to produce a porous cerium oxide plate and further manufactured. Square dioxide dioxide container. However, the condition is changed to 42 201243115. The particle size of the first raw material powder and the second raw material powder are increased. Specifically, the first raw material powder is made into a particle size range of 200 to 2 〇〇〇μπι, the average particle size is 700 μηη, and the second raw material powder is made into a particle size range of ι〇~6〇〇, and the average particle size is 150 μηι 〇, and the first raw material powder and the second raw material powder are The concentration of cerium 1 contained was 10 times. (Example 9) The same procedure as in Example 8 was carried out, but the first raw material powder and the second raw material powder were further thickened (the first raw material powder was made into a particle size range of 3 〇). 〇~3_call, the average particle size is 91〇(4), The second raw material powder is made into a particle size range of 10 to 700 sounds, and the average particle diameter is 22 Å, and the porous ruthenium dioxide plate is produced and the square sulphur dioxide container is further produced. (Example 10) 戍Ding Wei called the step of sputum, and created a porous shovel to develop a slab of sputum, and then produced a square cerium oxide emulsified 矽 益 益 benefits. However, the conditions were changed to the following conditions. The purity of the second raw material powder-machi-rolling mash was set to 99.999 wt.%. Further, step 0 (Example 11) in which the first raw material powder and the second raw material r-pin powder were contained A1 was carried out, and almost the same as Example 7 In the same procedure, a porous diterpene fossil plate was produced, and a square dioxo container was further produced. However, condition 43 201243115 is changed to the following conditions. The purity of the ceria of the first raw material powder was set to a low purity (99 9 wt.%) and the particle diameter was increased (the particle size range was 200 to 2 〇〇〇 μηι, and the average particle diameter was 680 μηη). On the other hand, the second raw material powder was set to be the same as in the seventh embodiment. Further, the concentration of ruthenium 1 contained in the first raw material powder and the second raw material powder was set to be about 3 times as large as that of Example 7 because the purity of cerium oxide was set to be low purity. (Comparative Example 1) Comparative Example 1 was changed to the following conditions to prepare a cerium oxide plate body, and further a square cerium oxide container was produced. The raw material powder was highly purified (the purity of cerium oxide was 99 9999 =)' and the particle size was set to 5 Torr. Then, the atmosphere of the smelting gas - 1 was 80% and He was 2 %. Thereby, almost no bubbles enter the porous ruthenium oxide plate, and the ruthenium dioxide plate is transparent. Further, A1 is not added to the raw material powder. (Comparative Example 2) In the a phase, the comparative example 2 was changed to the following conditions to produce a vaporized ruthenium plate body, and a square cerium oxide container was further produced. The purity of the raw material powder of ceria was set to be 99.99 wt.%. 3, 6 Similarly (Example 12) Method (1st and further manufacture of the porous cerium oxide plate according to the present invention) 'Manufacture of porous f-type sulphur dioxide slab 44 as follows: 201243115 Square oxidization Shi Xi container. First, a raw material powder was produced as follows. 50 kg of natural vermiculite was prepared, heated in an air atmosphere at a temperature of 1 〇〇〇〇c and 1 Torr, and then poured into a water tank containing pure water to be rapidly cooled. After drying, it was pulverized by using a pulverizer to prepare cerium oxide powder (natural quartz powder) having a particle diameter of ι 〇〇 1000 μΠ1, a purity of cerium oxide of 99.99 wt.%, and a total weight of 4 〇 kg. Next, aluminum nitrate was added as an aqueous solution to the raw material powder and dried to contain A1. Next, using this raw material powder, a porous ceria plate body was produced by an electric heating furnace (high frequency induction heating) as shown in Figs. 6 and 7. The atmosphere gas was set to a nitrogen atmosphere containing 3% hydrogen gas (97% of nitrogen). Further, the size of the porous ceria plate body is set to be 2 mm mm in length and 400 mm x in thickness. The peripheral portion of the parallel flat porous ceria plate body produced in this manner was processed, and as shown in Fig. 3, the yttrium plate body was combined to form a square ceria container. The size of the combined square ruthenium dioxide container is 4 〇〇><4 〇〇χ1 〇〇χ height. On the entire inner surface portion of the square niobium oxide container, the vaporized hydrazine aqueous solution was sprayed and dried. (Example 13) A porous ceria plate body was produced in the same manner as in Example 12, and a square dioxide dioxide container was further produced. However, the conditions are changed to the following conditions. 45 201243115 = The particle size of the powder is thickened and made into 2. . ~2〇〇〇_. Therefore, it is easy to enter the porous f-diode plate body, and the bulk density is lowered. Further, the concentration of A1 contained in the raw material powder was set to 1 times. (Example 1 4) ', Example 13 was carried out in the same manner to produce a porous material:: Next: r was made into a square shape, and the conditions were changed, and the grain of the raw material powder was further lightened, and the composition was made to be Howl. When the bubble was low, the bubble easily entered the porous dioxy-cut plate body, and the bulk density was lowered (Example 15). The porous silica dioxide was produced in the same manner as in Example 13g, and a square oxidized crushing container was further produced. However, the conditions are changed to the following conditions. The purity of the raw material powder of cerium oxide was set to be high purity, and it was 99 999. No A1 was added to the raw material powder. (Example 16) Porous cerium oxide was produced in the same manner as in Example 13 g, and a square cerium oxide container was further produced. However, the conditions are as follows. The purity of the cerium dioxide of the 原料" word raw material powder was set to be low purity, and it was 99.9, and the A1 concentration contained in the raw material powder was set to 5 times (50 times compared with the example of Example 12 201243115). (Example 1 7) The body was opened to produce a porous plate, and a square bismuth fossil container was produced. However, the gas of the smelting gas of the raw material powder is a gas having an Ar of 1 〇〇%. (Example 1 8) According to the method for producing a porous dioxygen-cut sheet according to the present invention (the first aspect), a porous silica stone slab is produced as follows, and a square cerium oxide container is produced. First of all, 'making the first - raw material powder. 5 〇 kg of natural vermiculite was prepared, heated in an air atmosphere at 1000 c for 10 hours, and then poured into a water tank containing pure water to be rapidly cooled. After it is dried, it is pulverized by a pulverizer to prepare a particle size range of 100 to 1 〇〇〇μηι, a purity of 9 (four) of the dioxide, and a total weight of 4 〇kg of (4) (natural quartz powder 1). The average particle diameter of the raw material powder (particle diameter value 'D50 of 5 % by weight of the mass-based cumulative distribution) is 530 μη. The second raw material powder is also produced by the same procedure as the first raw material powder, but it is granulated. The diameter range is IG~5^m, and the average particle size is 丨_叩. In this first-raw material powder, it is added as an aqueous solution in the form of an aqueous solution. (4) Figure: The raw material powder and the second raw material powder are borrowed. From the pore-mass oxygen, the oxygen is a nitrogen gas containing 3% hydrogen. 2012 20121515 atmosphere (nitrogen is 97%). In addition, the size of the porous dioxide dioxide plate is set to 200 _ x The width of 400 mmx is 1 mm. The circumference of the parallel plate-shaped porous silica-type slab which is manufactured in this manner is processed. p is processed, and the slabs are combined as shown in Fig. 3. Made into a square dioxygenated container 1G. The size of the combined square dioxide container is 'longitudinal' The X height was 400 mm. The release accelerator was not applied to the inner surface portion of the square ceria container. (Example 1 9) 〃 Example 1 8 was carried out almost in the same manner to produce a porous SiO2 plate. 'And further manufacture a square dioxide oxidation dream container. However, the particle size of the first raw material & and the second raw material powder is increased by changing the conditions. Specifically, the first raw material powder is made into a particle size range of 2 〇〇 2 _, the average particle size is 700 μπι ' and the second raw material powder is made into a particle size range of ^~_, and the average particle size is 1 50 μm. Also 'the first raw material powder and the first shield light soil, aa The concentration of A1 contained in the first raw material powder was set to 10 times. The concentration of Ba contained in the second raw material powder was also 10 times. (Example 20) The same procedure as in Example 19 was carried out. However, the first raw material powder and the second raw material powder are further thickened (the first raw material powder has a wire diameter range of 300~, the average particle diameter is, and the second raw material powder is made into (4) range... (4) The average particle size is 22 〇—, and the porous yttria plate is fabricated and the square cerium oxide is further produced. 48. 201243115 (Example 21) A porous tantalum ruthenium plate body was produced in substantially the same manner as in Example 19, and a square cerium oxide container was further produced. The conditions were changed to the following conditions. The purity of the ceria of the first raw material powder and the second raw material powder is set to 99.999 wt.%. Further, the first raw material powder and the second raw material powder do not contain Α1β, but the first raw material powder contains B a. Example 22) A porous cermet oxide plate was produced in the same manner as in Example 19, and a square dioxoscopic container was further produced. However, the conditions were changed to the following conditions. The purity of the ceria of the first raw material powder was set to a low purity (99 9 wt.%), and the particle diameter was increased (the particle size range was 2 (9) to 2 Å, and the average particle diameter was 680 μηι).

而為3倍左右。 (實施例23 ) 進行與實施例19幾乎同樣的步驟 多孔質二氧化矽板體’並進而製造方 而如以下般地製造And about 3 times. (Example 23) A porous ceria plate body was carried out in substantially the same manner as in Example 19, and was further produced in the following manner.

添加硝酸鋁及硝酸鋇並加以乾燥, 在第二原料粉中以水溶液的形式 以乾燥’而使其含有Α1及Ba。 49 201243115 接著,使用此第一原料粉及第二原料粉,藉由如第8 . 圖、第9圖所示的電加熱爐(高頻率感應加熱)而製造多 孔質二氧化矽板體。氣氛氣體是設為含有1%氫氣的Ar氣 • 氛(Ar 為 99% )。 另外,多孔質二氧化矽板體的尺寸,是設為縱2〇〇爪⑺ X橫 400 mmx厚度 1〇 mm。 將如此地進行而製造成的平行平板狀多孔質二氧化矽 板體的周圍部進行加工’並如第3圖所示般將1〇片板體加 以=合而作成方形二氧化矽容器1〇。組合後的方形二氧化 矽容器的尺寸,成為400χ400χ高度4〇〇 另外於方 形二氧化矽容器的内表面,不進行塗佈含Ba的水溶液。 (比較例3) ,止相較於實施例12’將比較例3變更為以下條件,而製 造二氧化矽板體,並進而製造方形二氧化矽容器。 將原料粉加以高純度化(二氧化矽純度為99 9999 wt.%),並將粒徑設為50〜則叫。又,將㈣氣體氣氛 設為Η2是80%、如是2〇%。藉此,幾乎無氣泡進入多孔 質二氧化矽板體中,二氧化矽板體呈透明。 又,原料粉中不添加Α1。 (比較例4 ) . &相較於比較例3,將比較例4變更為以下條件,而製 造二氧化矽板體,並進而製造方形二氧化矽容器。 將原料粉的二氧化矽純度設為與實施例12〜 樣的 99.99 wt.%。 同 50 201243115 [實施例及比較例的評估方法] 各實施例及比較例中所使用的原料粉、以及所製造的 多孔質二氧化矽板體及方形二氧化矽容器,其物性、特性 評估是如以下般地進行。 容積密度的測定方法: 從多孔質二氧化矽板體的表面部分及中心部分,分別 切出50mmx5〇mmX3mm的板狀樣品,測定該樣品的重量 (g)。接著’從各自的樣品的尺寸求出體積(cm3)。由這 些重量及體積的數值,計算出表面部分及中心部分的各樣 品的容積密度(g/crn3)。 *各原料粉的粒徑範圍測定: 以光學顯微鏡或電子顯微鏡來進行各原料粉的二維形 狀觀察及面積測定。接著,假設粒子的形狀是正圓形,由 其面積值計算求得直徑。以統計方式反覆地進行該手法, 而定出粒徑範圍的值(該範圍中包含99 wt.%以上的原料 粉)。 *各原料粉的平均粒徑測定: 使用複數個粉體用篩,依據篩分法(JIS R 1639-1 )進 行粒&分佈測定。篩是使用JIS Z 8801的標準篩。 除了上述篩分法以外,也依據雷射繞射、散射法 (同樣疋JIS R 1639-1 )來進行粒徑分佈測定。由此兩種數 51 201243115Aluminum nitrate and cerium nitrate are added and dried, and the second raw material powder is dried in the form of an aqueous solution to contain cerium 1 and Ba. 49 201243115 Next, using the first raw material powder and the second raw material powder, a porous coring plate body is produced by an electric heating furnace (high frequency induction heating) as shown in Figs. 8 and 9 . The atmosphere gas was set to Ar gas containing 1% hydrogen (Ar is 99%). Further, the size of the porous ceria plate body is set to be 2 〇〇 claws (7) X width 400 mm x thickness 1 〇 mm. The peripheral portion of the parallel flat porous ceria plate body produced in this manner is processed. As shown in Fig. 3, a 1-plate plate body is combined and formed into a square ceria container. . The size of the combined square ruthenium dioxide container was 400 χ 400 χ height 4 〇〇. Further, the inner surface of the square cerium oxide container was not coated with an aqueous solution containing Ba. (Comparative Example 3) In the same manner as in Example 12', Comparative Example 3 was changed to the following conditions to produce a cerium oxide plate, and a square cerium oxide container was further produced. The raw material powder was highly purified (the purity of cerium oxide was 99 9999 wt.%), and the particle size was set to 50 〜. Further, the gas atmosphere of (iv) is set to Η2 of 80% and, for example, 2% by volume. Thereby, almost no bubbles enter the porous ceria plate, and the ceria plate is transparent. Further, Α1 was not added to the raw material powder. (Comparative Example 4) & Comparative Example 4 was changed to the following conditions to prepare a cerium oxide plate, and a square cerium oxide container was further produced. The purity of the raw material powder of cerium oxide was set to 99.99 wt.% as in Example 12. 50 201243115 [Evaluation method of Examples and Comparative Examples] The raw material powder used in each of the examples and the comparative examples, and the porous ceria plate body and the square ceria container produced were evaluated for physical properties and characteristics. It is carried out as follows. Method for measuring bulk density: A plate-shaped sample of 50 mm x 5 mm×3 mm was cut out from the surface portion and the central portion of the porous ceria plate body, and the weight (g) of the sample was measured. Next, the volume (cm3) was determined from the size of each sample. From these values of weight and volume, the bulk density (g/crn3) of each sample of the surface portion and the central portion was calculated. * Measurement of particle size range of each raw material powder: Two-dimensional shape observation and area measurement of each raw material powder were carried out by an optical microscope or an electron microscope. Next, assuming that the shape of the particles is a perfect circle, the diameter is calculated from the area value. This method was carried out in a statistically repeated manner, and the value of the particle size range (containing 99 wt.% or more of the raw material powder in the range) was determined. * Measurement of average particle diameter of each raw material powder: A plurality of sieves for powders were used, and pellets & distribution were measured according to the sieving method (JIS R 1639-1). The sieve is a standard sieve using JIS Z 8801. In addition to the above-described sieving method, the particle size distribution measurement was also carried out in accordance with the laser diffraction and scattering method (also JIS R 1639-1). Thus two kinds of numbers 51 201243115

表示作為平均粒徑。 據來求出粒β· / 、 相關關係。 從(d5G )表示作*』 #金屬元素濃度分析: 除了被使用作為脫模促進劑的鋇以外的金屬元素的濃 度分析中’ S藉由從多孔質二氧化石夕板體的厚&方向的中 心位置切出樣品片,以氫氟酸水溶液溶解,藉此進行樣品 的調製。而在鋇的濃度分析中,是從方形二氧化矽容器的 内表層部分切出複數片20mm><20mm><2mm的樣品,來作為 分析用二氧化矽樣品片。 所含有的金屬元素濃度較低時,以電漿發光分析法 (ICP - AES > Inductively Coupled Plasma - Atomic Emission Spectroscopy,感應耦合電漿一原子發光分析法) 或電漿質量分析法(ICP— MS,Inductively Coupled Plasma 一 Mass Spectroscopy,感應耦合電漿一質量分析法)來進 行分析,所含有的金屬元素濃度較高時,以原子吸光光度 法(AAS,Atomic Absorption Spectroscopy )來進行分析。 ♦ OH基濃度測定: 由二氧化矽板體的厚度方向的中心部分’製作粒徑為 10〜100 μηι的粉狀樣品,以紅外線擴散反射分光光度法來 進行測定。ΟΗ基濃度的換算’是依循以下文獻的記載。 Dodd, D. M. and Fraser, D. B. ( 1996 ) Optical 52 201243115 determination of 〇H in fused silica. J〇urnal 〇f AppUed Physics,vol. 37,P. 3911. * "方止雜質從方形二氧化矽容器擴散至多晶矽晶棒的防 止效果: 將Si純度為99.99999999 wt.%的高純度矽熔融體投入 至方形二氧化矽容器中,並冷卻至室溫而製作成尺寸為 380nmX38OmmX240mm的多晶矽晶棒。接著,在該晶棒的 自表面起深入3mm的位置進行矽片的採樣,藉由將其以酸 性溶液來進行處理而作成溶液狀樣品之後,以icp — aes 來進行Na濃度分析。藉由Na濃度值’來評估防止雜質從 方心—氧化石夕谷器擴散至多晶石夕晶棒的防止效果。 雜質擴散防止效果A 〇 (Na濃度小於1G wt.ppb) 雜質擴散防止效果中 Δ(Ν&濃度是10 wt.ppb以上且 小於 1 00 wt.ppb ) 雜質擴散防止效果小 x ( Na濃度是1 〇〇 wt.ppb以上) _脫模性評估: 與前述同樣地製作多晶矽晶棒,接著將方形二氧化矽 . 谷器的4處的側壁轉角部及4處的側壁、與底部的轉角部 . 熔接的部分,以裁切機切斷,從該晶棒剝取方形二氧化矽 容器的4個側壁及底板。接著,將附著於該多晶矽晶棒表 面的一氧化石夕片以風氟酸水溶液溶解、去除。對於殘留於 該晶棒表面的凹凸或裂縫等,利用標尺(scale)來測定這些 53 201243115 凹凸或裂縫等自盥古 〆 起往内部方向::形二乳化石夕容器的内表面接觸的位置 估。 衣入夕少深度為止,藉此來進行脫模性的評 脫模性良好 脫模性中等 脫模性差 〇(深度小於2 mm ) △(深度是2 mm以上且小於5 mm ) x (深度是5 mm以上) •製造成本(相對性)評估: 調查方形二氧化石夕容器的製造成本。實施们〜u、 比較例1、2是以比較例1為基準,實施例12〜23、比較 例3、4則是以比較例3為基準,相對地評估特別是二氧化 _&的原_成本及調整成纟、溶融成纟等製造步驟整體的 合計成本。 成本非常低 成本低 成本中等 成本 將實施例 氧化矽板體及 物性值、評估 ◎ ( 30%以下) 〇(30〜50%左右) △ ( 50〜90%左右) X (將比較例1或比較例3設為1〇〇0/〇) 1〜23、比較例i〜4所製造的各個多孔質二 方形一氧化;5夕容器的製造條件,與所測定的 結果一起加以彙整,表示於下述表1〜1〇。 54 201243115 [表1] 原料二氧 化矽粉 實施例__ 實施例1_ _ ~天然石 實施例2 ~天然石ϋ~~ 實施例3 ~~ ~~天然石英 99.99 300〜3000 純度(Wt·%) 99.99 99.99 粒徑(μιη) 100〜1000 200〜200S—~ 添加物 硝酸鋁 硝酸鋁 J 電加熱爐 加熱方式 高頻率感應加熱 if?頻率感應加執 南頻率感應加熱 100χ300χ 高度 500 熔融容器 尺寸(mm) 100χ300χ 高度 500 100χ300χ 高度 500 材質 鎢 鎢 鶴 氣氛氣體(vol.%) Ν2 : 97,Η2 : 3 Ν2 : 97,Η2 : 3 Ν2 : 97,Η2 : 3 多孔質 二氧化矽 板體 尺寸(mm) 250χ390χ厚度 1〇 250x390χ厚度 1〇 250χ3%χ厚度 1〇 表面部分容積密度(g/cm3) 2.05 1.95 1.88 中心部分容積密度(g/cm3) 1.90 1.80 1.75 OH 基濃度(wt.ppm) 30 50 60 A1 濃度(wt.ppm) 10 100 100 — 雜質濃度 (wt.ppm) Li 10 5 6 — Na 30 35 30 — K 15 10 8 Ti 0.08 0.1 0.1 Cr 0.05 0.08 0.1 " Fe 0.5 0.6 0.3 Ni 0.05 0.08 0.06 Cu 0.1 0.1 0.1 Zn 0.02 0.04 0.03 Au 0.01 0.01 0.02 方形二氧 化矽容器 尺寸(mm) 400χ400χ 高度 260 400χ400χ 高度 260 400χ400χ 高度 260 評估 脫模性 Δ 〇 〇 雜質污染 Δ 〇 〇 成本 〇 〇 〇 55 201243115 表2] 實施例 實施例4 實施例5 實施例6 材質 天然石英粉 天然石英粉 天然石英粉 原料二氧 純度(wt.%) 99.999 99.9 99.99 化矽粉 粒徑(μιη) 200〜2000 200〜2000 200〜2000 添加物 無 硝酸鋁 硝酸鋁 加熱方式 高頻率感應加熱 高頻率感應加熱 高頻率感應加熱 尺寸(mm) 100χ300χ 高度 100χ300χ 高度 100χ300χ 高度 電加熱爐 熔融容器 500 500 500 材質 鎢 鎢 鶴 氣氛氣體(vol.%) Ν2 : 97,Η2 : 3 Ν2 : 97,Η2 : 3 At : 100 尺寸(mm) 250χ390χ 厚度 10 250x390χ厚度 10 250x390x厚度 10 表面部分容積密度(g/cm3) 1.93 1.94 1.90 中心部分容積密度(g/cm3) 1.80 1.80 1.68 OH 基濃度(wt.ppm) 50 70 60 A1 濃度(wt.ppm) <3 500 100 Li 0.1 60 7 多孔質 Na 2 180 30 二氧化矽 K 0.5 70 10 板體 Ti 0.01 3.2 0.07 雜質濃度 Cr 0.02 2.2 0.05 (wt.ppm) Fe 0.05 10 0.2 Ni 0.02 3 0.06 Cu <0.01 1.5 0.1 Zn <0.01 1 0.03 Au <0.01 0.1 0.01 方形二氧 化矽容器 尺寸(mm) 400χ400χ 高度 260 400χ400χ 高度 260 400x400x 高度 260 脫模性 〇 〇 〇 評估 雜質污染 〇 Δ 〇 成本 Δ ◎ 〇 56 201243115 [表3] 第一 實施例 _m 純度(wt.%) 實施例7 天然石英^__ 99^99~~~~ 實施例8 天然石英粉 99.99 實施例9 天然石英粉 99 99 原料粉 粒徑範圍(μπι)/ 平均粒徑(μ m) 添加物 100〜1000/ 530 rJi 9S任力σ 200〜2000/ 700 300〜3000/ 910 材質 _*月回文姑 天然石英粉 硝酸鋁 天然石英粉 硝酸鋁 天然石苯輪 第二 純度(wt.%) 99.99 99.99 99 99 原料粉 粒徑範圍(μιη)/ 平均粒徑(μ m) 10 〜500/ 100 znk碰力口 10 〜600/ 150 10〜700/— 220 加熱^ r式 由月姑 高頻率感;ϊίίϊΓ 硝酸鋁 高頻率感應加熱 硝酸鋁 1¾頻率感應;ψη劫. 電加熱爐 熔融容器 尺寸(mm) 直徑300χ高度 500 直徑300χ高度 500 直徑300χ高度 500 材質 鎢 鎢 鎢 — 氣氛氣體(vol.%) Ν2 : 97,Η2 : 3 Ν2 : 97 > Η2 : 3 Ν2 : 97,Η2 : 3 尺寸(mm) 200χ400χ厚度 1〇 200χ400χ厚度 10 200χ400χ厚度 1〇 表面部分容積密度(g/cm3) 2.15 2.04 1.91 中心部分容積密度(g/cm3) 1.92 1.77 1.55 OH 基濃度(wt.ppm) 35 40 55 A1 濃度(wt.ppm) 10 100 100 〜 Li 8 5 6 多孔質 Na 25 30 25 〜 二氡化矽 κ 15 10 10 板體 Ti 1 1 1 雜質濃度 Cr 0.1 0.1 0.1 ' (wt.ppm) Fe 3 3 3 Ni 0.1 0.1 0.1 — Cu 0.2 0.2 0.2 Zn 0.1 0.1 0.1 Au 0.01 <0.01 <0.01 方形二氧 化矽容器 尺寸(mm) 400χ400χ 高度 400 400χ400χ 高度 400 400χ400χ 高度 400 脫模性 Δ 〇 〇 評估 雜質污染 Δ 〇 〇 成本 〇 〇 —〇 57 201243115 [表4] 實施例 實施例10 實施例11 材質 天然石英粉 天然石英粉 第一 原料粉 純度(wt.%) 99.999 99.9 粒徑範圍(μ m)/ 平均粒徑(μιη) 200〜2000/ 700 200〜2000/ 680 添加物 無 硝酸鋁 材質 天然石英粉 天然石英粉 第二 原料粉 純度(wt·%) 99.999 99.99 粒徑範圍(μιη)/ 10〜600/ 10〜500/ 平均粒徑(μ m) 150 100 添加物 無 硝酸鋁 加熱方式 高頻率感應加熱 高頻率感應加熱 電加熱爐 熔融容器 尺寸(mm) 直徑300x高度500 直徑300χ高度500 材質 鶴 鎢 氣氛氣體(vol.%) N2 : 97,H2 : 3 Ν2 : 97 > Η2 : 3 尺寸(mm) 200χ400χ厚度 10 200χ400χ厚度 10 表面部分容積密度(g/cm3) 2.01 2.07 中心部分容積密度(g/cm3) 1.76 1.88 OH 基濃度(wt.ppm) 30 60 A1 濃度(wt.ppm) 3 330 Li 0.1 60 多孔質 Na 0.8 150 二氧化矽 K 0.3 40 板體 Ti <0.01 5 雜質濃度 Cr 0.02 1 (wt.ppm) Fe 0.05 15 Ni 0.01 2 Cu <0.01 1 Zn <0.01 1 Au 0.01 0.01 尺寸(mm) 400χ400χ 高度 400 400χ400χ 高度 400 方形二氧 脫模性 〇 〇 化矽容器 評估 雜質污染 〇 Δ 成本 Δ ◎ 58 201243115 [表5] 比較例 比較例1 比較例2 材質 高純度天然石英粉 天然石英粉 原料二氧 純度(Wt.°/o) 99.9999 99.99 化矽粉 粒徑(μπι) 50 〜500 50 〜500 添加物 無 無 加熱方式 高頻率感應加熱 高頻率感應加熱 電加熱爐 熔融容器 尺寸(mm) 100x300x 高度 500 100χ300χ 高度 500 材質 鎢 鎢 氣氛氣體(vol·%) He : 80,H2 : 20 He : 80,Η2 : 20 尺寸(mm) 250χ390χ 厚度 10 250χ390χ厚度 10 表面部分容積密度(g/cm3) 2.20 2.20 中心部分容積密度(g/cm3) 2.19 2.19 OH 基濃度(wt.ppm) 5 10 A1 濃度(wt.ppm) <3 <3 Li 0.1 10 多孔質 Na 0.2 30 二氧化矽 K 0.1 20 板體 Ti <0.01 0.1 雜質濃度 Cr 0.01 0.02 (wt.ppm) Fe 0.02 0.3 Ni <0.01 0.05 Cu <0.01 0.05 Zn <0.01 0.03 Au <0.01 0.01 尺寸(nun) 400χ400χ 高度 260 400χ400χ 高度 260 方形二氧 脫模性 X X 化矽容器 評估 雜質污染 〇 X 成本 X 〇 59 201243115 表6] 實施例 實施例12 實施例13 實施例14 原料二氧 化矽粉 材質 天然石英粉 天然石英粉 天然石英粉~~ 純度(Wt.%) 99.99 99.99 99.99 ~~~ 粒徑(μιη) 100〜1000 200〜2000 300〜3000 添加物 硝酸鋁 硝酸鋁 硝酸鋁 電加熱爐 加熱方式 高頻率感應加熱 高頻率感應加熱 高頻率感應加熱 熔融容器 尺寸(mm) 100χ300χ 高度 500 100χ300χ 高度 500 100χ300χ 高度 500 材質 鎢 鎢 鶴 氣氛氣體(vol.%) N2 : 97,H2 : 3 Ν2 : 97,Η2 : 3 Ν2 · 97 5 Η2 '· 3 多孔質 二氧化矽 板體 尺寸(mm) 200x400x厚度 10 200χ400χ厚度 10 200χ400χ 厚度 10 表面部分容積密度(g/cm3) 2.04 1.93 1.89 中心部分容積密度(g/cm3) 1.91 1.82 1.75 OH 基濃度(wt.ppm) 40 50 40 A1 濃度(wt_ppm) 10 100 100 雜質濃度 (wt.ppm) Li 8 5 6 Na 25 30 25 K 15 10 10 Ti 1 1 1 Cr 0.1 0.1 0.1 Fe 3 3 3 Ni 0.1 0.1 0.1 Cu 0.2 0.2 0.2 Zn 0.1 0.1 0.1 Mo <0.05 <0.05 <0.05 方形二氧 化矽容器 尺寸(mm) 400x400x 高度 400 400χ400χ 高度 400 400χ400χ 高度 400 mmmm 内表面部的脫^ 丨含有方法、 莫促進劑魅 塗佈氣化锅 Ba 1000 pg/an2 塗佈氣化鋇 Ba 1000 μ^αη2 塗佈氣化锅 Ba 1000 u^cm2 評估 脫模性 〇 〇 Ο 雜質污染 Δ 〇 〇 成本 〇 〇 〇 60 201243115 [表7] 實施例 實施例15 實施例16 實施例17 原料二氧 化矽粉 材質 天然石英粉 天然石英粉 天然石英粉 純度(wt.%) 99.999 99.9 99.99 粒徑(μηι) 200〜2000 200〜2000 200〜2000 添加物 無 頌酸銘 硝酸鋁 電加熱爐 加熱方式 高頻率感應加執 高頻率感應加熱 高頻率感應加埶 熔融容器 尺寸(mm) 100χ300χ 高度 500 100x300x 高度 500 100χ300χ 高度 500 材質 鶴 鶴 鎢 氣氛氣體(vol.%) Ν2 : 97,Η2 : 3 N2 : 97,H2 : 3 At : 1〇〇 多孔質 二氧化矽 板體 尺寸(mm) 200χ400χ厚度 1〇 200x400x厚度 10 200χ400χ厚度 1〇 表面部分容積密度(g/cm3) 1.92 1.94 1.91 中心部分容積密度(g/cm3) 1.80 1.81 1.69 OH 基濃度(wt.ppm) 30 60 50 A1 濃度(wt.ppm) <3 500 100 雜質濃度 (wt.ppm) Li 0.1 60 3 Na 0.8 150 20 κ 0.3 40 5 Ti <0.01 5 1 Cr 0.02 1 0.03 Fe 0.05 15 2 Ni 0.01 2 0.06 Cu <0.01 1 0.1 Zn <0.01 1 0.1 Mo <0.01 0.02 <0.01 方形二氧 化矽容器 尺寸(mm) 400χ400χ 高度 400 400x400x 高度 400 400χ400χ 高度 400 脫模促進劑的含有方法、 内表面部的脫模促進劑澧疳 塗佈氯化鎖 Ba3000jxg/cm2 塗佈氣化鋇 Ba 3000 pg/cm2 塗佈氣化锅 Ba300〇ng/on2 評估 脫模性 〇 〇 〇 雜質污染 〇 Δ 〇 成本 Δ ◎ 〇 61 201243115 [表8] 實施例 實施例18 實施例19 實施例20 材質 天然石英粉 天然石英粉 天然石英粉 第一 原料粉 純度(wt.%) 99.99 99.99 99.99 ~ 粒徑範圍(μπα)/ 平均粒徑(μ m) 100〜1000/ 530 200〜2000/ 700 300〜3000/ 910 - 添加物 硝酸鈕 确酸銘 硝酸鋁 材質 天然石箪拾 天然石英粉 天然石英粉 第二 原料粉 純度(wt·%) 99.99 99.99 99.99 粒徑範圍(μ m)/ 平均粒徑(μ m) 10〜500/ 100 10〜600/ 150 10〜700/ 220 _ 添加物 硝酸銘、雄酴相 硝酸鋁、硝酸鋇 硝酸鋁、硝 加熱^ 式 兩頻率感應加執 高頻率感應加熱 高頻率感應加 電加熱爐 熔融容器 尺寸(mm) 直徑300Χ高度 500 直徑300χ高度 500 直徑300χ高度 500 材質 鎢 鶴 鎢 氣氛氣體(vol.%) Ν2 : 97,Η,:] N2 : 97,Η? : 3 Ν2 : 97,Η) : 3 尺寸(mm) 200x400x^.^f in 200χ400χ厚度 10 200χ400χ厚度 1〇 表面部分容積密度(g/cm3) 2.15 2.04 1.91 中心部分容精密度(g/cm3) 1.92 1.77 1.55 OH 基濃度(wt.ppm) 35 — 40 55 A1 濃度(wt.ppm) 10 — 100 100 Li ----- 多孔質 二氧化矽 8 5 6 Na 25 30 25 κ 15 10 10 板體 雜質濃度 Ti 1 1 1 Cr 0.1 0.1 0.1 (wt.ppm) Fe 3 3 3 Ni 0.1 0.1 0.1 Cu 0.2 0.2 0.2 Zn 0.1 0.1 0.1 Mo 0.01 <0.01 <0 01 尺寸(mm) 4G0x400x 高度 400 400χ400χ 高度 400 \J·\β X 400χ400χ 高度 400 方形二氧 化矽容器 賴促進劑的 内表面部的脫^ 含有方法、 莫促進劑濃度 於第二原料粉中 添加硝酸鋇作為 脫模促進劑,不進 行塗佈 Ba 50 wtppm 於第二原料粉中 添加硝酸鋇作為 脫模促進劑,不進 行塗佈 Ba500wt.Dnm 於第二原料粉中 添加硝酸領作為 脫模促進劑’不進 行塗佈 Ra S00 wt nnm 脫模性 Δ -- 〇 評估 雜質污染 Λ太 〇 〇 -^-- - 〇 〇 62 201243115 [表9]It is expressed as an average particle diameter. According to the calculation of the particle β· / , correlation. From (d5G), it is expressed as *" #Metal element concentration analysis: In addition to the concentration analysis of the metal element other than ruthenium used as a release promoter, 'S by the thickness & direction from the porous sulphur dioxide slab At the center position, the sample piece was cut out and dissolved in an aqueous solution of hydrofluoric acid, thereby preparing the sample. In the concentration analysis of the crucible, a plurality of samples of 20 mm >< 20 mm >< 2 mm were cut out from the inner surface layer portion of the square ceria container to prepare a ceria sample piece for analysis. When the concentration of the metal element contained is low, ICP-AES > Inductively Coupled Plasma (Atomic Emission Spectroscopy) or plasma mass spectrometry (ICP-MS) Inductively Coupled Plasma (Mass Spectroscopy, inductively coupled plasma-mass spectrometry) for analysis, and the concentration of metal elements contained in the sample is analyzed by atomic absorption spectrometry (AAS). ♦ Measurement of OH-based concentration: A powdery sample having a particle diameter of 10 to 100 μm was prepared from the central portion of the thickness direction of the ceria plate, and was measured by infrared diffusion reflection spectrophotometry. The conversion of thiol concentration is described in the following literature. Dodd, DM and Fraser, DB (1996) Optical 52 201243115 determination of 〇H in fused silica. J〇urnal 〇f AppUed Physics, vol. 37, P. 3911. * " Square impurities are diffused from the square cerium oxide container Prevention effect of polycrystalline twin rod: A high purity tantalum melt having a Si purity of 99.99999999 wt.% was placed in a square ceria container and cooled to room temperature to prepare a polycrystalline twin rod having a size of 380 nm X 38 Omm X 240 mm. Next, the wafer was sampled at a position deeper than 3 mm from the surface of the ingot, and the solution was sampled in an acid solution to prepare a solution sample, and then Na concentration analysis was performed with icp - aes. The prevention effect of preventing the diffusion of impurities from the center-to-oxide oxide smear to the polycrystalline slab was evaluated by the Na concentration value'. Impurity diffusion prevention effect A 〇 (Na concentration is less than 1G wt.ppb) Δ (Ν & concentration is 10 wt.ppb or more and less than 100 wt.ppb) in impurity diffusion prevention effect. Impurity diffusion prevention effect is small x (Na concentration is 1 〇〇wt.ppb or more) _Releasability evaluation: Polycrystalline twin rods are produced in the same manner as above, followed by square cerium oxide. Four side wall corners of the grain and four side walls, and the corners of the bottom. The welded portion is cut by a cutter, and four side walls and a bottom plate of the square ceria container are stripped from the ingot. Next, the nitric oxide enamel adhered to the surface of the polycrystalline twin rod was dissolved and removed with a hydrofluoric acid aqueous solution. For the irregularities, cracks, and the like remaining on the surface of the ingot, the scale is measured by a scale to determine the position of the inner surface of the container: the shape of the inner surface of the container: . In the case of a small depth of clothing, the mold release property is improved, and the release property is good. The mold release property is moderate (the depth is less than 2 mm) Δ (the depth is 2 mm or more and less than 5 mm) x (depth is 5 mm or more) • Manufacturing cost (relative) evaluation: Investigate the manufacturing cost of a square dioxide dioxide container. In the examples, the examples 1 and 2 were based on the comparative example 1, and the examples 12 to 23 and the comparative examples 3 and 4 were comparatively evaluated based on the comparative example 3, in particular, the original of the oxidized _& _ Cost and adjustment of the total cost of the manufacturing process as a whole, such as melting into a crucible. Cost very low cost, low cost, medium cost, example, cerium oxide plate and physical property value, evaluation ◎ (30% or less) 〇 (about 30~50%) △ (about 50~90%) X (Comparative Example 1 or comparison Example 3 was set to 1 〇〇 0 / 〇) 1 to 23, and each of the porous squares produced in Comparative Examples i to 4 was oxidized; the production conditions of the 5 夕 container were collected together with the measured results, and were shown below. Table 1~1〇. 54 201243115 [Table 1] Raw Material Ceria Powder Example __ Example 1_ _ ~ Natural Stone Example 2 ~ Natural Dendrobium ~~ Example 3 ~~ ~~ Natural Quartz 99.99 300~3000 Purity (Wt·%) 99.99 99.99 Particle size (μιη) 100~1000 200~200S—~ Addition aluminum nitrate aluminum nitrate J Electric heating furnace heating method High frequency induction heating if? Frequency induction plus South frequency induction heating 100χ300χ Height 500 Molten vessel size (mm) 100χ300χ Height 500 100χ300χ Height 500 Material Tungsten tungsten crane atmosphere gas (vol.%) Ν2 : 97,Η2 : 3 Ν2 : 97,Η2 : 3 Ν2 : 97,Η2 : 3 Porous erbium dioxide plate size (mm) 250χ390χthickness 1 〇250x390χ1〇250χ3%χ1〇〇Partial part volume density (g/cm3) 2.05 1.95 1.88 Center part bulk density (g/cm3) 1.90 1.80 1.75 OH group concentration (wt.ppm) 30 50 60 A1 concentration (wt .ppm) 10 100 100 — impurity concentration (wt.ppm) Li 10 5 6 — Na 30 35 30 — K 15 10 8 Ti 0.08 0.1 0.1 Cr 0.05 0.08 0.1 " Fe 0.5 0.6 0.3 Ni 0.05 0.08 0.06 Cu 0.1 0.1 0.1 Zn 0.02 0.04 0.03 Au 0.01 0.01 0.02 Square cerium oxide container size (mm) 400χ400χ Height 260 400χ400χ Height 260 400χ400χ Height 260 Evaluation of mold release Δ 〇〇 impurity contamination Δ 〇〇 Cost 〇〇〇 55 201243115 Table 2] Example Example 4 Example 5 Example 6 Material natural quartz powder natural quartz powder natural quartz powder raw material oxygen purity (wt.%) 99.999 99.9 99.99 bismuth powder particle size (μιη) 200~2000 200~2000 200~2000 Additives without aluminum nitrate aluminum nitrate heating method high frequency Induction heating High frequency induction heating High frequency induction heating size (mm) 100χ300χ Height 100χ300χ Height 100χ300χ High electric heating furnace melting vessel 500 500 500 Material tungsten tungsten crane atmosphere gas (vol.%) Ν2 : 97, Η 2 : 3 Ν 2 : 97, Η 2 : 3 At : 100 Dimensions (mm) 250χ390χ Thickness 10 250x390χ Thickness 10 250x390x Thickness 10 Surface Part Bulk Density (g/cm3) 1.93 1.94 1.90 Center Part Bulk Density (g/cm3) 1.80 1.80 1.68 OH Base Concentration (wt.ppm ) 50 70 60 A1 Concentration (wt.ppm) <3 500 100 Li 0.1 60 7 Porous Na 2 180 30 II矽K 0.5 70 10 plate Ti 0.01 3.2 0.07 impurity concentration Cr 0.02 2.2 0.05 (wt.ppm) Fe 0.05 10 0.2 Ni 0.02 3 0.06 Cu <0.01 1.5 0.1 Zn <0.01 1 0.03 Au <0.01 0.1 0.01 Square Ceria container size (mm) 400χ400χ Height 260 400χ400χ Height 260 400x400x Height 260 Release 〇〇〇Evaluation of impurity contamination 〇Δ 〇Cost Δ ◎ 〇56 201243115 [Table 3] First example _m Purity (wt.% Example 7 Natural Quartz ^__ 99^99~~~~ Example 8 Natural Quartz Powder 99.99 Example 9 Natural Quartz Powder 99 99 Raw Material Powder Particle Size Range (μπι) / Average Particle Diameter (μm) Additive 100~ 1000/ 530 rJi 9S Ren force σ 200~2000/ 700 300~3000/ 910 Material _*月回文gu natural quartz powder aluminum nitrate natural quartz powder aluminum nitrate natural stone benzene wheel second purity (wt.%) 99.99 99.99 99 99 Raw material powder particle size range (μιη) / average particle size (μ m) 10 ~ 500 / 100 znk impact port 10 ~ 600 / 150 10 ~ 700 / - 220 heating ^ r type from the moon high frequency sense; ϊ ίίϊΓ aluminum nitrate High frequency induction heating of aluminum nitrate 13⁄4 frequency sense ;ψη劫. Electric heating furnace melting vessel size (mm) diameter 300χ height 500 diameter 300χ height 500 diameter 300χ height 500 material tungsten tungsten tungsten - atmosphere gas (vol.%) Ν 2 : 97, Η 2 : 3 Ν 2 : 97 > Η 2 : 3 Ν 2 : 97, Η 2 : 3 Dimensions (mm) 200 χ 400 χ thickness 1 〇 200 χ 400 χ thickness 10 200 χ 400 χ thickness 1 〇 surface part bulk density (g/cm3) 2.15 2.04 1.91 Center part bulk density (g/cm3) 1.92 1.77 1.55 OH group Concentration (wt.ppm) 35 40 55 A1 Concentration (wt.ppm) 10 100 100 ~ Li 8 5 6 Porous Na 25 30 25 ~ Bismuth 矽 15 15 10 10 Titanium Ti 1 1 1 Impurity Concentration Cr 0.1 0.1 0.1 ' (wt.ppm) Fe 3 3 3 Ni 0.1 0.1 0.1 — Cu 0.2 0.2 0.2 Zn 0.1 0.1 0.1 Au 0.01 <0.01 <0.01 Square cerium oxide container size (mm) 400χ400χ Height 400 400χ400χ Height 400 400χ400χ Height 400 Release property Δ 〇〇 Evaluation of impurity contamination Δ 〇〇 Cost 〇〇 〇 57 201243115 [Table 4] Example Example 10 Example 11 Material Natural quartz powder Natural quartz powder First raw material powder purity (wt .%) 99.999 99.9 Particle size range (μm) / Average particle size (μιη) 200~2000/ 700 200~2000/ 680 Additives No aluminum nitrate Natural quartz powder Natural quartz powder Second raw material powder purity (wt·% 99.999 99.99 Particle size range (μιη) / 10~600/ 10~500/ Average particle size (μ m) 150 100 Additive without aluminum nitrate heating method High frequency induction heating High frequency induction heating electric heating furnace melting container size (mm ) Diameter 300x Height 500 Diameter 300χ Height 500 Material Tungsten atmosphere gas (vol.%) N2 : 97, H2 : 3 Ν 2 : 97 > Η 2 : 3 Dimensions (mm) 200 χ 400 χ thickness 10 200 χ 400 χ thickness 10 Surface part bulk density (g /cm3) 2.01 2.07 Center part bulk density (g/cm3) 1.76 1.88 OH group concentration (wt.ppm) 30 60 A1 concentration (wt.ppm) 3 330 Li 0.1 60 porous Na 0.8 150 cerium oxide K 0.3 40 plate Body Ti < 0.01 5 Impurity concentration Cr 0.02 1 (wt. ppm) Fe 0.05 15 Ni 0.01 2 Cu < 0.01 1 Zn < 0.01 1 Au 0.01 0.01 Dimensions (mm) 400χ400χ Height 400 400χ400χ Height 400 Square dioxane release Sexuality矽 Container evaluation impurity contamination 〇 Δ Cost Δ ◎ 58 201243115 [Table 5] Comparative Example Comparative Example 1 Comparative Example 2 Material High Purity Natural Quartz Powder Natural Quartz Powder Raw Material Dioxin Purity (Wt.°/o) 99.9999 99.99 Diameter (μπι) 50 ~500 50 ~500 Additive without heating method High frequency induction heating High frequency induction heating electric heating furnace Melting vessel size (mm) 100x300x Height 500 100χ300χ Height 500 Material tungsten-tungsten atmosphere (vol·%) He : 80,H2 : 20 He : 80,Η2 : 20 Dimensions (mm) 250χ390χ Thickness 10 250χ390χThickness 10 Surface Particular Bulk Density (g/cm3) 2.20 2.20 Center Part Bulk Density (g/cm3) 2.19 2.19 OH Base Concentration (wt .ppm) 5 10 A1 Concentration (wt.ppm) <3 <3 Li 0.1 10 Porous Na 0.2 30 Ceria K 0.1 20 Plate Ti < 0.01 0.1 Impurity Concentration Cr 0.01 0.02 (wt. ppm) Fe 0.02 0.3 Ni < 0.01 0.05 Cu < 0.01 0.05 Zn < 0.01 0.03 Au < 0.01 0.01 Size (nun) 400χ400χ Height 260 400χ400χ Height 260 Square Dioxo Release XX Chemical Container Evaluation of impurity contamination 〇X Cost X 〇 59 201243115 Table 6] Example Example 12 Example 13 Example 14 Raw material cerium oxide powder Natural quartz powder Natural quartz powder Natural quartz powder ~~ Purity (Wt.%) 99.99 99.99 99.99 ~~~ Particle size (μιη) 100~1000 200~2000 300~3000 Addition aluminum nitrate aluminum nitrate aluminum heating furnace heating method high frequency induction heating high frequency induction heating high frequency induction heating melting container size (mm) 100χ300χ height 500 100χ300χ Height 500 100χ300χ Height 500 Material Tungsten tungsten crane atmosphere gas (vol.%) N2 : 97,H2 : 3 Ν2 : 97,Η2 : 3 Ν2 · 97 5 Η2 '· 3 Porous erbium dioxide plate size (mm 200x400x thickness 10 200χ400χ thickness 10 200χ400χ thickness 10 surface part bulk density (g/cm3) 2.04 1.93 1.89 central part bulk density (g/cm3) 1.91 1.82 1.75 OH group concentration (wt.ppm) 40 50 40 A1 concentration (wt_ppm) 10 100 100 impurity concentration (wt. ppm) Li 8 5 6 Na 25 30 25 K 15 10 10 Ti 1 1 1 Cr 0.1 0.1 0.1 Fe 3 3 3 Ni 0.1 0.1 0.1 Cu 0.2 0.2 0.2 Zn 0.1 0.1 0.1 Mo <0.05 <0.05 <0.05 square cerium oxide container size (mm) 400x400x height 400 400 χ400 χ height 400 400 χ400 χ height 400 mmmm inner surface part removal method, mo promoter glaze coating gasification pot Ba 1000 pg /an2 Coating gasification 钡Ba 1000 μ^αη2 Coating gasification pot Ba 1000 u^cm2 Evaluation of mold release 杂质 Impurity contamination Δ 〇〇 Cost 〇〇〇 60 201243115 [Table 7] Example Example 15 Implementation Example 16 Example 17 Raw material cerium oxide powder Natural quartz powder Natural quartz powder Natural quartz powder Purity (wt.%) 99.999 99.9 99.99 Particle size (μηι) 200~2000 200~2000 200~2000 Addic acid citrate Aluminum electric heating furnace heating method high frequency induction plus high frequency induction heating high frequency induction twisting melting vessel size (mm) 100χ300χ height 500 100x300x height 500 100χ300χ height 500 material Hehe tungsten atmosphere gas (vol.%) Ν 2 : 97, Η 2 : 3 N2 : 97, H2 : 3 At : 1 〇〇 porous erbium dioxide plate size (mm) 200 χ 400 χ thickness 1 〇 200 x 400 x thickness 10 200 χ 400 χ thickness 1 〇 Partial bulk density (g/cm3) 1.92 1.94 1.91 Center part bulk density (g/cm3) 1.80 1.81 1.69 OH group concentration (wt.ppm) 30 60 50 A1 concentration (wt.ppm) <3 500 100 impurity concentration ( Wt.ppm) Li 0.1 60 3 Na 0.8 150 20 κ 0.3 40 5 Ti < 0.01 5 1 Cr 0.02 1 0.03 Fe 0.05 15 2 Ni 0.01 2 0.06 Cu < 0.01 1 0.1 Zn < 0.01 1 0.1 Mo < 0.01 0.02 <0.01 square ceria container size (mm) 400χ400χ height 400 400x400x height 400 400χ400χ height 400 method of containing mold release accelerator, release agent for inner surface part coating chlorination lock Ba3000jxg/cm2 coating Gasification 钡Ba 3000 pg/cm2 Coating gasification pot Ba300〇ng/on2 Evaluation of release 〇〇〇 impurity contamination 〇Δ 〇 Cost Δ ◎ 61 201243115 [Table 8] Example Example 18 Example 19 Example 20 Material Natural quartz powder Natural quartz powder Natural quartz powder First raw material powder purity (wt.%) 99.99 99.99 99.99 ~ Particle size range (μπα) / Average particle size (μ m) 100~1000/ 530 200~2000/ 700 300 ~3000/ 910 - Addition of nitric acid Material Natural stone picking natural quartz powder Natural quartz powder Second raw material powder purity (wt·%) 99.99 99.99 99.99 Particle size range (μ m) / Average particle size (μ m) 10~500/ 100 10~600/ 150 10~ 700/ 220 _ Addition of nitrate, male and female phases of aluminum nitrate, cerium nitrate, aluminum nitrate, nitrate heating ^ two frequency induction plus high frequency induction heating high frequency induction heating furnace melting vessel size (mm) diameter 300 Χ height 500 Diameter 300χ Height 500 Diameter 300χ Height 500 Material Tungsten Crane Tungsten Atmosphere Gas (vol.%) Ν2 : 97,Η,:] N2 : 97,Η? : 3 Ν2 : 97,Η) : 3 Dimensions (mm) 200x400x^. ^f in 200χ400χ thickness 10 200χ400χ thickness 1〇 surface part bulk density (g/cm3) 2.15 2.04 1.91 central part precision (g/cm3) 1.92 1.77 1.55 OH group concentration (wt.ppm) 35 — 40 55 A1 concentration ( Wt.ppm) 10 — 100 100 Li ----- Porous cerium oxide 8 5 6 Na 25 30 25 κ 15 10 10 Plate impurity concentration Ti 1 1 1 Cr 0.1 0.1 0.1 (wt.ppm) Fe 3 3 3 Ni 0.1 0.1 0.1 Cu 0.2 0.2 0.2 Zn 0.1 0.1 0.1 Mo 0.01 < 0.01 < 0 01 Dimensions (mm) 4G0x400x Height 400 400χ400χ Height 400 \J·\β X 400χ400χ Height 400 The method of removing the inner surface of the square cerium oxide container lining accelerator, and adding the nitric acid to the second raw material powder.钡 as a mold release accelerator, without applying Ba 50 wtppm, adding lanthanum nitrate as a mold release accelerator to the second raw material powder, without applying Ba500wt.Dnm to the second raw material powder, adding nitrite as a release promoter 'Do not apply Ra S00 wt nnm release Δ -- 〇 Evaluate impurity contamination Λ 太〇〇-^-- - 〇〇62 201243115 [Table 9]

第一 原料粉 平均粒徑(um) 添加物 200〜2000/ 700 無 200〜2000/ 680 硝酸鋁 200〜2000/ 720 材質 天然石英粉 硝酸鋁 第二 原料粉 電加熱爐 純度(wt.%) 粒徑範圍(μ m)/ 平均粒徑(um) 添加物 加熱方式 熔融容器 尺寸(mm) 材質 氣氛氣體(vol.%) 尺寸(mm) 表面部分容積密度(g/cm3) 中心部分容積密度(g/cm3) OH基濃度(wtppm) A1 濃度(wt.ppm)Average particle size of the first raw material powder (um) Additive 200~2000/ 700 No 200~2000/ 680 Aluminum nitrate 200~2000/ 720 Material Natural quartz powder Aluminum nitrate Second raw material powder Electric heating furnace Purity (wt.%) Granules Diameter range (μ m) / average particle size (um) Additive heating method Melting vessel size (mm) Material atmosphere gas (vol.%) Dimensions (mm) Surface part bulk density (g/cm3) Center part bulk density (g /cm3) OH group concentration (wtppm) A1 concentration (wt.ppm)

Li 99.999 10〜600/ 150 硝酸鋇 高頻率感應加執 直徑300χ高度 500 Ν2 鶴 97,Η2 : 3 200χ400χ厚廑 1〇 zoi 1.76 <3 0.1 天然石英粉 99.99 10〜500/ 100 硝酸銘、硝酸钥 高頻率感應加埶 直徑300χ高度 500 鎢 Ν2 : 97 » Η? : 3 200χ400χ厚唐 ι〇 2.07 1.88 60 天然石英粉 99.99 10〜600/ 170 硝酸鋁、硝酸鋇 南頻率感應加熱 直徑300χ高度 500 鎢Li 99.999 10~600/ 150 yttrium nitrate high frequency induction plus diameter 300 χ height 500 Ν 2 crane 97, Η 2 : 3 200 χ 400 χ thick 廑 1 〇 zoi 1.76 < 3 0.1 natural quartz powder 99.99 10~500/ 100 nitric acid, nitrate key High frequency induction twisting 300 χ height 500 tungsten Ν 2 : 97 » Η? : 3 200 χ 400 χ thick Tang 〇 2.07 1.88 60 natural quartz powder 99.99 10~600/ 170 aluminum nitrate, lanthanum 频率 frequency induction heating diameter 300 χ height 500 tungsten

Ar : 99 » Η? 200χ400χ厚唐 ΐ〇 2.00 1.73 45 多孔質 二氧化矽 板體 330 ~60~ 50Ar : 99 » Η? 200χ400χ厚唐 ΐ〇 2.00 1.73 45 Porous cerium oxide plate 330 ~60~ 50

NaNa

KK

Ti 0.8 0.3 <0.01 150 40 ~5~ 20 雜質濃度 (wtppm)Ti 0.8 0.3 <0.01 150 40 ~5~ 20 Impurity concentration (wtppm)

CrCr

FeFe

NiNi

CuCu

ZnZn

Mo 尺寸(mm) 0.02 0.05 0.01 <0.01 <0.01 0.01 400χ400χ 高度 400 1 1 15 1 0.01 400χ400χ 高度 400 0.03 2 0.06 0.1 0.1 <0.01 400χ400χ 高度 400 方形二氧 化矽容器 脫模促進劑的含有方法、 内表面部的脫模促進劑濃度 於第二原料粉中 添加硝酸銷作為 賴促進劑,不進J 行塗佈 Ba 510 wtppm 於第二原料粉中 添加硝酸鋇作為 脫模促進劑,不進 行塗佈 Ba 520 wt.ppm 於第二原料粉中 添加硝酸鋇作為 脫模促進劑,不進J 行塗佈 Ba 500 wtppm 脫模性 〇 〇 評估 雜質污染 成本 _〇 Δ A◎ 〇 63 201243115 [表 ι〇] 比較例 比較例3 比較例4 原料二氧 化矽粉 材質 高純度天然石英粉 天然石英粉 純度(wt.%) 99.9999 99.99 粒徑(μηι) 50 〜500 50 〜500 添加物 無 無 電加熱爐 加熱方式 高頻率感應加熱 高頻率感應加熱 熔融容器 尺寸(mm) 100χ300χ 高度 500 100x300x高度 500 材質 鎢 鎢 氣氛氣lt(vol.%) He : 80 > H2 : 20 He : 80,H2 : 20 多孔質 二氧化矽 板體 尺寸(mm) 200χ400χ厚度 10 200x400x厚度 10 表面部分容積密度(g/cm3) 2.20 2.20 中心部分容積密度(g/cm3) 2.19 2.19 OH 基遭度(wt.ppm) 25 30 A1 濃度(wt.ppm) <3 <3 雜質濃度 (wt.ppm) Li 0.1 10 Na 0.2 30 K 0.1 17 Ti <0.01 0.1 Cr 0.01 0.02 Fe 0.02 2 Ni <0.01 0.05 Cu <0.01 0.1 Zn <0.01 0.1 Mo <0.01 0.01 方形二氧 化矽容器 尺寸(mm) 400χ400χ 高度 400 400χ400χ 高度 400 酿促進劑的 内表面部的脫 含有方法、 莫促進劑濃度 不含雌促進劑 Ba 1 wt.ppm 以下 不含脫模促進劑 Ba 1 wt.ppm 以下 評估 脫模性 X X 雜質污染 〇 X 成本 X 〇 由表1〜10可知,依照本發明的二氧化矽容器的製造 方法的實施例1〜23,能以低成本來製造一種多晶石夕晶棒 製造用方形二氧化矽容器,其脫模性優異,且雜質污染少。 另外,本發明不限定於上述各種實施形態,上述實施 形態僅為例示,只要是具有與記載於本發明的申請專利範 64 201243115 圍中的技術思想實質上相同 的構成、能得到同樣的作用效 果者,不論為何者,皆被包 i3在本發明的技術範圍内。 【圖式簡單說明】 第1圖是表示本發明 圖 不赞月的方形二氧化矽容器的—例的 ⑷是概略俯視圖,⑻是概略剖面圖。 第2圖是表示本發明的古 圖 的方形二氧化矽容器的另—例的 U)是概略俯視圖,(b)是概略剖面圖。 第3圖是表示本發明的方 圖 ,、B 万形—氧化矽容器的另一例的 (a)疋概略俯視圖,(b)是概略剖面圖。 第4圖是表示本發明的方 _ 圖 ,λθ 万形—氧化矽容器的另一例的 (a)疋概略俯視圖,(b)是概略剖面圖。 第5圖是表示本發明的方形— 々t 一氧化矽容器的設置例子 的圖’⑷是概略俯視圖,(b)是概略剖面圖。 =圖是表示用於製造本發明的多孔f二氧切板體 的裝置的一例的概略剖面圖。Mo size (mm) 0.02 0.05 0.01 <0.01 <0.01 0.01 400χ400χ Height 400 1 1 15 1 0.01 400χ400χ Height 400 0.03 2 0.06 0.1 0.1 <0.01 400χ400χ Height 400 Square cerium oxide container release promoter containing method, The concentration of the release promoter on the inner surface portion is added to the second raw material powder as a lyotropic accelerator, and the coating of Ba 510 wtppm is not performed, and cerium nitrate is added as a release promoter to the second raw material powder without coating. Cloth Ba 520 wt.ppm Adding lanthanum nitrate as a release promoter to the second raw material powder, not applying J 500 Ba wtppm release 〇〇 Evaluation of impurity contamination cost _〇Δ A◎ 〇63 201243115 [Table ι 〇] Comparative Example Comparative Example 3 Comparative Example 4 Raw material cerium oxide powder material High purity natural quartz powder Natural quartz powder purity (wt.%) 99.9999 99.99 Particle size (μηι) 50 ~500 50 ~500 Additive without electric heating furnace heating Mode High Frequency Induction Heating High Frequency Induction Heating Melting Container Size (mm) 100χ300χ Height 500 100x300x Height 500 Material Tungsten and Tungsten Gas lt(vol.%) He : 80 > H2 20 He : 80,H2 : 20 Porous ceria plate size (mm) 200χ400χ thickness 10 200x400x thickness 10 surface part bulk density (g/cm3) 2.20 2.20 central part bulk density (g/cm3) 2.19 2.19 OH base Degree (wt. ppm) 25 30 A1 concentration (wt. ppm) <3 <3 impurity concentration (wt. ppm) Li 0.1 10 Na 0.2 30 K 0.1 17 Ti < 0.01 0.1 Cr 0.01 0.02 Fe 0.02 2 Ni &lt ; 0.01 0.05 Cu < 0.01 0.1 Zn < 0.01 0.1 Mo < 0.01 0.01 Square cerium oxide container size (mm) 400 χ 400 χ height 400 400 χ 400 χ height 400 The method of de-containing the inner surface of the brewing accelerator, the concentration of the mo promoter is not The female-containing accelerator Ba 1 wt. ppm or less does not contain the release promoter Ba 1 wt. ppm. The mold release property is evaluated below. XX Impurity contamination 〇 X Cost X 〇 From Tables 1 to 10, the cerium oxide container according to the present invention is known. In Examples 1 to 23 of the production method, a square cerium oxide container for producing a polycrystalline slab can be produced at low cost, which is excellent in mold release property and less in impurity contamination. In addition, the present invention is not limited to the above-described various embodiments, and the above-described embodiments are merely illustrative, and the same operational effects as those of the technical idea described in the patent application No. 64 201243115 of the present invention can be obtained. Regardless of the reason, the package i3 is within the technical scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic plan view showing an example of a square cerium oxide container according to the present invention, and (8) is a schematic cross-sectional view. Fig. 2 is a schematic plan view showing another example of the rectangular cerium oxide container of the ancient graph of the present invention, and Fig. 2(b) is a schematic cross-sectional view. Fig. 3 is a plan view showing the present invention, and Fig. 3 is a schematic plan view showing another example of the B-shaped cerium oxide container, and (b) is a schematic cross-sectional view. Fig. 4 is a schematic plan view showing a further example of the λθ-shaped cerium oxide container according to the present invention, and (b) is a schematic cross-sectional view. Fig. 5 is a view showing an example of installation of a square-々t niobium oxide container of the present invention, wherein (4) is a schematic plan view and (b) is a schematic cross-sectional view. = Fig. is a schematic cross-sectional view showing an example of an apparatus for producing the porous f-diode-cut sheet of the present invention.

第7圖是從另一角度來表示用於I 叩%裝&本發明的多孔質 一氧化矽板體的裝置的一例的概略剖面圖。 第8圖是表示用於製造本發明的多孔質二氣 的裝·置的另一例的概略剖面圖。 第9圖是從另一角度來表示用於製 裂&本發明的多孔質 —氧化矽板體的裝置的另一例的概略剖面圖。 65 201243115 201整流治具位置調整棒 氣氣氣體進氣及排氣口 【主要元件符號說明】 10 二氧化矽容器 11 a側部 12 側部内表面 12b側部内表面 13a側部外表面 21 底部 21 b底部 22a底部内表面 23底部外表面 23b底部外表面 200電加熱爐 202熔融容器内的 203原料粉供給口 11側部(側壁部) 11 b側部 12a側部内表面 13側部外表面 13b侧部外表面 2 1 a底部 22 底部内表面 22b底部内表面 23a底部外表面 80 承受體 204溶融容器外氣氛氣體進氣及排氣口 205 207 209 211 213 214 215 加熱手段氣氛氣體進氣及排氣口 加熱手段 隔熱材 間隙 208熔融容器 2 1 0整流治具 212成型工具 7扎質二氧化矽板體取出室 夕孔質二氧化矽板體取出室内氣氛氣體進氣及排氣口 多孔質二氧化矽板體 66 201243115 216多孔質二氧化矽板體拉出輥 217夕孔質二氧化矽板體拉出方向 300電加熱爐 3 02熔融谷器内的氣氛氣體進氣及排氣口 3 03a第一原料粉供 303b第-$ 第—原料奢 305炼融容器外氣氛氣體進氣及排氣口卷供給 3 06a第一原料粉 3 07加熱手段 309隔熱材 3 06b第二原料粉 3 0 8溶融容器 3 12成型工具 313多孔質二氧化矽板體取出室 314多孔質二氧化矽板體取出室内氣氛氣體進氣及排氣 315多孔質二氧化矽板體 316多孔質二氧化矽板體拉出輥 317箭號 321a熔融二氧化矽玻璃體 321b熔融二氧化矽玻璃體 322開關板 323箭號 67Fig. 7 is a schematic cross-sectional view showing an example of an apparatus for a porous ruthenium oxide plate of the present invention from another angle. Fig. 8 is a schematic cross-sectional view showing another example of the apparatus for producing the porous two gas of the present invention. Fig. 9 is a schematic cross-sectional view showing another example of an apparatus for cracking & oxidizing the porous cerium oxide plate of the present invention from another angle. 65 201243115 201 Rectifier position adjustment rod gas gas inlet and outlet [Main component symbol description] 10 cerium oxide container 11 a side 12 side inner surface 12b side inner surface 13a side outer surface 21 bottom 21 b Bottom portion 22a bottom inner surface 23 bottom outer surface 23b bottom outer surface 200 electric heating furnace 202 203 raw material powder supply port 11 side portion (side wall portion) 11b side portion 12a side inner surface 13 side outer surface 13b side portion Outer surface 2 1 a bottom 22 bottom inner surface 22b bottom inner surface 23a bottom outer surface 80 receiving body 204 melting container outside atmosphere gas intake and exhaust port 205 207 209 211 213 215 215 heating means atmosphere gas intake and exhaust port Heating means Heat insulation material gap 208 Melting container 2 1 0 Rectifier jig 212 Forming tool 7 Tantalum ruthenium dioxide plate body extraction chamber Xikong porous ruthenium dioxide plate body room gas inlet and exhaust ports Porous oxidizing矽板体66 201243115 216Porous erbium dioxide plate pull-out roller 217 孔 质 二 二 矽 拉 300 300 300 300 300 300 电 02 02 02 02 02 02 02 02 02 02 Mouth 3 03a first raw material powder for 303b first -$ first - raw material luxury 305 refining container outside atmosphere gas intake and exhaust port volume supply 3 06a first raw material powder 3 07 heating means 309 heat insulating material 3 06b second raw material Powder 3 0 8 fused vessel 3 12 forming tool 313 porous cerium oxide plate extraction chamber 314 porous cerium oxide plate body extraction indoor atmosphere gas inlet and exhaust 315 porous cerium oxide plate body 316 porous dioxide矽 plate body pull-out roller 317 arrow 321a molten cerium oxide glass body 321b molten cerium oxide glass body 322 switch plate 323 arrow number 67

Claims (1)

201243115 七、申請專利範圍: 1· 種多晶梦晶棒製造用 矽熔液凝固而製造多晶矽晶 徵在於: /合盗’是用以將 棒的方形二氧化矽容器,其特 是將由多孔質 氧化石夕板體加以組 板體的容積密度, 分中較低。 一氧化矽所構成的平行平板狀多孔質二 合而構成,其中,前述多孔質二氧化矽 在兩平行平面的比表面部分更内部的部 2.如申請專利範圍帛 二氧切容器,並中,彳、+.* ^棒製造用方形 ^ . 、 述方形二氧化矽容器,在内側矣 W分的至少-部份中含有脫表 進前述多晶石夕晶棒脫模。 進劑該脫模促進劑促 3.如申請專利範圍第1項所述的多曰矽曰婊制、 二氧化計哭* I的多曰曰矽明棒製造用方形 ,切〇,其+,前述多孔#二氧切板 度是1,60〜2.1〇 e/cm3,今.+.夕 侑在 ^ g/Cm則述多孔質二氧化矽板體的兩平行 的自表面起深入3 mm厚度的部分的容積密度大於 心部分的厚纟3 _的部分的容積密度,且兩者 有〇.〇5 g/cm3以上的差值。 、 4·如申請專利範圍第 二氧化矽容器,其中, 項所述的多晶石夕晶棒製造用方形 刖述多孔質二氧化矽板體的容積密 68 201243115 度是1.60〜2.10 g/cm3,前述多 質一氧化矽板體的兩平行 平面的自表面起深入3 mm厚度的部分的容積密度,大於 中心部分祕度3 mm的部分的容積密度,且兩者之間具 有0.05 g/cm3以上的差值。 、 5. 如申請專利範圍第1項至第4項中任一項所述的多晶 石夕晶棒製造时形二氧切容器, 石夕容器,其A1濃度是3〜 〃㈣方形二氧化 ςηη Wt.pPm,且OH基濃度是5 〜500 wt.ppm。 又疋 6. 如申請專利範圍第1項至μ 4 @ A y 巧主第4項中任一項所诚曰 =棒製造用方形二氧化砂容器,其中,前述方形I: 矽容器中所含有的Li、N 〜一氧化 wt.ppm,Ti、Cr、Fe、阳 的濃度疋 UO .θ Lu、Zn、Mo、Au的各白沾.曾 度是0.01〜5·〇 wt.ppm。 旳各自的濃 7·如申請專利範圍第5項~、+. & _ a 二氧化石夕容器,其中…述的…夕晶棒製造用方形 Τ· Μ π 、 別述方形二氧化矽容器中所含右的 L!、Na、κ的各自的濃度 斤3有的 μ.。 疋1〜100 wt.Ppm,Ti、rr I: Νι、Cu、Zn、Mo、A Cr、Fe、 的各自的濃度是。.01〜5.0wtppm。 8. 一種多孔質二氣化功Λ β山户 矽板體,其特徵在於: 疋由多孔質二氧化矽 化矽妬轳,田 斤構成的平行平板狀多孔皙_氫 化矽板體,用以構成方 夕札質一氧 〜氧切容器,該方形二氧化石夕 69 201243115 容器是用於將料液凝固而製造多晶石夕晶棒,纟中 :質二氧化石夕板體的容積密度是L6。〜2ι。〆,二行 面的自表面起深入3_厚度的部分的容積密度,大於中 分/的f度3_的部分的容積密度,且兩者之間具有 〇.〇5 g/cm以上的密度差值。 1中如1 =利㈣第8項所述的多孔質二氧切板體, ==〇孔質二氡切板截,在表面部分的至少一部 2含有脫模促進劑’該脫模促進劑促進前述…晶棒 種夕孔質二氧化石夕板體製 是用以製造由多孔質= 特徵在於: 孔質二氧化石夕板體的方法—▲所構成的平行平板狀多 以構成方形二氧化石夕容器,孔質二氧化石夕板體是用 石夕炫液凝固而製造多晶石夕晶;,^氧化石夕容器是用於將 板體的製造方法包含: ’、,該多孔質二氧化石夕 製作二氧切粉來作為原料粉的步驟; 成包含氮氣、氖氣、畜… 的内部的氣氛,取代 氣氛的步驟;、軋、氪氣的任—種以上的惰性氣體 一邊將前述熔融容器的内 氛’-邊將前述原料粉供給炫融:前:惰性氣體氣 藉由一邊將前述炫融容器内盜中的步輝,· 内^的前述惰性氣體氣氛的 201243115 加熱 以及 壓力保持於一大氣壓以上邊將該熔融容器的溫度 至170(TC以上,而使前述原料粉熔融、軟化的步驟; -邊使前述熔融、軟化後的二氧切玻璃自前述炼融 容器的下部通過成型工具而成型為平行平板狀,一邊連續 拉出的步驟。 11.如申請專利範圍第1() 喝所述的夕孔質二氧化石夕板體的 ^方法’其中,在前述多孔質二氧化石夕板體的表面部分 2广部份中含有脫模促進劑’該脫模促進劑促進前述 多晶矽晶棒脫模。 如申請專利範圍第1〇項所 製造方法,其中,在製卜+ 1質一氧化矽板體的 料粉血第塔 ]述原料粉的步驟中製作第-原 村粉興第二原料格,今 J ^ *以第一原料粉是由粒徑0.003〜3 〇 賴的二氧切粉所構成 ° 於前述m K l乐一原科粉疋由平均粒徑小 於月』之第-原料粉的二氧切 質=準累積分佈的抓中的粒徑值來比較控疋以 *,將二==料粉供給至前述熔融容器中的步驟 中央側而進行供Γ粉的供給位置設於前述熔融容器内的 融容器内的前 ,述第二原料粉供給至比前述熔 迷第—原科粉的供給位置更外側的位置。 13.如申請專利範園第Μ 製造方法,以 所迩的多孔質二氧化矽板體的 -’在製作前述原料粉的步驟中製作第一原 201243115 料粉與第二原料粉, mm的_备 '第—原料粉是由粒徑0.003〜3.0 於前述:切粉所構成,前述第二原料粉是由平均粒徑小 質^第―原料粉的二氧化石夕粉所構成,該平均粒徑是以 ί丰累積分佈的观中的粒徑值來比較而得, 中,將將前述原料粉供給至前述溶融容器中的步驟 〇側/ ㈣的供給位置設於前㈣融容器内的 =内:行供給’且將前述第二原料粉供給至比前述溶 喊谷Is内的前述第一扃料 料泰的供給位置更外側的位置。 :造請Γ:=Γ3:所述的多孔質二氧化梦板體的 促進劑’、 纟則述第二原料#甲添加前述脫模 促進劑,而含有前述脫模促進劑。 1VT1專利範圍第…13及14項中任-項所述的多 =二氧化石夕板體的製造方法,其中,在製作前述多孔質 2化石夕板體後,藉由對該多孔質二氧化石夕板體的表面部 =至少-部份塗佈前述脫模促進劑,而含有前述脫模促 72201243115 VII. Patent application scope: 1. Multi-crystal dream crystal rod manufacturing is made by solidification of lanthanum melt to produce polycrystalline twin crystal. The symbol is: / 盗 ' ' is a square cerium oxide container for rods, which will be made of porous The volume density of the group of oxidized stone slabs is lower. a parallel plate-shaped porous material composed of ruthenium oxide, wherein the porous cerium oxide is further inside the surface portion of the two parallel planes. 2. The dioxo-cut container is in the scope of the patent application. , 彳, +.*^ Square manufacturing squares. The square cerium oxide container, at least in part of the inner side 矣W, contains a stripping of the polycrystalline slab. The release agent promotes the release agent 3. As described in the first paragraph of the patent application, the multi-tanning system, the dioxide meter, the crying *I, the multi-cluster rod manufacturing square, the cut, the +, The above-mentioned porous #2 oxidizing plate degree is 1,60 to 2.1 〇e/cm3, and today. +. 侑 侑 in ^ g / Cm, the two parallel self-surfaces of the porous cerium oxide plate are deep into the thickness of 3 mm. The bulk density of the portion is greater than the bulk density of the portion of the core portion of the thick 纟3 _, and both have a difference of 〇.5 g/cm3 or more. 4. The patented range of the second cerium oxide container, wherein the polycrystalline slab ingots are manufactured in a square shape to describe the volume density of the porous cerium oxide plate. 201243115 degrees is 1.60~2.10 g/cm3 The bulk density of the portion of the two parallel planes of the multi-massed ruthenium oxide plate deeper than 3 mm from the surface, and the bulk density of the portion having a depth of 3 mm from the center portion, and 0.05 g/cm 3 therebetween The difference above. 5. The polycrystalline tangent rod according to any one of claims 1 to 4, wherein the Axis container has a concentration of A1 of 3 to 〃 (tetra) square dioxide. Σηη Wt.pPm, and the OH group concentration is 5 to 500 wt. ppm.疋6. As claimed in the first paragraph of the patent application, the fourth aspect of the invention is in accordance with any of the fourth item: the square sand dioxide container for rod manufacturing, wherein the square I: the container contains Li, N ~ oxidized wt. ppm, Ti, Cr, Fe, cation concentration 疋 UO. θ Lu, Zn, Mo, Au, each white dip. The degree is 0.01~5·〇wt.ppm.旳 旳 浓 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Each of the right L!, Na, and κ has a concentration of μ.疋1 to 100 wt. Ppm, Ti, rr I: The respective concentrations of Νι, Cu, Zn, Mo, A Cr, and Fe are. .01~5.0wtppm. 8. A porous two-gas hydrazine Λ β 山 矽 矽 , , , , , , , , , 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山 山Fangxizao-oxygen-oxygen-cut container, the square dioxide dioxide eve 69 201243115 The container is used to solidify the liquid to produce a polycrystalline slab, and the volume density of the slab is: L6. ~2ι. 〆, the bulk density of the portion of the two-row surface from the surface deeper than the thickness of 3_ is greater than the bulk density of the portion of the middle-point/f-degree 3_, and has a density of 〇.〇5 g/cm or more therebetween Difference. In the case of 1 = Li (4), the porous dioxate plate body according to Item 8, == 〇 质 氡 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The agent promotes the above-mentioned...the crystal rod type of the smectite-type smectite-type slab system is used to manufacture the parallel plate shape composed of the porous type = the characteristic of the porous sulphur dioxide slab - ▲ In the oxidized stone eve container, the porous smectite dioxide plate is solidified by using Shi Xi Xuan liquid to produce polycrystalline sapphire crystal; and the oxidized sapphire container is used for the method for manufacturing the plate body: ',, the porous a step of preparing a dioxo-cut powder as a raw material powder in the form of a raw material powder; a step of replacing the atmosphere with an atmosphere containing nitrogen, helium, and animal; and an inert gas of any one or more of rolling and helium The raw material powder is supplied to the inside of the molten container to the front side of the molten container: before: the inert gas gas is heated by the 201243115 of the inert gas atmosphere of the stepping gas inside the molten container; Pressure is maintained above atmospheric pressure The temperature of the molten vessel is 170 (TC or more, and the raw material powder is melted and softened); and the molten and softened dioxometer is molded into a parallel flat plate from a lower portion of the smelting vessel through a molding tool. a step of continuously drawing out on the one side. 11. The method according to claim 1 (1), wherein the surface of the porous porous silica stone is on the surface of the porous porphyrit The part 2 contains a release promoter, and the release promoter promotes the demolding of the polycrystalline twin rod. The method of the first aspect of the patent application, wherein the ruthenium + 1 ruthenium oxide plate In the step of describing the raw material powder, the first raw material powder is made of the first raw material powder, which is composed of a dioxy-cut powder having a particle diameter of 0.003 to 3 Å. In the above m K l Le Yi original powder, the average particle size is less than the monthly particle size of the raw material powder of the dioxate = quasi-accumulated distribution of the particle size value to compare the control to *, the second == Feeding the powder to the center side of the step in the melting vessel Before the supply position of the tantalum powder is provided in the melting container in the melting vessel, the second raw material powder is supplied to a position outside the supply position of the melter first-original powder. Μ The manufacturing method is to prepare the first original 201243115 powder and the second raw material powder in the step of preparing the raw material powder by the porous porous cerium oxide plate, and the raw material powder of mm is composed of The particle size is 0.003 to 3.0, which is composed of the above-mentioned cut powder, and the second raw material powder is composed of a small amount of the average particle diameter of the raw material powder, which is cumulatively distributed by ίFeng. Comparing the particle diameter values in the observation, wherein the supply side of the raw material powder is supplied to the molten vessel, and the supply position of the step (4) is set in the inside of the front (four) melting vessel: row supply 'and the foregoing The second raw material powder is supplied to a position outside the supply position of the first mash material in the squeaking valley Is. : 造 Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔 多孔The method for producing a multi-type smectite plate according to any one of the above-mentioned items of the present invention, wherein, after the porous 2 fossil slab is produced, the porous dioxide is oxidized The surface portion of the stone plate body = at least partially coated with the above-mentioned release promoter, and contains the aforementioned release agent 72
TW100144699A 2011-02-01 2011-12-05 Rectangular silica container for production of polycrystalline silicon ingot, porous silica plate and method for producing same TW201243115A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011019830 2011-02-01
JP2011049356A JP5762777B2 (en) 2011-02-01 2011-03-07 Square silica container for producing polycrystalline silicon ingot, porous silica plate and method for producing the same
JP2011067263A JP5762784B2 (en) 2011-03-25 2011-03-25 Square silica container for producing polycrystalline silicon ingot, porous silica plate and method for producing the same

Publications (1)

Publication Number Publication Date
TW201243115A true TW201243115A (en) 2012-11-01

Family

ID=48093746

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100144699A TW201243115A (en) 2011-02-01 2011-12-05 Rectangular silica container for production of polycrystalline silicon ingot, porous silica plate and method for producing same

Country Status (1)

Country Link
TW (1) TW201243115A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI588445B (en) * 2016-12-20 2017-06-21 Circle area measurement tools
TWI651284B (en) * 2016-07-29 2019-02-21 友達晶材股份有限公司 Container for manufacturing bismuth ingot, method for producing same, and method for producing crystalline bismuth ingot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651284B (en) * 2016-07-29 2019-02-21 友達晶材股份有限公司 Container for manufacturing bismuth ingot, method for producing same, and method for producing crystalline bismuth ingot
US10450669B2 (en) 2016-07-29 2019-10-22 Auo Crystal Corporation Container for silicon ingot fabrication and manufacturing method thereof, and method for manufacturing crystalline silicon ingot
TWI588445B (en) * 2016-12-20 2017-06-21 Circle area measurement tools

Similar Documents

Publication Publication Date Title
US8431070B2 (en) Mold forming and molding method
CN103649383B (en) Pulling silicon single crystal silica container and manufacture method thereof
KR101645663B1 (en) Silica vessel for pulling up single crystal silicon and process for producing same
CN102648310B (en) The High throughput recrystallization of semiconductor material
WO2015157538A1 (en) Method and material for lithium ion battery anodes
EP3020686A1 (en) Silicon nitride powder for mold release agent of casting mold for casting polycrystalline silicon ingot and method for manufacturing said silicon nitride powder, slurry containing said silicon nitride powder, casting mold for casting polycrystalline silicon ingot and method for manufacturing same, and method for manufacturing polycrystalline silicon ingot cast using said casting mold
TW201113229A (en) Silica vessel and process for producing same
TW200914371A (en) Processing of fine silicon powder to produce bulk silicon
TW201119958A (en) Silica container and method for producing the same
TW201111305A (en) Silica container and method for producing same
TW201026915A (en) Methods for preparing a melt of silicon powder for silicon crystal growth
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
TW201239145A (en) Polycrystalline silicon wafer
TW201243115A (en) Rectangular silica container for production of polycrystalline silicon ingot, porous silica plate and method for producing same
TW201345852A (en) Silica container for pulling up monoctrystalline silicon and preparation method thereof
US9352969B2 (en) Process for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon
EP2725122A1 (en) Silica vessel for drawing up monocrystalline silicon and method for producing same
CN102808139A (en) Method for preparing magnesium-base amorphous alloy strip
CN103298983B (en) Crucible
JP2012102358A (en) METHOD FOR PRODUCING Cu-Ga ALLOY POWDER, Cu-Ga ALLOY POWDER, METHOD FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET AND Cu-Ga ALLOY SPUTTERING TARGET
JP2016003157A (en) Silicon nitride powder for mold release agent of mold for molding polycrystalline silicon ingot and manufacturing method therefor, silicon nitride powder-containing slurry for mold release agent of mold for molding polycrystalline silicon ingot, and mold for molding polycrystalline silicone ingot and manufacturing method therefor
CN108002389B (en) The method and silicon powder of zinc bismuth alloy coated Si magnesium granules preparation foam-like silicon powder
CN108039485B (en) Foam-like silicon powder is with preparation method and using its lithium ion battery
CN108017057B (en) The method and silicon powder of tin-indium alloy coated Si magnesium granules preparation foam-like silicon powder
CN107999781B (en) The method and ferrosilicon composite powder of zinc bismuth alloy cladding magnesium ferrosilicon particle preparation ferrosilicon powder