JP2014137409A - Variable power optical system, optical device, and method for manufacturing variable power optical system - Google Patents

Variable power optical system, optical device, and method for manufacturing variable power optical system Download PDF

Info

Publication number
JP2014137409A
JP2014137409A JP2013004652A JP2013004652A JP2014137409A JP 2014137409 A JP2014137409 A JP 2014137409A JP 2013004652 A JP2013004652 A JP 2013004652A JP 2013004652 A JP2013004652 A JP 2013004652A JP 2014137409 A JP2014137409 A JP 2014137409A
Authority
JP
Japan
Prior art keywords
lens group
optical system
lens
end state
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013004652A
Other languages
Japanese (ja)
Other versions
JP6182868B2 (en
Inventor
Tomoyuki Kojima
知之 幸島
Akihiko Kohama
昭彦 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013004652A priority Critical patent/JP6182868B2/en
Priority to PCT/JP2013/079242 priority patent/WO2014112176A1/en
Priority to CN201380057204.2A priority patent/CN104755984B/en
Publication of JP2014137409A publication Critical patent/JP2014137409A/en
Priority to US14/700,703 priority patent/US10185130B2/en
Application granted granted Critical
Publication of JP6182868B2 publication Critical patent/JP6182868B2/en
Priority to US16/037,803 priority patent/US11294155B2/en
Priority to US17/701,670 priority patent/US11714268B2/en
Priority to US18/208,677 priority patent/US20230324657A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system having a high variable power ratio, being compact, and achieving high optical performance even during focusing, and to provide an optical device and a method for manufacturing the variable power optical system.SOLUTION: The variable power optical system includes, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and a third lens group G3 having positive refractive power. When varying power from a wide angle end state to a telephoto end state, the distance between the first lens group G1 and the second lens group G2, and the distance between the second lens group G2 and the third lens group G3 are changed. The third lens group G3 includes an F lens group GF having positive refractive power and being moved along the optical axis during focusing from an infinite object to a short distance object.

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されている(例えば、特許文献1を参照。)。   Conventionally, as a variable power optical system suitable for an interchangeable lens for a camera, a digital camera, a video camera, and the like, many lenses having a positive refractive power in the most object side lens group have been proposed (for example, Patent Document 1). reference.).

特開2011−232543号公報JP 2011-232543 A

しかしながら、上述のような従来の変倍光学系は、高変倍比を維持しながら小型化を図ろうとすれば、十分に高い光学性能を得ることが困難であった。また、無限遠物体から近距離物体への合焦時に十分に高い光学性能を得ることが困難であった。   However, it has been difficult to obtain sufficiently high optical performance if the conventional variable power optical system as described above is to be downsized while maintaining a high zoom ratio. Also, it has been difficult to obtain sufficiently high optical performance when focusing from an object at infinity to an object at a short distance.

そこで本発明は上記問題点に鑑みてなされたものであり、高変倍比を有し、小型で、高い光学性能を有し、合焦時にも高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and has a high zoom ratio, a small size, high optical performance, and a high zoom optical system and optical device that have high optical performance even when focused. An object of the present invention is to provide a method for manufacturing a variable magnification optical system.

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、及び前記第2レンズ群と前記第3レンズ群との間隔が変化し、
前記第3レンズ群が、正の屈折力を有しており無限遠物体から近距離物体への合焦時に光軸に沿って移動するFレンズ群を有することを特徴とする変倍光学系を提供する。
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, and the distance between the second lens group and the third lens group change,
A variable power optical system characterized in that the third lens group has an F lens group that has a positive refractive power and moves along the optical axis when focusing from an object at infinity to an object at a short distance. provide.

また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する。
The present invention also provides
Provided is an optical device comprising the variable magnification optical system.

また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群が、正の屈折力を有しており無限遠物体から近距離物体への合焦時に光軸に沿って移動するFレンズ群を有するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、及び前記第2レンズ群と前記第3レンズ群との間隔が変化するようにすることを特徴とする変倍光学系の製造方法を提供する。
The present invention also provides
In order from the object side, a variable magnification optical system manufacturing method including a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. There,
The third lens group has a positive refractive power and has an F lens group that moves along the optical axis when focusing from an object at infinity to an object at a short distance;
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group are changed. A variable magnification optical system manufacturing method is provided.

本発明によれば、高変倍比を有し、小型で、高い光学性能を有し、合焦時にも高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。   According to the present invention, there are provided a variable magnification optical system, an optical apparatus, and a variable magnification optical system manufacturing method having a high zoom ratio, small size, high optical performance, and high optical performance even when focused. can do.

(a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views in the wide-angle end state, intermediate focal length state, and telephoto end state, respectively, of the variable magnification optical system according to the first example of the present application. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various figures at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. It is an aberration diagram. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率−0.01倍)の諸収差図である。(A), (b), and (c) are respectively when a short-distance object is focused in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the first example of the present application (shooting). FIG. 6 is a diagram showing various aberrations at a magnification of −0.01. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に、防振を行った際のメリディオナル横収差図である。(A), (b), and (c) are respectively prevented at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present application. FIG. 6 is a meridional lateral aberration diagram when vibration is performed. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the second example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. It is an aberration diagram. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率−0.01倍)の諸収差図である。(A), (b), and (c) are respectively when a short-distance object is focused in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the second example of the present application (shooting). FIG. 6 is a diagram showing various aberrations at a magnification of −0.01. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に、防振を行った際のメリディオナル横収差図である。(A), (b), and (c) are respectively prevented at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application. FIG. 6 is a meridional lateral aberration diagram when vibration is performed. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、及び前記第2レンズ群と前記第3レンズ群との間隔が変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
Hereinafter, a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. When the magnification is changed from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group change. It is a feature. With this configuration, the variable magnification optical system of the present application realizes variable magnification from the wide-angle end state to the telephoto end state, and can suppress each variation of distortion aberration, astigmatism, and spherical aberration associated with variable magnification. .

また、本願の変倍光学系は、前記第3レンズ群が、正の屈折力を有しており無限遠物体から近距離物体への合焦時に光軸に沿って移動するFレンズ群を有することを特徴としている。この構成により、合焦時に非点収差の変動や球面収差の変動を抑えることができる。また、本願の変倍光学系の焦点距離の変化を抑えることができ、合焦に伴う画角変化を抑えて高い光学性能を実現することができる。また、望遠端状態において、合焦時のFレンズ群の移動量を抑えることができる。このため、本願の変倍光学系を小型に構成できるだけでなく、合焦時に非点収差の変動や歪曲収差の変動を抑えることもできる。
以上の構成により、高変倍比を有し、小型で、高い光学性能を有し、合焦時にも高い光学性能を有する変倍光学系を実現することができる。
In the variable magnification optical system of the present application, the third lens group has a positive refractive power, and has an F lens group that moves along the optical axis when focusing from an object at infinity to an object at a short distance. It is characterized by that. With this configuration, it is possible to suppress fluctuations in astigmatism and spherical aberration during focusing. In addition, it is possible to suppress a change in the focal length of the variable magnification optical system of the present application, and it is possible to realize a high optical performance by suppressing a change in the angle of view accompanying focusing. Further, in the telephoto end state, the amount of movement of the F lens group during focusing can be suppressed. For this reason, not only can the variable magnification optical system of the present application be made compact, but also fluctuations in astigmatism and distortion can be suppressed during focusing.
With the above configuration, a variable magnification optical system having a high zoom ratio, a small size, high optical performance, and high optical performance even when focused can be realized.

また、本願の変倍光学系は、以下の条件式(1)を満足することが望ましい。
(1) 0.320 < ff/f3 < 5.200
但し、
f3:前記第3レンズ群の焦点距離
ff:前記Fレンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (1).
(1) 0.320 <ff / f3 <5.200
However,
f3: focal length of the third lens group ff: focal length of the F lens group

条件式(1)は、第3レンズ群とFレンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、合焦時にFレンズ群によって発生する球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、合焦時にFレンズ群によって発生する球面収差の変動や非点収差の変動が過大になってしまう。なお、本願の効果をより確実にするために、条件式(1)の下限値を0.880とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1)の下限値を1.150とすることがより好ましい。
一方、本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、合焦時にFレンズ群の移動量が大きくなる。このため、合焦時にFレンズ群に入射する軸上光束や軸外光束の光軸からの高さが大きく変化し、Fレンズ群によって発生する球面収差の変動や非点収差の変動が過大になってしまう。なお、本願の効果をより確実にするために、条件式(1)の上限値を2.600とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1)の上限値を1.900とすることがより好ましい。
Conditional expression (1) defines an appropriate focal length ratio range between the third lens group and the F lens group. By satisfying conditional expression (1), the variable magnification optical system of the present application can suppress variations in spherical aberration and astigmatism generated by the F lens group during focusing.
If the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application is below the lower limit value, the fluctuation of spherical aberration and the fluctuation of astigmatism generated by the F lens group at the time of focusing become excessive. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1) to 0.880. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1) to 1.150.
On the other hand, when the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application exceeds the upper limit value, the moving amount of the F lens group becomes large at the time of focusing. For this reason, the height from the optical axis of the on-axis light beam or off-axis light beam incident on the F lens group at the time of focusing changes greatly, and the fluctuation of spherical aberration and astigmatism generated by the F lens group are excessive. turn into. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 2.600. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 1.900.

また、本願の変倍光学系は、前記Fレンズ群が、前記第3レンズ群中の部分レンズ群であることが望ましい。この構成、即ちFレンズ群が第3レンズ群の一部分であることにより、合焦時に本願の変倍光学系の焦点距離の変化を抑えることができ、合焦時に非点収差等の収差の変動を抑えることができる。   In the variable magnification optical system of the present application, it is desirable that the F lens group is a partial lens group in the third lens group. With this configuration, that is, the F lens group is a part of the third lens group, it is possible to suppress a change in the focal length of the variable magnification optical system of the present application at the time of focusing, and fluctuations in aberrations such as astigmatism during focusing. Can be suppressed.

また、本願の変倍光学系は、前記Fレンズ群が、前記第3レンズ群中の最も像側に配置されていることが望ましい。この構成により、合焦時に本願の変倍光学系の焦点距離の変化をより抑えることができ、合焦に伴う画角変化を抑えて高い光学性能を実現することができる。また、合焦時に非点収差の変動や歪曲収差の変動を抑えることができる。   In the variable magnification optical system of the present application, it is desirable that the F lens group is disposed on the most image side in the third lens group. With this configuration, a change in focal length of the variable magnification optical system of the present application can be further suppressed during focusing, and high optical performance can be realized by suppressing a change in angle of view accompanying focusing. In addition, it is possible to suppress fluctuations in astigmatism and distortions during focusing.

また、本願の変倍光学系は、前記第3レンズ群の像側に、負の屈折力を有する第4レンズ群を有し、広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群との間隔が変化することが望ましい。この構成により、第1レンズ群から第3レンズ群までのレンズ群における主点位置を物体側へ移動させて本願の変倍光学系を小型に構成することができる。また、広角端状態において歪曲収差を抑え、変倍時に球面収差の変動や非点収差の変動を抑えることができる。   The zoom optical system of the present application has a fourth lens group having negative refractive power on the image side of the third lens group, and the third lens group has a third lens unit at the time of zooming from the wide-angle end state to the telephoto end state. It is desirable that the distance between the lens group and the fourth lens group changes. With this configuration, the principal point position in the lens group from the first lens group to the third lens group can be moved to the object side, and the variable magnification optical system of the present application can be made compact. In addition, it is possible to suppress distortion in the wide-angle end state, and to suppress variations in spherical aberration and astigmatism during zooming.

また、本願の変倍光学系は、前記第4レンズ群の像側に、第5レンズ群を有し、広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群との間隔が変化することが望ましい。この構成により、広角端状態において歪曲収差を抑え、変倍時に球面収差の変動や非点収差の変動を抑えることができる。   The variable magnification optical system of the present application has a fifth lens group on the image side of the fourth lens group, and the fourth lens group and the fifth lens group at the time of zooming from the wide-angle end state to the telephoto end state. It is desirable that the distance from the lens group changes. With this configuration, it is possible to suppress distortion in the wide-angle end state, and to suppress variations in spherical aberration and astigmatism during zooming.

また、本願の変倍光学系は、最も像側にRレンズ群を有し、広角端状態から望遠端状態への変倍時に、前記Rレンズ群の位置が固定であることが望ましい。この構成により、変倍時に、Rレンズ群に入射する周辺光束の光軸からの高さを変化させ、非点収差の変動を抑えることができる。   Further, it is desirable that the zoom optical system of the present application has an R lens group on the most image side, and the position of the R lens group is fixed when zooming from the wide angle end state to the telephoto end state. With this configuration, the height of the peripheral light beam incident on the R lens group from the optical axis can be changed during zooming, and astigmatism fluctuations can be suppressed.

また、本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) 5.500 < f1/fw < 9.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f1:前記第1レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (2).
(2) 5.500 <f1 / fw <9.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens group

条件式(2)は、第1レンズ群の適切な焦点距離の範囲を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、変倍時に第1レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の下限値を6.700とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を7.300とすることがより好ましい。
一方、本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、所定の変倍比を得るために、変倍時の第1レンズ群と第2レンズ群との間隔の変化量を大きくする必要がある。これにより、本願の変倍光学系を小型化しづらくなるだけでなく、第1レンズ群へ入射する軸上光束の径と第2レンズ群へ入射する軸上光束の径との比率が変倍に伴って大きく変化する。このため、変倍時に球面収差の変動が過大になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の上限値を8.500とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の上限値を8.200とすることがより好ましい。
Conditional expression (2) defines an appropriate focal length range of the first lens group. By satisfying conditional expression (2), the variable magnification optical system of the present application can suppress variations in spherical aberration and astigmatism during magnification.
If the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is less than the lower limit value, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the first lens group during magnification, It becomes impossible to realize high optical performance. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 6.700. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 7.300.
On the other hand, when the corresponding value of conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, the distance between the first lens group and the second lens group at the time of zooming is obtained in order to obtain a predetermined zoom ratio. It is necessary to increase the amount of change. This not only makes it difficult to miniaturize the variable magnification optical system of the present application, but also changes the ratio of the diameter of the axial light beam incident on the first lens group and the diameter of the axial light beam incident on the second lens group. It changes greatly with it. For this reason, the variation of the spherical aberration becomes excessive at the time of zooming, and high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 8.500. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 8.200.

また、本願の変倍光学系は、前記第3レンズ群が、負の屈折力を有しており光軸と直交する方向の成分を含むように移動するVレンズ群を有することが望ましい。本願の変倍光学系は、Vレンズ群が光軸と直交する方向の成分を含むように移動することにより、像を移動させ、手ぶれ等に起因する像ぶれの補正、即ち防振を行うことができる。また、前述の構成により、Vレンズ群で発生する偏芯コマ収差を抑えることができる。   In the zoom optical system of the present application, it is desirable that the third lens group has a V lens group that has a negative refractive power and moves so as to include a component in a direction orthogonal to the optical axis. The variable magnification optical system of the present application moves an image by moving the V lens group so as to include a component in a direction orthogonal to the optical axis, and corrects image blur caused by camera shake, that is, performs image stabilization. Can do. In addition, with the above-described configuration, it is possible to suppress decentered coma generated in the V lens group.

また、本願の変倍光学系は、前記Vレンズ群が、前記Fレンズ群よりも物体側に配置されていることが望ましい。この構成により、Vレンズ群の移動量に対する像の移動量の比を、広角端状態よりも望遠端状態で大きくすることができる。このため、望遠端状態で必要とされるVレンズ群の移動量を抑え、Vレンズ群で発生する偏芯コマ収差を抑えることができる。   In the variable magnification optical system of the present application, it is desirable that the V lens group is disposed closer to the object side than the F lens group. With this configuration, the ratio of the amount of movement of the image to the amount of movement of the V lens group can be increased in the telephoto end state than in the wide angle end state. For this reason, the movement amount of the V lens group required in the telephoto end state can be suppressed, and the eccentric coma aberration generated in the V lens group can be suppressed.

また、本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.240 < ff/(−fv) < 4.000
但し、
ff:前記Fレンズ群の焦点距離
fv:前記Vレンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 0.240 <ff / (-fv) <4.0000
However,
ff: focal length of the F lens group fv: focal length of the V lens group

条件式(3)は、Fレンズ群とVレンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、Vレンズ群を光軸と直交する方向の成分を含むように移動させて防振を行った時の偏芯コマ収差を抑えることができる。また、合焦時に各レンズ群で発生する球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、合焦時に各レンズ群で発生する球面収差の変動や非点収差の変動が過大になってしまう。なお、本願の効果をより確実にするために、条件式(3)の下限値を0.490とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の下限値を0.630とすることがより好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、防振時の偏芯コマ収差が過大になってしまう。また、合焦時のFレンズ群の移動量が大きくなる。このため、合焦時に、Fレンズ群を通過する光線の状態が大きく変化してしまい、Fレンズ群で発生する球面収差の変動や非点収差の変動を抑えることができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の上限値を2.800とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の上限値を1.800とすることがより好ましい。
Conditional expression (3) defines an appropriate focal length ratio range between the F lens group and the V lens group. By satisfying conditional expression (3), the variable magnification optical system of the present application exhibits the decentration coma aberration when the V lens group is moved so as to include the component in the direction orthogonal to the optical axis and the image stabilization is performed. Can be suppressed. In addition, it is possible to suppress changes in spherical aberration and astigmatism that occur in each lens group during focusing.
If the corresponding value of the conditional expression (3) of the variable magnification optical system of the present application is below the lower limit value, the fluctuation of spherical aberration and the fluctuation of astigmatism occurring in each lens group at the time of focusing become excessive. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 0.490. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 0.630.
On the other hand, if the corresponding value of the conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit value, the decentration coma aberration at the time of image stabilization becomes excessive. In addition, the amount of movement of the F lens group during focusing increases. For this reason, at the time of focusing, the state of the light beam passing through the F lens group changes greatly, and it becomes impossible to suppress the variation in spherical aberration and the astigmatism generated in the F lens group. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 2.800. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 1.800.

また、本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.280 < (−fv)/f3 < 5.200
但し、
f3:前記第3レンズ群の焦点距離
fv:前記Vレンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (4).
(4) 0.280 <(− fv) / f3 <5.200
However,
f3: focal length of the third lens group fv: focal length of the V lens group

条件式(4)は、第3レンズ群とVレンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(4)を満足することにより、防振時の偏芯コマ収差を抑えることができる。
本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、防振時の偏芯コマ収差が過大になってしまう。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.610とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4)の下限値を0.740とすることがより好ましい。
一方、本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、防振時に必要となるVレンズ群の移動量が過大になる。このため、Vレンズ群によって発生する偏芯コマ収差が過大になってしまう。なお、本願の効果をより確実にするために、条件式(4)の上限値を2.400とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4)の上限値を1.650とすることがより好ましい。
Conditional expression (4) defines an appropriate focal length ratio range between the third lens group and the V lens group. The variable magnification optical system of the present application can suppress decentering coma during vibration isolation by satisfying conditional expression (4).
If the corresponding value of the conditional expression (4) of the variable magnification optical system of the present application is less than the lower limit value, the decentering coma aberration at the time of image stabilization becomes excessive. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.610. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (4) to 0.740.
On the other hand, if the corresponding value of conditional expression (4) of the variable magnification optical system of the present application exceeds the upper limit value, the amount of movement of the V lens group required for image stabilization becomes excessive. For this reason, the eccentric coma aberration generated by the V lens group becomes excessive. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4) to 2.400. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4) to 1.650.

また、本願の変倍光学系は、前記第3レンズ群が、前記Vレンズ群の物体側に、正の屈折力を有する3Aレンズ群を有することが望ましい。この構成により、防振時に必要となるVレンズ群の移動量を抑え、Vレンズ群によって発生する偏芯コマ収差を抑えることができる。   In the variable magnification optical system of the present application, it is desirable that the third lens group has a 3A lens group having a positive refractive power on the object side of the V lens group. With this configuration, it is possible to suppress the amount of movement of the V lens group that is required during image stabilization, and to suppress decentration coma generated by the V lens group.

また、本願の変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 0.300 < (−fv)/f3A < 3.800
但し、
f3A:前記3Aレンズ群の焦点距離
fv :前記Vレンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (5).
(5) 0.300 <(-fv) / f3A <3.800
However,
f3A: focal length of the 3A lens group fv: focal length of the V lens group

条件式(5)は、3Aレンズ群とVレンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(5)を満足することにより、防振時の偏芯コマ収差を抑えることができる。
本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、防振時の偏芯コマ収差が過大になってしまう。なお、本願の効果をより確実にするために、条件式(5)の下限値を0.650とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5)の下限値を0.920とすることがより好ましい。
一方、本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、防振時に必要となるVレンズ群の移動量が過大になる。このため、Vレンズ群によって発生する偏芯コマ収差が過大になってしまう。なお、本願の効果をより確実にするために、条件式(5)の上限値を3.700とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5)の上限値を2.900とすることがより好ましい。
Conditional expression (5) defines an appropriate focal length ratio range of the 3A lens group and the V lens group. The variable magnification optical system of the present application can suppress decentering coma during vibration isolation by satisfying conditional expression (5).
If the corresponding value of the conditional expression (5) of the variable magnification optical system of the present application is less than the lower limit value, the decentering coma aberration at the time of image stabilization becomes excessive. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.650. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.920.
On the other hand, if the corresponding value of conditional expression (5) of the variable magnification optical system of the present application exceeds the upper limit value, the amount of movement of the V lens group required for image stabilization becomes excessive. For this reason, the eccentric coma aberration generated by the V lens group becomes excessive. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5) to 3.700. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5) to 2.900.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記3Aレンズ群と前記Vレンズ群との間隔が不変であることが望ましい。この構成により、製造時に生じた第3レンズ群とVレンズ群の相互のチルト偏芯が、変倍時に変化することを抑えることができる。このため、変倍時にVレンズ群のチルト偏芯に伴って生じる偏芯コマ収差の変動や非点収差のタオレの変動を抑えることができる。   In the variable power optical system of the present application, it is desirable that the distance between the 3A lens group and the V lens group is unchanged when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to suppress a change in tilt eccentricity between the third lens group and the V lens group, which occurs during manufacturing, from changing during zooming. For this reason, it is possible to suppress the fluctuation of the eccentric coma aberration and the fluctuation of the astigmatism caused by the tilt decentration of the V lens group at the time of zooming.

また、本願の変倍光学系は、前記第3レンズ群が、前記Vレンズ群と前記Fレンズ群との間に、正の屈折力を有するMレンズ群を有することが望ましい。この構成により、防振時にVレンズ群を光軸と直交する方向の成分を含むように移動させた状態においてVレンズ群で発生する偏芯コマ収差を抑えることができる。また、合焦時にFレンズ群の移動量を抑えることができる。このため、合焦時にFレンズ群で発生する非点収差の変動や球面収差の変動を抑えることができる。   In the variable magnification optical system of the present application, it is desirable that the third lens group has an M lens group having a positive refractive power between the V lens group and the F lens group. With this configuration, it is possible to suppress decentration coma aberration generated in the V lens group when the V lens group is moved so as to include a component in a direction orthogonal to the optical axis during image stabilization. In addition, the amount of movement of the F lens group can be suppressed during focusing. For this reason, fluctuations in astigmatism and spherical aberration that occur in the F lens group during focusing can be suppressed.

また、本願の変倍光学系は、以下の条件式(6)を満足することが望ましい。
(6) 0.110 < (−fv)/fm < 2.600
但し、
fm:前記Mレンズ群の焦点距離
fv:前記Vレンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (6).
(6) 0.110 <(− fv) / fm <2.600
However,
fm: focal length of the M lens group fv: focal length of the V lens group

条件式(6)は、Vレンズ群とFレンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(6)を満足することにより、防振時にVレンズ群を光軸と直交する方向の成分を含むように移動させた状態においてVレンズ群で発生する偏芯コマ収差を抑えることができる。また、合焦時にFレンズ群で発生する非点収差の変動や球面収差の変動を抑えることができる。
本願の変倍光学系の条件式(6)の対応値が下限値を下回ると、防振時にVレンズ群を光軸と直交する方向の成分を含むように移動させた状態においてVレンズ群で発生する偏芯コマ収差が過大になってしまう。また、合焦時のFレンズ群の移動量が過大になる。このため、合焦時にFレンズ群で発生する非点収差の変動や球面収差の変動を抑えることが困難になってしまう。なお、本願の効果をより確実にするために、条件式(6)の下限値を0.230とすることがより好ましい。
一方、本願の変倍光学系の条件式(6)の対応値が上限値を上回ると、防振時に必要となるVレンズ群の移動量が過大になる。このため、Vレンズ群によって発生する偏芯コマ収差が過大になってしまう。また、合焦時にFレンズ群で発生する非点収差の変動や球面収差の変動を抑えることが困難になってしまう。なお、本願の効果をより確実にするために、条件式(6)の上限値を1.300とすることがより好ましい。また、本願の効果をより確実にするために、条件式(6)の上限値を0.880とすることがより好ましい。
Conditional expression (6) defines an appropriate focal length ratio range between the V lens group and the F lens group. The variable magnification optical system of the present application satisfies the conditional expression (6), so that a deviation generated in the V lens group in a state in which the V lens group is moved to include a component in a direction orthogonal to the optical axis at the time of image stabilization. Core coma can be suppressed. In addition, fluctuations in astigmatism and spherical aberration that occur in the F lens group during focusing can be suppressed.
When the corresponding value of the conditional expression (6) of the variable magnification optical system of the present application is below the lower limit value, the V lens group is moved in the state in which the V lens group is moved so as to include a component in the direction orthogonal to the optical axis during image stabilization. The generated decentered coma aberration becomes excessive. Further, the amount of movement of the F lens group at the time of focusing becomes excessive. For this reason, it becomes difficult to suppress fluctuations in astigmatism and spherical aberration that occur in the F lens group during focusing. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6) to 0.230.
On the other hand, if the corresponding value of conditional expression (6) of the variable magnification optical system of the present application exceeds the upper limit value, the amount of movement of the V lens group required for image stabilization becomes excessive. For this reason, the eccentric coma aberration generated by the V lens group becomes excessive. In addition, it becomes difficult to suppress fluctuations in astigmatism and spherical aberration that occur in the F lens group during focusing. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6) to 1.300. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6) to 0.880.

また、本願の変倍光学系は、以下の条件式(7)を満足することが望ましい。
(7) 0.080 < ff/fm < 1.700
但し、
ff:前記Fレンズ群の焦点距離
fm:前記Mレンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (7).
(7) 0.080 <ff / fm <1.700
However,
ff: focal length of the F lens group fm: focal length of the M lens group

条件式(7)は、Fレンズ群とMレンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(7)を満足することにより、合焦時にFレンズ群で発生する非点収差の変動や球面収差の変動を抑えることができる。
本願の変倍光学系の条件式(7)の対応値が下限値を下回ると、合焦時にFレンズ群で発生する非点収差の変動や球面収差の変動が過大になってしまう。なお、本願の効果をより確実にするために、条件式(7)の下限値を0.200とすることがより好ましい。
一方、本願の変倍光学系の条件式(7)の対応値が上限値を上回ると、合焦時のFレンズ群の移動量が増大する。このため、合焦時に、Fレンズ群に入射する軸上光束や軸外光束が大きく変化し、非点収差の変動や球面収差の変動が過大になってしまう。なお、本願の効果をより確実にするために、条件式(7)の上限値を1.200とすることがより好ましい。また、本願の効果をより確実にするために、条件式(7)の上限値を0.950とすることがより好ましい。
Conditional expression (7) defines an appropriate focal length ratio range between the F lens group and the M lens group. By satisfying conditional expression (7), the variable magnification optical system of the present application can suppress fluctuations in astigmatism and spherical aberration that occur in the F lens group during focusing.
When the corresponding value of the conditional expression (7) of the variable magnification optical system of the present application is below the lower limit value, the fluctuation of astigmatism and the spherical aberration that occur in the F lens group at the time of focusing become excessive. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7) to 0.200.
On the other hand, when the corresponding value of conditional expression (7) of the zoom optical system of the present application exceeds the upper limit value, the amount of movement of the F lens group at the time of focusing increases. For this reason, during focusing, the on-axis light beam and off-axis light beam incident on the F lens group change greatly, and astigmatism variation and spherical aberration variation become excessive. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7) to 1.200. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7) to 0.950.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第2レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is desirable that the distance between the first lens group and the second lens group is increased when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to increase the magnification of the second lens group, and it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming while efficiently realizing a high zoom ratio.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第3レンズ群から最も像側に位置するレンズ群までの合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is preferable that the distance between the second lens group and the third lens group is reduced when zooming from the wide-angle end state to the telephoto end state. With this configuration, the composite magnification from the third lens group to the lens group located closest to the image side can be increased, and the variation in spherical aberration and astigmatism during zooming can be achieved while efficiently achieving a high zoom ratio. Variations in aberrations can be suppressed.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することが望ましい。この構成により、変倍時に第1レンズ群を通過する軸外光束の光軸からの高さの変化を抑えることができ、第1レンズ群の径を小さくできるだけでなく、変倍時に非点収差の変動を抑えることもできる。   In the zoom optical system according to the present application, it is preferable that the first lens unit moves toward the object side when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to suppress a change in height from the optical axis of the off-axis light beam passing through the first lens unit at the time of zooming, and it is possible not only to reduce the diameter of the first lens unit, but also to astigmatism at the time of zooming. It is also possible to suppress fluctuations.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群が物体側へ移動することが望ましい。この構成により、第3レンズ群の倍率を増倍させることができ、変倍時に第3レンズ群で発生する球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is preferable that the third lens group moves toward the object side when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to increase the magnification of the third lens group, and it is possible to suppress changes in spherical aberration and astigmatism that occur in the third lens group during zooming.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群が光軸に沿って移動することが望ましい。この構成により、変倍時に、特に中間焦点距離状態において第1レンズ群及び第3レンズ群で発生する非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is preferable that the second lens group moves along the optical axis when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to suppress fluctuations in astigmatism that occur in the first lens group and the third lens group during zooming, particularly in the intermediate focal length state.

また、本願の変倍光学系は、前記第2レンズ群が、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとで構成されていることが望ましい。この構成により、変倍時に第2レンズ群で発生するコマ収差、球面収差、及び非点収差のそれぞれの変動を抑えることができる。また、第2レンズ群を4枚以上のレンズで構成する場合に比べて、第2レンズ群の厚みを抑えることができ、広角端状態で第1レンズ群における軸外光束の光軸からの高さを抑えて第1レンズ群を小型化することができる。   In the variable magnification optical system of the present application, the second lens group has, in order from the object side, a first lens having a negative refractive power, a second lens having a positive refractive power, and a negative refractive power. It is desirable that the lens is composed of a third lens. With this configuration, it is possible to suppress fluctuations in coma, spherical aberration, and astigmatism that occur in the second lens group during zooming. Further, the thickness of the second lens group can be suppressed as compared with the case where the second lens group is composed of four or more lenses, and the off-axis luminous flux of the first lens group in the wide-angle end state is increased from the optical axis. The first lens group can be reduced in size while suppressing this.

また、本願の変倍光学系は、前記第2レンズと前記第3レンズとが接合されていることが望ましい。この構成により、変倍時に第2レンズで発生するコマ収差の変動を抑えることができる。   In the variable magnification optical system of the present application, it is desirable that the second lens and the third lens are cemented. With this configuration, it is possible to suppress coma aberration fluctuations that occur in the second lens during zooming.

また、本願の変倍光学系は、前記第1レンズの物体側のレンズ面と前記第3レンズの像側のレンズ面とが非球面であることが望ましい。この構成により、変倍時に非点収差、コマ収差、及び歪曲収差のそれぞれの変動を抑えることができる。   In the zoom optical system of the present application, it is desirable that the object-side lens surface of the first lens and the image-side lens surface of the third lens are aspherical surfaces. With this configuration, each variation of astigmatism, coma, and distortion can be suppressed during zooming.

本願の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有し、合焦時にも高い光学性能を有する光学装置を実現することができる。   The optical device of the present application is characterized by having the variable magnification optical system having the above-described configuration. Thereby, it is possible to realize an optical device having a high zoom ratio, a small size, high optical performance, and high optical performance even when focused.

本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、前記第3レンズ群が、正の屈折力を有しており無限遠物体から近距離物体への合焦時に光軸に沿って移動するFレンズ群を有するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、及び前記第2レンズ群と前記第3レンズ群との間隔が変化するようにすることを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有し、合焦時にも高い光学性能を有する変倍光学系を製造することができる。   The variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. The third lens group has a positive refractive power and moves along the optical axis when focusing from an object at infinity to a near object. The zoom lens has a lens group, and at the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, and the distance between the second lens group and the third lens group It is characterized by changing. Thereby, it is possible to manufacture a variable power optical system having a high zoom ratio, a small size, high optical performance, and high optical performance even when focused.

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1(a)、図1(b)、及び図1(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、Rレンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
1A, 1B, and 1C are cross-sectional views of the zoom optical system according to the first example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power which is an R lens group.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。   The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.

第2レンズ群G2は、物体側から順に、第1レンズである物体側に凸面を向けた負メニスカスレンズL21と、第2レンズである物体側に凹面を向けた正メニスカスレンズL22と第3レンズである物体側に凹面を向けた負メニスカスレンズL23との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる複合型非球面レンズであり、負メニスカスレンズL23は像面側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side that is the first lens, a positive meniscus lens L22 having a concave surface facing the object side that is the second lens, and a third lens. And a cemented lens with a negative meniscus lens L23 having a concave surface facing the object side. The negative meniscus lens L21 is a composite aspheric lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape, and the negative meniscus lens L23 has an aspherical surface on the image side. This is a glass mold aspheric lens.

第3レンズ群G3は、物体側から順に、正の屈折力を有する3Aレンズ群G3Aと、負の屈折力を有するVレンズ群GVと、正の屈折力を有するMレンズ群GMと、正の屈折力を有するFレンズ群GFとから構成されている。
3Aレンズ群G3Aは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32とからなる。
Vレンズ群GVは、物体側から順に、物体側に凹面を向けた正メニスカスレンズL33と両凹形状の負レンズL34との接合レンズからなる。なお、負レンズL34は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
Mレンズ群GMは、物体側から順に、両凸形状の正レンズL35と物体側に凹面を向けた負メニスカスレンズL36との接合レンズと、物体側に凹面を向けた負メニスカスレンズL37とからなる。なお、負メニスカスレンズL37は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
Fレンズ群GFは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL38と両凸形状の正レンズL39との接合レンズからなる。
なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The third lens group G3 includes, in order from the object side, a 3A lens group G3A having a positive refractive power, a V lens group GV having a negative refractive power, an M lens group GM having a positive refractive power, and a positive It consists of an F lens group GF having refractive power.
The 3A lens group G3A includes, in order from the object side, a positive meniscus lens L31 having a convex surface directed toward the object side, and a biconvex positive lens L32.
The V lens group GV includes, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface facing the object side and a biconcave negative lens L34. The negative lens L34 is a glass mold aspheric lens having an aspheric lens surface on the image side.
The M lens group GM includes, in order from the object side, a cemented lens of a biconvex positive lens L35 and a negative meniscus lens L36 having a concave surface facing the object side, and a negative meniscus lens L37 having a concave surface facing the object side. . The negative meniscus lens L37 is a glass mold aspheric lens having an aspheric lens surface on the image side.
The F lens group GF includes, in order from the object side, a cemented lens of a negative meniscus lens L38 having a convex surface facing the object side and a biconvex positive lens L39.
An aperture stop S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、物体側に凹面を向けた負メニスカスレンズL42と、両凸形状の正レンズL43とからなる。   The fourth lens group G4 includes, in order from the object side, a biconcave negative lens L41, a negative meniscus lens L42 having a concave surface directed toward the object side, and a biconvex positive lens L43.

第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51からなる。なお、正メニスカスレンズL51は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 includes a positive meniscus lens L51 having a concave surface directed toward the object side. The positive meniscus lens L51 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1〜第4レンズ群G4は変倍時に物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第3レンズ群G3と一体的に物体側へ移動する。
これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。また、変倍時に第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から中間焦点距離状態まで増加し、中間焦点距離状態から望遠端状態まで減少する。なお、変倍時に第3レンズ群G3中の3Aレンズ群G3AとVレンズ群GVとの空気間隔は一定である。
With the above-described configuration, in the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed. The first lens group G1 to the fourth lens group G4 move along the optical axis.
Specifically, the first lens group G1 to the fourth lens group G4 move to the object side during zooming. The position of the fifth lens group G5 in the optical axis direction is fixed during zooming. The aperture stop S moves to the object side integrally with the third lens group G3 during zooming.
Thereby, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4. And the fifth lens group G5 increase in air space. At the time of zooming, the air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the intermediate focal length state and decreases from the intermediate focal length state to the telephoto end state. Note that the air gap between the 3A lens group G3A and the V lens group GV in the third lens group G3 is constant during zooming.

また、本実施例に係る変倍光学系では、手ぶれ等の発生時に、第3レンズ群G3中のVレンズ群GVを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。   In the variable magnification optical system according to the present embodiment, when camera shake or the like occurs, the V lens group GV in the third lens group G3 is moved as a vibration-proof lens group so as to include a component in a direction orthogonal to the optical axis. To prevent vibration.

また、本実施例に係る変倍光学系では、第3レンズ群G3中のFレンズ群GFを合焦レンズ群として光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。   In the variable magnification optical system according to the present embodiment, the F lens group GF in the third lens group G3 is moved to the object side along the optical axis as a focusing lens group, so that an object at a short distance from an object at infinity Focus on.

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
In [Surface data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface), and nd is The refractive index for d-line (wavelength 587.6 nm) and νd indicate the Abbe number for d-line (wavelength 587.6 nm), respectively. In addition, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. For the aspherical surface, * is added to the surface number, and the value of the paraxial radius of curvature is indicated in the column of the radius of curvature r. The description of the refractive index of air nd = 1.00000 is omitted.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10+A12h12
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10,A12を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h, and κ is the conic constant. , A4, A6, A8, A10, A12 are aspherical coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature). “E−n” (n is an integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspherical coefficient A2 is 0 and is not shown.

[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、φは開口絞りSの絞り径をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[合焦時の合焦レンズ群の移動量]は、無限遠物体合焦時から近距離物体合焦時(撮影倍率-0.0100倍)へのFレンズ群GFの移動量を示す。なお、移動量の符号はFレンズ群GFが物体側へ移動した場合を正とする。また、撮影距離は物体面から像面Iまでの距離を示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[防振係数]には、防振レンズ群(Vレンズ群GV)の光軸からの移動量に対する像面I上での像の移動量の比である防振係数を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
In [Various data], FNO is the F number, ω is the half angle of view (unit is “°”), Y is the image height, TL is the total length of the variable magnification optical system (image from the first surface when focusing on an object at infinity) (Distance on the optical axis to the surface I), dn represents the variable distance between the nth surface and the (n + 1) th surface, and φ represents the diameter of the aperture stop S. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.
[Amount of movement of the focusing lens group at the time of focusing] indicates a movement amount of the F lens group GF from the time of focusing on an object at infinity to the time of focusing on an object at a short distance (imaging magnification: -0.0100 times). The sign of the movement amount is positive when the F lens group GF moves to the object side. The shooting distance indicates the distance from the object plane to the image plane I.
[Lens Group Data] indicates the start surface and focal length of each lens group.
[Anti-Vibration Coefficient] indicates an anti-vibration coefficient that is a ratio of the moving amount of the image on the image plane I to the moving amount from the optical axis of the anti-vibration lens group (V lens group GV).
[Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する第2実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
It should be noted that the symbols in Table 1 described above are similarly used in the table of the second embodiment described later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 140.5647 1.6350 1.903660 31.27
2 45.6913 7.6885 1.497820 82.57
3 -284.3669 0.1000
4 44.8550 4.5326 1.804000 46.60
5 209.3179 可変

*6 500.0000 0.1000 1.553890 38.09
7 190.3219 1.0000 1.883000 40.66
8 8.9187 4.3652
9 -114.5251 4.6494 1.808090 22.74
10 -9.8911 1.0000 1.851350 40.10
*11 -141.3941 可変

12(絞りS) ∞ 1.0000
13 22.3603 1.7845 1.589130 61.22
14 187.8269 0.2763
15 15.7519 1.9659 1.487490 70.31
16 -148.6118 1.8000
17 -28.8021 2.7134 1.903660 31.27
18 -9.8324 1.0000 1.801390 45.46
*19 41.1794 1.8000
20 37.0997 2.9939 1.593190 67.90
21 -10.2317 1.0000 2.000690 25.46
22 -15.2899 0.1000
23 -37.4207 1.6662 1.851350 40.10
*24 -4390.3946 5.9000
25 15.4513 1.0000 2.001000 29.14
26 10.6501 3.5906 1.618000 63.34
27 -71.8553 可変

28 -69.6397 1.0000 1.883000 40.66
29 20.2769 1.8596
30 -24.0135 1.0000 1.902650 35.73
31 -41.9476 0.2011
32 29.1388 2.4495 1.698950 30.13
33 -43.6887 可変

34 -46.1581 0.9998 1.583130 59.44
*35 -30.3822 BF

像面 ∞

[非球面データ]
第6面
κ -8.90440
A4 2.59493E-05
A6 -1.90094E-08
A8 -1.65609E-09
A10 1.17227E-11
A12 -3.31780E-14

第11面
κ 11.00000
A4 -5.42096E-05
A6 -3.10136E-07
A8 1.12406E-09
A10 -6.77479E-11
A12 0.00000

第19面
κ 1.00000
A4 -9.95519E-06
A6 -1.63819E-07
A8 7.91554E-09
A10 -7.12206E-11
A12 0.00000

第24面
κ 1.00000
A4 6.12158E-05
A6 9.54377E-08
A8 7.65997E-09
A10 -1.66332E-10
A12 0.00000

第35面
κ 1.00000
A4 4.40945E-05
A6 4.55406E-08
A8 -1.64694E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 9.27 〜 130.95
FNO 3.62 〜 5.80
ω 42.35 〜 3.34°
Y 8.00 〜 8.00
TL 107.68 〜 161.55

W M T
f 9.27006 35.10507 130.95123
ω 42.35293 12.26813 3.33615
FNO 3.62 4.86 5.80
φ 9.50 9.50 9.50
d5 1.99992 27.74462 49.07741
d11 26.66183 8.84274 1.60231
d27 1.50002 3.35186 1.50007
d33 2.49955 19.42198 34.34914
BF 13.84950 13.85022 13.85075

[合焦時の合焦レンズ群の移動量]
W M T
撮影倍率 -0.0100 -0.0100 -0.0100
撮影距離 1012.7397 3564.3738 13007.0879
移動量 0.0448 0.0946 0.2525

[レンズ群データ]
群 始面 f
1 1 72.95815
2 6 -9.72184
3 13 19.81920
4 28 -39.80048
5 34 148.96616

[防振係数]
W M T
防振係数 -1.25 -1.80 -2.16

[条件式対応値]
(1) ff/f3 = 1.337
(2) f1/fw = 7.870
(3) ff/(−fv) = 1.088
(4) (−fv)/f3 = 1.229
(5) (−fv)/f3A = 1.365
(6) (−fv)/fm = 0.476
(7) ff/fm = 0.518
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞

1 140.5647 1.6350 1.903660 31.27
2 45.6913 7.6885 1.497820 82.57
3 -284.3669 0.1000
4 44.8550 4.5326 1.804000 46.60
5 209.3179 Variable

* 6 500.0000 0.1000 1.553890 38.09
7 190.3219 1.0000 1.883000 40.66
8 8.9187 4.3652
9 -114.5251 4.6494 1.808090 22.74
10 -9.8911 1.0000 1.851350 40.10
* 11 -141.3941 Variable

12 (Aperture S) ∞ 1.0000
13 22.3603 1.7845 1.589130 61.22
14 187.8269 0.2763
15 15.7519 1.9659 1.487490 70.31
16 -148.6118 1.8000
17 -28.8021 2.7134 1.903660 31.27
18 -9.8324 1.0000 1.801390 45.46
* 19 41.1794 1.8000
20 37.0997 2.9939 1.593190 67.90
21 -10.2317 1.0000 2.000690 25.46
22 -15.2899 0.1000
23 -37.4207 1.6662 1.851350 40.10
* 24 -4390.3946 5.9000
25 15.4513 1.0000 2.001000 29.14
26 10.6501 3.5906 1.618000 63.34
27 -71.8553 Variable

28 -69.6397 1.0000 1.883000 40.66
29 20.2769 1.8596
30 -24.0135 1.0000 1.902650 35.73
31 -41.9476 0.2011
32 29.1388 2.4495 1.698950 30.13
33 -43.6887 Variable

34 -46.1581 0.9998 1.583130 59.44
* 35 -30.3822 BF

Image plane ∞

[Aspherical data]
6th surface κ -8.90440
A4 2.59493E-05
A6 -1.90094E-08
A8 -1.65609E-09
A10 1.17227E-11
A12 -3.31780E-14

11th surface κ 11.00000
A4 -5.42096E-05
A6 -3.10136E-07
A8 1.12406E-09
A10 -6.77479E-11
A12 0.00000

19th surface κ 1.00000
A4 -9.95519E-06
A6 -1.63819E-07
A8 7.91554E-09
A10 -7.12206E-11
A12 0.00000

24th surface κ 1.00000
A4 6.12158E-05
A6 9.54377E-08
A8 7.65997E-09
A10 -1.66332E-10
A12 0.00000

35th surface κ 1.00000
A4 4.40945E-05
A6 4.55406E-08
A8 -1.64694E-10
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.13

W T
f 9.27 to 130.95
FNO 3.62 to 5.80
ω 42.35 to 3.34 °
Y 8.00-8.00
TL 107.68-161.55

W M T
f 9.27006 35.10507 130.95123
ω 42.35293 12.26813 3.33615
FNO 3.62 4.86 5.80
φ 9.50 9.50 9.50
d5 1.99992 27.74462 49.07741
d11 26.66183 8.84274 1.60231
d27 1.50002 3.35186 1.50007
d33 2.49955 19.42198 34.34914
BF 13.84950 13.85022 13.85075

[Movement amount of focusing lens group during focusing]
W M T
Shooting magnification -0.0100 -0.0100 -0.0100
Shooting distance 1012.7397 3564.3738 13007.0879
Travel 0.0448 0.0946 0.2525

[Lens group data]
Group start surface f
1 1 72.95815
2 6 -9.72184
3 13 19.81920
4 28 -39.80048
5 34 148.96616

[Anti-vibration coefficient]
W M T
Anti-vibration coefficient -1.25 -1.80 -2.16

[Conditional expression values]
(1) ff / f3 = 1.337
(2) f1 / fw = 7.870
(3) ff / (-fv) = 1.088
(4) (−fv) /f3=1.229
(5) (−fv) /f3A=1.365
(6) (−fv) /fm=0.476
(7) ff / fm = 0.518

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図3(a)、図3(b)、及び図3(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率−0.01倍)の諸収差図である。
図4(a)、図4(b)、及び図4(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に、防振を行った際、詳しくはVレンズ群GVを光軸に垂直な方向へ0.1mm移動させた際の画面中心及び像高±5.6mmにおけるメリディオナル横収差図である。
例えば、本実施例に係る変倍光学系は、広角端状態において防振係数が−1.25、焦点距離が9.27mmであるため、Vレンズ群GVを光軸から0.1mm移動させることで、−0.77°の光軸を含む回転面の回転ぶれを補正することができる。
2 (a), 2 (b), and 2 (c) respectively show infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the first example of the present application. It is an aberration diagram at the time of focusing on an object.
3 (a), 3 (b), and 3 (c) are short distances in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. FIG. 6 is a diagram showing various aberrations when the object is in focus (imaging magnification: -0.01 times).
4 (a), 4 (b), and 4 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present application. FIG. 6 is a meridional lateral aberration diagram when the image stabilization is performed at the time of focusing on the object, and more specifically, when the V lens group GV is moved by 0.1 mm in a direction perpendicular to the optical axis and an image height of ± 5.6 mm. .
For example, in the variable magnification optical system according to the present example, since the image stabilization coefficient is −1.25 and the focal length is 9.27 mm in the wide-angle end state, the V lens group GV is moved by 0.1 mm from the optical axis. Thus, it is possible to correct the rotational shake of the rotation surface including the optical axis of −0.77 °.

各収差図において、FNOはFナンバー、NAは第1レンズ群G1に入射する光線の開口数、Aは光線入射角即ち半画角(単位は「°」)、H0は物体高(単位は「mm」)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する第2実施例の収差図においても、本実施例と同様の符号を用いる。   In each aberration diagram, FNO is the F number, NA is the numerical aperture of the light beam incident on the first lens group G1, A is the light beam incident angle, that is, the half field angle (unit is “°”), and H0 is the object height (the unit is “ mm "). d indicates the aberration at the d-line (wavelength 587.6 nm), g indicates the aberration at the g-line (wavelength 435.8 nm), and those without d and g indicate the aberration at the d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the aberration diagrams of the second embodiment described later, the same reference numerals as in this embodiment are used.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。   From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

(第2実施例)
図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、Rレンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
(Second embodiment)
FIGS. 5A, 5B, and 5C are cross-sectional views of the zoom optical system according to the second example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power which is an R lens group.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。   The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.

第2レンズ群G2は、物体側から順に、第1レンズである物体側に凸面を向けた負メニスカスレンズL21と、第2レンズである物体側に凹面を向けた正メニスカスレンズL22と第3レンズである物体側に凹面を向けた負メニスカスレンズL23との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる複合型非球面レンズであり、負メニスカスレンズL23は像面側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side that is the first lens, a positive meniscus lens L22 having a concave surface facing the object side that is the second lens, and a third lens. And a cemented lens with a negative meniscus lens L23 having a concave surface facing the object side. The negative meniscus lens L21 is a composite aspheric lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape, and the negative meniscus lens L23 has an aspherical surface on the image side. This is a glass mold aspheric lens.

第3レンズ群G3は、物体側から順に、正の屈折力を有する3Aレンズ群G3Aと、負の屈折力を有するVレンズ群GVと、正の屈折力を有するMレンズ群GMと、正の屈折力を有するFレンズ群GFとから構成されている。
3Aレンズ群G3Aは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL31と、両凸形状の正レンズL32とからなる。
Vレンズ群GVは、物体側から順に、物体側に凹面を向けた正メニスカスレンズL33と両凹形状の負レンズL34との接合レンズからなる。なお、負レンズL34は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
Mレンズ群GMは、物体側から順に、両凸形状の正レンズL35と物体側に凹面を向けた負メニスカスレンズL36との接合レンズと、物体側に凸面を向けた負メニスカスレンズL37とからなる。なお、負メニスカスレンズL37は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
Fレンズ群GFは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL38と両凸形状の正レンズL39との接合レンズからなる。
なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The third lens group G3 includes, in order from the object side, a 3A lens group G3A having a positive refractive power, a V lens group GV having a negative refractive power, an M lens group GM having a positive refractive power, and a positive It consists of an F lens group GF having refractive power.
The 3A lens group G3A includes, in order from the object side, a positive meniscus lens L31 having a convex surface directed toward the object side, and a biconvex positive lens L32.
The V lens group GV includes, in order from the object side, a cemented lens of a positive meniscus lens L33 having a concave surface facing the object side and a biconcave negative lens L34. The negative lens L34 is a glass mold aspheric lens having an aspheric lens surface on the image side.
The M lens group GM includes, in order from the object side, a cemented lens of a biconvex positive lens L35 and a negative meniscus lens L36 having a concave surface facing the object side, and a negative meniscus lens L37 having a convex surface facing the object side. . The negative meniscus lens L37 is a glass mold aspheric lens having an aspheric lens surface on the image side.
The F lens group GF includes, in order from the object side, a cemented lens of a negative meniscus lens L38 having a convex surface facing the object side and a biconvex positive lens L39.
An aperture stop S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、物体側に凹面を向けた負メニスカスレンズL42と、両凸形状の正レンズL43とからなる。   The fourth lens group G4 includes, in order from the object side, a biconcave negative lens L41, a negative meniscus lens L42 having a concave surface directed toward the object side, and a biconvex positive lens L43.

第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51からなる。なお、正メニスカスレンズL51は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 includes a positive meniscus lens L51 having a concave surface directed toward the object side. The positive meniscus lens L51 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1〜第4レンズ群G4は変倍時に物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第3レンズ群G3と一体的に物体側へ移動する。
これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。また、変倍時に第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から中間焦点距離状態まで増加し、中間焦点距離状態から望遠端状態まで減少する。なお、変倍時に第3レンズ群G3中の3Aレンズ群G3AとVレンズ群GVとの空気間隔は一定である。
With the above-described configuration, in the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed. The first lens group G1 to the fourth lens group G4 move along the optical axis.
Specifically, the first lens group G1 to the fourth lens group G4 move to the object side during zooming. The position of the fifth lens group G5 in the optical axis direction is fixed during zooming. The aperture stop S moves to the object side integrally with the third lens group G3 during zooming.
Thereby, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4. And the fifth lens group G5 increase in air space. At the time of zooming, the air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the intermediate focal length state and decreases from the intermediate focal length state to the telephoto end state. Note that the air gap between the 3A lens group G3A and the V lens group GV in the third lens group G3 is constant during zooming.

また、本実施例に係る変倍光学系では、手ぶれ等の発生時に、第3レンズ群G3中のVレンズ群GVを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。   In the variable magnification optical system according to the present embodiment, when camera shake or the like occurs, the V lens group GV in the third lens group G3 is moved as a vibration-proof lens group so as to include a component in a direction orthogonal to the optical axis. To prevent vibration.

また、本実施例に係る変倍光学系では、第3レンズ群G3中のFレンズ群GFを合焦レンズ群として光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
In the variable magnification optical system according to the present embodiment, the F lens group GF in the third lens group G3 is moved to the object side along the optical axis as a focusing lens group, so that an object at a short distance from an object at infinity Focus on.
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 144.9227 1.6350 1.903660 31.27
2 46.4543 7.6180 1.497820 82.57
3 -280.8281 0.1000
4 45.6286 4.5089 1.804000 46.60
5 218.0774 可変

*6 500.0000 0.1000 1.553890 38.09
7 201.2901 1.0000 1.883000 40.66
8 8.9082 4.3024
9 -176.6896 4.5658 1.808090 22.74
10 -10.0014 1.0000 1.851350 40.10
*11 -200.0095 可変

12(絞りS) ∞ 0.9999
13 23.8529 1.8095 1.589130 61.22
14 486.6979 0.1519
15 15.8304 2.0358 1.487490 70.31
16 -215.8847 1.8715
17 -29.0336 2.6709 1.903660 31.27
18 -9.9974 1.0000 1.801390 45.46
*19 41.4658 1.8000
20 60.1509 3.0715 1.593190 67.90
21 -10.4089 0.9998 2.000690 25.46
22 -16.9605 0.0998
23 489.2464 1.6386 1.851350 40.10
*24 70.3131 5.8990
25 15.2850 1.0000 2.001000 29.14
26 10.6499 3.7035 1.618000 63.34
27 -78.8215 可変

28 -77.1108 1.0000 1.883000 40.66
29 19.2328 1.7995
30 -28.7053 1.0000 1.902650 35.73
31 -58.4684 0.2013
32 27.7625 2.4973 1.698950 30.13
33 -42.9090 可変

34 -45.3546 0.9996 1.583130 59.44
*35 -30.7592 BF

像面 ∞

[非球面データ]
第6面
κ -8.74540
A4 2.25905E-05
A6 1.19617E-07
A8 -4.53045E-09
A10 3.58335E-11
A12 -1.06040E-13

第11面
κ 11.00000
A4 -5.72909E-05
A6 -2.83675E-07
A8 -4.14714E-10
A10 -6.09625E-11
A12 0.00000

第19面
κ 1.00000
A4 -9.91318E-06
A6 -1.59863E-07
A8 6.78573E-09
A10 -5.85391E-11
A12 0.00000

第24面
κ 1.00000
A4 4.62032E-05
A6 1.66004E-07
A8 1.04366E-09
A10 -3.63478E-11
A12 0.00000

第35面
κ 1.00000
A4 4.27991E-05
A6 5.83932E-08
A8 -3.84157E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 9.27 〜 130.95
FNO 3.59 〜 5.68
ω 42.56 〜 3.34°
Y 8.00 〜 8.00
TL 107.46 〜 162.00

W M T
f 9.27014 35.18344 130.95207
ω 42.56336 12.24162 3.33601
FNO 3.59 4.79 5.68
φ 9.52 9.52 9.52
d5 2.00004 28.13283 49.85756
d11 26.52876 8.54977 1.50011
d27 1.49960 3.51536 1.49981
d33 2.49961 19.00799 34.21187
BF 13.85090 13.85172 13.85176

[合焦時の合焦レンズ群の移動量]
W M T
撮影倍率 -0.0100 -0.0100 -0.0100
撮影距離 1012.6284 3571.8850 13006.4468
移動量 0.0445 0.0953 0.2527

[レンズ群データ]
群 始面 f
1 1 73.95013
2 6 -9.75125
3 13 19.75049
4 28 -40.13288
5 34 159.88013

[防振係数]
W M T
防振係数 -1.23 -1.77 -2.13

[条件式対応値]
(1) ff/f3 = 1.342
(2) f1/fw = 7.977
(3) ff/(−fv) = 1.082
(4) (−fv)/f3 = 1.240
(5) (−fv)/f3A = 1.356
(6) (−fv)/fm = 0.495
(7) ff/fm = 0.536
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞

1 144.9227 1.6350 1.903660 31.27
2 46.4543 7.6180 1.497820 82.57
3 -280.8281 0.1000
4 45.6286 4.5089 1.804000 46.60
5 218.0774 Variable

* 6 500.0000 0.1000 1.553890 38.09
7 201.2901 1.0000 1.883000 40.66
8 8.9082 4.3024
9 -176.6896 4.5658 1.808090 22.74
10 -10.0014 1.0000 1.851350 40.10
* 11 -200.0095 Variable

12 (Aperture S) ∞ 0.9999
13 23.8529 1.8095 1.589130 61.22
14 486.6979 0.1519
15 15.8304 2.0358 1.487490 70.31
16 -215.8847 1.8715
17 -29.0336 2.6709 1.903660 31.27
18 -9.9974 1.0000 1.801390 45.46
* 19 41.4658 1.8000
20 60.1509 3.0715 1.593190 67.90
21 -10.4089 0.9998 2.000690 25.46
22 -16.9605 0.0998
23 489.2464 1.6386 1.851350 40.10
* 24 70.3131 5.8990
25 15.2850 1.0000 2.001000 29.14
26 10.6499 3.7035 1.618000 63.34
27 -78.8215 Variable

28 -77.1108 1.0000 1.883000 40.66
29 19.2328 1.7995
30 -28.7053 1.0000 1.902650 35.73
31 -58.4684 0.2013
32 27.7625 2.4973 1.698950 30.13
33 -42.9090 Variable

34 -45.3546 0.9996 1.583130 59.44
* 35 -30.7592 BF

Image plane ∞

[Aspherical data]
6th surface κ -8.74540
A4 2.25905E-05
A6 1.19617E-07
A8 -4.53045E-09
A10 3.58335E-11
A12 -1.06040E-13

11th surface κ 11.00000
A4 -5.72909E-05
A6 -2.83675E-07
A8 -4.14714E-10
A10 -6.09625E-11
A12 0.00000

19th surface κ 1.00000
A4 -9.91318E-06
A6 -1.59863E-07
A8 6.78573E-09
A10 -5.85391E-11
A12 0.00000

24th surface κ 1.00000
A4 4.62032E-05
A6 1.66004E-07
A8 1.04366E-09
A10 -3.63478E-11
A12 0.00000

35th surface κ 1.00000
A4 4.27991E-05
A6 5.83932E-08
A8 -3.84157E-10
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.13

W T
f 9.27 to 130.95
FNO 3.59 to 5.68
ω 42.56 〜 3.34 °
Y 8.00-8.00
TL 107.46-162.00

W M T
f 9.27014 35.18344 130.95207
ω 42.56336 12.24162 3.33601
FNO 3.59 4.79 5.68
φ 9.52 9.52 9.52
d5 2.00004 28.13283 49.85756
d11 26.52876 8.54977 1.50011
d27 1.49960 3.51536 1.49981
d33 2.49961 19.00799 34.21187
BF 13.85090 13.85172 13.85176

[Movement amount of focusing lens group during focusing]
W M T
Shooting magnification -0.0100 -0.0100 -0.0100
Shooting distance 1012.6284 3571.8850 13006.4468
Travel 0.0445 0.0953 0.2527

[Lens group data]
Group start surface f
1 1 73.95013
2 6 -9.75125
3 13 19.75049
4 28 -40.13288
5 34 159.88013

[Anti-vibration coefficient]
W M T
Anti-vibration coefficient -1.23 -1.77 -2.13

[Conditional expression values]
(1) ff / f3 = 1.342
(2) f1 / fw = 7.977
(3) ff / (-fv) = 1.082
(4) (−fv) /f3=1.240
(5) (−fv) /f3A=1.356
(6) (−fv) /fm=0.495
(7) ff / fm = 0.536

図6(a)、図6(b)、及び図6(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図7(a)、図7(b)、及び図7(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率−0.01倍)の諸収差図である。
図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に、防振を行った際、詳しくはVレンズ群GVを光軸に垂直な方向へ0.1mm移動させた際の画面中心及び像高±5.6mmにおけるメリディオナル横収差図である。
例えば、本実施例に係る変倍光学系は、広角端状態において防振係数が−1.23、焦点距離が9.27mmであるため、Vレンズ群GVを光軸から0.1mm移動させることで、−0.76°の光軸を含む回転面の回転ぶれを補正することができる。
6 (a), 6 (b), and 6 (c) respectively show infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the second example of the present application. It is an aberration diagram at the time of focusing on an object.
FIGS. 7A, 7B, and 7C are short distances in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. FIG. 6 is a diagram showing various aberrations when the object is in focus (imaging magnification: -0.01 times).
8 (a), 8 (b), and 8 (c) respectively show infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the second example of the present application. FIG. 6 is a meridional lateral aberration diagram when the image stabilization is performed at the time of focusing on the object, and more specifically, when the V lens group GV is moved by 0.1 mm in a direction perpendicular to the optical axis and an image height of ± 5.6 mm. .
For example, in the variable magnification optical system according to the present example, since the image stabilization coefficient is −1.23 and the focal length is 9.27 mm in the wide-angle end state, the V lens group GV is moved by 0.1 mm from the optical axis. Thus, it is possible to correct the rotation blur of the rotation surface including the optical axis of −0.76 °.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。   From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

上記各実施例によれば、高変倍比を有し、小型で、高い光学性能を有し、合焦時にも高い光学性能を有する変倍光学系を実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。   According to each of the above embodiments, it is possible to realize a variable power optical system having a high zoom ratio, a small size, high optical performance, and high optical performance even when focused. In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.

本願の変倍光学系の数値実施例として5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   Although a five-group configuration is shown as a numerical example of the variable magnification optical system of the present application, the present application is not limited to this, and a variable magnification optical system of another group configuration (for example, six groups) can also be configured. . Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部又は第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部又は第5レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to a near object. It is good also as a structure moved to an axial direction. In particular, it is preferable that at least part of the second lens group, at least part of the third lens group, at least part of the fourth lens group, or at least part of the fifth lens group be the focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system of the present application, any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis It can also be set as the structure which carries out anti-vibration by rotationally moving (swinging) inward. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the third lens group or at least a part of the fourth lens group is an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
In the variable magnification optical system of the present application, the aperture stop is preferably arranged in the third lens group or in the vicinity of the third lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. Also good.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願の変倍光学系を備えたカメラを図9に基づいて説明する。
図9は、本願の変倍光学系を備えたカメラの構成を示す図である。
図9に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera equipped with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 9 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
As shown in FIG. 9, the camera 1 is a so-called mirrorless camera of an interchangeable lens type that includes the variable magnification optical system according to the first example as the photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.
When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、高変倍比を有し、小型で、高い光学性能を有し、合焦時にも高い光学性能を有する変倍光学系である。したがって本カメラ1は、高変倍比を有しつつ、小型化と高い光学性能を実現することができ、合焦時にも高い光学性能を実現することができる。なお、上記第2実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the zoom optical system according to the first embodiment mounted as the photographing lens 2 in the camera 1 has a high zoom ratio, is small, has high optical performance, and has high optical performance even when focused. This is a variable magnification optical system having performance. Therefore, the present camera 1 can realize a reduction in size and high optical performance while having a high zoom ratio, and can also realize high optical performance even during focusing. Even if a camera equipped with the variable magnification optical system according to the second embodiment as the taking lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.

最後に、本願の変倍光学系の製造方法の概略を図10に基づいて説明する。
図10に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1、S2を含むものである。
Finally, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
The manufacturing method of the variable magnification optical system of the present application shown in FIG. 10 has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. This is a method for manufacturing a variable magnification optical system having a third lens group, and includes the following steps S1 and S2.

ステップS1:第3レンズ群が、正の屈折力を有しており無限遠物体から近距離物体への合焦時に光軸に沿って移動するFレンズ群を有するようにし、第1〜第3レンズ群をレンズ鏡筒内に物体側から順に配置する。   Step S1: The third lens group has a positive refracting power and has an F lens group that moves along the optical axis when focusing from an object at infinity to an object at a short distance. The lens group is arranged in the lens barrel in order from the object side.

ステップS2:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、及び第2レンズ群と第3レンズ群との間隔が変化するようにする。   Step S2: By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state The distance from the third lens group is changed.

斯かる本願の変倍光学系の製造方法によれば、高変倍比を有し、小型で、高い光学性能を有し、合焦時にも高い光学性能を有する変倍光学系を製造することができる。   According to the manufacturing method of the zooming optical system of the present application, a zooming optical system having a high zooming ratio, a small size, high optical performance, and high optical performance at the time of focusing is manufactured. Can do.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群(Rレンズ群)
GV Vレンズ群
GF Fレンズ群
S 開口絞り
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group (R lens group)
GV V lens group GF F lens group S Aperture stop I Image surface

Claims (28)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、及び前記第2レンズ群と前記第3レンズ群との間隔が変化し、
前記第3レンズ群が、正の屈折力を有しており無限遠物体から近距離物体への合焦時に光軸に沿って移動するFレンズ群を有することを特徴とする変倍光学系。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, and the distance between the second lens group and the third lens group change,
The zoom lens system according to claim 1, wherein the third lens group includes an F lens group that has a positive refractive power and moves along the optical axis when focusing from an object at infinity to an object at a short distance.
以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
0.320 < ff/f3 < 5.200
但し、
f3:前記第3レンズ群の焦点距離
ff:前記Fレンズ群の焦点距離
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
0.320 <ff / f3 <5.200
However,
f3: focal length of the third lens group ff: focal length of the F lens group
前記Fレンズ群が、前記第3レンズ群中の部分レンズ群であることを特徴とする請求項1又は請求項2に記載の変倍光学系。   The variable power optical system according to claim 1, wherein the F lens group is a partial lens group in the third lens group. 前記Fレンズ群が、前記第3レンズ群中の最も像側に配置されていることを特徴とする請求項1から請求項3のいずれか一項に記載の変倍光学系。   4. The variable power optical system according to claim 1, wherein the F lens group is disposed closest to the image side in the third lens group. 5. 前記第3レンズ群の像側に、負の屈折力を有する第4レンズ群を有し、
広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群との間隔が変化することを特徴とする請求項1から請求項4のいずれか一項に記載の変倍光学系。
A fourth lens group having negative refractive power on the image side of the third lens group;
5. The distance between the third lens group and the fourth lens group changes during zooming from the wide-angle end state to the telephoto end state. 6. Variable magnification optical system.
前記第4レンズ群の像側に、第5レンズ群を有し、
広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群との間隔が変化することを特徴とする請求項5に記載の変倍光学系。
A fifth lens group on the image side of the fourth lens group;
6. The variable magnification optical system according to claim 5, wherein the distance between the fourth lens group and the fifth lens group changes during zooming from the wide-angle end state to the telephoto end state.
最も像側にRレンズ群を有し、
広角端状態から望遠端状態への変倍時に、前記Rレンズ群の位置が固定であることを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。
It has an R lens group on the most image side,
6. The zoom optical system according to claim 1, wherein the position of the R lens group is fixed at the time of zooming from the wide-angle end state to the telephoto end state.
以下の条件式を満足することを特徴とする請求項1から請求項7のいずれか一項に記載の変倍光学系。
5.500 < f1/fw < 9.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f1:前記第1レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
5.500 <f1 / fw <9.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens group
前記第3レンズ群が、負の屈折力を有しており光軸と直交する方向の成分を含むように移動するVレンズ群を有することを特徴とする請求項1から請求項8のいずれか一項に記載の変倍光学系。   The third lens group has a V lens group that has a negative refractive power and moves so as to include a component in a direction perpendicular to the optical axis. The zoom optical system according to one item. 前記Vレンズ群が、前記Fレンズ群よりも物体側に配置されていることを特徴とする請求項9に記載の変倍光学系。   The variable power optical system according to claim 9, wherein the V lens group is disposed closer to the object side than the F lens group. 以下の条件式を満足することを特徴とする請求項9又は請求項10に記載の変倍光学系。
0.240 < ff/(−fv) < 4.000
但し、
ff:前記Fレンズ群の焦点距離
fv:前記Vレンズ群の焦点距離
The zoom lens system according to claim 9 or 10, wherein the following conditional expression is satisfied.
0.240 <ff / (-fv) <4.0000
However,
ff: focal length of the F lens group fv: focal length of the V lens group
以下の条件式を満足することを特徴とする請求項9から請求項11のいずれか一項に記載の変倍光学系。
0.280 < (−fv)/f3 < 5.200
但し、
f3:前記第3レンズ群の焦点距離
fv:前記Vレンズ群の焦点距離
The zoom lens system according to any one of claims 9 to 11, wherein the following conditional expression is satisfied.
0.280 <(-fv) / f3 <5.200
However,
f3: focal length of the third lens group fv: focal length of the V lens group
前記第3レンズ群が、前記Vレンズ群の物体側に、正の屈折力を有する3Aレンズ群を有することを特徴とする請求項9から請求項12のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 9 to 12, wherein the third lens group includes a 3A lens group having a positive refractive power on the object side of the V lens group. system. 以下の条件式を満足することを特徴とする請求項13に記載の変倍光学系。
0.300 < (−fv)/f3A < 3.800
但し、
f3A:前記3Aレンズ群の焦点距離
fv :前記Vレンズ群の焦点距離
The variable magnification optical system according to claim 13, wherein the following conditional expression is satisfied.
0.300 <(-fv) / f3A <3.800
However,
f3A: focal length of the 3A lens group fv: focal length of the V lens group
広角端状態から望遠端状態への変倍時に、前記3Aレンズ群と前記Vレンズ群との間隔が不変であることを特徴とする請求項13又は請求項14に記載の変倍光学系。   15. The zoom optical system according to claim 13, wherein the distance between the 3A lens group and the V lens group is not changed during zooming from the wide-angle end state to the telephoto end state. 前記第3レンズ群が、前記Vレンズ群と前記Fレンズ群との間に、正の屈折力を有するMレンズ群を有することを特徴とする請求項9から請求項15のいずれか一項に記載の変倍光学系。   The said 3rd lens group has an M lens group which has positive refractive power between the said V lens group and the said F lens group, The any one of Claims 9-15 characterized by the above-mentioned. The variable power optical system described. 以下の条件式を満足することを特徴とする請求項16に記載の変倍光学系。
0.110 < (−fv)/fm < 2.600
但し、
fm:前記Mレンズ群の焦点距離
fv:前記Vレンズ群の焦点距離
The zoom lens system according to claim 16, wherein the following conditional expression is satisfied.
0.110 <(− fv) / fm <2.600
However,
fm: focal length of the M lens group fv: focal length of the V lens group
以下の条件式を満足することを特徴とする請求項16又は請求項17に記載の変倍光学系。
0.080 < ff/fm < 1.700
但し、
ff:前記Fレンズ群の焦点距離
fm:前記Mレンズ群の焦点距離
The variable magnification optical system according to claim 16 or 17, wherein the following conditional expression is satisfied.
0.080 <ff / fm <1.700
However,
ff: focal length of the F lens group fm: focal length of the M lens group
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することを特徴とする請求項1から請求項18のいずれか一項に記載の変倍光学系。   The distance between the first lens group and the second lens group increases during zooming from the wide-angle end state to the telephoto end state, according to any one of claims 1 to 18. Variable magnification optical system. 広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項1から請求項19のいずれか一項に記載の変倍光学系。   20. The distance between the second lens group and the third lens group decreases during zooming from the wide-angle end state to the telephoto end state. Variable magnification optical system. 広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することを特徴とする請求項1から請求項20のいずれか一項に記載の変倍光学系。   21. The zoom optical system according to claim 1, wherein the first lens unit moves toward the object side during zooming from the wide-angle end state to the telephoto end state. 広角端状態から望遠端状態への変倍時に、前記第3レンズ群が物体側へ移動することを特徴とする請求項1から請求項21のいずれか一項に記載の変倍光学系。   The zoom optical system according to any one of claims 1 to 21, wherein the third lens unit moves toward the object side during zooming from the wide-angle end state to the telephoto end state. 広角端状態から望遠端状態への変倍時に、前記第2レンズ群が光軸に沿って移動することを特徴とする請求項1から請求項22のいずれか一項に記載の変倍光学系。   The zoom optical system according to any one of claims 1 to 22, wherein the second lens group moves along the optical axis during zooming from the wide-angle end state to the telephoto end state. . 前記第2レンズ群が、物体側から順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとで構成されていることを特徴とする請求項1から請求項23のいずれか一項に記載の変倍光学系。   The second lens group includes, in order from the object side, a first lens having a negative refractive power, a second lens having a positive refractive power, and a third lens having a negative refractive power. The variable power optical system according to any one of claims 1 to 23, wherein: 前記第2レンズと前記第3レンズとが接合されていることを特徴とする請求項24に記載の変倍光学系。   25. The zoom optical system according to claim 24, wherein the second lens and the third lens are cemented. 前記第1レンズの物体側のレンズ面と前記第3レンズの像側のレンズ面とが非球面であることを特徴とする請求項24又は請求項25に記載の変倍光学系。   26. The zoom optical system according to claim 24, wherein an object-side lens surface of the first lens and an image-side lens surface of the third lens are aspherical surfaces. 請求項1から請求項26のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 26. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群が、正の屈折力を有しており無限遠物体から近距離物体への合焦時に光軸に沿って移動するFレンズ群を有するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、及び前記第2レンズ群と前記第3レンズ群との間隔が変化するようにすることを特徴とする変倍光学系の製造方法。
In order from the object side, a variable magnification optical system manufacturing method including a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. There,
The third lens group has a positive refractive power and has an F lens group that moves along the optical axis when focusing from an object at infinity to an object at a short distance;
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group are changed. A method of manufacturing a variable magnification optical system characterized by the above.
JP2013004652A 2013-01-15 2013-01-15 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method Active JP6182868B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013004652A JP6182868B2 (en) 2013-01-15 2013-01-15 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
CN201380057204.2A CN104755984B (en) 2013-01-15 2013-10-29 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
PCT/JP2013/079242 WO2014112176A1 (en) 2013-01-15 2013-10-29 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US14/700,703 US10185130B2 (en) 2013-01-15 2015-04-30 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US16/037,803 US11294155B2 (en) 2013-01-15 2018-07-17 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US17/701,670 US11714268B2 (en) 2013-01-15 2022-03-23 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US18/208,677 US20230324657A1 (en) 2013-01-15 2023-06-12 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004652A JP6182868B2 (en) 2013-01-15 2013-01-15 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Publications (2)

Publication Number Publication Date
JP2014137409A true JP2014137409A (en) 2014-07-28
JP6182868B2 JP6182868B2 (en) 2017-08-23

Family

ID=51414961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004652A Active JP6182868B2 (en) 2013-01-15 2013-01-15 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP6182868B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219616A (en) * 2013-05-10 2014-11-20 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JP2015227979A (en) * 2014-06-02 2015-12-17 コニカミノルタ株式会社 Zoom lens, image capturing optical device, and digital device
CN105388600A (en) * 2014-08-28 2016-03-09 佳能株式会社 Zoom lens and image pickup apparatus including the same
JP2016080973A (en) * 2014-10-21 2016-05-16 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2017161933A (en) * 2017-05-19 2017-09-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111456A (en) * 1996-10-07 1998-04-28 Nikon Corp Zoom lens provided with vibration-proof function
JP2010032700A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying power
JP2010044190A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
JP2010191334A (en) * 2009-02-20 2010-09-02 Nikon Corp Variable power optical system, optical device including the variable power optical system and method of manufacturing variable power optical system
JP2011033868A (en) * 2009-08-03 2011-02-17 Canon Inc Zoom lens and imaging apparatus having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111456A (en) * 1996-10-07 1998-04-28 Nikon Corp Zoom lens provided with vibration-proof function
JP2010032700A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying power
JP2010044190A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
JP2010191334A (en) * 2009-02-20 2010-09-02 Nikon Corp Variable power optical system, optical device including the variable power optical system and method of manufacturing variable power optical system
JP2011033868A (en) * 2009-08-03 2011-02-17 Canon Inc Zoom lens and imaging apparatus having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219616A (en) * 2013-05-10 2014-11-20 キヤノン株式会社 Zoom lens and imaging apparatus including the same
US9664885B2 (en) 2013-05-10 2017-05-30 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including zoom lens
JP2015227979A (en) * 2014-06-02 2015-12-17 コニカミノルタ株式会社 Zoom lens, image capturing optical device, and digital device
CN105388600A (en) * 2014-08-28 2016-03-09 佳能株式会社 Zoom lens and image pickup apparatus including the same
JP2016048355A (en) * 2014-08-28 2016-04-07 キヤノン株式会社 Zoom lens and imaging apparatus including the same
US10120170B2 (en) 2014-08-28 2018-11-06 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2016080973A (en) * 2014-10-21 2016-05-16 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2017161933A (en) * 2017-05-19 2017-09-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP6182868B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6182868B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP6127462B2 (en) Variable magnification optical system, optical device
JP6229259B2 (en) Variable magnification optical system, optical device
CN107884917B (en) Variable magnification optical system and optical device
JP6102269B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6060616B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6268697B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6299060B2 (en) Variable magnification optical system, optical device
WO2014069446A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2014069447A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2014065266A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP2014085492A (en) Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP6897733B2 (en) Variable magnification optical system, optical device
WO2014069448A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2016122221A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6031942B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2014085489A (en) Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP6131567B2 (en) Variable magnification optical system, optical device
JP6355885B2 (en) Variable magnification optical system, optical device
JP6131566B2 (en) Variable magnification optical system, optical device
JP2015210383A (en) Variable power optical system, optical device, and method of manufacturing variable power optical system
JP6299059B2 (en) Variable magnification optical system, optical device
JP6079137B2 (en) Variable magnification optical system, optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6182868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250