TW201239442A - Zoom optical system - Google Patents

Zoom optical system Download PDF

Info

Publication number
TW201239442A
TW201239442A TW100111192A TW100111192A TW201239442A TW 201239442 A TW201239442 A TW 201239442A TW 100111192 A TW100111192 A TW 100111192A TW 100111192 A TW100111192 A TW 100111192A TW 201239442 A TW201239442 A TW 201239442A
Authority
TW
Taiwan
Prior art keywords
lens
optical system
lens group
zoom optical
zoom
Prior art date
Application number
TW100111192A
Other languages
Chinese (zh)
Other versions
TWI452378B (en
Inventor
Fu-Ping Shih
Original Assignee
Soartek Optoelectronics Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soartek Optoelectronics Technology Ltd filed Critical Soartek Optoelectronics Technology Ltd
Priority to TW100111192A priority Critical patent/TWI452378B/en
Publication of TW201239442A publication Critical patent/TW201239442A/en
Application granted granted Critical
Publication of TWI452378B publication Critical patent/TWI452378B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

A zoom optical system comprises, in sequence from the object side to the imaging side, a first lens set, a second lens set, a third lens set, and a fourth lens set that have positive, negative, positive, positive refractive power, respectively. The fourth lens set comprises, in sequence from the object side to the imaging side, a first lens, a second lens, and a third lens that have positive, negative, and positive refractive power, respectively. The first lens set and the third set lens sets are fixed on the optical axis. When the zoom optical system is zoomed to the telephoto end state from the wide-angle end state, the second lens set moves toward the imaging side along the optical axis, and the fourth lens set moves along the optical axis to correct the aberration produced by the movement of second lens set along the optical axis. The zoom optical system satisfies the following conditions: the ratio of fLen2 to (fLen1+ fLen3) is in the range between -0.2 to -0.6, where the fLen1, fLen2, and fLens3 are the focus distances of the first, the second and the third lens, respectively. As such, the zoom optical system of this invention has better image quality.

Description

201239442 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種變焦光學系統,詳而言之,係涉及 一種包括四組透鏡組且其折射力分別為正、負、正和正之 變焦光學系統。 【先前技術】 隨著科技進步,近年來數位照相機或數位攝影機逐漸 取代傳統機械相機和類比攝影機而成為主流。 一般而言,數位相機或攝影機的變焦光學系統需具備 良好的光學性能,如大孔徑(aperture)、高變倍比(zoom ratio)、小型化等,惟,在要求高變倍比及大孔徑的情形下, 需增多用以校正像差的透鏡數目,因而提高了小型化的難 度。因此,習知技術中揭露一種包括四組透鏡組的變焦系 統,該四組透鏡組分別具有正、負、正和正的折射力 (refractive power),例如中國第CN1167268號發明專利公 開案(其申請名稱為“變焦距透鏡光學系統”)等。 然而,上述習知技術的變焦光學系統為達到較高的變 倍比(即變焦光學系統的望遠端狀態之焦距/廣角端狀態之 焦距),易使得解像力變差,因此,難以實現攝像裝置的高 晝素化。 【發明内容】 鑑於上述種種問題,本發明提供一種變焦光學系統, 在滿足高變倍比的條件下,同時兼顧光學影像品質。 本發明之變焦光學系統,從物體側至成像側依序包 括:第一透鏡組,係具有正折射力;第二透鏡組,係具有 3 111975 201239442 負折射力;第三透鏡組,伤且Μ丄 兄,且係具有正折射力,並設置有光圈; /且糸具有正折射力,且該第四透鏡組從該物體 側至該成像側依序包括折射力分別為正、負、和正的第一 透鏡、第二透鏡、和第三透鏡 心现,八f,孩第一及第三透鏡 組固定於光軸上,而當該轡隹氺興 ^ 文…、光予系、、先從廣角端狀態至望 退端狀態作焦點距離變化時,該第二透鏡組沿著該光轴朝 該成像側移動,而該第四透鏡組沿著該光轴移動,以校正 伴隨該第二透鏡組移動而產生 件其中,該 心爆產,以及滿足以下條 1、分別為該第 四透鏡組的第-、第二、第三透鏡的焦點距離。 於-實施形態令,滿足以下條件:2<螽<5,其中, fw 該L為該第四透鏡組的焦點距離,該Λ為該變焦光學系統 於該廣角端狀態時的焦點距離。 於另一實施形態中,滿足以下條件f其中,該。 為該第一透鏡的阿貝數。 於又一實施形態中,滿足 两疋以下條件13>5〇,其中,該r 為該第三透鏡的阿貝數。 w 於再-貫把形態中,該第三透鏡組包括設置於該光圈 附近的第四透鏡,且該光圈係位於該第四透鏡朝該物體側 的一面附近,並滿足以下條件⑽其中,該L為該第 四透鏡的阿貝數。 相較於先前技術’藉由本發明音 4知咧之貫施,可改善習知提 111975 4 201239442 供高變倍比效果的情況下,變焦光學系統在解像力和校正 球面像差、或橫向色差等方面不佳的缺陷,進而在變焦區 域内維持像差/色差平衡的穩定度。 【實施方式】 以下係藉由特定的實施形態說明本發明之技術内 容,熟悉此技術之人士可由本說明書所揭示之内容輕易地 了解本發明之其他優點與功效,亦可藉由其他不同的實施 形態加以施行或應用。 第1圖所示為本發明之變焦光學系統之透鏡組合架構 圖,變焦光學系統1包括從物體側〇至成像側I依序排列 之第一透鏡組GR1、第二透鏡組GR2、第三透鏡組GR3 和第四透鏡組GR4。前述第一透鏡組GR1具有正折射力、 第二透鏡組GR2具有負折射力、第三透鏡組GR3具有正 折射力,而第四透鏡組GR4具有正折射力,且該第三透鏡 組GR3朝該物體侧Ο設置有光圈ST。 第二透鏡組GR2提供變焦光學系統1變倍比調整之 用,於本發明之變焦光學系統變焦過程中,第一透鏡組GR1 和第三透鏡組GR3固定於光軸ax上;於本發明之變焦光 學系統1從廣角端狀態至望遠端狀態作焦點距離變化時, 第二透鏡組GR2乃沿著光轴ax朝成像側I移動’第四透 鏡組GR4亦沿著光軸ax移動以校正伴隨第二透鏡組GR2 移動所產生之像差。 第一透鏡組GR1包括從物體側〇朝成像側I依序排列 之透鏡L1、透鏡L2和透鏡L3。透鏡L1及透鏡L2可為組 5 111975 201239442 合透鏡,該組合透鏡之朝物體側〇的一面的曲率半徑可小 於朝成像側I的一面的曲率半徑,且透鏡L1及透鏡L2可 分別例如為凸凹透鏡及雙凸透鏡。再者,透鏡L3可為朝 物體側Ο的一面的曲率半徑小於朝成像側I的一面的曲率 半徑之凸凹透鏡。 第二透鏡組GR2包括從物體側0朝成像側I依序排列 之透鏡L4、透鏡L5和透鏡L6。及透鏡L5及透鏡L6可為 組合透鏡’該組合透鏡朝物體側〇的一面的曲率半徑可小 於朝成像側I的一面的曲率半徑,且透鏡L5及透鏡L6可 分別例如為雙凹透鏡及凸透鏡,且該凸透鏡可為凸平或凸 凹透鏡。另外,透鏡L5及透鏡L0可為非組合透鏡,即可 間隔設置,以增加光學系統的變數來平衡像差,亦可同時 提高解像力。再者,透鏡L4可為朝物體側〇的一面的曲 率半從大於朝成像側I的一面的曲率半徑之凸凹透鏡。 第三透鏡組GR3包括透鏡L7,光圈ST設置於透鏡 L7之朝物體侧〇的一面附近。透鏡L7可為朝物體側〇的 一面的曲率半徑小於朝成像侧j的一面的曲率半徑之凸凹 透鏡,或亦可為雙凸透鏡,且透鏡L7的凸面為非球面較 佳。另外,透鏡L7滿足以下條件14>5〇,其中,該、*為 透鏡L7的阿貝數(Abbe Number),其例如為塑膠透鏡,如 此能降低色差。 第四透鏡組GR4提供對焦調整之用,從物體側〇至 成像側1依序包括折射力為正的透鏡L8、折射力為負的透 鏡L9、和折射力為正的透鏡L1〇,並滿足以下條件: 111975 6 201239442 -0.2< f<-0.6,其中,前述凡、/ie„2、/ie„3分別為第四透 J Len\ J Lenl 鏡組GR4的透鏡L8、透鏡L9、透鏡L10的焦點距離。 詳言之,透鏡L8可為朝物體側〇的一面的曲率半徑 小於朝成像側I的一面的曲率半徑之雙凸透鏡。透鏡L9 可為朝該物體侧0的一面的曲率半徑大於朝該成像側I的 一面的曲率半徑之雙凹透鏡。透鏡L10可為朝該物體側Ο 的一面的曲率半徑大於朝該成像側I的一面的曲率半徑之 雙凸透鏡。此外,變焦光學系統1滿足以下條件:Leso、 Gw > 5〇,其中,前述%為透鏡L8的阿貝數,前述L為透 鏡L10的阿貝數(Abbe Number),例如為塑膠透鏡,藉此平 衡系統色差。 再者,變焦光學系統1滿足以下條件:2<¥<5,其201239442 VI. TECHNOLOGICAL FIELD OF THE INVENTION The present invention relates to a zoom optical system, and more particularly to a zoom optical system including four groups of lens groups and having refractive powers of positive, negative, positive and positive, respectively. . [Prior Art] With the advancement of technology, digital cameras or digital cameras have gradually replaced traditional mechanical cameras and analog cameras in recent years. In general, the zoom optical system of a digital camera or camera needs to have good optical performance, such as a large aperture, a zoom ratio, a miniaturization, etc., but requires a high zoom ratio and a large aperture. In this case, it is necessary to increase the number of lenses for correcting aberrations, thereby increasing the difficulty of miniaturization. Therefore, a zoom system including four groups of lens groups having positive, negative, positive, and positive refractive powers, respectively, is disclosed in the prior art, for example, the Chinese Patent Publication No. CN1167268 (the application thereof) The name is "Zoom lens optical system" and so on. However, the zoom optical system of the above-described prior art achieves a high zoom ratio (ie, the focal length of the telephoto end state of the zoom optical system/the focal length of the wide-angle end state), which tends to deteriorate the resolution, and thus it is difficult to realize the imaging device. High quality. SUMMARY OF THE INVENTION In view of the above various problems, the present invention provides a zoom optical system that satisfies optical image quality while satisfying a high zoom ratio. The zoom optical system of the present invention sequentially includes, from the object side to the imaging side, a first lens group having a positive refractive power, a second lens group having a negative refractive power of 3 111975 201239442, and a third lens group, which is injured and flawed. a brother, which has a positive refractive power and is provided with an aperture; and 糸 has a positive refractive power, and the fourth lens group sequentially includes positive, negative, and positive refractive powers from the object side to the imaging side, respectively. The first lens, the second lens, and the third lens are present, and the first and third lens groups are fixed on the optical axis, and when the image is The second lens group moves along the optical axis toward the imaging side while the wide-angle end state to the retracted end state changes as the focal length changes, and the fourth lens group moves along the optical axis to correct the second lens The group moves to produce a piece in which the heart burst occurs, and the following points 1 are satisfied, respectively, which are the focus distances of the first, second, and third lenses of the fourth lens group. In the embodiment, the following condition is satisfied: 2 < 螽 < 5, wherein f is the focal length of the fourth lens group, and Λ is the focal length of the zoom optical system in the wide-angle end state. In another embodiment, the following condition f is satisfied. Is the Abbe number of the first lens. In still another embodiment, the condition 13 > 5 疋 is satisfied, wherein r is the Abbe number of the third lens. In the re-continuous mode, the third lens group includes a fourth lens disposed near the aperture, and the aperture is located near a side of the fourth lens toward the object side, and satisfies the following condition (10), wherein L is the Abbe number of the fourth lens. Compared with the prior art, by the application of the sound of the present invention, it is possible to improve the resolution of the zoom optical system and correct spherical aberration, lateral chromatic aberration, etc. in the case of the high zoom ratio effect of the conventional 11197 4 201239442. A poor defect in the aspect further maintains the stability of the aberration/chromatic aberration balance in the zoom region. [Embodiment] The following describes the technical content of the present invention by a specific embodiment, and those skilled in the art can easily understand other advantages and effects of the present invention by the contents disclosed in the present specification, and can also be implemented by other different implementations. The form is applied or applied. 1 is a lens assembly diagram of a zoom optical system according to the present invention. The zoom optical system 1 includes a first lens group GR1, a second lens group GR2, and a third lens which are sequentially arranged from the object side to the imaging side I. Group GR3 and fourth lens group GR4. The first lens group GR1 has a positive refractive power, the second lens group GR2 has a negative refractive power, the third lens group GR3 has a positive refractive power, and the fourth lens group GR4 has a positive refractive power, and the third lens group GR3 faces The object side is provided with an aperture ST. The second lens group GR2 provides zoom ratio adjustment for the zoom optical system 1 . During zooming of the zoom optical system of the present invention, the first lens group GR1 and the third lens group GR3 are fixed on the optical axis ax; When the zoom optical system 1 changes the focal length from the wide-angle end state to the telephoto end state, the second lens group GR2 moves along the optical axis ax toward the imaging side I. The fourth lens group GR4 also moves along the optical axis ax to correct the accompanying motion. The aberration generated by the movement of the second lens group GR2. The first lens group GR1 includes a lens L1, a lens L2, and a lens L3 which are sequentially arranged from the object side 〇 toward the imaging side I. The lens L1 and the lens L2 may be a lens of the group 5 111975 201239442. The radius of curvature of the side of the combined lens facing the object side may be smaller than the radius of curvature of the side facing the imaging side I, and the lens L1 and the lens L2 may be, for example, convex and concave, respectively. Lenses and lenticular lenses. Further, the lens L3 may be a convex-concave lens having a radius of curvature of a side facing the object side smaller than a radius of curvature of one side of the image forming side I. The second lens group GR2 includes a lens L4, a lens L5, and a lens L6 which are sequentially arranged from the object side 0 toward the imaging side I. And the lens L5 and the lens L6 may be a combined lens. The radius of curvature of the side of the combined lens facing the object side may be smaller than the radius of curvature of the side facing the imaging side I, and the lens L5 and the lens L6 may be, for example, a biconcave lens and a convex lens, respectively. And the convex lens may be a convex flat or convex concave lens. Further, the lens L5 and the lens L0 may be non-combined lenses, which may be spaced apart to increase the variation of the optical system to balance the aberrations, and at the same time, improve the resolution. Further, the lens L4 may be a convex-concave lens having a curvature half of one side toward the object side and a radius of curvature larger than a side facing the image forming side I. The third lens group GR3 includes a lens L7 which is disposed in the vicinity of one side of the lens L7 toward the object side. The lens L7 may be a convex-concave lens having a radius of curvature of a side facing the object side smaller than a radius of curvature of one side of the image forming side j, or may be a lenticular lens, and the convex surface of the lens L7 is preferably aspherical. Further, the lens L7 satisfies the following condition 14 > 5, where * is the Abbe Number of the lens L7, which is, for example, a plastic lens, thereby reducing chromatic aberration. The fourth lens group GR4 provides focus adjustment, and includes a lens L8 having a positive refractive power, a lens L9 having a negative refractive power, and a lens L1〇 having a positive refractive power from the object side to the imaging side 1 and satisfying The following conditions: 111975 6 201239442 -0.2<f<-0.6, wherein, the above, /ie„2, /ie„3 are respectively the fourth lens J Len\ J Lenl lens group GR4 lens L8, lens L9, lens The focal length of L10. In detail, the lens L8 may be a lenticular lens whose radius of curvature toward the side of the object is smaller than the radius of curvature of the side of the image forming side I. The lens L9 may be a biconcave lens whose radius of curvature toward the side of the object side 0 is larger than the radius of curvature of the side of the image forming side I. The lens L10 may be a lenticular lens whose radius of curvature toward the side of the object is larger than the radius of curvature of the side of the image forming side I. Further, the zoom optical system 1 satisfies the following condition: Leso, Gw > 5, wherein the aforementioned % is the Abbe number of the lens L8, and the aforementioned L is the Abbe number of the lens L10, for example, a plastic lens, This balance system color difference. Furthermore, the zoom optical system 1 satisfies the following conditions: 2 < ¥ < 5, which

JW 中’前述心4為第四透鏡組GR4的焦點距離,前述Λ為變 焦光學系統1於廣角端狀態時的焦點距離。 另外,在第四透鏡組GR4與成像側I間設有光學低通 濾、波鏡(optical low pass filter ; OLPF)和感光元件保護玻璃 CG。光線從該物體侧〇沿著光軸ax經過光圈ST入射到 受光面,以於受光面Im形成物體的像。 接著先說明非球面公式,下列Z為相對於光軸上表面 頂點的位移量,z=i+w+⑻/+㈡/+⑼V。+⑹y2, c = l//?,其中,y為距離光轴的高度、R為頂點曲率半徑、 7 111975 201239442 =錐常m、B、e、D、E^^。 下說明本發明之變焦光學系統的具體實施例。 圖料本發明變焦光學^狀第—具體實 合架構圖’下列表一至三為該第一具 數據負料,第2B圖及2C圖為本發明變焦光學系統 一具體實施例的光學效果,其中,第2B圖中的各圖表用 以表示變焦光學系統i,於廣角端狀態時的球面像差、p 曲、畸變及橫向色差,而第2C圖中的各圖表用以表示^ 焦光學系統1,於望遠端狀態時的球面像差、場曲 橫向色差。 ^ 111975 8 201239442 表一: 焦點距離f= 4.75〜28.00、光圈值FNO = 3.65〜 4.91、視場角 2ω= 67.2° 〜12.0° 透鏡面 曲率半徑 間隔 折射率 阿貝數 透鏡 透鏡組 1 35.598 0.65 1.84666 23.8 L21 GR11 2 14.407 3.72 1.48749 70.4 3 14.407 3.72 1.48749 70.4 L22 4 254.642 0.15 5 16.251 2.62 1.80378 37.2 L23 6 169.004 可變 7 66.055 0.50 1.80317 46.4 L24 GR21 8 5.316 2.22 9 -10.067 0.54 1.55547 62.9 L25 10 6.963 1.78 1.80514 25.4 11 6.963 1.78 1.80514 25.4 L26 12 25.115 可變 光圈 〇〇 0.15 GR31 13 10.931 1.31 1.52500 56.2 L27 14 -556.865 可變 15 5.707 2.07 1.52500 56.2 L28 GR41 16 -30.768 0.46 17 -28.713 1.00 1.84666 23.8 L29 18 11.648 0.35 19 32.597 1.69 1.52500 56.2 L20 20 -10.402 可變 21 〇〇 0.55 1.51633 64.1 OLPF 22 〇〇 0.50 23 〇〇 0.40 1.51633 64.1 CG 24 〇〇 9 111975 201239442 表二: 焦點距離 f=4.75、14.65、28.00,透鏡面 6、12、14 及20的可變間隔。 透鏡面 4.75 14.65 28.00 6 0.74 7.99 10.65 12 11.02 3.77 1.11 14 9.66 5.38 2.78 20 7.42 11.71 14.31 表三: 球面 數 透鏡面\\ K A B C D E 13 -0.65 0 0 0 0 0 15 -0.344984 3.06E-04 5.37E-06 9.01E-07 3.10E-07 6.94E-10 16 0 0.000844 -5.08E-05 9.72E-06 -2.91E-08 0 19 75.112 0 -2.47E-06 1.28E-05 -6.25E-07 0 20 -*---- -6.569172 0 1.10E-04 -2.08E-06 5.49E-07 0 第3A圖係為本發明變焦光學系統之第二具體實施例 之透鏡組合架構圖,下列表四至六為該第二具體實施例的 數據資料,第3B圖及3C圖為本發明變焦光學系統丨,,之第 二具體實施例的光學效果,其中,第3B圖中的各圖表用 以表示變焦鮮系統Γ’於廣角端狀態時的球面像差、場 曲、畸變及橫向色差,而第3C圖中的各圖表用以表示變 =光學线1”於望遠端狀態時的球面像差、場曲、崎變及 111975 10 201239442 表四: 焦點距離f= 4.75〜35.68、光圈值FNO = 2.89〜 4.24、視場角 2ω= 67.2° 〜9.5° 透鏡面 曲率半徑 間隔 折射率 阿貝數 透鏡 透鏡組 1 39.468 0.60 1.84666 23.8 L31 GR12 2 16.463 3.70 1.48749 70.4 3 16.463 3.70 1.48749 70.4 L32 4 189.637 0.15 5 19.390 2.83 1.80386 36.0 L33 6 194.611 可變 7 63.255 0.50 1.80320 46.4 L34 GR22 8 5.938 2.12 9 -12.552 0.94 1.55655 60.9 L35 10 7.336 1.78 1.80500 25.2 11 7.336 1.78 1.80500 25.2 L36 12 25.845 可變 光圈 〇〇 0.15 GR32 13 11.186 1.38 1.52500 56.2 L37 14 64.289 可變 15 7.544 2.93 1.52500 56.2 L38 GR42 16 -13.278 0.24 17 -1015.873 1.20 1.80516 25.5 L39 18 7.619 0.87 19 22.915 2.23 1.52500 56.2 L30 20 -11.835 可變 21 〇〇 0.55 1.51633 64.1 OLPF 22 〇〇 0.50 23 〇〇 0.40 1.51633 64.1 CG 24 〇〇 11 111975 201239442 表五: 焦點距離 f=4.75、17.85、35.68,透鏡面 6、12、14 及20的可變間隔。 透鏡面 4.75 17.85 35.68 6 0.71 10.78 13.94 12 14.43 4.36 1.20 14 8.99 3.77 0.65 20 8.21 13.42 16.55 表六: \非球面 數 透鏡面\ K A B C D 13 0 1.08E-05 -1.70E-07 -5.18E-08 5.06E-09 15 -0.955174 -1.46E-05 -1.46E-05 1.17E-07 -1.58E-07 16 0 0.001026 -5.43E-05 -3.47E-06 7.87E-08 19 0 0.001126 9.29E-06 -9.29E-06 2.78E-07 20 -5.358588 0 3.64E-05 -4.21E-06 5.35E-08 ,,…’-人π儿干示观1弟二异體貫狐例 之透鏡組合架構圖’表七至九為第三具體實施例的數據資 料第4Β圖及4C圖為本發明變焦光學系统广,之第三具 體實施例的光學效果,其中,笛」π ^丄 _ ^ ^ ^ . 、 第4Β圖中的各圖表分別表 不變焦先學系統1”,於廣备 . μ 、角螭狀態時的球面像差、場曲、 崎變及秘向色差,而第4Γ国 圖中的各圖表分別表示變焦光 =差 遠喝時的球面像差、場曲、崎變及橫 111975 12 201239442 表七: 焦點距離f= 4.76〜45.11、光圈值FNO = 3.05〜 3.77、視場角 2ω= 67.1° 〜7.4 透鏡面 曲率半徑 間隔 折射率 阿貝數 透鏡 透鏡組 1 52.913 0.65 1.84666 23.8 L41 GR13 2 26.097 4.02 1.49700 81.6 3 26.097 4.02 1.49700 81.6 L42 4 -122.223 0.15 5 25.260 2.54 1.81550 45.4 L43 6 90.628 可變 7 32.655 0.50 1.88067 41.0 L44 GR23 8 7.283 3.76 9 -9.637 0.52 1.65197 50.9 L45 10 10.695 2.01 1.92286 20.9 11 10.695 2.01 1.92286 20.9 L46 12 168.404 可變 光圈 〇〇 0.15 GR33 13 11.218 1.34 1.52500 56.2 L47 14 31.541 可變 15 8.075 2.74 1.52500 56.2 L48 GR43 16 -21.544 0.32 17 -21.727 1.10 1.84675 23.9 L49 18 20.528 0.57 19 27.296 2.36 1.52500 56.2 L40 20 -13.848 可變 21 〇〇 0.55 1.51633 64.1 OLPF 22 〇〇 0.50 23 〇〇 0.40 1.51633 64.1 CG 24 〇〇 13 111975 201239442 表八: 焦點距離 f=4.76、20.75、45.11,透鏡面 6、12、14 及20的可變間隔。 \ 透鏡面\ 4.76 20.75 45.11 6 0.60 13.63 18.67 12 14.43 6.10 1.07 14 8.18 3.19 3.00 20 9.58 14.57 14.76 表九: \非球面 、數 透鏡面\ K A B C D 13 -2.363149 0 9.71E-06 -1.31E-06 5.54E-08 15 -0.25017 3.06E-04 -2.02E-06 4.70E-07 -5.33E-09 16 0 0.000561 -1.09E-05 7.74E-07 0 19 17.432204 0 2.14E-06 2.49E-06 -1.09E-07 20 -8.93234 0 1.68E-05 2.56E-06 -8.42E-08 下列表十用以顯示前述第一、二、三具體實施例的數 據比較。 14 111975 201239442 表十: 條件式 具體實施例 一 二 三 fLenl fLen\ + fLeni -0.40 -0.38 -0.42 Igra fw 2.74 2.95 3.23 V V LenA 56.04 56.04 56.04 V r Lenl 56.04 56.04 56.04 V r Lenl 56.04 56.04 56.04 因此,於一較佳實施形態中,第四透鏡組(GR4、 GR41、GR42 或 GR43 )滿足-o.2<—<-〇.6,其中,該几„,、 /ienl + funl 几„2、几„3分別為透鏡(L8、L28、L38或L48)、透鏡(L9、 L29、L39 或 L49)、透鏡(L10、L20、L30 或 L40)的焦 點距離。此外,於又一較佳實施形態中,第四透鏡組(GR4、 GR41、GR42或GR43)還滿足2<^<5,其中,/M4為該第 fw 四透鏡組(GR4、GR41、GR42或GR43)的焦點距離,凡 為變焦光學系統於廣角端狀態時的焦點距離。再者,於另 一較佳實施形態中,上述表十所列的、、,及匕^分別為 第三透鏡組(GR3、GR31、GR32或GR33)的透鏡(L7、 L27、L37 或 L47)、第四透鏡組(GR4、GR41、GR42 或 15 111975 201239442 GR43 )的透鏡(L8、L28、L38 或 L48 )和透鏡(L10、L20、 L30或L40 )的阿貝數,且大於50。 再者,由上述表十的比較及第2B、2C、3B、3C、4B 及4C圖可知,本發明之變焦光學系統不僅能獲得較高的 變倍比(約五倍以上),亦能同時具有良好的球面像差、橫 向色差、場曲以及畸變的校正效果。此外,本發明變焦光 學系統之第三透鏡組(GR3、GR31、GR32或GR33)之透 鏡(L7、L27、L37 或 L47)、第四透鏡組(GR4、GR41、 GR42或GR43)之透鏡(L8、L28、L38或L48)和透鏡 (L10、L20、L30或L40)可選用塑膠透鏡,以使其阿貝 數大於50,且此亦可降低變焦光學系統的製作成本。 綜上所述,本發明之變焦光學系統可應用於照相機、 攝影機或手機等之具有攝影鏡頭的電子設備中。本發明變 焦光學系統的第四透鏡組從該物體側至該成像側依序包括 折射力分別為正、負、正的三個透鏡(如第j圖所示的透鏡 L8、L9、Ll〇)’且該三個透鏡係較佳.地滿足 _〇.2< /㈣-< -0,6 JLen\ JLen'i 的條件式’且經上述第2B、2C、3B、3C、4B及4C圖之 實驗數據證明,本發明變焦光學系統於達到高變倍比的情 形下’兼顧像差和色差校正。 上述實施形態僅例示性說明本發明之原理及功效,而 非用於限制本發明。任何熟習此項技術之人士均可在不違 %本發明之技術思想下,對上述實施形態進行修飾與改 變。因此,本發明之權利保護範圍應如後述之申請專利範 111975 16 201239442 圍所列。 【圖式簡單說明】 . 第1 ®讀示本發明之變狀透鏡組合架構 圖; 第2A圖係緣示本發明變焦光學系統之第一具體實施 例之透鏡組合架構圖; 第2B圖係緣示本發明轡隹| /t ^ I月燹焦先學系統之第一具體實施 例之廣角端的光學實驗結果圖; 第2C圖係繪示本發明變焦光學系統之第一具體實施 例之望遠端的光學實驗結果圖; 第3A圖係繪示本發明轡隹氺 a炎焦先學系統之第二具體實施 例之透鏡組合架構圖; 第3B圖係繪示本發明變隹 A 焦先學系統之第二具體實施 例之廣角端的光學實驗結果圖; 第3C圖係繚示本發明變焦光學系統之第二具體實施 例之望遠端的光學實驗結果圖; 第4A圖係綠示本發明變焦光學系統之第三具體實施 例之透鏡組合架構圖; =B圖係、’、曰不本發明變焦光學系統之第三具體實施 例之廣角端的光學實驗結果圖;以及 第C圖係、、.曰不本發明變焦光學系統之第三具體實施 例之望遠端的光學實驗結果圖。 【主要元件符號說明】 1,、Γ,、1”, 變焦光學系統 111975 17 201239442 ax 光軸 CG 感光元件保護玻璃 GR1,GR11,GR12,GR13 第一透鏡組 GR2,GR21,GR22,GR23 第二透鏡組 GR3,GR31,GR32,GR33 第三透鏡組 GR4,GR41,GR42,GR43 第四透鏡組 Im 受光面In the JW, the aforementioned core 4 is the focal length of the fourth lens group GR4, and the aforementioned Λ is the focal length of the variable focal optical system 1 in the wide-angle end state. Further, an optical low pass filter (OLPF) and a photosensitive element protective glass CG are provided between the fourth lens group GR4 and the image forming side I. The light is incident on the light receiving surface from the side of the object along the optical axis ax through the aperture ST, so that the light receiving surface Im forms an image of the object. Next, the aspherical formula will be described first. The following Z is the displacement amount with respect to the apex of the upper surface of the optical axis, z = i + w + (8) / + (two) / + (9) V. +(6)y2, c = l//?, where y is the height from the optical axis, R is the radius of curvature of the vertex, 7 111975 201239442 = cone often m, B, e, D, E^^. Next, a specific embodiment of the zoom optical system of the present invention will be described. Fig. 1 to 3 are the first data negative materials, and Figs. 2B and 2C are optical effects of a specific embodiment of the zoom optical system of the present invention, wherein The graphs in Fig. 2B are used to indicate the spherical aberration, p-curve, distortion, and lateral chromatic aberration in the wide-angle end state of the zoom optical system i, and the graphs in the second graph are used to indicate the focal optical system 1 , spherical aberration at the telephoto end state, lateral curvature of field curvature. ^ 111975 8 201239442 Table 1: Focus distance f = 4.75~28.00, aperture value FNO = 3.65~ 4.91, field of view 2ω = 67.2° ~12.0° Lens surface curvature radius interval refractive index Abbe number lens lens set 1 35.598 0.65 1.84666 23.8 L21 GR11 2 14.407 3.72 1.48749 70.4 3 14.407 3.72 1.48749 70.4 L22 4 254.642 0.15 5 16.251 2.62 1.80378 37.2 L23 6 169.004 Variable 7 66.055 0.50 1.80317 46.4 L24 GR21 8 5.316 2.22 9 -10.067 0.54 1.55547 62.9 L25 10 6.963 1.78 1.80514 25.4 11 6.963 1.78 1.80514 25.4 L26 12 25.115 Variable aperture 〇〇 0.15 GR31 13 10.931 1.31 1.52500 56.2 L27 14 -556.865 Variable 15 5.707 2.07 1.52500 56.2 L28 GR41 16 -30.768 0.46 17 -28.713 1.00 1.84666 23.8 L29 18 11.648 0.35 19 32.597 1.69 1.52500 56.2 L20 20 -10.402 Variable 21 〇〇0.55 1.51633 64.1 OLPF 22 〇〇0.50 23 〇〇0.40 1.51633 64.1 CG 24 〇〇9 111975 201239442 Table 2: Focus distance f=4.75, 14.65, 28.00, lens surface 6, 12, Variable intervals of 14 and 20. Lens surface 4.75 14.65 28.00 6 0.74 7.99 10.65 12 11.02 3.77 1.11 14 9.66 5.38 2.78 20 7.42 11.71 14.31 Table 3: Spherical lens surface \\ KABCDE 13 -0.65 0 0 0 0 0 15 -0.344984 3.06E-04 5.37E-06 9.01E-07 3.10E-07 6.94E-10 16 0 0.000844 -5.08E-05 9.72E-06 -2.91E-08 0 19 75.112 0 -2.47E-06 1.28E-05 -6.25E-07 0 20 - *---- -6.569172 0 1.10E-04 -2.08E-06 5.49E-07 0 Figure 3A is a lens assembly diagram of the second embodiment of the zoom optical system of the present invention, and the following Tables 4-6 are The data of the second embodiment, FIGS. 3B and 3C are optical effects of the second embodiment of the zoom optical system of the present invention, wherein the graphs in FIG. 3B are used to indicate the zoom system Γ 'Spherical aberration, curvature of field, distortion, and lateral chromatic aberration in the wide-angle end state, and each graph in Fig. 3C is used to indicate spherical aberration, field curvature, and sag when the optical line 1" is in the telephoto end state. Change and 111975 10 201239442 Table 4: Focus distance f = 4.75~35.68, aperture value FNO = 2.89~ 4.24, field of view angle 2ω = 67.2 ° ~ 9.5 ° Lens surface curvature radius interval refractive index Abbe number lens group 1 39.468 0.60 1.84666 23.8 L31 GR12 2 16.463 3.70 1.48749 70.4 3 16.463 3.70 1.48749 70.4 L32 4 189.637 0.15 5 19.390 2.83 1.80386 36.0 L33 6 194.611 Variable 7 63.255 0.50 1.80320 46.4 L34 GR22 8 5.938 2.12 9 -12.552 0.94 1.55655 60.9 L35 10 7.336 1.78 1.80500 25.2 11 7.336 1.78 1.80500 25.2 L36 12 25.845 Variable aperture 〇〇0.15 GR32 13 11.186 1.38 1.52500 56.2 L37 14 64.289 Variable 15 7.544 2.93 1.52500 56.2 L38 GR42 16 - 13.278 0.24 17 -1015.873 1.20 1.80516 25.5 L39 18 7.619 0.87 19 22.915 2.23 1.52500 56.2 L30 20 -11.835 Variable 21 〇〇0.55 1.51633 64.1 OLPF 22 〇〇0.50 23 〇〇0.40 1.51633 64.1 CG 24 〇〇11 111975 201239442 Table 5: The focal lengths are f = 4.75, 17.85, 35.68, and the variable intervals of the lens faces 6, 12, 14, and 20. Lens surface 4.75 17.85 35.68 6 0.71 10.78 13.94 12 14.43 4.36 1.20 14 8.99 3.77 0.65 20 8.21 13.42 16.55 Table 6: \Aspherical lens surface\ KABCD 13 0 1.08E-05 -1.70E-07 -5.18E-08 5.06E -09 15 -0.955174 -1.46E-05 -1.46E-05 1.17E-07 -1.58E-07 16 0 0.001026 -5.43E-05 -3.47E-06 7.87E-08 19 0 0.001126 9.29E-06 -9.29 E-06 2.78E-07 20 -5.358588 0 3.64E-05 -4.21E-06 5.35E-08 ,,...'--------------------------------------------------------------- 7 to 9 are data sheets of the third embodiment. FIGS. 4 and 4C are optical effects of a third embodiment of the zoom optical system of the present invention, wherein the flute is π ^ 丄 _ ^ ^ ^ . 4 The graphs in the figure show the system of zooming first system 1”, spherical aberration, field curvature, sharp change and secret color difference in the angle of μ and angle, and the graphs in the 4th national map. Respectively indicate the zooming light = spherical aberration, field curvature, and variation of the surface when the difference is far away. 111975 12 201239442 Table 7: Focus distance f = 4.76~45.11, aperture value FNO = 3.05~ 3.77, angle of view 2ω= 67.1° ~7.4 Lens surface curvature radius interval refractive index Abbe number lens lens group 1 52.913 0.65 1.84666 23.8 L41 GR13 2 26.097 4.02 1.49700 81.6 3 26.097 4.02 1.49700 81.6 L42 4 -122.223 0.15 5 25.260 2.54 1.81550 45.4 L43 6 90.628 Change 7 32.655 0.50 1.88067 41.0 L44 GR23 8 7.283 3.76 9 -9.637 0.52 1.65197 50.9 L45 10 10.695 2.01 1.92286 20.9 11 10.695 2.01 1.92286 20.9 L46 12 168.404 Variable aperture 〇〇0.15 GR33 13 11.218 1.34 1.52500 56.2 L47 14 31.541 Variable 15 8.075 2.74 1.52500 56.2 L48 GR43 16 -21.544 0.32 17 -21.727 1.10 1.84675 23.9 L49 18 20.528 0.57 19 27.296 2.36 1.52500 56.2 L40 20 -13.848 Variable 21 〇〇0.55 1.51633 64.1 OLPF 22 〇〇0.50 23 〇〇0.40 1.51633 64.1 CG 24 〇 〇 13 111975 201239442 Table 8: Variable distances of focal lengths f = 4.76, 20.75, 45.11, lens faces 6, 12, 14 and 20. \ Lens surface \ 4.76 20.75 45.11 6 0.60 13.63 18.67 12 14.43 6.10 1.07 14 8.18 3.19 3.00 20 9.58 14.57 14.76 Table 9: \Aspherical, number of lens faces \ KABCD 13 -2.363149 0 9.71E-06 -1.31E-06 5.54E -08 15 -0.25017 3.06E-04 -2.02E-06 4.70E-07 -5.33E-09 16 0 0.000561 -1.09E-05 7.74E-07 0 19 17.432204 0 2.14E-06 2.49E-06 -1.09E -07 20 -8.93234 0 1.68E-05 2.56E-06 -8.42E-08 Table 10 below is used to display the data comparison of the first, second and third embodiments. 14 111975 201239442 Table 10: Conditional specific examples one two three fLenl fLen\ + fLeni -0.40 -0.38 -0.42 Igra fw 2.74 2.95 3.23 VV LenA 56.04 56.04 56.04 V r Lenl 56.04 56.04 56.04 V r Lenl 56.04 56.04 56.04 Therefore, In a preferred embodiment, the fourth lens group (GR4, GR41, GR42 or GR43) satisfies -o.2<-<-〇.6, wherein the „, , /ienl + funl „2, a few „3 is the focal length of the lens (L8, L28, L38 or L48), lens (L9, L29, L39 or L49), lens (L10, L20, L30 or L40). In addition, in another preferred embodiment The fourth lens group (GR4, GR41, GR42 or GR43) also satisfies 2 <^<5, wherein /M4 is the focal length of the fw four lens group (GR4, GR41, GR42 or GR43), where the zoom is The focus distance of the optical system in the wide-angle end state. In another preferred embodiment, the third lens group (GR3, GR31, GR32 or GR33) listed in the above Table 10, respectively. Lens (L7, L27, L37 or L47), fourth lens group (GR4, GR41, GR42 or 15 111975 2012394 Abbe number of lens (L8, L28, L38 or L48) and lens (L10, L20, L30 or L40) of 42 GR43), and greater than 50. Furthermore, by comparison of Table 10 above and 2B, 2C, 3B 3C, 4B and 4C, the zoom optical system of the present invention can not only obtain a high zoom ratio (about five times or more), but also have good spherical aberration, lateral chromatic aberration, curvature of field and distortion correction. Further, in addition, the lens (L7, L27, L37 or L47) of the third lens group (GR3, GR31, GR32 or GR33) of the zoom optical system of the present invention, and the lens of the fourth lens group (GR4, GR41, GR42 or GR43) (L8, L28, L38 or L48) and lens (L10, L20, L30 or L40) can be used with plastic lenses to make their Abbe number greater than 50, and this can also reduce the manufacturing cost of the zoom optical system. The zoom optical system of the present invention can be applied to an electronic device having a photographic lens such as a camera, a camera or a mobile phone. The fourth lens group of the zoom optical system of the present invention sequentially includes a refractive power from the object side to the imaging side, respectively. Positive, negative, positive three lenses (as shown in Figure j) Lens L8, L9, L1)) and the three lens systems preferably satisfy the conditional expression _〇.2</(4)-<-0,6 JLen\JLen'i and pass the above 2B, The experimental data of the 2C, 3B, 3C, 4B and 4C diagrams prove that the zoom optical system of the present invention combines aberration and chromatic aberration correction in the case of achieving a high zoom ratio. The above-described embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Any person skilled in the art can modify and change the above embodiments without departing from the technical idea of the present invention. Therefore, the scope of protection of the present invention should be as set forth in the patent application No. 111975 16 201239442, which is described later. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A shows a modified lens assembly structure diagram of the present invention; Fig. 2A shows a lens assembly architecture diagram of a first embodiment of the zoom optical system of the present invention; The optical experiment result chart of the wide-angle end of the first embodiment of the present invention is shown in the present invention; FIG. 2C is a perspective view of the optical end of the first embodiment of the zoom optical system of the present invention. Figure 3; Figure 3A is a diagram showing a lens assembly structure of a second embodiment of the present invention; and Figure 3B is a second embodiment of the present invention. Optical experiment result chart at the wide-angle end; FIG. 3C is a view showing the optical experiment result of the telephoto end of the second embodiment of the zoom optical system of the present invention; FIG. 4A is a third embodiment of the zoom optical system of the present invention. Lens combination architecture diagram; =B diagram, ', 曰 not the optical experiment result diagram of the wide-angle end of the third embodiment of the zoom optical system of the present invention; and the C-picture, The optical telephoto end according to the experimental results of FIG particular focus optical system of the third embodiment. [Description of main component symbols] 1, 1, Γ, 1", zoom optical system 111975 17 201239442 ax Optical axis CG photosensitive element protective glass GR1, GR11, GR12, GR13 First lens group GR2, GR21, GR22, GR23 Second lens Group GR3, GR31, GR32, GR33 Third lens group GR4, GR41, GR42, GR43 Fourth lens group Im receiving surface

I L1,L21,L31,L41 L2,L22,L32,L42 L3,L23,L33,L43 L4,L24,L34,L44 L5,L25,L35,L45 L6,L26,L36,L46 L7,L27,L37,L47 L8,L28,L38,L48 L9,L29,L39,L49 L10,L20,L30,L40I L1, L21, L31, L41 L2, L22, L32, L42 L3, L23, L33, L43 L4, L24, L34, L44 L5, L25, L35, L45 L6, L26, L36, L46 L7, L27, L37, L47 L8, L28, L38, L48 L9, L29, L39, L49 L10, L20, L30, L40

OLPF 0 成像側 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 透鏡 光學低通濾波鏡 物體侧OLPF 0 imaging side lens lens lens lens lens lens lens lens lens optical low-pass filter object side

ST 光圈 18 111975ST aperture 18 111975

Claims (1)

201239442 七 、申請專利範圍: 一種變焦光學系統,從物體侧至成像侧依序包括: 第一透鏡組,係具有正折射力; 第二透鏡組,係具有負折射力; 第三透鏡組,係具有正折射力,並設置有光圈;及 第四透鏡組,係具有正折射力,且該第四透鏡組從 該物體側至該成像側依序包括折射力分別為正、負 '和 正的第一透鏡、第二透鏡、和第三透鏡; 其中,該第一及第三透鏡組係固定於光轴上,而當 «亥I焦光學系統從廣角端狀態至望遠端狀態作焦點距 離變化時,該第二透鏡組係沿著該光軸朝該成像側移 動,而該第四透鏡組則沿著該光軸移動,以校正伴隨該 第二透鏡組移動而產生之像差;而且 該變焦光學系統係滿足以下條件 -0.2<· fun\ ^ fUni, 其中 4几》1、九Λ2、几”3分別為該第 四透鏡組的第-、第二、第三透鏡的焦點距離。 2. 如申請專利範圍第!項所述之變焦光學系統,其中,該 第四透鏡㈣滿足町條件:2<^<5,其中,該^為 點距離,該“該變焦光學系統於該 廣用立而狀悲時的焦點距離。 3. 如申請專利範圍第1或 飞2項所述之變焦光學系統,其 中,s亥第一透鏡滿足以下停 ^ Μ余件%>5〇 ’其中’該%為讀 111975 1 201239442 第一透鏡的阿貝數。 (t申請專利範圍第142項所述之變焦光學系統’戈 :,=第三透鏡滿足以下條件一其中,該L為該 第二透鏡的阿貝數。 如申請專利範圍第1項所述之變焦光學系統,1中,今 第三透鏡組包括設置於該光_近的第四透鏡,且誠 圈係位於該第四透鏡朝該物體侧的一面附近。 6.如申請專利範圍第5項所述之變Μ學系統,其中,續 第四透鏡滿;i以下條件^ >5G,其中,該〇該第四透 鏡的阿貝數。 如申5月專利範圍第1項所述之變焦光學系統,其中,該 第二透鏡組從該物體側至該成像側依序包括折射力分 另J為負、負及正之第五透鏡、第六透鏡及第七透鏡。 如申δ月專利範圍第7項所述之變焦光學系統,其中,該 第六透鏡和該第七透鏡為組合透鏡。 9.如申請專利範圍帛7項所述之變焦光學系、统,其中,該 第六透鏡和該第七透鏡為非組合透鏡。 2 111975201239442 VII. Patent application scope: A zoom optical system includes, in order from the object side to the imaging side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group. Having a positive refractive power and provided with an aperture; and a fourth lens group having a positive refractive power, and the fourth lens group sequentially includes a positive, negative, and positive refractive power from the object side to the imaging side a lens, a second lens, and a third lens; wherein the first and third lens groups are fixed on the optical axis, and when the focus angle is changed from the wide-angle end state to the telephoto end state The second lens group moves along the optical axis toward the imaging side, and the fourth lens group moves along the optical axis to correct aberrations caused by the movement of the second lens group; and the zoom The optical system satisfies the following condition -0.2 <· fun\ ^ fUni, wherein 4′′, 九Λ2, and “3” are the focal lengths of the first, second, and third lenses of the fourth lens group, respectively. If you apply for a patent The zoom optical system according to the item, wherein the fourth lens (four) satisfies the condition of the town: 2 <^<5, wherein the ^ is a point distance, and the "the zoom optical system is in a state of sorrow Focus distance. 3. The zoom optical system according to claim 1 or 2, wherein the first lens of the shai meets the following % of the remaining parts>5〇' where the % is read 111975 1 201239442 first The Abbe number of the lens. (t. The zoom optical system described in claim 142 of the patent application 'Ge:,=the third lens satisfies the following condition, wherein L is the Abbe number of the second lens. As described in claim 1 In the zoom optical system, the third lens group includes a fourth lens disposed near the light, and the coil is located near a side of the fourth lens toward the object side. The variable dropout system, wherein the fourth lens is full; i the following condition ^ > 5G, wherein the 阿 is the Abbe number of the fourth lens. The zoom as described in the first item of the May patent scope The optical system, wherein the second lens group sequentially includes, from the object side to the imaging side, a fifth lens, a sixth lens, and a seventh lens, wherein the refractive power is further negative, negative, and positive. The zoom optical system of claim 7, wherein the sixth lens and the seventh lens are combined lenses. 9. The zoom optical system according to claim 7, wherein the sixth lens and The seventh lens is a non-combined lens. 2 111975
TW100111192A 2011-03-31 2011-03-31 Zoom optical system TWI452378B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100111192A TWI452378B (en) 2011-03-31 2011-03-31 Zoom optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100111192A TWI452378B (en) 2011-03-31 2011-03-31 Zoom optical system

Publications (2)

Publication Number Publication Date
TW201239442A true TW201239442A (en) 2012-10-01
TWI452378B TWI452378B (en) 2014-09-11

Family

ID=47599526

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111192A TWI452378B (en) 2011-03-31 2011-03-31 Zoom optical system

Country Status (1)

Country Link
TW (1) TWI452378B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751805B (en) * 2019-11-29 2022-01-01 大陸商上海微電子裝備(集團)股份有限公司 Large field of view imaging objective lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI366681B (en) * 2008-06-20 2012-06-21 Hon Hai Prec Ind Co Ltd Optical zoom lens
JP5275891B2 (en) * 2009-05-08 2013-08-28 富士フイルム株式会社 Zoom lens and imaging device
TWM416773U (en) * 2011-03-31 2011-11-21 Xiang Tai Opto Electronics Technology Co Ltd Zoom lens of digital camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI751805B (en) * 2019-11-29 2022-01-01 大陸商上海微電子裝備(集團)股份有限公司 Large field of view imaging objective lens

Also Published As

Publication number Publication date
TWI452378B (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP5618752B2 (en) Zoom lens and imaging apparatus having the same
JP5328484B2 (en) Zoom lens and imaging apparatus having the same
JP6192338B2 (en) Zoom lens and imaging apparatus having the same
JP5173260B2 (en) Zoom lens and imaging apparatus having the same
JP2012022106A (en) Zoom lens and imaging apparatus including the same
JP2001194590A (en) Image pickup lens device
JP2009150970A (en) Zoom lens and imaging device provided with it
JP5959938B2 (en) Zoom lens and imaging apparatus having the same
JP2004240398A (en) Zoom lens and imaging apparatus
JP2015040982A (en) Zoom lens and imaging device having the same
JP2014202841A5 (en)
JP2009098184A (en) Zoom lens system
JP2008225314A (en) Zoom lens
US20130342749A1 (en) Zoom lens and image pickup apparatus having the same
JP2007212537A (en) Zoom lens and imaging apparatus having same
JP2005189670A (en) Zoom lens and camera equipped with the same
JP2012247688A (en) Zoom lens system and optical device using the same
JP2007093984A (en) Zoom lens
JP2005338598A (en) Zoom lens and imaging apparatus having the same
TWI299408B (en) Zoom lens system
JP2008309993A (en) Zoom lens and imaging apparatus having the same
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP5339783B2 (en) Zoom lens and imaging apparatus having the same
JP2009009121A (en) Zoom lens system
JP2014137409A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system