TW201237994A - System and apparatus for flowable deposition in semiconductor fabrication - Google Patents

System and apparatus for flowable deposition in semiconductor fabrication Download PDF

Info

Publication number
TW201237994A
TW201237994A TW100147521A TW100147521A TW201237994A TW 201237994 A TW201237994 A TW 201237994A TW 100147521 A TW100147521 A TW 100147521A TW 100147521 A TW100147521 A TW 100147521A TW 201237994 A TW201237994 A TW 201237994A
Authority
TW
Taiwan
Prior art keywords
chuck
wafer
module
wafer support
region
Prior art date
Application number
TW100147521A
Other languages
Chinese (zh)
Inventor
Jonathan D Mohn
Nijenhuis Harald Te
Shawn M Hamilton
Kevin Madrigal
Ramkishan Rao Lingampalli
Original Assignee
Novellus Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/329,078 external-priority patent/US9719169B2/en
Application filed by Novellus Systems Inc filed Critical Novellus Systems Inc
Publication of TW201237994A publication Critical patent/TW201237994A/en

Links

Abstract

Electronic device fabrication processes, apparatuses and systems for flowable gap fill or flowable deposition techniques are described. In some implementations, a semiconductor fabrication chamber is described which is configured to maintain a semiconductor wafer at a temperature near 0 DEG C while maintaining most other components within the fabrication chamber at temperatures on the order of 5-10 DEG C or higher than the wafer temperature.

Description

201237994 六、發明說明: 【發明所屬之技術領域】 本發明係關於電子器件製造程序、裝置及系統。在特定 實施例中,本發明係關於介電間隙填充製程、裝置及系 統。 本申請案根據35 U.S.C· § 119(e)主張2010年12月20曰提 交之美國臨時專利申請案第61/425,150號之權利,該申請 案以引用之方式併入本文中。 【先前技術】 在半導體處理中,通常有必要用絕緣材料來填充高縱橫 比間隙。對於淺渠溝隔離(STI)、金屬間介電質(IMD)層、 層間介電質(ILD)層、前金屬介電質(pmd)層、鈍化層等即 為此情況。隨著器件幾何尺寸縮小且熱預算降低,窄寬 度、南縱橫比(AR)特徵(例如,AR>6:1)之無空隙填充由於 現有沈積製程之限制而變得愈加困難。 本文中論述用於介電間隙填充之新方法、裝置、系統及 技術。 【發明内容】 在一些實施中,提供一種晶圓支撐裝置❶該晶圓支撐裝 置可包含卡盤,該卡盤包含頂表面、底表面及外表面。該 頂表面與該底表面可實質上平行於彼此’且可偏離彼此。 該外表面可位於該頂表面與該底表面之間,且該頂表面可 經組態以支撐半導體晶圓。該晶圓支撐裝置亦可包含外 殼。該外殼可包含外壁及連接至該外壁之外殼底板。該外 160970.doc 201237994 殼底板可包含自該外壁朝向該外殼底板之中心延伸的第一 隔熱區^該第一隔熱區可在一直延伸至該外殼底板之中心 之則停止。该卡盤之底表面可面向該外殼底板,且該卡盤 之底表面及外表面可實質上處於由該外壁及該外殼底板界 定之容積内。該卡盤與該外殼可經組態以作為單一總成在 半導體製造腔室中-起移動。該卡盤之外表面與該外殼之 外壁之間可無實質熱接觸,且跨越該第一隔熱區在該底表 面與該外殼底板之間可無實質熱接觸。 在-些其他實施中,當該晶圓支樓裝置曝露於在可流動 沈積半導體製造腔室令存在之氣體及環境條件時,可能會 發生該卡盤之外表面與該外殼之外壁之間的無實質熱接觸 及跨越該第-隔熱區在該底表面與該外殼底板之間的無實 質熱接觸。在又一些其他實施中,該等氣體可包含^或201237994 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an electronic device manufacturing program, apparatus, and system. In a particular embodiment, the present invention is directed to a dielectric gap fill process, apparatus, and system. The present application claims the benefit of U.S. Provisional Patent Application Serial No. 61/425,150, the entire disclosure of which is incorporated herein by reference. [Prior Art] In semiconductor processing, it is usually necessary to fill a high aspect ratio gap with an insulating material. This is the case for shallow trench isolation (STI), inter-metal dielectric (IMD) layer, interlayer dielectric (ILD) layer, front metal dielectric (pmd) layer, passivation layer, and the like. As device geometries shrink and thermal budgets decrease, gap-free fill of narrow width, south aspect ratio (AR) features (e.g., AR > 6:1) becomes more difficult due to limitations of existing deposition processes. New methods, devices, systems, and techniques for dielectric gap filling are discussed herein. SUMMARY OF THE INVENTION In some implementations, a wafer support apparatus is provided. The wafer support apparatus can include a chuck including a top surface, a bottom surface, and an outer surface. The top surface and the bottom surface may be substantially parallel to each other' and may be offset from each other. The outer surface can be between the top surface and the bottom surface, and the top surface can be configured to support a semiconductor wafer. The wafer support device can also include a housing. The outer casing can include an outer wall and a bottom plate of the outer casing connected to the outer wall. The outer casing 160970.doc 201237994 can include a first insulating zone extending from the outer wall toward the center of the outer casing floor. The first thermal insulation zone can be stopped while extending to the center of the outer casing floor. The bottom surface of the chuck may face the bottom plate of the casing, and the bottom and outer surfaces of the chuck may be substantially within the volume defined by the outer wall and the bottom plate of the casing. The chuck and the housing are configurable to move in a semiconductor manufacturing chamber as a single assembly. There may be no substantial thermal contact between the outer surface of the chuck and the outer wall of the outer casing, and there may be no substantial thermal contact between the bottom surface and the outer casing floor across the first thermal insulation region. In some other implementations, when the wafer deck device is exposed to gas and environmental conditions present in the flowable deposition semiconductor fabrication chamber, it may occur between the outer surface of the chuck and the outer wall of the housing. There is no substantial thermal contact and no substantial thermal contact between the bottom surface and the bottom plate of the casing across the first insulating zone. In still other implementations, the gases may comprise or

He,且該等環境條件可包含介於25托與㈣之間的壓力。 在一些實施中’在該卡盤之實質上全部外表面與該外殼 之外壁之間可存在至少為〇.〇15,’之間隙,且跨越該第一隔 熱區在實質上全部該底表面與該外殼底板之間可存在至少 為0.015”之間隙。 2一些實施中,該外表面與該外壁可為實質上圓柱形, 且具有内部周界,且該隔孰區 可不延伸至該内部周界。 ‘、 在-些其他實施令,該晶圓支樓裝置可 中斷區_咖ebreak)e該介電中斷區可包含外== 及與該外介電壁相接之介電底板,且該介電底板可包含自 160970.doc 201237994 該外介電壁朝向該介電底板之中心延伸之第二隔熱區。該 介電底板可插入於該外殼底板與該底表面之間,且該外介 電壁可插人於該外壁與該外表面之間。該外壁、該外介電 壁與該外表面之間可無實質熱接觸,跨越該第二隔熱區在 該底表面與該介電底板之間無實質熱接觸,且跨越該第一 隔熱區在該介電底板與該外殼底板之間無實質熱接觸。 在一些實施中,該外表面與該外介電壁之面向該外表面 之表面可隔開介於0·015”與0.050"之間的間隙,該底表面 與該介電底板之在該第二隔熱區内且面向該底表面之表面 之間可隔開介於0.015"與0.050”之間的間隙,該外介電壁 與該外壁之面向彼此之表面可隔開介於〇 〇15"與〇 之 間的間隙,且該介電底板之表面與該外殼底板之在該第一 隔熱區中之表面可隔開介於〇〇15 "與〇 〇5〇"之間的間隙。 在一些實施中,該卡盤可包含冷卻通道,該冷卻通道位 於該頂表面與該底表面之間且沿循穿過該卡盤之迂迴路 徑。在一些其他實施中,該迂迴路徑可包含具有不同大小 之複數個嵌套之c形區段及複數個跨接區段。每一跨接區 段可用另一 C形區段之相應末端來接合一個C形區段之末 且僅一個跨接區段可將任何兩個c形區段接合在一 起。 在一些實施中,該卡盤可包含位於該頂表面與該底表面 之間的環形吹掃氣體通道。孔之圓形圖案可將該環形吹掃 氣體通道與該頂表面流體連接。在又一些其他實施中,該 晶圓支樓件可經組態以支撐呈指定標稱直徑之晶圓,且該 160970.doc 201237994 圓形圖案之直徑可比該標稱直徑小1 mm至2 mm。 在一些實施中’該晶圓支撐裝置亦可包含保護環。該保 護環可為實質上環形的,且内徑大於該頂表面經組態以支 樓之半導體晶圓之指定標稱直徑。該保護環可由該卡盤支 撐’且可不與該外殼之該外壁或該卡盤之該外表面接觸。 在一些其他實施中’該保護環可包含複數個柱體,每一柱 體自該保護環之面向該頂表面之表面突出第一量,且突出 至該頂表面中之凹部中,該凹部之深度小於該第一量。該 保護環之有柱體突出之表面可自該頂表面偏離15微米至 250微米。在一些實施中,在該保護環之最接近該外壁之 表面與該外壁之間可存在至少為〇 〇15”之間隙。 在一些實施中’複數個凸出突起自該卡盤之頂表面突 出。該等突起可配置成同心圓形圖案,且每一突起可自該 頂表面突出15微米至250微米。 在一些實施中,該卡盤可進一步包含校準光管及原位光 管(in-situ light pipe)。該校準光管之一個末端可終止於該 頂表面之中心處,且該原位光管之一個末端可終止於位於 該頂表面與該底表面之間的磷光盤(ph〇sph〇r puck)處。該 校準光管與該原位光管可在該卡盤内分開一距離,該距離 小於自該外殼底板之中心至該第一隔熱區之距離。 在一些實施中,該卡盤可包含第一板及第二板。該第 板可包含第一頂面及第一底面,且該第二板可包含第二 面及第二底面。該第一頂面可結合至該第二底面,且該 卻通道可凹入至該第二底面中。該第—板可包含兩個 160970.doc * 6 - 201237994 孔,每一通孔與該冷卻通道之不同終端(terminal end)對 應,且該第一板與該第二板可對準,使得每一通孔與該冷 卻通道之對應終端對準。在又一些其他實施中,該卡盤可 進一步包含第三板,該第三板具有第三頂面及第三底面。 該第三底面可結合至該第二頂面,且該第三底面可包含環 形吹掃氣體通道及與該環形吹掃氣體通道流體連接之一或 多個吹掃氣體供應通道。孔之圓形圖案可將該環形吹掃氣 體通道與該第三頂面流體連接,且吹掃氣體入口可穿過該 第一板及該第二板,且將該一或多個吹掃氣體供應通道與 該第一底面流體連接。 在一些實施中,該卡盤及該外殼可主要由鋁製成,且該 介電中斷區可主要由八丨2〇3製成。在一些其他實施中,該 卡盤可主要由3003鋁製成,且該頂表面可塗有YF3。 在一些實施中,可提供一種用於半導體製造之裝置。該 用於半導體製造之裝置可包含腔室、卡盤、卡盤外殼及控 制器。*亥腔室可包含加熱器系統及實質上圓柱形之内表 面。該卡盤可包含不受該卡盤外殼妨礙之晶圓支撐區域、 實質上圓柱形之外表面及冷卻^统,且可實質上含於該卡 盤外殼中且由該卡盤外殼支律。該卡盤外殼可包含實質上 圓柱形之外表面,且可相對於該腔室移動。該控制器可經 組態以控制該加熱器系統及該冷卻系統,且藉由調節冷卻 系統溫度及加熱系統溫度而產生第一操作組態。在該第一 操作組態中’該腔室之内表面可具有至少為赋之溫度, 該晶圓支《域可具有介於阶與+听之間的溫度^ 160970.doc 201237994 該卡盤外殼之外表面可具有比該晶圓支撐區域之溫度高至 少5°C之溫度。 在一些其他實施中,該控制器可進一步經組態以藉由調 郎該冷卻系統溫度及該加熱系統溫度而產生第二操作組 態。在該第二操作組態中,該腔室之内表面、該卡盤外殼 之外表面及該可具有大於7〇。(:之溫度。 在一些其他實施中,該控制器可進一步經組態以藉由調 節該冷卻系統溫度及該加熱系統溫度而產生第三操作組 態。在該第三操作組態中,該腔室之内表面、該卡盤外殼 之外表面及該晶圓支撐區域可具有介於3〇。(:與50。(:之間的 溫度。在一些實施中’該控制器可進一步經組態以維持溫 度概況’溫度變化跨越由該晶圓支撐區域支撐之晶圓小於 0.35〇C。 在一些實施中,可提供一種半導體製造模組。該半導體 製造模組可包含腔室、晶圓支撐裝置、喷淋頭、氣體分配 系統、加熱系統、冷卻系統及溫度控制器。該腔室可包含 内表面、頂板及底板。該晶圓支撐裝置可含於該腔室中, 且可包含卡盤及外殼。該卡盤可經組態以在處理期間藉由 位於該卡盤之頂表面上之晶圓支撐區域來支撐具有標稱直 徑D之半導體晶圓,總體形狀可為實質上圓柱形,且具有 大於D之標稱直徑。該外殼可包含外表面及底板。該外表 面可為實質上圓柱形,可界定該底板之外邊緣。該卡盤可 貫質上位於由該外表面界定之容積内。該噴淋頭可位於該 晶圓支撐區域上方。該氣體分配系統可經組態以藉由喷淋 160970.doc 201237994 頭將反應物遞送至該腔室。該加熱系統可經組態以加熱該 腔室之該内表面、該頂板及該底板,且該冷卻系統可經組 態以冷卻該卡盤。該溫度控制器可經組態以控制由該加熱 系統供應之加熱量及由該冷卻系統供應之冷卻量。該溫度 控制器亦可經組態以藉由調節該冷卻系統及該加熱系統而 提供第一操作組態。在該第一操作組態中,該腔室之内表 面可具有至少為40°C之溫度,該晶圓支撐區域可具有介 於-10°C與+i〇t之間的溫度,且該外殼之外表面可具有比 該晶圓支撐區域之溫度高至少5°c之溫度。 在該半導體製造模組之一些實施中,該喷淋頭可包含第 一充氣部及第二充氣部。該第一充氣部及該第二充氣部可 在該噴淋頭内彼此流體隔離,且可各自配備有氣體分配 孔,該等氣體分配孔用位於該晶圓支撐區域與該喷淋頭之 間的處理容積而將兩個充氣部流體連接。該氣體分配系統 可進一步經組態以經由第一喷淋頭供應管線將一或多種第 一反應物遞送至該噴淋頭之第一充氣部,且經由第二噴淋 頭供應管線將一或多種第二反應物遞送至該噴淋頭之第二 充氣部。在一些其他實施中,該第一喷淋頭供應管線可經 組態以待由第一噴淋頭供應管線加熱器加熱,該第二喷淋 頭供應管線可經組態以待由第二喷淋頭供應管線加熱器加 熱,且該溫度控制器可進一步經組態以控制由該第一喷淋 頭供應管線加熱器及該第二喷淋頭供應管線加熱器供應之 加熱量。在又一些其他實施中,該第一喷淋頭供應管線加 熱器、該第二喷淋頭供應管線加熱器及該溫度控制器可經 160970.doc 201237994 組態以將該第一喷淋頭供應管線及該第二喷淋頭供應管線 加熱至至少為100°C之溫度。 在該半導體製造模組之一些實施中,該卡盤可經組態以 圍繞該晶圓支撐區域之周界供應吹掃氣體。在該半導體製 造模組之一些其他實施中,該晶圓支撐區域可包含複數個 突起’該複數個突起經組態以使由該晶圓支撐區域支撐之 半導體晶圓自該卡盤偏離介於15微米與250微米之間的距 離。該卡盤可經組態以經由圓形圖案之吹掃氣體孔圍繞該 晶圓支撐區域之周界供應吹掃氣體。該圓形圖案可具有比 標稱直徑小約1 mm至2 mm之直徑,且該等吹掃氣體孔可 具有小於該圓形圖案與該標稱直徑之間的直徑差異之出口 直徑。 在該半導體製造模組之一些實施中,該晶圓支撐裝置可 進一步包含插入於該卡盤與該外殼之間的介電中斷區。該 介電中斷區可跨越該外殼之底板之中心外殼區域與該外殼 貫質熱接觸’且跨越該底板之除該中心外殼區域之外的部 分不實質熱接觸。該介電中斷區亦可跨越中心卡盤區域與 該卡盤實質熱接觸,且跨越該卡盤之除該中心卡盤區域之 外的部分不與該卡盤實質熱接觸。當沿著該外殼外表面之 中心轴觀看時,該中心卡盤區域及該中心外殼區域可具有 小於該卡盤之直徑的50%之標稱大小。 在該半導體製造模組之一些其他實施中,該介電中斷區 與該外殼之面向彼此之表面(除了此等面跨越中心外殼區 域而彼此接觸之部分之外)可彼此隔開介於〇.〇1 5"與〇.〇5〇" 160970.doc -10- 201237994 之間的間隙’且該介電中斷區與該卡盤之面向彼此之表面 (除了此等面跨越中心卡盤區域而彼此接觸之部分之外)可 彼此隔開介於0.015"與0.050"之間的間隙。 在該半導體製造模組之一些其他實施中,該晶圓支撐裝 置可進一步包含保護環。該保護環可由該卡盤支撐,可實 質上轴對稱,且可具有小於該卡盤之標稱直徑之内樘。該 保護環可沿著卡盤中心轴自該卡盤偏離15微米至25〇微 米。自該卡盤之該偏離可由柱體提供,該等柱體跨越未自 卡盤偏離之重疊部分而與該卡盤熱接觸,且該保護環與該 介電甲斷區之面向彼此之表面可隔開〇〇15"至〇〇5〇"之間 隙,且該保護環與該外殼之面向彼此之表面隔開〇 〇15"至 0.050"之間隙。 在一些實施中,該半導體製造腔室之選自由腔室、卡 盤、外殼及喷淋頭組成之群組之一或多個組件在曝露於腔 室内的反應物之區域中可至少部分塗有疏水性塗層。在一 些其他實施中,該疏水性塗層可為Ti〇2。 本說明書中所描述之標的物之一或多個實施之細節在附 圖及以下描述中加以闡述。其他特徵、態樣及優點將自該 描述 '圖式及申請專利範圍而變得顯而易見。注意,下圖 之相對尺寸可能並非係按比例續製。 【實施方式】 介绍 系統及方法。根 本文中提供用於介電間隙填充之裝置、 據各種實施例,裝置及系統經組態以各種整合製程進行間 160970.doc 201237994 隙真充„亥等整合製程包含沈積可流動介電材料(在某些 實施例中為可流動氧化物材料)。雖然下文論述包含可流 動氧化物沈積製程之細節’但類似技術及設備亦可用於可 物及&化物’本中請案不應解讀為限於可流動氧 化物技術,且意欲亦包含此等額外之可流動薄膜技術。然 而,此箅方法、继苗 ^ 展置、系統及技術亦不僅限於間隙填充應 用’且可用於任何可流動沈積半導體製造程序中,包含 (但不限於)平坦化、犧牲薄膜沈積及封孔。在某些實施例 中’裝置及系統經組態以用可流動介電材料及高密度電聚 化學氣相沈積介電材料來進行間隙填充。 '“味著相對於環境之特定定向之各種術語(諸如(但不限 於),「底部」、「頂部」、「在....下面」等)可結合圖式使用 以有助於理解本文中所描述之概念。此等術語之使用不應 解釋為需要將此等定向用於實施本文中所描述之概念,除 非特定概念需要所描述之定向以起作用。 圖1為描繪代表性之可流動間隙填充方法之程序流程 圖。圖1中所展示之許多或所有步驟可執行於可流動間隙 填充沈積模組十,但一些步驟可執行於另一製程模組中。 舉例而言’步驟m及步驟15〇可執行於特定地經組態以用 於電漿處理之模組中。晶圓可被提供至模組,且在適當時 在模組之間轉變。將晶圓提供至模組可涉及將晶圓夹持於 基座或模組腔室中之其他支撐件。出於此目的,可使用靜 電或機械卡盤。可在適當時在真空(例如,使用真空轉移 系統)下或在惰性氣氛下執行轉變模組。 160970.doc _ 201237994 電漿預處理或清潔可執行於步驟丨丨5中以使晶圓預備好 沈積。所上文所提及,步驟115亦可發生於與程序1〇〇中之 其他步驟分離之模組或腔室中。若如此,則晶圓可需要在 執行步驟11 5之後被轉移至沈積反應器。 在步驟120中,引入處理氣體。在形成以矽為主之介電 質之實施例中,處理氣體包含含有矽之化合物及(在需要 時)另一反應物。舉例而言,含有矽之前驅物可與氧化劑 反應以形成二氧化矽,或與氮化物反應以形成氮化矽。氣 體亦可包含一或多種摻雜劑前驅物。有時(但不必),存在 惰性運載氣體。在某些實施例中,使用液體注射系統引入 氣體。藉由單獨之入口將含有矽之化合物及氧化劑引入至 反應腔至。在某些實施例中,處理氣體包含溶劑、催化劑 及/或摻雜劑。又,在某些實施例中,可以增加晶圓表面 上之滯留時間及/或最大化反應器利用之方式來提供反應 物。舉例而言,可在其他反應物之前引入反應物。 含石夕前驅物之實例包含(但不限於)烷氧矽烷,例如四敦 甲基環四矽氧烷(T〇MCTS)、八曱基環四矽氧燒 (OMCTS)、四乙氧基矽烷(TE〇s)、三乙氧基矽烷(TEs)、 三甲氧基甲矽烷(TriMOS)、曱基三乙氧基正矽酸賴 (MTEOS)、四甲基正矽酸g旨(TM〇s)、甲基三曱氧基矽烷 (MTMOS)、二曱氧基二甲基矽烷(DmDm〇S)、二乙氧基矽 烧(DES)、二甲氧基矽烷(DM〇s)、三苯基乙氧基矽烷、^ (三乙氧基石夕基)-2-(二乙氧基曱基矽基)乙烷、三第三丁氧 基石夕院醇、六曱氧基二矽烷(HM〇DS)、六乙氧基二石夕境 160970.doc -13- 201237994 (HEODS)、四異氰酸矽烷(TICS)、二第三丁氨基石夕烧 (BTBAS)、氫矽倍半氧烷、第三丁氧基乙矽院、T8-氫化 球矽氧烷、八氫POSS™(多面低聚倍半矽氧烷)及1,2-二甲 氧基-1,1,2,2-四甲基乙矽烷。含矽前驅物之其他實例包含 (但不限於)矽烷(SiHO、乙矽烷、丙矽烷、己矽烷、環己 矽烷(cyclohexasilane)及烷基矽烷,例如甲基矽烷及乙基 矽烷。 合適之氧化劑之實例包含(但不限於)臭氧(〇3)、包含過 氧化氫(仏〇2)之過氧化物、氧氣(〇2) '水(h2〇)、醇類(諸 如,甲醇、乙醇及異丙醇)、一氧化氮(NO)、二氧化氮 (N02)、一氧化二氮(N2〇)、一氧化碳(c〇)及二氧化碳 (C〇2)。在某些實施例中,遠端電漿產生器可供應活性氧 化劑種類。 溶劑或其他表面活性劑可用以減緩表面張力,且增加基 板表面上之反應物之潤濕。其亦可增加介電前驅物與其他 反應物之可混合性,尤其是在液相中冷凝時。表面活性劑He, and such environmental conditions may include a pressure between 25 Torr and (iv). In some implementations, 'there may be at least a gap between substantially all of the outer surface of the chuck and the outer wall of the outer casing, and substantially all of the bottom surface across the first thermal insulation zone. There may be a gap of at least 0.015" between the bottom plate of the outer casing. 2 In some implementations, the outer surface and the outer wall may be substantially cylindrical and have an inner perimeter, and the barrier region may not extend to the inner perimeter ', in some other implementation orders, the wafer branch device interruptable area _ coffee break" e dielectric interrupt zone may include outer == and a dielectric substrate connected to the outer dielectric wall, and The dielectric substrate may include a second thermal insulation region extending from the outer dielectric wall toward the center of the dielectric substrate from 160970.doc 201237994. The dielectric substrate may be inserted between the bottom plate of the housing and the bottom surface, and the An outer dielectric wall can be inserted between the outer wall and the outer surface. The outer wall, the outer dielectric wall and the outer surface can have no substantial thermal contact, across the second thermal insulation region on the bottom surface There is no substantial thermal contact between the dielectric substrates and across the first thermal insulation zone There is no substantial thermal contact between the dielectric substrate and the bottom plate of the housing. In some implementations, the outer surface and the surface of the outer dielectric wall facing the outer surface can be separated by 0. 015" and 0.050" a gap between the bottom surface and the surface of the dielectric substrate in the second heat insulating region facing the bottom surface, which may be separated by a gap between 0.015 " and 0.050", the external dielectric The surfaces of the wall and the outer wall facing each other may be separated by a gap between the 〇〇 15 " and the ridge, and the surface of the dielectric bottom plate may be spaced from the surface of the outer casing of the outer casing in the first thermal insulation zone a gap between 〇〇 15 " and 〇〇5〇" In some implementations, the chuck can include a cooling channel located between the top surface and the bottom surface and passing through The bypass path of the chuck. In some other implementations, the circuitous path can include a plurality of nested c-shaped segments and a plurality of spanning segments having different sizes. Each span segment can have another C-shaped The corresponding end of the segment joins the end of a C-shaped segment and only one span Any two c-shaped segments can be joined together. In some implementations, the chuck can include an annular purge gas passage between the top surface and the bottom surface. A circular pattern of holes can blow the ring A sweep gas channel is fluidly coupled to the top surface. In still other implementations, the wafer subassembly can be configured to support a wafer of a specified nominal diameter, and the diameter of the 160970.doc 201237994 circular pattern can be comparable The nominal diameter is as small as 1 mm to 2 mm. In some implementations, the wafer support device can also include a guard ring. The guard ring can be substantially annular and have an inner diameter greater than the top surface configured to be a branch The designated nominal diameter of the semiconductor wafer. The guard ring may be supported by the chuck and may not be in contact with the outer wall of the outer casing or the outer surface of the chuck. In some other implementations, the guard ring can comprise a plurality of cylinders, each post projecting a first amount from a surface of the guard ring facing the top surface and projecting into a recess in the top surface, the recess The depth is less than the first amount. The cylindrical protruding surface of the guard ring can be offset from the top surface by 15 microns to 250 microns. In some implementations, there may be a gap of at least 15" between the surface of the guard ring closest to the outer wall and the outer wall. In some implementations, 'a plurality of raised protrusions protrude from the top surface of the chuck The protrusions may be arranged in a concentric circular pattern, and each protrusion may protrude from the top surface by 15 microns to 250 microns. In some implementations, the chuck may further comprise a calibration light tube and an in situ light tube (in- Situ light pipe). One end of the calibration light pipe may terminate at a center of the top surface, and one end of the in-situ light pipe may terminate in a phosphor optical disc between the top surface and the bottom surface (ph〇 The sph〇r puck) may be separated from the in-situ light pipe by a distance within the chuck that is less than a distance from a center of the bottom plate of the outer casing to the first thermal insulation zone. In some implementations The chuck may include a first plate and a second plate. The first plate may include a first top surface and a first bottom surface, and the second plate may include a second surface and a second bottom surface. The first top surface may be combined To the second bottom surface, and the passage can be recessed to the second In the bottom surface, the first plate may include two holes 160970.doc * 6 - 201237994, each through hole corresponding to a different terminal end of the cooling channel, and the first plate and the second plate may be aligned, Each of the through holes is aligned with a corresponding terminal of the cooling passage. In still other implementations, the chuck may further include a third plate having a third top surface and a third bottom surface. Bonding to the second top surface, and the third bottom surface may include an annular purge gas passage and one or more purge gas supply passages fluidly connected to the annular purge gas passage. The circular pattern of the holes may be the annular shape a purge gas passage is fluidly connected to the third top surface, and a purge gas inlet can pass through the first plate and the second plate, and the one or more purge gas supply passages are fluidly connected to the first bottom surface In some implementations, the chuck and the outer casing can be made primarily of aluminum, and the dielectric interruption zone can be made primarily of gossip. In some other implementations, the chuck can be primarily comprised of 3003 aluminum. Made, and the top surface can be coated with YF3. In some implementations, a device for semiconductor fabrication can be provided. The device for semiconductor fabrication can include a chamber, a chuck, a chuck housing, and a controller. The chamber can include a heater system and a substantially cylindrical shape. The inner surface of the chuck. The chuck may include a wafer support region that is unobstructed by the chuck housing, a substantially cylindrical outer surface, and a cooling system, and may be substantially contained in the chuck housing and by the chuck The casing casing may include a substantially cylindrical outer surface and movable relative to the chamber. The controller may be configured to control the heater system and the cooling system, and by adjusting cooling The first operating configuration is generated by the system temperature and the heating system temperature. In the first operational configuration, the inner surface of the chamber may have at least an assigned temperature, and the wafer branch may have a phase between + and + Temperature between listening ^ 160970.doc 201237994 The outer surface of the chuck housing may have a temperature that is at least 5 ° C higher than the temperature of the wafer support region. In some other implementations, the controller can be further configured to generate a second operational configuration by adjusting the cooling system temperature and the heating system temperature. In the second operational configuration, the inner surface of the chamber, the outer surface of the chuck housing, and the outer surface may have greater than 7 turns. (: temperature. In some other implementations, the controller can be further configured to generate a third operational configuration by adjusting the cooling system temperature and the heating system temperature. In the third operational configuration, the The inner surface of the chamber, the outer surface of the chuck housing, and the wafer support area may have a relationship between (3:50 and 50. (in some implementations) the controller may be further grouped The state maintains a temperature profile 'temperature change across the wafer supported by the wafer support region less than 0.35 〇 C. In some implementations, a semiconductor fabrication module can be provided. The semiconductor fabrication module can include a chamber, wafer support a device, a showerhead, a gas distribution system, a heating system, a cooling system, and a temperature controller. The chamber may include an inner surface, a top plate, and a bottom plate. The wafer support device may be contained in the chamber and may include a chuck And a housing configurable to support a semiconductor wafer having a nominal diameter D by a wafer support region on a top surface of the chuck during processing, the overall shape being substantially cylindrical And having a nominal diameter greater than D. The outer casing may include an outer surface and a bottom plate. The outer surface may be substantially cylindrical and may define an outer edge of the bottom plate. The chuck may be located qualitatively defined by the outer surface Within the volume, the showerhead can be positioned above the wafer support area. The gas distribution system can be configured to deliver reactants to the chamber by spraying 160970.doc 201237994. The heating system can be grouped State to heat the inner surface of the chamber, the top plate and the bottom plate, and the cooling system can be configured to cool the chuck. The temperature controller can be configured to control the amount of heating supplied by the heating system and The amount of cooling supplied by the cooling system. The temperature controller can also be configured to provide a first operational configuration by adjusting the cooling system and the heating system. In the first operational configuration, the chamber The inner surface may have a temperature of at least 40 ° C, the wafer support region may have a temperature between -10 ° C and +i 〇 t, and the outer surface of the outer casing may have a ratio of the wafer support region The temperature is at least 5 ° C. In some implementations of the semiconductor manufacturing module, the shower head can include a first inflating portion and a second inflating portion. The first inflating portion and the second inflating portion can be fluidly isolated from each other within the shower head, and can each be Equipped with gas distribution holes that fluidly connect the two plenums with a processing volume between the wafer support area and the showerhead. The gas distribution system can be further configured to pass the first A sprinkler supply line delivers one or more first reactants to a first plenum of the sprinkler and delivers one or more second reactants to the sprinkler via a second sprinkler supply line Second inflator. In some other implementations, the first sprinkler supply line can be configured to be heated by a first sprinkler supply line heater, the second sprinkler supply line can be configured to be Heating by a second sprinkler supply line heater, and the temperature controller can be further configured to control the amount of heating supplied by the first sprinkler supply line heater and the second sprinkler supply line heater . In still other implementations, the first sprinkler supply line heater, the second sprinkler supply line heater, and the temperature controller can be configured via 160970.doc 201237994 to supply the first sprinkler The line and the second showerhead supply line are heated to a temperature of at least 100 °C. In some implementations of the semiconductor fabrication module, the chuck can be configured to supply purge gas around a perimeter of the wafer support region. In some other implementations of the semiconductor fabrication module, the wafer support region can include a plurality of protrusions configured to cause a semiconductor wafer supported by the wafer support region to deviate from the chuck The distance between 15 microns and 250 microns. The chuck can be configured to supply purge gas around the perimeter of the wafer support region via a circular pattern of purge gas holes. The circular pattern can have a diameter that is about 1 mm to 2 mm smaller than the nominal diameter, and the purge gas holes can have an exit diameter that is less than the diameter difference between the circular pattern and the nominal diameter. In some implementations of the semiconductor fabrication module, the wafer support device can further include a dielectric interrupt region interposed between the chuck and the housing. The dielectric interruption zone may be in thermal thermal contact with the outer casing region of the bottom plate of the outer casing and not substantially in thermal contact across portions of the bottom plate other than the central outer casing region. The dielectric interruption zone can also be in substantial thermal contact with the chuck across the central chuck area, and portions of the chuck that are outside of the central chuck area are not in substantial thermal contact with the chuck. The center chuck region and the center outer casing region may have a nominal size less than 50% of the diameter of the chuck when viewed along a central axis of the outer surface of the outer casing. In some other implementations of the semiconductor fabrication module, the dielectric interruption region and the surfaces of the outer casing facing each other (except for portions of the outer surface that contact each other across the central outer casing region) may be spaced apart from each other. 〇1 5"and 〇.〇5〇" 160970.doc -10- 201237994 The gap between the dielectric break zone and the face of the chuck facing each other (except for these faces across the central chuck area Outside of the parts in contact with each other) can be separated from each other by a gap between 0.015" and 0.050". In some other implementations of the semiconductor fabrication module, the wafer support device can further include a guard ring. The guard ring may be supported by the chuck, may be substantially axisymmetric, and may have an inner bore that is less than the nominal diameter of the chuck. The guard ring can be offset from the chuck by 15 microns to 25 microns along the central axis of the chuck. The deviation from the chuck may be provided by a cylinder that is in thermal contact with the chuck across an overlapping portion that is not offset from the chuck, and the surface of the protective ring and the dielectric break region facing each other may be Separate the gap between 〇〇15"to 〇〇5〇" and the guard ring is spaced from the surface of the outer casing facing each other by a gap of 15" to 0.050". In some implementations, one or more components of the semiconductor fabrication chamber selected from the group consisting of a chamber, a chuck, an outer casing, and a showerhead are at least partially coated in the region of the reactants exposed to the chamber. Hydrophobic coating. In some other implementations, the hydrophobic coating can be Ti〇2. The details of one or more of the subject matter described in the specification are set forth in the drawings and the description below. Other features, aspects, and advantages will become apparent from the description of the drawings and claims. Note that the relative dimensions in the figure below may not be scaled. [Embodiment] The system and method are introduced. The apparatus for dielectric gap filling is provided herein. According to various embodiments, the apparatus and system are configured to perform various integrated processes. The integration process includes deposition of a flowable dielectric material (in In some embodiments, it is a flowable oxide material.) Although the following discussion contains details of the flowable oxide deposition process, 'similar techniques and equipment can also be used for the materials and & Flowable oxide technology, and is intended to include these additional flowable thin film technologies. However, this method, process, system and technology are not limited to gap fill applications and can be used in any flowable deposition semiconductor manufacturing. The program includes, but is not limited to, planarization, sacrificial film deposition, and sealing. In some embodiments, the device and system are configured to use a flowable dielectric material and a high density electropolymer deposition chemical vapor deposition dielectric. Material for gap filling. '" Various terms that are specific to the environment (such as (but not limited to), "bottom", "top" , "below", etc.) can be used in conjunction with the schema to help understand the concepts described in this article. The use of such terms should not be interpreted as requiring that such orientation be used to implement the concepts described herein, unless the particular concept requires the described orientation to function. Figure 1 is a process flow diagram depicting a representative flowable gap filling method. Many or all of the steps shown in Figure 1 can be performed in a flowable gap fill deposition module, but some steps can be performed in another process module. For example, 'step m and step 15' can be performed in a module that is specifically configured for plasma processing. Wafers can be supplied to the modules and transition between modules as appropriate. Providing the wafer to the module may involve clamping the wafer to other supports in the susceptor or module chamber. For this purpose, an electrostatic or mechanical chuck can be used. The conversion module can be executed under vacuum (for example, using a vacuum transfer system) or under an inert atmosphere as appropriate. 160970.doc _ 201237994 Plasma pretreatment or cleaning can be performed in step 丨丨5 to prepare the wafer for deposition. As mentioned above, step 115 can also occur in a module or chamber that is separate from the other steps in the procedure. If so, the wafer may need to be transferred to the deposition reactor after performing step 115. In step 120, a process gas is introduced. In an embodiment in which a ruthenium-based dielectric is formed, the process gas comprises a compound containing ruthenium and, if desired, another reactant. For example, a precursor containing ruthenium may be reacted with an oxidant to form ruthenium dioxide or with a nitride to form ruthenium nitride. The gas may also contain one or more dopant precursors. Sometimes (but not necessarily) there is an inert carrier gas. In certain embodiments, a gas is introduced using a liquid injection system. A compound containing hydrazine and an oxidizing agent are introduced into the reaction chamber through a separate inlet. In certain embodiments, the process gas comprises a solvent, a catalyst, and/or a dopant. Again, in certain embodiments, the residence time on the surface of the wafer can be increased and/or maximized by the use of the reactor to provide the reactants. For example, the reactants can be introduced before other reactants. Examples of the cerium precursor include, but are not limited to, alkoxy decane such as tetrahydromethylcyclotetraoxane (T〇MCTS), octadecylcyclotetrahydrogen (OMCTS), tetraethoxy decane (TE〇s), triethoxydecane (TEs), trimethoxymethane (TriMOS), mercaptotriethoxy-n-decanoic acid (MTEOS), tetramethyl-n-decanoic acid g (TM〇s ), methyl trimethoxy decane (MTMOS), dimethoxy dimethyl decane (DmDm 〇 S), diethoxy oxime (DES), dimethoxy decane (DM 〇 s), triphenyl Ethyl ethoxy decane, ^ (triethoxy sulphate)-2-(diethoxy fluorenyl fluorenyl) ethane, tri-tert-butoxy sulphate, hexamethoxy dioxane (HM 〇 DS), hexaethoxy bismuth 160970.doc -13- 201237994 (HEODS), tetraisocyanato decane (TICS), di-t-butylaminocide (BTBAS), hydroquinone sesquioxane, Third butoxyacetamidine, T8-hydrogenated sulfoxane, octahydro POSSTM (polyhedral oligomeric sesquioxane) and 1,2-dimethoxy-1,1,2,2-four Methyl acetylene. Other examples of ruthenium-containing precursors include, but are not limited to, decane (SiHO, acetane, propane, hexane, cyclohexasilane, and alkyl decanes such as methyl decane and ethyl decane. Suitable oxidizing agents Examples include, but are not limited to, ozone (〇3), peroxides containing hydrogen peroxide (仏〇2), oxygen (〇2) 'water (h2〇), alcohols (such as methanol, ethanol, and isopropyl) Alcohol), Nitric Oxide (NO), Nitrogen Dioxide (N02), Nitrous Oxide (N2〇), Carbon Monoxide (c〇), and Carbon Dioxide (C〇2). In some embodiments, the distal plasma The generator can supply a reactive oxidant species. Solvents or other surfactants can be used to slow surface tension and increase the wetting of the reactants on the surface of the substrate. It can also increase the miscibility of the dielectric precursor with other reactants, especially Is when condensing in the liquid phase. Surfactant

活性劑可用於碳摻雜矽前驅物,此係因為含碳部分常使前 驅物更具疏水性。 ’且增加基板表面上之The active agent can be used for carbon doped ruthenium precursors because the carbonaceous portion often makes the precursor more hydrophobic. And increase the surface of the substrate

此係因為含碳部分常使前驅物更具疏水 160970.doc 表面活性劑可用以減緩表面張力, 反應物之潤濕。其亦可增加介電前顯 混合性,尤1县力汸知±、人、| -14- 201237994 性。 溶劑可為非極性或極性的及質子性或非質子性的。溶劑 可與介電前驅物之選擇匹配以改良於氧化劑中之可混合 性m容劑包.含烧烴及烯烴;極性非f子性溶劑包: 丙晒及醋酸;且極性質子性㈣包含賴及㈣化合物。 可引入之溶劑之實例包含醇類(例如,異丙醇、乙醇及 甲醇)或可與反應物混合之其他化合物(諸如,乙醚、羰 基、猜)。溶劑為可選的,且在某些實施例中可被單獨引 入或與氧化劑或另-處理氣體—起引人。溶劑之實例包含 (但不限於)甲醇、乙醇、異丙醇、丙嗣、二乙趟、乙猜、 一甲基甲醯胺及二甲亞砜、四氫呋喃(THF)、二氣曱烷、 己烷、苯、曱苯、異庚烷及二乙醚。在某些實施例中,可 藉由吹喷或正常遞送在其他反應物之前引入溶劑。在一些 實施例中,可藉由將溶劑吹喷至反應器中而引入溶劑以促 進水解,尤其是在前驅物與氧化劑具有低可混合性之狀況 下。 含氮化合物(例如,沈積氮化矽或氧氮化矽)之實例包含 含矽及含氮之前驅物(例如,三矽胺烷(TSA)或二矽胺烷 (DSA))、氮前驅物(例如,氨(顺3)、BTBAS或耕(N2H⑺。 接著在操作130中將晶圓曝露於處理氣體。反應器中之 條件使得含有矽之化合物與氧化劑或其他反應物(若存在) 反應。反應機制可涉及吸收反應、水解反應、冷凝反應、 聚合反應、產生冷凝之氣相產品之氣相反應、在反應之前 反應物中之一者或一者以上之冷凝,或此等反應之組合。 160970.doc -15- 201237994 如操作刚中所展示,由此將可流動薄膜沈積^圓表面 上。將晶圓曝露於處理氣體足以允許可流動薄膜填充間隙 之時間段。在某些實施例中,沈積方法形成具有良好流動 特性之軟的類似膠狀薄膜,提供連貫之填充。在本文中, 出於論述之㈣,亦可將沈積之薄膜描述為具有液體流特 性之凝膠、液體薄膜或可流動薄膜。薄膜機制可根據特定 反應變化;例如,可流動薄膜可形成於間隙中或形成於圍 繞間隙之場區上且流動至間隙中,或此等情形之某一組 合。 反應器中之處理條件使得反應產品可冷凝於反應器之表 面上而非晶圓表面上。在程序之沈積階段(步驟13〇及步驟 140)期間可或可不將晶圓曝露於電衆,且在某些實施例 中’在「暗」(亦即,非電漿條件)下將晶圓帶入至腔室 中。雖然未在流程圖上指示’但可自反應腔室連續地抽取 氣態副產品。 基板溫度可在約-20°C與約l〇〇°C之間。在一些實施中, 基板溫度可在約-20t:與約30°C之間,例如在_1〇。(:與1〇。〇 之間。在一些實施中,可經歷較高基板溫度,例如可使用 需要將基板加熱至約200°C至約400°C之化學氣相沈積方 法。腔室壓力可在約0托與約600托之間;在某些狀況下, 腔室壓力可在500毫托與200托之間,且在一些其他狀況 下,腔室壓力可在10托與100托之間。在反應溫度下,就 組份蒸氣壓力而言,處理氣體組份之分壓特徵可在於 Pp(反應物之分壓)及Pvp(反應物之蒸氣壓力)。實例為:前 160970.doc 201237994 驅物分壓比(pp/pvp)=0.01至1(例如,0.01至〇 5);氧化劑 分壓比(pp/pvp)=0.25至2(例如,〇.5至1);且溶劑分壓比 (Pp/Pvp)=(^1(例如,o.UD。反應物分壓範圍之實例 為:氧化劑:前驅物分壓比013。叫咖/1>1)心(^咖)=1至3〇(例 如,5至15),且溶劑:氧化劑分壓比(PpsQ|vent/ppQxidant)=() 至1 〇(例如,0.1至5)。熟習此項技術者將認識至可根據實 施使用在此等範圍之外之值。 在可流動薄膜已沈積於間隙中之後,在操作15〇中之一 或多個操作中稠化沈積態可流動薄膜。可完全地或部分地 桐化沈積之薄膜。後沈積稠化處理操作可涉及一或多個操 作,任何或全部此等操作亦可導奴化學轉化沈積態薄膜。 在其他實施例中,任何或全部稠化操作可在無化學轉化之 情況下稠化。在某些實施例中,可單獨執行一轉化操作, 或根本不執行轉化操作。若單獨執行,則可在稠化操作之 前或之後執行轉化操作。在一實例中,藉由曝露於反應性 電漿’接著進-步在惰性環境中藉由熱退火而稠化來轉化 且部分地稠化薄膜。 在一些實施例中,藉由曝露於含有(例如)氧、氮、氦、 氬及水中之一或多者之電漿來轉化薄臈。薄膜可在此操作 處得以稠化及在需要時化學轉化成二氧化矽、氮化矽或氧 氮化矽網路。在可流動薄膜沈積方法之一些實施例中,可 流動介電質薄膜在沈積態為二氧化矽(或其他所要之網路) 薄膜且在沈積後不需要轉化。 圖1提供可流動間隙填充製程之實例;本文中提供之系 160970.doc •17· 201237994 統及裝置經組態或可經組態以用於其他可流動間隙填充製 程。舉例而言,雖然圖1中之製程為單循環沈積/稠化製 程,但在其他實施例中,執行多循環製程。在其他實施例 中,形成介電質薄膜,諸如Si0C薄膜及si〇N薄膜。可根 據本發明使用之可流動間隙填充製程之實例包含以下各者 中所描述之彼等製程:美國專利第7,〇74,69〇號;第 7,524,735號;第7,582,555號及第7,629,227號;及美國專 利申請案第 1 1/834,581 號、第 12/334,726號 '第 12/566,〇85 號、第 12/964,110號、第 61/421,548號及第 61/421,562號, 此等專利及專利申請案以引用之方式併入本文中。亦可根 據任何適當可流動間隙填充方法來使用本文中所描述之系 統及裝置。此外,在某些實施例中,本文中所描述之系統 及裝置不限於本文中所描述之特定製程,且可用於積體電 路製造、平板顯示器製造等之其他製程中。 可流動間隙填充製程存在在其他半導體製程中極少面臨 之挑戰(若存在)^舉例而言,可流動間隙填充製程涉及在 處理腔至内液體冷凝之有意形成。本文中所描述之裝置及 系統最大化被處理之基板上之冷凝且最小化腔室中之其他 任何地方之冷凝。在某些實施例中,此情形涉及處理腔室 及設備中之活躍之熱管理。下文進一步詳細描述用於可流 動間隙填充反應器之熱管理的裝置及系統。 在"X 動間隙填充程序期間遇到的另一挑戰為管理處理 氣體以使得防止過早冷凝或沈積。舉例而言,可在間隙填 充操作期間混合可流動間隙填充反應物以產生用於間隙填 I60970.doc 201237994 充處理之恰當化學反應。過早混合反應物可導致系統内之 粒子形成,若粒子污染已處理晶圓或衝擊晶圓表面並導致 損壞’則粒子形成可成問題。若混合之反應物未保持於足 夠高溫’則混合之反應物可形成冷凝,冷凝可導致在反應 物遞送系統内部不合需要之沈積,或可導致小滴被猛烈地 排出至反應器中,其可導致對經處理之基板之損壞。下文 亦進一步詳細描述用於可流動間隙填充反應器中之反應物 管理及隔離之裝置及系統。 在可流動間隙填充程序期間遇到的又一挑戰為對晶圓上 之反應物流之控制。在可流動間隙填充期間,產生冷凝之 反應物混合物跨越被處理之基板且朝向基板之周界流動。 此情形可導致比晶圓内料之沈積大之朝向晶圓邊緣及在 晶圓斜面上之沈積。下文亦進一步詳細描述用於減輕該行 為(諸如’用於圍繞晶圓周邊引入吹掃氣體之組態)之裝置 及系統。 定義 …μ案中’將可互換地使用術語「基板」、「半導體 晶圓」、「晶圓」及「部分製造之積體電路」。熟習此項技 =者將理解,術語「部分製造之積體電路」可指代在石夕晶 圓上積體電路製造之許多階段中之任何者期間之石夕曰曰曰圓。 =Γ描述假定本發明實施於晶圓上。然而,本發明 _之外工形Γ大小及材料。除了半導 如印刷電路板:本發明之其他工件包含各種物品,諸 160970.doc -19· 201237994 藉由使半導體晶圓經過各種處理階段來製造積體電路。 雖然許多晶圓為圓形形狀,但晶圓亦可為其他形狀。在本 申凊案中,晶圓之「軸向」方向指代平行於圓形晶圓之中 〜轴之方向。非圓形晶圓之「軸向」方向將指代類似之方 向,亦即正交於晶圓之平坦面。「徑向」方向指 日曰 圓之半徑之方向’亦即實質上平行於晶圓之平坦面且與晶 圓之中心區域相交。 如本文中所使用,術語r HDP氧化物薄膜」指代使用高 密度電邮DP)化學氣相沈積(CVD)方法沈積之摻雜或不 掺雜之二氧化石夕薄膜。一般而言,高密度電衆為具有至少 、’’勺1 X10電子/立方厘米之電子密度之任何電漿,雖然此等 電漿範圍可在5x10】〇電子/立方厘米與1χ1〇1,電子/立方㈣ 之間。在某些實施例中,HDp_CVD反應特徵亦可在於在 100毫托或100毫托以下之範圍中之相對低的反應器壓力。 如本文中所使用’術語「可流動氧化物薄膜」為具有提 供間隙之連貫填充之流動特性之可流動摻雜或不摻雜之二 氧化物㈣。亦1將可流動氧化物薄膜描述為軟之類似膠 狀薄膜、具有液體流特性之凝膠、液體薄膜或可流動薄 膜。不同於HDP-CVD反冑’形成可流動薄膜涉及使含有 夕之刖驅物與氧化劑反應以在基板上形成經冷凝之可流動 薄膜。例如如以引用之方式併入本文中之美國專利 7,629,227中所描述’可藉由催化劑有助於薄膜之形成。本 文中所描述之可流動氧化物沈積方法不限於特定反應機 制’例如反應機制可涉及吸收反應 '水解反應、冷凝反 160970.doc -20· 201237994 應、聚合反應、產生冷凝之氣相產品之氣相反應、在反應 之前反應物中之一或多個者之冷凝,或此等反應之組合。 將基板曝露於處理氣體足以沈積可流動薄膜以填充或部分 地填充間隙中的至少一些之時間段。沈積方法通常形成具 有良好流動特性之軟之類似膠狀薄膜,提供連貫之填充。 在某些實施例中,可流動薄膜為非晶有機矽薄膜。 沈積態HDP氧化物薄膜為稠化固體且不可流動,而沈積 態可流動氧化物薄膜未完全稠化。在沈積條件下,至少對 於某一時間,可流動薄膜一般可流動。取決於特定之方法 及化學反應,一旦自沈積條件移除晶圓,則可流動氧化物 薄膜可為軟之(例如,可刮掉)或硬之。如上文所描述,沈 積態可流動薄膜可得以稠化及/或化學轉化。術語「可流 動氧化物薄膜」可在本文中用以指代已經受全部或部分地 凝固可流動氧化物薄膜及沈積態可流動氧化物薄膜之稠化 或固化處理之可流動氧化物薄膜。 可流動間隙填充之工具水平整合 在本文中提供包含一或多個可流動間隙填充模組之半導 體製造工具。圖2A描繪實例工具組態200,其中工具包含 兩個高密度電漿化學氣相沈積(HDP-CVD)模組210、可流 動間隙填充模組220、PEC 230、WTS(晶圓轉移系統)240 及真空預抽室250,在一些實施例中包含晶圓冷卻台。 HDP-CVD 模組 210 可(例如)為 Novellus SPEED MAX 模組。 可流動間隙填充模組220可(例如)為Novellus Integra模組。 PEC模組230可(例如)為Novellus基座靜電卡盤(ESC)蓋罩模 160970.doc •21 - 201237994 組。WTS模組240可(例如)為Novellus WTS Max模組。 一些工具水平實施可以用於多個處理步驟之可流動間隙 填充模組為特徵。舉例而言,可流動間隙填充模組亦可用 以執行原地預處理,接著執行可流動氧化物沈積製程。此 情形可允許以多個可流動間隙填充模組(例如,四個此等 模組)為特徵之工具。 圖2B中所描繪之替代實例工具組態260包含晶圓轉移系 統295及真空預抽室290、遠端電漿固化模組270,及可流 動間隙填充模組280。亦可包含額外遠端電漿固化模組270 及可流動間隙填充模組280以增加工具之產量。 可用於預處理或後處理之其他模組包含Novellus SPEED 或SPEED Max、Novellus INOVA反應性預清潔模組 (RPM)、Novellus Altus ExtremeFill(EFx)模組、Novellus Vector Extreme預處理模組(用於電聚、紫外線或紅外線預 處理)及Novellus SOLA(用於UV預處理),及Novellus Vector或Vector Extreme。此等模組可附接至與可流動間隙 填充模組相同之基幹。 可流動間隙填充模組概述 用於執行可流動間隙填充之處理模組可包含許多組件、 子組件、系統及子系統。以下段落論述圖3中所展示的可 流動間隙填充處理模組300之實施例之主要組件及系統中 —— itb 〇 晶圓上可流動薄膜之沈積發生於反應器3 10内部。反應 器310亦可稱為反應腔室、處理腔室或腔室。 160970.doc -22- 201237994 將在沈積程序期間使用之許多或全部氣體及/或液體自 氣體遞送系統320供應至反應器310。雖然此系統在本申請 案中被稱為「氣體遞送系統」,但應理解,除氣體之外或 代替氣體’氣體遞送系統可供應或處理液體、氣溶膠或蒸 氣。氣體遞送系統320可包含處理反應物及化學源33〇或此 等源之連接點、用於處理反應物及化學遞送之流量控制硬 體340(諸如,閥、脫氣器、汽化器、加熱器等),及用於控 制流量控制硬體340之氣體遞送控制器350 » 在本申請案中’除非以其他方式註明,否則術語「反應 物」將用以指代氣體、液體或引入至用於晶圓處理之反應 器中之其他可流動材料。在此情況中,反應物亦可包含未 以化學方法參與晶圓處理之惰性運載氣體。雖然惰性運載 氣體未以直接化學方式參與晶圓處理反應,但惰性運載氣 體之存在可在晶圓處理反應中影響反應物之分壓,其可影 響反應物之冷凝行為。舉例而言,在保持其他氣體流動且 保持反應器壓力怪定之同時增加惰性運載氣體流將導致反 應物流之減少之分壓’其將降低反應物之反應速率。 在遞送至反應器310之後,可藉由稱為喷淋頭之歧管跨 越晶圓之表面區域分配反應物。喷淋頭36〇以所要量引入 反應物,將反應物引入於所要位置中,且在所要壓力下引 入反應物以用於處理。實質上位於晶圓與喷淋頭之間的空 間之容積在本文中被稱為「反應區域」。 在引入至反應器301之後,反應物可藉由形成對反應物 流之機械障壁之裙緣之使用而被限制於反應區域。 160970.doc 23· 201237994 由卡盤轴向地支撐晶圓。卡盤亦可包含在處理期間防止 晶圓橫向移動之技術。可由基座370來支撐卡盤。基座37〇 可經組態以沿著晶圓之軸向方向移動卡盤及所支揮之晶圓 以用於晶圓裝載及却載且用於使用基座驅動單元3 8〇來進 行晶圓處理。該卡盤可在處理期間由制冷器系統加以冷 卻。 卡盤及基座370亦可與幫助保護卡盤及基座3 7〇免受不希 望有的處理之絕緣環介接。 圖4A至圖4E描繪突出不同處理操作之可流動間隙填充 模組反應器之簡化圖。在圖4A至圖4E中之一者中之特定 結構可未在所有圖中用編號標註以減少視覺混亂。希望讀 者假定將在圖中參考用特定編號標註之組件,展示相同組 件之圖式使用相同之編號。舉例而言,圖4中之反應器4〇〇 在圖4B至圖4E之論述中亦將被稱為反應器4〇〇,儘管可能 未在彼等圖中標註。 出於說明之目的’圖4B至圖4D將在反應器400之反應區 域中的下文論述之〇反應物442及p反應物444及沈積氣體混 合物446描續·為具有良好界定邊界之羽流或雲,此等描繪 僅意欲表不此等氣體之引入或存在,且不應解釋為描述在 反應區域中此等氣體之實際物理行為。舉例而言,雖然將 沈*積氣體混合物446描繪為僅佔據反應區域之部分且描繪 為翻騰出而進入反應器400之内部容積之僅一部分中,但 沈積氣體混合物446可實質上遍及反應器4〇〇之反應區域及 内^谷積中之全部實質上均勻地擴散,或可遍及反應器 160970.doc -24- 201237994 400之反應區域及内部容積但以不同密度擴散。 圖4A說明可流動間隙填充模組反應器400之簡化實施 例。腔室外殼402、頂板404、裙緣406、喷淋頭408、基座 柱424及密封件426提供密封容積以用於可流動間隙填充處 理。由卡盤412及絕緣環414支撐晶圓410。卡盤412包含RF 電極416及電阻加熱元件418。由包含壓板422及基座柱424 之基座420支撐卡盤412及絕緣環414。基座柱424穿過密封 件426以與基座驅動件(未圖示)介接。基座柱424包含壓板 冷卻劑管線428及基座吹掃管線430。喷淋頭408包含分別 由〇氣體管線436及P氣體管線43 8饋入之Ο充氣部432及P充 氣部434。可在分區440中在到達喷淋頭408之前加熱Ο氣體 管線43 6及P氣體管線43 8。420,及420指代基座,但處於降 低(420)及升高(420,)之位置中。 可流動間隙填充處理模組3 〇〇可包含允許可流動間隙填 充處理模組300在安裝之後被調平之調平特徵。可流動間 隙填充製程涉及液體流,且可因此對重力格外敏感。舉例 而言,若可流動間隙填充處理模組3〇〇向一側微小傾斜, 則沈積之可流動薄媒將傾向於向晶圓平面《「下坡」側徙 動。此情形導致在下坡側上較大之沈積及在「上坡」側上 較小之沈積。4 了防止此可流動薄膜行為,可流動間隙填 充處理模組300可相對於地球引力而調平。 /在總叙基座水平面處包含額相平特徵以便進一步 :整:圓千面。舉例而言,可在安裝模組時執行初始調 者時間之流逝,可歸因於(例如)熱膨服、組件應 160970.doc -25- 201237994 力、總成差異而在晶圓平面之水平度上存在漂移。可藉由 不需要重新調整整個模組之基底水平面調平特徵來解決自 晶圓平面水平度之此等偏移。 氣體遞送系統 模組配備有或連接至氣體遞送纟、統32()以用於將反應物 遞送至反應器310。氣體遞送系統32G可用—或多種氧化劑 (包含水、氧氣、臭氧、過氧化物、醇類等)來供應反應器 31〇,此等氧化劑可單獨或與惰性運載氣體混合來供應。 在本文中,指定用於氧化劑處理之組件用「〇」前綴來指 示0 在特定實施例中’ 0反應物包含氦(或其他惰性氣體)、 氧氣、水、氦水及乙醇。氣體遞送系統320亦可用一或多 種介電前驅物(例如,三乙氧基矽烷(TES))供應反應器 310,此等介電前驅物可單獨或與惰性運載氣體混合來供 應。在本文中,指定用於前驅物處理之組件用「p」前辍 來指示。在特定實施例中,P反應物包含TES、氫氣、氦 及氮氣。P反應物亦可包含催化劑,例如含有齒素之矽前 驅物。 在一些實施例中,在化學性質上為氧化劑之反應物可用 P反應物而非用Ο反應物來遞送;在此等狀況下,具有p前 綴之組件及系統亦將處理此特定〇反應物及p反應物。舉例 而言,可藉由P反應物遞送路徑來遞送0反應物(諸如,乙 醇)。藉由P反應物遞送路徑遞送乙醇亦可促進在將反應物 引入至反應器310中之反應區域之後即匹配其他〇反應物與 160970.doc -26- 201237994 p反應物之間的流動狀態。在某些實施例中,氣體遞送系 統亦經組態以遞送一或多種清潔試劑(例如,nf3)以用於 預沈積及後沈積反應器清潔。在某些實施例中,氣體遞送 系統額外地經組態以遞送一或多種後沈積反應物。舉例而 言,對於後沈積電漿處理’可遞送氬、氮氣、氧氣或其他 氣體。 每種反應物可藉由直接連接至設施源(例如,設施水或 氣氣源)或藉由將含有反應物之安额(連接至氣體遞送系统 320而供應至氣體遞送系統320。氣體遞送系統320可包含 用於連接至此等反應物源之配件及硬體340。 可藉由單獨氣體管線(諸如,0氣體管線436及p氣體管線 438)將每一反應物投送至反應器310。每一反應物氣體管 線可連接至一或多個反應物源3 3 0 ’且每一反應物源3 3 〇可 在引入至其各別氣體管線中之前藉由脫氣器、過滤器、質 量流量控制器、汽化器、壓力變換器、壓力調節器及/或 溫度傳感器。一些反應物氣體管線可包含額外組件,而一 些反應物氣體管線可包含此等組件之子集或不包含此等組 件。舉例而言,NF3氣體管線可使用質量流量控制器,而 氬氣體管線可使用流量限制器。 用於反應物之安瓿可用氣體(諸如,氦)來加壓以迫使反 應物自安瓿至氣體遞送系統320中。藉由將氣體引入至安 瓿中,安瓿頂部空間被加遷且移置含有於安瓿内之反應 物。接著將反應物驅動至氣體遞送系統管線436或438中。 氣體遞送系統320可經設計以最小化處理反應物及化學 160970.doc •27- 201237994 源3 30與反應器31 〇之間的氣體運輸容積^舉例而言,可移 除不必要之彎曲、配件或其他容積。 類似地,氣體遞送系統32〇可經設計以最小化反應物藉 由氣體遞送系統320至反應器310之運輸時間。舉例而言, 可為氣體管線提供氣體支路或轉向,其允許氣體流速斜升 至穿過支路之所要流動速度^在氣體已到達所要流動速度 時’可將氣體自支路切換至反應器饋人管線。以此方式, 可以比在流動斜升週期期間將要將氣體引入至反應器3 1〇 之狀況下更接近於所要流速之流速將氣體引入至反應器 3 10。此情形可幫助確保在所要時間間隔内將所要氣體量 引入至反應器320中。 氣體遞送系統320可在流量控制硬體34〇中利用高精確性/ 低響應時間閥或其他流量控制器件。舉例而言,ρ氣體管 線438可利用能夠在打開由氣體遞送控制器35〇執行之閥之 命令後之0.05 s内到達氣體流速之90%的閥。 氣體遞送系統320可包含用於在藉由反應物氣體管線傳 輸至反應器310之前加熱反應物之一或多個預加熱器件。 用於反應物氣體管線之一或多個預加熱器件可位於靠近用 於彼反應物氣體管線之汽化器處或與該汽化器並置。預加 熱器件可經組態以在汽化之後且在氣體離開氣體遞送系統 320並被輸送至反應器310之前將汽化之反應物加熱至所要 溫度水平。預加熱器件可經組態以將反應物氣體加熱至 50°C與250°C之間的溫度(例如,50。(:至150°C )。舉例而 言,乙醇反應物可在汽化之後且在引入至通向反應器31〇 I60970.doc -28- 201237994 之氣體管線之前預加熱至150°c。 在一些貫施例中’處理一或多種反應物中之每種反應物 之組件之潤濕表面可預加熱至在彼反應物之遞送系統壓力 處高於彼反應物之露點至少丨〇且低於彼反應物之分解溫 度至少10 C之溫度。在其他實施例中,處理一或多種反應 物中之每一反應物之組件之潤濕表面可預加熱至在彼反應 物之遞送系統壓力處高於彼反應物之露點至少20。匸且低於 彼反應物之分解溫度至少2(rc之溫度。若若干反應物混合 在一起且作為混合物預加熱,則可使用混合物之露點及壓 力來應用以上規則。 除了預加熱器件之外,或代替預加熱器件,反應物氣體 S線亦可包含熱加熱失套以在自氣體遞送系統運輸至反應 器310期間將加熱提供至反應物氣體。舉例而言,如由圖4 中之。P刀44G削日不’可環繞氣體遞送系統與反應器3 i〇之 間的曝露氣體管線包裹電阻加熱毯或套筒。或者,可將氣 體管線投送於外部套筒心藉由外部套筒,經加熱之流體 (諸如,水或油)得以抽取或可藉由感應加熱線圈得以投 送在某些實施例中,加熱夹套經組態以將氣體管線之潤 濕内部表面中之—些或實質上全部維持於相對於所上文所 描迷之反應物之露點及分解溫度而判定之溫度處。另外, 一或多個氣體管線可❹單獨加熱爽套而個別地加熱至不 遞送系統。圖5A說明用於 。所說明之模組可經組態 可採用模組化方法來提供氣體 氣體遞送系統中之六個可能模組 160970.doc -29. 201237994 以供應不同類型之反應物或其他試劑,且連接至歧管以用 於在需要時供應〇反應物及P反應物。適合於供反應器(諸 如,本文中所描述之彼等反應器)使用之模組化氣體遞送 系統之一些特定實施部分地用圖表示於圖5B至圖5M中。 應認識到,亦可使用非模組方法構造類似之流體投送路線 來提供類似之處理功能性。 圖5A說明六個可能氣體供應模組a至ρ ^每一模組可包 含可經組態以用於連接至氣體歧管之歧管出口 M<( 一些模 組亦可包含可經組態以用於連接至轉向管線之轉向出口 D。在一些半導體製造處理步驟中,反應物可以流速之最 小斜升被遞送至喷淋頭。在此等步驟中,來自特定氣體源 之流可首先被指引至轉向管線直至流速穩定於實質上穩態 條件。一旦到達穩態流條件,則可關閉轉向管線A之閥且 可打開歧管出口之閥,使穩態流分流至通向喷淋頭之氣體 歧管。若干轉向管線可接合在一起以形成轉向歧管,且可 存在針對Ο反應物及P反應物之單獨轉向歧管。轉向管線/歧 管了通至與反應器分離之容積中。每一模組亦可經組態以 藉由預加熱用以將反應物遞送至Μ出口及(在一些模組中)D 出口之各種組件來預加熱所供應之反應物。此預加熱可使 用電阻加熱毯、熱交換器或其他加熱技術完成。可預加熱 之組件位於圖5Α至圖5Μ之畫有交又影線之區域内。預加 熱組件可加熱至5(TC與250〇c之間的溫度(例如,5〇{>c至 150C),且對於每一模組,可使用不同預加熱溫度。 模組A可經組態以將氣態反應物(例如,〇2、h2、、 160970.doc ·30· 201237994 NF3、Ar、He等)供應至喷淋頭。模組A可包含模組A氣體 源501及模組A質量流量控制器5〇2。模組a氣體源5〇1可經 由氣體管線及同軸入口閥而連接至模組A質量流量控制器 501。第二氣體管線及同軸出口閥可將模組a質量流量控制 器501連接至歧管出口μ。模組A不包含轉向出口D,且可 用以遞送非時序關鍵之氣體。在模組A質量流量控制器502 下游之模組A之組件可視情況在需要時預加熱。 模組B類似於模組A ’但包含轉向功能性。模組b可包含 模組B氣體源5 03及模組B質量流量控制器5 04。模組B氣體 源503可藉由氣體管線及同軸入口閥而連接至模組b質量流 量控制器504。第二氣體管線及同軸出口閥可將模組b質量 流量控制器504連接至歧管出口 μ。第三氣體管線及隨附 同軸出口閥亦可將模組Β質量流量控制器與轉向出口 d流 體連接。模組Β不包含轉向出口D,且可因此用以遞送為 時序關鍵之氣體。模組Β未用於圖5Β至圖5L中所展示之實 例氣體遞送系統中之任一者中,但可用於在由模組Α遞送 之氣體為時序關鍵之情況下代替特定模組A。模組B質量 流量控制器504下游的模組B之組件可視情況得以預加熱。 模組C可經組態以藉由運載氣體供應經汽化之反應物。 模組C可包含模組c液體源505及模組C氣體源506。模組C 液體源505可藉由流體管線及同軸閥而流體連接至模組c液 體流量計507。模組C液體源505可(例如)含有水、溶劑或 另一液體反應物❶模組C液體流量計507可藉由另一流體管 線及同軸閥而與模組C汽化器509流體連接。模組C氣體源 160970.doc -31- 201237994 5 0 6可藉由氣體管線及同轴閥而流體連接至模組匸質量流量 控制器508 »模組C氣體源506可含有(例如)Ar4He。模組C 質量流量控制器5 0 8亦可藉由氣體管線而流體連接至模組c 汽化器。自模組C液體源505流動之液體可在模組〇汽化器 509内汽化且夾帶於來自模組c氣體源5〇6之氣體流中。模 組C汽化器509可以與模組B質量流量控制器5〇4與歧管出 口Μ及轉向出口D流體連接極為相同之方式與歧管出口河 及轉向出口 D流體連接。模組C汽化器5〇9及模組c之下游 組件可視情況在需要時預加熱。 若可選預加熱用於模組C,則模組C液體源505及模組c 液體流量計507可不被預加熱以允許所供應之液體之更準 確汁量。來自模組C氣體源506之運載氣體之使用不僅有助 於將汽化之液體反應物輸送至喷淋頭,又亦有助於藉由蒸 發液體反應物中之一些來汽化液體反應物。此情形可允許 使用具有較高沸點之液體反應物。可顯著減少模組c汽化 器509下游之氣體流之器件之缺失可相應地導致在模組c汽 化器509下游未發現顯著壓力下降,其可減少冷凝之可 能。轉向功能性之使用可允許模組c將汽化之液體反應物 遞送至喷淋頭而無啟動延遲或不穩定性。 模組D可經組態以供應汽化之反應物而不使用運載氣 體。模組D可包含與模組D液體流量控制器511流體連接之 模組D液體源510。模組D液體流量控制器511又可與模組d 化器512流體連接。模組〇汽化器512可以與模組b質量 流量控制器504與歧管出口 M及轉向出口 D流體連接極為相 160970.doc -32· 201237994 同之方式與歧管出口Μ及轉向出口D流體連接。模組D液體 源5 1 0可(例如)含有溶劑、前驅物或其他液體。與模組匸一 樣,模組D汽化器512及模組D之下游組件可視情況在需要 時預加熱。 與模組C—樣,若可選預加熱用於模組D,則模組D液體 源5 10及模組D液體流量控制器511可不被預加熱以允許所 供應之液體之更準確計量。模組D亦可允許所供應之液體 蒸氣之更未稀釋之遞送’此係因為不存在運載氣體來稀釋 汽化之液體。可顯著減少模組D汽化器512下游之氣體流之 器件之缺失可相應地導致在模組D汽化器5 12下游未發現顯 著壓力下降’其可減少冷凝之可能。轉向功能性之使用可 允許模組D將汽化之液體反應物遞送至喷淋頭而無啟動延 遲或不穩定性。 類似於模組D之模組E可經組態以供應汽化之反應物而 不使用運載氣體。模組E可包含藉由流體管線及同轴閥而 與模組E汽化器514流體連接之模組E液體源513。模組E汽 化器5 14可藉由氣體管線而流體連接至模組e質量流量計 515。模組E質量流量計515接著可以與模組B質量流量控制 器504與歧管出口 Μ及轉向出口 D流體連接極為相同之方式 與歧管出口 Μ及轉向出口 D流體連接。 若模組Ε使用可選預加熱,則模組Ε汽化器514及模組Ε 質量流量計515均可預加熱,但模組Ε液體供應513可不預 加熱。此情形允許遞送汽化之液體而不由運載氣體稀釋且 允許在已發生汽化及預加熱之後計量蒸氣。 160970.doc -33- 201237994 模組F可經組態以藉由運載氣體供應一種或兩種汽化之 液體反應物。模組F可包含模組F第一液體源516、模組F第 二液體源5 18及模組F氣體源5 17。模組F第一液體源5 16可 經由流體管線及同軸閥而流體連接至模組F第一液體流量 控制器5 19。模組F第一液體流量控制器5 19可經由流體管 線及同轴閥而流體連接至模組F蒸發器522。類似地,模組 F第一液體源518可經由流體管線及同轴閥而流體連接至模 組F第二液體流量控制器521。模組F第二液體流量控制器 521亦可經由流體管線及同軸閥而流體連接至模組ρ蒸發器 522。模組F氣體源5 1 7可經由氣體管線及同軸閥而流體連 接至模組F質量流量控制器520。模組F質量流量控制器520 亦可經由氣體管線而與模組F蒸發器522流體連接。模組F 蒸發器522可以與模組B質量流量控制器504與歧管出口 M 及轉向出口D流體連接極為相同之方式與歧管出σΜ及轉 向出口 D流體連接。 模組F可視情況經組態以預加熱模組F蒸發器5 2 2及下游 組件。模組F第一液體源516及模組F第二液體源518可各自 含有不同液體。舉例而言,模組F第一液體源516可含有第 —前驅物,且模組F第二液體源可含有不同於第一前驅物 之第二前驅物。 圖5B描繪以用於將〇反應物提供於〇分區527内之模組及 用於將P反應物提供於P分區528内之模組為特徵之氣體遞 送系統的一個實施之圖。在0分區527中’模組C 539在模 組C液體源505中含有液體h2〇且在模組c氣體源5〇6中含有 160970.doc •34- 201237994 氣態He,模組A(0分區)530在模組A氣體源501内含有氣態 He,模組A 531在模組A氣體源501内含有氣態〇2,且模組 A 532在模組A氣體源501内含有氣態NF3。在P分區528中, 模組A 533在模組A氣體源501内含有氣態H2,模組A 534在 模組A氣體源501内含有氣態n2,模組A(P分區)535在模組 A氣體源501内含有氣態He,模組E 536在模組E液體源5 1 3 内含有液體溶劑’模組E 537在模組E液體源5 13内含有液 體第一前驅物’且模組E 538在模組E液體源513内含有液 體第二前驅物。 〇轉向管線523及P轉向管線524可分別與〇分區527及P分 區528中之模組的轉向出口連接。 來自模組C 529、模組A 530、模組A 531及模組A 532之 歧管出口可連接至共同〇歧管,共同〇歧管藉由閥連接至 雙流喷淋頭526。類似地,來自模組A 533、模組A 534、 模組A 535、模組E 536、模組E 537及模組E 538之歧管出 口可類似地連接至共同P歧管,共同p歧管經由閥連接至雙 流喷淋頭526。遞送至雙流喷淋頭526之反應物可在轉移至 雙流喷淋頭526期間在分區525中進一步加熱。分區525内 之組件可加熱至與用於預加熱之溫度不同的溫度。舉例而 言’分區525内之組件可加熱至高達150。(:之溫度,但典型 預加熱溫度可為約1 〇〇。〇。 雖然僅展示自〇分區527通向雙流喷淋頭526之一個管線 且僅展示自P分區528通向雙流喷淋頭526之一個管線,但 在一些實施中,可存在自一或兩個此等分區伸展至雙流喷 160970.doc •35· 201237994 淋頭526之多個此等管線。舉例而言,若兩個前驅物用於p 分區528中,此兩個前驅物各自具有針對在不分解之狀況 下汽化之不同溫度或壓力要求,則可能需要防止混合兩種 前驅物直至將其引入至雙流喷淋頭526中為止。前驅物可 (例如)使用通向雙流喷淋頭526之實體分離之氣體管線而保 持分離。對於化學侵蝕性前驅物種類,選擇用於此等氣體 管線及用於氣體遞送系統之對應模組中的各種組件之材料 可經選擇以最小化前驅物對組件之腐蝕。 圖5C描繪氣體遞送系統實施,其报大程度上類似於圖 5B中所展示之氣體遞送系統,但其中模組c 539、模组A 540及模組A 541分別替換模組C 529、模組A 530及模組A 535。模組C 539之模組C氣體源506 '模組A 540之模組八氣 體源501及模組A 541之模組A氣體源501均含有Ar而非 He。 圖5D描繪氣體遞送系統實施,其很大程度上類似於圖 5C中所展示之氣體遞送系統,但其中模組E 536用模組D 542來替換。模組D 542之模組D液體源5 10可含有溶劑。 圖5E描繪氣體遞送系統實施,其亦很大程度上類似於圖 5C中所展示之氣體遞送系統,但其中模組E 536用模組C 543來替換。模組C 543之模組C液體源505及模組C氣體源 5 06可分別含有溶劑及Ar。 圖5F描繪以用於將〇反應物提供於〇分區527内之模組及 用於將P反應物提供於P分區528内之模組為特徵的氣體遞 送系統之另一實施之圖。在Ο分區527中,模組C 539在模 160970.doc •36· 201237994 組C液體源505中含有液體HzO且在模組C氣體源506中含有 氣態He,模組E 544在模組E液體源513中含有溶劑,模組 A(0分區)540在模組A氣體源501内含有氣態Ar,模組A 531 在模組A氣體源501内含有氣態〇2 ’且模組a 532在模組A 氣體源501内含有氣態NF3。在P分區528中,模組A 533在 模組A氣體源501内含有氣態H2,模組A 534在模組A氣體 源501内含有氣態N2,模組A(P分區)541在模組A氣體源501 内含有氣態Ar,模組D 545在模組D液體源510内含有液體 第一前驅物,且模組E 538在模組E液體源5 13内含有液體 第二前驅物。 圖5 G描繪氣體遞送系統實施,其很大程度上類似於圖 5 C中所展示之彼氣體遞送系統實施,但其中模組e 5 3 7用 模組D 546來替換。模組D 546可在模組D液體源510内含有 液體第一前驅物。 圖5H亦描繪氣體遞送系統實施,其很大程度上類似於圖 5 C中所展示之彼氣體遞送系統實施,但其中模組e 5 3 7用 模組C 547來替換。模組c 547可分別在模組c液體源5〇6及 模組C氣體源505内含有液體第一前驅物及Ar氣體。 圖51描繪氣體遞送系統實施,其很大程度上類似於圖5F 中所展示之彼氣體遞送系統實施,但其中模組D 545及模 組E 538用單一模組F 548來替換。模組F 548在模組F第一 液體源516中含有第一前驅物,在模組F第二液體源5丨8中 含有第二前驅物,且在模組F氣體源517中含有Ar。This is because the carbonaceous portion often makes the precursor more hydrophobic. 160970.doc Surfactants can be used to slow the surface tension and wet the reactants. It can also increase the apparent mixing before the dielectric, especially the 1 county force knows ±, people, | -14- 201237994. The solvent can be non-polar or polar and protic or aprotic. The solvent can be matched with the choice of dielectric precursor to improve the miscibility of the oxidant. The package contains a hydrocarbon and olefin; the polar non-f solvent package: propylene and acetic acid; and the polar proton (4) contains Relying on (iv) compounds. Examples of the solvent which can be introduced include alcohols (e.g., isopropanol, ethanol, and methanol) or other compounds (e.g., diethyl ether, carbonyl, guess) which can be mixed with the reactants. Solvents are optional and, in certain embodiments, may be introduced separately or in conjunction with an oxidizing agent or another process gas. Examples of the solvent include, but are not limited to, methanol, ethanol, isopropanol, propionium, diethyl hydrazine, ethyl bromide, monomethyl methamine and dimethyl sulfoxide, tetrahydrofuran (THF), dioxane, and Alkanes, benzene, toluene, isoheptane and diethyl ether. In certain embodiments, the solvent can be introduced prior to the other reactants by blowing or normal delivery. In some embodiments, the solvent can be introduced to promote hydrolysis by blowing a solvent into the reactor, especially if the precursor has low miscibility with the oxidant. Examples of nitrogen-containing compounds (for example, deposited tantalum nitride or hafnium oxynitride) include niobium-containing and nitrogen-containing precursors (for example, trisalmine (TSA) or dioxane (DSA)), nitrogen precursors. (eg, ammonia (cis 3), BTBAS, or tillage (N2H (7). The wafer is then exposed to the process gas in operation 130. The conditions in the reactor are such that the ruthenium containing compound reacts with the oxidant or other reactants, if present. The reaction mechanism may involve an absorption reaction, a hydrolysis reaction, a condensation reaction, a polymerization reaction, a gas phase reaction of a gas phase product which produces condensation, condensation of one or more of the reactants before the reaction, or a combination of such reactions. 160970.doc -15- 201237994 As shown in the operation, a flowable film is thus deposited on the round surface. The wafer is exposed to a period of time during which the process gas is sufficient to allow the flowable film to fill the gap. In some embodiments The deposition method forms a soft, gel-like film with good flow characteristics to provide a coherent filling. In this paper, for the purposes of discussion (4), the deposited film can also be described as having liquid flow characteristics. a glue, a liquid film or a flowable film. The film mechanism can vary depending on the particular reaction; for example, a flowable film can be formed in the gap or formed in the field surrounding the gap and flowing into the gap, or a combination of such conditions The processing conditions in the reactor allow the reaction product to condense on the surface of the reactor rather than on the surface of the wafer. During the deposition phase of the process (steps 13 and 140), the wafer may or may not be exposed to the electricity. And in some embodiments, the wafer is brought into the chamber under "dark" (ie, non-plasma conditions). Although not indicated on the flow chart, but the gaseous state can be continuously extracted from the reaction chamber. Byproducts The substrate temperature can be between about -20 ° C and about 10 ° C. In some implementations, the substrate temperature can be between about -20 t: and about 30 ° C, such as at _1 〇 (: Between 1 and 〇. In some implementations, a higher substrate temperature may be experienced, for example, a chemical vapor deposition method may be used that requires heating the substrate to a temperature of from about 200 ° C to about 400 ° C. The chamber pressure may be about Between 0 Torr and approximately 600 Torr; in some cases, cavity The pressure can be between 500 mTorr and 200 Torr, and in some other cases, the chamber pressure can be between 10 Torr and 100 Torr. At the reaction temperature, in terms of component vapor pressure, the gas component is treated. The partial pressure characteristics may be Pp (partial pressure of reactants) and Pvp (vapor pressure of reactants). Examples are: former 160970.doc 201237994 Drive partial pressure ratio (pp/pvp) = 0.01 to 1 (for example, 0.01 to 〇5); oxidant partial pressure ratio (pp/pvp)=0.25 to 2 (for example, 〇.5 to 1); and solvent partial pressure ratio (Pp/Pvp)=(^1 (for example, o.UD. reactant) Examples of the partial pressure range are: oxidant: precursor partial pressure ratio 013. Called coffee / 1 > 1) heart (^ coffee) = 1 to 3 〇 (for example, 5 to 15), and solvent: oxidant partial pressure ratio (PpsQ |vent/ppQxidant)=() to 1 〇 (for example, 0.1 to 5). Those skilled in the art will recognize that values outside of these ranges may be used in accordance with the application. After the flowable film has been deposited in the gap, the deposited flowable film is thickened in one or more operations in operation 15 . The deposited film may be completely or partially eutectic. The post-deposition densification treatment operation may involve one or more operations, and any or all of these operations may also involve chemical conversion of the as-deposited film. In other embodiments, any or all of the thickening operation can be thickened without chemical conversion. In some embodiments, a conversion operation may be performed alone, or no conversion operation may be performed at all. If performed separately, the conversion operation can be performed before or after the thickening operation. In one example, the film is partially and thickened by exposure to a reactive plasma and then thickened by thermal annealing in an inert environment. In some embodiments, the thin mash is converted by exposure to a plasma containing one or more of, for example, oxygen, nitrogen, helium, argon, and water. The film can be thickened at this point of operation and chemically converted to a ceria, tantalum nitride or hafnium oxynitride network as needed. In some embodiments of the flowable thin film deposition method, the flowable dielectric film is in the deposited state as a thin film of hafnium oxide (or other desired network) and does not require conversion after deposition. Figure 1 provides an example of a flowable gap fill process; the system provided herein is configured and can be configured for use with other flowable gap fill processes. For example, although the process of Figure 1 is a single cycle deposition/thickening process, in other embodiments, a multi-cycle process is performed. In other embodiments, a dielectric film such as a SiO film and a Si 〇 N film is formed. Examples of flowable gap-filling processes that can be used in accordance with the present invention include those described in U.S. Patent Nos. 7, 〇74,69, pp; 7,524,735; 7,582,555 and 7,629,227; U.S. Patent Application Serial Nos. 1 1/834,581, 12/334,726, '12/566, 〇85, 12/964,110, 61/421,548, and 61/421,562, Patents and patent applications are incorporated herein by reference. The systems and devices described herein can also be used in accordance with any suitable flowable gap filling method. Moreover, in some embodiments, the systems and devices described herein are not limited to the particular processes described herein, and can be used in other processes such as integrated circuit fabrication, flat panel display manufacturing, and the like. The flowable gap fill process presents a challenge (if any) that is rarely encountered in other semiconductor processes. For example, the flowable gap fill process involves the intentional formation of liquid condensation within the process chamber. The devices and systems described herein maximize condensation on the substrate being processed and minimize condensation anywhere else in the chamber. In some embodiments, this situation involves active thermal management in the processing chamber and equipment. Apparatus and systems for thermal management of a flowable gap-fill reactor are described in further detail below. Another challenge encountered during the "X dynamic gap fill procedure is to manage the process gas to prevent premature condensation or deposition. For example, the flowable gap fill reactant can be mixed during the gap fill operation to produce the appropriate chemical reaction for the gap fill I60970.doc 201237994 charge treatment. Premature mixing of the reactants can result in the formation of particles within the system, which can be problematic if the particles contaminate the treated wafer or impact the wafer surface and cause damage. If the mixed reactants are not maintained at a sufficiently high temperature, the mixed reactants may form condensation which may result in undesirable deposition inside the reactant delivery system or may cause the droplets to be violently discharged into the reactor, which may Causes damage to the treated substrate. Apparatus and systems for reactant management and isolation in a flowable gap-fill reactor are also described in further detail below. A further challenge encountered during the flowable gap fill procedure is the control of the reactant stream on the wafer. During flowable gap filling, the condensed reactant mixture flows across the substrate being processed and toward the perimeter of the substrate. This situation can result in deposits that are larger toward the edge of the wafer and on the slope of the wafer than deposition of the wafer. Apparatus and systems for mitigating such behavior, such as 'configuration for introducing purge gas around the periphery of the wafer,' are also described in further detail below. In the definition of ...μ, the terms "substrate", "semiconductor wafer", "wafer" and "partially manufactured integrated circuit" will be used interchangeably. Those skilled in the art will understand that the term "partially manufactured integrated circuit" may refer to a stone circle during any of a number of stages in the fabrication of an integrated circuit on a Shi Xijing circle. = Γ Description It is assumed that the invention is implemented on a wafer. However, the present invention has a size and material. In addition to semiconductors such as printed circuit boards: other workpieces of the present invention contain various articles, 160970.doc -19 201237994. The integrated circuit is fabricated by subjecting the semiconductor wafer to various processing stages. Although many wafers are circular in shape, the wafers can have other shapes. In this application, the "axial" direction of the wafer refers to the direction parallel to the ~ axis in the circular wafer. The "axial" direction of a non-circular wafer will refer to a similar direction, i.e., orthogonal to the flat surface of the wafer. The "radial" direction refers to the direction of the radius of the circle of the circle, i.e., substantially parallel to the flat surface of the wafer and intersecting the central region of the circle. As used herein, the term "r HDP oxide film" refers to a doped or undoped dioxide film deposited using a high density email DP) chemical vapor deposition (CVD) process. In general, a high-density electricity is any plasma having an electron density of at least 1 x 10 electrons/cm 3 , although the plasma range can be 5 x 10 〇 electrons / cubic centimeter and 1 χ 1 〇 1, electrons / cubic (four) between. In certain embodiments, the HDp-CVD reaction can also be characterized by relatively low reactor pressures in the range of 100 mTorr or less. As used herein, the term "flowable oxide film" is a flowable doped or undoped dioxide (IV) having a flow characteristic that provides a coherent filling of the gap. Also, the flowable oxide film is described as a soft gelatinous film, a gel having a liquid flow characteristic, a liquid film or a flowable film. Unlike HDP-CVD, the formation of a flowable film involves reacting a cerium-containing hydrazine with an oxidizing agent to form a condensed flowable film on the substrate. For example, as described in U.S. Patent No. 7,629,227, the disclosure of which is incorporated herein by reference in its entirety in its entirety, the &lt The flowable oxide deposition method described herein is not limited to a specific reaction mechanism', for example, the reaction mechanism may involve an absorption reaction, a hydrolysis reaction, a condensation reaction, a polymerization reaction, and a gas phase product that produces condensation. Phase reaction, condensation of one or more of the reactants prior to the reaction, or a combination of such reactions. The substrate is exposed to a period of time during which the process gas is sufficient to deposit a flowable film to fill or partially fill at least some of the gap. The deposition process typically forms a soft, gel-like film with good flow characteristics that provides a consistent fill. In certain embodiments, the flowable film is an amorphous organic tantalum film. The as-deposited HDP oxide film is a thickened solid and is not flowable, while the deposited flowable oxide film is not fully thickened. Under deposition conditions, at least for a certain time, the flowable film generally flows. Depending on the particular method and chemical reaction, the flowable oxide film can be soft (e.g., scratchable) or hard once the wafer is removed from the deposition conditions. As described above, the deposited flowable film can be thickened and/or chemically converted. The term "flowable oxide film" may be used herein to refer to a flowable oxide film which has been thickened or cured by a solidified flowable oxide film and a deposited flowable oxide film which have been wholly or partially solidified. Tool Horizontal Integration of Flowable Gap Filling In this paper, a semiconductor manufacturing tool including one or more flowable gap fill modules is provided. 2A depicts an example tool configuration 200 in which the tool includes two high density plasma chemical vapor deposition (HDP-CVD) modules 210, a flowable gap fill module 220, a PEC 230, and a WTS (wafer transfer system) 240. And vacuum pre-extraction chamber 250, in some embodiments, includes a wafer cooling station. The HDP-CVD module 210 can be, for example, a Novellus SPEED MAX module. The flowable gap fill module 220 can be, for example, a Novellus Integra module. The PEC module 230 can be, for example, a Novellus pedestal electrostatic chuck (ESC) cover mold 160970.doc • 21 - 201237994 group. The WTS module 240 can be, for example, a Novellus WTS Max module. Some tool level implementations feature a flowable gap fill module that can be used for multiple processing steps. For example, a flowable gap fill module can also be used to perform in situ pretreatment followed by a flowable oxide deposition process. This scenario may allow for the tooling of multiple flowable gap fill modules (e.g., four such modules). The alternate example tool configuration 260 depicted in FIG. 2B includes a wafer transfer system 295 and a vacuum pre-extraction chamber 290, a remote plasma curing module 270, and a flowable gap fill module 280. Additional remote plasma curing module 270 and flowable gap filling module 280 may also be included to increase tool throughput. Other modules that can be used for pre- or post-treatment include Novellus SPEED or SPEED Max, Novellus INOVA Reactive Pre-Cleaning Module (RPM), Novellus Altus Extreme Fill (EFx) Module, Novellus Vector Extreme Pre-Processing Module (for electricity) Poly, UV or IR pretreatment) and Novellus SOLA (for UV pretreatment), and Novellus Vector or Vector Extreme. These modules can be attached to the same backbone as the flowable gap fill module. Flowable Gap Filling Module Overview A processing module for performing flowable gap filling can include many components, subassemblies, systems, and subsystems. The following paragraphs discuss the main components and systems of the embodiment of the flowable gap fill processing module 300 shown in Figure 3 - the deposition of the flowable film on the itb® wafer occurs within the reactor 310. Reactor 310 can also be referred to as a reaction chamber, a processing chamber, or a chamber. 160970.doc -22- 201237994 Many or all of the gases and/or liquids used during the deposition procedure are supplied to the reactor 310 from the gas delivery system 320. While this system is referred to herein as a "gas delivery system," it should be understood that liquids, aerosols, or vapors may be supplied or treated in addition to or in lieu of a gas' gas delivery system. Gas delivery system 320 can include a flow control hardware 340 (such as valves, degassers, vaporizers, heaters, etc.) that processes reactants and chemical sources 33〇 or such sources, processing reactants, and chemical delivery. And a gas delivery controller 350 for controlling the flow control hardware 340 » In the present application 'unless otherwise noted, the term "reactant" will be used to refer to a gas, liquid or to a crystal Other flowable materials in the round reactor. In this case, the reactants may also contain inert carrier gases that are not chemically involved in wafer processing. While the inert carrier gas does not participate in the wafer processing reaction in a direct chemical manner, the presence of an inert carrier gas can affect the partial pressure of the reactants in the wafer processing reaction, which can affect the condensation behavior of the reactants. For example, increasing the inert carrier gas stream while maintaining other gas flows and keeping the reactor pressure ambiguous will result in a reduced partial pressure of the reactant stream' which will reduce the reaction rate of the reactants. After delivery to reactor 310, the reactants can be dispensed across the surface area of the wafer by a manifold called a showerhead. The showerhead 36 is introduced into the reactants in the desired amount, the reactants are introduced into the desired location, and the reactants are introduced at the desired pressure for processing. The volume of space substantially between the wafer and the showerhead is referred to herein as the "reaction zone." After introduction to reactor 301, the reactants can be confined to the reaction zone by the use of a skirt that forms a mechanical barrier to the reactant stream. 160970.doc 23· 201237994 The wafer is axially supported by the chuck. The chuck can also include techniques to prevent lateral movement of the wafer during processing. The chuck can be supported by the base 370. The pedestal 37 can be configured to move the chuck and the wafers in the axial direction of the wafer for wafer loading and loading and for use in the wafer using the susceptor driving unit 3 8 晶圆deal with. The chuck can be cooled by the chiller system during processing. The chuck and base 370 can also interface with an insulating ring that helps protect the chuck and base from undesired processing. 4A-4E depict simplified views of a flowable gap-fill module reactor that highlights different processing operations. The particular structure in one of Figures 4A through 4E may not be numbered in all of the figures to reduce visual clutter. It is expected that the reader will assume that the components labeled with a particular number will be referenced in the figures, and that the drawings showing the same components use the same number. For example, the reactor 4 in Figure 4 will also be referred to as reactor 4 in the discussion of Figures 4B through 4E, although it may not be labeled in the figures. For purposes of illustration, FIGS. 4B-4D depict the reaction of the ruthenium reactant 442 and the p-reactant 444 and the deposition gas mixture 446 discussed below in the reaction zone of the reactor 400 as a plume with a well defined boundary or Clouds, such depictions are only intended to indicate the introduction or presence of such gases and should not be construed as describing the actual physical behavior of such gases in the reaction zone. For example, although the sink gas mixture 446 is depicted as occupying only a portion of the reaction zone and is depicted as being tumbling out into only a portion of the internal volume of the reactor 400, the deposition gas mixture 446 may extend substantially throughout the reactor 4 All of the reaction zone and the inner zone of the crucible are substantially uniformly diffused, or may diffuse throughout the reaction zone and internal volume of the reactor 160970.doc -24 - 201237994 400 but at different densities. Figure 4A illustrates a simplified embodiment of a flowable gap fill module reactor 400. The chamber housing 402, top plate 404, skirt 406, showerhead 408, base post 424, and seal 426 provide a sealed volume for flowable gap fill processing. Wafer 410 is supported by chuck 412 and insulating ring 414. Chuck 412 includes an RF electrode 416 and a resistive heating element 418. The chuck 412 and the insulating ring 414 are supported by a base 420 including a pressure plate 422 and a base post 424. The base post 424 passes through the seal 426 to interface with a base drive (not shown). The pedestal column 424 includes a platen coolant line 428 and a pedestal purge line 430. The shower head 408 includes a weir inflator 432 and a P inflator 434 fed by a helium gas line 436 and a P gas line 438, respectively. The helium gas line 436 and the P gas line 43 8 .420, and 420 may be heated in the zone 440 before reaching the showerhead 408, and the 420 is referred to in the lower (420) and raised (420,) positions. . The flowable gap fill processing module 3 can include leveling features that allow the flowable gap fill processing module 300 to be leveled after installation. The flowable gap filling process involves liquid flow and can therefore be particularly sensitive to gravity. For example, if the flowable gap fill processing module 3 is slightly tilted to one side, the deposited flowable thin media will tend to migrate toward the "downhill" side of the wafer plane. This situation results in larger deposits on the downhill side and smaller deposits on the "uphill" side. 4 To prevent this flowable film behavior, the flowable gap fill processing module 300 can be leveled relative to the Earth's gravity. / In the total reference pedestal level, the level of the level is included to further: the whole: round thousand faces. For example, the initial transit time can be performed when the module is installed, which can be attributed to, for example, thermal expansion, assembly, 160970.doc -25 - 201237994 force, assembly difference at the wafer level There is drift in degrees. These offsets from the level of the wafer plane can be resolved by not having to re-adjust the base leveling features of the entire module. The gas delivery system module is equipped with or coupled to a gas delivery system 32 () for delivering reactants to the reactor 310. The gas delivery system 32G can be supplied to the reactor 31 by using - or a plurality of oxidants (including water, oxygen, ozone, peroxides, alcohols, etc.), which can be supplied separately or in combination with an inert carrier gas. As used herein, a component designated for oxidant treatment is indicated by the "〇" prefix to indicate 0. In a particular embodiment, the '0 reactant contains hydrazine (or other inert gas), oxygen, water, hydrazine, and ethanol. Gas delivery system 320 may also be supplied to reactor 310 using one or more dielectric precursors (e.g., triethoxy decane (TES)), which may be supplied separately or in admixture with an inert carrier gas. In this document, the component specified for precursor processing is indicated by the "p" front 辍. In a particular embodiment, the P reactant comprises TES, hydrogen, helium, and nitrogen. The P reactant may also comprise a catalyst, such as a ruthenium-containing precursor. In some embodiments, the reactant that is chemically oxidizing may be delivered with a P reactant rather than with a ruthenium reactant; under such conditions, components and systems having a p prefix will also process the particular ruthenium reactant and p reactant. For example, a 0 reactant (such as ethanol) can be delivered by a P reactant delivery route. Delivery of ethanol by the P reactant delivery route may also facilitate matching the flow state between the other ruthenium reactants and the reactants of 160970.doc -26-201237994 p after introduction of the reactants into the reaction zone in reactor 310. In certain embodiments, the gas delivery system is also configured to deliver one or more cleaning agents (e.g., nf3) for pre-deposition and post-deposition reactor cleaning. In certain embodiments, the gas delivery system is additionally configured to deliver one or more post deposition reactants. For example, argon, nitrogen, oxygen or other gases may be delivered for post-deposition plasma treatment. Each reactant can be supplied to the gas delivery system 320 by direct connection to a facility source (eg, a facility water or gas source) or by a reagent containing an amount (connected to a gas delivery system 320. Gas delivery system) 320 can include fittings and hardware 340 for connection to such reactant sources. Each reactant can be delivered to reactor 310 by separate gas lines, such as 0 gas line 436 and p gas line 438. A reactant gas line can be connected to one or more reactant sources 3 3 0 ' and each reactant source 3 3 〇 can be passed through a degasser, filter, mass flow before being introduced into its respective gas line Controllers, vaporizers, pressure transducers, pressure regulators, and/or temperature sensors. Some reactant gas lines may contain additional components, while some reactant gas lines may contain or not include such components. The NF3 gas line can use a mass flow controller, while the argon gas line can use a flow restrictor. The ampule for the reactant can be pressurized with a gas (such as helium) to force the reaction. From the ampoule to the gas delivery system 320. By introducing the gas into the ampoule, the ampoule headspace is moved and the reactants contained within the ampoule are displaced. The reactants are then driven into the gas delivery system line 436 or 438. The gas delivery system 320 can be designed to minimize the processing of reactants and chemistry. The gas transport volume between the source 3 30 and the reactor 31 ^ can, for example, remove unnecessary bends, fittings Or other volumes. Similarly, the gas delivery system 32A can be designed to minimize the transport time of the reactants by the gas delivery system 320 to the reactor 310. For example, a gas branch or turn can be provided for the gas line, Allowing the gas flow rate to ramp up to the desired flow rate through the branch ^ When the gas has reached the desired flow rate, the gas can be switched from the branch to the reactor feed line. In this way, it can be compared to during the flow ramp cycle The gas is introduced into the reactor 3 10 at a flow rate closer to the desired flow rate when the gas is introduced into the reactor 3 〇. This situation can help ensure that when it is desired The desired amount of gas is introduced into the reactor 320 during the interval. The gas delivery system 320 can utilize a high accuracy/low response time valve or other flow control device in the flow control hardware 34. For example, the ρ gas line 438 can A valve that reaches 90% of the gas flow rate within 0.05 s after opening the command of the valve executed by the gas delivery controller 35. The gas delivery system 320 can be included for transmission to the reactor 310 via the reactant gas line. One or more preheating devices are previously heated. One or more preheating devices for the reactant gas line may be located adjacent to or collocated with the vaporizer for the reactant gas line. The preheating device may The vaporized reactant is configured to be heated to a desired temperature level after vaporization and before the gas exits the gas delivery system 320 and is delivered to the reactor 310. The preheating device can be configured to heat the reactant gas to a temperature between 50 ° C and 250 ° C (eg, 50 ° (: to 150 ° C). For example, the ethanol reactant can be after vaporization and Preheating to 150 ° C prior to introduction to the gas line to reactor 31 〇I60970.doc -28- 201237994. In some embodiments, 'process the components of each of the one or more reactants The wet surface may be preheated to a temperature at which the pressure at the delivery system of the reactants is above the dew point of the reactants and at least 10 C below the decomposition temperature of the reactants. In other embodiments, one or more of the treatments are processed. The wetted surface of the components of each of the reactants in the reactants may be preheated to at least 20 above the dew point of the reactants at the pressure of the delivery system of the reactants, and at least 2 below the decomposition temperature of the reactants. Temperature of rc. If several reactants are mixed together and preheated as a mixture, the above rules can be applied using the dew point and pressure of the mixture. In addition to or in place of the preheating device, the reactant gas S line can also be used. Contains heat The heat is lost to provide heat to the reactant gas during transport from the gas delivery system to the reactor 310. For example, as shown in Figure 4. The P-knife 44G can't be wrapped around the gas delivery system and the reactor 3 The exposed gas line between the i〇 encloses the resistance heating blanket or sleeve. Alternatively, the gas line can be delivered to the outer sleeve by means of an external sleeve, and the heated fluid (such as water or oil) can be extracted or Delivered by Induction Heating Coils In some embodiments, the heating jacket is configured to maintain some or substantially all of the wetted interior surface of the gas line relative to the reaction described above The dew point of the object and the temperature at which the temperature is resolved. In addition, one or more gas lines may be separately heated and heated individually to the non-delivery system. Figure 5A illustrates the use of the illustrated module. Modular methods can be used to provide six possible modules in a gas gas delivery system 160970.doc -29. 201237994 to supply different types of reactants or other reagents, and to the manifold for supply when needed Reactants and P reactants. Some specific implementations of a modular gas delivery system suitable for use in a reactor, such as the reactors described herein, are partially illustrated in Figures 5B-5M. It will be appreciated that a non-module approach can also be used to construct a similar fluid delivery route to provide similar processing functionality. Figure 5A illustrates six possible gas supply modules a to ρ ^ each module can include configuration For the manifold outlet for connection to the gas manifold M <(Some modules may also include a steering outlet D that can be configured for connection to a steering line. In some semiconductor manufacturing processing steps, reactants can be delivered to the showerhead with a minimum ramp rate of flow rate. In an equal step, the flow from a particular gas source may first be directed to the steering line until the flow rate is stabilized at substantially steady state conditions. Once the steady flow condition is reached, the valve of the steering line A may be closed and the valve of the manifold outlet may be opened. The steady state flow is split to a gas manifold leading to the showerhead. Several steering lines can be joined together to form a steering manifold, and there can be separate steering manifolds for the helium reactants and P reactants. The manifold is passed to a volume separate from the reactor. Each module can also be configured to be preheated to deliver reactants to the helium outlet and (in some modules) the various components of the D outlet. Preheating the supplied reactants. This preheating can be done using a resistive heating blanket, heat exchanger or other heating technique. The preheatable components are located in the area marked with intersections and hatching in Figures 5Α to 5。. The assembly can be heated to a temperature between 5 (TC and 250 〇c (eg, 5 〇{>c to 150C), and for each module, different preheating temperatures can be used. Module A can be configured to The gaseous reactants (for example, 〇2, h2, 160970.doc · 30· 201237994 NF3, Ar, He, etc.) are supplied to the shower head. Module A may include the module A gas source 501 and the module A mass flow rate. The controller 5 〇 2. The module a gas source 5 〇 1 can be connected to the module A mass flow controller 501 via a gas line and a coaxial inlet valve. The second gas line and the coaxial outlet valve can control the mass flow of the module a The 501 is connected to the manifold outlet μ. The module A does not include the steering outlet D and can be used to deliver non-time critical gases. The components of the module A downstream of the module A mass flow controller 502 can be pre-as needed when needed. Module B is similar to module A' but includes steering functionality. Module b can include module B gas source 503 and module B mass flow controller 504. Module B gas source 503 can be powered by gas The pipeline and the coaxial inlet valve are connected to the module b mass flow controller 504. The second gas pipeline and the coaxial outlet The valve can connect the module b mass flow controller 504 to the manifold outlet μ. The third gas line and the accompanying coaxial outlet valve can also fluidly connect the module mass flow controller to the steering outlet d. The module does not include Turning to outlet D, and thus can be used to deliver a timing critical gas. Module Β is not used in any of the example gas delivery systems shown in Figures 5A through 5L, but can be used in a module The delivered gas replaces the specific module A for timing criticality. The components of module B downstream of the module B mass flow controller 504 can be preheated as appropriate. Module C can be configured to be supplied by the carrier gas The vaporized reactant module C can include a module c liquid source 505 and a module C gas source 506. The module C liquid source 505 can be fluidly coupled to the module c liquid flow meter 507 by a fluid line and a coaxial valve. The module C liquid source 505 can, for example, contain water, solvent or another liquid reactant. The liquid flow meter 507 can be fluidly coupled to the module C vaporizer 509 by another fluid line and coaxial valve. Module C Gas Source 160970.doc -31- 201237994 5 0 6 can be fluidly connected to the module by the gas line and the coaxial valve. Mass flow controller 508 » Module C gas source 506 can contain, for example, Ar4He. The module C mass flow controller 508 can also be fluidly coupled to the module c vaporizer by a gas line. The liquid flowing from the module C liquid source 505 can be vaporized in the module vaporizer 509 and entrained in the gas stream from the module c gas source 5〇6. The module C vaporizer 509 can be fluidly coupled to the manifold outlet port and the steering outlet D in much the same manner as the module B mass flow controller 5〇4 is in fluid communication with the manifold outlet port and the steering port D. The downstream components of module C vaporizer 5〇9 and module c may be preheated as needed. If optional preheating is used for module C, module C liquid source 505 and module c liquid flow meter 507 may not be preheated to allow a more accurate amount of liquid to be supplied. The use of the carrier gas from module C gas source 506 not only facilitates the delivery of vaporized liquid reactants to the showerhead, but also facilitates vaporization of the liquid reactants by evaporation of some of the liquid reactants. This situation may allow the use of liquid reactants having a higher boiling point. The absence of a device that can significantly reduce the gas flow downstream of the module c vaporizer 509 can correspondingly result in no significant pressure drop downstream of the module c vaporizer 509, which can reduce the likelihood of condensation. The use of steering functionality allows module c to deliver vaporized liquid reactants to the showerhead without startup delay or instability. Module D can be configured to supply vaporized reactants without the use of a carrier gas. Module D can include a module D liquid source 510 that is fluidly coupled to module D liquid flow controller 511. Module D liquid flow controller 511 is in turn fluidly connectable to module dizer 512. The module 〇 vaporizer 512 can be fluidly coupled to the manifold outlet Μ and the steering outlet D in the same manner as the module b mass flow controller 504 and the manifold outlet M and the steering outlet D are fluidly coupled to each other in the manner of 160970.doc -32· 201237994. Module D liquid source 5 10 may, for example, contain a solvent, precursor or other liquid. As with the module, the downstream components of the module D vaporizer 512 and module D can be preheated as needed. As with module C, if optional preheating is used for module D, module D liquid source 5 10 and module D liquid flow controller 511 may not be preheated to allow for more accurate metering of the supplied liquid. Module D may also allow for a more undiluted delivery of the supplied liquid vapor. This is because the carrier gas is not present to dilute the vaporized liquid. The absence of a device that can significantly reduce the gas flow downstream of the module D vaporizer 512 can correspondingly result in no significant pressure drop being found downstream of the module D vaporizer 5 12 'which reduces the likelihood of condensation. The use of steering functionality allows module D to deliver vaporized liquid reactants to the showerhead without startup delay or instability. Module E, similar to module D, can be configured to supply vaporized reactants without the use of carrier gases. Module E can include a module E liquid source 513 that is fluidly coupled to module E vaporizer 514 via a fluid line and a coaxial valve. The module E vaporizer 5 14 can be fluidly coupled to the module e mass flow meter 515 by a gas line. The module E mass flow meter 515 can then be in fluid communication with the manifold outlet port and the steering port D in much the same manner as the module B mass flow controller 504 is in fluid communication with the manifold outlet port and the steering port D. If the module Ε uses optional preheating, both the module Ε vaporizer 514 and the module Ε mass flow meter 515 can be preheated, but the module Ε liquid supply 513 can be preheated. This situation allows the vaporized liquid to be delivered without being diluted by the carrier gas and allows the vapor to be metered after vaporization and preheating have occurred. 160970.doc -33- 201237994 Module F can be configured to supply one or two vaporized liquid reactants by carrier gas. The module F can include a module F first liquid source 516, a module F second liquid source 5 18 and a module F gas source 5 17 . The module F first liquid source 5 16 can be fluidly coupled to the module F first liquid flow controller 5 19 via a fluid line and a coaxial valve. The module F first liquid flow controller 5 19 can be fluidly coupled to the module F evaporator 522 via a fluid line and a coaxial valve. Similarly, module F first liquid source 518 can be fluidly coupled to module F second liquid flow controller 521 via a fluid line and a coaxial valve. The module F second liquid flow controller 521 can also be fluidly coupled to the module ρ evaporator 522 via a fluid line and a coaxial valve. The module F gas source 5 17 can be fluidly coupled to the module F mass flow controller 520 via a gas line and a coaxial valve. The module F mass flow controller 520 can also be fluidly coupled to the module F evaporator 522 via a gas line. Module F evaporator 522 can be fluidly coupled to manifold outlet σ and to outlet outlet D in much the same manner as module B mass flow controller 504 and manifold outlet M and steering outlet D fluid connections. Module F can optionally be configured to preheat module F evaporator 52 2 and downstream components. Module F first liquid source 516 and module F second liquid source 518 can each contain different liquids. For example, module F first liquid source 516 can contain a first precursor, and module F second liquid source can contain a second precursor different from the first precursor. Figure 5B depicts an implementation of a gas delivery system featuring a module for providing a ruthenium reactant in a ruthenium partition 527 and a module for providing a P reactant within the P partition 528. In the 0 partition 527, the module C 539 contains the liquid h2〇 in the module C liquid source 505 and 160970.doc •34- 201237994 gaseous He in the module c gas source 5〇6, module A (0 partition 530 contains gaseous He in module A gas source 501, module A 531 contains gaseous enthalpy 2 in module A gas source 501, and module A 532 contains gaseous NF3 in module A gas source 501. In the P partition 528, the module A 533 contains the gaseous H2 in the module A gas source 501, the module A 534 contains the gaseous state n2 in the module A gas source 501, and the module A (P partition) 535 is in the module A. Gas source 501 contains gaseous He, and module E 536 contains liquid solvent in module E liquid source 5 1 3 'module E 537 contains liquid first precursor in module E liquid source 5 13 ' and module E 538 contains a liquid second precursor within module E liquid source 513. The 〇 steering line 523 and the P steering line 524 can be coupled to the steering outlets of the modules in the 〇 section 527 and the P section 528, respectively. The manifold outlets from module C 529, module A 530, module A 531, and module A 532 can be connected to a common manifold, which is coupled to the dual-flow showerhead 526 by a valve. Similarly, the manifold outlets from module A 533, module A 534, module A 535, module E 536, module E 537, and module E 538 can be similarly connected to a common P-manifold, common p-disambiguation The tube is connected to the dual flow shower head 526 via a valve. The reactants delivered to the dual flow showerhead 526 can be further heated in zone 525 during transfer to dual flow showerhead 526. The components within zone 525 can be heated to a different temperature than the temperature used for preheating. For example, the components within the 'partition 525 can be heated up to 150. (: temperature, but a typical preheating temperature may be about 1 〇〇. 虽然. Although only one of the lines from the 〇 subzone 527 to the dual flow showerhead 526 is shown and only shown from the P partition 528 to the dual flow showerhead 526 One of the pipelines, but in some implementations, there may be a plurality of such pipelines extending from one or two of these zones to the dual flow jet 160970.doc • 35· 201237994 sprinkler 526. For example, if two precursors For use in p-zone 528, each of which has different temperature or pressure requirements for vaporization without decomposition, it may be desirable to prevent mixing of the two precursors until they are introduced into dual-flow showerhead 526. The precursor can be separated, for example, using a physically separate gas line to the dual flow showerhead 526. For chemically aggressive precursor species, the corresponding modules for such gas lines and for gas delivery systems are selected. The materials of the various components in the assembly can be selected to minimize corrosion of the precursor to the assembly. Figure 5C depicts a gas delivery system implementation that is largely similar to the gas delivery system shown in Figure 5B. The module C 539, the module A 540 and the module A 541 replace the module C 529, the module A 530 and the module A 535 respectively. The module C gas source 506 of the module C 539 'module A 540 Module 8 gas source 501 and module A gas source 501 of module A 541 each contain Ar instead of He. Figure 5D depicts a gas delivery system implementation that is largely similar to the gas delivery system shown in Figure 5C, However, module E 536 is replaced with module D 542. Module D liquid source 5 10 of module D 542 may contain solvent. Figure 5E depicts a gas delivery system implementation that is also largely similar to that of Figure 5C. The gas delivery system is shown, but the module E 536 is replaced by the module C 543. The module C liquid source 505 and the module C gas source 506 of the module C 543 can respectively contain a solvent and Ar. Figure 5F depicts Another embodiment of a gas delivery system featuring a module for providing a ruthenium reactant in a ruthenium partition 527 and a module for providing a P reactant in the P partition 528. In the Ο partition 527, Module C 539 contains liquid HzO in mode C 970.doc • 36 · 201237994 Group C liquid source 505 and gas in module C gas source 506 He, module E 544 contains solvent in module E liquid source 513, module A (zone 0) 540 contains gaseous Ar in module A gas source 501, and module A 531 contains in module A gas source 501. Gaseous 〇 2 ' and module a 532 contains gaseous NF3 in module A gas source 501. In P partition 528, module A 533 contains gaseous H2 in module A gas source 501, and module A 534 is in module A gas source 501 contains gaseous N2, module A (P partition) 541 contains gaseous Ar in module A gas source 501, and module D 545 contains liquid first precursor in module D liquid source 510, and mode Group E 538 contains a liquid second precursor within module E liquid source 5 13 . Figure 5G depicts a gas delivery system implementation that is largely similar to the gas delivery system implementation shown in Figure 5C, but with module e 5 3 7 replaced with module D 546. Module D 546 can contain a liquid first precursor within module D liquid source 510. Figure 5H also depicts a gas delivery system implementation that is largely similar to the gas delivery system implementation shown in Figure 5C, but with module e 5 3 7 replaced with module C 547. The module c 547 can contain the liquid first precursor and the Ar gas in the module c liquid source 5〇6 and the module C gas source 505, respectively. Figure 51 depicts a gas delivery system implementation that is largely similar to the gas delivery system implementation shown in Figure 5F, but with module D 545 and module E 538 replaced with a single module F 548. The module F 548 contains a first precursor in the first liquid source 516 of the module F, a second precursor in the second liquid source 5丨8 of the module F, and Ar in the gas source 517 of the module F.

圖5 J描繪氣體遞送系統實施,其很大程度上類似於圖5C 160970.doc -37- 201237994 _所展示之彼氣體遞送系統實施,但其中自p分區528移除 模組E 536 ’且其中在Ο分區527中,模組C 539用模組F 549替換。模組F 549可在模組f第一液體源516中含有 H2〇,在模組F第二液體源518中含有溶劑,且在模組!?氣 體源517中含有Ar。 圖5K描繪氣體遞送系統實施,其很大程度上類似於圖51 中所展示之彼氣體遞送系統實施,但其中模組C 5 3 9及模 組E 544用單一模組F 549來替換。模組ρ 549在模組?第一 液體源5 1 6中含有HzO,在模組ρ第二液體源5丨8中含有溶 劑,且在模組F氣體源517中含有Ar。 圖5L描繪氣體遞送系統實施,其很大程度上類似於圖5 j 中所展示之彼氣體遞送系統實施’但其中模組Ε 5 3 7用模 組C 547來替換。如圖5Η中所論述之模組c 547可含有液體 第一前驅物及Ar氣體。 圖5M描繪圖5L之氣體遞送系統,但具有可用以吹掃經 轉向之反應物之轉向管線的額外Ar源。 在圖5Α至圖5Μ中描晝之各種閥可在需要時打開或關閉 以在晶圓處理之各種階段期間將0反應物及ρ反應物供應至 雙流喷淋頭526。 反應器 模組包含反應器400,反應器400亦被稱為反應腔室、腔 室等。反應器400充當密封環境,在密封環境内可流動間 隙填充處理可發生。在許多實施例中,反應器4〇〇以徑向 對稱之内部為特徵。減少或消除自徑向對稱内部之偏離幫 160970.doc -38· 201237994 助確保反應物的流動在晶圓410上以徑向平衡之方式發 生°由徑向不對稱性導致的對反應物流之干擾可導致比其 他區域上之沈積多或少之在晶圓410之一些區域上之沈 積’其可產生在晶圓均一性方面不希望有之變化。 反應器400包含若干主要組件。在結構上,反應器4〇〇可 包含腔室外殼402及頂板404。頂板404經組態以附接至腔 室外殼402 ’且在腔室外殼4〇2與氣體分配歧管/喷淋頭、 電極或其他模組設備之間提供密封界面。不同頂板4〇4可 取決於製程之特定設備需要而用於同一腔室外殼402。 腔室外殼402及頂板404可由鋁(諸如,606 1·Τ6)機械加 工,但亦可使用其他材料,包括其他品種之鋁及其他非鋁 材料。紹之使用允許容易之機械加工及處理,且使得可利 用鋁之高熱傳導性質。 頂板404可配備有電阻加熱毯以將頂板4〇4維持於所要溫 度下。舉例而言,頂板404可配備有經組態以將頂板4〇4維 持於4(TC與8(TC之間的溫度下之電阻加熱毯。除電阻加熱 毯之外或作為電阻加熱毯之替代,可使用替代加熱源,諸 如循環藉由頂板404之經加熱液體,或將電阻加熱匣供應 給頂板404。 腔室外殼402可配備有經組態以將腔室外殼4〇2維持於所 要溫度下之電阻加熱匣。舉例而言,腔室外殼4〇2可配備 有四個電阻加熱匣,該四個電阻加熱匣位於腔室之四個角 落中之每一者處。圖6以簡化平面圖說明此組態。在圖6 中,反應器600包含界定密封處理環境之具有内部細孔“Ο I60970.doc 39- 201237994 之腔室6H);腔室610可經組態以在角落中具有細孔以收納 電阻加熱匣630。可回應於由電阻熱器件(RTD)64〇或其他 温度監控傳感器量測之溫度來以電子彳式控制電阻加熱£ 630。兩個RTD 640可位於腔室61〇之相反側處,其中每一 RTD 640位於最近之兩個電阻加熱匿63〇中間。來自rtd 640之反饋可用以控制電阻加熱匿63〇及腔室6i〇之溫度。 亦可使用其他溫度控制系統’諸如循環藉由腔室壁中之細 孔之經加熱之流體。 電阻加熱匣630將腔 可在可流動間隙填充處理期間使用 室内壁溫度控制於4(TC與8(TC之間的溫度。在一些實施 中,頂板4G4可不包含加熱元件且,彳替代地依賴自腔室 電阻加熱S630熱傳導熱以維持所要溫度。各種實施例可 經組態以將腔室内壁及不需要沈積之其他表面(諸如,基 座、裙緣及喷淋頭)溫度控制於約1〇。(:至4〇艽之溫度,其 高於目標沈積處理溫度。在一此眘始士 又你 i貫施中,此等組件可保持 於高於此範圍之溫度。 藉 維持反應器400之溫度 由在處理期間活躍地加熱且 内部反應器壁可相對於晶圓指所維持之溫度保持於高溫 下;稍後更詳細描述晶圓溫度。相對於晶圓溫度升高内部 反應器壁之溫度可在可流㈣膜沈積_最小化或消除反 應物於反應器4GG之内壁上之冷凝。若反應物之冷凝發生 於反應II4GG之内壁上,則冷凝可在内壁上形成不合需要 之沈積層。 或代替加熱腔 除加熱腔室外殼402及/或頂板404之外 I60970.doc -40· 201237994 室外殼402及/或頂板404,可將疏水性塗層塗覆至反應器 400及具有潤濕表面之其他組件(諸如,基底42〇、絕緣環 414或壓板422)之潤濕表面中之一些或全部以防止冷凝。 此疏水性塗層可耐處理化學反應及處理溫度範圍(例如, 40 C至80 C之處理溫度範圍)。一些以石夕為主及以碳氟化 合物為主之疏水性塗層(諸如,聚乙烯)可能不與氧化(例 如’電漿)環境相容且可能不適合於使用。可使用具有超 疏水性質之基於奈米技術之塗層;此等塗層可為超薄型 之’且除疏水性之外亦可擁有疏油性’其可允許此塗層防 止用於可流動薄膜沈積中之許多反應物(諸如,Tes、乙醇 及水)之冷凝及沈積。合適的超疏水性塗層之一個實例為 二氧化鈦(Ti02)。 在一個實施例中’反應器400可以傾斜底板來實施。舉 例而言’反應器400之底板可為圓錐表面而非平面表面。 反應器底板可傾斜以使得沈積於反應器底板上之任何冷凝 物朝向反應器400之底部外部内邊緣流動。或者,反應器 底板可傾斜以將此冷凝物指引朝向反應器4〇〇之中心。排 出端口可包含於任何此冷凝物所收集之位置中。在一些實 施中,可使用反應器底板之平面翹起以代替圓錐傾斜;然 而’與平面翹起相比,圓錐傾斜可減少反應器4〇〇之製造 複雜性。 反應器400亦可包含經組態以在反應器400中在晶圓處理 操作期間量測壓力之壓力傳感器。舉例而言,壓力傳感器 可裝配於反應器400之内壁’反應器400之内壁中之凹部 I60970.doc •41 201237994 内,及/或反應器400之外部上。若壓力傳感器裝配於反應 器400之外部上’則可提供壓力監控端口以允許壓力傳感 器與反應器400之内部流體連接《若實施壓力監控端口, 則壓力監控端口可經組態以具有主轴,主轴水平或傾斜以 使得主軸處於其與反應器400之内壁相交之其最低點處。 以此方式’將藉由重力促使形成於壓力監控端口中之冷凝 物自壓力監控端口排出。壓力傳感器亦可個別地加熱以防 止冷凝物形成且影響壓力傳感器。壓力傳感器可經組態以 在反應器400内之一或多個位置處量測壓力。舉例而言, 麼力傳感器可經組態以在繞反應器400之内直徑之若干位 置及在基座420在如由基座420,所展示之高起位置中時位於 喷淋頭408與晶圓410之間的垂直位置處獲得壓力量測。壓 力傳感器亦可在晶圓410正經歷沈積處理時裝配於大致與 晶圓410之平面一致之高度。 反應器壓力傳感器可在晶圓處理期間提供反應區域中之 壓力讀數。此等壓力讀數可用以驗證繞反應區域周邊之壓 力梯度相對均一。壓力讀數亦可用以驗證處理壓力保持處 於處理參數内。壓力傳感器亦可用於封閉迴路控制實施 中,其中回應於來自壓力傳感器之反饋來調節反應物之出 口机速。舉例而言,若由壓力傳感器量測之反應區域壓力 指示將不維持所要之反應區域壓力,則反應物出口流速可 降低以抵消壓力下降(或在反應區域壓力超過所要之反應 區域壓力之狀況下增加)。可使用(例如,可變角度節流閥 (諸如,蝶形閥))來管理可變出口流速之此等減少及增加。 160970.doc • 42· 201237994 可根據來自壓力傳感器之反饋來調節閥之節流板的角度。 具有不同靈敏度之壓力傳感器可用以允許在寬壓力範圍 上之準確量測。舉例而言’ 100托壓力計及10托壓力計可 用以允許在高壓力及低壓力下之準確壓力量測。 反應器400亦可包含真空源流動路徑或用於自反應器400 抽空氣體且誘發橫跨晶圓410之反應物流之其他構件。舉 例而言,反應器400可包含與真空源流體連接之一系列徑 向配置之端口。徑向配置之端口可位於反應器4〇〇之底部 表面上。知口可均勻地間隔且可各自具有大致相同之大 小。可將徑向配置之端口整合於可移除式擋板中,該可移 除式播板可安裝於存在於反應器400之底部表面中之實質 上環形通道之上。環形通道可為真空源流動路徑之部分且 可包含徑向凹室,從而提供與真空源流動路徑之流體流動 連接。 反應器400中之可移除式擋板及下層環形通道之一個實 施例可見於圖7A至圖7C中。圖7A描繪可移除式擋板7〇1, 其包含環形區703及徑向延伸區705。可移除式擋板7〇1包 含24個均勻間隔之孔7〇7。孔7〇7可在直徑上為〇 225",且 "T知·供、力0.9 5平方时之總橫截面流動面積,但孔7 〇 7之直 徑範圍大小可為自Q.G85,,至Q 3",且給定可移除式擋板之 孔707應均為相同之標稱大小^孔7()7可保持於嚴格之直徑 容限(諸如,±〇.001")以最小化流動不對稱性。可提供額外 二7〇9以促進將可移除式擂板7〇1裝配於反應器711 ;反應 器711將類似功能性提供給反應器400。 160970.doc •43- 201237994 反應器711可包含環形通道713及其他特徵。環形通道 713可包含將環形通道713與真空端口 717流體連接之徑向 凹室715。環形通道713可具有1.5平方吋之標稱橫截面 積;環形通道713之橫截面積在(例如)徑向凹室715附近可 更大。可在圖7Β中觀察到此等特徵。 圖8描繪用於諸如上文關於圖7Α至圖7C描述之實施例之 徑向流動分佈之圖。描繪了三種情形:可移除式擔板不存 在之情形,可移除式擋板包含24個直徑為0.225,,之孔之情 形’及可移除式擋板包含24個0.3"孔之情形。對於每種情 形’模擬了表示製程流程之流體流動並針對圍繞流動路徑 中之晶圓之周界之點獲得正規化流動結果。歸因於對稱作 用’只針對總晶圓周界之一半展示數據。如可見,對於無 可移除式擋板之情形’圍繞晶圓之周界的流動自92%之平 均周界流動變化至11 3%之平均周界流動。對於具有〇 225 ” 直徑孔之可移除式擋板’變化為約〇 4 °/。;對於〇 3 "直徑 孔,變化為約1.9%。 亦可β又想可移除式擋板之其他組態。舉例而言,可移除 式擋板701可包含不同數目個孔7〇7及/或不同直徑孔7〇7。 環形通道713不限於環形形狀並且亦可使用其他形狀(諸 如,直通道或掠過C形路經而非藉由完整圓之通道)實施。 可移除式擋板701亦可製造為在安裝於反應器711中時可實 質上圍繞基座驅動柱之兩件或兩件以上。可移除式擋板 701之實施例可以總橫截面流動區域為特徵,其中可移除 式檔板之總橫截面流動區域與環形通道713之徑向橫戴面 160970.doc 201237994 流動區域之比為約1:1 ο 但特定組態可變化。 真空端口 717可與真空源(未圖示)連接,該真空源經組 態以在反應器711中抽出真空或部分真空。可變角度節流 間可插入於真空端口 717與真空源之間;彳變角度節流間 可用來變化經由真空端口 717提供之吸取之程度。 圖7C展示反應器700之剖面圖。環形通道713可見,如同 可移除式擋板70!可見。環形通道713與真空端口717流體 連接》 反應器400亦可包含如在圖9中展示之反應器9〇〇之實施 例t所展示之遠端錢源端σ9()1,遠端電㈣端口 9〇ι可 用來將電漿處理氣體引入至反應器4〇〇中。舉例而言,遠 端電毁源端口81〇可作為將餘刻或清潔氣體(諸如,㈣引 入至反應區域之構件而提供,而不需要藉由喷淋頭彻投 送蝕刻或清潔氣體。遠端電漿源端口 81〇亦可用來遞送可 用來使nf3平靜之氫氧惰性氣體混合物^藉由構件而非喷 淋頭408提供蝕刻氣體允許喷淋頭4〇8專用於沈積處理,並 在反應器400中提供較均一之電聚形成。 在反應器清潔之情況甲,有兩種選擇來活化nf>3 :直接 電漿及遠端電漿。在直接電漿之狀況下,若藉由喷淋頭投 送NF3,則電漿將較均一,此可提供較好可重複性。有時 候,在待清潔之區域在基座之外邊緣處之情況下,可 能不需要藉由整個喷淋頭投送,而可替代地(例如)藉由在 晶圓周界附近之噴淋頭之環形區來投送。在遠端電漿之狀 況下,藉由喷淋頭來投送活性1^1?3(主要為原子F)通常為較 160970.doc -45- 201237994 不需要之’因為原子F將在任何表面處(諸如,喷淋頭之内 部)重組,此減少清潔速率。高反應性原子F可導致對氣體 分配系統之内部組件(諸如,〇形環及閥)之損壞。 氣體分配歧管/喷淋頭 模組可包含以所要方式促進跨越晶圓之氣體分配之氣體 分配歧管或喷淋頭。在可流動間隙填充處理中,喷淋頭 408可經組態以分別將氧化劑及前驅物遞送給反應區域來 防止將此等反應物引入至反應器4〇〇中之前氧化劑與前驅 物混合❶一旦氧化劑與前驅物被允許混合,其便可形成可 流動薄膜。若可流動薄膜在引入至反應器4〇〇中之前在喷 淋頭408中形成,則可流動薄膜可干擾藉由喷淋頭4〇8之反 應物之均勻分配。舉例而言,若可流動薄膜在喷淋頭4〇8 内形成’則該薄膜可部分或完全阻塞下文描述之小孔中之 一些’該等小孔可用來跨越晶圓41 〇之表面分配反應物。 此等阻塞可導致跨越晶圓410之不均勻之流體流動。另一 擔憂為由反應物混合導致之粒子形成。粒子可形成並夾帶 在反應物流中’且可污染已處理晶圓,或可衝擊晶圓表面 並導致表面不規則性。 喷淋頭408經組態以向反應器400提供雙流氣體遞送。雙 流喷淋頭408經組態以經由單獨遞送路徑跨越反應器中之 反應區域均勻地分配氧化劑及前驅物。舉例而言,雙流喷 淋頭408可包含Ο充氣部432及P充氣部434。每一充氣部可 經由複數個流動路徑(諸如,經由面向晶圓之喷淋頭面穿 透至每一各別充氣部中之小孔之圖案)與反應器400之内邹 160970.doc • 46 - 201237994 流體連接》如在圖4B中說明,藉由雙流喷淋頭408中之〇 充氣部432及Ρ充氣部434分配之Ο反應物442及Ρ反應物444 流體地分離直至其被引入至反應器4〇〇中為止,此時,〇反 應物442與Ρ反應物444互相混合以形成沈積氣體混合物 446。沈積氣體混合物446流動跨越晶圓4丨0,且藉由在基 座420·與裙緣406之間的環形間隙流入腔室400之較大内部 容積中。可定位用於每一各別充氣部之孔圖案之孔以便跨 越處理區域均勻地分配充氣部之各別反應物。 〇充氣部432可經由〇充氣部孔448之Ο圖案與反應區域流 體連接。類似地’ ρ充氣部434可經由Ρ充氣部孔450之Ρ圖 案與反應區域流體連接。〇充氣部孔448及ρ充氣部孔450之 直徑可經組態以使得來自〇充氣部孔448之〇反應物442的 平均排出速度實質上與來自ρ充氣部孔45 0之ρ反應 物444之 平均排出速度匹配。 可按不同體積流速將〇反應物442及Ρ反應物444自氣體 遞送系統320供應給喷淋頭408。舉例而言,在可流動氣體 填充處理期間’可按比將ρ反應物444遞送給喷淋頭408之 體積流速大四倍之體積流速將〇反應物442自氣體遞送系統 320遞送給喷淋頭4〇8。因此,〇充氣部432可包含與Ρ充氣 部434中之Ρ充氣部孔450具有相同直徑之〇充氣部孔448, 但包含多達Ρ充氣部孔450之四倍之〇充氣部孔448。或者, 〇充氣部432可包含相同數目個〇充氣部孔448&ρ充氣部孔 450,但〇充氣部432中之每一 〇排放孔448可具有比Ρ充氣 部434中之Ρ排放孔450之橫截面積大四倍之橫截面積。亦 160970.doc -47· 201237994 可使用其他組態’諸如調整充氣部孔之直徑/橫截面積及 用於給定充氣部之充氣部孔之數目。在一些實施例中,〇 充氣部孔448之總橫截面積與P充氣部孔45〇之總橫截面積 之比實質上等於氧化劑反應物442之體積流速與前驅物反 應物4 4 4的體積流速之比。 在特定實施例中’喷淋頭4〇8以如在圖丨〇中展示之〇圖案 及P圖案為特徵。圖1〇中展示之孔圖案1〇〇〇經開發以供雙 流喷淋頭使用’該雙流喷淋頭經設計以供TES+乙醇+氦p 反應物及蒸氣+氦〇反應物及約5〇〇 sccm至5〇〇〇 sccm之總 流速使用。Ο圖案以具有〇 〇4〇吋之直徑之1456個〇孔1〇1〇 為特徵。p圖案以具有0 019吋之直徑之1616個卩孔1〇2〇為 特徵。Ο孔101 0之〇圖案之總橫截面積為約丨83平方吋。p 孔1020之P圖案之總橫截面積為約〇 46平方吋。p圖案橫截 面積與〇圖案橫截面積之總比為約丨:4。 圖10中展示之孔之〇圖案及孔之p圖案皆為直線圖案, 其中X方向及Y方向間隔相等;〇圖案與p圖案偏離彼此, 使得一内部孔圖案對角地位於另一圖案之最近之四個孔之 間的中心。亦可預期其他孔圖案,諸如六角圖案、非均等 直線圖案、圓形圖案、螺旋圖案及具有取決於與晶圓之中 - 心之孔距離而變化之間隔的圖案。 用於充氣部之充氣部孔亦可被定大小來防止反應物至反 應器中之過度嘴射。當來自喷淋頭彻之反應物流抵制自 薄層流動狀態轉變為湍流流動狀態時,過度噴射發生,此 可導致反應物流在接觸晶圓410之前不能有效地與彼此混 I60970.doc -48, 201237994 合,或可歸因於反應物中之不均勻壓力波前而導致在沈積 之可流動薄膜中形成凹坑或碗狀特徵。可調整反應物之流 速以在受處理之晶圓之表面處或附近產生恆定或接近恆定 之壓力波前。一般而言,反應物流速、充氣部孔數量及在 充氣部孔與晶圓表面之間的間距都有助於可接受充氣部孔 直徑之確定。舉例而言,充氣部流動孔可根據以下關係式 叹. L/D20· 112 Pe,其中L為混合長度(例如,在充氣部 流動孔出口與晶圓之間的距離)’ D為在鄰近充氣部流動孔 之間的距離,且pe為反應物流之(質量色散)佩克萊數。 可將藉由喷淋頭充氣部之反應物運輸時間最小化至可能 增加系統響應性之程度。在一些實施例中,喷淋頭充氣部 容積應小於反應區域之容積的10%至2〇%。對於雙流喷淋 頭,可匹配在每一充氣部内之反應物的停留時間以確保來 自兩個充氣部之反應物之同步遞送。舉例而言,若〇反應 物流速比P反應物流速大X倍,則〇充氣部在容積上可比p 充氣部大X倍。舉例而言,具有比p充氣部之容積大4倍的 容積之0充氣部之噴淋頭可用於0反應物流速約比0反應物 流速大4倍之系統中。 儘管本文中描述雙流充氣部,但單流充氣部可用來跨越 晶圓處理區域分配反應物。舉例而言’反應物可在引入至 反應器中之前供應給喷淋頭,並可在單一充氣部内混合。 儘管雙流喷淋頭可在反應物在喷淋頭中之壓力&溫度條件 處以氣相反應時使用,但單流喷淋頭可在一些處理情形中 提供可接受替代方案中喷淋頭内之壓力及溫度條件使 160970.doc -49· 201237994 得反應物不反應或以減少之程度反應。另外,單流喷淋頭 可在噴淋頭内之反應物之停留時間短時使用β在此等狀況 下,可能不需要反應物之實體分離來減輕喷淋頭内之不希 望有之沈積》 喷淋頭408可包含可在可流動間隙填充處理期間將喷淋 頭溫度維持於可接受處理參數内之加熱元件或熱傳導路 徑。舉例而言’喷淋頭408可熱耦合至頂板404,頂板404 可安裝有如上文所論述之電阻加熱毯。電阻加熱毯可經由 頂板404向喷淋頭408提供熱,且經組態以將喷淋頭4〇8加 熱至4 0 C與15 0 C之間,但在一些組態中,喷淋頭可通常 加熱至約100°C。喷淋頭408可因此相對於受處理之晶圓 410維持於高溫》藉由將喷淋頭408維持於高溫,防止了沈 積氣體混合物446在喷淋頭408内之冷凝。在喷淋頭408為 單流設計之實施例中,加熱喷淋頭408亦可防止可存在於 喷淋頭充氣部内之任何沈積氣體混合物446之冷凝。 喷淋頭408亦可包含用於在反應區域内產生電漿環境之 RF電極《基座420亦可包含用於在反應區域内產生電漿環 境之RF電極。此等電漿環境可使用供電電極與接地電極之 間的電容耦合來產生;可與電漿產生器連接之供電電極可 與喷淋頭408中之RF電極對應。接地電極可與基座RF電極 對應。替代組態亦係可能的。電極可經組態以產生在 13.56 MHz範圍、27 MHz範圍中,或更一般而言在5〇 kHz 與60 MHz之間的RF能量。在一些實施例中,可提供多個 電極’此等電極各自經組態以產生特定頻率範圍之RF能 I60970.doc -50- 201237994 量。在喷淋頭408包含供電電極之實施例中,卡盤412可 包含或充當接地RF電極。舉例而言,卡盤412可為接地鋁 板,此可導致跨越基座-卡盤-晶圓界面之增強之冷卻,此 係因為鋁相對於其他材料(諸如,陶瓷)具有較高熱傳導 性。鋁板亦可允許在鋁板之背面中機械加工出冷卻通道以 允許液體冷卻劑在卡盤412内循環;此等通道可歸因於熱 膨脹應力而導致陶瓷板中產生裂縫。此稍後在下文中進行 論述。將RF電極包含於具有接地電極之喷淋頭4〇8中亦可 導致對晶圓之較低離子森擊。 圖7說明反應器700之一個實施例,反應器7〇〇以裝配至 頂板704之喷淋頭708為特徵。電阻加熱元件709嵌入於喷 淋頭708之頂部上的凹槽中,且可用來加熱噴淋頭7〇8。 儘管上述實施例論述以接地鋁板RF電極為特徵之卡盤, 但卡盤之其他實施例可不包含與鋁卡盤整合之RF電極。 裙緣或遮擋物 裙緣406或遮擋物(下文中稱為「裙緣」)可用來提供在 反應器400内之反應物流之機械障壁。在裙緣406與基座 420·之間的界面可在徑向方向上限制沈積氣體混合物446流 出反應區域。界面可構成環形間隙,其中外徑由裙緣 之内徑界定,且内徑由基座420,之外徑界定。用於典型晶 圓之環形間隙可在0.112'1與0.125"之間,其中0.125”之標稱 間隙大小用於具有14.25"内徑之裙緣》基座420'及裙緣406 可經組態以使得基座420’相對於噴淋頭408之相對位置可自 沈積組態改變成清潔或電漿處理組態,且反之亦然,而不 160970.doc •51· 201237994 更改環形間隙之橫截面流動面積。 裙緣406可藉由此流量限制而導致背壓產生於反應區域 中。裙緣406不應與用於及基座42〇,形成氣密密封之其他半 導體製造程序中之遮擋物混淆。 裙緣406亦可用來在於反應器4〇〇中執行電漿處理時將電 漿限制於反應區域中。儘管可流動填充間隙處理在可流動 間隙填充操作期間不需要電漿,但電漿仍可用於清潔、預 沈積處理、間隙填充後處理、固化或其他操作中。裙緣 406亦可用來藉由變化反應區域中之背壓來調整電漿之大 小 〇 裙緣406亦可對反應器400内之熱流產生影響。 裙緣406可自陶瓷材料製成。若電漿處理亦在反應器4〇〇 内發生,則裙緣406亦可自介電材料製成。可藉由使用置 放在裙緣406中之加熱元件及/或藉由來自頂板4〇4或與裙 緣406傳導地耦合之其他組件之熱傳導來加熱裙緣4〇6。裙 緣406可經組態以在沈積處理期間加熱至在4〇(>c與8〇充之 間的溫度。因為在可流動間隙填充期間不需要裙緣4〇6來 與基座420’形成接觸密封,所以裙緣4〇6可相對於基座42〇, 及sa圓4 1 0維持於南溫而不將傳導熱傳遞給基座4 2 〇,及晶圓 410。 裙緣406可經組態以裝配至頂板404或安置於頂板4〇4 中,且可提供用於裝配喷淋頭408之界面。各種實施例使 用替代裝配組態。舉例而言’喷淋頭408及裙緣406都可直 接裝配至頂板408而不直接與彼此介接。在特定實施例 160970.doc •52· 201237994 中,裙緣406可與喷淋頭408或與頂板4〇4整合且可能並 非明顯之組件。 基座 基座420在處理期間經由稍後論述之卡盤向晶圓提供軸 向支撐。基座420可經組態以在處理期間升高及降低(如由 基座420’指示)來促進不同處理階段或晶圓41〇裝載及卸 載。基座420亦可提供電力以用於使電漿發火花。基座42〇 亦可提供冷卻及/或加熱能力以用於在處理期間控制卡盤 412及晶圓410之溫度。 在可/μ動間隙填充處理期間,可定位基座42〇,以使得晶 圓410疋位於噴淋頭4〇8下方約12 mm。裙緣組態、基座 420’大小及相對於裙緣4〇6之基座42〇,位置可在基座42〇,與 裙緣406之間界定環形基座流動區域。反應區域中之背壓 可隨環形基座流動區域、反應物之體積流速、歸因於化學 反應之壓力增加及環境條件而變化。 在各種實施例中,在可流動間隙填充處理期間定位基座 4201以使得反應區域中之背壓維持於約乃托。在可流動間 隙填充處理之後,可重新定位基座42〇,以產生較大環形間 隙來用於快速背壓釋放或用於晶圓處理。在特定實施例 中,可在沈積期間基於時間或到達之反應區域壓力設定點 連續地或每隔一段時間重新定位基座42〇%在可流動間隙 填充處理期間,晶圓41〇/喷淋頭4〇8間隔可大於或小於 mm,此取決於其他參數,諸如基座420'大小或裙緣406之 尺寸及位置。 160970.doc •53· 201237994 在電漿處理期間(諸如,在晶圓清潔操作期間),可定位 基座420·以使得晶圓410定位於喷淋頭408下方約25 mm。 在清潔之準備中,基座408可相對於基座408用於可流動間 隙填充處理時所在之位置重新定位以促進壓力自反應區域 快速排出。 基座420可包含壓板422或基板、驅動柱424及驅動機構 (未圖不)。壓板422或基板(下文中稱為「壓板」)可為圓形 實質上平坦表面。壓板422可充當用於卡盤412之界面,卡 盤412經組態以收納用於處理之晶圓41〇。或者在一些處 理中,晶圓410可直接置放於壓板422上。驅動柱424向壓 板422提供軸向支撐,且可經組態以沿腔室中心軸線平移 在腔室外殼402内之壓板422。驅動柱424可突出而穿過腔 至外殼402之底板,且與驅動機構連接。密封件426可密封 在腔室外殼402與驅動柱424之間的界面,以防止反應器 400與外部環境之間的流體流動。驅動機構經組態以在豎 直方向上(亦即,朝著或遠離喷淋頭4〇8)平移驅動柱424及 壓板422。 基座420可包含用於冷卻或加熱裝配至壓板422之卡盤 412之特徵。舉例而言,基座42〇可包含使已冷之冷卻劑自 外4制冷器循環穿過壓板422之冷卻劑迴路428。其他組態 可導引冷卻劑迴路428以穿過(例如)卡盤412。冷卻劑迴路 428可由可用來升高壓板422之溫度之加熱器(未圖示)(諸 如,電阻加熱元件)增大。藉由使用制冷器及加熱器,達 成所要溫度設定點所需要之時間可顯著減少。舉例而言, 160970.doc -54- 201237994 若晶圓410需要自2(TC冷卻至-5t:,則可使用具有-5〇c之設 疋點之制冷器。然而,若結合加熱器使用制冷器,則可將 制冷器設定至低於-5。(:之設定點,此將加速冷卻程序。一 旦到達-5°C標記,加熱器就可用來抵消制冷器。舉例而 言’制冷器可具有-20°C至+80它之設定點,及/或經組態以 支援-15。(:至+80。(:之卡盤設定點。以此方式,將晶圓冷卻 至所要工作溫度之總時間可顯著減少,此減少處理時間並 增加系統之產量。較低制冷器設定點亦可用來抵消自熱晶 圓給予已冷壓板之熱。在一些實施例中,制冷器可經組態 有比晶圓處理溫度低It至5它之設定點。 加熱器(及/或制冷器)亦可經組態以在電漿處理期間將壓 板加熱至大於70eC(例如,80。〇之溫度來避免電漿反應物 冷凝於壓板、基座、卡盤或晶圓上。加熱器(及/或制冷器) 可經組態以將壓板或基座加熱至在3〇°c與5〇〇c之間的溫度 (例如’ 40°C)來解除吸附反應之產物及副產物。可在腔室 外殼402及腔室内之其他組件中誘發類似溫度。 壓板422及裙緣406可經設計以具有緊密之同心度容限。 藉由維持在壓板422與裙緣406之間的高同心度程度,在裙 緣406與裝配至壓板422之絕緣環414之間形成之環形間隙 可繞絕緣環414之周界維持於接近恆定值。此促進跨越晶 圓410之均勻氣流並減少不平衡沈積。 壓板422相對於裙緣406之同心度可藉由使用壓板422上 之徑向定位器特徵來增強,該徑向定位器特徵與裙緣406 嚙合以在徑向上相對於裙緣406將壓板422定於中心。當 160970.doc -55· 201237994 然’徑向定位器特徵亦可定位於裙緣406上並與壓板422介 接°替代實施例可涉及壓板422上之徑向支座,徑向支座 及腔室外殼402之側壁嚙合;若裙緣406類似地配備有徑向 定位器特徵,則腔室外殼402可充當可由兩個組件用來建 立同〜關係之共同參考表面。此後者組態具有允許徑向定 位器特徵離由裙緣4〇6及絕緣環414形成之環形間隙某一距 離而疋位之益處,此減輕由定位於壓板_祐緣環形間隙附 近之徑向定位器特徵之存在引起的流動不平衡。 基座420可將吹掃氣體供應430併入於基座驅動柱424中 來防止基座420内之沈積、冷凝或結冰,如圖4C中所展 示’吹掃氣體供應430可使吹掃氣體452(諸如,清潔乾空 氣(CDA)或氮氣)循環穿過基座驅動柱424 ;吹掃氣體452亦 可經加熱以進一步抑制在基座驅動柱424内形成冷凝或 冰。用加熱之CDA或氮氣來加熱基座驅動柱424之内部亦 可用來間接加熱基座驅動柱424之外部,此亦可防止在外 表面上之冷凝或結冰。 基座420亦可經組態以將吹掃氣體遞送給晶圓4丨〇之周 界。舉例而吕,如圖4D _所展示(圖4D描繪在圖4A至圖4C 及圖4E中所描繪之實施例之變化),吹掃氣體$ 2可藉由基 座柱424遞送至分配系統,分配系統自晶圓4丨〇之下側圍繞 曰曰圓410之周邊均勻地分配吹掃氣體452。吹掃氣體452可 因此用來保護卡盤412之表面及絕緣環414以防不希望有的 沈積。吹掃氣體452亦可用來防止圍繞晶圓41〇之周邊的增 加之沈積。〇人掃氣體452亦仍可供應給基座驅動柱424之内 160970.doc • 56 - 201237994 部,但此特徵在圖4D中未展示。 卡盤 卡盤412在晶圓處理期間充當基座42〇與晶圓41〇之間的 界面卡盤412可貫現許多作用。卡盤412在處理期間在豎 直方向上支撐晶圓41 〇。卡盤4丨2亦可並有將晶圓4丨〇限制 於仫向方向上並防止晶圓41 〇相對於卡盤412旋轉之特徵或 技術。 在本發明之一個實施例中,卡盤412可為可包含具有嵌 入式RF電極416之陶瓷圓盤之靜電卡盤(ESC)。RF電極416 可經組態為偏壓電極,且提供電力來產生並維持在反應器 400内產生之電漿。舉例而言,RF電極416可經組態以按 13.65 MHz將3 kW之電力供應給在反應器4〇〇内產生之電 漿。在此實施例中,喷淋頭接地;在其他實施例中,接地 在具有供電噴淋頭408之基座424中。在電漿未使用或電力 提供給其他組件(諸如,喷淋頭4〇8)之組態中,卡盤412可 包含接地鋁圓盤。在處理期間相比於其他卡盤材料,接地 鋁圓盤可具有較高熱傳導性並允許晶圓41〇之較快加熱及 冷卻。 以接地鋁卡盤為特徵之實施例可簡單地將接地鋁卡盤整 合至基座424中之組件中。舉例而言,卡盤412及壓板422 可為一個整合組件而非單獨件。此歸因於兩個零件之間的 界面之消除而將比早獨卡盤412 /壓板4 2 2組態提供改良之 熱傳導。 卡盤412可具有嵌入在卡盤412内部或附接至卡盤412之 I60970.doc •57· 201237994 外表面之加熱特徵(諸如,電阻加熱器418) ^卡盤412亦可 包含用於提供冷卻之特徵,諸如用於冷凍之冷卻劑循環之 拍爾帖接面(Peltier junction)或冷卻劑流動路徑。此等加熱 及冷卻特徵可增大或替換上文在基座之論述中所提到的特 徵。在一些實施例中’冷卻特徵可定位於一個組件中,且 加熱特徵可定位於另一組件中。舉例而言,卡盤412可包 含嵌入在包括卡盤41 2之殼體之陶瓷圓盤内之電阻加熱元 件418,且壓板422可包含經組態以使圖4E中展示之冷卻劑 454在卡盤412與晶圓410之間的界面表面下方循環之冷卻 劑迴路428。冷卻劑454可用來冷卻壓板422,並經由傳導 熱傳遞冷卻卡盤412。可對電阻加熱元件41 8供電來直接在 卡盤412中產生熱量456。因此,可加熱及冷卻卡盤412。 冷卻劑454可自遠端制冷器(諸如,來自solid State Cooling之Thermorack 1200)循環》制冷器可距基座遠端地 裝配以減少基座總成中之振動。制冷器可經組態以基於來 自定位於基座420或卡盤412内之溫度感測器件之反饋調節 冷卻劑454溫度。舉例而言,卡盤412可組態有可向制冷器 提供關於卡盤412之當前溫度之反饋的一或多個RTD。制 冷器可調高或調低冷卻劑454溫度,此取決於來自RTD之 溫度反饋。將一或多個RTD定位在卡盤454内或緊密接近 卡盤412(諸如,在基座420中在壓板422/卡盤412界面附近) 可比依賴在制冷器自身中之RTD之組態改良冷卻響應時間 達幾乎50。/〇。使用一或多個卡盤裝配式RTD之替代方案係 使用月b夠遠知量測之傳感器(例如,Lumasense紅外線溫度 160970.doc -58- 201237994 計)。遠端感測器件(諸如,Lumasense溫度計)之使用允許 晶圓410之溫度而非卡盤之溫度用於控制制冷器。基於晶 圓410溫度之讀數來管理卡盤412溫度將導致晶圓41〇之較 準確的熱控制。 在晶圓410處理期間,卡盤412及/或冷卻劑迴路428可降 低晶圓410之溫度,以促進沈積氣體混合物446在晶圓41〇 上冷凝為可流動間隙填充材料。舉例而言,冷卻劑迴路 428可將卡盤412及晶圓410之溫度降低至-5t:之設定點以 用於可流動間隙填充處理。 電阻加熱元件41 8亦可經組態以將卡盤412加熱至實質上 兩溫。舉例而言’電阻加熱元件41 8可經組態以在電漿清 潔操作期間將卡盤412加熱至80°C來防止在電漿清潔操作 期間之冷凝。 在以至晶圓410之周界之吹掃氣體遞送為特徵的一些實 施例中(如先前在描述基座之部分中所論述),晶圓可使用 實際支座自卡盤之表面偏離’且吹掃氣體可引入至在晶圓 410與卡盤412之界面表面之間的間隙中。支座可經組態以 用最低程度地干擾在晶圓410與卡盤412之間的吹掃氣體流 之方式支撐晶圓410。吹掃氣體可經由位於卡盤412中之端 口引入至在晶圓410與卡盤412之間的間隙中。 周界吹掃氣體遞送實施例亦可包含在卡盤412、絕緣環 414或其他基座420組件上之特徵,此等特徵在吹掃氣體排 出在晶圓410與卡盤412之間的區時引導吹掃氣體流。舉例 而言,絕緣環414可包含圍繞晶圓41〇並具有稍大於晶圓 I60970.doc •59- 201237994 410之外徑之内徑之凸出環形突起。在此實施例中,及在 吹掃氣體在晶圓410與卡盤412之間時所經歷之大徑向流動 形成對比,吹掃氣體一般可在到達晶圓41〇之周界之後在 轴向方向上流動。此等實施例可用來減少在晶圓41〇之周 邊處(例如,在晶圓斜面區或晶圓側面區中)之可流動薄膜 沈積。 先前介紹之圖7C描繪用於特定實施例之反應器7〇〇及裝 配至基座720之組件。冷卻劑管線728投送冷卻劑穿過基座 轴724及壓板722至卡盤712。冷卻通道728,遍及卡盤712分 配冷卻劑。電阻加熱元件亦可嵌入在712内,但圖7中未展 示。絕緣環714圍繞卡盤712。卡盤712可包含跨越卡盤之 晶圓支撐區而配置之吹掃氣體分配孔7丨9。卡盤7丨2亦可以 支座(未圖示)為特徵,支座在處理期間向晶圓提供支撐並 允許吹掃氣體朝著已處理晶圓之周邊流動。 絕緣環 基座420亦可包含絕緣環414。絕緣環414可用來遮播基 座420及卡盤412之表面以免於在晶圓處理期間形成之電 漿。絕緣環414亦可遮擋基座420及晶圓410之表面以免於 在晶圓處理期間之不希望有之沈積或冷凝。最後,絕緣環 414可防止電漿弓向卡盤412或RF電極416。 絕緣環41 4可自諸如氧化鋁之材料製作,且可形成為圓 形形狀。絕緣環414可製造成具有稍大於壓板422之外徑的 第一内徑及稍大於卡盤412之直徑的第二内徑。 若絕緣環414用於基座420中,則絕緣環414之邊緣或表 160970.doc •60· 201237994 面可界定如先前論述之在基座420與裙緣4〇6之間的環形間 隙之-個ϋ界。#基座420用來調節藉由沈積區域之氣體 流,則絕緣環414及裙緣406之同心性將至少部分決定藉由 環形間隙之流動均一性。在此等組態中,必須緊密控制絕 緣環414之尺寸容限,如同在絕緣環414一旦安裝在基座 420上時必須緊密控制絕緣環414之位置。 絕緣環之一個實施例可以直徑為14"之環形環為特徵。 環形環可以針對實質上0.5"至〇 6,,之環形環厚度之實質上 11.5"至12"之内徑為特徵。環形環之内徑可接著針對實質 上0.25至0.375"之環形環厚度逐步增加至實質上I] 至 13"之直徑《最後,環形環可針對實質上〇 625"至〇75,,之 環形環厚度逐步增加至實質上13"至13 125"之直徑。環形 環之總厚度可為約1.375”至1.725"。亦可存在其他特徵(諸 如,倒角、小肩角及圓角)及定位器或索引特徵。 替代反應器及模組組態 上文揭示之系統及結構亦可包含其他反應器或模組組 態,諸如經配備以用於介電薄膜之沈積及/或預沈積或後 沈積處理之反應器或模組,包含HDp_CVD反應器、 PECVD反應器、低於大氣&CVD反應器、經配備以用於 CVD反應之任何腔室、用於PDL(脈衝沈積層)之任何腔室 及經配備以用於CFD之腔室。圖1丨至圖13為可包含於工具 組態(諸如,圖2A及圖2B中展示之工具組態)中之模組或反 應器之實例。 圖11展示可根據本發明之特定實施例使用之反應器或模 160970.doc * 61 - 201237994 組之實例。反應器noo可用作沈積腔室、處理及沈積腔室 或用作獨立固化模組。反應器1100適合用於暗(非電毁)或 電漿增強之沈積及處理(例如,經由電容耦合之電漿)。如 所展示,反應器1100包含圍封反應器之其他組件並用來容 納由電容式系統產生之電漿之處理腔室1124,處理腔室 1124包含結合接地加熱器框112〇工作之嘴淋頭ιιΐ4。低頻 率RF產生器11 〇2及咼頻率rf產生器連接至嘴淋頭 1114。電力及頻率足以自處理氣體產生電漿(例如,4〇〇 w 至700 W之總能量)。在一些實施中,產生器不用於(例如) 非電漿沈積或處理。在電漿處理步驟期間,可使用一或兩 個產生器。舉例而言,在典型方法中,高頻率1117組件一般 在2 MHz至60 MHz之間,·在較佳實施例中,組件為13 56 MHz。 在反應器内,晶圓基座1118支撐基板1116。基座通常包 含用來在沈積及/或電漿處理反應期間及之間抓持並轉移 基板之卡盤、又架或起模針❶卡盤可為可用於工業及/或 研究中之靜電卡盤、機械卡盤或各種其他類型之卡盤。 經由入口 1112引入處理氣體。多個源氣體管線111〇連接 至歧管Γ108。可預混合或不預混合氣體。混合碗狀/歧管 管線之溫度應維持在反應溫度以上之水平處。在約8 〇 t處 或以上之溫度通常足夠。使用適當之裝設閥門及質量流量 控制機構來確保在方法之沈積及電漿處理階段期間遞送正 確氣體。在化學前驅物以液體形式遞送之狀況下,使用液 體流量控制機構。液體接著在到達沈積腔室之前在加熱至 160970.doc •62· 201237994 一飞化點以上之歧管中的輸送期間汽化並與其他處理氣體 混合》 處理氣體經由出口 1122排出腔室⑽。真空泵心(例 =,單級或雙極機械乾式栗及/或渦輪分子粟)通常將處理 氣體抽出並藉由關閉迴路控制之流量限制器件(諸如,節 流閥或擺閥)維持反應器内之適合低壓。 圖12為根據某些實施例之遠端電浆處理模組之簡化示意 圖。裝置1200具有由喷淋頭總成或面板1217分離之電漿產 生部分1211及曝露腔室12〇1。在曝露腔室12〇1内,壓板 (或平台)1205提供對晶圓12〇3之支撐。壓板12〇5裝有加熱/ 冷卻元件在些實施例中,壓板1205亦經組態以用於將 偏壓施加給晶圓1203。在曝露腔室12〇1中經由真空泵經由 管道1207達到低壓。氣態處理氣體之源經由入口12〇9將氣 體流提供至裝置之電浆產生部分1211中。電漿產生部分 1211可由感應線圈(未圖示)環繞。在操作期間,氣體混合 物被引入至電漿產生部分1211中,感應線圈受激發,且電 漿產生於電漿產生部分丨2丨丨中。噴淋頭總成丨2丨7可具有施 加電壓,且終止一些離子之流動並允許中性種類流入曝露 腔室1201中。 圖13為根據各種實施例之可用於預沈積及/或後沈積處 理及/或固體氧化物材料之沈積之HDp_CVD裝置之各種組 件之簡化說明。如所展示,反應器13〇1包含圍封反應器之 其他組件並用來容納電漿之處理腔室13〇3。在一個實例 中,處理腔室壁係自鋁、鋁之氧化物及/或其他合適材料 160970.doc -63· 201237994 製成。圖13中展示之實施例具有兩個電漿源:頂部rF線圈 1305及側面RF線圈1307。頂部RF線圈1305係中等頻率或 MFRF線圈,且側面RF線圈1307係低頻率或LFRF線圈。在 圖13中展示之實施例中,MFRF頻率可自430 kHz至470 kHz ’且LFRF頻率自340 kHz至3 70 kHz。然而,可使用具 有單一源及/或非RF電漿源之裝置。 在反應器内’晶圓基座1309支撐基板1311。包含用於供 應熱傳遞流體之管線1313之熱傳遞子系統控制基板1311之 溫度。晶圓卡盤及熱傳遞流體系統可促進維持適當晶圓溫 度。 HFRF源1 3 1 5之高頻率RF用來對基板1 3 11加電偏壓,並 將已充電前驅物種類抽出至基板上以用於預處理或固化操 作。來自源13 15之電能經由電極或電容耦合而耦合至(例 如)基板1311。注意,施加至基板之偏壓不需要為RF偏 壓。亦可使用其他頻率及DC偏壓。 經由一或多個入口 1317引入處理氣體《可預混合或不預 混合氣體。氣體或氣體混合物可自主氣體環1321引入,主 氣體環1321可能或可能不朝著基板表面指引氣體。喷射器 可連接至主氣體環13 2 i以將氣體或氣體混合物中之至少一 些指引至腔室中並朝著基板引導。用於朝著晶圓指引處理 氣體之喷射器、氣體環或其他機構在某些實施例中不存 在。處理氣體經由出口 1322排出腔室13〇3。真空泵通常將 處理氣體抽出並維持反應器内之適合低壓。儘管在預沈積 及/或後沈積處理或固化之情況中描述HDp腔室,但在某此 160970.doc •64. 201237994 實施例中,HDP腔室可用作用於可流動薄膜之沈積之沈積 反應器。舉例而言,在熱(非電漿)沈積中,可使用此種腔 室而不撞擊電漿。 圖14A至圖14Q描繪經組態以用於可流動間隙填充操作 之反應器之一個實例實施之各種視圖及組件。此種反應器 亦可用於其他非間隙填充可流動沈積處理中。圖14A描繪 反應器1400(未安裝頂板或喷淋頭)之立體圖。反應器14〇〇 包含腔室1401、晶圓支撐裝置1420及提昇機構1402。腔室 1401可包含(例如)經組態以收納用於加熱腔室14〇1之加熱 元件之兩個加熱器插孔。亦展示了晶圓14〇4,晶圓1404針 對此實施係300 mm直徑之晶圓。一般而言,儘管圖14A至 圖14Q中展示之組件經設計以與3〇〇 mm晶圓一起使用,但 較大或較小晶圓大小可由根據類似原理設計但經重新定大 小以容納較大或較小大小之晶圓之設備容納。晶圓支撐裝 置可提供與圖4A至圖4E中之基座420提供之功能性類似之 功能性’且亦可視為基座之一個實施。相反地,基座420 亦可視為晶圓支撐裝置之一個實施^反應器1400可與本文 中任一處描述之系統(諸如,氣體分配系統、雙流喷淋 頭、RF電力、真空源、晶圓處理系統等)連接。 反應器1400可(例如)經組態以將晶圓1404冷卻至約 之溫度以促進晶圓1404上之可流動間隙填充沈積,同時將 腔室1401及反應器14〇〇内之其他組件維持在較高溫度以抑 制非晶圓組件上之沈積,如先前大體所論述。圖14 A至圖 MQ中展示之設計之各態樣係針對管理晶圓支撐裝置1420 160970.doc -65- 201237994 及其中之組件及晶圓1404之熱環境。圖14A至圖i4Q中展 示之設計可(例如)能夠跨越實質上整個晶圓1404達成小於 〇.35°C或甚至小於o.pc之溫度變化,同時將晶圓14〇4維持 在低溫(例如,-10t至_5t),且同時將緊密接近晶圓14〇4 但不觸碰晶圓1404之各種其他組件維持在比晶圓14〇4高約 5°C至HTC之溫度。 圖14B描繪反應器14〇〇之立體剖面圖,且圖14c自側視 透視圖描繪圖14B之剖面圖。一些較小組件(諸如,〇形 環、配件、緊固件、管路等)可能未展示或可能未以整體 展示以避免不適當之視覺混亂。晶圓14〇4可由晶圓支撐裝 置1420之卡盤1422支撐,晶圓支撐裝置142〇又可由介電板 1427支撐。可支撐晶圓14〇4之卡盤1422之區域可稱作晶圓 支撑區域。晶圓支撐區域一般可與卡盤1422之頂表面對 應’但卡盤1422之頂表面可延伸超出晶圓14〇4及晶圓支撐 區域之標稱直徑。除了支撐卡盤1422之外,介電板1427亦 可支撐介電環1426 »介電板1427及介電環1427可(例如)自 AhO3製成。儘管介電板1427及介電環1426展示為單獨 件’但在一些實施例中亦可製成單一零件。無論係單一零 件或是多個件之總成,介電板丨427及介電環1326可視為具 有「介電底板」或「外介電壁」。介電板1427及介電環 1426或等效結構亦可視為並可稱作「介電中斷區」。介電 板1427—般可與介電底板對應,且介電環1426及介電板 1427之最外部分—般可與外介電壁對應。介電板1427可由 外殼1429支撐’外殼1429可由受提昇機構14〇2驅動之支撐 160970.doc •66* 201237994 柱1454支撐。外殼1429可自鋁(例如,6061鋁)製成,且類 似於介電板1427及介電環1426 ’可包含底板及外壁。外殼 1429之外壁可為實質上圓柱形。在一些實施中,外殼1429 亦可充當用於在處理期間使用之RF能量之接地平面。外殼 1429之底板可實質上為平面之’且可沿著外壁之一條邊緣 與外壁相接。外殼1429亦可包含進一步界定外殼1429之整 體形狀之其他組件或部分。外殼1429可提供由圖4至圖4E 之壓板422提供之功能性中之一些,例如,外殼1429可直 接或間接地提供對卡盤1422之支樓。外殼142 9亦可稱作卡 盤外殼。 當晶圓支撐裝置1420由提昇機構1402降低時,起模針總 成1428可提昇晶圓1404離開卡盤U22。圖14D及圖14E展 示反應器1401之立體剖面圖及側面剖面圖,其中晶圓支撐 裝置1420處於降低位置,且晶圓1404由起模針總成1428提 昇離開卡盤1422。 圖14F及圖14G展示卡盤1422之立體圖及立體分解圖(未 展示晶圓1404)。卡盤1422可為多層組件,且可包含可結 合於一起以形成毗連零件之吹掃通道板丨423、冷卻通道板 1424及基板1425。吹掃通道板1423可向晶圓1404及保護環 1421提供支撐。保護環1421可自介電材料(諸如,Al2〇3)製 成。起模針總成142 8可安裝於卡盤1422中。卡盤1422可部 分或完全以塗層塗佈來保護卡盤1422以防在電漿清潔操作 期間腐蝕。此塗層可(例如)由2 μιηΐ 3 μιη之電子束沈積氟 化釔(YF3)提供。卡盤1422可(例如)自鋁(諸如,3〇〇3鋁)製 I60970.doc -67- 201237994 成。起模針總成1428可(例如)自a1203製成,且可藉由使用 〇形環或其他順應性夾持機構而保持於卡盤1422内之適當 位置處。卡盤1422可比晶圓1404之標稱晶圓直徑具有較大 直徑。舉例而言,卡盤1422可在徑向方向上延伸超出晶圓 1404之邊緣1〇 mm至15 mm,或約13 mm。 返回參看圖14B及圖14C,各種管道可藉由支撐柱1454 導引至卡盤1422之下側。舉例而言,冷卻劑管線(包含冷 卻劑供應管線及冷卻劑回流管線)可導引藉由支撐柱丨454 且連接至界面板1430,界面板1430可密閉地密封至卡盤 1422之下側。為了輔助理解卡盤1422内之各種管道界面, 圖14H及圖14J至圖140提供展示此等界面之各種立體剖面 圖及側面剖面圖。 圖14H描繪反應器1400之立體非平面剖面圖。在圖14H 中’反應益1400已沿相父於晶圓支標裝置1420之中心處且 通過冷卻劑管線143 1之中心線之平面剖切。在一些實施中 (諸如,圖14H中描繪之實施),冷卻性能可基本上與哪個 冷卻劑管線1431用來供應冷卻劑及哪個用來回流冷卻劑無 關。然而,在一些其他實施中,一個冷卻劑管線1431可需 要設計為供應管線,且另一冷卻劑管線143 1設計為回流管 線以便促進跨越卡盤1422之均一冷卻。圖14A至圖14q中 展示之實施不以卡盤1422内之加熱元件為特徵。 圖141自各種透視圖(包含三個單獨立體透視圖)描繪冷卻 板1424。冷卻板1424之冷卻通道1430可由嵌套^形部分組 成’嵌套C形部分可大體對準,使得每一 c形部分之「敵 160970.doc -68 - 201237994 開」部分定向於實質上相同方向中。每一c形部分可藉由 跨接部分連接至另一C形部分,跨接部分將C形部分之一 個末端連結至另一C形部分之對應末端。一些c形部分可 在兩個末端處都不連接至其他C形部分,且可替代地使一 個末端流體連接至與冷卻劑管線143丨對應之入口或出口。 此等c形部分可利用跨接部分到達入口或出口,或c形部 分可簡單地將一末端定位在此入口或出口處。冷卻通道 1430可(例如)具有約〇.3"之標稱深度及〇·45,,之標稱寬度。 圖14J及圖14Κ分別描繪沿著藉由校準光管1432及原位光 管1433之中心線之平面之晶圓支撐裝置142〇之立體剖面圖 及側面剖面圖。校準光管1432可提供雙重目的功能性,舉 例而言,校準光管1432可定於晶圓支撐裝置142〇/卡盤 1422上之中心,並用作辅助將晶圓丨4〇4定於晶圓支擇裝置 1420上之中心之基準。舉例而言,晶圓轉移機器人(未圖 示)可照明晶圓支撐裝置1420之頂侧。來自此照明之光可 自晶圓支撐裝置1420之頂表面反射回晶圓轉移機器人處。 然而,由於校準光管1432在光學上係透明之,因此自晶圓 支樓裝置1420之頂表面反射回之光的量在光入射在裝置之 中心上時減少。晶圓轉移機器人可配備有量測反射光的量 之债測器。晶圓轉移機器人可經組態以使較低反射率區域 與晶圓支撐裝置1420之中心相關。校準光管丨432可由裝配 於吹掃板1423及冷卻板1424中之藍寶石窗覆蓋。 校準光管可提供之額外功能性為允許使用原位光管1433 校準溫度監控系統。歸因於本文中描述之方法中使用之低 160970.doc -69· 201237994 溫,常規非接觸溫度量測(諸如,紅外線溫度量測)可能不 能在處理期間量測晶圓剛之溫度。為了在處理期間獲得 關於晶圓1404之溫度的原位溫度資料,可假定在卡盤丨斗^ 内一點處之卡盤1422之溫度可用來及時可靠地估計給定點 處之晶圓1404之溫度。原位光管1433可提供用於獲得卡盤 1422之此内部溫度量測之機構。峨光盤Μ”可與卡盤“Μ 進行熱接觸(例如,以冷卻板1424),且原位光管1433可提 供光學路徑以供由磷光盤1434發射之光到達光譜光傳感器 (未圖示)》磷光盤1434可取決於其所處之溫度而發射不同 波長之光,且此等波長/溫度相互關係可基於所發射光之 波長來提供磷光盤1434之溫度之準確量測。然而與自磷 光盤1434獲得之溫度相比時,晶圓14〇4溫度可能存在某一 偏差。為了量化此偏差並校正此偏差,可使用校準晶圓來 採取校準措施’校準晶圓經塗佈以允許經由與校準光管 1432連接之光學傳感器之溫度量測。當使用校準晶圓時, 可使用原位光管1433及校準光管1432獲得溫度量測。針對 相同環境條件在兩組量測值之間觀察到的差異可用來校正 與晶圓1404相關聯之卡盤1422之原位光管1433讀數並獲得 處理期間的晶圓1404溫度之較準確估計。 圖14L及圖14M分別描繪沿著通過卡盤1422及吹掃氣體 管線1435之中心線的平面之晶圓支撐裝置142〇之立體剖面 圖及側面剖面圖。兩個吹掃氣體上升器1456允許由吹掃氣 體管線1435提供之吹掃氣體到達吹掃氣體入口通道1438, 並藉由吹掃氣體輻條1455(在圖14G及圖14H中不可見,但 160970.doc •70· 201237994 一個吹掃氣體輻條1455在圖14B及圖14C中可見)分配至環 形吹掃氣體通道1439。稍後更詳細地論述用於此實施之吹 掃氣體功能性。 圖14N及圖140分別描繪沿著通過卡盤1422及真空管線 1457之中心線的平面之反應器14〇〇之立體剖面圖及側面剖 面圖。真空管線1457可經由真空上升器1458與環形真空通 道1437流體連接。儘管圖14N及圖140中未展示,但若干 小真空端口可流體連接環形真空通道丨437與卡盤1422之頂 面以在某一處理期間允許晶圓14〇4之真空辅助夾持Q六個 此種真空端口 1461之圓形圖案可見於圖14F及圖14G中。 圖14P展示(例如)在圖14f中展示之晶圓支撐裝置組件之 子部分的約一半之細節側面剖面圖及晶圓14〇4。圖14q展 示包含保護環1421之晶圓支撐裝置1420之邊緣區的其他細 節側面剖面圖。保護環可具有比晶圓14〇4之標稱直徑大約 2 mm之内徑。如自圖14P及圖14Q為明顯的,各種隔熱區 可分離晶圓支撐裝置1420之各種組件。如本文中使用,隔 熱區指在零件之間的實體分離(亦即,間隙),隔熱區充分 大以足夠在實質上防止在零件之間經由陷入於隔熱區内之 任何氣體的料熱傳遞,但亦充分小以足夠防止在零件之 間經由氣體之實質上對流熱傳遞。直接接觸或由間隙分離 但仍充分靠近以足夠經歷跨越間隙之經由陷人於間隙内之 任何氣體之顯著傳導熱傳遞的零件或零件之部分在本文標 中可稱作與彼此「熱接觸」。 在晶圓支擇裝置剛之狀況下,可駐留於隔熱區内之氣 160970.doc 201237994 體可為處理氣體’諸如Ar、He或由氣體遞送系統供應之其 他氣體。隔熱區可經設計以考慮在晶圓處理期間存在之處 理環境中之此等氣體之密度。舉例而言,當^或^^氣體填 充隔熱區間隙且間隙處於25托至75托之壓力時,〇 〇15,,或 較低隔熱區可導致兩個零件之間的不可忽略之熱傳導。術 語「隔熱區」可用來指組件之一部分,當組件與另一組件 組裝時,組件之該部分可表示隔熱區之一側。另一組件可 具有形成隔熱區之另一側之對應隔熱區。 舉例而言,當介電板1427之下側可跨越第一結構支撐區 1459與外殼1429實體接觸時,如圖14p中展示之介電板 1427之下側之其餘部分可藉由軸向隔熱區M53自外殼Μ” 偏離。第一結構支撐區1459可為具有(例如)4"内徑及5 25" 外徑之實質上環形區域。在一些實施中,第一結構支撐區 可具有小於卡盤1422之直徑的約50%之外徑。在外殼1429 與介電板1427之下側之間的軸向隔熱區1453大小可在 0·015與〇.〇5〇"之間且在兩個零件上之環形隔熱區上方延 伸,環形隔熱區具有約5.25"之内徑及約13.25”之外徑。應 認識至,本文中相對於圖14ρ及圖14Q中所展示之各種隔熱 區所描述之特定隔熱區值可不同於可有效地提供類似熱管 理功能性之其他值,且應理解,藉由使用與本文中描述之 隔熱區類似但具有不同值之隔熱區來達成類似熱管理功能 性的晶圓支撐裝置設計落入本發明之範疇内。 軸向隔熱區1453可轉變為在外殼1429之内圓柱形表面與 "電板1429之外圓柱形表面之間的徑向隔熱區145〇 ,且可 I60970.doc •71、 201237994 在外殼1429之内圓柱形表面與介電環1426之外圓柱形表面 之間延續。術語「軸向隔熱區」在本文中用來描述主要特 徵在於在沿著實質上軸向對稱之總成之中心軸線的零件之 間的一個或若干間隙之隔熱區,且術語「徑向隔熱區」在 本文中用來描述主要特徵在於在此等零件之間的一個或若 干徑向間隙之隔熱區。徑向隔熱區145〇可具有介於〇 〇15,, 與0.050"之間的間隙距離。 在圖14P中明顯之另一隔熱區位於卡盤1422與介電板 1427及介電環1426之間。卡盤1422可橫跨第二結構支撐區 1460與介電板1427進行實體接觸,如同介電板1427可橫跨 第一結構支撐區1459與外殼1429進行實體接觸一樣。自第 二結構支撐區1460向外延伸之卡盤1422之部分可藉由軸向 隔熱區1452與介電板1427分離,軸向隔熱區1452轉變為卡 盤1422之外圓柱形表面及介電板1427之内圓柱形表面之間 的徑向隔熱區1447。在卡盤1422與介電板1427之間的軸向 隔熱區1452及徑向隔熱區1447都可具有介於〇 〇15"與 0.050"之間的間隙距離。軸向隔熱區1452可跨越介電板 1427及卡盤1422上之環形隔熱區延伸,環形隔熱區可具有 約5.25"之内徑及約12.75"之外徑。 除了將介電環1426及介電板1427與外殼1429及與卡盤 1422分離之隔熱區之外,其他隔熱區可存在於圖i4p及圖 14Q中所展示之其他組件之間。舉例而言,保護環1々a 1可 藉由可為約0.015"至0.050"之軸向隔熱區1446及1449及徑 向隔熱區1448與外殼U29及介電環1421熱分離。儘管實體 160970.doc •73· 201237994 上受卡盤1422支撐,但保護環1421可大部分經由間隙1444 及徑向隔熱區1445與卡盤1422分離,間隙1444在一些實施 中可為約15微米至25 0微米。保護環1421可藉由自保護環 1421之下側突出之若干柱體1442與卡盤1422間隔開,柱體 1442擱置在卡盤1422之頂表面中之相應凹部丨443内。儘管 在保護環1421與卡盤1422之間經由柱體1442及收納凹部 1443存在實體接觸,但此實體接觸可非常受限制(例如, 二個小直徑柱體),且藉由柱體1442至卡盤1422中之傳導 熱傳遞可相應地可忽略。除了(例如)柱體丨442之外,保護 環142 1可為實質上軸向對稱的。另外,與晶圓支撐裝置 1420中之其他組件中之許多組件相比,保護環〖42丨可具有 較低熱質量,此減少熱慣性,亦即,與晶圓支撐裝置丨42〇 内之其他組件相比,熱可在保護環1421内非常快速地流 動。保護環1421内之此快速熱流動准許自保護環1421至周 圍環境之對流熱傳遞的高速率。在處理期間,反應物氣體 可橫跨晶圓1404朝著晶圓周界並在保護環上方流動。此等 氣體可藉由此對流熱傳遞移除已自腔室14〇1傳遞至保護環 M2!之熱,並將熱自晶圓1404攜帶走。藉由上文描述之對 流熱傳遞及最小熱傳導之組合,卡盤1422可在處理期間自 保護環1421接收可忽略量之熱。 儘管歸因於藉由上文描述並(例如)在圖14Q中展示之特 徵及幾何形狀之來自保護環1421之熱傳遞,晶圓14〇4可被 保護以免於熱偏移,但晶圓1404亦可易受卡盤1422上之局 部熱點或冷點損壞,此可導致橫跨晶圓14〇4之較不均一 i I60970.doc -74- 201237994 溫度分佈。為了幫助保護晶圓1404以免於橫跨卡盤1422的 表面之此可能溫度偏差,晶圓1 404可藉由使用小凸台或突 起1441之圖案來自卡盤1422之表面偏離。突起1441高度可 在15微米至250微米(約0·0006"至001”)之間,且使晶圓 1404自卡盤1422偏移達相應量。突起1441可(例如)直徑在 0.010"至0.050"之間,且以同心輻射圖案配置來橫跨晶圓 1404之整個跨度提供晶圓14〇4之分佈式支撐。突起1441及 突起1441之整體圖案在圖14F及圖14G中亦可見;展示總共 96個突起1441。可使用具有不同數目、突起直徑或大小及 突起高度之其他圖案。 環形吹掃氣體通道1439及吹掃氣體分配孔1440亦在圖 14P及圖14Q中可見。吹掃氣體分配孔144〇可沿環形吹掃氣 體通道1439間隔以形成圓形孔圖案;圓形孔圖案可具有比 b曰圓1404之標稱直徑稍小(例如,小1爪瓜至2 mm)之直徑。 吹掃氣體分配孔1440可為具有約(Κ〇(π"至〇 〇1 5"之排出直 徑之階梯式孔。環形吹掃氣體通道1439可經由一或多個吹 掃氣體輻條1455流體連接至吹掃氣體入口通道1438。藉由 吹掃氣體管線1435供應至吹掃氣體入口通道1438之吹掃氣 體可行進藉由一或多個吹掃氣體輻條1455進入至環形吹掃 氣體通道1439中,並藉由吹掃氣體分配孔144〇離開。吹掃 氣體可接著排出吹掃氣體分配孔144〇進入在晶圓14〇4與卡 盤1422之間的間隙中,在該間隙處,吹掃氣體可最終朝著 晶圓1404之周邊並在保護環1421之上方及下方流動。吹掃 氣體可用來實質上使卡盤1422免於用於沈積之反應物,因 160970.doc -75- 201237994 此防止卡盤1422上之實質上之沈積並延長卡盤1422之使用 壽命。儘管吹掃氣體在晶圓1404之頂部上方及朝著晶圓 1404之中心之一些反擴散可發生’但可藉由反應物氣體之 流動朝著保護環1421並在晶圓支撐裝置1420之邊緣上方推 動大多數吹掃氣體。吹掃氣體亦可保護保護環1421及外殼 1429以防不希望有之沈積。 在一些實施中,(例如)不提供RF能量之晶圓支撐褒置、 由介電板1427及介電環1426形成之介電中斷區可自設計省 略。在此等實施中,外殼1429及卡盤1422可經構造以在彼 此之間提供0.015至0.050之隔熱區,因此避免產生大之空 間容積,省略之介電材料原本可位於該大的容積處。 圖11至® 14L提供可結合本文論述之結構及系統使用的 裝置之實例。然而,熟習此項技術者將理解,可自所提供 之描述進行各種修改。舉例而言,電激處理模組可為遠端 及/或直接感應耦合或電容耦合之電漿模組。在一些實施 中,可流動間隙填充模組可以容納於單一腔室中之一個以 上基座及喷淋頭(例如,兩個基座及喷淋頭 允許增加mu㈣爛—㈣巾州理= 圓。 在一些實施例中,《置可包含系統控制器,該系統控 制器具有用於控制根據本發明之處理操作之 :器:常將包含-或多個記憶體器件及-或多個處= 發月之m有用於控制根據本發明之處理操作 160970.doc • 76 · 201237994 之指令之機器可讀取媒體可搞合至該系統控制器。該處理 器可匕3 CPU或電腦’且可包含_或多個類比及/或數位輸 入/輸出連接、步進電動機控制器板等H或多㈣ 比及/或數位輸入/輸出連接、步進電動機控制器板等可通 信地連接。舉例而言,料統控制器可經組態以控制氣體 遞送系統、基座移動、真空端口抽吸、電毀電極,及/或 加熱及冷卻元件(若存在於特定實施例中)。 通常,將存在與系統控制器相關聯之使用者界面。該使 用者界面可包含顯示屏、裝置及/或處理條件之圖形軟體 ·.,、員示器’及使用者輸入器件,諸如指標器件、鍵盤、觸控 榮幕、麥克風等《系統控制器可連接至卫具或模組中所展 示之任-或所有組件,包含在本申請案之圖式中展示之組 件,系統控制器之置放及連接可根據特定實施而變化。 在某些實施例中,系統控制器控制處理腔室中之壓力。 系統控制器亦可藉由調節閥、液體遞送控制器及遞送系統 中之MFC及排放管線中之流量限制閥來控制腔室中各種處 理氣體之濃度。系難制H執行线控制軟體,該系統控 制軟體包含用於控制氣體及液體之時序、流速、腔室壓 力、腔室/喷淋頭/基座/基板壓力及/或特定處理之其他參 數之指令集合。在一些實施例中,可使用儲存在與控制器 相關聯之記憶體器件中之其他電腦程式。在某些實施例 中,系統控制器控制基板至圖中所示之裝置之轉移及自圖 中所示之裝置之轉移。 用於控制處理序列中之處理的電腦程式碼可以任何常規 160970.doc -77· 201237994 之電腦可讀取程式設計語言來編寫,諸如,組合語古、 C、C + +、Pasea!、F她an或其他語言。編譯目標或 指令碼可由處理器執行以執行程式中所識別出之任務。系 統軟體可用許多^;同方式來加以設計或組態。舉例而言, 可編寫各種腔室組件子程式或控制目標以控制執行所述製 程所必需之腔室組件之操作。用於此目標之程式或程式片 段之實例包含處理氣體控制程式瑪、壓力控制程式碼及電 漿控制程式碼》 控制器參數與處理條件有關,例如,每一操作之時序、 腔室内之壓力、基板溫度、處理氣體流速、RF功率及上述 其他條件。此等參數係以配方之形式提供給使用者,且可 利用使用者介面來輸入。用於監控處理之信號可藉由系統 控制器之类員比及/或數位輸入連接來提#。用☆控制處理 之信號在裝置之類比及數位輸出連接上輸出。 上文所描述之裝置/製程可與光微影圖案化工具或製程 結合使用,例如,用於製造半導體器件、顯示器、㈣、 光伏打面板等等。通常,但不必,此等工具/製程將在共 同製造設施中一起使用或進行。薄膜之光微影圖案化通常 包括以下步驟中之一些或全部,每—步驟用若干可能工具 實現(1)使用旋塗或喷塗工具將光阻材料塗覆至工件 (即,基板)上,(2)使用熱板或爐子或。¥固化工具來固化 光阻材料;(3)用諸如晶圓步進器之工具將光阻材料曝露至 可見光或UV或X光;(4)對該抗蝕劑顯影以便選擇性地移除 抗蝕劑,進而使用諸如濕式工作台之工具來將其圖案化; 160970.doc • 78 · 201237994 (5)藉由使用乾式或電漿輔助蝕刻工具將抗蝕劑圖案轉印至 下層薄膜或工件;及(6)使用諸如RF或微波電漿抗蝕劑剝 離器之工具來移除抗蝕劑。另外,所揭示之方法可在一個 製程中實施,在該製程中,光微影及/或圖案化處理在所 揭示方法之前或之後。 應理解,除非所述特定實施中之任一者中之特徵明確識 別為彼此矛盾,或相關背景意味著其相互排斥且不易在互 補及/或相互支援之意義上加以組合,否則本發明之總體 涵蓋且設想彼等互補實施之特定特徵可選擇性地加以組合 以提供一或多個全面但稍有不同之技術解決方案。因此, 應進一步瞭解,以上描述僅作為實例給出,且在本發明之 範疇内可進行細節上之修改。 【圖式簡單說明】 圖1說明可流動間隙填充製程圖。 圖2A及圖2B說明使用可流動間隙填充模組之工具的平 面圖。 圖3說明可流動間隙填充模組之組態。 圖4A至圖4E說明一個可流動間隙填充模組實施中之各 種結構。 圖5 A示意性地說明在可流動間隙填充裝置之—些實施中 供用於氣體遞送系統之各種氣體供應模組。 圖5B示意性地說明使用He作為運載氣體之實例氣體遞 送系統。 圖5C示意性地說明圖5B之氣體遞送系統’其中斛作為 160970.doc -79· 201237994 運載氣體。 圖5D示意性地說明使用Ar作為運载氣體之另一實例氣 體遞送系統。 圖5Ε示意性地說明使用Ar作為運載氣體之第二實例氣體 遞送系統。 圖5F示意性地說明使用Ar作為運載氣體之第三實例氣體 遞送系統。 圖5G示意性地說明使用Ar作為運載氣體之第四實例氣 體遞送系統。 圖5H示意性地說明使用Ar作為運載氣體之第五實例氣 體遞送系統。 圖51示意性地說明使用Ar作為運載氣體之第六實例氣體 遞送系統。 圖5 J示意性地說明使用Ar作為運載氣體之第七實例氣體 遞送系統。 圖5K示意性地說明使用Ar作為運载氣體之第八實例氣 體遞送系統。 圖5L示意性地說明使用Ar作為運載氣體之第九實例氣體 遞送系統。 圖5M示意性地說明使用Ar作為運載氣體之具有可選轉 向管線吹掃氣體源之第九氣體遞送系統。 圖6為反應器及可能電阻加熱元件位置之簡化平面圖。 圖7A以平面圖說明可移除式擋板。 圖7B以平面圖說明反應器及環形通道。 160970.doc -80· 201237994 圖7C以等角剖視圖說明反應器。 圖8為擋板之分析結果曲線。 圖9為反應器之等角視圖’其中隱線展示内部特徵。 圖1 〇說明供用於喷淋頭之部分孔圖案。 圖11展示反應器或模組之實例。 圖12為遠端電漿處理模組之簡化示意圖。 圖13為HDP-CVD裝置之各種組件之簡化說明。 圖14A描繪實例反應器之等角視圖。 圖14B描繪圖14A之反應器之等角剖面圖。 圖14 C描繪圖14 A之反應Is之側剖面圖。 圖14D描繪圖14A之反應器之等角剖面圖,其中晶圓_ 於提昇位置中。 圖14E描繪圖14A之反應之側剖面圖,其中晶圓處於 提昇位置中。 圖14F描繪圖14A之晶圓支撐裝置之等角視圖。 圖14G描繪圖14A之晶圓支撐裝置之等角分解圖。 圖14H描繪說明冷卻管線界面之圖14 A之晶圓支樓裝置 之等角部分剖面圖。 圖141描緣用於圖14 A之反應器中之實例冷卻板之多個視 圖。 圖14J描繪說明光管界面之圖14A之晶圓支撐裝置之等角 剖面圖。 圖14K描繪圖14J中所展示之剖面之側視圖。 圖14L描繪說明氣體吹掃界面之圖14A之晶圓支撐裝置 160970.doc 201237994 之等角剖面圖。 圖14M描繪圖14L中所展示之剖面之側視圖。 圖14N描繪說明真空界面之圖14A之晶圓支撐裝置的等 角剖面圖。 圖140描繪圖14N中所展示之剖面之側視圖。 圖14P描繪圖14A之晶圓支撐裝置之細節剖面圖。 圖14Q描繪圖14A之晶圓支撐裝置之另一細節剖面圖。 【主要元件符號說明】 200 工具組態 210 高密度電漿化學氣相沈積(HDP-CVD)模組 220 可流動間隙填充模組 230 PEC模組 240 WTS模組 250 真空預抽室 260 工具組態 270 遠端電漿固化模組 280 .可流動間隙填充模組 290 真空預抽室 295 晶圓轉移系統 300 可流動間隙填充處理模組 310 反應器 320 氣體遞送系統 330 處理反應物及化學源 340 流量控制硬體 160970.doc -82 - 201237994 350 氣體遞送控制器 360 喷淋頭 370 基座 380 基座驅動單元 400 反應器 402 腔室外殼 404 頂板 406 裙緣 408 喷淋頭 410 晶圓 412 卡盤 414 絕緣環 416 RF電極 418 電阻加熱元件 420 基座 420, 基座 422 壓板 424 基座柱 426 密封件 428 壓板冷卻劑管線 430 基座吹掃管線 432 〇充氣部 434 Ρ充氣部 436 0氣體管線 ·83· 160970.doc 201237994 438 P氣體管線 440 分區 442 0反應物 444 P反應物 446 沈積氣體混合物 448 0充氣部孔 450 P充氣部孔 452 吹掃氣體 454 冷卻劑 456 熱量 501 模組A氣體源 502 模組A質量流量控制器 503 模組B氣體源 504 模組B質量流量控制器 505 模組C液體源 506 模組C氣體源 507 模組C液體流量計 508 模組C質量流量控制器 509 模組C汽化器 510 模組D液體源 511 模組D液體流量控制器 512 模組D汽化器 513 模組E液體源 514 模組E汽化器 160970.doc -84- 201237994 515 模組E質量流量計 516 模組F第一液體源 517 模組F氣體源 518 模組F第二液體源 519 模組F第一液體流量控制器 520 模組F質量流量控制器 521 模組F第二液體流量控制器 522 模組F蒸發器 523 0轉向管線 524 P轉向管線 525 分區 526 雙流喷淋頭 527 〇分區 528 P分區 529 模組C 530 模組A 531 模組A 532 模組A 533 模組A 534 模組A 535 模組A 536 模組E 537 模組E 538 模組E 160970.doc -85 · 201237994 539 模組c 540 模組A 541 模組A 542 模組D 543 模組c 544 模組E 545 模組D 546 模組D 547 模組c 548 模組E 549 模組F 600 反應器 610 腔室 620 内部細孔 630 電阻加熱匣 640 電阻熱器件 700 反應器 701 可移除式擋板 703 環形區 704 頂板 705 徑向延伸區 707 子L 708 喷淋頭 709 孔 160970.doc -86- 201237994 711 反應器 712 卡盤 713 環形通道 714 絕緣環 715 徑向凹室 717 真空端口 722 壓板 724 基座軸 728 冷卻劑管線 728' 冷卻通道 900 反應器 901 遠端電漿源端口 1000 子L圖案 1010 〇孔 1020 P孔 1100 反應器/腔室 1102 低頻率RF產生器 1104 高頻率RF產生器 1108 歧管 1110 源氣體管線 1112 入口 1114 喷淋頭 1116 基板 1118 晶圓基座 • 87- 160970.doc 201237994 1120 接地加熱器框 1122 出口 1124 處理腔室 1200 裝置 1201 曝露腔室 1203 晶圓 1205 壓板 1207 管道 1209 入口 1211 電漿產生部分 1217 喷淋頭總成 1301 反應器 1303 處理腔室 1305 頂部RF線圈 1307 側面RF線圈 1309 晶圓基座 1311 基板 1313 管線 1315 HFRF 源 1317 入口 1321 主氣體環 1322 出口 1400 反應器 1401 腔室 160970.doc -88 201237994 1402 提昇機構 1404 晶圓 1420 晶圓支撐裝置 1421 保護環 1422 卡盤 1423 吹掃通道板 1424 冷卻通道 1425 基板 1426 介電環 1427 介電板 1428 起模針總成 1429 外殼 1430 界面板 1431 冷卻劑管線 1432 校準光管 1433 原位光管 1434 磷光盤 1435 吹掃氣體管線 1437 真空通道 1438 ,吹掃氣體入口通道 1439 吹掃氣體通道 1440 吹掃氣體分配孔 1441 突起 1442 柱體 160970.doc -89- 201237994 1443 收納凹部 1444 間隙 1445 徑向隔熱區 1446 轴向隔熱區 1447 徑向隔熱區 1448 徑向隔熱區 1449 轴向隔熱區 1450 徑向隔熱區 1452 轴向隔熱區 1453 轴向隔熱區 1454 支撐柱 1455 吹掃氣體輻條 1456 吹掃氣體上升器 1457 真空管線 1458 真空上升器 1459 第一結構支撐區 1460 第二結構支撐區 1461 真空端口 160970.doc -90-Figure 5J depicts a gas delivery system implementation that is largely similar to Figure 5C 160970. Doc-37-201237994 _ shows the gas delivery system implementation, but where module E 536 ' is removed from p-partition 528 and in module 527, module C 539 is replaced with module F 549. The module F 549 can contain H2〇 in the first liquid source 516 of the module f, and the solvent in the second liquid source 518 of the module F, and in the module! Gas source 517 contains Ar. Figure 5K depicts a gas delivery system implementation that is largely similar to the gas delivery system implementation shown in Figure 51, but with module C 5 3 9 and module E 544 replaced with a single module F 549. Module ρ 549 in the module? The first liquid source 5 16 contains HzO, the module ρ the second liquid source 5 丨 8 contains a solvent, and the module F gas source 517 contains Ar. Figure 5L depicts a gas delivery system implementation that is largely similar to the gas delivery system implementation shown in Figure 5j but with the module Ε 5 3 7 replaced with module C 547. Module c 547 as discussed in Figure 5A may contain a liquid first precursor and an Ar gas. Figure 5M depicts the gas delivery system of Figure 5L, but with an additional Ar source that can be used to purge the steering line of the steered reactant. The various valves depicted in Figures 5A through 5B can be opened or closed as needed to supply the 0 reactants and ρ reactants to the dual flow showerhead 526 during various stages of wafer processing. The reactor module contains a reactor 400, which is also referred to as a reaction chamber, chamber, and the like. Reactor 400 acts as a sealed environment in which a flow gap filling process can occur. In many embodiments, the reactor 4 is characterized by a radially symmetric interior. Reduce or eliminate the deviation from the radially symmetrical interior 160970. Doc -38· 201237994 helps to ensure that the flow of reactants occurs radially on the wafer 410. The interference with the reactant stream caused by radial asymmetry can result in more or less deposition than in other regions. The deposition on some areas of the wafer 410 can produce undesirable changes in wafer uniformity. Reactor 400 contains several major components. Structurally, the reactor 4 can include a chamber housing 402 and a top plate 404. The top plate 404 is configured to attach to the cavity outer casing 402' and provide a sealed interface between the chamber casing 4〇2 and the gas distribution manifold/spray head, electrode or other modular device. The different top plates 4〇4 can be used for the same chamber housing 402 depending on the particular equipment requirements of the process. The chamber casing 402 and top plate 404 may be mechanically machined from aluminum (e.g., 606 1·Τ6), but other materials may be used, including other varieties of aluminum and other non-aluminum materials. The use allows for easy machining and handling, and makes it possible to utilize the high thermal conductivity properties of aluminum. The top plate 404 can be equipped with a resistive heating blanket to maintain the top plate 4〇4 at a desired temperature. For example, the top plate 404 can be equipped with a resistive heating blanket configured to maintain the top plate 4〇4 at a temperature between 4 and TC (other than a resistive heating blanket or as an alternative to a resistive heating blanket). An alternative heating source can be used, such as circulating the heated liquid through the top plate 404, or supplying a resistive heating crucible to the top plate 404. The chamber housing 402 can be configured to maintain the chamber housing 4〇2 at a desired temperature. The lower resistor heats the crucible. For example, the chamber housing 4〇2 can be equipped with four resistance heating crucibles, which are located at each of the four corners of the chamber. Figure 6 is a simplified plan view This configuration is illustrated. In Figure 6, reactor 600 contains internal pores defined by the sealed processing environment "Ο I60970. Doc 39-201237994, chamber 6H); chamber 610 can be configured to have fine holes in the corners to accommodate the resistive heating crucible 630. The ohmic control resistor can be used to heat £630 in response to the temperature measured by a thermal resistance device (RTD) 64 or other temperature monitoring sensor. Two RTDs 640 can be located on opposite sides of the chamber 61, where each RTD 640 is located between the nearest two resistors. Feedback from the rtd 640 can be used to control the temperature of the resistor to heat up the chamber 63i and the chamber 6i. Other temperature control systems can also be used, such as circulating a heated fluid through the pores in the chamber wall. The resistance heating crucible 630 can use the chamber wall temperature during the flowable gap fill process to control the temperature between 4 (TC and 8 (TC). In some implementations, the top plate 4G4 may not include heating elements and, instead, rely on The chamber resistance heats the S630 heat conduction heat to maintain the desired temperature. Various embodiments may be configured to control the temperature of the interior walls of the chamber and other surfaces that are not required to be deposited, such as the pedestal, skirt, and showerhead, to about 1 Torr. (: to a temperature of 4 ,, which is higher than the target deposition temperature. In this case, the components can be maintained at a temperature higher than this range. By maintaining the reactor 400 The temperature is maintained at a high temperature by the temperature that is actively heated during processing and the internal reactor wall can be maintained relative to the wafer fingers; the wafer temperature is described in more detail later. The temperature of the internal reactor wall is raised relative to the wafer temperature Condensation can be minimized or eliminated on the inner wall of the reactor 4GG. If condensation of the reactants occurs on the inner wall of the reaction II4GG, condensation can form undesirable on the inner wall. Deposited layer. In addition to or instead of the heating chamber of the heating chamber housing 402 and / or the top plate 404 I60970. Doc -40· 201237994 Outdoor shell 402 and/or top plate 404, which can apply a hydrophobic coating to reactor 400 and other components having a wetted surface, such as substrate 42〇, insulating ring 414 or platen 422 Some or all of the wet surface to prevent condensation. This hydrophobic coating is resistant to processing chemical reactions and processing temperature ranges (eg, 40 C to 80 C processing temperature range). Some hydrophobic coatings, such as polyethylene, which are dominated by Shixi and fluorocarbons, may not be compatible with oxidizing (e.g., 'plasma) environments and may not be suitable for use. Nano-based coatings with superhydrophobic properties can be used; these coatings can be ultra-thin and can also have oleophobic properties in addition to hydrophobicity, which allows the coating to be prevented from being used in flowable films Condensation and deposition of many reactants in the deposit, such as Tes, ethanol, and water. An example of a suitable superhydrophobic coating is titanium dioxide (Ti02). In one embodiment, the reactor 400 can be implemented by tilting the bottom plate. For example, the bottom plate of reactor 400 can be a conical surface rather than a planar surface. The reactor bottom plate can be tilted such that any condensate deposited on the reactor bottom plate flows toward the outer outer inner edge of the reactor 400. Alternatively, the reactor bottom plate can be tilted to direct this condensate towards the center of the reactor 4〇〇. The drain port can be included in any location where this condensate is collected. In some implementations, the planar tilt of the reactor floor can be used instead of the cone tilt; however, the cone tilt can reduce the manufacturing complexity of the reactor 4 compared to planar lift. Reactor 400 can also include a pressure sensor configured to measure pressure during reactor processing operations in reactor 400. For example, the pressure sensor can be mounted on the inner wall of the reactor 400, the recess I60970 in the inner wall of the reactor 400. Doc •41 201237994, and/or on the outside of reactor 400. If the pressure sensor is mounted on the exterior of the reactor 400, a pressure monitoring port can be provided to allow the pressure sensor to be fluidly connected to the interior of the reactor 400. If a pressure monitoring port is implemented, the pressure monitoring port can be configured to have a spindle, a spindle Horizontal or inclined such that the spindle is at its lowest point where it intersects the inner wall of the reactor 400. In this way, the condensate formed in the pressure monitoring port is forced out of the pressure monitoring port by gravity. The pressure sensor can also be heated individually to prevent condensate formation and affect the pressure sensor. The pressure sensor can be configured to measure pressure at one or more locations within the reactor 400. For example, the force sensor can be configured to be located at a plurality of locations around the diameter of the reactor 400 and at the base 420 in the raised position as shown by the base 420, in the showerhead 408 and the crystal A pressure measurement is obtained at a vertical position between the circles 410. The pressure sensor can also be mounted at a height substantially coincident with the plane of the wafer 410 as the wafer 410 is undergoing a deposition process. The reactor pressure sensor provides a pressure reading in the reaction zone during wafer processing. These pressure readings can be used to verify that the pressure gradient around the perimeter of the reaction zone is relatively uniform. Pressure readings can also be used to verify that the process pressure is within the processing parameters. Pressure sensors can also be used in closed loop control implementations where the output velocity of the reactants is adjusted in response to feedback from the pressure sensor. For example, if the pressure in the reaction zone measured by the pressure sensor indicates that the desired reaction zone pressure will not be maintained, the reactant outlet flow rate may be reduced to counteract the pressure drop (or if the reaction zone pressure exceeds the desired reaction zone pressure) increase). Such reductions and increases in variable outlet flow rates can be used (e.g., variable angle throttles (such as butterfly valves)). 160970. Doc • 42· 201237994 The angle of the throttle plate of the valve can be adjusted based on feedback from the pressure sensor. Pressure sensors with different sensitivities can be used to allow accurate measurements over a wide range of pressures. For example, a '100 Torr pressure gauge and a 10 Torr pressure gauge can be used to allow accurate pressure measurements at high pressures and low pressures. Reactor 400 may also include a vacuum source flow path or other means for drawing air from reactor 400 and inducing a reactant stream across wafer 410. For example, reactor 400 can include a series of radially configured ports that are fluidly coupled to a vacuum source. The radially configured port can be located on the bottom surface of the reactor 4〇〇. The ports can be evenly spaced and can each have substantially the same size. The radially configured port can be integrated into a removable baffle that can be mounted over a substantially annular passageway present in the bottom surface of the reactor 400. The annular passage can be part of the vacuum source flow path and can include a radial recess to provide a fluid flow connection to the vacuum source flow path. One embodiment of the removable baffle and lower annular passage in reactor 400 can be seen in Figures 7A-7C. FIG. 7A depicts a removable baffle 7〇1 that includes an annular region 703 and a radially extending region 705. The removable baffle 7〇1 contains 24 evenly spaced holes 7〇7. Hole 7〇7 can be 〇225" in diameter, and "T know·supply, force 0. The total cross-sectional flow area of 9 5 square feet, but the diameter of the hole 7 〇 7 can be from Q. G85, to Q 3", and the holes 707 of the given removable baffle should be of the same nominal size. The hole 7 () 7 can be maintained at a strict diameter tolerance (such as ± 〇. 001 ") to minimize flow asymmetry. An additional two -9 can be provided to facilitate assembly of the removable raft 7 〇 1 to the reactor 711; the reactor 711 provides similar functionality to the reactor 400. 160970. Doc • 43- 201237994 Reactor 711 can include an annular channel 713 and other features. The annular passage 713 can include a radial recess 715 that fluidly connects the annular passage 713 with the vacuum port 717. The annular passage 713 can have 1. The nominal cross-sectional area of 5 square feet; the cross-sectional area of the annular passage 713 may be larger, for example, near the radial recess 715. These features can be observed in Figure 7A. Figure 8 depicts a diagram for a radial flow profile such as the embodiment described above with respect to Figures 7A through 7C. Three scenarios are depicted: in the absence of a removable plate, the removable baffle contains 24 diameters of 0. 225,, the hole shape and the removable baffle contains 24 0. 3" The situation of the hole. For each case, 'the flow of fluid representing the process flow is simulated and the normalized flow results are obtained for the point around the perimeter of the wafer in the flow path. This is due to the fact that the pair is used to display data only for one and a half of the total wafer perimeter. As can be seen, for the case of a non-removable baffle, the flow around the perimeter of the wafer changes from an average perimeter flow of 92% to an average perimeter flow of 11 3%. For a removable baffle with a 〇 225 ” diameter hole, the change is about ° 4 ° /.; for the 〇 3 " diameter hole, the change is about 1. 9%. It is also possible to have other configurations of the removable baffle. For example, the removable baffle 701 can include a different number of holes 7〇7 and/or different diameter holes 7〇7. The annular passage 713 is not limited to a toroidal shape and may be implemented using other shapes (e.g., a straight passage or a C-shaped passage rather than a passage through a full circle). The removable baffle 701 can also be fabricated to substantially surround two or more of the susceptor drive posts when installed in the reactor 711. Embodiments of the removable baffle 701 can feature a total cross-sectional flow area wherein the total cross-sectional flow area of the removable baffle and the radial cross-section of the annular passage 713 are 160970. Doc 201237994 The ratio of flow areas is approximately 1:1 ο but the specific configuration can vary. Vacuum port 717 can be coupled to a vacuum source (not shown) that is configured to draw a vacuum or partial vacuum in reactor 711. The variable angle throttle can be inserted between vacuum port 717 and the vacuum source; the variable angle throttle can be used to vary the extent of suction provided via vacuum port 717. Figure 7C shows a cross-sectional view of reactor 700. The annular passage 713 is visible as visible to the removable baffle 70!. The annular passage 713 is fluidly coupled to the vacuum port 717. The reactor 400 may also include a remote source σ9()1, remote (four) port as shown in the embodiment t of the reactor 9 shown in FIG. 9〇ι can be used to introduce the plasma treatment gas into the reactor 4〇〇. For example, the remote destructive source port 81 can be provided as a means for introducing a residual or cleaning gas, such as (d), into the reaction zone without the need to dispense an etch or cleaning gas through the showerhead. The end plasma source port 81 can also be used to deliver a hydrogen-oxygen inert gas mixture that can be used to calm nf3. The etching gas is supplied by the member instead of the showerhead 408, allowing the showerhead 4〇8 to be dedicated to the deposition process and reacting In the case of reactor cleaning, there are two options to activate nf>3: direct plasma and remote plasma. In the case of direct plasma, if by spraying When the NF3 is delivered by the shower head, the plasma will be more uniform, which provides better repeatability. Sometimes, in the case where the area to be cleaned is at the outer edge of the base, it may not be necessary to use the entire sprinkler. The delivery, but alternatively, is delivered, for example, by the annular region of the showerhead near the perimeter of the wafer. In the case of remote plasma, the activity is delivered by the showerhead. 3 (mainly atomic F) is usually more than 160970. Doc -45- 201237994 Not needed 'Because atom F will recombine at any surface (such as inside the sprinkler), this reduces the cleaning rate. Highly reactive atoms F can cause damage to internal components of the gas distribution system, such as 〇 rings and valves. The gas distribution manifold/sprinkler module can include a gas distribution manifold or showerhead that promotes gas distribution across the wafer in a desired manner. In the flowable gap fill process, the showerhead 408 can be configured to deliver the oxidant and precursor to the reaction zone, respectively, to prevent mixing of the oxidant with the precursor prior to introduction of the reactants into the reactor 4 The oxidant and the precursor are allowed to mix, which forms a flowable film. If the flowable film is formed in the showerhead 408 prior to introduction into the reactor 4, the flowable film can interfere with the uniform distribution of the reactants by the showerhead 4〇8. For example, if a flowable film is formed in the showerhead 4'8, the film may partially or completely block some of the apertures described below. These apertures may be used to distribute the reaction across the surface of the wafer 41. Things. Such occlusion can result in uneven fluid flow across the wafer 410. Another concern is the formation of particles caused by the mixing of reactants. The particles can form and entrain in the reactant stream' and can contaminate the treated wafer or can impact the wafer surface and cause surface irregularities. The showerhead 408 is configured to provide dual flow gas delivery to the reactor 400. The dual flow showerhead 408 is configured to evenly distribute the oxidant and precursor across the reaction zone in the reactor via a separate delivery path. For example, dual flow showerhead 408 can include a helium inflator 432 and a P inflator 434. Each plenum can be connected to the reactor 400 via a plurality of flow paths (e.g., via a wafer-facing showerhead surface through a pattern of apertures in each individual plenum). Doc • 46 - 201237994 Fluid Connections As illustrated in Figure 4B, the ruthenium reactant 442 and the ruthenium reactant 444 distributed by the helium plenum 432 and the helium plenum 434 in the dual flow showerhead 408 are fluidly separated until they are Introduced into the reactor 4, at this time, the ruthenium reactant 442 and the ruthenium reactant 444 are mixed with each other to form a deposition gas mixture 446. The deposition gas mixture 446 flows across the wafer 4丨0 and flows into the larger internal volume of the chamber 400 by an annular gap between the base 420· and the skirt 406. The apertures for the aperture pattern of each individual plenum can be positioned to evenly distribute the individual reactants of the plenum across the treatment zone. The ankle inflator 432 can be fluidly coupled to the reaction zone via a meandering pattern of the ankle plenum apertures 448. Similarly, the 'p inflator 434 can be fluidly coupled to the reaction zone via a helium pattern of the bore portion 450. The diameters of the bore portion 448 and the p-pit portion 450 can be configured such that the average discharge velocity of the helium reactant 442 from the bore portion 448 is substantially equal to the ρ reactant 444 from the bore portion 45 0 The average discharge speed matches. The ruthenium reactant 442 and the ruthenium reactant 444 can be supplied to the showerhead 408 from the gas delivery system 320 at different volumetric flow rates. For example, the ruthenium reactant 442 can be delivered from the gas delivery system 320 to the sprinkler at a volumetric flow rate that is four times greater than the volumetric flow rate at which the ρ reactant 444 is delivered to the showerhead 408 during the flowable gas fill process. 4〇8. Accordingly, the ankle inflation portion 432 can include an ankle plenum aperture 448 having the same diameter as the ankle plenum aperture 450 in the ankle inflation portion 434, but including up to four times the ankle inflation aperture 448 of the ankle inflation aperture 450. Alternatively, the ankle inflator 432 may include the same number of ankle inflator holes 448 & p inflator apertures 450, but each of the ankle inflating portions 432 may have a larger diameter than the impeller discharge aperture 450 in the ankle inflation portion 434 The cross-sectional area is four times larger than the cross-sectional area. Also 160970. Doc -47· 201237994 Other configurations can be used such as adjusting the diameter/cross-sectional area of the plenum hole and the number of plenum holes for a given plenum. In some embodiments, the ratio of the total cross-sectional area of the bore portion 448 to the total cross-sectional area of the P-portion bore 45 is substantially equal to the volumetric flow rate of the oxidant reactant 442 and the volume of the precursor reactant 4 4 4 . The ratio of flow rates. In a particular embodiment, the showerhead 4 is characterized by a meandering pattern and a P pattern as shown in the figures. The hole pattern 1 shown in Figure 1 is developed for use with a dual flow showerhead. The dual flow showerhead is designed for TES + ethanol + 氦p reactants and vapor + hydrazine reactants and approximately 5 Torr. The total flow rate from sccm to 5 〇〇〇 sccm is used. The Ο pattern is characterized by 1456 pupils 1〇1〇 having a diameter of 〇 4〇吋. The p pattern is characterized by 1616 pupils 1 〇 2 具有 having a diameter of 0 019 。. The total cross-sectional area of the pupil pattern of the pupil 101 0 is about 吋83 square inches. The total cross-sectional area of the P-pattern of p-hole 1020 is about 〇46 square feet. The total ratio of the cross-sectional area of the p-pattern to the cross-sectional area of the 〇 pattern is about 丨:4. The pattern of the holes and the p pattern of the holes shown in FIG. 10 are all linear patterns in which the X direction and the Y direction are equally spaced; the 〇 pattern and the p pattern are offset from each other such that one internal hole pattern is diagonally located closest to the other pattern. The center between the four holes. Other hole patterns, such as hexagonal patterns, non-uniform linear patterns, circular patterns, spiral patterns, and patterns having intervals depending on the distance from the hole in the center of the wafer, are also contemplated. The plenum holes for the plenum can also be sized to prevent excessive mouth spray of reactants into the reactor. When the reaction stream from the showerhead resists the transition from the laminar flow state to the turbulent flow state, over-injection occurs, which may cause the reactant stream to be ineffectively mixed with each other before contacting the wafer 410. Doc-48, 201237994, or attributable to uneven pressure wavefronts in the reactants, results in the formation of pit or bowl features in the deposited flowable film. The flow rate of the reactants can be adjusted to produce a constant or nearly constant pressure wavefront at or near the surface of the wafer being processed. In general, the flow rate of the reactants, the number of plenum holes, and the spacing between the plenum holes and the wafer surface all contribute to the determination of the diameter of the plenum aperture. For example, the inflator flow hole can be sighed according to the following relationship.  L/D20· 112 Pe, where L is the mixed length (for example, the distance between the outlet of the inflator flow hole and the wafer) 'D is the distance between the flow holes adjacent to the inflator, and pe is the reactant stream ( Mass dispersion) Pelican number. The transport time of the reactants by the sprinkler plenum can be minimized to the extent that system responsiveness can be increased. In some embodiments, the sprinkler plenum volume should be less than 10% to 2% of the volume of the reaction zone. For dual flow showerheads, the residence time of the reactants within each plenum can be matched to ensure simultaneous delivery of reactants from the two plenums. For example, if the rhodium reactant flow rate is X times greater than the P reactant flow rate, the helium inflator can be X times larger in volume than the p inflator. For example, a sprinkler having a volume of 0 plenum that is four times larger than the volume of the p-inflator can be used in a system where the reactant flow rate is about four times greater than the zero reactant flow rate. Although a dual flow plenum is described herein, a single flow plenum can be used to dispense reactants across the wafer processing area. For example, the reactants can be supplied to the showerhead prior to introduction into the reactor and can be mixed in a single plenum. Although the dual flow showerhead can be used in the gas phase reaction at the pressure & temperature conditions in the showerhead, the single flow showerhead can provide an acceptable alternative in the sprinkler head in some processing situations. Pressure and temperature conditions make 160970. Doc -49· 201237994 The reactants do not react or react to a reduced extent. In addition, the single-flow showerhead can use β when the residence time of the reactants in the showerhead is short. Under these conditions, physical separation of the reactants may not be required to reduce the undesired deposition in the showerhead. The showerhead 408 can include a heating element or heat transfer path that can maintain the sprinkler temperature within acceptable processing parameters during the flowable gap fill process. For example, the showerhead 408 can be thermally coupled to the top plate 404, which can be mounted with a resistive heating blanket as discussed above. The resistive heating blanket can provide heat to the showerhead 408 via the top plate 404 and is configured to heat the showerhead 4〇8 between 40 C and 150 C, but in some configurations, the sprinkler can It is usually heated to about 100 °C. The showerhead 408 can thus be maintained at a high temperature relative to the wafer 410 being processed. By maintaining the showerhead 408 at a high temperature, condensation of the deposited gas mixture 446 within the showerhead 408 is prevented. In embodiments where the showerhead 408 is a single flow design, the heated showerhead 408 also prevents condensation of any deposition gas mixture 446 that may be present in the sprinkler plenum. The showerhead 408 can also include an RF electrode for creating a plasma environment within the reaction zone. The susceptor 420 can also include an RF electrode for creating a plasma environment within the reaction zone. These plasma environments can be created using capacitive coupling between the supply electrode and the ground electrode; the supply electrode that can be coupled to the plasma generator can correspond to the RF electrode in the showerhead 408. The ground electrode can correspond to the pedestal RF electrode. Alternative configurations are also possible. The electrodes can be configured to produce at 13. RF energy in the 56 MHz range, 27 MHz range, or more generally between 5 kHz and 60 MHz. In some embodiments, multiple electrodes may be provided. These electrodes are each configured to generate RF energy in a particular frequency range. Doc -50- 201237994 Quantity. In embodiments where the showerhead 408 includes a supply electrode, the chuck 412 can include or act as a grounded RF electrode. For example, chuck 412 can be a grounded aluminum plate, which can result in enhanced cooling across the susceptor-chuck-to-wafer interface because of the higher thermal conductivity of aluminum relative to other materials, such as ceramics. The aluminum sheet may also allow for the machining of cooling passages in the back of the aluminum sheet to allow liquid coolant to circulate within the chuck 412; such passages may cause cracks in the ceramic sheets due to thermal expansion stress. This will be discussed later in the following. Including the RF electrode in the shower head 4〇8 with the ground electrode can also result in a lower ion attack on the wafer. Figure 7 illustrates an embodiment of a reactor 700 featuring a showerhead 708 that is assembled to a top plate 704. A resistive heating element 709 is embedded in the recess on top of the showerhead 708 and can be used to heat the showerhead 7〇8. Although the above embodiments discuss a chuck featuring a grounded aluminum plate RF electrode, other embodiments of the chuck may not include an RF electrode integrated with the aluminum chuck. Skirt or Occlusion Skirt 406 or covering (hereinafter referred to as "sleeve") can be used to provide a mechanical barrier to the reactant stream within reactor 400. The interface between the skirt 406 and the pedestal 420. can limit the deposition of the gas mixture 446 out of the reaction zone in the radial direction. The interface may constitute an annular gap wherein the outer diameter is defined by the inner diameter of the skirt and the inner diameter is defined by the outer diameter of the base 420. The annular gap for a typical crystal circle can be 0. 112'1 and 0. Between 125", where 0. The nominal gap size of 125" is used to have 14. The 25"inner diameter skirt" pedestal 420' and skirt 406 can be configured such that the relative position of the base 420' relative to the showerhead 408 can be changed from a deposition configuration to a clean or plasma processing configuration. And vice versa, not 160970. Doc •51· 201237994 Change the cross-sectional flow area of the annular gap. The skirt 406 can cause back pressure to be generated in the reaction zone by this flow restriction. The skirt 406 should not be confused with the obstructions in the other semiconductor fabrication procedures used to form the hermetic seal with the base 42A. The skirt 406 can also be used to confine the plasma to the reaction zone during the plasma treatment in the reactor. Although the flowable fill gap process does not require plasma during the flowable gap fill operation, the plasma can be used in cleaning, pre-deposition processing, after-gap post-treatment, curing, or other operations. The skirt 406 can also be used to adjust the size of the plasma by varying the back pressure in the reaction zone. The skirt 406 can also affect the heat flow in the reactor 400. The skirt 406 can be made from a ceramic material. If the plasma treatment also occurs within the reactor 4, the skirt 406 can also be made of a dielectric material. The skirt 4〇6 can be heated by the use of heating elements placed in the skirt 406 and/or by heat conduction from the top plate 4〇4 or other components that are conductively coupled to the skirt 406. Skirt 406 can be configured to heat to a temperature between 4 〇 (>c and 8 〇 during the deposition process. Because skirt 4 〇 6 is not required to be used with pedestal 420 during flowable gap filling) The contact seal is formed so that the skirt 4〇6 can be maintained relative to the base 42 and the sa circle 410 is maintained at south temperature without transferring conduction heat to the susceptor 4 2 〇 and the wafer 410. The skirt 406 can It is configured to be assembled to the top plate 404 or disposed in the top plate 4〇4 and may provide an interface for assembling the showerhead 408. Various embodiments use alternative assembly configurations. For example, 'spray head 408 and skirt 406 can be assembled directly to the top plate 408 without directly interfacing with each other. In a particular embodiment 160970. Doc • 52· 201237994, the skirt 406 may be integral with the showerhead 408 or with the top plate 4〇4 and may not be obvious components. The pedestal pedestal 420 provides axial support to the wafer during processing via a chuck discussed later. The pedestal 420 can be configured to rise and fall during processing (as indicated by the pedestal 420') to facilitate loading and unloading of different processing stages or wafers 41. The pedestal 420 can also provide power for sparking the plasma. The susceptor 42A may also provide cooling and/or heating capabilities for controlling the temperature of the chuck 412 and wafer 410 during processing. During the movable/μ gap filling process, the pedestal 42 可 can be positioned such that the wafer 410 疋 is located about 12 mm below the shower head 4 〇 8 . The skirt configuration, the base 420' size and the base 42〇 relative to the skirt 4〇6, the position may define an annular base flow region between the base 42 and the skirt 406. The back pressure in the reaction zone can vary with the flow area of the annular susceptor, the volumetric flow rate of the reactants, the pressure increase due to the chemical reaction, and environmental conditions. In various embodiments, the susceptor 4201 is positioned during the flowable gap fill process such that the back pressure in the reaction zone is maintained at about Torrento. After the flowable gap fill process, the pedestal 42A can be repositioned to create a larger annular gap for rapid back pressure release or for wafer processing. In a particular embodiment, the susceptor 42 can be repositioned continuously or at intervals based on time or arrival of the reaction zone pressure set point during deposition. Wafer 41/sprinkler during flowable gap fill processing The 4〇8 spacing may be greater or less than mm, depending on other parameters, such as the size of the base 420' or the size and location of the skirt 406. 160970. Doc • 53· 201237994 During plasma processing (such as during a wafer cleaning operation), the susceptor 420 can be positioned such that the wafer 410 is positioned about 25 mm below the showerhead 408. In preparation for cleaning, the susceptor 408 can be repositioned relative to the susceptor 408 for use in the flowable gap fill process to facilitate rapid discharge of pressure from the reaction zone. The base 420 can include a platen 422 or substrate, a drive post 424, and a drive mechanism (not shown). The platen 422 or substrate (hereinafter referred to as "platen") may be a circular substantially flat surface. Platen 422 can serve as an interface for chuck 412 that is configured to receive wafers 41 for processing. Or in some processes, the wafer 410 can be placed directly on the platen 422. The drive post 424 provides axial support to the platen 422 and can be configured to translate the platen 422 within the chamber housing 402 along the central axis of the chamber. The drive post 424 can protrude through the cavity to the bottom plate of the outer casing 402 and is coupled to the drive mechanism. Seal 426 can seal the interface between chamber housing 402 and drive column 424 to prevent fluid flow between reactor 400 and the external environment. The drive mechanism is configured to translate the drive post 424 and the pressure plate 422 in a vertical direction (i.e., toward or away from the showerhead 4〇8). The base 420 can include features for cooling or heating the chuck 412 that is assembled to the platen 422. For example, the susceptor 42A can include a coolant circuit 428 that circulates the cooled coolant from the outer 4 chiller through the platen 422. Other configurations may direct coolant circuit 428 to pass through, for example, chuck 412. The coolant circuit 428 can be increased by a heater (not shown) (e.g., a resistive heating element) that can be used to raise the temperature of the platen 422. By using the chiller and heater, the time required to reach the desired temperature set point can be significantly reduced. For example, 160970. Doc -54- 201237994 If the wafer 410 needs to be cooled from 2 (TC to -5t:, a refrigerator with a set point of -5〇c can be used. However, if the cooler is used in combination with the heater, the cooling can be performed. Set to below -5. (: set point, this will speed up the cooling process. Once the -5 ° C mark is reached, the heater can be used to offset the chiller. For example, the chiller can have -20 ° C to +80 its set point, and / or configured to support -15. (: to +80. (: chuck setting point. In this way, the total time to cool the wafer to the desired operating temperature can be significantly reduced This reduces processing time and increases system throughput. Lower cooler set points can also be used to offset the heat imparted to the cold platen by the autothermal wafer. In some embodiments, the chiller can be configured to have a higher than wafer processing temperature. Low It to 5 its set point. The heater (and/or chiller) can also be configured to heat the platen to greater than 70 eC during plasma processing (eg, 80 〇 to avoid plasma reactant condensation On the platen, pedestal, chuck or wafer. The heater (and / or cooler) can be configured Heating the platen or susceptor to a temperature between 3 ° C and 5 ° C (eg ' 40 ° C) to desorb the products and by-products of the adsorption reaction. Other components that can be in the chamber housing 402 and chamber A similar temperature is induced. The platen 422 and the skirt 406 can be designed to have tight concentricity tolerances. By maintaining a high degree of concentricity between the platen 422 and the skirt 406, at the skirt 406 and to the platen 422 The annular gap formed between the insulating rings 414 can be maintained at a near constant value about the perimeter of the insulating ring 414. This promotes uniform airflow across the wafer 410 and reduces unbalanced deposition. The concentricity of the platen 422 relative to the skirt 406 can be Reinforced by the use of a radial locator feature on the platen 422 that engages the skirt 406 to center the platen 422 radially relative to the skirt 406. When 160970. Doc-55·201237994 However, the 'radial positioner feature can also be positioned on the skirt 406 and interfaced with the pressure plate 422. Alternative embodiments may involve a radial mount on the pressure plate 422, a radial mount and a chamber housing 402. The sidewalls are engaged; if the skirt 406 is similarly equipped with a radial locator feature, the chamber housing 402 can serve as a common reference surface that can be used by both components to establish the same relationship. The latter configuration has the benefit of allowing the radial positioner feature to be displaced a certain distance from the annular gap formed by the skirt 4〇6 and the insulating ring 414, which is mitigated by the radial direction positioned near the annular gap of the platen The flow imbalance caused by the presence of the locator feature. The susceptor 420 can incorporate a purge gas supply 430 into the susceptor drive column 424 to prevent deposition, condensation, or icing within the susceptor 420, as shown in Figure 4C, 'purge gas supply 430 can purge gas 452, such as clean dry air (CDA) or nitrogen, circulates through the susceptor drive column 424; the purge gas 452 can also be heated to further inhibit condensation or ice formation within the susceptor drive column 424. Heating the interior of the susceptor drive post 424 with heated CDA or nitrogen can also be used to indirectly heat the exterior of the susceptor drive post 424, which also prevents condensation or icing on the outer surface. The pedestal 420 can also be configured to deliver a purge gas to the perimeter of the wafer 4''. For example, as shown in FIG. 4D_ (FIG. 4D depicts a variation of the embodiment depicted in FIGS. 4A-4C and 4E), purge gas $2 can be delivered to the dispensing system by pedestal column 424. The dispensing system evenly distributes the purge gas 452 from the lower side of the wafer 4 around the circumference of the dome 410. Purge gas 452 can thus be used to protect the surface of chuck 412 and insulating ring 414 from undesired deposition. Purge gas 452 can also be used to prevent increased deposition around the periphery of wafer 41. The scorpion sweep gas 452 can still be supplied to the pedestal drive column 424. Doc • 56 - 201237994, but this feature is not shown in Figure 4D. The chuck chuck 412 serves as an interface chuck 412 between the pedestal 42 〇 and the wafer 41 在 during wafer processing. The chuck 412 supports the wafer 41 in the vertical direction during processing. The chuck 4丨2 may also have features or techniques for confining the wafer 4 to the twist direction and preventing the wafer 41 from rotating relative to the chuck 412. In one embodiment of the invention, chuck 412 can be an electrostatic chuck (ESC) that can include a ceramic disk having embedded RF electrodes 416. The RF electrode 416 can be configured as a bias electrode and provide power to generate and maintain a plasma generated within the reactor 400. For example, RF electrode 416 can be configured to press 13. 65 MHz supplies 3 kW of electricity to the plasma produced in reactor 4〇〇. In this embodiment, the showerhead is grounded; in other embodiments, the ground is in the pedestal 424 having the powered showerhead 408. In configurations where the plasma is not used or power is supplied to other components, such as the showerhead 4〇8, the chuck 412 can include a grounded aluminum disk. The grounded aluminum disk can have higher thermal conductivity and allow for faster heating and cooling of the wafer 41 compared to other chuck materials during processing. Embodiments featuring a grounded aluminum chuck can simply integrate the grounded aluminum chuck into the assembly in the base 424. For example, chuck 412 and platen 422 can be an integrated component rather than a separate piece. This is due to the elimination of the interface between the two parts and will provide improved heat transfer than the early single chuck 412 / platen 42 configuration. The chuck 412 can have I60970 embedded inside the chuck 412 or attached to the chuck 412. Doc • 57· 201237994 Heating characteristics of the outer surface (such as electric resistance heater 418) ^ Chuck 412 may also include features for providing cooling, such as Peltier junction for coolant circulation for freezing. Or coolant flow path. These heating and cooling features may increase or replace the features mentioned above in the discussion of the pedestal. In some embodiments the 'cooling feature can be positioned in one component and the heating feature can be positioned in another component. For example, the chuck 412 can include a resistive heating element 418 embedded within a ceramic disk that includes the housing of the chuck 41 2 , and the platen 422 can include a coolant 454 configured to render the coolant 454 shown in FIG. 4E A coolant loop 428 that circulates below the interface surface between the disk 412 and the wafer 410. Coolant 454 can be used to cool platen 422 and cool chuck 412 via conductive heat transfer. The resistive heating element 41 8 can be powered to generate heat 456 directly in the chuck 412. Therefore, the chuck 412 can be heated and cooled. Coolant 454 can be recirculated from a remote chiller (such as the Thermaler 1200 from Solid State Cooling). The chiller can be assembled remotely from the base to reduce vibration in the susceptor assembly. The chiller can be configured to adjust the temperature of the coolant 454 based on feedback from a temperature sensing device positioned within the susceptor 420 or chuck 412. For example, the chuck 412 can be configured with one or more RTDs that provide feedback to the refrigerator regarding the current temperature of the chuck 412. The chiller can be used to increase or decrease the coolant 454 temperature, depending on the temperature feedback from the RTD. Positioning one or more RTDs within chuck 454 or in close proximity to chuck 412 (such as near platen 422/chuck 412 interface in pedestal 420) may improve cooling by relying on the configuration of the RTD in the chiller itself. The response time is almost 50. /〇. An alternative to using one or more chuck-mounted RTDs is to use a sensor that is well-known for the month b (for example, Lumasense infrared temperature 160970. Doc -58- 201237994). The use of a remote sensing device, such as a Lumasense thermometer, allows the temperature of the wafer 410, rather than the temperature of the chuck, to be used to control the refrigerator. Managing the temperature of the chuck 412 based on the reading of the temperature of the wafer 410 will result in a more accurate thermal control of the wafer 41. During wafer 410 processing, chuck 412 and/or coolant loop 428 may lower the temperature of wafer 410 to facilitate deposition of deposition gas mixture 446 on wafer 41A into a flowable gap fill material. For example, coolant circuit 428 can reduce the temperature of chuck 412 and wafer 410 to a set point of -5t: for flowable gap fill processing. The resistive heating element 41 8 can also be configured to heat the chuck 412 to substantially two temperatures. For example, the resistive heating element 41 8 can be configured to heat the chuck 412 to 80 ° C during the plasma cleaning operation to prevent condensation during the plasma cleaning operation. In some embodiments featuring purge gas delivery to the perimeter of wafer 410 (as previously discussed in the section describing the susceptor), the wafer can be deflected from the surface of the chuck using the actual support and blown The sweep gas can be introduced into the gap between the interface surface of the wafer 410 and the chuck 412. The pedestal can be configured to support the wafer 410 in a manner that minimally interferes with the flow of purge gas between the wafer 410 and the chuck 412. The purge gas can be introduced into the gap between the wafer 410 and the chuck 412 via a port located in the chuck 412. The perimeter purge gas delivery embodiment may also include features on the chuck 412, the insulating ring 414, or other susceptor 420 components that are characterized when the purge gas exits the zone between the wafer 410 and the chuck 412. Guide the purge gas flow. For example, the insulating ring 414 can comprise a circumference around the wafer 41 and has a slightly larger than the wafer I60970. Doc •59- 201237994 410 The outer diameter of the outer diameter of the projecting convex protrusion. In this embodiment, and in contrast to the large radial flow experienced by the purge gas between wafer 410 and chuck 412, the purge gas can generally be in the axial direction after reaching the perimeter of wafer 41〇. Flow in the direction. These embodiments can be used to reduce flowable film deposition at the periphery of wafer 41 (e.g., in the wafer bevel region or wafer side regions). Figure 7C, previously described, depicts the reactor 7A for a particular embodiment and the components that are assembled to the base 720. Coolant line 728 delivers coolant through base shaft 724 and platen 722 to chuck 712. Cooling passage 728 distributes coolant throughout chuck 712. The resistive heating element can also be embedded within 712, but is not shown in FIG. Insulation ring 714 surrounds chuck 712. Chuck 712 can include purge gas dispensing apertures 7丨9 disposed across the wafer support area of the chuck. The chuck 7丨2 can also be characterized by a support (not shown) that provides support to the wafer during processing and allows purge gas to flow toward the periphery of the processed wafer. Insulation ring base 420 may also include an insulating ring 414. Insulating ring 414 can be used to shield the surface of base 420 and chuck 412 from plasma formed during wafer processing. Insulation ring 414 also shields the surfaces of pedestal 420 and wafer 410 from unwanted deposition or condensation during wafer processing. Finally, the insulating ring 414 prevents the plasma from bowing toward the chuck 412 or RF electrode 416. The insulating ring 41 4 can be made of a material such as alumina, and can be formed into a circular shape. The insulating ring 414 can be fabricated to have a first inner diameter that is slightly larger than the outer diameter of the pressure plate 422 and a second inner diameter that is slightly larger than the diameter of the chuck 412. If the insulating ring 414 is used in the base 420, the edge of the insulating ring 414 or the table 160970. Doc • 60· 201237994 The face may define a boundary of the annular gap between the base 420 and the skirt 4〇6 as previously discussed. The base 420 is used to regulate the flow of gas through the deposition zone, and the concentricity of the insulating ring 414 and the skirt 406 will at least partially determine the flow uniformity through the annular gap. In such configurations, the dimensional tolerance of the insulating ring 414 must be tightly controlled, as when the insulating ring 414 is once mounted on the base 420, the position of the insulating ring 414 must be tightly controlled. One embodiment of the insulating ring may feature an annular ring of 14" diameter. The annular ring can be aimed at substantially zero. 5"To 6, the thickness of the annular ring is 11. The inner diameter of 5" to 12" is characteristic. The inner diameter of the annular ring can then be substantially zero. 25 to 0. The thickness of the annular ring of 375" is gradually increased to the diameter of I] to 13" Finally, the annular ring can be substantially 〇 625 " to 75, the thickness of the annular ring is gradually increased to substantially 13 " to 13 125" The diameter. The total thickness of the annular ring can be about 1. 375" to 1. 725". Other features (such as chamfers, small shoulders and fillets) and locator or index features may also be present. Alternative Reactors and Module Configurations The systems and structures disclosed above may also include other reactor or module configurations, such as reactors equipped for deposition and/or pre-deposition or post-deposition treatment of dielectric films. Or module comprising HDp_CVD reactor, PECVD reactor, sub-atmosphere & CVD reactor, any chamber equipped for CVD reaction, any chamber for PDL (pulse deposition layer), and equipped Chamber for CFD. Figures 1 through 13 are examples of modules or reactors that may be included in a tool configuration, such as the tool configuration shown in Figures 2A and 2B. Figure 11 shows a reactor or mold 160970 that can be used in accordance with certain embodiments of the present invention. Doc * 61 - An example of the 201237994 group. The reactor noo can be used as a deposition chamber, a processing and deposition chamber or as a stand-alone curing module. Reactor 1100 is suitable for use in dark (non-electrical destruction) or plasma enhanced deposition and processing (e.g., via capacitively coupled plasma). As shown, the reactor 1100 includes a processing chamber 1124 that encloses other components of the reactor and is used to house the plasma generated by the capacitive system. The processing chamber 1124 includes a nozzle associated with the grounded heater frame 112. . The low frequency RF generator 11 〇 2 and the 咼 frequency rf generator are connected to the mouth sprinkler 1114. The power and frequency are sufficient to produce plasma from the process gas (eg, 4 〇〇 w to 700 W total energy). In some implementations, the generator is not used, for example, for non-plasma deposition or processing. One or two generators can be used during the plasma processing step. For example, in a typical approach, the high frequency 1117 component is typically between 2 MHz and 60 MHz, and in the preferred embodiment, the component is 13 56 MHz. Within the reactor, wafer base 1118 supports substrate 1116. The susceptor typically includes a chuck for holding and transferring the substrate during and between the deposition and/or plasma treatment reactions, and the ejector or ejector pin chuck may be an electrostatic card that can be used in industrial and/or research applications. Disk, mechanical chuck or various other types of chucks. Process gas is introduced via inlet 1112. A plurality of source gas lines 111 are connected to the manifold 108. The gas may or may not be premixed. The temperature of the mixing bowl/manifold line should be maintained above the reaction temperature. A temperature of about 8 〇 t or more is usually sufficient. Properly installed valves and mass flow control mechanisms are used to ensure proper gas delivery during the deposition and plasma processing stages of the process. In the case where the chemical precursor is delivered in liquid form, a liquid flow control mechanism is used. The liquid is then heated to 160,970 before reaching the deposition chamber. Doc •62· 201237994 Vaporization during transport in a manifold above a flying point and mixing with other process gases” Process gas exits chamber (10) via outlet 1122. The vacuum pump core (eg, single or bipolar mechanical dry pump and/or turbo molecular millet) typically draws process gas and maintains the reactor by shutting down the loop controlled flow limiting device (such as a throttle or pendulum valve) Suitable for low pressure. Figure 12 is a simplified schematic illustration of a remote plasma processing module in accordance with some embodiments. Apparatus 1200 has a plasma generating portion 1211 and an exposure chamber 12〇 separated by a showerhead assembly or panel 1217. In the exposure chamber 12〇1, a platen (or platform) 1205 provides support for the wafer 12〇3. The platen 12〇5 is equipped with a heating/cooling element. In some embodiments, the platen 1205 is also configured for applying a bias voltage to the wafer 1203. A low pressure is reached via the conduit 1207 via a vacuum pump in the exposure chamber 12〇1. The source of the gaseous process gas supplies the gas stream to the plasma generating portion 1211 of the apparatus via the inlet 12〇9. The plasma generating portion 1211 may be surrounded by an induction coil (not shown). During operation, the gas mixture is introduced into the plasma generating portion 1211, the induction coil is excited, and the plasma is generated in the plasma generating portion 丨2丨丨. The showerhead assembly 丨2丨7 can have a applied voltage and terminate the flow of some ions and allow the neutral species to flow into the exposure chamber 1201. Figure 13 is a simplified illustration of various components of an HDp-CVD apparatus that can be used for pre-deposition and/or post-deposition processing and/or deposition of solid oxide materials, in accordance with various embodiments. As shown, reactor 13〇1 contains processing chambers 13〇3 that enclose other components of the reactor and are used to hold the plasma. In one example, the processing chamber wall is derived from aluminum, aluminum oxide, and/or other suitable materials. Doc -63· 201237994 made. The embodiment shown in Figure 13 has two plasma sources: a top rF coil 1305 and a side RF coil 1307. The top RF coil 1305 is a medium frequency or MFRF coil and the side RF coil 1307 is a low frequency or LFRF coil. In the embodiment shown in Figure 13, the MFRF frequency can range from 430 kHz to 470 kHz' and the LFRF frequency ranges from 340 kHz to 3 70 kHz. However, it is possible to have a device with a single source and/or a non-RF plasma source. In the reactor, the wafer base 1309 supports the substrate 1311. The temperature of the substrate 1311 is controlled by a heat transfer subsystem comprising a line 1313 for supplying heat transfer fluid. Wafer chucks and heat transfer fluid systems facilitate the maintenance of proper wafer temperatures. The high frequency RF of the HFRF source 1 3 1 5 is used to apply a bias voltage to the substrate 1 31 and draw the charged precursor species onto the substrate for pre-treatment or curing operations. Electrical energy from source 13 15 is coupled to, for example, substrate 1311 via electrodes or capacitive coupling. Note that the bias applied to the substrate does not need to be RF bias. Other frequencies and DC bias can also be used. The process gas "premixed or unpremixed gas is introduced via one or more inlets 1317. The gas or gas mixture may be introduced by autonomous gas ring 1321, which may or may not direct gas toward the surface of the substrate. The ejector may be coupled to the primary gas ring 13 2 i to direct at least some of the gas or gas mixture into the chamber and toward the substrate. Injectors, gas rings or other mechanisms for directing process gases toward the wafer are not present in certain embodiments. The process gas exits the chamber 13〇3 via the outlet 1322. Vacuum pumps typically draw process gas and maintain a suitable low pressure in the reactor. Although the HDp chamber is described in the case of pre-deposition and/or post-deposition treatment or curing, it is somewhere 160970. Doc •64.  In the embodiment of 201237994, the HDP chamber can be used as a deposition reactor for the deposition of a flowable film. For example, in thermal (non-plasma) deposition, such a chamber can be used without impacting the plasma. 14A-14Q depict various views and components of one example implementation of a reactor configured for flowable gap fill operations. Such a reactor can also be used in other non-gap filling flowable deposition processes. Figure 14A depicts a perspective view of reactor 1400 (without a top plate or showerhead installed). The reactor 14A includes a chamber 1401, a wafer support device 1420, and a lift mechanism 1402. The chamber 1401 can include, for example, two heater receptacles configured to receive heating elements for heating the chamber 14〇1. The wafer 14〇4 was also shown, and the wafer 1404 was implemented with a 300 mm diameter wafer. In general, although the components shown in Figures 14A-14Q are designed for use with 3 mm wafers, larger or smaller wafer sizes can be designed according to similar principles but resized to accommodate larger Or equipment for smaller sized wafers. The wafer support device can provide functionality similar to that provided by the pedestal 420 of Figures 4A-4E and can also be considered an implementation of the pedestal. Conversely, pedestal 420 can also be considered as one implementation of a wafer support device. Reactor 1400 can be used with any of the systems described herein (eg, gas distribution system, dual flow showerhead, RF power, vacuum source, wafer) Processing system, etc.) connection. Reactor 1400 can, for example, be configured to cool wafer 1404 to a temperature to promote flowable gap fill deposition on wafer 1404 while maintaining chamber 1401 and other components within reactor 14 Higher temperatures are used to inhibit deposition on non-wafer components, as discussed generally above. Figure 14 A to Figure The various aspects of the design shown in MQ are for managing wafer support devices 1420 160970. Doc -65- 201237994 and its components and wafer 1404 thermal environment. The design shown in Figures 14A through i4Q can, for example, be able to achieve less than 〇 across substantially the entire wafer 1404. 35 ° C or even less than o. The temperature of the pc changes while maintaining the wafer 14〇4 at a low temperature (eg, -10t to _5t), while maintaining the other components in close proximity to the wafer 14〇4 but not touching the wafer 1404. The circle 14〇4 is about 5°C high to the temperature of HTC. Figure 14B depicts a perspective cross-sectional view of reactor 14A, and Figure 14c depicts a cross-sectional view of Figure 14B from a side perspective view. Some smaller components (such as 〇-rings, fittings, fasteners, tubing, etc.) may not be shown or may not be displayed in their entirety to avoid undue visual clutter. Wafer 14〇4 may be supported by chuck 1422 of wafer support device 1420, which in turn may be supported by dielectric plate 1427. The area of the chuck 1422 that can support the wafer 14〇4 can be referred to as a wafer support area. The wafer support area generally corresponds to the top surface of the chuck 1422' but the top surface of the chuck 1422 can extend beyond the nominal diameter of the wafer 14〇4 and the wafer support area. In addition to the support chuck 1422, the dielectric plate 1427 can also support the dielectric ring 1426. The dielectric plate 1427 and the dielectric ring 1427 can be made, for example, from AhO3. Although dielectric plate 1427 and dielectric ring 1426 are shown as separate pieces, in some embodiments a single piece can be made. The dielectric plate 427 and the dielectric ring 1326 can be considered to have a "dielectric backplane" or an "external dielectric wall", whether it is a single component or a plurality of components. Dielectric plate 1427 and dielectric ring 1426 or equivalent structures are also considered and may be referred to as "dielectric interruption regions." The dielectric board 1427 can generally correspond to the dielectric backplane, and the outermost portions of the dielectric ring 1426 and the dielectric board 1427 can generally correspond to the outer dielectric walls. The dielectric plate 1427 can be supported by the outer casing 1429. The outer casing 1429 can be supported by the lifting mechanism 14〇2. Doc •66* 201237994 Column 1454 support. The outer casing 1429 can be made from aluminum (e.g., 6061 aluminum), and similar to the dielectric plate 1427 and the dielectric ring 1426' can include a bottom plate and an outer wall. The outer wall of the outer casing 1429 can be substantially cylindrical. In some implementations, the housing 1429 can also serve as a ground plane for RF energy used during processing. The bottom panel of the outer casing 1429 can be substantially planar' and can be joined to the outer wall along one of the edges of the outer wall. The outer casing 1429 can also include other components or portions that further define the overall shape of the outer casing 1429. The outer casing 1429 can provide some of the functionality provided by the pressure plate 422 of Figures 4 through 4E. For example, the outer casing 1429 can provide abutment to the chuck 1422 directly or indirectly. Housing 142 9 may also be referred to as a chuck housing. When the wafer support device 1420 is lowered by the lift mechanism 1402, the lift pin assembly 1428 can lift the wafer 1404 away from the chuck U22. 14D and 14E show a perspective and side cross-sectional view of the reactor 1401 with the wafer support device 1420 in a lowered position and the wafer 1404 lifted away from the chuck 1422 by the lift pin assembly 1428. Figures 14F and 14G show a perspective view and an exploded perspective view of the chuck 1422 (wafer 1404 is not shown). The chuck 1422 can be a multi-layer assembly and can include a purge channel plate 423, a cooling channel plate 1424, and a substrate 1425 that can be joined together to form a contiguous component. The purge channel plate 1423 provides support to the wafer 1404 and the guard ring 1421. The guard ring 1421 can be made of a dielectric material such as Al2〇3. The lift pin assembly 142 8 can be mounted in the chuck 1422. The chuck 1422 can be partially or completely coated to protect the chuck 1422 from corrosion during the plasma cleaning operation. This coating can be provided, for example, by electron beam deposition of yttrium fluoride (YF3) at 2 μηη 3 μιη. Chuck 1422 can be made, for example, from aluminum (such as 3 〇〇 3 aluminum) I60970. Doc -67- 201237994 成. The lift pin assembly 1428 can be made, for example, from a 1203 and can be held in place within the chuck 1422 by use of a 〇-ring or other compliant gripping mechanism. Chuck 1422 can have a larger diameter than the nominal wafer diameter of wafer 1404. For example, the chuck 1422 can extend in the radial direction beyond the edge of the wafer 1404 by 1 mm to 15 mm, or about 13 mm. Referring back to Figures 14B and 14C, various conduits can be guided to the underside of the chuck 1422 by the support posts 1454. For example, a coolant line (including a coolant supply line and a coolant return line) can be routed through the support column 454 and to the interface plate 1430, which can be hermetically sealed to the underside of the chuck 1422. To aid in understanding the various conduit interfaces within the chuck 1422, Figures 14H and 14J-140 provide various perspective and side cross-sectional views showing such interfaces. FIG. 14H depicts a perspective, non-planar cross-sectional view of reactor 1400. In Figure 14H, the reaction benefit 1400 has been cut along the plane of the centerline of the wafer support device 1420 and through the centerline of the coolant line 143 1 . In some implementations (such as the implementation depicted in Figure 14H), the cooling performance can be substantially independent of which coolant line 1431 is used to supply the coolant and which is used to return the coolant. However, in some other implementations, one coolant line 1431 may need to be designed as a supply line, and another coolant line 143 1 is designed as a return line to facilitate uniform cooling across the chuck 1422. The implementation shown in Figures 14A-14q is not characterized by heating elements within chuck 1422. Figure 141 depicts a cooling plate 1424 from various perspective views, including three separate perspective views. The cooling channels 1430 of the cooling plate 1424 can be formed by nested ^ shaped portions. The nested C-shaped portions can be generally aligned such that each c-shaped portion is "enemy 160970. The doc -68 - 201237994 open section is oriented in substantially the same direction. Each c-shaped portion may be coupled to another C-shaped portion by a bridging portion that joins one end of the C-shaped portion to the corresponding end of the other C-shaped portion. Some of the c-shaped portions may not be connected to the other C-shaped portions at both ends, and may alternatively have one end fluidly connected to the inlet or outlet corresponding to the coolant line 143A. These c-shaped portions may utilize the bridging portion to reach the inlet or outlet, or the c-shaped portion may simply position an end at the inlet or outlet. Cooling channel 1430 can, for example, have an approximately 〇. The nominal depth of 3" and the nominal width of 〇·45. 14J and 14B are respectively a perspective cross-sectional view and a side cross-sectional view of the wafer support device 142A along the plane of the center line of the alignment light pipe 1432 and the in-situ light pipe 1433. The calibration light tube 1432 can provide dual purpose functionality. For example, the calibration light tube 1432 can be positioned at the center of the wafer support device 142 〇 / chuck 1422 and used to assist in wafer 丨 4 〇 4 on the wafer The basis of the center on the device 1420 is selected. For example, a wafer transfer robot (not shown) can illuminate the top side of the wafer support device 1420. Light from this illumination can be reflected from the top surface of wafer support device 1420 back to the wafer transfer robot. However, since the calibration light tube 1432 is optically transparent, the amount of light reflected back from the top surface of the wafer deck device 1420 is reduced as light is incident on the center of the device. The wafer transfer robot can be equipped with a debt detector that measures the amount of reflected light. The wafer transfer robot can be configured to correlate the lower reflectivity regions to the center of the wafer support device 1420. The calibration diaphragm 432 can be covered by a sapphire window that fits into the purge plate 1423 and the cooling plate 1424. The additional functionality provided by the calibration tube allows the temperature monitoring system to be calibrated using the in-situ light tube 1433. Due to the low use in the method described in this article 160970. Doc -69· 201237994 Temperature, conventional non-contact temperature measurements (such as infrared temperature measurements) may not measure the temperature of the wafer just during processing. To obtain an in situ temperature profile for the temperature of the wafer 1404 during processing, it can be assumed that the temperature of the chuck 1422 at a point within the chuck bucket can be used to reliably and reliably estimate the temperature of the wafer 1404 at a given point in time. The in situ light pipe 1433 can provide a mechanism for obtaining this internal temperature measurement of the chuck 1422. The cartridge "" can be in thermal contact with the chuck "" (e.g., with the cooling plate 1424), and the in-situ light tube 1433 can provide an optical path for the light emitted by the phosphor disk 1434 to reach the spectral light sensor (not shown). Phosphor disc 1434 can emit light of different wavelengths depending on the temperature at which it is located, and such wavelength/temperature correlations can provide an accurate measure of the temperature of phosphor disk 1434 based on the wavelength of the emitted light. However, there may be some deviation in the temperature of the wafer 14〇4 when compared to the temperature obtained from the phosphor disc 1434. To quantify this deviation and correct for this deviation, a calibration wafer can be used to take the calibration measure. The calibration wafer is coated to allow temperature measurement via the optical sensor connected to the calibration light tube 1432. When the calibration wafer is used, the temperature measurement can be obtained using the in-situ light pipe 1433 and the calibration light pipe 1432. The difference observed between the two sets of measurements for the same environmental conditions can be used to correct the in-situ light pipe 1433 readings of the chuck 1422 associated with the wafer 1404 and obtain a more accurate estimate of the wafer 1404 temperature during processing. 14L and 14M depict, respectively, a perspective cross-sectional view and a side cross-sectional view of the wafer support device 142A along a plane passing through the centerline of the chuck 1422 and the purge gas line 1435. Two purge gas risers 1456 allow the purge gas supplied by the purge gas line 1435 to reach the purge gas inlet passage 1438 and by sweeping the gas spokes 1455 (not visible in Figures 14G and 14H, but 160970. Doc • 70· 201237994 A purge gas spoke 1455 is visible in Figures 14B and 14C) is assigned to the annular purge gas passage 1439. The purge gas functionality for this implementation is discussed in more detail later. 14N and 140 respectively depict a perspective cross-sectional view and a side cross-sectional view of the reactor 14A along a plane passing through the centerline of the chuck 1422 and the vacuum line 1457. Vacuum line 1457 can be fluidly coupled to annular vacuum passage 1437 via vacuum riser 1458. Although not shown in Figures 14N and 140, a number of small vacuum ports may fluidly connect the annular vacuum channel 丨 437 with the top surface of the chuck 1422 to allow vacuum assisted clamping of the wafer 14 〇 4 during a certain process. A circular pattern of such a vacuum port 1461 can be seen in Figures 14F and 14G. Figure 14P shows, for example, a detail side cross-sectional view of the sub-portion of the wafer support assembly shown in Figure 14f and wafer 14〇4. Figure 14q shows a further detailed side cross-sectional view of the edge region of wafer support device 1420 including guard ring 1421. The guard ring can have an inner diameter of about 2 mm greater than the nominal diameter of the wafer 14〇4. As is apparent from Figures 14P and 14Q, various thermal insulation zones can separate the various components of wafer support device 1420. As used herein, a thermally insulated zone refers to a physical separation (ie, a gap) between the parts that is sufficiently large to substantially prevent any gas entering between the parts via any gas trapped within the insulated zone. The heat transfer, but also sufficiently small, is sufficient to prevent substantial convective heat transfer between the parts via the gas. Parts that are in direct contact with or separated by a gap but are still sufficiently close enough to experience significant conduction heat transfer through any gas trapped in the gap across the gap may be referred to herein as being "thermally contacted" with each other. In the condition of the wafer selection device, it can reside in the heat insulation zone 160970. Doc 201237994 may be a process gas 'such as Ar, He or other gas supplied by a gas delivery system. The thermal barrier can be designed to account for the density of such gases in the ambiguous environment during wafer processing. For example, when ^ or ^^ gas fills the gap of the insulation zone and the gap is between 25 Torr and 75 Torr, the 〇〇15, or lower insulation zone can lead to non-negligible heat conduction between the two parts. . The term "insulation zone" can be used to refer to a portion of a component that, when assembled with another component, can represent one side of the insulation zone. Another component may have a corresponding insulating zone that forms the other side of the thermal insulation zone. For example, when the lower side of the dielectric plate 1427 can physically contact the outer casing 1429 across the first structural support region 1459, the remainder of the lower side of the dielectric plate 1427 as shown in FIG. 14p can be axially insulated. The zone M53 is offset from the outer casing. The first structural support zone 1459 can be a substantially annular zone having, for example, 4"inner diameter and 525" outer diameter. In some implementations, the first structural support zone can have less than a card. The outer diameter of the disk 1422 is about 50% of the outer diameter. The axial thermal insulation area 1453 between the outer casing 1429 and the lower side of the dielectric plate 1427 can be 0. 015 and 〇. Between the 〇5〇" and extending over the annular insulation zone on the two parts, the annular insulation zone has about 5. 25"The inner diameter and about 13. The outer diameter of 25". It will be appreciated that the specific thermal insulation values described herein with respect to the various thermal insulation zones shown in Figures 14p and 14Q may be different from other values that may effectively provide similar thermal management functionality. It is to be understood that a wafer support device design that achieves similar thermal management functionality by using a thermal insulation zone similar to the thermal insulation zones described herein but having different values is within the scope of the present invention. The region 1453 can be converted into a radially insulated region 145〇 between the cylindrical surface within the outer casing 1429 and the cylindrical surface outside the electric plate 1429, and can be I60970. Doc • 71, 201237994 Continuation between the cylindrical surface within the outer casing 1429 and the outer cylindrical surface of the dielectric ring 1426. The term "axial thermal insulation zone" is used herein to describe a thermal insulation zone that is primarily characterized by one or several gaps between components along a central axis that is substantially axially symmetric, and the term "radial. "Insulating zone" is used herein to describe an insulating zone that is primarily characterized by one or more radial gaps between such parts. The radial thermal insulation zone 145 〇 can have a relationship between 〇 , 15, and 0. The gap distance between 050". Another insulating zone that is apparent in Figure 14P is located between chuck 1422 and dielectric plate 1427 and dielectric ring 1426. The chuck 1422 can be in physical contact with the dielectric plate 1427 across the second structural support region 1460 as if the dielectric plate 1427 can be in physical contact with the outer casing 1429 across the first structural support region 1459. A portion of the chuck 1422 extending outward from the second structural support region 1460 can be separated from the dielectric plate 1427 by the axial thermal insulation region 1452, and the axial thermal insulation region 1452 is converted into a cylindrical surface and a cylindrical surface outside the chuck 1422. A radial thermal insulation zone 1447 between the cylindrical surfaces within the electrical plate 1427. The axial thermal insulation zone 1452 and the radial thermal insulation zone 1447 between the chuck 1422 and the dielectric plate 1427 can have a relationship between 〇 15 " and 0. The gap distance between 050". The axial thermal insulation zone 1452 can extend across the annular insulation zone on the dielectric plate 1427 and the chuck 1422, and the annular thermal insulation zone can have about 5. 25" the inner diameter and about 12. 75" outer diameter. In addition to the insulating region separating the dielectric ring 1426 and the dielectric plate 1427 from the outer casing 1429 and the chuck 1422, other thermal insulation regions may be present between the other components shown in Figures i4p and 14Q. For example, the guard ring 1々a 1 can be about 0. 015" to 0. The 500" axial thermal insulation zones 1446 and 1449 and the radial thermal insulation zone 1448 are thermally separated from the outer casing U29 and the dielectric ring 1421. Despite entity 160970. Doc • 73· 201237994 is supported by chuck 1422, but guard ring 1421 can be largely separated from chuck 1422 via gap 1444 and radial thermal insulation region 1445, which in some implementations can be between about 15 microns and 25 microns. . The guard ring 1421 can be spaced apart from the chuck 1422 by a plurality of cylinders 1442 projecting from the underside of the guard ring 1421, and the cylinder 1442 rests within a corresponding recess 443 in the top surface of the chuck 1422. Although there is physical contact between the guard ring 1421 and the chuck 1422 via the cylinder 1442 and the receiving recess 1443, this physical contact can be very limited (eg, two small diameter cylinders) and by the cylinder 1442 to the card The conduction heat transfer in the disk 1422 can be correspondingly negligible. In addition to, for example, the cylinder 442, the guard ring 142 1 can be substantially axially symmetric. In addition, the guard ring 〖42丨 can have a lower thermal mass than many of the other components in the wafer support device 1420, which reduces thermal inertia, that is, other with the wafer support device 丨42〇 The heat can flow very quickly within the guard ring 1421 compared to the assembly. This rapid thermal flow within the guard ring 1421 permits a high rate of convective heat transfer from the guard ring 1421 to the surrounding environment. During processing, reactant gases may flow across the wafer 1404 toward the wafer perimeter and over the guard ring. These gases can remove heat that has been transferred from chamber 14〇1 to guard ring M2! by this convective heat transfer and carry heat away from wafer 1404. With the combination of convective heat transfer and minimal heat transfer described above, chuck 1422 can receive a negligible amount of heat from guard ring 1421 during processing. Although wafer 14〇4 can be protected from thermal offset by heat transfer from guard ring 1421 described above and, for example, in the features and geometries illustrated in FIG. 14Q, wafer 1404 It can also be susceptible to local hot spots or cold spots on the chuck 1422, which can result in a less uniform i I60970 across the wafer 14〇4. Doc -74- 201237994 Temperature distribution. To help protect the wafer 1404 from this possible temperature deviation across the surface of the chuck 1422, the wafer 1 404 can be offset from the surface of the chuck 1422 by using a pattern of small bumps or bumps 1441. The protrusions 1441 can be between 15 microns and 250 microns (about 0.0006 " to 001" high and the wafer 1404 can be offset from the chuck 1422 by a corresponding amount. The protrusions 1441 can, for example, have a diameter of 0. 010" to 0. Between the 050" and the concentric radiation pattern configuration to provide distributed support of the wafer 14〇4 across the entire span of the wafer 1404. The overall pattern of protrusions 1441 and protrusions 1441 is also visible in Figures 14F and 14G; a total of 96 protrusions 1441 are shown. Other patterns having different numbers, protrusion diameters or sizes, and protrusion heights can be used. Annular purge gas passage 1439 and purge gas distribution orifice 1440 are also visible in Figures 14P and 14Q. The purge gas distribution holes 144 may be spaced along the annular purge gas passage 1439 to form a circular hole pattern; the circular hole pattern may have a slightly smaller nominal diameter than the b circle 1404 (eg, 1 paw to 2 mm) The diameter of the). The purge gas distribution orifice 1440 can be a stepped orifice having a discharge diameter of about π (π " to 15". The annular purge gas passage 1439 can be fluidly connected via one or more purge gas spokes 1455 to The purge gas inlet passage 1438. The purge gas supplied to the purge gas inlet passage 1438 by the purge gas line 1435 can travel into the annular purge gas passage 1439 by one or more purge gas spokes 1455, and The gas is evacuated by the purge gas distribution hole 144. The purge gas can then exit the purge gas distribution hole 144 and enter a gap between the wafer 14〇4 and the chuck 1422, at which the purge gas can be purged. Finally, toward the periphery of the wafer 1404 and above and below the guard ring 1421. The purge gas can be used to substantially protect the chuck 1422 from the reactants used for deposition, as 160970. Doc -75- 201237994 This prevents substantial deposition on the chuck 1422 and extends the useful life of the chuck 1422. Although some back diffusion of the purge gas over the top of the wafer 1404 and toward the center of the wafer 1404 can occur 'but can flow through the reactant gas toward the guard ring 1421 and above the edge of the wafer support device 1420 Push most of the purge gas. The purge gas also protects the guard ring 1421 and the outer casing 1429 from undesired deposition. In some implementations, for example, a wafer support device that does not provide RF energy, a dielectric interrupt region formed by dielectric plate 1427 and dielectric ring 1426 can be omitted from design. In such implementations, the housing 1429 and the chuck 1422 can be configured to provide a zero between each other. 015 to 0. The thermal insulation zone of 050, thus avoiding the creation of a large volume of space, the omitted dielectric material could originally be located at this large volume. Figures 11 through 14L provide examples of devices that can be used in conjunction with the structures and systems discussed herein. However, those skilled in the art will appreciate that various modifications can be made from the description provided. For example, the galvanic processing module can be a remote and/or direct inductively coupled or capacitively coupled plasma module. In some implementations, the flowable gap-filling module can accommodate more than one pedestal and sprinkler in a single chamber (eg, two pedestals and sprinklers allow for increased mu (four) rot - (iv) towel state = circle. In some embodiments, "a device controller can be included, the system controller having means for controlling processing operations in accordance with the present invention: a device that will often contain - or multiple memory devices and - or multiple locations = m is used to control the processing operation 160970 according to the present invention. Doc • 76 · The machine-readable media of the 201237994 directive can be fitted to the system controller. The processor can be CPU3 CPU or computer' and can include _ or multiple analog and/or digital input/output connections, stepper motor controller boards, etc. H or multiple (four) ratio and/or digital input/output connections, stepping A motor controller board or the like is communicably connected. For example, the system controller can be configured to control the gas delivery system, susceptor movement, vacuum port suction, electrocution electrodes, and/or heating and cooling elements (if present in a particular embodiment). Typically, there will be a user interface associated with the system controller. The user interface can include graphics software for display screens, devices, and/or processing conditions. , and the user's input device, such as indicator devices, keyboards, touch screens, microphones, etc. "System controllers can be connected to any or all of the components shown in the fixture or module, included in this The components shown in the drawings of the application, the placement and connection of the system controller may vary depending on the particular implementation. In some embodiments, the system controller controls the pressure in the processing chamber. The system controller can also control the concentration of various process gases in the chamber by means of a regulating valve, a liquid delivery controller, and a flow restriction valve in the MFC and discharge lines in the delivery system. It is difficult to make H execution line control software, which includes timing, flow rate, chamber pressure, chamber/spray/base/substrate pressure and/or other parameters for specific processing for controlling gas and liquid. Instruction set. In some embodiments, other computer programs stored in the memory device associated with the controller can be used. In some embodiments, the system controller controls the transfer of the substrate to the device shown in the figures and the transfer from the device shown in the figures. The computer code used to control the processing in the processing sequence can be any conventional 160970. Doc -77· 201237994 is written in a computer readable programming language, such as a combination of language, C, C++, Pasea!, F her an or other languages. The compilation target or instruction code can be executed by the processor to execute the tasks identified in the program. The system software can be designed or configured in many ways. For example, various chamber component subroutines or control targets can be programmed to control the operation of the chamber components necessary to perform the process. Examples of programs or program segments for this purpose include process gas control programs, pressure control code, and plasma control code. Controller parameters are related to processing conditions, such as the timing of each operation, the pressure within the chamber, Substrate temperature, process gas flow rate, RF power, and other conditions as described above. These parameters are provided to the user in the form of a recipe and can be entered using the user interface. The signal used for monitoring processing can be referred to by a system controller and/or a digital input connection. The signals processed by the ☆ control are output on the analogy of the device and the digital output connection. The apparatus/process described above can be used in conjunction with a photolithographic patterning tool or process, for example, for fabricating semiconductor devices, displays, (4), photovoltaic panels, and the like. Usually, but not necessarily, such tools/processes will be used or performed together in a common manufacturing facility. Photolithographic patterning of a film typically includes some or all of the following steps, each step being accomplished with a number of possible tools (1) applying a photoresist material to the workpiece (ie, the substrate) using a spin coating or spray tool, (2) Use a hot plate or stove or. ¥ curing tool to cure the photoresist material; (3) exposing the photoresist material to visible light or UV or X-ray using a tool such as a wafer stepper; (4) developing the resist to selectively remove the resist An etchant, which is then patterned using a tool such as a wet bench; 160970. Doc • 78 · 201237994 (5) Transfer the resist pattern to the underlying film or workpiece using a dry or plasma assisted etch tool; and (6) use a tool such as an RF or microwave plasma resist stripper Remove the resist. Additionally, the disclosed method can be practiced in a process in which photolithography and/or patterning is performed before or after the disclosed method. It will be understood that the present invention is generally in its entirety, unless the features in any one of the specific embodiments are specifically identified as contradicting each other, or the context of the invention means that they are mutually exclusive and are not readily combined in the sense of complementarity and/or mutual support. Specific features that are encompassed and contemplated for their complementary implementation may be selectively combined to provide one or more comprehensive but slightly different technical solutions. Therefore, it is to be understood that the above description is given by way of example only, and modifications in detail may be made within the scope of the invention. [Simple description of the drawing] Figure 1 illustrates a flowable gap filling process diagram. 2A and 2B illustrate plan views of a tool for filling a module using a flowable gap. Figure 3 illustrates the configuration of a flowable gap fill module. Figures 4A through 4E illustrate various configurations in a flowable gap fill module implementation. Figure 5A schematically illustrates various gas supply modules for use in a gas delivery system in some implementations of flowable gap fill devices. Figure 5B schematically illustrates an example gas delivery system using He as the carrier gas. Figure 5C schematically illustrates the gas delivery system of Figure 5B with 斛 as 160970. Doc -79· 201237994 Carrier gas. Figure 5D schematically illustrates another example gas delivery system using Ar as a carrier gas. Figure 5A schematically illustrates a second example gas delivery system using Ar as a carrier gas. Figure 5F schematically illustrates a third example gas delivery system using Ar as the carrier gas. Figure 5G schematically illustrates a fourth example gas delivery system using Ar as the carrier gas. Figure 5H schematically illustrates a fifth example gas delivery system using Ar as a carrier gas. Figure 51 schematically illustrates a sixth example gas delivery system using Ar as a carrier gas. Figure 5J schematically illustrates a seventh example gas delivery system using Ar as the carrier gas. Figure 5K schematically illustrates an eighth example gas delivery system using Ar as the carrier gas. Figure 5L schematically illustrates a ninth example gas delivery system using Ar as a carrier gas. Figure 5M schematically illustrates a ninth gas delivery system having an optional directional line purge gas source using Ar as the carrier gas. Figure 6 is a simplified plan view of the position of the reactor and possibly the resistive heating elements. Figure 7A illustrates the removable baffle in plan view. Figure 7B illustrates the reactor and the annular passage in plan view. 160970. Doc -80· 201237994 Figure 7C illustrates the reactor in an isometric view. Figure 8 is a graph showing the analysis results of the baffle. Figure 9 is an isometric view of the reactor where the hidden lines show internal features. Figure 1 shows a partial hole pattern for the showerhead. Figure 11 shows an example of a reactor or module. Figure 12 is a simplified schematic diagram of a remote plasma processing module. Figure 13 is a simplified illustration of the various components of the HDP-CVD apparatus. Figure 14A depicts an isometric view of an example reactor. Figure 14B depicts an isometric cross-sectional view of the reactor of Figure 14A. Figure 14C depicts a side cross-sectional view of the reaction Is of Figure 14A. Figure 14D depicts an isometric cross-sectional view of the reactor of Figure 14A with the wafer in a raised position. Figure 14E depicts a side cross-sectional view of the reaction of Figure 14A with the wafer in a raised position. Figure 14F depicts an isometric view of the wafer support device of Figure 14A. Figure 14G depicts an isometric exploded view of the wafer support device of Figure 14A. Figure 14H depicts an isometric partial cross-sectional view of the wafer fulcrum assembly of Figure 14A illustrating the cooling line interface. Figure 141 depicts a plurality of views of an example cooling plate for use in the reactor of Figure 14A. Figure 14J depicts an isometric cross-sectional view of the wafer support apparatus of Figure 14A illustrating the light pipe interface. Figure 14K depicts a side view of the cross section shown in Figure 14J. Figure 14L depicts the wafer support device 160970 of Figure 14A illustrating the gas purge interface. Isometric section of doc 201237994. Figure 14M depicts a side view of the cross section shown in Figure 14L. Figure 14N depicts an isometric cross-sectional view of the wafer support apparatus of Figure 14A illustrating the vacuum interface. Figure 140 depicts a side view of the cross section shown in Figure 14N. Figure 14P depicts a detailed cross-sectional view of the wafer support device of Figure 14A. Figure 14Q depicts another detailed cross-sectional view of the wafer support device of Figure 14A. [Main component symbol description] 200 Tool configuration 210 High-density plasma chemical vapor deposition (HDP-CVD) module 220 Flowable gap filling module 230 PEC module 240 WTS module 250 Vacuum pre-extraction chamber 260 Tool configuration 270 remote plasma curing module 280 . Flowable gap fill module 290 Vacuum pre-extraction chamber 295 Wafer transfer system 300 Flowable gap fill processing module 310 Reactor 320 Gas delivery system 330 Treatment of reactants and chemical sources 340 Flow control hardware 160970. Doc -82 - 201237994 350 Gas Delivery Controller 360 Sprinkler 370 Base 380 Base Drive Unit 400 Reactor 402 Chamber Housing 404 Top Plate 406 Skirt 408 Sprinkler 410 Wafer 412 Chuck 414 Insulation Ring 416 RF Electrode 418 Resistance heating element 420 Base 420, base 422 Pressure plate 424 Base column 426 Seal 428 Platen coolant line 430 Base purge line 432 〇 Inflator 434 Ρ Inflator 436 0 Gas line · 83 · 160970. Doc 201237994 438 P gas line 440 partition 442 0 reactant 444 P reactant 446 deposition gas mixture 448 0 inflator hole 450 P inflator hole 452 purge gas 454 coolant 456 heat 501 module A gas source 502 module A mass Flow controller 503 Module B gas source 504 Module B mass flow controller 505 Module C liquid source 506 Module C gas source 507 Module C liquid flow meter 508 Module C mass flow controller 509 Module C vaporizer 510 Module D liquid source 511 module D liquid flow controller 512 module D vaporizer 513 module E liquid source 514 module E vaporizer 160970. Doc -84- 201237994 515 Module E Mass Flow Meter 516 Module F First Liquid Source 517 Module F Gas Source 518 Module F Second Liquid Source 519 Module F First Liquid Flow Controller 520 Module F Mass Flow Controller 521 Module F Second Liquid Flow Controller 522 Module F Evaporator 523 0 Steering Line 524 P Steering Line 525 Partition 526 Dual Flow Sprinkler 527 〇 Partition 528 P Partition 529 Module C 530 Module A 531 Module A 532 module A 533 module A 534 module A 535 module A 536 module E 537 module E 538 module E 160970. Doc -85 · 201237994 539 Module c 540 Module A 541 Module A 542 Module D 543 Module c 544 Module E 545 Module D 546 Module D 547 Module c 548 Module E 549 Module F 600 Reactor 610 chamber 620 internal pores 630 resistance heating 匣 650 resistance heat device 700 reactor 701 removable baffle 703 annular zone 704 top plate 705 radial extension 707 sub L 708 sprinkler head 709 hole 160970. Doc -86- 201237994 711 Reactor 712 Chuck 713 Annular Channel 714 Insulation Ring 715 Radial Cavity 717 Vacuum Port 722 Platen 724 Base Shaft 728 Coolant Line 728' Cooling Channel 900 Reactor 901 Remote Plasma Source Port 1000 Sub-L pattern 1010 Pupil 1020 P-hole 1100 Reactor/chamber 1102 Low-frequency RF generator 1104 High-frequency RF generator 1108 Manifold 1110 Source gas line 1112 Inlet 1114 Sprinkler 1116 Substrate 1118 Wafer pedestal • 87- 160970. Doc 201237994 1120 Ground Heater Frame 1122 Outlet 1124 Processing Chamber 1200 Device 1201 Exposure Chamber 1203 Wafer 1205 Platen 1207 Pipe 1209 Inlet 1211 Plasma Generation Section 1217 Sprinkler Head Assembly 1301 Reactor 1303 Processing Chamber 1305 Top RF Coil 1307 Side RF Coil 1309 Wafer Base 1311 Substrate 1313 Line 1315 HFRF Source 1317 Inlet 1321 Main Gas Ring 1322 Outlet 1400 Reactor 1401 Chamber 160970. Doc -88 201237994 1402 Lifting mechanism 1404 Wafer 1420 Wafer support device 1421 Guard ring 1422 Chuck 1423 Purge channel plate 1424 Cooling channel 1425 Substrate 1426 Dielectric ring 1427 Dielectric plate 1428 Release pin assembly 1429 Housing 1430 Interface plate 1431 Coolant line 1432 Calibration light tube 1433 In-situ light tube 1434 Phosphor disc 1435 Purge gas line 1437 Vacuum channel 1438, Purge gas inlet channel 1439 Purge gas channel 1440 Purge gas distribution hole 1441 Protrusion 1442 Column 160970. Doc -89- 201237994 1443 Storage recess 1444 Clearance 1445 Radial insulation 1446 Axial insulation 1447 Radial insulation 1448 Radial insulation 1449 Axial insulation 1450 Radial insulation 1452 Axial isolation Hot zone 1453 Axial insulation zone 1454 Support column 1455 Purge gas spokes 1456 Purge gas riser 1457 Vacuum line 1458 Vacuum riser 1459 First structural support zone 1460 Second structural support zone 1461 Vacuum port 160970. Doc -90-

Claims (1)

201237994 七、申請專利範圍: 1. 一種晶圓支撑裝置,其包括: —^盤;其中: 該卡盤包含一頂表面、一底表面及一外表面; 該頂表面與該底表面實質上平行於彼此,且可偏離 彼此; 該外表面位於該頂表面與該底表面之間;且 該頂表面經組態以支撐一半導體晶圓;及 一外殼;其中: 該外殼包含一外壁及連接至該外壁之一外殼底板; δ亥外殼底板包含自該外壁朝向該外殼底板之中心延 伸之一第一隔熱區,其中該第一隔熱區在一直延伸至 該外殼底板之該中心之前停止; 該卡盤之該底表面面向該外殼底板; 該卡盤之該底表面及該外表面可實質上處於由該外 壁及該外殼底板界定之一容積内; 該卡盤與該外殼經組態以作為一單一總成在一半導 體製造腔室中一起移動; 該卡盤之該外表面與該外殼之該外壁之間無實質熱 接觸;且 跨越該第一隔熱區在該底表面與該外殼底板之間無 實質熱接觸。 2. 如請求項1之晶圓支撐裝置,其中當該晶圓支撐裝置曝 露於在一可流動沈積半導體製造腔室中存在之氣體及環 160970.doc 201237994 境條件時,發生該卡盤之該外表面與該外殼之該外壁之 間的該無實質熱接觸及跨越該第一隔熱區在該底表面與 該外殼底板之間的該無實質熱接觸。 3. 如請求項2之晶圓支撐裝置,其中該等氣體包含^或 He,且該等環境條件包含介於25托與75托之間的一壓 力。 4. 如請求項丨之晶圓支撐裝置,其中: 在該卡盤之實質上全部該外表面與該外殼之該外壁之 間存在至少為〇.〇 15,,之一間隙;且 跨越該第一隔熱區在實質上全部該底表面與該外殼底 板之間存在至少為〇·〇 15"之一間隙。 5. 如請求項1之晶圓支撐裝置,其中: 該外表面與該外壁為實質上圓柱形; 該外殼底板為實質上環形且具有一内部周界;且 該隔熱區不延伸至該内部周界。 6. 如請求項5之晶圓支撐裝置,該晶圓支撐裝置進一步包 括介電中斷區,其中: 該介電中斷區包含一外介電壁及與該外介電壁相接之 一介電底板; 該介電底板包含自該外介電壁朝向該介電底板之該中 心延伸之一第二隔熱區; 該介電底板插入於該外殼底板與該底表面之間; 該外介電壁插入於該外壁與該外表面之間; 該外壁、該外介電壁與該外表面之間無實質熱接觸; 160970.doc 201237994 跨越該第二隔熱區在該底表面與該介電底板之間無實 質熱接觸;且 跨越該第一隔熱區在該介電底板與該外殼底板之間無 實質熱接觸。 7.如請求項6之晶圓支撐裝置,其中: 該外表面與該外介電壁之面向該外表面之一表面隔開 介於0.015"與〇.050"之間的一間隙; 該底表面與該介電底板之在該第二隔熱區内且面向該 底表面之—表面之間隔開介於〇·〇15"與0.050”之間的一 間隙; 該外介電壁與該外壁之面向彼此之表面隔開介於 0.015"與〇.〇5〇"之間的一間隙;且 該介電底板之一表面與該外殼底板之在該第一隔熱區 中之一表面隔開介於0.015"與〇.〇5〇"之間的一間隙。 8·如請求項1之晶圓支撐裝置,其中該卡盤包含一冷卻通 道’該冷卻通道位於該頂表面與該底表面之間且沿循穿 過該卡盤之一迂迴路徑。 9·如請求項8之晶圓支撐裝置,其中該迂迴路徑包括: 具有不同大小之複數個嵌套之C形區段;及 複數個跨接區段;其中: 母一跨接區段用另一C形區段之一相應末端來接合 一個C形區段之一末端;且 僅一個跨接區段將任何兩個c形區段接合在一起。 ίο.如請求項1之晶圓支撐裝置,其中該卡盤包含位於該頂 160970.doc 201237994 表面與該底表面之間的一環形吹掃氣體通道’且其中孔 之一圓形圖案將該環形吹掃氣體通道與該頂表面流體連 接》 11·如請求項10之晶圓支撐裝置,其中該晶圓支撐裝置經組 態以支撐具有一指定標稱直徑之晶圓,且該圓形圖案之 直徑比該標稱直徑小1 mm至2 mm。 12. 如請求項1之晶圓支撐裝置,其進一步包括: 一保護環,其中該保護環: 為實質上環形; 内部直徑大於該頂表面經組態以支撐之該半導體晶 圓之一指定標稱直徑; 由該卡盤支撐; 不與該外殼之該外壁或該卡盤之該外表面接觸。 13. 如請求項12之晶圓支撐裝置,其中: 該保護環包含複數個柱體; 每一柱體自該保護環之面向該頂表面之一表面突出一 第量’且突出至該頂表面中之一凹部中,該凹部之一 深度小於該第一量; 該保護環之有該等柱體突出之該表面自該頂表面偏離 15微米至250微米。 k如請求項12之晶圓支撐裝置’其中在該保護環之最接近 違外壁之-表面與該外壁之間存在至少為G Qi5”之 隙。 15·如請求項1之晶圓支撐裝置,其中: 160970.doc 201237994 複數個凸出突起自該頂表面突出; 該等突起配置成同心圓形圖案;且 每一突起自該頂表面突出i 5微米至25〇微米。 16. 如請求項1之晶圓支撐裝置,其中: 該卡盤進一步包含一校準光管及一原位光管; 該校準光管之一個末端終止於該頂表面之中心處; 該原位光管之一個末端終止於位於該頂表面與該底表 面之間的一磷光盤處;且 該校準光管與該原位光管在該卡盤内分開一距離,該 距離小於自該外殼底板之該中心至該第一隔熱區之距 離。 17. 如睛求項9之晶圓支撑裝置,其中: 該卡盤包含一第一板及一第二板; 該第一板包含一第一頂面及一第一底面; δ亥第一板包含一第二頂面及一第二底面; 該第一頂面結合至該第二底面; 該冷卻通道凹入至該第二底面中; 該第一板包含兩個通孔; 每一通孔與該冷卻通道之一不同終端對應,且該第一 板與戎第二板對準,使得每—通孔與該冷卻通道之該對 應終端對準。 18. 如請求項17之晶圓支撐裝置,其中: 該卡盤進一步包含一第三板; 該第三板包含一第三頂面及一第三底面; 160970.doc 201237994 該第三底面結合至該第二頂面; 該第三底面包含一環形吹掃氣體通道及與該環形吹掃 氣體通道流體連接之一或多個吹掃氣體供應通道; 孔之一圓形圖案將該環形吹掃氣體通道與該第三頂面 流體連接;且 一吹掃氣體入口穿過該第一板及該第二板,且將該一 或多個吹掃氣體供應通道與該第一底面流體連接。 19. 如請求項6之晶圓支撐裝置其中: 該卡盤及該外殼主要由鋁製成;且 該介電中斷區主要由Al2〇3製成。 20. 如請求項19之晶圓支撐裝置,其中: 該卡盤主要由3003鋁製成;且 該頂表面塗有YF3。 21. —種用於半導體製造之裝置,該裝置包括: 一腔室,其包含一加熱器系統及一實質上圓桎形之内 表面; 卡盤’其具有一晶圓支撐區域、一實質上圓柱形之 外表面及一冷卻系統; 一卡盤外殼,其具有一實質上圓柱形之外表面;及 一控制器’其經組態以控制該加熱器系統及該冷卻系 統;其中: 該卡盤實質上含於該卡盤外殼中’且由該卡盤外殼 支撐; 該卡盤外殼可相對於該腔室移動; I60970.doc -6 - 201237994 該晶圓支撐區域不受該卡盤外殼妨礙; 該控制器經組態以藉由調節冷卻系統溫度及加熱系 統溫度而產生一第一操作組態;其中,在該第一操作 組態中: 5亥腔室之該内表面具有至少為4〇。〇之一溫度; 該晶圓支#區域具有介於_1〇它與+1〇它之間的_ 溫度;且 該卡盤外殼之該外表面具有比該晶圓支撐區域之 該溫度高至少5°C之一溫度。 22. 23. 24. 25. 如請求項21之裝置,其中該控制器進一步經組態以藉由 調節該冷卻系統溫度及該加熱系統溫度而產生一第二操 作組態,其中’在該第二操作組態中: 該腔室之該内表面 '該卡盤外殼之該外表面及該晶圓 支撐區域具有大於70。(:之一溫度。 如請求項21之裝置,其中該控制器進一步經組態以藉由 调節該冷卻系統溫度及該加熱系統溫度而產生一第三操 作組態,其中’在該第三操作組態中: 該腔室之該内表面、該卡盤外殼之該外表面及該晶圓 支樓區域具有介於30°C與5〇°C之間的一溫度。 如晴求項21之裝置,其中該控制器進一步經組態以維持 一溫度概況’ 一溢度變化跨越由該晶圓支撐區域支撐之 一晶圓小於〇.35°C。 一種半導體製造模組’該模組包括: 一腔室;該腔室包含: 160970.doc 201237994 一内表面; 一頂板;及 一底板; 一晶圓支撐裝置’該晶圓支撐裝置含於該腔室中,且 包含: 一卡盤;其中該卡盤: 經組態以在處理期間經由位於該卡盤之一頂表面 上之一晶圓支撐區域來支撐具有標稱直徑D之一半 導體晶圓; 總體形狀為實質上圓柱形;且 具有大於D之一標稱直徑;及 一外殼,該外殼包含一外表面及一底板;其中: 該外表面為實質上圓柱形; 該卡盤實質上位於由該外表面界定之一容積内;且 該外表面界定該底板之外邊緣; 一喷淋頭,該噴淋頭位於該晶圓支撐區域上方; 一氣體分配系統’該氣體分配系統經組態以經由該喷 淋頭將反應物遞送至該腔室; 一加熱系統’該加熱系統經組態以加熱該腔室之該内 表面、該頂板及該底板; 一冷卻系統,該冷卻系統經組態以冷卻該卡盤;及 一溫度控制器,其中該溫度控制器經組態以: 控制由該加熱系統供應之加熱量; 控制由該冷卻系統供應之冷卻量;且 160970.doc 201237994 藉由調節該冷卻系統及該加熱系統而提供一第一操 作組態;其中,在該第一操作組態中: 該腔室之該内表面具有至少為40°C之一溫度; 該晶圓支撐區域具有介於- lOt:與+10°C之間的一 溫度;且 該外殼之該外表面具有比該晶圓支撐區域之該溫 度高至少5°c之一溫度。 26. 如請求項25之半導體製造模組,其中: 該喷淋頭包含一第一充氣部及一第二充氣部,其中該 第一充氣部及該第二充氣部在該喷淋頭内彼此流體隔 離’且各自配備有氣體分配孔,該等氣體分配孔用位於 該晶圓支撐區域與該喷淋頭之間的一處理容積而將兩個 充氣部流體連接;且 其中該氣體分配系統進一步經組態以: 經由一第一噴淋頭供應管線將一或多種第一反應物 遞送至該喷淋頭之該第一充氣部;且 經由一第二噴淋頭供應管線將一或多種第二反應物 遞送至該喷淋頭之該第二充氣部。 27. 如請求項26之半導體製造模組,其中: 該第一噴淋頭供應管線經組態以待由一第一喷淋頭供 應管線加熱器加熱; 該第二喷淋頭供應管線經組態以待由一第二噴淋頭供 應管線加熱器加熱; 該溫度控制器進一步經組態以控制由該第一喷淋頭供 160970.doc •9· 201237994 應管線加熱器及該第二喷淋頭供應管線加熱器供應之加 熱量。 28. 如請求項27之半導體製造模組’其中該第一噴淋頭供應 管線加熱器、該第二喷淋頭供應管線加熱器及該溫度控 制器經組態以將該第一喷淋頭供應管線及該第二喷淋頭 供應管線加熱至至少為1 〇〇°C之溫度。 29. 如請求項26之半導體製造模組,其中該卡盤經組態以圍 繞該晶圓支撐區域之周界供應一吹掃氣體。 30. 如請求項29之半導體製造模組,其中: 該晶圓支撐區域包含複數個突起,該複數個突起經組 態以使由該晶圓支撐區域支撐之半導體晶圓自該卡盤偏 離介於15微米與250微米之間的一距離; s亥卡盤經組態以經由吹掃氣體孔之一圓形圖案圍繞該 晶圓支撲區域之該周界供應該吹掃氣體; 該圓形圖案具有比該標稱直徑小約i mm至2 mm之— 直徑;且 該吹掃氣體孔具有小於該圓形圖案與該標稱直徑之間 的直徑差異之一出口直徑。 31·如請求項26之半導體製造模組’其中該晶圓支樓裝置進 一步包含: 插入於該卡盤與該外殼之間的一介電中斷區;其中: 該介電中斷區跨越該外殼之該底板之—中心外殼區 域與該外殼實質熱接觸; 該介電中斷區跨越該底板之除該中心外殼區域之外 I60970.doc •10、 201237994 的部分不實質熱接觸; 該介電中斷區跨越一中心卡盤區域與該卡盤實質熱 接觸; 該介電中斷區跨越該卡盤之除該中心卡盤區域之外 的部分不與該卡盤實質熱接觸;且 當沿著該外殼外表面之中心轴觀看時,該中心卡盤 區域及該中心外殼區域具有小於該卡盤之該直徑的 50%之標稱大小。 32. 33. 如請求項31之半導體製造模組,其中: 該介電中斷區與該外殼之面向彼此之表面,除了此等 面跨越該中心外殼區域而彼此接觸之部分之外,彼此隔 開介於0.015"與0.050"之間的一間隙;且 該介電中斷區與該卡盤之面向彼此之表面,除了此等 面跨越該中心卡盤區域而彼此接觸之部分之外,彼此隔 開介於0.015"與0.050”之間的一間隙。 如4求項3 1之半導體製造模組,其中該晶圓支撐裝置進 一步包含一保護環,其中該保護環: 由該卡盤支撐; 實質上軸對稱; 具有小於該卡盤之該標稱直徑之一内徑;且 /σ著卡盤中心軸自該卡盤偏離丨5微米至25〇微米,其 中自該卡盤之該偏離係由柱體提供,該等柱體跨越未自 Λ卡盤偏離之重疊部分而與該卡盤熱接觸;且 其中該保護環與該介電中斷區之面向彼此之表面隔 I60970.doc 201237994 開0.015”至0.050"之一間隙’且該保護環與該外殼之 面向彼此之表面隔開〇.〇15"至〇 〇5〇"之一間隙。 34.如請求項25之半導體製造模組,其中選自由該腔室、該 卡盤、該外殼及該喷淋頭組成之群組之一或多個組件在 曝露於該腔室内之反應物之區域中至少部分塗有一疏水 性塗層。 35·如請求項34之半導體製造模組,其中該疏水性塗層為 Ti02。 160970.doc 12201237994 VII. Patent application scope: 1. A wafer supporting device, comprising: - a disk; wherein: the chuck comprises a top surface, a bottom surface and an outer surface; the top surface is substantially parallel to the bottom surface The outer surfaces are located between the top surface and the bottom surface; and the top surface is configured to support a semiconductor wafer; and an outer casing; wherein: the outer casing includes an outer wall and is connected to One of the outer walls of the outer casing; the bottom casing comprises a first thermal insulation zone extending from the outer wall toward the center of the outer casing floor, wherein the first thermal insulation zone is stopped before extending to the center of the outer casing floor; The bottom surface of the chuck faces the bottom plate of the casing; the bottom surface and the outer surface of the chuck may be substantially within a volume defined by the outer wall and the outer casing floor; the chuck and the outer casing are configured to Moving together as a single assembly in a semiconductor fabrication chamber; there is no substantial thermal contact between the outer surface of the chuck and the outer wall of the outer casing; and across the first thermal insulation The zone has no substantial thermal contact between the bottom surface and the bottom plate of the outer casing. 2. The wafer support device of claim 1, wherein the chuck occurs when the wafer support device is exposed to a gas and ring 160970.doc 201237994 condition present in a flowable deposition semiconductor fabrication chamber The insubstantial thermal contact between the outer surface and the outer wall of the outer casing and the insubstantial thermal contact between the bottom surface and the outer casing floor across the first thermal insulation region. 3. The wafer support device of claim 2, wherein the gases comprise ^ or He, and the environmental conditions comprise a pressure between 25 Torr and 75 Torr. 4. The wafer support device of claim 1, wherein: at least substantially all of the outer surface of the chuck and the outer wall of the outer casing have a gap of at least 〇15, and spans the A thermally insulated region has at least one of a gap between the bottom surface and the bottom plate of the outer casing. 5. The wafer support device of claim 1, wherein: the outer surface and the outer wall are substantially cylindrical; the outer casing bottom is substantially annular and has an inner perimeter; and the thermal insulation region does not extend to the interior world. 6. The wafer support device of claim 5, the wafer support device further comprising a dielectric interrupt region, wherein: the dielectric interrupt region comprises an outer dielectric wall and a dielectric connected to the outer dielectric wall a bottom plate; the dielectric substrate includes a second thermal insulation region extending from the outer dielectric wall toward the center of the dielectric substrate; the dielectric substrate is interposed between the bottom plate of the outer casing and the bottom surface; a wall is interposed between the outer wall and the outer surface; the outer wall, the outer dielectric wall and the outer surface have no substantial thermal contact; 160970.doc 201237994 spans the second thermal insulation region on the bottom surface and the dielectric There is no substantial thermal contact between the bottom plates; and there is no substantial thermal contact between the dielectric backplane and the bottom plate of the housing across the first insulating region. 7. The wafer support device of claim 6, wherein: the outer surface is spaced from a surface of the outer dielectric wall facing the outer surface by a gap between 0.015" and 〇.050"; a bottom surface is spaced apart from a surface of the dielectric substrate in the second heat insulating region facing the bottom surface by a gap between 〇·〇15" and 0.050"; the outer dielectric wall and the a surface of the outer wall facing each other separated by a gap between 0.015"and 〇.〇5〇"; and one of the surface of the dielectric substrate and the bottom plate of the outer casing is in the first thermal insulation zone The surface is separated by a gap between 0.015 " and 〇.〇5〇". The wafer support device of claim 1, wherein the chuck comprises a cooling passage, the cooling passage is located at the top surface A wafer support device between the bottom surface and the bottom surface of the chuck. The wafer support device of claim 8, wherein the circuitous path comprises: a plurality of nested C-shaped segments having different sizes And a plurality of bridging sections; wherein: the parent-span section uses one of the other C-shaped sections One end of the C-shaped section should be joined at the end; and only one bridging section joins any two c-shaped sections together. ίο. The wafer support apparatus of claim 1, wherein the chuck contains An annular purge gas passage ' between the surface and the bottom surface of the top 160970.doc 201237994 and wherein a circular pattern of the aperture fluidly connects the annular purge gas passage to the top surface. 11 a wafer support device, wherein the wafer support device is configured to support a wafer having a specified nominal diameter, and the diameter of the circular pattern is 1 mm to 2 mm smaller than the nominal diameter. A wafer support device, further comprising: a guard ring, wherein the guard ring: is substantially annular; the inner diameter is greater than a nominal diameter of one of the semiconductor wafers configured to support the top surface; The chuck support; does not contact the outer wall of the outer casing or the outer surface of the chuck. 13. The wafer support device of claim 12, wherein: the guard ring comprises a plurality of cylinders; Protection ring Projecting a first amount toward a surface of the top surface and protruding into one of the top surfaces, the depth of one of the recesses being less than the first amount; the surface of the guard ring having the pillars protruding therefrom The top surface is offset from 15 microns to 250 microns. k The wafer support device of claim 12 wherein there is a gap of at least G Qi5" between the surface of the guard ring that is closest to the outer wall and the outer wall. 15. The wafer support apparatus of claim 1, wherein: 160970.doc 201237994 a plurality of protruding protrusions protrude from the top surface; the protrusions are arranged in a concentric circular pattern; and each protrusion protrudes from the top surface i 5 Micron to 25 microns. 16. The wafer support apparatus of claim 1, wherein: the chuck further comprises a calibration light pipe and an in-situ light pipe; one end of the calibration light pipe terminates at a center of the top surface; One end of the tube terminates at a phosphor disc located between the top surface and the bottom surface; and the calibration light tube is separated from the in-situ light tube by a distance within the chuck, the distance being less than the bottom plate of the housing The distance from the center to the first thermal insulation zone. 17. The wafer support device of claim 9, wherein: the chuck comprises a first plate and a second plate; the first plate comprises a first top surface and a first bottom surface; The second top surface and the second bottom surface are included; the first top surface is coupled to the second bottom surface; the cooling passage is recessed into the second bottom surface; the first plate includes two through holes; each through hole One of the cooling channels corresponds to a different terminal, and the first plate is aligned with the second plate such that each of the through holes is aligned with the corresponding terminal of the cooling channel. 18. The wafer support device of claim 17, wherein: the chuck further comprises a third plate; the third plate comprises a third top surface and a third bottom surface; 160970.doc 201237994 the third bottom surface is coupled to a second top surface; the third bottom surface includes an annular purge gas passage and one or more purge gas supply passages fluidly connected to the annular purge gas passage; a circular pattern of the holes to purge the annular gas A passage is fluidly coupled to the third top surface; and a purge gas inlet passes through the first plate and the second plate and the one or more purge gas supply passages are fluidly coupled to the first bottom surface. 19. The wafer support apparatus of claim 6, wherein: the chuck and the outer casing are mainly made of aluminum; and the dielectric interruption zone is mainly made of Al2〇3. 20. The wafer support device of claim 19, wherein: the chuck is primarily made of 3003 aluminum; and the top surface is coated with YF3. 21. A device for semiconductor manufacturing, the device comprising: a chamber comprising a heater system and a substantially circular inner surface; the chuck having a wafer support region, a substantially a cylindrical outer surface and a cooling system; a chuck housing having a substantially cylindrical outer surface; and a controller configured to control the heater system and the cooling system; wherein: the card The disc is substantially contained in the chuck housing and supported by the chuck housing; the chuck housing is movable relative to the chamber; I60970.doc -6 - 201237994 The wafer support area is not obstructed by the chuck housing The controller is configured to generate a first operational configuration by adjusting a cooling system temperature and a heating system temperature; wherein, in the first operational configuration: the inner surface of the 5H chamber has at least 4 Hey. a temperature of the wafer; the wafer branch region has a temperature between _1 〇 and +1 ;; and the outer surface of the chuck housing has a temperature higher than the temperature of the wafer support region One temperature of 5 °C. 22. The device of claim 21, wherein the controller is further configured to generate a second operational configuration by adjusting the cooling system temperature and the heating system temperature, wherein 'in the In the second operational configuration: the inner surface of the chamber 'the outer surface of the chuck housing and the wafer support region have greater than 70. (1) The apparatus of claim 21, wherein the controller is further configured to generate a third operational configuration by adjusting the cooling system temperature and the heating system temperature, wherein 'in the third In the operational configuration: the inner surface of the chamber, the outer surface of the chuck housing, and the wafer branch region have a temperature between 30 ° C and 5 ° ° C. The device, wherein the controller is further configured to maintain a temperature profile 'a level of variation across a wafer supported by the wafer support region less than 〇.35 ° C. A semiconductor fabrication module' a chamber; the chamber comprising: 160970.doc 201237994 an inner surface; a top plate; and a bottom plate; a wafer support device 'the wafer support device is contained in the chamber and comprising: a chuck; Wherein the chuck: configured to support a semiconductor wafer having a nominal diameter D via a wafer support region on a top surface of one of the chucks during processing; the overall shape being substantially cylindrical; Has one of greater than D a diameter; and an outer casing, the outer casing comprising an outer surface and a bottom plate; wherein: the outer surface is substantially cylindrical; the chuck is substantially located within a volume defined by the outer surface; and the outer surface defines the An outer edge of the bottom plate; a showerhead positioned above the wafer support area; a gas distribution system 'the gas distribution system configured to deliver reactants to the chamber via the showerhead; a heating system 'the heating system configured to heat the inner surface of the chamber, the top plate and the bottom plate; a cooling system configured to cool the chuck; and a temperature controller, wherein the temperature The controller is configured to: control the amount of heating supplied by the heating system; control the amount of cooling supplied by the cooling system; and 160970.doc 201237994 provides a first operational configuration by adjusting the cooling system and the heating system Wherein, in the first operational configuration: the inner surface of the chamber has a temperature of at least 40 ° C; the wafer support region has a relationship between -10 Ot: and +10 ° C a temperature; and the outer surface of the outer casing has a temperature that is at least 5 ° C higher than the temperature of the wafer support region. 26. The semiconductor manufacturing module of claim 25, wherein: the shower head comprises a first An inflating portion and a second inflating portion, wherein the first inflating portion and the second inflating portion are fluidly isolated from each other in the shower head and each is equipped with a gas distribution hole, and the gas distribution holes are located in the wafer Two treatment chambers are fluidly coupled to a processing volume between the support region and the showerhead; and wherein the gas distribution system is further configured to: pass one or more first reactions via a first showerhead supply line The material is delivered to the first plenum of the showerhead; and one or more second reactants are delivered to the second plenum of the showerhead via a second showerhead supply line. 27. The semiconductor manufacturing module of claim 26, wherein: the first showerhead supply line is configured to be heated by a first showerhead supply line heater; the second showerhead supply line is grouped The state is to be heated by a second sprinkler supply line heater; the temperature controller is further configured to control the line shower heater and the second spray by the first sprinkler 160970.doc •9·201237994 The head is supplied with the amount of heating supplied by the line heater. 28. The semiconductor manufacturing module of claim 27, wherein the first sprinkler supply line heater, the second sprinkler supply line heater, and the temperature controller are configured to use the first sprinkler The supply line and the second sprinkler supply line are heated to a temperature of at least 1 〇〇 °C. 29. The semiconductor fabrication module of claim 26, wherein the chuck is configured to supply a purge gas around a perimeter of the wafer support region. 30. The semiconductor fabrication module of claim 29, wherein: the wafer support region comprises a plurality of protrusions configured to cause a semiconductor wafer supported by the wafer support region to deviate from the chuck a distance between 15 microns and 250 microns; the s chuck is configured to supply the purge gas around the perimeter of the wafer baffle region via a circular pattern of purge gas holes; the circle The pattern has a diameter that is less than the nominal diameter by about 1 mm to 2 mm; and the purge gas orifice has an exit diameter that is less than a diameter difference between the circular pattern and the nominal diameter. 31. The semiconductor manufacturing module of claim 26, wherein the wafer branch device further comprises: a dielectric interrupt region interposed between the chuck and the outer casing; wherein: the dielectric interrupt region spans the outer casing The central housing region of the bottom plate is in substantial thermal contact with the outer casing; the dielectric interruption region spans the portion of the bottom plate other than the central outer casing region, which is not substantially in thermal contact; the dielectric interruption region spans a central chuck region in substantial thermal contact with the chuck; the dielectric interruption region spans the portion of the chuck other than the central chuck region that is not in substantial thermal contact with the chuck; and along the outer surface of the housing The center chuck region and the center outer casing region have a nominal size that is less than 50% of the diameter of the chuck when viewed from the center axis. 32. The semiconductor manufacturing module of claim 31, wherein: the dielectric interruption region and the surface of the outer casing facing each other are separated from each other except for portions of the surfaces that contact each other across the central outer casing region a gap between 0.015" and 0.050"; and the dielectric interruption zone and the surface of the chuck facing each other, except for the portions of the faces that contact each other across the central chuck area, each other Separating a gap between 0.015" and 0.050". The semiconductor manufacturing module of claim 3, wherein the wafer support device further comprises a guard ring, wherein the guard ring: supported by the chuck Substantially axisymmetric; having an inner diameter that is less than one of the nominal diameters of the chuck; and /σ is offset from the chuck by 丨5 microns to 25 microns, wherein the deviation from the chuck Provided by a cylinder that is in thermal contact with the chuck across an overlapping portion that is not offset from the chuck; and wherein the guard ring is spaced from the surface of the dielectric interruption facing each other I60970.doc 201237994 0.015” to 0.05 0" a gap' and the guard ring is spaced from the surface of the outer casing facing each other by a gap of 〇15"to 〇5〇". 34. The semiconductor fabrication module of claim 25, wherein one or more components selected from the group consisting of: the chamber, the chuck, the outer casing, and the showerhead are in a reactant exposed to the chamber At least a portion of the area is coated with a hydrophobic coating. 35. The semiconductor fabrication module of claim 34, wherein the hydrophobic coating is Ti02. 160970.doc 12
TW100147521A 2010-12-20 2011-12-20 System and apparatus for flowable deposition in semiconductor fabrication TW201237994A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42515010P 2010-12-20 2010-12-20
US13/329,078 US9719169B2 (en) 2010-12-20 2011-12-16 System and apparatus for flowable deposition in semiconductor fabrication

Publications (1)

Publication Number Publication Date
TW201237994A true TW201237994A (en) 2012-09-16

Family

ID=47223285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100147521A TW201237994A (en) 2010-12-20 2011-12-20 System and apparatus for flowable deposition in semiconductor fabrication

Country Status (1)

Country Link
TW (1) TW201237994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722578B (en) * 2018-09-21 2021-03-21 台灣積體電路製造股份有限公司 Apparatus and method for pumping gases from a chamber
TWI795492B (en) * 2017-12-20 2023-03-11 美商泰科耐斯集團有限公司 Deposition processing systems having active temperature control and associated methods
TWI809088B (en) * 2018-04-13 2023-07-21 美商維高儀器股份有限公司 Chemical vapor deposition apparatus with multi-zone injector block

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795492B (en) * 2017-12-20 2023-03-11 美商泰科耐斯集團有限公司 Deposition processing systems having active temperature control and associated methods
TWI809088B (en) * 2018-04-13 2023-07-21 美商維高儀器股份有限公司 Chemical vapor deposition apparatus with multi-zone injector block
TWI722578B (en) * 2018-09-21 2021-03-21 台灣積體電路製造股份有限公司 Apparatus and method for pumping gases from a chamber

Similar Documents

Publication Publication Date Title
TWI643290B (en) System and apparatus for flowable deposition in semiconductor fabrication
US11075127B2 (en) Suppressing interfacial reactions by varying the wafer temperature throughout deposition
US6514870B2 (en) In situ wafer heat for reduced backside contamination
TW490765B (en) A process and an integrated tool for low k dielectric deposition including a PECVD capping module
KR101329285B1 (en) Formation of high quality dielectric films of silicon dioxide for sti: usage of different siloxane-based precursors for harp ii - remote plasma enhanced deposition processes
TWI643974B (en) Method and apparatus for the reduction of defectivity in vapor deposited films
TW490738B (en) Mesoporous silica films with mobile ion gettering and accelerated processing
US8153348B2 (en) Process sequence for formation of patterned hard mask film (RFP) without need for photoresist or dry etch
US6086952A (en) Chemical vapor deposition of a copolymer of p-xylylene and a multivinyl silicon/oxygen comonomer
TW438903B (en) Methods and apparatus for depositing premetal dielectric layer at subatmospheric and high temperature conditions
TWI440126B (en) Counter-balanced substrate support
US20060005856A1 (en) Reduction of reactive gas attack on substrate heater
US20060219169A1 (en) Hdp-cvd seasoning process for high power hdp-cvd gapfil to improve particle performance
CN101241844A (en) In-situ dry clean chamber for front end of line fabrication
KR19990013438A (en) Adjusting the Oxygen to Silane Ratio in the Seasoning Process to Improve Particle Performance in a HDP-CDHD System
CN108546932A (en) With temperature controlled multicell nozzle
CN102105312B (en) High throughput processing system for chemical treatment and thermal treatment and method of operating
KR102343265B1 (en) Self-centering pedestal heater
TW201237994A (en) System and apparatus for flowable deposition in semiconductor fabrication
JPH1079387A (en) Stress control by fluorination of silica film
US7811411B2 (en) Thermal management of inductively coupled plasma reactors
EP1156511A1 (en) Remote plasma CVD apparatus
US6524969B2 (en) High density plasma chemical vapor deposition (HDP-CVD) processing of gallium arsenide wafers
JP2005511895A (en) Chemical vapor deposition reactor
CN108292594A (en) The single predecessor ARC hard masks of low temperature for multi-layered patterned application