TW201242048A - Thin-film solar cell - Google Patents

Thin-film solar cell Download PDF

Info

Publication number
TW201242048A
TW201242048A TW100113058A TW100113058A TW201242048A TW 201242048 A TW201242048 A TW 201242048A TW 100113058 A TW100113058 A TW 100113058A TW 100113058 A TW100113058 A TW 100113058A TW 201242048 A TW201242048 A TW 201242048A
Authority
TW
Taiwan
Prior art keywords
layer
type
germanium
solar cell
film solar
Prior art date
Application number
TW100113058A
Other languages
Chinese (zh)
Other versions
TWI418043B (en
Inventor
Chen-Wei Peng
Chun-Hsiung Lu
Original Assignee
Nexpower Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexpower Technology Corp filed Critical Nexpower Technology Corp
Priority to TW100113058A priority Critical patent/TWI418043B/en
Publication of TW201242048A publication Critical patent/TW201242048A/en
Application granted granted Critical
Publication of TWI418043B publication Critical patent/TWI418043B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A thin-film solar cell is disclosed. The thin-film solar cell includes a substrate layer, a first electrode layer, a P-type microcrystalline silicon semiconductor layer, a I-type semiconductor layer, a first N-type microcrystalline silicon layer, a N-type silicon oxide layer, a second N-type microcrystalline silicon layer and a second electrode layer. The thin-film solar cell provides with the effect of increasing the photoelectric conversion efficiency by forming the first N-type microcrystalline silicon layer, the N-type silicon oxide layer, and the second N-type microcrystalline silicon layer sequentially before the step of forming the second electrode layer.

Description

201242048 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於一種薄膜太陽能電池,特別是一種將第 二電極層形成於第一N型微晶矽層、N型氧化矽層及第二N 型微晶矽層上的薄膜太陽能電池。 【先前技術】 [0002] 按,目前由於國際能源短缺,而世界各國一直持續研發 各種可行之替代能源,而其中又以太陽能發電之太陽電 0 池最受到矚目,太陽電池係具有使用方便、取之不盡、 用之不竭、無廢棄物、無污染、無轉動部份、無噪音、 可阻隔輻射熱、使用壽命長、尺寸可隨意變化、並與建 築物作結合及普及化等優點。 [0003] 然’傳統單一P-I-N堆疊型微晶矽太陽能電池,雖具一定 之光電轉換效率,但於實際應用上仍希望藉由提昇其各 項電特性並達到高效率光電轉換之目標。 【發明内容】 C) [0004]有鑑於此,本發明之目的就是在提供一種薄膜太陽能電 池’以增加薄膜太陽能電池的光電轉換效率。 [0005] 100113058 緣是,為達上述目的,依本發明之薄膜太陽能電池,包 含:基板層、位於基板層上的第一電極層、位於第一電 極層上的P型微晶矽半導體層、位於p型微晶矽半導體層 上的I型半導體層 '位於I型半導體層上的第一 N型微晶矽 層、位於第一N型微晶矽層上的N型氧化矽層、位於N型氧 切層之上的第二請微晶傾以及位於第二n型微晶石夕 層的第二電極層。其中,N型氧化矽層更可以是N型非晶 1002021766-0 表單編號A0101 第3頁/共16頁 201242048 質氧化矽構成且厚度介於0至800埃。 [0006] 又,本發明更提出一種薄膜太陽能電池,包含:基板層 、位於基板層上的第一電極層、位於第一電極層上的光 吸收層、位於光吸收層上的Ρ型微晶矽半導體層、位於Ρ 型微晶矽半導體層上的I型半導體層、位於I型半導體層 上的第一Ν型微晶矽層、位於第一Ν型微晶矽層上的Ν型氧 化矽層、位於Ν型氧化矽層之上的第二Ν型微晶矽層以及 位於第二Ν型微晶矽層的第二電極層。其中,Ν型氧化矽 層更可以是Ν型非晶質氧化矽構成,光吸收層更可以是非 晶質矽(a-Si cell)或非晶質鍺構成。此外,第一 Ν型微 晶矽層及二N型微晶矽層之厚度係較佳介於0至200埃以及 N型氧化矽層之厚度係較佳介於0至800埃。 [0007] 另外,本發明更提出一種薄膜太陽能電池,包含:基板 層、位於基板層上的第一電極層、位於第一電極層上的 第一光吸收層、位於第一光吸收層上的第二光吸收層, 位於第二光吸收層上的P型微晶矽半導體層、位於P型微 晶矽半導體層上的I型半導體層、位於I型半導體層上的 第一N型微晶矽層、位於第一N型微晶矽層上的N型氧化矽 層、位於N型氧化矽層之上的第二N型微晶矽層以及位於 第二N型微晶矽層的第二電極層。其中,N型氧化矽層更 可以是N型非晶質氧化矽構成,光吸收層更可以是非晶質 矽或非晶質鍺構成。此外,第二光吸收層可以是P-I-N型 半導體層。 [0008] 承上所述,依本發明之薄膜太陽能電池,其可具下述優 100113058 表單編號A0101 第4頁/共16頁 1002021766-0 201242048 [0009] [0010] ο [0011]201242048 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a thin film solar cell, and more particularly to a second electrode layer formed on a first N-type microcrystalline germanium layer and an N-type germanium oxide layer And a thin film solar cell on the second N-type microcrystalline germanium layer. [Previous Technology] [0002] According to the current international energy shortage, countries around the world have been continuously researching and developing various viable alternative energy sources, and the solar power pool with solar power generation has attracted the most attention. The solar battery system is easy to use and take. Inexhaustible, inexhaustible, no waste, no pollution, no rotating parts, no noise, can block radiant heat, long service life, size can be changed at will, and combined with the building and popularization. [0003] However, the conventional single P-I-N stacked microcrystalline germanium solar cell has a certain photoelectric conversion efficiency, but it is still desired in practical applications to enhance its various electrical characteristics and achieve the goal of high efficiency photoelectric conversion. SUMMARY OF THE INVENTION C) [0004] In view of the above, it is an object of the present invention to provide a thin film solar cell' to increase the photoelectric conversion efficiency of a thin film solar cell. [0005] 100113058 is a thin film solar cell according to the present invention, comprising: a substrate layer, a first electrode layer on the substrate layer, a P-type microcrystalline germanium semiconductor layer on the first electrode layer, a first N-type microcrystalline germanium layer on the I-type semiconductor layer, an N-type germanium oxide layer on the first N-type microcrystalline germanium layer, and a N-type semiconductor layer on the p-type microcrystalline germanium semiconductor layer A second microcrystalline tilt on the oxygen-cut layer and a second electrode layer on the second n-type microcrystalline layer. Among them, the N-type yttrium oxide layer can be N-type amorphous 1002021766-0 Form No. A0101 Page 3 of 16 201242048 The yttrium oxide is composed of a thickness of 0 to 800 angstroms. Further, the present invention further provides a thin film solar cell comprising: a substrate layer, a first electrode layer on the substrate layer, a light absorbing layer on the first electrode layer, and a bismuth type crystallite on the light absorbing layer. a germanium semiconductor layer, an I-type semiconductor layer on the germanium-type microcrystalline germanium semiconductor layer, a first germanium-type microcrystalline germanium layer on the I-type semiconductor layer, and a germanium-type germanium oxide layer on the first germanium-type microcrystalline germanium layer a layer, a second germanium-type microcrystalline germanium layer on the germanium-type germanium oxide layer, and a second electrode layer on the second germanium microcrystalline germanium layer. Among them, the yttrium-type yttrium oxide layer may be composed of yttrium-type amorphous yttrium oxide, and the light absorbing layer may be composed of a-Si cell or amorphous yttrium. Further, the thickness of the first germanium type microcrystalline germanium layer and the two N type microcrystalline germanium layer is preferably from 0 to 200 angstroms and the thickness of the N type germanium oxide layer is preferably from 0 to 800 angstroms. In addition, the present invention further provides a thin film solar cell comprising: a substrate layer, a first electrode layer on the substrate layer, a first light absorbing layer on the first electrode layer, and a first light absorbing layer a second light absorbing layer, a P-type microcrystalline germanium semiconductor layer on the second light absorbing layer, an I-type semiconductor layer on the P-type microcrystalline germanium semiconductor layer, and a first N-type microcrystal on the I-type semiconductor layer a germanium layer, an N-type germanium oxide layer on the first N-type microcrystalline germanium layer, a second N-type microcrystalline germanium layer on the N-type germanium oxide layer, and a second layer in the second N-type microcrystalline germanium layer Electrode layer. Among them, the N-type yttrium oxide layer may be composed of N-type amorphous ruthenium oxide, and the light absorbing layer may be composed of amorphous ruthenium or amorphous ruthenium. Further, the second light absorbing layer may be a P-I-N type semiconductor layer. [0008] As described above, the thin film solar cell according to the present invention can have the following advantages: 100113058 Form No. A0101 Page 4 / Total 16 Page 1002021766-0 201242048 [0009] [0011]

100113058 本發明之薄膜太陽能電池係透過在i型半導體層上形成第 .-N型微晶石夕層、N型氧化發層以及第二N型微晶㈣以增 加光電轉換效率。 兹為使責審查委㈣本”之技賴徵及所達到之功效 有更進-步之_與_,謹佐讀佳之實施例及配合 詳細之說明如後。 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之薄膜 太陽能電池,為使便於理解,下述實施例中之相同元件 係以相同之符號標示來說明。 請參閱第1圖,第1圖係為本發明之薄膜太陽能電池之第 -實施例之示意圖。第i圖中’本發明之薄膜太陽能電池 之第-實施例包含基板層2QG、第—電極層210、p型微晶 石夕半導體層220、I型半導體層23〇、第—N型微晶梦層 240、N型氧化梦層250、第二N型微晶碎層26()以及第二 電極層271其中,第-電極層21G、p型微晶♦半導體層 220、I型半導體層230 '第一 N型微晶矽層24〇、N型氧化 碎層250、第二N型微晶石夕層260以及第二電極層27〇係依 序形成於基板層200上。詳言之,傳統的卩—丨^型半導體 層的薄膜太陽能電池巾’ P-I-N型半導體層係分別由單層 的P型半導體層、I型半導體層及請半導體層組成,然而 ,發月之薄膜太%能電池係具有第一 N型微晶石夕層mo、n 一化♦層250、第一 N型微晶發層260,其中,第一 n型 :晶矽層240與第二N型微晶矽層260係用來增加表面積, 而N型氣化矽層250係用來避免光被吸收。另外,在此實 I編敢A0101 第5頁/共16頁 1002021766-0 201242048 施例中,第一 N型微晶矽層240與第二N型微晶矽層260之 厚度係例如較佳介於0至200埃以及N型氧化矽層250係由 N型非晶質氧化矽構成且厚度係較佳介於0至800埃。 [0012] 一般而言,在製作薄膜太陽能電池時,通常會在真空的 狀態下以物理氣相沉積法或化學氣相沉積法沉積所需的 材料層,而P型半導體層係指在本徵材質中加入的雜質可 產生多餘的電洞,亦即以電洞構成多數載子的半導體, 而N型半導體層係指在本徵材質中加入的雜質可產生多餘 的電子,亦即以電子構成多數載子的半導體。此外I型半 導體層内具有鑲埋混合和矽烷氣體及氨氣而形成的微晶 矽層。本發明係將傳統的P-I-N半導體層中的N型半導體 層以三層結構取代,換言之,N型半導體層由第一N型微 晶矽層240、N型氧化矽層250以及第二N型微晶矽層260 ,藉以增加光電轉換效率的效果。 [0013] 又,本發明更提出一種薄膜太陽能電池之第二實施例, 請參閱第2圖,第2圖係為本發明之薄膜太陽能電池之第 二實施例之示意圖。第2圖中,包含基板層200、第一電 極層210、光吸收層280、P型微晶矽半導體層220、I型 半導體層230、第一N型微晶矽層240、N型氧化矽層250 、第二N型微晶矽層260以及第二電極層270。其中,第一 電極層210、光吸收層280、P型微晶矽半導體層220、I 型半導體層230、第一 N型微晶矽層240、N型氧化矽層 250、第二N型微晶矽層260以及第二電極層270係依序形 成於基板層200上。在這邊特別提到的是,本發明之第二 實施例中更具有光吸收層280,此亦為第二實施例與第一 100113058 表單編號A0101 第6頁/共16頁 1002021766-0 201242048 實施例之相異處。另外’在第二實施例中,第一Ν型微晶 矽層240與第二Ν型微晶矽層260之厚度係例如較佳介於〇 至200埃以及Ν型氧化矽層250係非晶質氧化矽構成,其厚 度係較佳介於〇至800埃。此外,光吸收層280係例如為非 晶質矽或非晶質鍺構成。換言之,光吸收層28〇之材質係 例如♦或鍺。 [0014] Ο100113058 The thin film solar cell of the present invention transmits a -N-type microcrystalline layer, an N-type oxide layer, and a second N-type crystallite (4) on the i-type semiconductor layer to increase photoelectric conversion efficiency. In order to make the responsibilities of the Responsible Review Committee (4) and the efficiencies and achievable effects, please read the examples and the detailed explanations as follows. [Embodiment] The following will refer to the relevant BRIEF DESCRIPTION OF THE DRAWINGS The same elements in the following embodiments are denoted by the same reference numerals for the sake of easy understanding. For the sake of understanding, please refer to FIG. A schematic view of a first embodiment of a thin film solar cell of the invention. In the first embodiment, the first embodiment of the thin film solar cell of the present invention comprises a substrate layer 2QG, a first electrode layer 210, and a p-type microcrystalline semiconductor layer 220. The I-type semiconductor layer 23, the N-type microcrystal layer 240, the N-type oxidized dream layer 250, the second N-type microcrystalline layer 26 (), and the second electrode layer 271, wherein the first electrode layer 21G, p Type microcrystalline ♦ semiconductor layer 220, I-type semiconductor layer 230 'first N-type microcrystalline germanium layer 24 〇, N-type oxidized fragment 250, second N-type microcrystalline layer 260 and second electrode layer 27 Formed on the substrate layer 200 in sequence. In detail, the film of the conventional germanium-type semiconductor layer is too The PIN type semiconductor layer is composed of a single-layer P-type semiconductor layer, an I-type semiconductor layer, and a semiconductor layer. However, the film of the moon is too%, and the battery has the first N-type microcrystalline stone. a layer mo, an n-type layer 250, a first N-type microcrystalline layer 260, wherein the first n-type: the germanium layer 240 and the second N-type microcrystalline layer 260 are used to increase the surface area, and the N-type The vaporized ruthenium layer 250 is used to prevent the light from being absorbed. In addition, in the embodiment of the present invention, the first N-type microcrystalline layer 240 and the second N are used in the embodiment. The thickness of the type microcrystalline germanium layer 260 is preferably, for example, 0 to 200 angstroms and the n-type yttrium oxide layer 250 is composed of N-type amorphous yttria and preferably has a thickness of 0 to 800 angstroms. In the production of thin film solar cells, the desired material layer is usually deposited by physical vapor deposition or chemical vapor deposition in a vacuum state, and the P-type semiconductor layer refers to impurities added in the intrinsic material. Excessive holes can be generated, that is, a semiconductor in which a majority of carriers are formed by holes, and an N-type semiconductor layer refers to Impurities added to the material can generate excess electrons, that is, semiconductors that form a majority of carriers by electrons. Further, the type I semiconductor layer has a microcrystalline germanium layer formed by mixing and mixing decane gas and ammonia gas. The N-type semiconductor layer in the conventional PIN semiconductor layer is replaced by a three-layer structure, in other words, the N-type semiconductor layer is composed of a first N-type microcrystalline germanium layer 240, an N-type germanium oxide layer 250, and a second N-type microcrystalline germanium layer. 260, in order to increase the effect of photoelectric conversion efficiency. [0013] Furthermore, the present invention further proposes a second embodiment of a thin film solar cell, please refer to FIG. 2, and FIG. 2 is a second embodiment of the thin film solar cell of the present invention. A schematic diagram of an example. 2, the substrate layer 200, the first electrode layer 210, the light absorbing layer 280, the P-type microcrystalline germanium semiconductor layer 220, the I-type semiconductor layer 230, the first N-type microcrystalline germanium layer 240, and the N-type germanium oxide are included. The layer 250, the second N-type microcrystalline germanium layer 260, and the second electrode layer 270. The first electrode layer 210, the light absorbing layer 280, the P-type microcrystalline germanium semiconductor layer 220, the I-type semiconductor layer 230, the first N-type microcrystalline germanium layer 240, the N-type germanium oxide layer 250, and the second N-type micro The wafer layer 260 and the second electrode layer 270 are sequentially formed on the substrate layer 200. It is specifically mentioned here that the second embodiment of the invention further has a light absorbing layer 280, which is also the second embodiment and the first 100113058 form number A0101 page 6 / total 16 pages 1002021766-0 201242048 implementation The difference between the examples. In addition, in the second embodiment, the thickness of the first tantalum-type microcrystalline germanium layer 240 and the second tantalum-type microcrystalline germanium layer 260 is preferably, for example, between 〇 and 200 angstroms and the yttrium-type yttrium oxide layer 250 is amorphous. It is composed of cerium oxide and its thickness is preferably from 〇 to 800 angstroms. Further, the light absorbing layer 280 is made of, for example, an amorphous germanium or an amorphous germanium. In other words, the material of the light absorbing layer 28 is, for example, ♦ or 锗. [0014] Ο

另外,本發明之薄膜太陽能電池更提出第三實施例,請 參閱第3圖,第3圖係為本發明之薄膜太陽能電池之第三 實施例之示意圖。第3圖中包含基板層2〇〇、第—電極層 210 '第一光吸收層29〇、第二光吸收層3〇〇、ρ型微晶矽 半導體層220、I型半導體層230、第一Ν型微晶矽層24〇 、Ν型氡化矽層250、第二Ν型微晶矽層26〇以及第二電極 層270。其中,第一電極層21〇、第—光吸收層29〇、第 二光吸收層300、Ρ型微晶矽半導體層22()、1型半導體層 230、第一Ν型微晶矽層24〇、Ν型氧化矽層25〇、第二Ν型 微晶石夕層260以及第二電極層27〇係依序形成於基板層 2 0 0上在這邊特別提到的是,本發明之第三實施例中具 有兩個光吸收層,此亦為第三實施例與第二實施例之相 異處。另外,在第三實施例中,第—Ν型微晶矽層24〇與 第二Ν型微晶矽層26〇之厚度係例如較佳介於〇至2〇〇埃以 及Ν型氧化矽層25〇係~型非晶質氧化矽構成,其中,厚度 係較佳介於〇至800埃,此外,第一光吸收層29〇係例如為 非晶質咬或非晶質錯構成,亦即第—光吸收層29Q及第二 光吸收層300之材質係例如矽或鍺。第二光吸收層3〇〇係 例如為P-I-N型半導體層。 100113058 表單編號A0101 第7頁/共16頁 1002021766-0 201242048 [0015] 除此之外,這裡要特別提到的是,上開所述之第一實施 例至第三實施例,第一 N型微晶矽層240與第二N型微晶矽 層260之材質亦可利用N型微晶鍺取代。 [0016] 為證明本發明之薄膜太陽能電池確實可以增加光電轉換 效率,在此提出薄膜太陽能電池之一比較例,接下來請 一併參閱第2及4至6圖,第4圖係為薄膜太陽能電池之比 較例之示意圖、第5圖係為第二實施例之N型氧化矽層之 厚度分別為0、300、600及900埃之光電轉換效率、填充 因子、開路電壓及短路電流密度之比較圖以及第6圖係為 第二實施例之N型氧化矽層之厚度分別為0、200及300埃 之光電轉換效率、填充因子、開路電壓及短路電流密度 之比較圖,其中,第5圖及第6圖中N型氧化矽層之厚度為 0埃的光電轉換效率相關之測量值係代表比較例之測量值 。第2及4圖中,此比較例係在基板層400上依序形成第一 電極層410、光吸收層480、P型半導體層420、I型半導 體層430、N型微晶矽層440以及第二電極層470。將此比 較例與本發明之薄膜太陽能電池之第二實施例比較,其 中,比較例的N型微晶矽層430之厚度與第二實施例的第 一N型微晶矽層240及第二N型微晶矽層260之厚度總合相 同,並且第二實施例的N型氧化矽層250之厚度係200埃, 換言之,第5圖及第6圖中N型氧化矽層之厚度為0埃的情 況即為比較例之測量結果。另外,一般在計算薄膜太陽 能電池的光電轉換效率時,會量測三個數值,分別為: 填充因子(FF)、開路電壓(Voc)、短路電流密度(Jsc), 其中此三項數值與光電轉換效率有正相關。經過測量比 100113058 表單編號A0101 第8頁/共16頁 1002021766-0 201242048 較例及第二實施例的 填充因子為0.73、短路雷/ 後得知’比較例的 為132,經過計| ,流密度為U.56iX及開路電麼 U. 31,而第後可得知比較例的先電轉換效率為 第一實施例的填充因 ^為12息X及開路電4過:广:電流密 第二實施例的光電轉換致率和.93 之後可得知 圖之光電轉換效率,其觀察第5及6 埃的厚度下皆具右私、型氧化石夕層在200、3〇〇及_ Ο [0017] Ο [0018] 可約略估計N型氧化H的光電轉換效率’並且根據第5圖 更好的光電轉換效率。t在0至8〇0埃可具有相對於比較例 電池確實可以掸 卩此觀之,本發明之薄膜太陽能 見J Μ增加光電 提到的是,本發明之笼 在廷邊要特別 微晶石夕層_、Ν型氧Γ太陽能電池中,在形成第一 _ 之後,即形成第二及第二_晶㈣⑽ 的光電轉換效率之效^層270以達到增加薄媒太陽能電池 以上所述僅為舉例性, 發明之精神與範嘴,㈣非為限制性者。任何未脫離本 應包含於後附之_請專仃之等效修改或變更,均 【圖式簡單說明】 扪圖係為本發明之薄膜太陽能 圖。 之第一實施例之示意 第2圖係為本發明之冑 圖。 相太陽能電池之第二實_之示意 第_為本發明之薄m 圖。 义第二實施例之示意 100113058 表單編號 第 頁/共16頁 1002021766-0 201242048 第4圖係為薄膜太陽能電池之比較例之示意圖。 第5圖係為第二實施例之N型氧化矽層之厚度分別為0、 300、600及900埃之光電轉換效率、填充因子、開路電 壓及短路電流密度之比較圖。 第6圖係為第二實施例之N型氧化矽層之厚度分別為0、 200及300埃之光電轉換效率、填充因子、開路電壓及短 路電流密度之比較圖。 【主要元件符號說明】 [0019] 20 0 :基板層 210 :第一電極層 220 : P型微晶矽半導體層 230 : I型半導體層 240 :第一N型微晶矽層 250 : N型氧化矽層 260 :第二N型微晶矽層 270 :第二電極層 280 :光吸收層 290 ··第一光吸收層 300 :第二光吸收層 400 :基板層 410 :第一電極層 420 : P型半導體層 430 : I型半導體層 440 : N型微晶矽層 470 :第二電極層 480 :光吸收層Further, a third embodiment of the thin film solar cell of the present invention is described. Referring to Fig. 3, Fig. 3 is a schematic view showing a third embodiment of the thin film solar cell of the present invention. 3 includes a substrate layer 2, a first electrode layer 210', a first light absorbing layer 29A, a second light absorbing layer 3A, a p-type microcrystalline semiconductor layer 220, an I-type semiconductor layer 230, and a first A germanium type microcrystalline germanium layer 24, a germanium germanium germanium layer 250, a second germanium microcrystalline germanium layer 26A, and a second electrode layer 270. The first electrode layer 21, the first light absorbing layer 29, the second light absorbing layer 300, the 微-type microcrystalline semiconductor layer 22, the 1-type semiconductor layer 230, and the first 微-type microcrystalline layer 24 The ruthenium, ruthenium-type ruthenium oxide layer 25 〇, the second ruthenium-type ruthenium layer 260 and the second electrode layer 27 are sequentially formed on the substrate layer 200. Here, it is specifically mentioned that the present invention The third embodiment has two light absorbing layers, which is also the difference between the third embodiment and the second embodiment. In addition, in the third embodiment, the thickness of the first germanium type microcrystalline germanium layer 24 and the second germanium microcrystalline germanium layer 26 is preferably, for example, between 〇2 Å and Ν 矽 矽 25 The lanthanum-type amorphous yttrium oxide is composed of, wherein the thickness is preferably from 〇 to 800 angstroms, and further, the first light absorbing layer 29 is, for example, an amorphous bite or an amorphous layer, that is, the first- The materials of the light absorbing layer 29Q and the second light absorbing layer 300 are, for example, tantalum or niobium. The second light absorbing layer 3 is, for example, a P-I-N type semiconductor layer. 100113058 Form No. A0101 Page 7 / Total 16 Page 1002021766-0 201242048 [0015] In addition, it is specifically mentioned here that the first to third embodiments described above, the first N type The material of the microcrystalline germanium layer 240 and the second N-type microcrystalline germanium layer 260 may also be replaced by an N-type microcrystalline germanium. [0016] In order to prove that the thin film solar cell of the present invention can indeed increase the photoelectric conversion efficiency, a comparative example of a thin film solar cell is proposed here. Next, please refer to the figures 2 and 4 to 6, and the fourth figure is a thin film solar energy. A schematic diagram of a comparative example of a battery, and FIG. 5 is a comparison of photoelectric conversion efficiency, fill factor, open circuit voltage, and short-circuit current density of the N-type yttrium oxide layer of the second embodiment at thicknesses of 0, 300, 600, and 900 angstroms, respectively. FIG. 6 and FIG. 6 are comparison diagrams of photoelectric conversion efficiency, fill factor, open circuit voltage, and short-circuit current density of the N-type yttrium oxide layer of the second embodiment, respectively, of thicknesses of 0, 200, and 300 angstroms. And the measurement value relating to the photoelectric conversion efficiency of the thickness of the N-type yttrium oxide layer of 0 Å in Fig. 6 represents the measured value of the comparative example. In FIGS. 2 and 4, the comparative example sequentially forms the first electrode layer 410, the light absorbing layer 480, the P-type semiconductor layer 420, the I-type semiconductor layer 430, the N-type microcrystalline germanium layer 440, and the like on the substrate layer 400. Second electrode layer 470. Comparing this comparative example with the second embodiment of the thin film solar cell of the present invention, wherein the thickness of the N-type microcrystalline germanium layer 430 of the comparative example is the same as that of the first N-type microcrystalline germanium layer 240 and the second embodiment. The thickness of the N-type microcrystalline germanium layer 260 is the same, and the thickness of the N-type germanium oxide layer 250 of the second embodiment is 200 angstroms. In other words, the thickness of the N-type yttrium oxide layer in the fifth and sixth figures is 0. The case of angstrom is the measurement result of the comparative example. In addition, generally, when calculating the photoelectric conversion efficiency of a thin film solar cell, three values are measured, namely: a fill factor (FF), an open circuit voltage (Voc), and a short circuit current density (Jsc), wherein the three values and photoelectricity Conversion efficiency is positively correlated. After the measurement ratio 100113058 Form No. A0101 Page 8 / Total 16 Page 1002021766-0 201242048 The filling factor of the comparative example and the second embodiment is 0.73, and the short-circuited thunder / after the 'Comparative Example is 132, the measured |, the flow density U.56iX and open circuit U.31, and the second can be seen that the first embodiment of the first conversion efficiency of the first embodiment of the filling factor is 12 X and open circuit 4: wide: current tight second The photoelectric conversion efficiency of the examples and the photoelectric conversion efficiency of the graph can be known after .93. It is observed that the thickness of the 5th and 6th angstroms has a right-handed, oxidized oxidized layer at 200, 3 〇〇 and _ Ο [ 0017] [0018] The photoelectric conversion efficiency of the N-type oxidation H can be roughly estimated and the photoelectric conversion efficiency is better according to FIG. t can be in the range of 0 to 8 〇 0 Å. It can be seen in comparison with the battery of the comparative example. The thin film solar energy of the present invention is referred to as J Μ. The photoreceptor mentioned that the cage of the present invention has a special microcrystalline stone on the side of the rim. In the 层-_, Ν-type oxyhalide solar cell, after forming the first _, the second and second _ crystal (four) (10) photoelectric conversion efficiency effect layer 270 is formed to increase the thin-film solar cell. For example, the spirit of the invention and the mouth of the invention, (4) are not restrictive. Any equivalent modifications or changes that are not included in the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ BRIEF DESCRIPTION OF THE FIRST EMBODIMENT Fig. 2 is a diagram of the present invention. The second embodiment of the phase solar cell _ is the thin m diagram of the present invention. BRIEF DESCRIPTION OF THE SECOND EMBODIMENT 100113058 Form No. Page / Total 16 1002021766-0 201242048 Figure 4 is a schematic diagram of a comparative example of a thin film solar cell. Fig. 5 is a comparison diagram of the photoelectric conversion efficiency, the filling factor, the open circuit voltage, and the short-circuit current density of the N-type yttrium oxide layer of the second embodiment, which are 0, 300, 600, and 900 angstroms, respectively. Fig. 6 is a comparison diagram of the photoelectric conversion efficiency, the filling factor, the open circuit voltage, and the short-circuit current density of the N-type yttrium oxide layer of the second embodiment, which are 0, 200, and 300 angstroms, respectively. [Description of Main Element Symbols] [0019] 20 0: Substrate layer 210: First electrode layer 220: P-type microcrystalline germanium semiconductor layer 230: I-type semiconductor layer 240: First N-type microcrystalline germanium layer 250: N-type oxidation矽 layer 260: second N-type microcrystalline germanium layer 270: second electrode layer 280: light absorbing layer 290 · first light absorbing layer 300: second light absorbing layer 400: substrate layer 410: first electrode layer 420: P-type semiconductor layer 430: I-type semiconductor layer 440: N-type microcrystalline germanium layer 470: second electrode layer 480: light absorbing layer

表單編號A0HU 100113058 第10頁/共16頁 1002021766-0Form No. A0HU 100113058 Page 10 of 16 1002021766-0

Claims (1)

201242048 七、申請專利範圍: 1 . 一種薄膜太陽能電池,包含: 一基板層; 一第一電極層,位於該基板層上; 一P型微晶矽半導體層,位於該第一電極層上; 一 I型半導體層,位於該P型半導體層上; 一第一 N型微晶矽層,位於該I型半導體層上; 一N型氧化矽層,位於該第一N型微晶矽層上; 一第二N型微晶矽層,位於該N型氧化矽層上;以及 〇 一第二電極層,位於該第二N型微晶矽層上。 2 .如申請專利範圍第1項所述之薄膜太陽能電池,其中該N型 氧化矽層係N型非晶質氧化矽構成且厚度介於0至800埃。 3 . —種薄膜太陽能電池,包含: 一基板層; 一第一電極層,位於該基板層上; 一光吸收層,位於該第一電極層上 0 — P型微晶矽半導體層,位於該光吸收層上; 一I型半導體層,位於該P型微晶矽半導體層上; 一第一 N型微晶矽層,位於該I型半導體層上; 一N型氧化矽層,位於該第一N型微晶矽層上; 一第二N型微晶矽層,位於該N型氧化矽層上;以及 一第二電極層,位於該第二N型微晶矽層上。 4 .如申請專利範圍第3項所述之薄膜太陽能電池,其中該N型 氧化矽層係N型非晶質氧化矽構成。 5 .如申請專利範圍第3項所述之薄膜太陽能電池,其中該光 100113058 表單編號A0101 第11頁/共16頁 1002021766-0 201242048 吸收層係非晶質矽或非晶質鍺構成。 6 .如申請專利範圍第3項所述之薄膜太陽能電池,其中該第 一 N型微晶矽層及第二N型微晶矽層之厚度皆介於0至200 埃及該N型氧化矽層之厚度介於0至800埃。 7 . —種薄膜太陽能電池,包含: 一基板層; 一第一電極層,位於該基板層上; 一第一光吸收層,位於該第一電極層上; 一第二光吸收層,位於該第一光吸收層上; 一P型微晶矽半導體層,位於該第二光吸收層上; 一 I型半導體層,位於該P型微晶矽半導體層上; 一第一N型微晶矽層,位於該I型半導體層上; 一N型氧化矽層,位於該第一N型微晶矽層上; 一第二N型微晶矽層,位於該N型氧化矽層上;以及 一第二電極層,位於該第二N型微晶矽層上。 8 .如申請專利範圍第7項所述之薄膜太陽能電池,其中該N型 氧化矽層係N型非晶質氧化矽構成。 9 .如申請專利範圍第7項所述之薄膜太陽能電池,其中該第 一光吸收層係非晶質石夕或非晶質錯構成。 10 .如申請專利範圍第7項所述之薄膜太陽能電池,其中該第 二光吸收層係P-I-N型半導體層。 100113058 表單編號A0101 第12頁/共16頁 1002021766-0201242048 VII. Patent application scope: 1. A thin film solar cell comprising: a substrate layer; a first electrode layer on the substrate layer; a P-type microcrystalline germanium semiconductor layer on the first electrode layer; An I-type semiconductor layer is disposed on the P-type semiconductor layer; a first N-type microcrystalline germanium layer is disposed on the I-type semiconductor layer; and an N-type germanium oxide layer is disposed on the first N-type microcrystalline germanium layer; a second N-type microcrystalline germanium layer is disposed on the N-type germanium oxide layer; and a second second electrode layer is disposed on the second N-type microcrystalline germanium layer. 2. The thin film solar cell of claim 1, wherein the N-type yttrium oxide layer is composed of N-type amorphous yttria and has a thickness of from 0 to 800 angstroms. 3. A thin film solar cell comprising: a substrate layer; a first electrode layer on the substrate layer; a light absorbing layer on the first electrode layer on the 0-P type microcrystalline germanium semiconductor layer, a light-absorbing layer; an I-type semiconductor layer on the P-type microcrystalline germanium semiconductor layer; a first N-type microcrystalline germanium layer on the I-type semiconductor layer; an N-type germanium oxide layer, located in the first An N-type microcrystalline germanium layer; a second N-type microcrystalline germanium layer on the N-type germanium oxide layer; and a second electrode layer on the second N-type microcrystalline germanium layer. 4. The thin film solar cell according to claim 3, wherein the N-type yttrium oxide layer is composed of N-type amorphous cerium oxide. 5. The thin film solar cell of claim 3, wherein the light 100113058 Form No. A0101 Page 11 of 16 1002021766-0 201242048 The absorbing layer is composed of amorphous germanium or amorphous germanium. 6. The thin film solar cell of claim 3, wherein the first N-type microcrystalline germanium layer and the second N-type microcrystalline germanium layer each have a thickness of 0 to 200 Å. The thickness ranges from 0 to 800 angstroms. 7. A thin film solar cell comprising: a substrate layer; a first electrode layer on the substrate layer; a first light absorbing layer on the first electrode layer; a second light absorbing layer located in the a P-type microcrystalline germanium semiconductor layer on the second light absorbing layer; an I-type semiconductor layer on the P-type microcrystalline germanium semiconductor layer; a first N-type microcrystalline germanium a layer on the I-type semiconductor layer; an N-type yttrium oxide layer on the first N-type microcrystalline germanium layer; a second N-type microcrystalline germanium layer on the N-type yttrium oxide layer; The second electrode layer is located on the second N-type microcrystalline layer. 8. The thin film solar cell according to claim 7, wherein the N-type yttrium oxide layer is composed of N-type amorphous cerium oxide. 9. The thin film solar cell of claim 7, wherein the first light absorbing layer is composed of an amorphous or amorphous material. The thin film solar cell of claim 7, wherein the second light absorbing layer is a P-I-N type semiconductor layer. 100113058 Form No. A0101 Page 12 of 16 1002021766-0
TW100113058A 2011-04-14 2011-04-14 Thin-film solar cell TWI418043B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100113058A TWI418043B (en) 2011-04-14 2011-04-14 Thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100113058A TWI418043B (en) 2011-04-14 2011-04-14 Thin-film solar cell

Publications (2)

Publication Number Publication Date
TW201242048A true TW201242048A (en) 2012-10-16
TWI418043B TWI418043B (en) 2013-12-01

Family

ID=47600228

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113058A TWI418043B (en) 2011-04-14 2011-04-14 Thin-film solar cell

Country Status (1)

Country Link
TW (1) TWI418043B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093854A1 (en) * 2004-03-25 2005-10-06 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
TWI373144B (en) * 2008-03-20 2012-09-21 Nexpower Technology Corp Thin film solar cell and manufacturing method thereof
US20100269896A1 (en) * 2008-09-11 2010-10-28 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
TWI397185B (en) * 2009-02-27 2013-05-21 Nexpower Technology Corp Thin-film solar cells and manufacturing method thereof

Also Published As

Publication number Publication date
TWI418043B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
TWI420700B (en) Solar cell
TWI463682B (en) Heterojunction solar cell having intrinsic amorphous silicon film
JP2014075526A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
TW201227980A (en) Thin film solar cell and method for manufacturing the same
JP2006310503A (en) Laminate type photovoltaic device
TWI424582B (en) Method of fabricating solar cell
WO2009110409A1 (en) Solar cell
JP2012064990A (en) Photoelectric conversion device using semiconductor nano materials and manufacturing method thereof
KR101264368B1 (en) Solar cell having multilayered schottky juction layer
TWI488322B (en) Manufacturing method of thin film solar cells and thin film solar cells thereof
JP2012231142A (en) Solar cell
JP2012038783A (en) Photoelectric conversion element
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
TW201242048A (en) Thin-film solar cell
KR101212486B1 (en) Hetero-junction solar cell and method for fabricating the same
JP5975841B2 (en) Manufacturing method of photovoltaic device and photovoltaic device
TWI513022B (en) Thin-film solar cell and manufacturing method thereof
KR20090110048A (en) Transparent conductive thin film, solar cell and the method thereof
KR101212485B1 (en) Hetero-junction solar cell and method for fabricating the same
JP2004335733A (en) Thin film solar cell
TW201801339A (en) Photovoltaic element
JP2004335734A (en) Thin film solar cell
TWI475704B (en) Thin film solar cell and manufacturing method thereof
Baik et al. Towards light-trapping free amorphous Si only multi-junction solar cells
TWI435464B (en) Thin-film solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees