TW201241157A - Phosphor composition for LEDs - Google Patents

Phosphor composition for LEDs Download PDF

Info

Publication number
TW201241157A
TW201241157A TW101108187A TW101108187A TW201241157A TW 201241157 A TW201241157 A TW 201241157A TW 101108187 A TW101108187 A TW 101108187A TW 101108187 A TW101108187 A TW 101108187A TW 201241157 A TW201241157 A TW 201241157A
Authority
TW
Taiwan
Prior art keywords
phosphor
doped
range
composition
led
Prior art date
Application number
TW101108187A
Other languages
Chinese (zh)
Inventor
Peter Josef Schmidt
Matthias Heidemann
Andreas Tuecks
Hans-Helmut Bechtel
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201241157A publication Critical patent/TW201241157A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

The invention relates to a phosphor composition for LEDs with flat absorption curve in the blue spectral range (430 - 460 nm) by having a Ce (III) doped phosphor and a Eu (II) doped phosphor. The increase of absorption of the Ce(III) doped phosphor from 430 nm to 460 nm compensates the decrease of absorption of the Eu(II) phosphor leading to a wanted flattened absorption behavior of the mixture.

Description

201241157 六、發明說明: 【發明所屬之技術領域】 本發明係關於發光二極體(LED)之領域。特定言之,本 發明係關於增強型均一發射磷光體轉換LED光總成 . (PcLED)及其之有效率製造。 _ 【先前技術】 藍色泵激波長之與製程有關之變化導致碟光體轉換之 LED燈中之某一色彩分佈,且因此可減少由pcLED展示不 當色彩點(所謂「分色(binning)」)而造成之總產品良率。 儘管已在此項技術中(例如,在US2〇060057753中)提議 此問題之若干解決方案,但仍存在對能夠至少部分克服分 色問題(尤其針對晶圓級尺度上之應用)之替代方法的持續 需要。 【發明内容】 本發明之一目標為提供一種用於LED之磷光體組合物, 可藉由該磷光體組合物而至少部分地克服分色(尤其針對 在一晶圓級尺度上之應用)。 , 此目標係藉由如本發明之技術方案1之磷光體組合物而 實現。因此,提供一種用於一led之磷光體組合物,其包201241157 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to the field of light-emitting diodes (LEDs). In particular, the present invention relates to an enhanced uniform emission phosphor converted LED light assembly (PcLED) and its efficient manufacture. _ [Prior Art] The process variation of the blue pump wavelength is related to a color distribution in the LED lamp that converts the light body, and thus can reduce the improper color point displayed by pcLED (so-called "binning") ) resulting in a total product yield. Although several solutions to this problem have been proposed in the art (for example, in US Pat. No. 6,060,057,753), there are still alternatives that are capable of at least partially overcoming the color separation problem, particularly for wafer level scale applications. Continued needs. SUMMARY OF THE INVENTION It is an object of the present invention to provide a phosphor composition for an LED that can at least partially overcome color separation (especially for use on a wafer level scale) by the phosphor composition. This object is achieved by the phosphor composition of the first aspect of the invention. Therefore, a phosphor composition for a LED is provided, which is packaged

W 含至少一摻Ce(III)磷光體及至少一摻Eu(n)磷光體,其中 -該摻Ce(III)磷光體具有峰值在244〇 nm至$480 nm之範 圍内的最低4f—5d吸收頻帶,且具有在22000 cm·1至$4300 cm 1之範圍内的一光譜寬度(FWHM,半高全寬), -其中該摻Ce(III)磷光體具有峰值在&丨〇 nm至£570 nm 162487.doc 201241157 之範圍内的一發射頻帶 -其中該摻Eu(II)碟光體具有峰值在之490 nm至^570 nm之 範圍内的一發射頻帶;且 -其中該摻Eu(II)鱗光體之在420 nm至450 nm之範圍内的 至少一吸收係數k為在380 nm下之吸收係數k,之5 Ο%»該吸 收係數k被稱為折射率之複數部分(c〇mpiex part),且通常 為波長相依的。其與根據&=4π1ί/λ之比爾-藍伯定律(Beer-Lambert law)中之吸收指數a有關。應注意,k與k,兩者涉及 同一摻Eu(II)磷光體。 此磷光體組合物已對於本發明内之廣範圍應用展示為具 有以下優點中之至少一者: 使用本發明磷光體組合物,可製造LED,從而展示一極 穩定色彩點(通常為一白色色彩點,但不限於此:本發明 亦可供用於LED以形成其他色彩點),該色彩點僅由於藍色 泵激發射波長之變化而稍微移位,且因此結合增加之產品 良率而展示顯著較高溫度及驅動穩定性。 使用本發明磷光體組合物,LED色彩點亦依據LED之溫 度及驅動電流而變得更加穩定。 使用本發明磷光體尤其有利地用於經設計用於晶圓級 LED製造之應用’其中需要略過藍色分色。 可使用習知製造技術且避免製造程序之複雜佈局來應用 本發明。 使用本發明磷光體組合物,可在磷光體層之單一厚度下 製造通常具有在430 nm至470 nm之範圍内(歸因於在磊晶 162487.doc 201241157 級下處理之變化)的(藍色)發射峰值之led之一完整晶圓, 從而展示在位於一個標稱CCT類別内之7階麥克亞當橢圓 (McAdam ellipse)内之一極穩定色彩點,如藉由 ANSI_NEMA_ANSLG C78.377-2008美國國家電燈標準 _關 於固態照明產品之色度之規格(American National Standard for Electric Lamps-Specifications for the Chromaticity of Solid State Lighting Products)所界定。 根據本發明之一較佳實施例,該摻Ce(III)磷光體具有一 最低4f-^d吸收頻帶,其具有在2 2400 cm·1至$4000 cnT1 之範圍内的光譜寬度(F WHM,半高全寬)。 根據本發明之一較佳實施例,⑴該摻Eu(n)罐光體之該 最低4f—5d吸收頻帶之吸收係數與(ii)該摻Ce(III)磷光體之 該最低4f-^5d吸收頻帶之吸收係數之總和具有在^380 nm 至S45〇 nm之範圍内的一最小值。 根據本發明之一較佳實施例,該摻Ce(III)磷光體相比於 該摻Eu(II)磷光體具有一較小CIE 1931 y色彩座標及/或一 較小X色彩座標。較佳地,y色彩座標中之差異為2〇.〇1, 較佳仝0.05且最佳之〇.〇7。較佳地,X色彩座標中之差異為 20.02,較佳2〇.〇8且最佳之〇13。 根據本發明之一較佳實施例,該摻Eu(n)磷光體具有在 2300 nm至$520 nm(較佳<460 nm ’更佳$430 nm)之光譜範 圍内的一最低4f-»5d吸收頻帶。 根據本發明之一較佳實施例,相比於該摻Ce(in)磷光體 之最低吸收頻帶最大值,該摻Eu(II)麟光體之最低吸收頻 162487.doc 201241157 帶最大值位於較高能量處β 根據本發明之一較佳實施例’該至少一摻Ce(m)磷光體 包含石榴石材料。術語「石榴石材料」尤其意謂及/或包 括包含材料Ml3Mll2(MlnX4)3作為主要組份之一材料,其中 Μ 選自群組 Mg、Ca、Y、Na、Sr、Gd、La、Ce ' Pr、 Nd、Sm ' Eu、Dy、Tb、Ho、Er、Tm、Yb、Lu 或其混合 物 ’ Mn 選自群組 A1、Ga、Mg、Zn、Y、Ge、Sc、Zr、 Ti、Hf或其混合物,m111選自群組A卜Si、B、Ge ' Ga、 V ' As、Zn或其混合物,x選自群組〇、s、N、F、Cl、W comprising at least one Ce(III)-doped phosphor and at least one Eu(n)-doped phosphor, wherein - the Ce(III)-doped phosphor has a minimum 4f-5d absorption in the range of 244〇nm to $480nm a frequency band having a spectral width (FWHM, full width at half maximum) in the range of 22000 cm·1 to $4300 cm 1 , wherein the Ce(III) doped phosphor has a peak at & 丨〇 nm to £570 nm 162487 An emission band within the range of .doc 201241157 - wherein the Eu(II)-doped optical body has a transmission band having a peak in the range of 490 nm to ^570 nm; and - wherein the Eu(II) scale light is doped The absorption coefficient k of the body in the range of 420 nm to 450 nm is the absorption coefficient k at 380 nm, which is 5 Ο%» The absorption coefficient k is called the complex part of the refractive index (c〇mpiex part) And usually wavelength dependent. It is related to the absorption index a in the Beer-Lambert law according to &=4π1ί/λ. It should be noted that k and k both involve the same doped Eu(II) phosphor. This phosphor composition has been shown to have at least one of the following advantages for a wide range of applications within the present invention: Using the phosphor composition of the present invention, LEDs can be fabricated to exhibit a very stable color point (usually a white color) Point, but not limited to: the invention is also applicable to LEDs to form other color points) that are only slightly shifted due to changes in the blue pumping emission wavelength, and thus exhibit significant in combination with increased product yield Higher temperature and drive stability. With the phosphor composition of the present invention, the color point of the LED is also more stable depending on the temperature of the LED and the drive current. The use of the phosphors of the invention is particularly advantageous for applications designed for wafer level LED fabrication' where a blue color separation is required. The invention can be applied using conventional manufacturing techniques and avoiding the complex layout of manufacturing processes. Using the phosphor composition of the present invention, it can be fabricated at a single thickness of the phosphor layer, typically having a range of from 430 nm to 470 nm (due to changes in processing at the epitaxial 162487.doc 201241157 level) (blue) A complete wafer of peaks that emit peaks, thereby exhibiting a very stable color point within a 7th-order McAdam ellipse within a nominal CCT category, such as by ANSI_NEMA_ANSLG C78.377-2008 National Light The standard is defined by the American National Standard for Electric Lamps-Specifications for the Chromamaticity of Solid State Lighting Products. According to a preferred embodiment of the present invention, the Ce(III)-doped phosphor has a minimum 4f-^d absorption band having a spectral width in the range of 2 2400 cm·1 to $4000 cnT1 (F WHM, half High full width). According to a preferred embodiment of the present invention, (1) the absorption coefficient of the lowest 4f-5d absorption band of the Eu(n) can-doped light body and (ii) the minimum 4f-^5d of the Ce(III)-doped phosphor. The sum of the absorption coefficients of the absorption band has a minimum value in the range of 380 nm to S45 〇 nm. According to a preferred embodiment of the invention, the Ce(III)-doped phosphor has a smaller CIE 1931 y color coordinate and/or a smaller X color coordinate than the Eu(II)-doped phosphor. Preferably, the difference in the y color coordinates is 2 〇.〇1, preferably the same as 0.05 and the best 〇.〇7. Preferably, the difference in the X color coordinates is 20.02, preferably 2 〇. 〇 8 and optimal 〇 13. According to a preferred embodiment of the invention, the Eu(n)-doped phosphor has a minimum 4f-»5d absorption in the spectral range from 2300 nm to $520 nm (preferably <460 nm 'better $430 nm) frequency band. According to a preferred embodiment of the present invention, the lowest absorption frequency of the Eu(II) eutectic is 162487.doc 201241157, and the maximum value is higher than the minimum absorption band maximum of the Ce(in) phosphor. High energy point β According to a preferred embodiment of the invention, the at least one Ce(m)-doped phosphor comprises a garnet material. The term "garnet material" especially means and/or comprises the material Ml3Mll2(MlnX4)3 as one of the main components, wherein Μ is selected from the group consisting of Mg, Ca, Y, Na, Sr, Gd, La, Ce' Pr, Nd, Sm 'Eu, Dy, Tb, Ho, Er, Tm, Yb, Lu or a mixture thereof Mn is selected from the group A1, Ga, Mg, Zn, Y, Ge, Sc, Zr, Ti, Hf or a mixture thereof, m111 is selected from the group consisting of Si, Si, B, Ge 'Ga, V' As, Zn or a mixture thereof, and x is selected from the group consisting of 〇, s, N, F, Cl,

Br、I、OH及其混合物,且由Μ!%八面體&Μπΐχ4四面體 構成,其中每一八面體經由頂點共用四面體而接合至另外 六個八面體。每一四面體與四個八面體共用其頂點,使得 構架之組合物為(ΜηΧ3)2(Μ〖πΧ2)3。較大離子…在該構架 之間隙中佔據8配位位置(十二面體),從而提供最終組合物 Μ丨3M丨丨2M"丨3Χ12*μ、Μ丨丨2(M丨丨丨X4)3。 此等材料實務上已證明自己’此係因為在大多數應用 中’其實現根據本發明之針對一碳光體之準則。根據本發 明之-較佳實施例’該至少—摻邮削光體本質上為石 榴石材料。 =術。。本質上」尤其意謂295重量。/。,較佳^97重量%且 最佳299重量%。然而’在一些應用巾,在總組合物中亦 可存在痕量添加劑。此等添加劑特別包括諸如此項技術中 稱為炫劑之物質。合適熔 格則包括鹼土金屬或鹼金屬氧化 物、硼酸鹽、磷酸鹽及齒化 ϋ初诸如,氟化物、氣化銨' 162487*doc 201241157Br, I, OH, and mixtures thereof, and are composed of Μ!% octahedron & Μπΐχ4 tetrahedron, wherein each octahedron is joined to another six octahedrons via a vertex sharing tetrahedron. Each tetrahedron shares its apex with four octahedrons such that the composition of the framework is (ΜηΧ3)2(Μ〖πΧ2)3. Larger ions... occupy 8 coordination sites (dodecahedron) in the gap of the framework, providing the final composition Μ丨3M丨丨2M"丨3Χ12*μ,Μ丨丨2(M丨丨丨X4) 3. These materials have proven themselves to be 'in this respect because in most applications' they implement the criteria for a carbon body in accordance with the present invention. According to the preferred embodiment of the present invention, the at least-doped photo-sharp is essentially a garnet material. = surgery. . Essentially, it means 295 weights. /. Preferably, it is 97% by weight and most preferably 299% by weight. However, in some applications, trace amounts of additives may also be present in the total composition. Such additives specifically include materials such as those known in the art as dads. Suitable smelts include alkaline earth or alkali metal oxides, borates, phosphates and dentate ϋ initials such as fluoride, ammonium hydride '162487*doc 201241157

Si〇2及其類似者,及其混合物β 根據本發明之一較佳實施例,該至少一摻ce(lll)磷光體包 3 (較佳本質上為)具有以下結構之材料:M3.xAl5 yGay〇|2:Cex (M=Y,Lu,Gd),、〇5ys〇.5。 根據本發明之一較佳實施例,該至少一摻Eu(II)磷光體 包含(較佳本質上g)SiA1〇N材料。 根據本發明之一較佳實施例,該至少一摻Eu(II)磷光體 包3 (較佳本質上為)自包含如下各者之群組選擇之材料或 其混合物:Sn.xMx Si202N2:Eu (M=Ca,Ba)(其中 〇纪 0.25) ^ M2Si〇4;Eu (M=Sr, Ca, Ba) ^ M3Si6〇12N2:Eu (M=Ba,Si〇2 and the like, and a mixture thereof β According to a preferred embodiment of the present invention, the at least one ce(ll) phosphor package 3 (preferably essentially) has the following structure: M3.xAl5 yGay〇|2: Cex (M=Y, Lu, Gd), 〇 5ys〇.5. According to a preferred embodiment of the invention, the at least one Eu(II)-doped phosphor comprises (preferably essentially g) a SiA1〇N material. According to a preferred embodiment of the present invention, the at least one Eu(II)-doped phosphor package 3 (preferably essentially) is selected from the group consisting of: or a mixture thereof: Sn.xMx Si202N2:Eu (M=Ca, Ba) (where 〇 0.25) ^ M2Si〇4; Eu (M=Sr, Ca, Ba) ^ M3Si6〇12N2:Eu (M=Ba,

Sr’ Ca)或 Sr5.y_z.aMySi23_xAl3+xOx+2aN37.x.2a:Euz (其中 M=Ca,Sr' Ca) or Sr5.y_z.aMySi23_xAl3+xOx+2aN37.x.2a:Euz (where M=Ca,

Ba ; 〇<xS7、、〇 〇〇〇1$zs〇 5 且化也 5)、Ba ; 〇 <xS7,, 〇 〇〇〇1$zs〇 5 and also 5),

SrGa2S4:Eu、Si6_z.2xAlz+2xOzN8_z:Eux (〇·〇〇5<χ$〇.〇4、 0.BzS0_5)。 根據本發明之一較佳實施例,此外,該磷光體組合物包 含一橘色至紅色發射磷光體材料,該材料具有>6〇〇 nm且 <650 nm、較佳 > 608 nm 且 <640 nm 且最佳 >610 nm 且 <630 nm之一發射峰值。已展示,針對本發明内之許多應用,此 情形導致針對在不同波長下發射之一廣範圍的藍色lEd之 具有一減小之相關色溫變化之白光’其對許多實際應用及/ 或本發明之使用而言係有利的。 較佳地’該橘色至紅色發射鱗光體材料較佳包含(更佳 本質上為)在紅色光譜範圍内發射之摻Eu(II)及/或摻 Mn(IV)礙光體(發射峰值> 580 nm)。以此方式,可針對大 162487.doc 201241157 範圍的相關色溫應用本發明,其中15〇〇K<Cct<i〇〇〇〇k » 在本發明之一更特定較佳實施例中,該橘色至紅色發射 磷光體材料較佳包含(更佳本質上為)自包含如下各者之群 組選擇之材料或其混合物:(Bai x_y.zSrxCayEUz)2Si5.abAm# (其中 OSxSl、〇Sy$0 75、0 005%0 08、〇%〇 2 且 0^0.2)(尤其較佳(Ba。4Sr。6)丨 96叫 95n7 8〇。2:Eu。。彳)' 厘丨… Sii+x-zAlh+zNhO^EupCez (其中 M=Ca, Sr, Ba, Mg ' 0^0.05 ' 0.〇〇2%〇.〇5、0如0.08)(尤其較佳(Ca〇 5Sr() 5)〇975 Sii.〇i5Al〇.985N2.985〇〇.〇i5:Eu〇.01) > Mj.XS,.ySey:Eux (其中 M=Ca, 8厂1^)(尤其較佳〇3。.99958〇.286。.8$11。._5)、六2811_)^6:1411)( (其中八=1<:,仏,1^,1113)(尤其較佳1<:2810.95?6:1^110.05)。 可以粉末形式提供該磷光體組合物(例如,在一矽層中 含有該磷光體組合物)。應注意,組成本發明磷光體組合 物之該(至少)兩種磷光體可作為一混合物而提供,或可存 在(例如)兩個層,每一層含有本質上僅一種磷光體材料。 或者,該峨光體組合物可作為一陶瓷而提供。 此外,本發明係關於一種LED ’較佳包含根據本發明之 磷光體組合物之pcLED。此外’本發明係關於一種在一曰 卜B曰 圓級尺度上製造此等LED之方法。 此外’本發明係關於一種關於本發明磷光體組合物之用 途,該磷光體組合物用於減少在製造pcLED時之分色及/或 改良pcLED之色彩穩定性。 此外,本發明係關於一種方法’該方法藉由使用本發明 填光體組合物而改良pcLED之色彩點穩定性。 162487.doc 201241157 合物及/或 辦公室照明系統 豕用系統 商店照明系統 家庭照明系統 補強照明系統 聚光照明系統 劇院照明系統 光纖應用系統 投影系統 自發光顯示系碎 像素化顯示系統 分段顯示系統 警告標誌系統 醫用照明系統 指示標誌系統,及 裝飾性照明系統 攜帶型系統 汽車應用 溫罜照明系統 前述組件以及所主張之組件及 壚H日a /由m々 斤描述之實施例中待根 八 γ 組件在其大小、形狀、材料選擇及技術概 不又任何特殊例外情況影響,以使得可在無限制之 162487.doc 201241157 情況下應用有關領域中已知之選擇標準。 【實施方式】 在附屬項、諸圖及各別圖及實例之以下描述中揭示本發 明之目標之額外細節、特徵、特性及優點,該等各別圖及 實例以例示性方式展示根據本發明之本發明磷光體組合物 之若干實施例及實例。 實例 本發明將藉由以下實例予以進一步理解,以下實例僅用 於說明而不具有約束性。 在以下實例中,使用所列之磷光體材料,在下文在表I 及表II中給出該等磷光體材料之光譜資料: 表I :摻Ce磷光體 磷光體材料 最低4f—5d吸收頻帶之吸 收最大值 該頻帶之光譜宽度 (FWHM) Y2.91A15OI2-Oe0.09 460 nm 2700 cm·1 至3000 cm·1 LU2.954AI5012 · Ce〇〇46 448 nm 1900 cm·1 至2100 cm·1 La2.94Si6Nu:Ce〇.〇6 458 nm 2900 cm-1 至3200 cm] LU2.9895Al5〇i2:Ce〇.〇i〇5 447 nm 1800〇11_1至2000〇11_| Lu〇.5991 Y2.3964AI5012 · Ce〇.〇〇45 456 nm 1800 cm*1 至2000 cm-1 LUi.49775Yi.49775Al5〇i2:Ce〇.〇〇45 453 nm 2000 cm·1 至2100 cm·1 表II :摻Eu磷光體 磷光體材料 在380 nm下在50%之值處 之吸收係數 發射峰值波 長 發射 FWHM (Sr〇.9Ca〇,i)〇.96Si2〇2N2:Eu〇.〇4 436 nm 539 nm 74 nm Ba〇.98Sr〇.9gSi〇4:Eu〇.〇4 432nm 524 nm 67 nm Sr4.9Al5Si2i〇2N35:Eu〇.i 420 nm 509 nm 67 nm 162487.doc •10· 201241157 另一摻Eu磷光體為 Sr0.97Ga2S4:Eu0.03。 圖1中展示Υ2·?ιΑ15〇丨2:Ce0.09之吸收係數,圖2中展示 (SrojCao.Oo.wShC^NyEuo.jH之吸收係數(直線)及 BOSE之吸 收係數(點線)。SrGa2S4: Eu, Si6_z.2xAlz+2xOzN8_z: Eux (〇·〇〇5<χ$〇.〇4, 0.BzS0_5). In accordance with a preferred embodiment of the present invention, in addition, the phosphor composition comprises an orange to red emitting phosphor material having > 6 〇〇 nm and < 650 nm, preferably > 608 nm and <640 nm and optimal > 610 nm and < 630 nm one of the emission peaks. It has been shown that for many applications within the present invention, this situation results in white light having a reduced correlated color temperature change for a wide range of blue lEd at different wavelengths, which is useful for many practical applications and/or the present invention. It is advantageous in terms of use. Preferably, the orange to red emitting scale material preferably comprises (more preferably essentially) an Eu(II)-doped and/or Mn-doped (IV)-doped light-emitting body (emission peak) emitted in the red spectral range. > 580 nm). In this manner, the invention can be applied to a correlated color temperature in the range of 162487.doc 201241157, where 15 〇〇K<Cct<i〇〇〇〇k» In a more particular preferred embodiment of the invention, the orange The red-emitting phosphor material preferably comprises (more preferably essentially) a material selected from the group consisting of: or a mixture thereof: (Bai x_y.zSrxCayEUz) 2Si5.abAm# (where OSxSl, 〇Sy$0 75, 0 005%0 08, 〇%〇2 and 0^0.2) (especially better (Ba.4Sr.6) 丨96 is called 95n7 8〇. 2:Eu..彳)' 丨丨... Sii+x-zAlh+ zNhO^EupCez (where M=Ca, Sr, Ba, Mg ' 0^0.05 ' 0. 〇〇 2% 〇. 〇 5, 0 such as 0.08) (especially preferred (Ca 〇 5 Sr () 5) 〇 975 Sii. 〇i5Al〇.985N2.985〇〇.〇i5:Eu〇.01) > Mj.XS,.ySey:Eux (where M=Ca, 8 plant 1^) (especially better 〇3..99958〇. 286..8$11.._5), six 2811_)^6:1411) ((eight of them = 1: 仏, 1^, 1113) (especially preferably 1 <:2810.95?6:1^110.05). The phosphor composition may be provided in powder form (eg, containing the phosphor composition in a layer of ruthenium). It should be noted that the invention is comprised The (at least) two phosphors of the phosphor composition may be provided as a mixture, or there may be, for example, two layers, each layer containing essentially only one phosphor material. Alternatively, the phosphor composition may be Further, the present invention relates to an LED 'preferably comprising a pcLED of a phosphor composition according to the present invention. Further, the present invention relates to a method for fabricating such LEDs on a circular scale. Further, the present invention relates to a use of the phosphor composition of the present invention for reducing color separation in the manufacture of pcLEDs and/or improving the color stability of pcLEDs. Further, the present invention is Regarding a method, the method improves the color point stability of a pcLED by using the light-filling composition of the present invention. 162487.doc 201241157 Compound and/or office lighting system, system store lighting system, home lighting system, reinforcing lighting system Light illumination system theater lighting system fiber application system projection system self-luminous display system broken pixelated display system segment display system Signage system medical lighting system indicator system, and decorative lighting system portable system automotive application warm lighting system, the aforementioned components and claimed components and 垆H日 a / by the method described in the example The gamma component is affected by its size, shape, material selection and technology without any special exceptions, so that the selection criteria known in the relevant field can be applied without limitation 162487.doc 201241157. [0012] Additional details, features, characteristics, and advantages of the objects of the present invention are disclosed in the following description of the accompanying claims. Several embodiments and examples of the phosphor compositions of the present invention. EXAMPLES The invention will be further understood by the following examples which are merely illustrative and not limiting. In the following examples, the listed phosphor materials are used, and the spectral data of the phosphor materials are given in Tables I and II below: Table I: The lowest 4f-5d absorption band of the Ce-doped phosphor material Absorption maximum The spectral width of the band (FWHM) Y2.91A15OI2-Oe0.09 460 nm 2700 cm·1 to 3000 cm·1 LU2.954AI5012 · Ce〇〇46 448 nm 1900 cm·1 to 2100 cm·1 La2. 94Si6Nu:Ce〇.〇6 458 nm 2900 cm-1 to 3200 cm] LU2.9895Al5〇i2:Ce〇.〇i〇5 447 nm 1800〇11_1 to 2000〇11_| Lu〇.5991 Y2.3964AI5012 · Ce〇 .〇〇45 456 nm 1800 cm*1 to 2000 cm-1 LUi.49775Yi.49775Al5〇i2:Ce〇.〇〇45 453 nm 2000 cm·1 to 2100 cm·1 Table II: Eu-doped phosphor material At 380 nm, the absorption coefficient at 50% is the peak wavelength emission FWHM (Sr〇.9Ca〇,i)〇96Si2〇2N2:Eu〇.〇4 436 nm 539 nm 74 nm Ba〇.98Sr〇. 9gSi〇4:Eu〇.〇4 432nm 524 nm 67 nm Sr4.9Al5Si2i〇2N35:Eu〇.i 420 nm 509 nm 67 nm 162487.doc •10· 201241157 Another Eu-doped phosphor is Sr0.97Ga2S4:Eu0. 03. The absorption coefficient of Υ2·?ιΑ15〇丨2:Ce0.09 is shown in Fig. 1, and the absorption coefficient (straight line) of SrojCao.Oo.wShC^NyEuo.jH and the absorption coefficient (dotted line) of BOSE are shown in Fig. 2.

實例I 在第一實例中,製備含67體積% (SrojCao.OowShC^Ny Eu0.〇4+33體積。/〇 Y2 9丨Al5〇丨2:Ce〇.〇9的16.2體積%混合物之 100 μιη厚的聚矽氧層。圖3展示具有在藍色光譜範圍(43〇 nm至460 nm)内的(所要)平坦吸收曲線之吸收光譜。摻 Ce(III)石榴石磷光體之吸收自43〇 ηιη至460 nm之增加補償 Eu(II)填光體之吸收之減小,從而導致混合物之需要的平 坦化吸收行為。 為了說明補償’圖4中展示更詳細曲線。EXAMPLE I In a first example, a 100 μm mixture containing 67% by volume of a 16.2 vol% mixture of SrojCao.OowShC^Ny Eu0.〇4+33 vol./〇Y2 9丨Al5〇丨2:Ce〇.〇9 was prepared. Thick polyoxynitride layer. Figure 3 shows the absorption spectrum of the (desired) flat absorption curve in the blue spectral range (43 〇 nm to 460 nm). The absorption of Ce(III)-doped garnet phosphor from 43〇 The increase in ηιη to 460 nm compensates for the decrease in the absorption of the Eu(II) fill, resulting in the desired flattened absorption behavior of the mixture. To illustrate the compensation, a more detailed curve is shown in Figure 4.

實例II 在第二實例中,製備含6〇體積% (Sr〇9Ca〇i)〇96Si2〇2N2: Eu〇_〇4+40體積。/。γ2 9]Al5〇i2:Ce〇 的 2〇體積 %混合物之 9〇 μιη厚的聚矽氧層,且將其附接至具有44〇 nm、442 nm及 448 nm發射峰值之藍色LED光源。圖5展示三個lED2cie 1 976色彩點,且作為比較而展示混合物之純組份之色彩 點相比於在相同led光源頂部上之混合物之純組份之色 彩點’該混合物之v,變化極大地減少。Example II In a second example, a volume of 6% by volume (Sr〇9Ca〇i) 〇96Si2〇2N2: Eu〇_〇4+40 was prepared. /. Γ2 9]Al5〇i2: a 2 〇 volume % mixture of Ce 〇 ι ι 厚 厚 厚 , , , , , , 。 。 。 。 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色 蓝色Figure 5 shows three lED2cie 1 976 color points, and as a comparison, the color point of the pure component of the mixture is shown to vary greatly from the color point of the pure component of the mixture on top of the same led light source. Reduced.

實例III 將 3 67 體積 % (sr〇 9ca〇」)〇 96Si2〇2N2:Eu〇 〇4+33 體積 % YwiAlsOaCeo.o9的16.2體積%混合物之約9〇 μm厚的聚矽 162487.doc -11 - 201241157 氧薄片附接至含16.2體積0/0紅色發光(BaSr)丨.wSisNyEuo.M 粉末之約1 5 μιη厚的另一聚矽氧薄片。將該堆疊附接至各 種藍色LED光源(發射峰值處於440 nm ' 442 nm及448 nm),其中該堆疊之紅色發光薄片定向至led發射表面。 圖6展示LED之三個發射光譜;可清楚地看到,儘管藍 色光變化,但總發射光譜幾乎相同,亦即,pcLED之「分 色」沒有必要。 圖7展示LED之所得CIE 1976色彩點.。所有色彩點定位 成接近於3500 K ANSI C78.377 A色彩區間之中心,因此, 相比於二元式綠色/黃色+紅色鱗光體組合,藍色泵激區間 變化之影響得以極大地減少。Example III 3 67 % by volume (sr〇9ca〇)) 〇96Si2〇2N2:Eu〇〇4+33 vol% of a 16.2 vol% mixture of YwiAlsOaCeo.o9 of about 9 〇μm thick poly 矽 487 162487.doc -11 - The 201241157 oxygen flakes were attached to another polyfluorene oxide flake having a thickness of about 1 5 μm containing 16.2 volumes of 0/0 red light-emitting (BaSr) 丨.wSisNyEuo.M powder. The stack was attached to various blue LED sources (emission peaks at 440 nm '442 nm and 448 nm) with the stacked red illuminating sheets oriented to the LED emitting surface. Figure 6 shows the three emission spectra of the LED; it can be clearly seen that although the blue light changes, the total emission spectrum is almost the same, i.e., the "separation" of the pcLED is not necessary. Figure 7 shows the resulting CIE 1976 color point of the LED. All color points are positioned close to the center of the 3500 K ANSI C78.377 A color range, so the effect of the blue pumping interval variation is greatly reduced compared to the binary green/yellow + red scale combination.

實例IV 製備含 5.9體積 % (SrojCa。」)。96Si2〇2N2:Eu〇.〇4+5.9體積 % Y^iAlsOaCeo.Q9·^.!體積%紅色氮化物填光體(發射峰值 為約620 nm)混合物之約56 μηι厚的聚矽氧層,且將其塗覆 至具有在430 nm至470 nm之範圍内的發射峰值之藍色發射 LED。 圖8展示LED之所得CIE 1976色彩點。所有色彩點定位 於3500 K ANSI C78.377 A色彩區間内,因此,相比於二元 式綠色/黃色+紅色磷光體組合,藍色泵激區間變化之影響 得以極大地減少。 與上述實施例形成對比’圖9展示用紅色氮化物峨光體 (發射峰值為約620 nm)與⑴CeIII(Y29lAl5〇丨2:Ce〇〇9)[曲線] 或(ii) EuII麟光體((Sro.pCao.DowShC^NyEuow)[虛線]之純 I62487.doc 12 201241157 組合製成的LED之所得CIE 1976色彩點。僅針對以中心450 nm波長周圍+/- 4 nm為中心之藍色發射峰值波長’色彩點 位於 3500 K ANSI C78.377 内。Example IV was prepared containing 5.9 vol% (SrojCa.). 96Si2〇2N2:Eu〇.〇4+5.9% by volume Y^iAlsOaCeo.Q9·^.! Volume % red nitride filler (emission peak is about 620 nm) mixture of about 56 μη thick thick polyoxane layer, And it is applied to a blue emitting LED having an emission peak in the range of 430 nm to 470 nm. Figure 8 shows the resulting CIE 1976 color point for the LED. All color points are positioned within the 3500 K ANSI C78.377 A color range, so the effect of blue pumping interval variations is greatly reduced compared to the binary green/yellow + red phosphor combination. In contrast to the above examples, Figure 9 shows the use of a red nitride phosphor (emission peak of about 620 nm) and (1) CeIII (Y29lAl5〇丨2:Ce〇〇9) [curve] or (ii) EuII plexisphere ( (Sro.pCao.DowShC^NyEuow) [Dotted line] pure I62487.doc 12 201241157 The resulting CIE 1976 color point of the LED produced by combining only blue emission centered around +/- 4 nm around the center 450 nm wavelength The peak wavelength 'color point' is located within 3500 K ANSI C78.377.

實例V 將含 5.2體積% Ba〇.98Sr〇.98Si04:Eu2+().〇4 (BOSE)+4_3 體積 %丫2.91八150|2:€6〇.〇9+10.5體積%紅色氮化物磷光體(發射峰 值為約620 nm)混合物之約140 μηι厚的聚矽氧層塗覆至具 有在430 nm至470 nm之範圍内的發射峰值之藍色發射 LED 〇 圖10展示LED之所得CIE 1976色彩點。所有色彩點定位 於2700 K ANSI C78.377 A色彩區間内,因此,相比於二元 式綠色/黃色+紅色麟光體組合,藍色果激區間變化之影響 得以極大地減少》Example V will contain 5.2% by volume of Ba〇.98Sr〇.98Si04:Eu2+().〇4 (BOSE)+4_3 vol% 丫2.91 八150|2:€6〇.〇9+10.5 vol% red nitride phosphor (Emission emission peak is about 620 nm) Approximately 140 μη thick polyfluorene oxide layer of the mixture is applied to the blue emission LED having an emission peak in the range of 430 nm to 470 nm. FIG. 10 shows the resulting CIE 1976 color of the LED. point. All color points are positioned within the 2700 K ANSI C78.377 A color range, so the effect of the blue fruit range change is greatly reduced compared to the binary green/yellow + red syllabus combination.

實例VI 製備含 4.4 體積 °/〇 SruAlsSiaiChNw.Euu+SJ 體積 〇/〇 1^2.88八15〇12:〇6〇.12+12.3體積%紅色氮化物磷光體(發射峰 值為約609 nm)混合物之約260 μηι厚的聚矽氧層,且將其 塗覆至具有在430 nm至470 nm之範圍内的發射峰值之藍色 發射LED。 圖12展示LED之所得CIE 1976色彩點。所有色彩點定位 於2700 K ANSI C78.377 A色彩區間内,因此,&amp; u此,相比於二元 式綠色/黃色+紅色磷光體組合,藍色泵激 八双^間變化之影響 得以極大地減少。 與上述實施例形成對比,圖Η展示用紅色氮化物鱗光體 162487.doc 13 201241157 (發射峰值為約 609 nm)與⑴ Ce(III) Lu2,88Al5012:Ce().12[虛 線]或(ii) Eu(II)踏光體(Sr4.9Al5Si2i〇2N35:Eu〇.〗)[曲線]之純 組合製成的LED之所得CIE 1976色彩點》 根據另一態樣’本發明提供一種在晶圓級尺度上製造經 磷光體塗佈之LED之方法》該方法包含提供製造有複數個 LED之生長晶圓或基板之步驟。舉例而言,[ED可磊晶生 長於生長晶圓上,或可已接合至主體基板。該晶圓可由許 多材料製成,諸如,藍寶石、碳化矽、氮化鋁,及氮化 鎵。LED可由不同材料系統製造,其中較佳材料系統以第 ΠΙ族氮化物為基礎。第ΙΠ族氮化物指代在氮與週期表之第 ΙΠ族中之元素(通常為鋁、鎵及銦)之間形成的彼等半導體 化合物。該術語亦指代諸如AlGaN及AlInGaN之三元及四 疋化合物。LED層通常包含包夾於第一與第二相反摻雜之 磊晶層之間的作用層/區,全部LED層順次地形成於生長晶 圓上。較佳地,作用區經配置以發射波長在43〇 11爪至47〇 ⑽之範圍内的光。LED層可最初形成為跨越生長晶圓或基 板之連續層。隨後’舉例而t ’可藉由經由作用區及摻雜 層向下蝕刻至晶圓而將該等層分割成或分離成個別led, 因此在該等LED之間形成開放區$。或者,作用區及播雜 層可保持為晶圓上之連續層,且可在(經磷光體塗佈 之)LED晶片經單體化時分離成個別裝置。 該方法進一步包含提供波長轉換材料之步驟。波長轉換 材料包含根據本發明之第一態樣之磷光體組合物。將波長 轉換材料安裝於晶圓上之複數個led上。在—實施例中, I62487.doc 201241157 波長轉換材料包含覆蓋晶圓上之複數個LED中每一者之磷 光體/黏合劑塗層。可使用不同已知製程塗覆磷光體/黏合 劑塗層,不同已知製程諸如施配、噴射印刷、網版印刷、 電泳沈積或靜電沈積。或者’可將波長轉換材料製造為可 接合至晶圓上之LED或安裝於晶圓上之LED上之單獨預成 型坯。預成型坯可(例如)為磷光體分散於其中的透明基質 材料之薄片(諸如,聚矽氧)。或者,預成型坯可為諸如上 文在實例III中所描述之薄片之堆疊。又或者,預成型坯可 為包含磷光體組合物之陶瓷板β此晶圓尺度板可膠黏至晶 圓上之LED,或可接合至基板(例如,藍寶石主體基板), LED已自生長晶圓轉移至該基板上。 該方法進一步包含使來自晶圓之個別LEd晶片單體化之 步驟。可使用諸如切割、刻劃與斷裂或蝕刻之已知方法來 實現此步驟。單體化製程使(經磷光體塗佈之)LED晶片中 之每一者分離,其各自具有實質上相同發射特性。此情形 允許具有實質上類似之發射特性之LED晶片之可靠且一致 之製造。有利地’就此製造方法而言’避免了量測「裸」 (亦即’未經磷光體塗佈之)LED晶片之個別發射特性、在 晶圓上產生此等特性之映射,及根據該映射調整波長轉換 材料(例如’量或濃度)以獲得晶圓上之所有lED之實質上 單一色彩點之需要。 可封裝經單體化之經磷光體塗佈之LED晶片。此可包含 將封裝中之LED晶片安裝至子基板(subm〇vjnt)或印刷電路 板°可在無需進一步處理以添加或移除磷光體以便達成一 162487.doc 201241157 致色彩點的情況下進行此安裝。 應理解’上文所描述之方法未必必須應用於完整晶圓。 其亦可應用於處理小於完整晶圓之晶圓。或者,其可應用 於處理作為一群組自晶圓分離之LED群組。 以上詳細描述中之元件及特徵之特定組合僅為例示性 的;亦明確地預期以本申請案及以引用之方式併入之專利/ 申Μ案中之其他教示交換及取代此等教示。如熟習此項技 術者將認識到,一般熟習此項技術者可在不脫離如所主張 之本發明之精神及範疇的情況下而想到本文中所描述内容 之變化、修改及其他實施。因此,前述描述僅作為實例, 而並不意欲為限制性的β在申請專利範圍中,詞語「包 含」不排除其他元件或步驟,且「一」不排除複數個。在 相互不同之附屬項中敍述某些措施之純粹事實並不指示不 可有利地使用此等措施之組合。本發明之範疇被界定於以 下申請專利範圍及其等效物中。此外,用於該描述及申請 專利範圍中之參考符號不限制如所主張之本發明之範疇。 【圖式簡單說明】 圖1展示根據本發明之實例丨之摻Ce(III)磷光體的吸收光 譜; 圖2展示根據本發明之實例〗及„之兩種摻Eu(n)磷光體的 吸收光譜; 圖3展示包含本發明磷光體組合物之矽層的吸收光譜; 圖4展示根據本發明之一實施例的本發明磷光體組合物 以及摻Ce(III)磷光體及摻Eu(n)磷光體的吸收光譜; 162487.doc 16 201241157 圖5展示說明根據本發明之另一實施例的使用本發明碌 光體組合物之LED之CIE 1976色彩點的圖式; 圖ό展示根據本發明之另一實施例的使用本發明磷光體 組合物之LED的三個發射光譜; 圖7展示圖6之LED之所得CIE1976色彩點; 圖8展示根據本發明之另一實施例之經磷光體轉換之 LED的所得CIE1976色彩點; 圖9展示根據本發明之另一實施例之經磷光體轉換之 LED的所得CIE1976色彩點; 圖10展示根據本發明之另一實施例之經填光體轉換之 LED的所得CIE1976色彩點; 圖11展示相比於圖12中所展示之本發明之實施例,僅使 用一個綠色碌光體與一紅色發射峨光體之組合之經填光體 轉換之LED的所得CIE1976色彩點; 圖12展示根據本發明之另一實施例之經填光體轉換之 LED的所得CIE1976色彩點。 162487.doc •17-Example VI Preparation of a mixture containing 4.4 volumes of 〇SruAlsSiaiChNw.Euu+SJ volume 〇/〇1^2.88 八15〇12: 〇6〇.12+12.3 vol% red nitride phosphor (emission peak of about 609 nm) A polyfluorene layer of about 260 μηι thick is applied to a blue emitting LED having an emission peak in the range of 430 nm to 470 nm. Figure 12 shows the resulting CIE 1976 color point for the LED. All color points are positioned within the 2700 K ANSI C78.377 A color range, so &amp; u this, compared to the binary green/yellow + red phosphor combination, the effect of the blue pumping Greatly reduced. In contrast to the above examples, the figure shows the use of red nitride scales 162487.doc 13 201241157 (emission peak is about 609 nm) and (1) Ce(III) Lu2,88Al5012:Ce().12[dashed line] or ( Ii) Eu(II) stepper (Sr4.9Al5Si2i〇2N35:Eu〇.)) [Curve] of the purely combined LED produced by the CIE 1976 color point according to another aspect of the invention provides a crystal Method of Fabricating Phosphor-Coated LEDs on a Circular Scale" The method includes the steps of providing a grown wafer or substrate having a plurality of LEDs. For example, [ED can be epitaxially grown on a growth wafer or can be bonded to a host substrate. The wafer can be made from a variety of materials such as sapphire, tantalum carbide, aluminum nitride, and gallium nitride. The LEDs can be fabricated from different material systems, with the preferred material system being based on the Dioxon nitride. The Dioxon nitride refers to the semiconductor compound formed between nitrogen and an element of the first group of the periodic table (usually aluminum, gallium, and indium). The term also refers to ternary and tetravalent compounds such as AlGaN and AlInGaN. The LED layer typically comprises an active layer/region sandwiched between the first and second oppositely doped epitaxial layers, all of which are sequentially formed on the growth crystal. Preferably, the active area is configured to emit light having a wavelength in the range of 43 〇 11 claws to 47 〇 (10). The LED layer can be initially formed as a continuous layer across the growing wafer or substrate. Subsequent 'exemplary and t' can be divided into or separated into individual LEDs by etching down to the wafer via the active region and the doped layer, thus forming an open region $ between the LEDs. Alternatively, the active and miscellaneous layers can be maintained as a continuous layer on the wafer and can be separated into individual devices as the (phosphor coated) LED wafer is singulated. The method further includes the step of providing a wavelength converting material. The wavelength converting material comprises a phosphor composition according to the first aspect of the invention. The wavelength converting material is mounted on a plurality of LEDs on the wafer. In an embodiment, the I62487.doc 201241157 wavelength converting material comprises a phosphor/binder coating covering each of the plurality of LEDs on the wafer. Phosphor/binder coatings can be applied using different known processes, such as dispensing, jet printing, screen printing, electrophoretic deposition, or electrostatic deposition. Alternatively, the wavelength converting material can be fabricated as a separate preform that can be bonded to an LED on a wafer or to an LED mounted on a wafer. The preform may, for example, be a sheet of a transparent matrix material (e.g., polyfluorene oxide) in which the phosphor is dispersed. Alternatively, the preform may be a stack of sheets such as those described above in Example III. Alternatively, the preform may be a ceramic plate containing a phosphor composition, the wafer scale plate may be glued to the LED on the wafer, or may be bonded to the substrate (eg, a sapphire body substrate), the LED has self-growth crystal The circle is transferred to the substrate. The method further includes the step of singulating individual LEd wafers from the wafer. This step can be accomplished using known methods such as cutting, scoring and breaking or etching. The singulation process separates each of the (phosphor coated) LED wafers, each having substantially the same emission characteristics. This situation allows for reliable and consistent fabrication of LED wafers having substantially similar emission characteristics. Advantageously, 'in this manufacturing method' avoids the measurement of the individual emission characteristics of "naked" (ie, 'phosphor coated) LED chips, the mapping of such characteristics on the wafer, and according to the mapping The need to adjust the wavelength converting material (eg, 'quantity or concentration') to obtain a substantially single color point of all lEDs on the wafer. The singulated phosphor coated LED wafer can be packaged. This may include mounting the LED wafer in the package to a sub-substrate or printed circuit board. This can be done without further processing to add or remove phosphors to achieve a 162487.doc 201241157 color point. installation. It should be understood that the methods described above do not necessarily have to be applied to a complete wafer. It can also be used to process wafers that are smaller than a full wafer. Alternatively, it can be applied to process LED groups that are separated from the wafer as a group. The specific combinations of elements and features in the above detailed description are merely exemplary; and other teachings in the present application and the patents/applications incorporated by reference are hereby incorporated by reference. Variations, modifications, and other implementations of what is described herein will be apparent to those skilled in the art, in light of this disclosure. Therefore, the foregoing description is to be construed as illustrative only and not restrictive The mere fact that certain measures are recited in mutually different <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> does not indicate that a combination of such measures may not be used. The scope of the invention is defined in the following claims and their equivalents. In addition, the reference signs used in the description and claims are not intended to limit the scope of the invention as claimed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an absorption spectrum of a Ce(III)-doped phosphor according to an example of the present invention; FIG. 2 shows an absorption of two Eu(n)-doped phosphors according to an example of the present invention and Figure 3 shows the absorption spectrum of the ruthenium layer comprising the phosphor composition of the present invention; Figure 4 shows the phosphor composition of the present invention and the Ce(III)-doped phosphor and Eu(n) doped in accordance with an embodiment of the present invention. Absorption spectrum of a phosphor; 162487.doc 16 201241157 Figure 5 shows a diagram illustrating a CIE 1976 color point of an LED using the phosphor composition of the present invention in accordance with another embodiment of the present invention; Another embodiment of the three emission spectra of an LED using the phosphor composition of the present invention; Figure 7 shows the resulting CIE 1976 color point of the LED of Figure 6; Figure 8 shows a phosphor converted according to another embodiment of the present invention. The resulting CIE 1976 color point of the LED; FIG. 9 shows the resulting CIE 1976 color point of the phosphor converted LED in accordance with another embodiment of the present invention; FIG. 10 shows a fill-substance converted LED in accordance with another embodiment of the present invention. The resulting CIE1976 color Color point; Figure 11 shows the resulting CIE 1976 color point of a light-filled LED using only one combination of a green phosphor and a red emissive phosphor, as compared to the embodiment of the invention shown in Figure 12 Figure 12 shows the resulting CIE 1976 color point of a light-filled converted LED in accordance with another embodiment of the present invention. 162487.doc • 17-

Claims (1)

201241157 七、申請專利範圍: 1. 一種用於一 LED之峨光體組合物,其包含至少一換 Ce(III)磷光體及至少一摻Eu(II)磷光體,其中 該摻Ce(III)磷光體具有峰值在之440 nm至$480 nm之範 圍内的一最低4f—^5d吸收頻帶,且具有在22000 cm·1至£ 4300 cm·1之範圍内的一光譜寬度(FwhM,半高全寬), 其中該摻Ce(III)磷光體具有峰值在251〇 nm至$570 nm 之範圍内的一發射頻帶, 其中該摻Eu(II)磷光體具有峰值在2490 nm至£570 nm 之範圍内的一發射頻帶, 且其中該摻Eu(II)鱗光體之在420 nm至450 nm之範圍 内的至少一吸收係數k為在380 nm下之吸收係數k,之 50〇/〇 〇 2. 如請求項1之磷光體組合物,其中該摻Ce(in)磷光體具有 一最低4f-»5d吸收頻帶,其具有在&gt;2400 cm·1至$4000 cm·1之範圍内的一光譜寬度(Fwhm,半高全寬)。 3_如請求項1或2之磷光體組合物,其中該摻Eu(ii)磷光體 之該最低4f—5d吸收頻帶之該吸收係數與該摻ce(ni)磷 光體之該最低4f—5d吸收頻帶之該吸收係數之總和具有 在2 380 nm至$450 nm之範圍内的一最小值。 4·如請求項1或2之磷光體組合物,其中該撸Eu(n)磷光體 具有在2 370 nm至&lt;460 nm之光譜範圍内的一最低4f— 5d吸收頻帶。 5.如請求項1或2之磷光體組合物,其中該摻ce(lll)磷光體 162487.doc 201241157 包含—石榴石材料。 6.201241157 VII. Patent Application Range: 1. A phosphor composition for an LED comprising at least one Ce(III) phosphor and at least one Eu(II) doped phosphor, wherein the Ce(III) is doped The phosphor has a minimum 4f-^5d absorption band with a peak in the range of 440 nm to $480 nm and a spectral width (FwhM, full width at half maximum) in the range of 22000 cm·1 to £4300 cm·1. Wherein the Ce(III)-doped phosphor has an emission band having a peak in the range of 251 〇 nm to $570 nm, wherein the Eu(II)-doped phosphor has a peak having a peak in the range of 2490 nm to £570 nm a transmission band, and wherein the at least one absorption coefficient k of the Eu(II)-doped spheroid in the range of 420 nm to 450 nm is an absorption coefficient k at 380 nm, which is 50 〇/〇〇2. The phosphor composition of item 1, wherein the Ce(in)-doped phosphor has a minimum 4f-»5d absorption band having a spectral width in the range of &gt; 2400 cm·1 to $4000 cm·1 (Fwhm , half height and full width). 3. The phosphor composition of claim 1 or 2, wherein the absorption coefficient of the lowest 4f-5d absorption band of the Eu(ii)-doped phosphor and the lowest 4f-5d of the doped (ni) phosphor The sum of the absorption coefficients of the absorption band has a minimum in the range of 2 380 nm to $450 nm. 4. The phosphor composition of claim 1 or 2, wherein the bismuth Eu(n) phosphor has a minimum 4f-5d absorption band in the spectral range from 2 370 nm to &lt; 460 nm. 5. The phosphor composition of claim 1 or 2, wherein the ce (lll) phosphor 162487.doc 201241157 comprises a garnet material. 6. 如請求項1或2之罐光體組合物,其中該至少一卿) 球光體包含一 SiA1〇N材料。 如請求項⑷之破光體組合物,其中該至少—摻㈤_ 光體包含具有以T結構之—材料:MnyGay〇12:Cex (M =Y,Lu,Gd) 〇 8·如請求項!*]之磷光體組合物’其中該摻Eu(n)磷光體 包含自&amp;含如了各者之群M選擇之一材料或其混合物: Sn-XMX Si2〇2N2:Eu (M = Ca,Ba)(其中 〇如〇 25)、 M2Si〇4.Eu (M=Sr, Ca, Ba) ' M3Si6〇12N2:Eu (M=Ba, Sr, Ca)或 Sr5.y.z.aMySi23-xAl3+x〇x+2aN37_x.2a:Euz (其中 M=Ca, Ba ; 〇&lt;xs7、〇$y^5、〇 〇〇〇1幺^〇 5 且 〇^d5)、 SrGa2S4:Eu、Si6-z_2xAlz+2x〇zN8—z:Eux (〇.〇〇5&lt;x$〇.〇4、 〇.lSzS〇_5) 〇 9. 一種如請求項1至8中任一項之一磷光體組合物之用途, 該磷光體組合物用於減少在製造pcLED時之分色及/或改 良pcLED之色彩穩定性。 10 · —種系統,其包含一如請求項1至8中任一項之磷光體組 合物’該系統係用於以下應用中之一或多者中: 辦公室照明系統 家用系統 商店照明系統 家庭照明系統 補強照明系統 I62487.doc 201241157 聚光照明系統 劇院照明系統 光纖應用系統 投影系統 自發光顯示系統 像素化顯示系統 分段顯示系統 警告標誌系統 醫用照明系統 指示標諸系統,及 裝飾性照明系統 攜帶型系統 汽車應用 溫室照明系統。 11. 12. 一種用於在一晶圓級尺度上製造經磷光體塗佈之led之 方法,該方法包含: 提供製造有複數個led之一晶圓; 提供包含該如請求項1至8中任一項之磷光體組合物之 一波長轉換材料; 將該波長轉換材料安裝於該晶圓上以形成經磷光體塗 佈之LED ; 將來自該晶圓之個別經磷光體塗佈之led單體化。 一種改良PCLED之色彩點穩定性之方法,該方法藉由使 用一如請求項1至8中任一項之磷光體組合物而改良 pcLED之色彩點穩定性。 162487.docThe can composition of claim 1 or 2, wherein the at least one spheroidal body comprises a SiA1〇N material. The light-breaking composition of claim (4), wherein the at least-doped (five) _ light body comprises a material having a T structure: MnyGay 〇 12: Cex (M = Y, Lu, Gd) 〇 8 as claimed; *] Phosphor composition] wherein the Eu(n)-doped phosphor comprises a material selected from the group of M, or a mixture thereof: Sn-XMX Si2〇2N2:Eu (M = Ca, Ba) (where 〇如〇25), M2Si〇4.Eu (M=Sr, Ca, Ba) ' M3Si6〇12N2:Eu (M=Ba, Sr, Ca) or Sr5.yzaMySi23-xAl3+x〇x +2aN37_x.2a: Euz (where M=Ca, Ba; 〇&lt;xs7, 〇$y^5, 〇〇〇〇1幺^〇5 and 〇^d5), SrGa2S4:Eu, Si6-z_2xAlz+2x〇 zN8—z:Eux (〇.〇〇5&lt;x$〇.〇4, 〇.lSzS〇_5) 〇9. The use of a phosphor composition according to any one of claims 1 to 8, Phosphor compositions are used to reduce color separation in the manufacture of pcLEDs and/or to improve the color stability of pcLEDs. A system comprising a phosphor composition as claimed in any one of claims 1 to 8 wherein the system is used in one or more of the following applications: office lighting system home system store lighting system home lighting System Reinforced Lighting System I62487.doc 201241157 Concentrating Lighting System Theater Lighting System Fiber Application System Projection System Self-illumination Display System Pixelated Display System Segment Display System Warning Sign System Medical Lighting System Indication System, and Decorative Lighting System Carrying Type system automotive application greenhouse lighting system. 11. A method for fabricating a phosphor coated led on a wafer level scale, the method comprising: providing a wafer having a plurality of LEDs fabricated; providing the inclusion as in claims 1 through 8 a wavelength converting material of any one of the phosphor compositions; mounting the wavelength converting material on the wafer to form a phosphor coated LED; and coating the individual phosphor coated strips from the wafer Physicalization. A method of improving the color point stability of a PC LED, which improves the color point stability of the pcLED by using the phosphor composition of any one of claims 1 to 8. 162487.doc
TW101108187A 2011-03-10 2012-03-09 Phosphor composition for LEDs TW201241157A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11157604 2011-03-10

Publications (1)

Publication Number Publication Date
TW201241157A true TW201241157A (en) 2012-10-16

Family

ID=44263103

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108187A TW201241157A (en) 2011-03-10 2012-03-09 Phosphor composition for LEDs

Country Status (2)

Country Link
TW (1) TW201241157A (en)
WO (1) WO2012120433A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610467B (en) * 2015-08-18 2018-01-01 晶元光電股份有限公司 Wavelength conversion film, manufacturing method thereof and light-emitting device using the same
TWI645584B (en) * 2015-08-18 2018-12-21 晶元光電股份有限公司 Wavelength conversion film, manufacturing method thereof and light-emitting device using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2229426B1 (en) * 2007-12-03 2011-05-25 Philips Intellectual Property & Standards GmbH Light emitting device comprising a green emitting sialon-based material
KR102131309B1 (en) * 2013-10-01 2020-07-07 엘지이노텍 주식회사 Phosphor and light emitting device package including the same
EP2803715B1 (en) * 2013-05-16 2020-02-26 LG Innotek Co., Ltd. Phosphor and light emitting device package including the same
US9923125B2 (en) * 2013-11-25 2018-03-20 Sichuan Sunfor Light Co., Ltd. Method for improving defect-free rate of LED light source, phosphor powder, and LED light source

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY149573A (en) * 2002-10-16 2013-09-13 Nichia Corp Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
US7723740B2 (en) * 2003-09-18 2010-05-25 Nichia Corporation Light emitting device
US7256057B2 (en) 2004-09-11 2007-08-14 3M Innovative Properties Company Methods for producing phosphor based light sources
US7521862B2 (en) * 2006-11-20 2009-04-21 Philips Lumileds Lighting Co., Llc Light emitting device including luminescent ceramic and light-scattering material
WO2010041195A1 (en) * 2008-10-09 2010-04-15 Philips Intellectual Property & Standards Gmbh Blue emitting sion phosphor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610467B (en) * 2015-08-18 2018-01-01 晶元光電股份有限公司 Wavelength conversion film, manufacturing method thereof and light-emitting device using the same
TWI645584B (en) * 2015-08-18 2018-12-21 晶元光電股份有限公司 Wavelength conversion film, manufacturing method thereof and light-emitting device using the same

Also Published As

Publication number Publication date
WO2012120433A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP6609554B2 (en) Blue-green phosphor, light emitting device package including the same, and lighting device
TWI784058B (en) Light emitting device with improved warm-white color point
JP6526603B2 (en) Light emitting device
JP5355547B2 (en) White light source and luminescent material with improved color stability
EP2531572B1 (en) Phosphor converted led
US9735323B2 (en) Light emitting device having a triple phosphor fluorescent member
TW201241157A (en) Phosphor composition for LEDs
TWI545179B (en) Fluorescent material for white light emitting diode and preparation method thereof
JP2008280501A (en) Novel fluorescent substance used for light source of white light and its production method
US8329484B2 (en) Phosphor with Ce3+/Ce3+, Li+ doped luminescent materials
US20160168457A1 (en) Phosphor compositions and lighting apparatus thereof
TWI629339B (en) Method for manufacturing nitride phosphor
JP6231787B2 (en) Phosphor and light emitting device
TWI719149B (en) Wavelength converting material for a light emitting device
TWI467804B (en) Illuminating system, tunable luminescent material and manufacturing method thereof
KR101176212B1 (en) Alkali-earth Phosporus Nitride system phosphor, manufacturing method thereof and light emitting devices using the same
KR20170026602A (en) Oxyfluoride phosphor compositions and lighting apparatus thereof
JP6251498B2 (en) Phosphor and light emitting device
JP6640753B2 (en) Phosphor composition and lighting fixture comprising the same
JP6865333B1 (en) Luminescent material
TWI534245B (en) Phosphor material and the manufacturing method thereof
JP2015187250A (en) Phosphor, method for producing the same, and light-emitting device employing the same
KR102662497B1 (en) Phosphor compositions and lighting devices thereof
TWI428428B (en) Phosphors and light emitting device using the same