201239053 六、發明說明:- 【發明所屬之技術領域】 本發明係關於一種拋光組成物,特定言之,係關於一種用於研 磨矽通孔(through-silicon via,TSV)晶圓之拋光組成物。本發明 亦關於一種使用該拋光組成物研磨TSV晶圓之方法。 【先前技術】 TSV晶圓1之原始結構如第1圖所示,其包含一積體電路層11、一 位於該積體電路層11上之矽晶圓層12及導電材料13。其中,導電 材料13係埋設於矽晶圓層12中,與矽晶圓層12之表面121概呈垂直 且與積體電路層11連接。一般而言,在未經研磨之TSV晶圓中,導 電材料13的端面131距離矽晶圓層12的表面121約數百微米。 表面121隨後將藉由「粗拋(grinding)」研磨,使矽晶圓層12 快速薄化’同時使導電材料13之端面131與矽晶圓層12的表面121 間之距離減少至約數十微米。 待粗拋並薄化矽晶圓層12後,靠近表面121的地方會形成一損害 層(damage layer ) 14’如第2圖所示;因此’在粗抛步驟後,需 以化學機械研磨(chemical mechanical polishing,簡稱為「CMP」) 對表面121進行「精拋」(fine p〇iishing),以修飾並移除損害層 14 ’並進一步使TSV晶圓1研磨至所欲狀態。 TSV晶圓1於精拋後之理想狀態端視後續製程之需求而有所不 同;例如可使導電材料13的端面131與包繞於其周圍之矽晶圓層12 的頂面121齊平(如第3圖所示),或是使端面131凸出於該頂面121 (如第4圖所示)。 201239053 在實務操作上,當TSV晶圓進行CMP製程時ϊ•矽晶圓層12與導 電材料13通常是同時進行研磨,因此,對於需研磨大量TSV晶圓的 廠商而言,若可同時且快速地移除矽晶圓層12與導電材料13至一 適當狀態,則可在製備程序上省下極可觀的工時成本;然而,目 前市面上可取得的拋光組成物,主要都是針對僅具有矽或導電材 料之單一材質的一般晶圓所設計,並不適合直接用來研磨TSV晶 圓。 美國專利第4,169,337揭露一種用於矽晶圓之拋光組成物,其包 含膠態二氧化矽(SiCb)研磨粒子或矽膠(sinca gei)與水溶性胺; 美國專利第5,230,833號則揭露另一種用於矽晶圓之拋光組成物, 其包含膠態二氧化矽研磨粒子、有機驗及殺菌劑。如今,業界的 看法是含有二氧化妙研磨粒子與有機驗之抛光組成物可對碎展現 明顯的研磨效果。 美國專利號5,225,034號揭露一種用於主要含有銅之金屬層的拖 光組成物,其包含水、固體研磨物質與選自以下群組之第三成分: 硝酸銀(AgN〇3)、硝酸(HN〇3)及硫酸(HzSO4)及其混合物。 一般而言,本業界常用之導電材料拋光組成物中常含有酸性成分。 上述的拋光組成物皆適合用以研磨如矽或導電材料之單一特定 材質,然而,若同時研磨矽與導電材料,二材質之移除速率差異 過大,因此,難以藉由增加抛光組成物中之特定組份的含量而同 步提升矽及導電材料的研磨速率;例如,增加拋光組成物中有機 鹼的濃度時(如乙二胺),矽之移除速率的提升幅度顯然超過導 電材料者甚多,即,此時矽之移除速率可能超過約10,000埃米/分 鐘(A/min)以上,但導電材料之移除速率卻可能僅為1,00〇埃米/ 201239053 分鐘左右。 ' 類似地,過氧化氫,一種常用於拋光組成物中之氧化劑,可幫 助研磨導電材料,但是卻可能使矽容易氧化為堅硬的二氧化矽。 於是,當拋光組成物中過氧化氫的含量增加時,導電材料的移除 速率也將隨之提升,但矽的移除速率則反而明顯降低。 由此看來,過氧化氫並不適用於作為同時研磨矽與導電材料之 抛光組成物中的組份。至此,半導體業界需要-種適合研磨具有 夕與導電材料之TSV晶圓、可穩定且同時移除τα晶圓上 導電材料與矽θ ^. 、 且抛光組成物的成分係易於取得,以及相關的研 磨方法。 【發明内容】 本案發明乂泰》、丨1 β 八畜式以亞虱酸鹽或溴酸鹽為氧化劑組合有機鹼性化 Q劍作為拋光組成物中之所含物料。所配製出的拋光組 成兄出人意表地對發與導電材料展現出良好的研磨效果。 本發明之目的旨在提供一種用於研磨TSV晶圓之拋光組成 δ 光繞成物包括有機驗性化合物、氧化劑、螯合劑、氧化 料磨粒子'及溶劑。 本發明之^2 ,, 为一目的在於提供一種之研磨方法,其使用上述拋光 组成物以开 ’ 同時且穩定地移除TSV晶圓上待研磨的導電材料與 矽該研磨方法包含:使用一拋光組成物對一TSV晶圓之表面進行 一研磨處理,以同時移除該TSV晶圓上之矽與導電材料。 藉由本發明之拋光組成物與使用該組成物之研磨方法,可在未 使用過氧化氣的情況下,以較可接受的速率同時移除TSV晶圓上之 矽與導電材料,並為TSV晶圓之CMP製程提供了一個新穎、可靠 201239053 的拋光組成物與研磨方法。 、 【實施方式】 本發明旨在提供一種用於研磨TSV晶圓之拋光組成物,根據本發 明,拋光組成物之pH值、各成分之種類與濃度並無特定限制。然 考慮本發明拋光組成物之成本、所發揮之研磨功欵,及配合業界 實務,以下將針對各成分的種類與用量,提供進—步說明及建議。 在本發明之拋光組成物中,有機鹼性化合物較佳係選自以下群 組:二胺類、三胺類、四胺類及前述之組合;適合的有機鹼性化 合物包含’例如乙二胺(ethylenediamine )、N-(2-經乙基)乙二胺 (N-(2-hydroxyethyl)ethylenediamine)、1,2-二胺丙烷(u-diamin。 propane )、二伸乙三胺(diethylenetriamine )、三伸乙四胺 (triethylenetetramine )、或前述之組合。於以下實施例中,所示 範使用之有機鹼性化合物為乙二胺與1,2-二胺丙烷。 有機鹼性化合物的含量較佳是佔本發明拋光組成物的約〇 〇1重 量%至約25重量。/。,更佳地是佔約〇. 1重量%至約2〇重量。/p於以 下實施例中,所示範使用之有機鹼性化合物濃度是約〇.5重量%至 約15重量%。 根據本發明,該拋光組成物中所含的氧化劑是選自以下群組: 亞氣酸鹽、溴酸鹽及前述之組合。例如,該氧化劑可選自以下群 組:亞氣酸鹼金屬鹽(alkaline chlorites )、亞氣酸敍鹽(ammonium chlorites )、溴酸驗金屬鹽(alkaline bromates )、溴酸錄鹽(ammonium bromates )及前述之組合。較佳地,該氧化劑係選自以下群組:亞 氣酸鈉、亞氣酸卸、亞氣酸敍、亞氯酸四甲基錢(tetramethyl ammonium chlorite)、溴酸納、漠酸卸、溴酸絶、漠酸敍及前述 6 201239053 之組合。於本發明某些較佳實施態樣中,該拋光組成物包含亞氯 酸鈉及/或溴酸鉀作為氧化劑。 較佳地’本發明拋光組成物含有以Cl〇2·及BrCV之總濃度計為約 0.005重量莫耳濃度至約1重量莫耳濃度,更佳為約〇.〇1重量莫耳濃 度至約0.5重量莫耳濃度之氧化劑。即,於1,〇〇〇公克的本發明拋光 組成物中,C1CV及BrOf之總莫耳數較佳為約〇 〇〇5莫耳至約1莫 耳’更佳約〇·〇1莫耳至約0.5莫耳。根據本發明之部分實施態樣, 氧化劑為亞氣酸鹽且以約〇.〇2重量莫耳濃度至約〇.4重量莫耳濃度 的C102·濃度存在於拋光組成物中;或者,該氧化劑為溴酸鹽且以 約0.03重量莫耳濃度至約0.3重量莫耳濃度的Br〇3:濃度存在於拋 光組成物中。 本發明之拋光組成物更包含一螯合劑,於不受理論限制下,添 加螯合劑可用於維持矽的移除速率。特定言之,當研磨同時含有 矽與導電材料的TVS晶圓時,矽的研磨速率會受到影響且逐漸降 低,原因可能在於研磨機台與工具被研磨過程中所產生的導電材 料離子所污染。令人驚奇地,本案發明人發現拋光組成物中之螯 合劑有助於移除導電材料離子,即形成螯合物,而可限制TSV晶圓 上之矽的移除速率的降差(drop)。 根據本發明,適合的螯合劑通常具式,其中R係 Q-Cs伸烷基、C2-C8伸烯基或0:6-(:12芳香族環,其係未經取代或經 一或多個取代基取代,該取代基係選自以下群組:-C(0)OH、-OH、 -(CH2)xP(〇)(〇H)2及Ci-C4烷基,其中X係0、卜2或3,且其中,CVQ 伸烷基及C2-C8伸烯基中之一或多個碳原子可經選自Ο、N及S之雜 原子替代;各R1係獨立為-C(0)〇H或-(CH2)xP(0)(OH)2,其中X係0、 201239053 •I、2 或3 ;各R2係獨立為 H、-C(0)0H或-(CH2)xP(0)(0H)2,其中 x 係0、1、2或3 ;以及nl與n2係獨立為1或2。較佳地,於式 中,R 係 CVCt 伸烷基、C2-C4 伸烯基、> N(CH2)2NH(CH2)2N〈或苯基,其係未經取代或經一或多個取代基 取代,該取代基係選自以下群組:-C(0)0H、-OH、-(CH2)P(0)(0H)2 及甲基。 舉例言之’該螯合劑可選自以下群組:擰檬酸(如其單水合物)、 水楊酸、DL-酒石酸、蘋果酸、號站酸、丙稀酸、乳酸、己二酸、 二伸乙二胺五(亞甲基鱗酸)(diethylene triamine penta(methylene phosphonic acid ’ DTPMPA,如Dequest® 2060S)、羥亞乙基二膦 酸(hydroxy ethylidene diphosphonic acid,HEDP,如Dequest® 2010) 及前述之組合;且較佳係選自以下群組:水楊酸、丙稀酸、dl-酒石酸、HEDP、乳酸、檸檬酸、己二酸、DTPMPA及前述之組合。 螯合劑的含量係佔該拋光組成物的約〇.〇1重量%至約丨5重量 % •’較佳地係佔約0.1重量%至約10重量%。於以下實施例中,所 示範使用之螯合劑係佔本發明拋光組成物的約〇. 5重量%至約8重 量0/〇〇 另外’該溶劑可為水,如以下實施例中所示範者。 該氧化矽研磨粒子可選自以下群組:膠態氧化矽(c〇11〇id silica)、煙霧狀氧化矽(fumedsilica)、沉澱氧化矽(precipitated silica)及前述之組合。於以下實施例中,所示範使用之氧化矽研 磨粒子為膠態氧化矽。 於本發明拋光組成物中,氧化碎研磨粒子較佳是佔約〇 重量% 至約30重量%,更佳是佔約〇. 1重量%至約15重量%。於以下實施例 8 201239053 中,所示範使用之氧化矽研磨粒子的濃度是佔約05重量%至約1〇 重臺%» 根據本發明,拋光組成物之pH値範圍較佳是大於9,更佳是大於 本發明亦提供一種使用如上述之拋光組成物之研磨Tsv晶圓的 方法,特疋5之,本發明之研磨方法是使用上述本發明抛光組成 物對一TSV晶圓之表面進行一研磨處理。於研磨處理進行時,拋光 組成物是以一流速流向研磨塾與TSV晶圓之間的地方,同時以一研 磨壓力使TSV晶圓接觸研磨墊,TVS晶圓與研磨墊具有各自的轉速 '以研磨TSV晶圓。 須先說明的是’上述「TS V晶圓之表面」係指該TS v晶圓中遠離 其積體電路層11的表面’其可能為矽晶圓層之表面121 (如第1圖 所示)’或者同時包含導電材料13之端面131 (如第3圖所示)。 在此操作下’TSV晶圓上待研磨之矽的移除速率的降差可受到限 制’且可同時移除TSV晶圓上的矽與導電材料;其中,導電材料較 佳地係選自於銅、鎢、鋁及多晶矽。於以下實施例中,所示範使 用之導電材料的材質為銅。 需說明的是’本發明方法可配合各式研磨機台之構件設計、或 使用者的操作習慣加以調整。各物料可先摻混成本發明蝉光組成 物後’再透過該研磨機台而流出’或者是使各物料同步且分別地 經由研磨機台的不同管道引入’再流出並同時混合成本發明拋光 組成物;另,為便於組合物的穩定性與運輸、或使用者儲放物料 之便利性’亦可將本發明拋光組成物分開或合併配置成濃縮液。 於以下貫施例中,是以「先將各物科混摻成較佳濃度之抛光組成 201239053 -物,再透過研磨機台流出」的操作方式來進行示範、。 以下將以各實施例及比較例來說明本發明之實施態樣與功效, 各實施例與比較例之拋光組成物中的物料種類與含量係列於表1 中。該等實施例與比較例將使用到下列化學品與設備,且須注意 的是,該等實施例僅為例示說明之用’不應作為限制本發明範圍 之解釋。 若未特別說明,各實施例與比較例中之研磨方法皆是在常溫常 壓的環境下,以水為溶劑配製成各自的拋光組成物’並各對一第 一矽空白晶圓、一銅空白晶圓與一第二矽空白晶圓在一預定時間 内進行研磨。石夕與銅之研磨速率則是於研磨開始前及結束後量測 晶圓厚度並計算而得。各實施例與比較例的研磨方法皆使用相同 的機台參數【即研磨壓力3磅/吋、研磨頭轉速(亦即TSV晶圓轉速) 87轉/分鐘、研磨墊轉速93轉/分鐘、拋光組成物之流速200毫升/分 鐘、研磨時間1分鐘】。 物料與器材包含:(1)研磨機台:商購自韓國G&p公司之 POLI-500 ; (2)研磨塾:商購自美商Cabot Microelectronics公司之 EPIC D100研磨塾;(3)梦空白晶圓(bare silicon wafer):商購自 美商Silicon Valley Microelectronics公司之一般發空白晶圓;(4)銅 空白晶圓(blanket copper wafer ):商購自美商 SKW Associates公 司、銅膜厚度為1_5微米之銅空白晶圓;(5)氧化矽研磨粒子:商購 自Akzo Nobel公司(阿姆斯特丹,荷蘭)之binDZIL SP599L ; (6) 商購自數家供應商包含如Sigma-Aldrich (密蘇里,美國)、Alfa Aesar (麻薩諸塞州,美國)、ACROS (吉爾,比利時)、MERCK KGaA (達姆施塔特’德國)、sh〇wa Chemical (東京,曰本)声 201239053201239053 VI. Description of the Invention: - Technical Field of the Invention The present invention relates to a polishing composition, in particular, to a polishing composition for polishing a through-silicon via (TSV) wafer. . The invention also relates to a method of polishing a TSV wafer using the polishing composition. [Prior Art] As shown in Fig. 1, the original structure of the TSV wafer 1 includes an integrated circuit layer 11, a germanium wafer layer 12 and a conductive material 13 on the integrated circuit layer 11. The conductive material 13 is embedded in the germanium wafer layer 12, and is substantially perpendicular to the surface 121 of the germanium wafer layer 12 and is connected to the integrated circuit layer 11. In general, in an unground TSV wafer, the end surface 131 of the conductive material 13 is about several hundred microns from the surface 121 of the wafer layer 12. The surface 121 will then be "grinded" by "grinding" to rapidly thin the germanium wafer layer 12 while reducing the distance between the end surface 131 of the conductive material 13 and the surface 121 of the germanium wafer layer 12 to about tens of Micron. After rough polishing and thinning of the germanium wafer layer 12, a damage layer 14' is formed near the surface 121 as shown in Fig. 2; therefore, after the rough polishing step, chemical mechanical polishing is required ( Chemical mechanical polishing, referred to as "CMP", "fine p〇iishing" the surface 121 to modify and remove the damage layer 14' and further polish the TSV wafer 1 to the desired state. The ideal state of the TSV wafer 1 after fine polishing varies depending on the requirements of subsequent processes; for example, the end surface 131 of the conductive material 13 may be flush with the top surface 121 of the germanium wafer layer 12 wrapped around it ( As shown in Fig. 3, either the end face 131 protrudes from the top surface 121 (as shown in Fig. 4). 201239053 In practical operation, when the TSV wafer is subjected to the CMP process, the wafer layer 12 and the conductive material 13 are usually simultaneously polished, so that it is possible for manufacturers who need to grind a large number of TSV wafers to simultaneously and quickly. The removal of the germanium wafer layer 12 and the conductive material 13 to a suitable state can save a considerable amount of man-hours in the preparation process; however, the polishing compositions currently available on the market are mainly intended to have only Designed from a single wafer of tantalum or a single material of conductive material, it is not suitable for direct polishing of TSV wafers. U.S. Patent No. 4,169,337 discloses a polishing composition for a tantalum wafer comprising colloidal ceria (SiCb) abrasive particles or sinca gei and a water soluble amine; U.S. Patent No. 5,230,833 discloses another A polishing composition for a tantalum wafer comprising colloidal cerium oxide abrasive particles, an organic test, and a bactericide. Nowadays, the industry's view is that the polishing composition containing the oxidized abrasive particles and the organic test can show a clear grinding effect on the broken pieces. U.S. Patent No. 5,225,034 discloses a towed composition for a metal layer comprising predominantly copper comprising water, a solid abrasive material and a third component selected from the group consisting of silver nitrate (AgN〇3), nitric acid (HN〇). 3) and sulfuric acid (HzSO4) and mixtures thereof. In general, the polishing composition of conductive materials commonly used in the industry often contains an acidic component. The above polishing composition is suitable for grinding a single specific material such as tantalum or a conductive material. However, if the tantalum and the conductive material are simultaneously ground, the removal rate of the two materials is too large, so it is difficult to increase the polishing composition. The specific component content simultaneously increases the polishing rate of the crucible and the conductive material; for example, when the concentration of the organic base in the polishing composition is increased (such as ethylenediamine), the removal rate of the crucible is obviously increased more than the conductive material. That is, at this time, the removal rate of the crucible may exceed about 10,000 angstroms per minute (A/min), but the removal rate of the conductive material may be only about 1,00 Å / 201239053 minutes. Similarly, hydrogen peroxide, an oxidizing agent commonly used in polishing compositions, can help grind conductive materials, but can easily oxidize hydrazine to hard cerium oxide. Thus, as the content of hydrogen peroxide in the polishing composition increases, the removal rate of the conductive material also increases, but the removal rate of the crucible is rather reduced. From this point of view, hydrogen peroxide is not suitable for use as a component in the polishing composition for simultaneously grinding ruthenium and a conductive material. So far, the semiconductor industry needs to be suitable for polishing TSV wafers with conductive materials and conductive materials, stable and simultaneous removal of conductive materials on τα wafers and 矽θ ^., and the composition of the polishing composition is easy to obtain, and related Grinding method. SUMMARY OF THE INVENTION In the present invention, the invention is based on the combination of a tantalum salt or a bromate as an oxidizing agent, and an organic alkalized Q sword is used as a material contained in the polishing composition. The prepared polishing composition is surprisingly good for the hair and conductive materials. SUMMARY OF THE INVENTION It is an object of the present invention to provide a polishing composition for polishing a TSV wafer. The δ optical winding comprises an organic compound, an oxidizing agent, a chelating agent, an oxidizing agent particle, and a solvent. It is an object of the present invention to provide a polishing method using the above polishing composition to simultaneously and stably remove a conductive material to be ground on a TSV wafer and a crucible. The polishing method comprises: using one The polishing composition performs a grinding process on the surface of a TSV wafer to simultaneously remove germanium and conductive material on the TSV wafer. By using the polishing composition of the present invention and the grinding method using the composition, the ruthenium and the conductive material on the TSV wafer can be simultaneously removed at a relatively acceptable rate without using the peroxidation gas, and the TSV crystal is The round CMP process provides a novel, reliable 201239053 polishing composition and grinding method. [Embodiment] The present invention is directed to a polishing composition for polishing a TSV wafer. According to the present invention, the pH of the polishing composition, the kind and concentration of each component are not particularly limited. While considering the cost of the polishing composition of the present invention, the grinding power to be exerted, and the industry practice, the following will provide further explanations and recommendations for the types and amounts of the components. In the polishing composition of the present invention, the organic basic compound is preferably selected from the group consisting of diamines, triamines, tetraamines, and combinations thereof; suitable organic basic compounds include 'e.g. ethylenediamine (ethylenediamine), N-(2-ethylethyl)ethylenediamine, 1,2-diamine propane (u-diamin. propane), diethylenetriamine , triethylenetetramine, or a combination of the foregoing. In the following examples, the organic basic compounds used in the examples are ethylenediamine and 1,2-diaminepropane. The content of the organic basic compound is preferably from about 1% by weight to about 25 parts by weight based on the polishing composition of the present invention. /. More preferably, it accounts for about 1% by weight to about 2% by weight. /p In the following examples, the concentration of the organic basic compound used as exemplified is from about 5% by weight to about 15% by weight. According to the present invention, the oxidizing agent contained in the polishing composition is selected from the group consisting of sulfites, bromates, and combinations thereof. For example, the oxidizing agent may be selected from the group consisting of alkali chlorites, ammonium chlorites, alkali bromates, and ammonium bromates. And combinations of the foregoing. Preferably, the oxidizing agent is selected from the group consisting of sodium sulfite, sulphuric acid, sulphuric acid, tetramethyl ammonium chlorite, sodium bromate, acid bromine, bromine Acidic and indifferent to the combination of the aforementioned 6 201239053. In certain preferred embodiments of the invention, the polishing composition comprises sodium chlorite and/or potassium bromate as the oxidizing agent. Preferably, the polishing composition of the present invention contains from about 0.005 weight molar concentration to about 1 weight molar concentration, more preferably from about 〇.〇1 weight molar concentration, to about the total concentration of Cl〇2· and BrCV. 0.5 weight molar concentration of oxidizing agent. That is, in the polishing composition of the present invention, the total number of moles of C1CV and BrOf is preferably from about 莫5 to about 1 mole, and more preferably about 〇·〇1 mole. Up to about 0.5 moles. According to some embodiments of the present invention, the oxidizing agent is a sulphuric acid salt and is present in the polishing composition at a concentration of from about 〇2 莫 2 by mole to a concentration of about 〇. 4 by weight of the C102 concentration; or, the oxidizing agent Br〇3: is present in the polishing composition as a bromate salt and at a molar concentration of from about 0.03 by weight to about 0.3 weight by mole. The polishing composition of the present invention further comprises a chelating agent, and without being bound by theory, the addition of a chelating agent can be used to maintain the removal rate of the hydrazine. In particular, when grinding a TVS wafer containing both tantalum and conductive materials, the polishing rate of the crucible is affected and gradually reduced, possibly because the polishing machine and the tool are contaminated by the conductive material ions generated during the grinding process. Surprisingly, the inventors have discovered that the chelating agent in the polishing composition helps to remove conductive material ions, i.e., forms a chelate, which limits the drop in the removal rate of the ruthenium on the TSV wafer. . Suitable chelating agents are generally according to the invention, wherein R is a Q-Cs alkyl group, a C2-C8 alkylene group or a 0:6-(:12 aromatic ring which is unsubstituted or one or more Substituted by a substituent selected from the group consisting of -C(0)OH, -OH, -(CH2)xP(〇)(〇H)2, and Ci-C4 alkyl, wherein X is 0, 2 or 3, and wherein one or more carbon atoms of the CVQ alkylene group and the C2-C8 alkenyl group may be replaced by a hetero atom selected from the group consisting of Ο, N and S; each R1 is independently -C(0) 〇H or -(CH2)xP(0)(OH)2, where X is 0, 201239053 • I, 2 or 3; each R2 is independently H, -C(0)0H or -(CH2)xP ( 0) (0H)2, wherein x is 0, 1, 2 or 3; and nl and n2 are independently 1 or 2. Preferably, in the formula, R is CVCt alkyl, C2-C4 alkenyl , > N(CH2)2NH(CH2)2N< or a phenyl group which is unsubstituted or substituted with one or more substituents selected from the group consisting of -C(0)0H,- OH, -(CH2)P(0)(0H)2 and methyl. For example, the chelating agent may be selected from the group consisting of citric acid (such as its monohydrate), salicylic acid, DL-tartaric acid, Malic acid, acid, acrylic acid, lactic acid, Diethylene triamine penta (methylene phosphonic acid ' DTPMPA (such as Dequest® 2060S), hydroxy ethylidene diphosphonic acid (HEDP), such as ethylenediamine penta (methylene phosphonic acid) Dequest® 2010) and combinations thereof; and preferably selected from the group consisting of salicylic acid, acrylic acid, dl-tartaric acid, HEDP, lactic acid, citric acid, adipic acid, DTPMPA, and combinations thereof. The content is from about 重量1% by weight to about 5% by weight of the polishing composition. • Preferably, it is from about 0.1% by weight to about 10% by weight. In the following examples, the chelating used in the demonstration The mixture is about 5% by weight to about 8 parts by weight of the polishing composition of the present invention. The solvent may be water, as exemplified in the following examples. The cerium oxide abrasive particles may be selected from the group consisting of Group: colloidal cerium oxide (c〇11〇id silica), fumed silica, fucipitated silica, and combinations thereof. In the following examples, the cerium oxide abrasive particles used in the demonstration are Colloidal cerium oxide. The polishing composition of the invention, the oxidation is preferably crushed abrasive particles comprise about square wt% to about 30 wt%, more preferably comprises from about billion is 1 wt% to about 15 wt%. In the following Example 8 201239053, the concentration of the cerium oxide abrasive particles used as exemplified is from about 05% by weight to about 1% by weight. According to the present invention, the pH range of the polishing composition is preferably greater than 9, more Preferably, the present invention provides a method of polishing a Tsv wafer using the polishing composition as described above. According to the invention, the polishing method of the present invention uses the polishing composition of the present invention to perform a surface on a TSV wafer. Grinding treatment. During the polishing process, the polishing composition flows at a flow rate between the polishing pad and the TSV wafer, while the TSV wafer contacts the polishing pad with a grinding pressure, and the TVS wafer and the polishing pad have respective rotational speeds. Polish the TSV wafer. It should be noted that the above-mentioned "surface of the TS V wafer" refers to the surface of the TS v wafer remote from the integrated circuit layer 11 which may be the surface 121 of the germanium wafer layer (as shown in FIG. 1). ) or both end face 131 of conductive material 13 (as shown in Figure 3). Under this operation, the drop in the removal rate of the germanium to be ground on the TSV wafer can be limited and the germanium and conductive material on the TSV wafer can be simultaneously removed; wherein the conductive material is preferably selected from Copper, tungsten, aluminum and polycrystalline germanium. In the following embodiments, the conductive material used for the demonstration is made of copper. It should be noted that the method of the present invention can be adjusted in accordance with the component design of various types of grinding machines or the user's operating habits. Each material may be first blended into the inventive calendering composition and then 'flowed through the grinder table' or the materials are simultaneously and separately introduced through different pipes of the grinder table to re-flow and simultaneously mix the invention polishing composition Alternatively, the polishing composition of the present invention may be separated or combined into a concentrate in order to facilitate the stability and transportation of the composition, or the convenience of the user to store the material. In the following examples, the demonstration is carried out by the operation mode of "mixing each material into a preferred concentration of the polishing composition 201239053 - and flowing through the grinding machine". Hereinafter, the embodiment and comparative examples of the present invention will be described with reference to the respective examples and comparative examples. The types and contents of the materials in the polishing compositions of the respective examples and comparative examples are shown in Table 1. The following examples and comparative examples will use the following chemicals and equipment, and it should be noted that the examples are merely illustrative and should not be construed as limiting the scope of the invention. Unless otherwise specified, the polishing methods in the respective examples and comparative examples are prepared by using water as a solvent to form respective polishing compositions in a normal temperature and normal pressure environment, and each pair of first blank wafers, one The copper blank wafer and a second blank wafer are ground for a predetermined time. The polishing rate of Shi Xi and copper is calculated by measuring the thickness of the wafer before and after the start of the grinding. The grinding method of each of the examples and the comparative examples all used the same machine parameters [ie, the grinding pressure was 3 lb / Torr, the grinding head rotation speed (that is, the TSV wafer rotation speed) was 87 rpm, the polishing pad rotation speed was 93 rpm, and polishing was performed. The flow rate of the composition was 200 ml/min, and the grinding time was 1 minute. Materials and equipment include: (1) Grinding machine: POLI-500 commercially available from G&p, Korea; (2) Grinding 塾: EPIC D100 grinding 商 commercially available from Cabot Microelectronics, Inc.; (3) Dream blank Bare silicon wafer: commercially available from Silicon Valley Microelectronics, Inc., general blank wafer; (4) copper copper wafer: commercially available from American company SKW Associates, copper film thickness is 1_5 micron copper blank wafer; (5) cerium oxide abrasive particles: commercially available from Akzo Nobel (Amsterdam, The Netherlands) binDZIL SP599L; (6) Commercially available from several suppliers including Sigma-Aldrich (Missouri, USA) ), Alfa Aesar (Massachusetts, USA), ACROS (Gil, Belgium), MERCK KGaA (Darmstadt 'Germany), sh〇wa Chemical (Tokyo, Sakamoto) Sound 201239053
Thermphos (楚格,瑞士)之純度99%或以上之化學試劑:乙二胺 (EDA)、1,2-二胺丙烷(DAP)、亞氣酸鈉(NaC102)、溴酸鉀 (KBr03)、水楊酸、DL-酒石酸、檸檬酸單水合物、丙烯酸、乳 酸、Dequest® 2060S (二伸乙三胺五(亞甲基膦酸),DTPMPA)、 Dequest® 2010 (羥亞乙基二膦酸,HEDP)以及己二酸。 201239053 表1 膠態氧 化矽 (重量%) 有機鹼性 化合物 (重量%) 氧化劑 (莫耳/每100 公克之拋光 組成物) 螯合劑 (重量%) 移除速率(埃米/分鐘) 矽移除速 率的降差 百分比 (%) 第一矽 銅 第二矽 比較例 1 1.0 EDA 2.0 NaC102 0.01106 — 7648 7873 1599 -79.1 實施例 1 1.0 EDA 2.0 NaCIOz 0.01106 水楊酸 1.0 6294 6876 2583 -59.0 實施例 2 1.0 EDA 2.0 NaC102 0.03317 水揚酸 1.0 6151 11814 3923 -36.2 實施例 3 1.0 EDA 2.0 NaC102 0.01106 丙烯酸 1.0 8304 9015 5495 -33.8 實施例 4 1.0 EDA 2.0 NaC102 0.03317 丙烯酸 1.0 7094 14053 5495 -22.5 實施例 5 1.0 EDA 2.0 NaC102 0.01106 HEDP 1.0 8666 11768 4347 -49.8 實施例 6 1.0 EDA 2.0 NaCIOz 0.03317 HEDP 1.0 7456 9186 4538 -39.1 實施例 7 1.0 EDA 2.0 NaC102 0.01106 乳酸 1.0 9240 24646 3909 -57.7 實施例 8 1.0 EDA 2.0 NaC102 0.03317 乳酸 1.0 8126 7894 3977 -51.1 實施例 9 1.0 EDA 2.0 NaCIOz 0.03317 DL-酒石酸 1.0 7778 7358 5413 -30.4 實施例 10 1.0 EDA 2.0 NaC102 0.03317 檸檬酸單 水合物 1.0 8140 10197 5864 -28.0 實施例 11 5.0 EDA 2.0 NaC102 0.03317 檸檬酸單 水合物 1.0 9001 10707 5208 •42.1 實施例 12 1.0 EDA 2.0 NaC102 0.03317 己二酸 1.0 8235 8794 3499 -57.5 實施例 13 1.0 EDA 2.0 NaC102 0.03317 Dequest® 2060S 1.0 8092 9561 4702 -41.9 實施例 14 1.0 DAP 2.0 NaC102 0.03317 乳酸 1.0 8215 2842 3253 -60.4 12 201239053 實施例 1.0 15 EDA KBi〇3 2.0 0.03317 乳酸 1.0 9466 9783 4182 -55.8 13 201239053 -實施例1至15顯示根據本發明之研磨TSV晶圓的方法可同時研磨 TSV晶圓上的導電材料與矽材質。已發現,相較於比較例1 (未添 加螯合劑)’實施例1至15中第一矽空白晶圓與第二矽空白晶圓的 移除速率的降差係優於比較例1,即於研磨TSV晶圓期間,添加螯 合劑可適度地限制矽的移除速率的降差。 因此’根據本發明之拋光組成物與TSV晶圓之研磨方法為現有 TSV晶圓之CMP領域提供了一可穩定且同時地研磨矽材質與導電 材料且大幅節約工時成本之技術方案。 所有列於本文中之文獻(包含出版物、專利公開案、專利案) 皆列於此處以供參考,如同該等文獻已單獨且具體地引述於本文 中。 除非文中有另外說明或在文意中已清楚否定,於本說明書中(尤 其疋在後述專利申請範圍中)所使用之「一」、「該」及類似用語 應理解為包含單數及複數形式。除非其它說明,「包括」、「包含」、 「具有J等用語應理解為開放式用語(意指「包含提及者,但不 非限於此」)。除非額外說明,在本文數值範圍之記載形式僅作為 各別說明各個落於所載範圍之獨立數值的簡記方式,且各個獨立 數值應視為已各別列於本文之中。除非額外說明或文亦中已清楚 否疋,本文中所有方法均可以任何適當順序實施。除非額外主張9 本文中任何及所有實施例之用法、或表示示範之用語(如「例如」) 係用來具體說明本發明,蓋其無限制本發明之含意。在本說明書 所有關乎實施本發明之用語皆不應視為非主張要件。 本文已說明本發明之較佳實施態樣(包含本案發明人所悉知之 最佳實施態樣)。在本說明指引下’在本領域巾具有通常知識者 201239053 明瞭該等較佳實施態樣之'變化態樣,本案發明人希望本領域具通 常知識者可適當運用本案之變化態樣並應用本發明於未陳述之技 術領域。至此,根據現行法律,本發明當包含所有專利申請範圍 中所列標的之調整變化及等意範圍。此外,除非額外說明或文意 中已清楚否定,任何本文中所述要件之組合亦包含於本發明範圍 中〇 【圖式簡單說明】 第1圖為一未經研磨之TSV晶圓之原始結構示意圖; 第2圖為TSV晶圓經粗拋前後之各構件之相對狀況示意圖;以及 第3圖與第4圖各為經CMP研磨後導電材料之端面示意圖,其中導 電材料的端面是齊平於或凸出於該矽晶圓層的表面。 【主要元件符號說明】 I TSV晶圓 II 積體電路層 12 矽晶圓層 121矽晶圓層之頂面 13 導電材料 131導電材料之端面 14 損害層 15Chemicals with a purity of 99% or more of Thermphos (Zug, Switzerland): ethylenediamine (EDA), 1,2-diaminopropane (DAP), sodium sulfite (NaC102), potassium bromate (KBr03), salicyl Acid, DL-tartaric acid, citric acid monohydrate, acrylic acid, lactic acid, Dequest® 2060S (diethylenetriamine penta (methylene phosphonic acid), DTPMPA), Dequest® 2010 (hydroxyethylidene diphosphonic acid, HEDP ) and adipic acid. 201239053 Table 1 Colloidal cerium oxide (% by weight) Organic basic compound (% by weight) Oxidizing agent (mol/per 100 g of polishing composition) Chelating agent (% by weight) Removal rate (Ami/min) 矽Removal Percentage of rate drop (%) First bismuth copper second 矽 Comparative Example 1 1.0 EDA 2.0 NaC102 0.01106 — 7648 7873 1599 -79.1 Example 1 1.0 EDA 2.0 NaCIOz 0.01106 Salicylic acid 1.0 6294 6876 2583 -59.0 Example 2 1.0 EDA 2.0 NaC102 0.03317 Salicylic acid 1.0 6151 11814 3923 -36.2 Example 3 1.0 EDA 2.0 NaC102 0.01106 Acrylic 1.0 8304 9015 5495 -33.8 Example 4 1.0 EDA 2.0 NaC102 0.03317 Acrylic 1.0 7094 14053 5495 -22.5 Example 5 1.0 EDA 2.0 NaC102 0.01106 HEDP 1.0 8666 11768 4347 -49.8 Example 6 1.0 EDA 2.0 NaCIOz 0.03317 HEDP 1.0 7456 9186 4538 -39.1 Example 7 1.0 EDA 2.0 NaC102 0.01106 Lactic acid 1.0 9240 24646 3909 -57.7 Example 8 1.0 EDA 2.0 NaC102 0.03317 Lactic acid 1.0 8126 7894 3977 -51.1 Example 9 1.0 EDA 2.0 NaCIOz 0.03317 DL-tartaric acid 1.0 7778 7358 5413 -30.4 Example 10 1.0 EDA 2.0 NaC102 0.03317 Citric acid monohydrate 1.0 8140 10197 5864 -28.0 Example 11 5.0 EDA 2.0 NaC102 0.03317 Citric acid monohydrate 1.0 9001 10707 5208 • 42.1 Example 12 1.0 EDA 2.0 NaC102 0.03317 Adipic acid 1.0 8235 8794 3499 - 57.5 Example 13 1.0 EDA 2.0 NaC102 0.03317 Dequest® 2060S 1.0 8092 9561 4702 -41.9 Example 14 1.0 DAP 2.0 NaC102 0.03317 Lactic acid 1.0 8215 2842 3253 -60.4 12 201239053 Example 1.0 15 EDA KBi〇3 2.0 0.03317 Lactic acid 1.0 9466 9783 4182 -55.8 13 201239053 - Embodiments 1 through 15 show that the method of polishing a TSV wafer according to the present invention can simultaneously polish the conductive material and the tantalum material on the TSV wafer. It has been found that the reduction in the removal rate of the first blank wafer and the second germanium blank wafer in Examples 1 to 15 is superior to Comparative Example 1 in comparison with Comparative Example 1 (without adding a chelating agent), that is, The addition of a chelating agent during the polishing of the TSV wafer moderately limits the drop in the removal rate of the crucible. Therefore, the polishing method of the polishing composition and the TSV wafer according to the present invention provides a technical solution for stably and simultaneously grinding the tantalum material and the conductive material in the CMP field of the conventional TSV wafer and greatly saving the labor cost. All documents (including publications, patent publications, patents), which are hereby incorporated by reference in their entirety herein in their entireties in theties in The use of the terms "a", "an", and <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Unless otherwise stated, "including", "including", "having a term such as J shall be construed as an open term (meaning "including the reference, but not limited to"). Unless otherwise stated, the recitations of the numerical ranges are intended to serve as a short description of the individual values that are in the scope of the disclosure, and the individual values are considered to be individually listed herein. All methods herein can be implemented in any suitable order unless otherwise stated or indicated in the text. The use of any and all of the embodiments herein, or the singular terms (such as "for example"), are intended to be illustrative of the invention. Terms used in the specification to implement the invention should not be considered as non-claims. Preferred embodiments of the invention (including the best mode known to the inventors of the present invention) have been described herein. Under the guidance of this specification, 'there is a general knowledge of those who have a general knowledge in the field, 201239053. The inventor of the present invention hopes that those skilled in the art can appropriately apply the changes of the case and apply the present application. Invented in the technical field not stated. To the extent that the present invention is in accordance with the current law, the present invention includes all modifications and equivalent ranges of the subject matter in the scope of the patent application. In addition, any combination of the elements described herein is also included in the scope of the present invention unless otherwise stated or clearly indicated in the context. [Simple Description of the Drawing] Figure 1 shows the original structure of an unpolished TSV wafer. Schematic diagram; Figure 2 is a schematic view of the relative state of the components before and after the rough polishing of the TSV wafer; and Figures 3 and 4 are schematic diagrams of the end faces of the conductive material after CMP grinding, wherein the end faces of the conductive material are flush Or protrude from the surface of the germanium wafer layer. [Main component symbol description] I TSV wafer II integrated circuit layer 12 矽 wafer layer 121 矽 top layer of wafer layer 13 conductive material 131 end face of conductive material 14 damage layer 15