TW201237889A - Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device - Google Patents

Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device Download PDF

Info

Publication number
TW201237889A
TW201237889A TW101103393A TW101103393A TW201237889A TW 201237889 A TW201237889 A TW 201237889A TW 101103393 A TW101103393 A TW 101103393A TW 101103393 A TW101103393 A TW 101103393A TW 201237889 A TW201237889 A TW 201237889A
Authority
TW
Taiwan
Prior art keywords
gas
furnace
strip
rotating body
wire
Prior art date
Application number
TW101103393A
Other languages
Chinese (zh)
Other versions
TWI509635B (en
Inventor
Tsutomu Koizumi
Original Assignee
Swcc Showa Cable Sys Co Ltd
Int Superconductivity Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swcc Showa Cable Sys Co Ltd, Int Superconductivity Tech filed Critical Swcc Showa Cable Sys Co Ltd
Publication of TW201237889A publication Critical patent/TW201237889A/en
Application granted granted Critical
Publication of TWI509635B publication Critical patent/TWI509635B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G47/00Compounds of rhenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming superconductor layers
    • H10N60/0324Processes for depositing or forming superconductor layers from a solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A thermal processing method is provided, which enhances the discharge efficiency of hydrogen fluoride gas to produce tape-shaped oxide superconductor wires with uniform and excellent superconducting properties in lengthwise direction. In the method, a cylindrical rotary body is rotatably disposed with respect to a furnace mandrel axis in an interior of a cylindrical thermal processing space of a furnace tube in a thermal processing device. In the rotary body, a tape-shaped wire with a superconductor precursor film formed is wound around a surface with many through holes formed thereon. A gas supply tube supplies an ambient gas to the tape-shaped wire wound around the rotary body. In the thermal processing space, a diaphragm is disposed in a residual space between two end parts of the rotary body and furnace flanges of the furnace tube such that gas reacted with a membrane surface, that is, waste gas, would not flow into the residual space.

Description

201237889 斗 i4yipif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種帶狀氧化物超電導峻 盤 方峨理裝置,且特別是有關於一二導用== 積(Metal-orgamc Deposition,M0D)法於形成有中間層 的配向金屬基材上形成超電導層的技術。 曰 【先前技術】 以往,作為YBaAOh (YBC0)系的帶狀氧化物超 電導線材的製造方法,已知有利用有機金屬鹽塗佈熱分解 (MOD : Metal-organic Deposition)法於形成有中間層的 配向金屬基材上形成超電導層(參照曰本專利第44689〇1 號公報、日本專利特開2009-48817號公報、日本專利第 4401992號公報)。 該MOD法是先將形成有氧化物中間層的帶狀基材浸 在以按預定莫耳比包含構成超電導體的各金屬元素的三氟 乙酸鹽(TFA鹽)為絲辭義、觀酸㈣金屬有機 酸鹽的混合溶液,即超電導原料溶液中。錢,藉由從超 電導原料溶液巾榜起該基材(所·浸塗法),在基材表 面於基板上塗佈齡溶液。接下來,藉由進行暫時燒結及 正式燒結’形成氧化物超電導層。 MOD法即使在非衫巾也可以於長的紐上連續地 形成氧化物超電導層,所以與脈衝雷射沉積(pulse L繼 Deposition ’ PLD)法或化學氣相沉積(⑶⑽⑹丨v叩〇r Deposition,CVD )法等氣相法相比,其工藝簡單且可以降 201237889 4149lpif 低成本’因此受到關注。 曰本專利第4468901號公報、日本專利特開 2009-48817號公報中揭示了對表面附著有超電導原料溶液 的基材進行熱處理的批次式(batch type)的熱處理裂置。 與曰本專利第4401992號公報所示的卷對卷(red_t0_reen 方式的熱處理裝置相比,批次式熱處理裝置容易控制爐内 環境’因此具有可以形成穩定的超電導層的優點。此外, 與卷對卷方式的熱處理裝置相比,批次式熱處理襞置具有 裝置小、可以在短時間内完成燒結的優點。順帶一提的是, 卷對卷方式的熱處理裝置於隧道形狀的爐芯管的兩端設置 線材輸出機構及捲繞機構,藉由使線材以一定速度向爐内 移動來進行燒結。 利用圖1來簡單說明日本專利第4468901號公報、曰 本專利特開2009-48817號公報中揭示的批次式熱處理裝 置之概略構成。如圖丨所示,該熱處理健丨將表面附著 有超電導原料的基材2纏繞在滾筒狀的旋轉體3上。纏繞 有土材%圓筒狀;$疋轉體3在爐芯管4内被旋轉驅動機構 驅動旋轉,所述爐芯管4是在®筒狀的本體部4a中用凸緣 (flange) 4b _兩端的開口而形成的。旋轉體3上形成 U個未®示的孔。級2在_繞在_體3上的 狀態下被設在基材2之表面方向的加熱器5加熱。此外,201237889 斗i4yipif VI. Description of the Invention: [Technical Field] The present invention relates to a strip-shaped oxide superconducting device, and in particular to a two-conductor == product (Metal-orgamc Deposition, M0D) A technique for forming a superconducting layer on an alignment metal substrate having an intermediate layer formed thereon.先前 [Prior Art] Conventionally, as a method for producing a YBaAOh (YBC0)-based ribbon-shaped oxide superconducting wire, it is known to form an intermediate layer by using an organic metal salt coating thermal decomposition (MOD: Metal-organic Deposition) method. A superconducting layer is formed on the alignment metal substrate (refer to Japanese Patent No. 44689-1, Japanese Patent Laid-Open No. 2009-48817, and Japanese Patent No. 4401992). In the MOD method, a strip-shaped substrate formed with an intermediate layer of an oxide is first immersed in a trifluoroacetate (TFA salt) containing each metal element constituting a superconductor at a predetermined molar ratio for silky meaning and acid observation (4) A mixed solution of a metal organic acid salt, that is, a superconducting raw material solution. The money is coated on the substrate by coating the substrate from the surface of the substrate with a superconducting material solution (dip coating method). Next, an oxide superconducting layer is formed by performing temporary sintering and formal sintering. The MOD method can form an oxide superconducting layer continuously on a long bond even in a non-clothing towel, so with pulsed laser deposition (pulse L followed by Deposition 'PLD) method or chemical vapor deposition ((3)(10)(6)丨v叩〇r Deposition Compared with gas phase methods such as CVD), the process is simple and can reduce the low cost of 201237889 4149lpif', which is of concern. A batch type heat treatment cleavage for heat-treating a substrate having a superconducting material solution adhered to its surface is disclosed in Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. No. 2009-48817. Compared with the roll-to-roll (red_t0_reen type heat treatment apparatus shown in Japanese Patent No. 4401992), the batch type heat treatment apparatus can easily control the furnace environment, and thus has an advantage that a stable superconducting layer can be formed. Compared with the roll-type heat treatment device, the batch type heat treatment device has the advantages of a small device and can complete the sintering in a short time. Incidentally, the roll-to-roll heat treatment device is in the tunnel-shaped furnace core tube. The wire output mechanism and the winding mechanism are provided at the end, and the wire is sintered by moving the wire into the furnace at a constant speed. The disclosure of Japanese Patent No. 4,446,901 and Japanese Patent Application Publication No. 2009-48817 is hereby incorporated by reference. A schematic configuration of a batch type heat treatment apparatus. As shown in Fig. ,, the heat treatment layer is wound around a substrate 2 on which a superconducting material is adhered on a drum-shaped rotating body 3. The soil material is wrapped in a cylindrical shape; The slewing body 3 is driven to rotate in the furnace tube 4 by a rotary drive mechanism, and the furnace core tube 4 is opened at the ends of the flange 4b _ in the tubular body portion 4a. Formed in. The U-holes not shown are formed ® rotating body 3. Level 2 is heated by the heater 5 provided in the surface direction of the substrate 2 at _ 3 _ wound on state. In addition,

St表面方向向基材噴射包含惰性氣體、氧氣及水 ㈣叫軋體6,該環境氣體6與基材2之超電導原 4 Μ後’作為反應後的氣體(廢氣),經由形成於旋轉 201237889 414yipif ll 3 7 在使用曰本專利第44689〇1號公 2’-:8817號公報中揭示的熱處理裝置,將塗佈有包含: 乱乙酸鹽等的混合溶液的基材暫時燒結而得到的含敦⑺ 的超電導前驅體於中間層上成膜,之後對其實施正式燒結 以形土 YBCO膜的方法(TFA·娜法)巾,正式燒結時 供給前驅體義環境氣體(反應氣體)使用水蒸氣。The surface direction of St is sprayed to the substrate containing inert gas, oxygen and water (4) called the rolled body 6, and the ambient gas 6 and the superconducting material of the substrate 2 are 4 Μ after the reaction gas (exhaust gas), formed by rotating at 201237889 414yipif Ll 3 7 A heat treatment apparatus disclosed in Japanese Patent No. 44689-1, No. 2'-:8817, which is obtained by temporarily sintering a substrate coated with a mixed solution containing a chaotic acetate or the like. The superconducting precursor of (7) is formed on the intermediate layer, and then subjected to a method of forming a conventional YBCO film by sintering (TFA·Nafa), and the precursor atmosphere (reaction gas) is supplied with water vapor during the main sintering.

此時的YBCO生成反應式為: l/2Y2Cu205+2BaF2+2Cu0+2H20->YBC0+4HF 如上所述,在正式燒結時,由於使用水蒸氣作為環境 氣體對前驅體膜進行熱處理,所以產生HF ’在該反應後, 作為反應後的氣體,產生氟化氫(HF)氣體。 在TFA-MOD法中,分解氟化物(BaF2)時氟的去除 速度成為YBCO生成的反應限速。因此,由於反應後產生 的氟化氫(HF)氣體(廢氣)的影響,存在著所燒結的 YBCO膜的超電導特性降低的問題。 特別是為了得到具有臨界電流密度(jc)大於等於 2.0、臨界電流值(Ic)大於等於300 a的特性的長的帶狀 線材’必需將超電導層以大於等於1.5 μιη的膜厚成膜。若 達到上述膜厚,則氟化氫(HF)氣體的完全去除越發變得 困難’無法得到上述特性。 因此,為了提高YBCO膜之超電導特性,在正式燒結 中如何除去前驅體中所含的氟變得重要。 6 201237889 ^i4yipxf 佴走,在圖 ""所示的熱處理裂置1中,在爐β =狀的旋轉體3與爐芯管4中的凸緣㈣:成二 因此,在爐芯管4内存在著 氣體沒有經由排氣管7排出(圖中箭 ^則 剩餘空間R中。 員b) ’而疋滯留在 藉此’由前驅體產生的氟化氫( 形成-定方向的排出氣流,而盔、_ b’無法 氣體你。若無法完全除去氟,則存= 的超電導特性的問題。 ,、内…、法八有均勻 【發明内容】 本發明之目的在於提供帶狀氧化物超㈣線材的製造 姚^及熱處理裝置,其在爐騎内部提高反應後的氣體 性的帶狀減物超料線材。W且賴的超電導特 作為本發明之方案之—的帶崎化物超電導線材的製 =法,是制熱處理裝置(此熱處理裝置具備:爐芯管, 緣部封閉具備熱處理空間的筒狀本體部之兩端而形 成,圓筒狀的旋轉體,在上述熱處理空間内部,以相對於 ,!芯管之爐芯轴可以旋轉的方式配置,並且於形成有 =固貫通孔的表面_形成有超電導前驅體之膜體的帶狀 線材:氣體供給管’用於向上述帶狀線材供給環境氣體; 、及氣體排出嘗’用於將環境氣體從上述旋轉體内部排到 上述爐心管外部),而向纏繞在上述旋轉體上的上述帶狀 201237889 線材之上述膜體之膜面,從於上方隔開的 境氣體,其令,上述凸緣部與上述旋轉體中的旋 的端部之間用隔板隔開,同時向纏繞在上述旋轉體: 述帶狀線材之上述膜體之膜面供給上述環境氣體。、 ^本,明之方案之一的帶狀氧化物超電導線材的敎 二^太二具備:爐芯管,用凸緣部封閉具備熱處理空 ==之兩端而形成;圓筒狀的旋轉體,在上述 的3=;,以相對於上述爐芯管之爐芯軸可以旋轉 、- 並且於形成有多個貫通孔的表面纏铖开;成右 超電導前驅體之賴的帶祕材;:對 3=旋轉體上的上述帶狀線材之上述“之== 體排出位置,向上述膜面供給環境氣體;以及氣 應後的氣體從上述旋轉體内部排出;在上 述爐心管内,採用下述構成:配 社上 轉體中的旋轉軸方向之端部之間隔開的隔板Μ上述旋 ,止明’提高了反應後的氣體的排放效率,可以 Ιϊ材句且優異的超電導特性的帶狀氧化物超電 【實施方式】 明。以下’根據本發明之實施方式,參照圖示進行詳細說 咖刪物的概要> ⑽〇超以=用—法進行的具備超電導層 導曰)的帶狀氧化物超電導線材(YBC0超 8 201237889 電導線材)的製造方法之概略。 首先,於帶狀的Ni合金基板(基材)上,利用〗BAD 法將GdaZi^O7中間層成膜作為模板(tempiate),再於其 上利用濺鍍法(sputtering)將Ce〇2中間層成膜,之後於 所得的複合基板上,藉由塗佈製程(參照圖5A)利用浸塗 法塗佈將Y-TFA鹽(三氟乙酸鹽)、Ba_TFA鹽和Cu環 烧酸鹽以Y : Ba : Cu=l : 1.5 : 3的比例溶解於有機溶劑 中得到的混合溶液(超電導原料溶液)8。塗佈混合溶液8 後,藉由暫時燒結製程(參照圖5B)進行燒結。重複進行 預定次數的上述塗佈製程(參照圖5 A )及暫時燒結製程(參 =圖5B),於帶狀線材2〇中的中間層上形成作為超電導 前驅體的膜體。之後,藉由正式燒結製程(參照圖5〇, 實施帶狀線材2G中的超電導前驅體之膜體的結晶化熱處 理,即,用於生成YBCO超電導體的熱處理。然後,依照 製私(參照圖5D)利用濺鍵法於所生成的YBC〇超電導 體上形成Ag穩定化層,之後依照製程(參照圖5E)實施 後熱處理,以製造YBC0超電導線材。 本發明所涉及的實施方式的熱處理裝置被用於製程 (參照圖5C)的結晶化熱處理,其對帶狀線材中形成的超 電導體之前驅體實施熱處理,以生成YBC〇超電導體。此 外,熱處理裝置也可適用於中間層的形成。The YBCO generation reaction formula at this time is: l/2Y2Cu205+2BaF2+2Cu0+2H20->YBC0+4HF As described above, at the time of main sintering, since the precursor film is heat-treated using water vapor as an ambient gas, HF is generated. After the reaction, hydrogen fluoride (HF) gas was generated as a gas after the reaction. In the TFA-MOD method, the removal rate of fluorine in the decomposition of fluoride (BaF2) becomes the reaction rate limit of YBCO formation. Therefore, there is a problem that the superconducting property of the sintered YBCO film is lowered due to the influence of hydrogen fluoride (HF) gas (exhaust gas) generated after the reaction. In particular, in order to obtain a long strip-shaped wire having a characteristic of a critical current density (jc) of 2.0 or more and a critical current value (Ic) of 300 a or more, it is necessary to form a superconducting layer with a film thickness of 1.5 μm or more. When the film thickness is reached, the complete removal of hydrogen fluoride (HF) gas becomes more difficult. The above characteristics are not obtained. Therefore, in order to improve the superconducting property of the YBCO film, it is important to remove the fluorine contained in the precursor in the main sintering. 6 201237889 ^i4yipxf 佴走, in the heat treatment crack 1 shown in the figure "", in the furnace β = shape of the rotating body 3 and the flange (four) in the furnace tube 4: two, therefore, in the furnace tube 4 The gas is not discharged through the exhaust pipe 7 (the arrow in the figure is the remaining space R. Member b) 'and the stagnation is retained by the hydrogen fluoride generated by the precursor (formation - directional exhaust gas flow, and Helmet, _ b' can not gas you. If you can not completely remove the fluorine, then the problem of the superconductivity of the stored =., ..., the method is uniform [invention] The purpose of the present invention is to provide a strip oxide super (four) wire The manufacture of Yao and the heat treatment device, which improves the gas-like strip-shaped material-reducing super-feed wire after the reaction inside the furnace. The superconducting wire of W and Lai is the method of the present invention. The heat treatment device is provided with a furnace core tube, and the edge portion is formed by closing both ends of a cylindrical body portion having a heat treatment space, and a cylindrical rotating body is opposed to the inside of the heat treatment space. Core tube shaft Arranged in a rotating manner, and formed on a surface having a solid through-hole, a strip-shaped wire in which a film body of a superconducting precursor is formed: a gas supply pipe 'for supplying an ambient gas to the above-mentioned strip wire; and a gas discharge taste 'used to discharge ambient gas from the inside of the above-mentioned rotating body to the outside of the above-mentioned core tube, and to the film surface of the above-mentioned film body of the above-mentioned strip-shaped 201237889 wire wound on the above-mentioned rotating body, the gas separated from above The flange portion and the end portion of the rotating body are separated by a partition plate, and the ambient gas is supplied to a film surface of the film body wound around the rotating body: the strip wire. , ^, Ben, one of the schemes of the strip-shaped oxide superconducting wire, the 敎二^太二 has: a furnace core tube, which is formed by sealing the ends of the heat treatment space == with a flange portion; a cylindrical rotating body, In the above 3=;, with respect to the furnace core shaft of the furnace tube, it is rotatable, and is entangled in a surface formed with a plurality of through holes; a material for forming a right superconducting precursor; 3=The above strip wire on the rotating body In the above-mentioned "== body discharge position, the ambient gas is supplied to the film surface; and the gas after the gas is discharged from the inside of the rotating body; in the core tube, the following structure is adopted: the rotating shaft in the upper body of the distribution body The separator which is separated between the end portions of the direction Μ , , ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'In accordance with an embodiment of the present invention, an outline of a coffee deposit is described in detail with reference to the drawings. (10) A ribbon-shaped oxide superconducting wire having a superconducting layer guided by a method of using a superconducting layer (YBC0 Super 8 201237889 Conductance) Outline of the manufacturing method of the wire material. First, a GdaZi^O7 intermediate layer is formed as a template on a belt-shaped Ni alloy substrate (substrate) by a BAD method, and then a sputtering method is used thereon. Separating the Ce〇2 intermediate layer into a film, and then coating the Y-TFA salt (trifluoroacetate), Ba_TFA salt and the dip coating method on the obtained composite substrate by a coating process (refer to FIG. 5A) Cu ring acid To Y: Ba: Cu = l: 1.5: 3 proportion by dissolving a mixed solution (solution superconductive material) 8 obtained in an organic solvent. After the mixed solution 8 is applied, sintering is performed by a temporary sintering process (see Fig. 5B). The above-described coating process (see Fig. 5A) and the temporary sintering process (see Fig. 5B) are repeated a predetermined number of times, and a film body as a superconducting precursor is formed on the intermediate layer in the strip-shaped wire 2 turns. Thereafter, by a formal sintering process (see FIG. 5A, the crystallization heat treatment of the film body of the superconducting precursor in the strip wire 2G, that is, the heat treatment for generating the YBCO superconductor, is performed. Then, according to the manufacturing process (refer to the figure) 5D) An Ag stabilizing layer is formed on the generated YBC 〇 superconductor by a sputtering method, and then post-heat treatment is performed in accordance with a process (refer to FIG. 5E) to manufacture a YBC0 superconducting wire. The heat treatment apparatus according to the embodiment of the present invention is A crystallization heat treatment for a process (refer to Fig. 5C) which heat-treats the superconductor precursor formed in the strip-shaped wire to form a YBC 〇 superconductor. Further, the heat treatment apparatus can also be applied to the formation of the intermediate layer.

Ni合金基板既可以是具有雙軸配向性的基板,也可以 是將具有雙轴配向性的中間層於不具配向性的金屬基板上 成膜而得到的基板。而且’可以形成一層或多層的中間層。 201237889 =為塗佈方法’除上述之浸塗法以外,還可以 ί法等,但基本上只要是能夠於複合^ 膜液的工藝,並不受此例的制約。-次塗佈的 子為0 01 _〜2·0陣,較佳的是0.1 μιη〜1·0 μΓη。 ,外’這裏使用的超電導原料溶液,是將以預定莫耳 於ilY、Ba、Cu的金屬有機酸鹽或有機金屬化合物溶解 ;有機溶劑中得到的混合溶液。莫耳數是按照當Y: Ba: a: 3時使用a<2的範圍⑽Ba莫耳二原料溶液 。此時,為了得到高的Jc及Ic值,較佳的是原料 耝::、六的Ba莫耳比為losd.8的範圍内’更佳的是原 ^液中的Ba莫耳比為的範圍内。藉此,可 雜睹Ba的偏析其結果’結晶粒界中的Ba基(如七福) 雜質的析出得到抑制。因此,可抑制裂紋(咖k)的產生, 2晶粒間的電結合性提高’藉由利用mod法形成超電 2,可以高速、容易地製造具有均勻的膜厚且超電導特 α、/'的贡狀氧化物超電導體。此外,作為金屬有機酸鹽, 舉各7^素的辛酸鹽、魏酸鹽、新癸酸鹽、三氟乙 ’但只要是將其中—種以上的上述鹽均勻溶解於有 /谷蜊中、並可以塗佈於複合基板上的金屬有機酸鹽即可 使用。 <熱處理裴置的構成> 圖2及圖3所示的熱處理裝置100是以批次式進行作 ‘、、(帶狀線材20中的超電導前驅體之膜體塗佈的混合溶液 (圖5A所示的超電導原料溶液8)的燒結。熱處理裝置 201237889 41491pif 100具備:具有圓筒狀的熱處理空間111的爐芯管110、圓 筒狀的旋轉體120、氣體供給管130、氣體排出管140、以 及隔板(反射板)170。 爐芯管110形成為中空圓柱狀。爐芯管110具備:圓 筒狀的爐芯本體部(筒狀本體部)114、以及分別封閉爐芯 本體部114之兩端之開口的爐芯凸緣部116、爐芯凸緣部 118。爐芯凸緣部116、爐芯凸緣部118構成爐芯管110的 兩個端面。 爐芯管110之熱處理空間111被劃分成爐芯本體部 114和爐芯凸緣部116、爐芯凸緣部118。熱處理空間111 由爐芯本體部114和爐芯凸緣部116、爐芯凸緣部118構 成,使能夠保持爐内的減壓環境或真空。 爐芯管110,在其周圍配置有加熱器150,藉由加熱 器150加熱作為熱處理空間111的内部。 在爐芯管110内部配置有旋轉體120,旋轉體120以 作為爐芯管110之軸線的爐芯軸C為中心而可旋轉。此 外,在爐芯管110中,爐芯凸緣部116、爐芯凸緣部118 中的至少一個是以相對於爐芯本體部114自由裝卸或自由 開閉的形式安裝。藉此,可以自由地從熱處理空間111内 取下旋轉體120。 在爐芯管110内,旋轉體120被配置在隔開爐芯凸緣 部116、爐芯凸緣部118雙方的大致中央的位置,即熱處 理空間111的大致中央的空間(稱作中央空間111a)。 旋轉體120具有於表面121a纏繞形成有前驅體的帶 201237889 狀線材20的圓筒體121。此外,帶狀線材20 ’如使用圖 5A進行說明的那樣,藉由塗佈混合溶液(相當於圖5a所 示的超電導原料溶液8)後實施暫時燒結,於基材上形成 有YBCO超電導生成體之前驅體。 該帶狀線材20露出包含混合溶液的前驅體之膜面, 成螺旋狀纏繞在圓筒體121之表面i21a (旋轉體120之表 面)。 如圖4所示,旋轉體120之圓筒體121上形成有多個 貫通孔124。此貫通孔124的内徑較佳的是與帶狀線材2〇 之帶寬相同。此外,其開孔率達到2G%〜95%,特別佳的 疋89%〜91%的範圍❺開孔率。旋轉體12〇藉自未圖示的 旋轉機構在熱處理中以-定速度旋轉。旋轉體12()由石英 玻璃、氧化紹等的陶究或哈司特錄基合金(Hastdl〇y)、 鉻鎳鐵合金(ineond)等金料耐高溫^易氧化的材質 媒忐。 旋轉體120被固定在氣體排出f刚上,所述氣體4 出管140與作為爐芯管11G之軸線的爐芯軸c同心地船 在圓筒體121的内部。此外,氣體排出管140發揮旋轉| 120之旋轉軸的作用。 # -起在被導出的氣體排出管i 4 G以外的 ^ 部空間。在位於該内部空間的筒狀氣體:二^ 位,形成連通旋轉體120的内部空間和氣體排出管购 12 201237889 41491pif 内部而未圖示的連通部。 此外,如圖2及圖3所示,在爐芯管11〇之敎處理空 間⑴中的中央空間ma中,離開圓筒體121之表面㈣ 而配置有多個氣體供給管13G。多個氣體供給管i3〇平行 於爐抑”配置,並且在與爐芯軸c垂直賴面中對稱 ^這晨在爐心管140内’四根氣體供給管130相對 於爐芯軸C對稱且彼此平行地配設 多根氣體供給管130__c為中心,沿 的間距(pitch )配置。 各氣體供給管13G具有?個向旋轉體⑽喷出環境氣 體6的氣體喷出孔132。 、 “ 氣體供給管130中的氣體噴出孔132於 m之本體部分沿縱向以一定間隔、以相同之 各氣體嘴出孔m為_孔,均勻地—環境氣體6。為 了1勻噴出環境氣體、且進-步除去氟氣,較佳的是,供 給壤境氣_的流速、具體而言,是指與纏繞在上述旋轉 體上的上述膜體之膜面接觸的流速大於等於200 m/s且小 於等於500 m/s。若流速小於200 m/s,則不僅無法向超電 導前驅體均勻地供給環境氣體,還無法除去滯留於上述膜 體之膜面之表面的廢氣(HF氣體)。因此,無法得到所 /月望的超電導特性。而若流速超過5〇〇 m/s,則雖然確實可 以均勻地喷出環境氣體,但結晶化反應急迷進行,所以難 以控制蟲晶成長(epitaxial growth)速度。因此,無法得 到所期望的超電導特性。 13 201237889 如圖2及圖3所示,久盗mm, ~ 孔132位於相對於圓筒體121 ^面5 S 13=照氣體喷出 置的方式配置,使從垂直方向向圓=== 供給環境氣體6。 <表面12ia 在爐芯管110内,氣體供給管 昭 與旋轉=之表* 121,_達到1Qm 刚mm。右隔開距離為上述範圍,則可以向超電導前驅體 均勻地喷出桃氣體,因此可以進_步除去 距離小於上職®,料㈣環軌體只與 120上的帶狀線材20之上述膜體的一部分膜面接t L 在超電導線材之縱向無法得到均勻的超電導特性。此外, 若隔開距離超過上職圍’則不錢脑量增加、生產成 本提高,而且結晶化反應急速進行,所以難以控繼晶成 長速度。因此,無法得到所期望的超電導特性。 因此’為了得到具有大於等於15 μιη的膜厚的長的帶 狀線材超電導層’必需以上述範圍之隔開距離、且以適當 的氣體流量向超電導前驅料出環境㈣,藉此可以得到 具有膜厚臨界電流密度(JC)大於等於2〇、臨界電流值(Ic) 大於等於300 A的特性的超電導線材。 對纏繞在圓筒體121之表面121a上的帶狀線材2〇中 的前驅體之膜面,氣體供給管13〇從於上方隔開的位置垂 直地供給環境氣體6。氣體噴出孔132的直徑必需按照氣 壓及氣體流量變得均勻的方式設計。 ' 201237889 41491pif 環境氣體6是經由連接於氣體供給管丨 一 的連接管,由配置在爐芯管丨1〇的外部而 '^而^圖不 體供給裝置供給。順帶一提的是,在氣體供二;^;= 3惰性氣體、氧氣或水蒸氣等的環境氣體^ = 給官130喷出該環境氣體6。上述環境氣 足孔體仏 驅體膜反應,形成反應後的氣體(廢氣)1與超電導前 所述超電導前驅體膜是暫時燒結塗佈有丄—卩HF氣體, 的混合溶㈣紐㈣關含氟⑺等 此外,在廷裏,氣體供給管13〇之輛 E '、 ,旋,體12G之轴方向的長度大致相同的長度,但二t 是較旋轉體12G的長度長。即’ #位錢體供給管i3〇之 兩端的氣體0titj孔132間的長度較旋轉體⑽的長度長 時’可以使纏繞在圓筒狀的旋轉體12〇上的帶狀線材2〇 =全長都更有效地進行均勻的反應。氣體供給管削由石 英玻璃、氧化料喊或哈司特鎳基合金、鉻鎳鐵合金等 金屬等耐高溫且不易氧化的材質構成。 氣體排出管140在從蓋體122、蓋體123向外延伸的 兩端,插通爐芯凸緣部116、爐芯凸緣部118的中心。藉 乳體排出管140在兩端部141、端部142由爐芯凸緣 邛^16爐心凸緣部ι18自由旋轉地支撐。此外,氣體排 出s 140的兩端被配置在爐芯管ιι〇的外部。藉此,形成 旋轉體120 #内部經由氣體排出f 14〇與爐怒管11〇的外 部連通的狀態。 氣體排出管140與圓筒體121的内部空間連接、並且 15 201237889 41491pjfThe Ni alloy substrate may be a substrate having biaxial alignment properties, or a substrate obtained by forming an intermediate layer having biaxial alignment properties on a metal substrate having no alignment. Moreover, one or more intermediate layers may be formed. 201237889 = The coating method 'In addition to the dip coating method described above, the method can be used, but basically, it is not limited to this example as long as it can be used in the composite membrane liquid. The number of times of the coating is 0 01 _~2·0, preferably 0.1 μm to 1·0 μΓη. The superconducting raw material solution used herein is a mixed solution obtained by dissolving a metal organic acid salt or an organometallic compound of a predetermined molar amount of ilY, Ba or Cu; an organic solvent. The molar number is a range of (10) Ba Mo Er di raw material solution using a < 2 when Y: Ba: a: 3. At this time, in order to obtain high values of Jc and Ic, it is preferred that the raw material 耝::, the Ba Mo Er ratio of six is in the range of losd. 8 'better than the Ba Mo Er ratio in the original liquid Within the scope. Thereby, the segregation of the Ba can be suppressed, and as a result, precipitation of Ba-based (e.g., Qifu) impurities in the grain boundary is suppressed. Therefore, it is possible to suppress the occurrence of cracks and the electrical bonding between the two crystal grains. By forming the ultra-electricity 2 by the mod method, it is possible to manufacture a uniform film thickness at a high speed and easily, and superconducting α, /' A tribute oxide superconductor. Further, as the metal organic acid salt, each of the above-mentioned salts of octanoate, orthosilicate, neodecanoate or trifluoroethyl is used, but as long as the above-mentioned salts of the above-mentioned species are uniformly dissolved in the gluten, The metal organic acid salt which can be applied to the composite substrate can be used. <Configuration of heat treatment device> The heat treatment device 100 shown in Figs. 2 and 3 is a mixed solution of a film coating of a superconducting precursor in a strip-shaped wire 20 (Fig. Sintering of the superconducting material solution 8) shown in Fig. 5A. The heat treatment apparatus 201237889 41491pif 100 includes a furnace tube 110 having a cylindrical heat treatment space 111, a cylindrical rotating body 120, a gas supply pipe 130, and a gas discharge pipe 140. And a partition plate (reflecting plate) 170. The furnace core tube 110 is formed in a hollow cylindrical shape. The furnace core tube 110 includes a cylindrical furnace core body portion (cylindrical body portion) 114, and the furnace core body portion 114 is closed, respectively. The furnace flange portion 116 and the furnace flange portion 118 having the openings at both ends. The furnace flange portion 116 and the furnace flange portion 118 constitute two end faces of the furnace core tube 110. The heat treatment space of the furnace core tube 110 111 is divided into a furnace core portion 114, a furnace flange portion 116, and a furnace flange portion 118. The heat treatment space 111 is composed of a furnace core portion 114, a furnace flange portion 116, and a furnace flange portion 118, so that It can maintain the decompression environment or vacuum in the furnace. The furnace tube 110 is around it. The heater 150 is placed and heated by the heater 150 as the inside of the heat treatment space 111. Inside the furnace tube 110, a rotating body 120 is disposed, and the rotating body 120 is centered on the furnace axis C which is the axis of the furnace tube 110. Further, in the furnace core tube 110, at least one of the furnace core flange portion 116 and the furnace core flange portion 118 is attached in a form detachably or freely opened and closed with respect to the furnace core portion 114. The rotating body 120 can be freely removed from the heat treatment space 111. In the furnace tube 110, the rotating body 120 is disposed at a position substantially separating the center of both the furnace flange portion 116 and the furnace flange portion 118, that is, A substantially central space of the heat treatment space 111 (referred to as a central space 111a). The rotating body 120 has a cylindrical body 121 having a belt of the 201237889-shaped wire 20 formed with a precursor on the surface 121a. Further, the strip-shaped wire 20' is as shown in the drawing. 5A, by applying a mixed solution (corresponding to the superconducting raw material solution 8 shown in Fig. 5a) and then performing temporary sintering, a YBCO superconducting product precursor is formed on the substrate. The strip wire 20 is exposed. package The film surface of the precursor of the mixed solution is spirally wound around the surface i21a of the cylindrical body 121 (the surface of the rotating body 120). As shown in Fig. 4, a plurality of through holes are formed in the cylindrical body 121 of the rotating body 120. 124. The inner diameter of the through hole 124 is preferably the same as the bandwidth of the strip wire 2〇. Further, the opening ratio thereof is 2G% to 95%, and particularly preferably 疋89% to 91% of the range is opened. The rotating body 12 is rotated at a constant speed during heat treatment by a rotating mechanism (not shown). The rotating body 12() is made of quartz glass, oxidized glass, or the like, and has a high temperature resistant and easily oxidizable material such as a Hasteldium alloy or an indond. The rotary body 120 is fixed to the gas discharge f just in the same manner as the furnace core shaft c which is the axis of the furnace core tube 11G, and is housed inside the cylindrical body 121 concentrically. Further, the gas discharge pipe 140 functions as a rotating shaft of the rotation |120. # - The space in the ^ other than the exported gas exhaust pipe i 4 G. In the tubular gas located in the internal space, the internal space connecting the rotating body 120 and the communication portion of the gas discharge pipe 12 201237889 41491pif are not shown. Further, as shown in Figs. 2 and 3, a plurality of gas supply pipes 13G are disposed in the central space ma in the processing space (1) of the furnace tube 11 from the surface (4) of the cylindrical body 121. The plurality of gas supply tubes i3 are arranged parallel to the furnace and are symmetric in the plane perpendicular to the furnace axis c. This morning in the furnace core tube 140, the four gas supply tubes 130 are symmetric with respect to the furnace axis C and The plurality of gas supply pipes 130__c are arranged in parallel with each other, and are arranged along a pitch. Each of the gas supply pipes 13G has a gas discharge hole 132 for discharging the ambient gas 6 to the rotating body (10). The gas ejection holes 132 in the tube 130 are at a certain interval in the longitudinal direction of the body portion of the m, and the same gas nozzle outlet holes m are _ holes, uniformly - the ambient gas 6. In order to uniformly discharge the ambient gas and further remove the fluorine gas, it is preferable that the flow rate of the supply of the soil gas is specifically in contact with the film surface of the film body wound around the rotating body. The flow rate is greater than or equal to 200 m/s and less than or equal to 500 m/s. When the flow rate is less than 200 m/s, it is not possible to uniformly supply the ambient gas to the superconducting precursor, and it is not possible to remove the exhaust gas (HF gas) remaining on the surface of the film surface of the film. Therefore, the superconducting characteristics of the desired/monthly are not obtained. On the other hand, when the flow rate exceeds 5 〇〇 m/s, the ambient gas can be uniformly discharged, but the crystallization reaction proceeds violently, so that it is difficult to control the epitaxial growth rate. Therefore, the desired superconducting characteristics cannot be obtained. 13 201237889 As shown in Fig. 2 and Fig. 3, the long-auger mm, ~ hole 132 is disposed so as to be ejected with respect to the cylindrical body 121 surface 5 S 13 = gas, and is supplied from the vertical direction to the circle === Ambient gas 6. <Surface 12ia In the furnace core tube 110, the gas supply pipe and the rotation = Table * 121, _ reach 1Qm just mm. When the right separation distance is in the above range, the peach gas can be uniformly sprayed to the superconducting precursor, so that the film having the smaller distance than the upper layer, the material (four) ring body and only the strip wire 20 on the 120 can be removed. A part of the film surface of the body is not able to obtain uniform superconducting properties in the longitudinal direction of the superconducting wire. Further, if the separation distance exceeds the upper rank, the amount of brain is increased, the production cost is increased, and the crystallization reaction proceeds rapidly, so that it is difficult to control the growth rate of the succeeding crystal. Therefore, the desired superconducting characteristics cannot be obtained. Therefore, in order to obtain a long strip-shaped wire superconducting layer having a film thickness of 15 μm or more, it is necessary to provide a film with a separation distance of the above range and an appropriate gas flow rate to the superconducting precursor (4). A superconducting wire having a characteristic of a thick critical current density (JC) of 2 大于 or more and a critical current value (Ic) of 300 A or more. The gas supply pipe 13 is supplied with the ambient gas 6 vertically from a position spaced apart from above on the film surface of the precursor wound in the strip-shaped wire 2 of the surface 121a of the cylindrical body 121. The diameter of the gas ejection hole 132 must be designed in such a manner that the gas pressure and the gas flow rate become uniform. '201237889 41491pif The ambient gas 6 is supplied via a connection pipe connected to the gas supply pipe ,, and is disposed outside the furnace tube 丨1〇. Incidentally, in the gas supply; ^; = 3 inert gas, oxygen or water vapor, etc. ^ = the official 130 sprays the ambient gas 6. The above-mentioned ambient gas-pore body 仏 仏 体 体 , , , , , , 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境 环境Fluorine (7) or the like, in the furnace, the length of the axial direction of the gas supply tube 13's E', and the body 12G is substantially the same, but the second t is longer than the length of the rotating body 12G. In other words, when the length between the gas 0titj holes 132 at both ends of the '# bit body supply pipe i3〇 is longer than the length of the rotating body (10), the banded wire 2缠绕 which is wound around the cylindrical rotating body 12〇 can be made. All are more efficient in performing a uniform reaction. The gas supply pipe is made of a material that is resistant to high temperatures and is not easily oxidized, such as quartz glass, oxidized material, or Hastelloy or a nickel-iron alloy. The gas discharge pipe 140 is inserted into the center of the furnace flange portion 116 and the furnace flange portion 118 at both ends extending outward from the lid body 122 and the lid body 123. The milk body discharge pipe 140 is rotatably supported by the furnace flange portion ι18 at both end portions 141 and 142 at the end portions 142. Further, both ends of the gas discharge s 140 are disposed outside the furnace tube ιι. Thereby, a state in which the inside of the rotating body 120 # communicates with the outside of the furnace anger tube 11 经由 via the gas discharge f 14 形成 is formed. The gas discharge pipe 140 is connected to the internal space of the cylindrical body 121, and 15 201237889 41491pjf

作為圓甸體121之旋轉軸的一部分而形成。這裏,氣體排 出管140被插通到圓筒體121的内部,在圓筒體121之旋 轉軸(相當於爐芯轴C)上,作為圓筒體121之轴部、即 旋轉體120之旋轉軸而形成。在氣體排出管14〇中,在配 置於圓筒體121之内部之中央部分的外周,形成有多個未 圖示的貫通孔。圓筒體121的内部、即旋轉體12〇的内部 與氣體排出管140的内部經由這些貫通孔而成為連通的狀 態。這裏,氣體排出管140形成下述構成:將一端部141 側的開口與配置在圓筒體121内部的中央部分之間封閉, 僅另一端部側142的開口與圓筒體1·21的内部連接,從另 一端部142侧的開口排出HF氣體。此外,氣體排出管ι4〇 還可以形成下述構成:一端部141也與圓筒體121内部的 部位連接,藉此從兩端部141、端部142侧的開口排出HF 氣體。此外,氣體排出管140可以和旋轉轴以分體的形式 設計。 這裏,氣體排出管140從另一端部142侧插通蓋體 123,經由導出到爐芯管丨1〇之外部的部位排出反應後的氣 體(這裏是指HF氣體)。這樣,氣體排出管140將圓筒 體12丨内部的氣體(環境氣體6及反應後的氣體)排到爐 芯管110的外部。這裏’氣體排出管14〇形成於圓筒體ι21 上。此外’氣體排出管140由石英玻璃、氧化鋁等陶瓷或 哈司特鎳基合金、鉻鎳鐵合金等金屬等耐高溫且不易氧化 的材質構成。 如上所述,在爐芯管11〇之熱處理空間1丨1中,於中 201237889 ^l^yipir 央空間lHa配置氣體供給管13〇和旋 體亂經由氣體排出管】_HF氣體 芯 外部。隔板170抛置在爐芯管no令的熱處理L二 中’以隔開該中央空間llla。 二間111 隔板170位於與爐芯軸c垂 、,_ 芯凸緣部116、爐芯凸緣邱,亚且隔開爐It is formed as a part of the rotation axis of the circular body 121. Here, the gas discharge pipe 140 is inserted into the inside of the cylindrical body 121, and the rotation of the cylindrical body 121 (corresponding to the furnace axis C) serves as a rotation of the shaft portion of the cylindrical body 121, that is, the rotation body 120. Formed by the shaft. In the gas discharge pipe 14A, a plurality of through holes (not shown) are formed on the outer periphery of the central portion disposed inside the cylindrical body 121. The inside of the cylindrical body 121, that is, the inside of the rotating body 12A and the inside of the gas discharge pipe 140 are in communication with each other via these through holes. Here, the gas discharge pipe 140 has a configuration in which the opening on the one end portion 141 side and the central portion disposed inside the cylindrical body 121 are closed, and only the opening of the other end portion side 142 and the inside of the cylindrical body 1·21 are closed. The connection is performed to discharge the HF gas from the opening on the other end portion 142 side. Further, the gas discharge pipe ι4 〇 may have a configuration in which the one end portion 141 is also connected to a portion inside the cylindrical body 121, whereby the HF gas is discharged from the openings at the both end portions 141 and the end portion 142 side. Further, the gas discharge pipe 140 may be designed in a separate form from the rotating shaft. Here, the gas discharge pipe 140 is inserted into the lid body 123 from the other end portion 142 side, and the gas after the reaction (herein referred to as HF gas) is discharged through a portion which is led out to the outside of the furnace tube 丨1〇. Thus, the gas discharge pipe 140 discharges the gas inside the cylindrical body 12 (the ambient gas 6 and the reacted gas) to the outside of the furnace core tube 110. Here, the gas discharge pipe 14 is formed on the cylindrical body ι21. Further, the gas discharge pipe 140 is made of a material such as quartz glass, alumina or the like, a material such as a Hastelloy-based alloy or a chrome-nickel alloy, which is resistant to high temperatures and is not easily oxidized. As described above, in the heat treatment space 1丨1 of the furnace tube 11〇, the gas supply pipe 13〇 and the spiral body are disposed outside the gas discharge pipe _HF gas core in the middle of the 201237889. The partition plate 170 is placed in the heat treatment L2 of the furnace core tube to separate the central space 111a. The two 111 partitions 170 are located perpendicular to the furnace core c, the core flange portion 116, the furnace flange, and the furnace.

蓋體122、蓋體123)的間隔。這裏= m被配置在旋轉體120與爐芯管11〇之各爐J凸:J =爐心々凸緣部118之間的空間、所謂剩餘空間⑴ 剩餘空間R)l具體而言,隔板no隔開配 置有巧體12。的中央空間叫和剩餘空間⑽。 ,晨,在爐芯凸緣部116與旋轉體12〇之轴方— 端部(蓋體122)之間的空間(剩餘* 塊隔板170。此外,在爐"工曰1 b)配置有多 在爐心凸緣部118與旋轉體120之軸 (蓋體123)之間的空_餘空間_ 配置有多塊隔板17〇。 轉體120中的轴方向的兩端部(蓋體 祕If 的位置)對向配置的隔板胸分別 力接近旋轉體120之端部(蓋體122、蓋體123的 外面的位置)的位置。 isn f ’隔板1701的位置與較旋轉體120長的加熱器 部相比更接近於旋轉體12〇側,同時分別與氣 體供、,、σ官13〇之端部鄰接且對向。 在熱處理空間111中,隔板170反射在配置有氣體供 17 201237889 ipif 給管130及旋轉體120的中央空間111a中產生的反應後的 氣體,即HF氣體6c’防止HF氣體6c流入剩餘空間mb。 即,隔板Π0防止中央空間iiia中產生的HF氣體流入從 旋轉體120之端部(蓋體122、蓋體123的外面的位置) 到爐芯管110中的爐芯凸緣部116、爐芯凸緣部118之間 的空間。此外’隔板170還防止反應前的氣體,即環境氣 體6流入剩餘空間111b中,可以使環境氣體6在剩餘空間 111a令更有效地與超電導層反應。此外,較佳的是,在上 述剩餘空間mb中配置多塊隔板170。藉由配置多塊隔板 170,可以進一步防止HF氣體6c流入剩餘空間mb,因 此可以得到所期望的超電導特性。 在这些隔板170上,插通有旋轉體12〇之旋轉轴、即 氣體排出管140。 追裏’适些隔板170被固定在氣體排出f⑽上。換 言,’,板m t插通有旋轉體⑽之軸部(圓筒體121 之㈣軸)’同_軸部被固定在隔 板170與旋轉體120中的旋轉車由(圓筒體121之旋ί軸) 方向的端部非接觸地對向而鄰近配置。 具體而言,在本實施方式中,在 隔板170分別被固定在位於爐芯管凸ς 116、爐芯凸緣部118與旋轉體m 之各爐心凸緣4 140^^ ^ 1Ub 板170與旋轉體120 —同自由二在爐芯管110内,隔 上取下旋轉體12G時,可以外,從爐芯管110 崎取下氣體排出管140和旋 201237889The interval between the lid body 122 and the lid body 123). Here, m = is disposed in the space between the rotating body 120 and the furnace tube 11 凸 J: J = core 々 flange portion 118, so-called remaining space (1) remaining space R) l specifically, the partition No is separated by a smart body 12. The central space is called and the remaining space (10). In the morning, in the space between the core flange portion 116 and the shaft-end portion (the cover body 122) of the rotating body 12 (remaining * block partition 170. In addition, in the furnace " work 1 b) There are a plurality of partitions 17 that are disposed between the core flange portion 118 and the shaft of the rotating body 120 (the lid body 123). Both ends of the rotating body 120 in the axial direction (the position of the cover body If) are placed close to the end portions of the rotating body 120 (the positions of the lid body 122 and the outer surface of the lid body 123). . The position of the isn f ' spacer 1701 is closer to the side of the rotating body 12 than the heater portion longer than the rotating body 120, and is adjacent to and opposite to the end portions of the gas supply and the sigma. In the heat treatment space 111, the partition plate 170 reflects the reacted gas generated in the central space 111a in which the gas supply 17 201237889 ipif is supplied to the tube 130 and the rotating body 120, that is, the HF gas 6c' prevents the HF gas 6c from flowing into the remaining space mb. . That is, the partition Π0 prevents the HF gas generated in the central space iiia from flowing into the end portion of the rotating body 120 (the position of the lid body 122 and the outer surface of the lid body 123) to the furnace core flange portion 116 in the furnace tube 110, and the furnace. The space between the core flange portions 118. Further, the spacer 170 prevents the gas before the reaction, that is, the ambient gas 6 from flowing into the remaining space 111b, so that the ambient gas 6 can react more efficiently with the superconducting layer in the remaining space 111a. Further, it is preferable that a plurality of partition plates 170 are disposed in the remaining space mb. By arranging the plurality of partition plates 170, it is possible to further prevent the HF gas 6c from flowing into the remaining space mb, so that desired superconducting characteristics can be obtained. On these partition plates 170, a rotating shaft of the rotating body 12, that is, a gas discharge pipe 140 is inserted. Chasing the appropriate partition 170 is fixed to the gas discharge f (10). In other words, 'the plate mt is inserted into the rotating car with the shaft portion of the rotating body (10) (the (four) axis of the cylindrical body 121) and the shaft portion is fixed in the partition plate 170 and the rotating body 120 (the cylindrical body 121) The ends of the directions are aligned non-contactly and adjacently. Specifically, in the present embodiment, the partition plates 170 are respectively fixed to the respective core flanges 140 of the furnace tube boss 116, the furnace flange portion 118, and the rotating body m. 140 ^^^1Ub plate 170 When the rotating body 12G is removed from the rotating core 120 in the same manner as the rotating body 120, the gas discharge pipe 140 can be taken out from the furnace core tube 110 and rotated 201237889

璃、氧化鋁等陶瓷或哈司特鎳基合金、 象材20。此外,隔板 【0等一樣,由石英玻 、鉻鎳鐵合金等金屬 專耐南溫料易氧化的材f構成H雖然形成了上述 隔板170被固定在氣體排奸刚上的構成,但並不限於 此’逛可以是上述隔板17G被固定在爐騎11G内的剩餘 空間111b内的構成。此外’只要隔板17〇關爐芯凸緣部 m與旋轉體120中的旋轉軸方向的端部(蓋體122)的間 隔、以及爐芯凸緣部118與旋轉體120中的旋轉軸方向的 端部(蓋體123)的間隔中的至少一個,可以以任何方式 如上所述,熱處理裝置100具備爐芯管110,爐芯管 110是以爐芯凸緣部116、爐芯凸緣部118封閉具備熱處理 空間111的爐芯本體部114的兩端而形成。此外,在熱處 理空間ill内部配置圓筒狀的旋轉體120,此旋轉體 以相對於爐芯管110之爐芯軸可以旋轉的方式配置,並且 在形成有夕個貝通孔的表面纏繞形成超電導前驅體之膜體 的帶狀線材。而且,熱處理裝置100還具備氣體供給管 140,所述氣體供給管140在熱處理空間U1内被配置在相 對於纏繞在旋轉體120上的帶狀線材之膜體之膜面於上方 隔開的位置,其向膜面供給環境氣體。並且,熱處理裝置 100還具備氣體排出管140’所述氣體排出管140從旋轉體 120的内部排出反應後的氣體。在爐芯管110内配設隔板 19 201237889 p*f 隔開爐芯凸緣部H6、爐芯凸緣部118 人旋轉體12G中的旋轉軸方向之•的間隔。 在上錢處理織⑽中,使馳有帶祕材Μ的 圓同狀旋轉體i2G以-定速度旋轉。而且,在藉由加熱器 150保持在加熱環㈣熱處理㈣ιη内,祕體供給裝 置(未圖示)供給的環境氣體經由氣體供給管13〇之多個 氣體喷出孔132均勻地吹向帶狀線材2〇之膜面。所吹的環 境氣體6與膜面反應生成HF氣體,經由旋轉體12〇中的 圓筒體121的多個貫通孔124進入圓筒體121的内部。 此時’由於在爐芯管11〇内配置有多塊隔板170,所 以廢氣(具體是指HF氣體)不會從旋轉體120 (圓筒體 121)之端部(蓋體122、蓋體123)流向爐芯管uo之爐 芯凸緣部116、爐芯凸緣部118側。藉此,廢氣不會滯留 在剩餘空間111b中,而是如圖2之箭頭6c所示,進入圓 筒體121内。之後,圓筒體丨21内部的廢氣經由在圓筒體 121的另一端部連接的氣體排出管140排向爐外。 在使用上述熱處理裝置1〇〇的製造方法中,用隔板170 隔開爐芯凸緣部116、爐芯凸緣部118與旋轉體120中的 旋轉軸(爐芯軸C)方向的端部的間隔。在隔開該間隔的 同時’向纏繞在旋轉體120上的超電導前驅體之膜體之膜 面,從於上方隔開的位置供給環境氣體。此外,超電導前 驅體之膜體為於基板上構成中間層,於中間層上塗佈將包 含金屬元素的金屬有機酸鹽或有機金屬化合物溶解於有機 溶劑中而得到的混合溶液,之後藉由暫時燒結而形成的膜 201237889 41491pif 體。並且,混合溶液中的包含金屬元素的金屬有機酸鹽包 含選自辛酸鹽、環烷酸鹽、新癸酸鹽或三氟乙酸鹽的一種 以上。所製造的氧化物超電導線材具備:形成於基板上的 中間層、形成於中間層上的REBayCu3〇z系超電導層、以 及形成於超電導層上的穩定化層,RE包含選自Y、Nd、 Sm、Eu、Gd及Ho的一種以上的元素。 如上所述,在爐芯管110中,向纏繞在旋轉體12〇上 的帶狀線材20之膜體之膜面從於上方隔開的位置供給環 境氣體6時,在被隔板no隔開的中央空間llla中,從配 置於遍佈旋轉體120之全長的氣體供給管13〇的氣體喷出 孔132 (參照圖2〜圖4)供給環境氣體6。藉此,可以向 纏繞在旋轉體120中的圓筒體121之表面121a上的帶狀線 材20的全體良好地供給環境氣體6。藉此,提高了所排放 的反應後的氣體即HF氣體的排放效率,可以製造縱向具 有均勻且優異的超電導特性的帶狀氧化物超電導線材。 實施例 在熱處理裝置100中’以長度2 m、内徑20 ιηιηφ形成 氣體供給管130,再於該氣體供給管130上,沿氣體供給 130的縱向以30 mm的間距、1.〇 mmcj)的各内徑(喷嘴 内徑)形成氣體喷出孔132。此時爐芯管11〇的爐内壓力、 即熱處理空間111内的壓力從50 torr升至2〇〇 t〇rr,氣體 流量則從250 L/分鐘升至1〇〇〇 L/分鐘(常溫、常壓下的換 算值)。而且,從熱處理裝置100中的氣體喷出孔132喷 出以供給旋轉體120之表面121a的環境氣體的流速達到 21 201237889 隸二丨氣體喷出孔132與配置在熱處理裝置100内的旋 3 〇之表面121&的隔開距離達到80麵。尚需說明的 Γ在旋轉體120上的帶狀線材2〇的上述膜體是如下 :到的膜體:於帶狀的Ni合金基板(基材)上,利用ibad /將Gd2Zi*2〇7中間層成膜作為模板,再於其上利用濺鍍法Ceramics such as glass or alumina, Hastelloy-based alloys, and image material 20. In addition, the separator [0, etc., is composed of a material such as quartz glass or inconel, which is made of a material which is resistant to oxidation by the south temperature material. Although the separator 170 is fixed to the gas, it is formed, but The present invention is not limited to the configuration in which the partition plate 17G is fixed in the remaining space 111b in the furnace ride 11G. Further, 'the interval between the core flange portion m and the end portion (the cover 122) in the rotation axis direction of the rotary body 120, and the direction of the rotation axis in the furnace flange portion 118 and the rotary body 120 as long as the partition plate 17 is closed At least one of the intervals of the end portions (lids 123) may be provided in any manner as described above, and the heat treatment apparatus 100 is provided with a furnace core tube 110 which is a furnace core flange portion 116 and a furnace core flange portion 118 is formed by closing both ends of the furnace body portion 114 having the heat treatment space 111. Further, a cylindrical rotating body 120 is disposed inside the heat treatment space ill, and the rotating body is rotatably disposed with respect to the furnace core of the furnace tube 110, and is wound around a surface on which a square hole is formed to form a superconductance. A ribbon wire of a film body of a precursor. Further, the heat treatment apparatus 100 further includes a gas supply pipe 140 disposed in the heat treatment space U1 at a position spaced above the film surface of the film body of the strip-shaped wire wound around the rotating body 120. It supplies ambient gas to the membrane surface. Further, the heat treatment apparatus 100 further includes a gas discharge pipe 140'. The gas discharge pipe 140 discharges the reacted gas from the inside of the rotary body 120. A partition plate is disposed in the furnace tube 110. 201237889 p*f The distance between the furnace core flange portion H6 and the furnace flange portion 118 in the direction of the rotation axis of the human rotating body 12G is separated. In the upper processing weave (10), the circular-shaped rotating body i2G with the secret material Μ is rotated at a constant speed. Further, in the heat treatment (four) of the heating ring (4) by the heater 150, the ambient gas supplied from the secret supply device (not shown) is uniformly blown toward the strip through the plurality of gas ejection holes 132 of the gas supply pipe 13 The film surface of the wire 2 〇. The blown ambient gas 6 reacts with the membrane surface to generate HF gas, and enters the inside of the cylindrical body 121 through the plurality of through holes 124 of the cylindrical body 121 in the rotating body 12A. At this time, since a plurality of partition plates 170 are disposed in the furnace core tube 11 , the exhaust gas (specifically, HF gas) does not pass from the end portion of the rotating body 120 (the cylindrical body 121 ) (the cover body 122 and the lid body) 123) Flows to the core flange portion 116 of the furnace core tube uo and the furnace flange portion 118 side. Thereby, the exhaust gas does not stay in the remaining space 111b, but enters the cylindrical body 121 as indicated by an arrow 6c in Fig. 2 . Thereafter, the exhaust gas inside the cylindrical body 21 is discharged to the outside of the furnace via the gas discharge pipe 140 connected to the other end portion of the cylindrical body 121. In the manufacturing method using the heat treatment apparatus 1 described above, the end portion of the furnace flange portion 116, the furnace flange portion 118, and the rotating shaft 120 in the direction of the rotating shaft (core axis C) is partitioned by the partition plate 170. Interval. The film is supplied to the film surface of the superconducting precursor wound on the rotating body 120 while being spaced apart from the space, and the ambient gas is supplied from a position spaced apart from above. Further, the film body of the superconducting precursor is an intermediate layer formed on the substrate, and a mixed solution obtained by dissolving a metal organic acid salt or an organic metal compound containing a metal element in an organic solvent is applied to the intermediate layer, and then temporarily Film formed by sintering 201237889 41491pif. Further, the metal organic acid salt containing a metal element in the mixed solution contains one or more selected from the group consisting of an octanoate, a naphthenate, a neodecanoate or a trifluoroacetate. The produced oxide superconducting wire comprises: an intermediate layer formed on the substrate, a REBayCu3〇z-based superconducting layer formed on the intermediate layer, and a stabilizing layer formed on the superconducting layer, wherein RE comprises a selected from Y, Nd, Sm More than one element of Eu, Gd, and Ho. As described above, in the furnace core tube 110, when the membrane surface of the film body of the strip-shaped wire 20 wound around the rotary body 12 is supplied with the ambient gas 6 from a position spaced apart from above, it is separated by the partition no. In the central space 111a, the ambient gas 6 is supplied from a gas discharge hole 132 (see FIGS. 2 to 4) disposed in the gas supply pipe 13A extending over the entire length of the rotating body 120. Thereby, the atmosphere gas 6 can be favorably supplied to the entire strip-shaped wire 20 wound around the surface 121a of the cylindrical body 121 in the rotating body 120. Thereby, the discharge efficiency of the discharged gas, i.e., HF gas, is improved, and a strip-shaped oxide superconducting wire having uniform and excellent superconducting properties in the longitudinal direction can be produced. In the heat treatment apparatus 100, the gas supply pipe 130 is formed by a length of 2 m and an inner diameter of 20 m, and is further applied to the gas supply pipe 130 at a pitch of 30 mm in the longitudinal direction of the gas supply 130, 1. 〇mmcj) Each inner diameter (nozzle inner diameter) forms a gas discharge hole 132. At this time, the furnace pressure of the furnace tube 11〇, that is, the pressure in the heat treatment space 111 is raised from 50 torr to 2〇〇t〇rr, and the gas flow rate is raised from 250 L/min to 1〇〇〇L/min (normal temperature). , the conversion value under normal pressure). Further, the flow rate of the ambient gas which is ejected from the gas ejection hole 132 in the heat treatment apparatus 100 to supply the surface 121a of the rotary body 120 reaches 21 201237889, and the gas discharge hole 132 is disposed in the heat treatment apparatus 100. The surface 121& is separated by 80 faces. The above-mentioned film body of the strip-shaped wire 2 turns on the rotating body 120 is as follows: the film body to be used: on the belt-shaped Ni alloy substrate (substrate), using ibad /Gd2Zi*2〇7 The intermediate layer is formed as a template, and then the sputtering method is used thereon.

將Ce〇2中間層成膜,然後於所得的複合基板上,藉由塗 佈製程,利用浸塗法塗佈將Y_TFThe Ce〇2 intermediate layer was formed into a film, and then Y_TF was coated by dip coating on the obtained composite substrate by a coating process.

Ba-ΤΡΛ ^ Y : Ba : cu^ "5 例溶解於有機溶劑中得到的混合溶液(超電導原料溶液), 之後藉由暫時燒結製程進行燒結而得到的膜體。在75(rc 的爐内溫度下,藉由正式燒結製程對上述膜體進行熱處 理,而得到1.5 Mm的超電導層。而且,以於旋轉體12〇之 兩端側各設有三塊隔板的構成作為實施例〗,以未設隔板 的構成作為比較例1。 使用上述實施例1之熱處理裝置製成的超電導線材的 特性如下:孔為2.2、k為330A,藉由比較例1製成的超 電導線材的特性如下:允為1>5、1()為225 A。 與藉由比較例1製成的超電導線材相比,藉由實施例 1製成的超電導線材的超電導特性優異。 如上所述,與使用比較例之熱處理裝置的帶狀氧化物 超電導線材的製造方法相比,使用實施例之熱處理裝置的 帶狀氧化物超電導線材的製造方法提高了 HF氣體(氟化 氫氣體)的排放效率,可以製造縱向具有均勻且優異的超 電導特性的帶狀氧化物超電導線材。 22 201237889 41491pif 並且,由於進行的是批次式的燒結,與進行卷對卷方 式的燒結的情形相比,容易控制爐内環境,所以可以形成 穩定的超電導層,並且可以在短時間内製造氧化物超電導 線材。 此外,爐芯管110由圓筒狀的爐芯本體部114和分別 封閉爐芯本體部114之兩端開口的爐芯凸緣部116、爐芯 凸緣部118構成’爐芯凸緣部116、爐芯凸緣部U8 ;的 至少一個相對於爐芯本體部114可自由開閉或自由裝卸, 但並不限於此。只要藉由自由裝卸内部的旋轉體120,可 以谷易地進行帶狀線材2〇的纏繞及取下操作,則可以任意 方式構成。在中空圓柱狀的爐芯管11〇中,可以是將爐^ 本體部114分割成半圓狀的構成。 此外,關於上述本發明,只要不脫離本發明之精神, 可以進行各種變更,而且本發明當然涵蓋該變更後的發明。 2011年2月3日申請的日本特願2011-022116的曰本 申印中所包含的說明書、圖示及摘要的揭示内容全部引用 到本申請中。 綜上所述,本發明所涉及的帶狀氧化物超電導線材的 ,造方法及熱處理裝置提高了反應後的氣體的排放效率, 可,泛適用於形成縱向具有均勻且優異的超電導特性的帶 狀氧化物超電導線材的情形。 【圖式簡單說明】 圖1是顯示現有的批次式熱處理裝置之主要部份槿. 的概略截面圖。 23 201237889 4i4yipif 圖2 超電導^㈣本發明之—魏方鹄涉及的帶狀氧化物 起電以之熱處理裝置之主要部份構成的概略截面圖物 Α_Α_^Γ所4熱處縣置之主要部份構成的圖2之 圖4疋顯示所述熱處理裴置之旋轉體的概略圖。 圖5Α〜圖5Ε是顯示利用MOD法進行的YBCO超電 導線材之製造方法的概略圖。 【主要元件符號說明】 1、1〇〇 :熱處理裝置 2 :基材 3、120 :旋轉體 4 ' 110 :爐芯管 4a :本體部 4b :凸緣部 5、 150 :加熱器 6、 6a、6c :環境氣體 7 :排氣管 8:混合溶液 20 :帶狀線材 111 :熱處理空間 111a :中央空間 111b :剩餘空間 114 .爐芯本體部(筒狀本體部) 116、118 :爐芯凸緣部(凸緣部) 24 201237889 41491pif 121 :圓筒體 121a :表面 122、123 :蓋體(旋轉體的端部) 124 :貫通孔 130 :氣體供給管 132 :氣體喷出孔 140 :氣體排出管 141、142 :端部 170、170-1 :隔板 C :爐芯軸 R :剩餘空i間 25Ba-ΤΡΛ ^ Y : Ba : cu^ " 5 examples of a mixed solution (superconducting raw material solution) obtained by dissolving in an organic solvent, followed by sintering by a temporary sintering process. The film body was heat-treated at a furnace temperature of 75 (rc) by a formal sintering process to obtain a 1.5 Mm superconducting layer. Further, three separators were provided on both ends of the rotating body 12〇. As an example, a configuration in which no separator is provided is used as Comparative Example 1. The characteristics of the superconducting wire rod produced by using the heat treatment apparatus of the above-described Example 1 are as follows: a hole of 2.2 and a k of 330 A, which was produced by Comparative Example 1. The characteristics of the superconducting wire rod were as follows: 1 and 5, 1 () was 225 A. The superconducting wire made of Example 1 was superior in superconducting wire characteristics as compared with the superconducting wire rod produced in Comparative Example 1. As described above, the method for producing a strip-shaped oxide superconducting wire using the heat treatment apparatus of the embodiment improves the discharge efficiency of HF gas (hydrogen fluoride gas) as compared with the method for producing a strip-shaped oxide superconducting wire using the heat treatment apparatus of the comparative example. It is possible to manufacture a strip-shaped oxide superconducting wire having uniform and excellent superconducting properties in the longitudinal direction. 22 201237889 41491pif Also, since batch sintering is performed, Compared with the case of sintering in the roll mode, it is easy to control the furnace environment, so that a stable superconducting layer can be formed, and the oxide superconducting wire can be manufactured in a short time. Further, the furnace tube 110 is made of a cylindrical furnace body. The portion 114 and the furnace flange portion 116 and the furnace flange portion 118 that respectively open the both ends of the furnace core portion 114 constitute at least one of the furnace core flange portion 116 and the furnace core flange portion U8. The core body portion 114 can be freely opened and closed or detached, but is not limited thereto. By simply detaching the inner rotating body 120, the winding and removing operation of the strip-shaped wire 2 can be performed in an easy manner. In the hollow cylindrical furnace tube 11〇, the furnace main body portion 114 may be divided into a semicircular shape. Further, the present invention can be variously modified without departing from the spirit of the invention. The invention of course includes the invention after the change. The disclosures of the descriptions, illustrations, and abstracts included in the application of the Japanese Patent Application No. 2011-022116, filed on February 3, 2011, are incorporated herein by reference. In summary, the method and the heat treatment device for the strip-shaped oxide superconducting wire rod according to the present invention improve the gas discharge efficiency after the reaction, and can be generally applied to form a uniform and excellent superconducting property in the longitudinal direction. The case of the strip oxide superconducting wire. [Simplified illustration of the drawing] Fig. 1 is a schematic cross-sectional view showing the main part of the conventional batch type heat treatment apparatus. 23 201237889 4i4yipif Fig. 2 Superconductance ^ (4) The present invention - Wei Fangyu's schematic diagram of the main part of the heat treatment device for the electrification of the strip oxide is shown in Fig. 2, which is the main part of the hot section of the county. A schematic view of a rotating body. Fig. 5A to Fig. 5B are schematic diagrams showing a method of manufacturing a YBCO superconducting wire material by the MOD method. [Description of main component symbols] 1. 1〇〇: Heat treatment device 2: Base material 3, 120: Rotating body 4' 110: Furnace tube 4a: Main body portion 4b: Flange portion 5, 150: Heater 6, 6a, 6c: ambient gas 7: exhaust pipe 8: mixed solution 20: strip wire 111: heat treatment space 111a: central space 111b: remaining space 114. core body portion (cylindrical body portion) 116, 118: furnace core flange Portion (flange portion) 24 201237889 41491pif 121 : cylindrical body 121a : surface 122 , 123 : cover body (end portion of the rotating body) 124 : through hole 130 : gas supply pipe 132 : gas ejection hole 140 : gas discharge pipe 141, 142: Ends 170, 170-1: Partition C: Furnace shaft R: Remaining space i 25

Claims (1)

201237889 414yipif 七、申請專利範圍: 的财理物超科料的製造方法,其中使用 兩端=形!凸緣部將具備熱處理空間的筒狀本體部的 崎轉體,在上述熱處理空間内部,以相對於 之爐芯軸可以旋轉的方式配置,並且於形成有 =、1的表面纏繞形成有超電導前驅體之膜體的帶狀 綠材, 氣體供給官’用於向上述帶狀線材供給環境氣體;以 及 氣體排出官,用於將上述環境氣體從上述旋轉體内部 排到上述爐芯管外部; 上述製造方法是使用上述熱處理裝置, 向纏繞在上述 紅轉體上的上述帶狀線材之上述賴之膜面從於上方隔開 的位置供給上述環境氣體, 其中’用隔板將上述凸緣部與上述旋轉體中的旋轉軸 方向的端部之間隔開’同時向纏繞在上述旋轉體上的上述 帶狀線材的上述膜體之膜面供給上述環境氣體。 2. 如申請專利範圍第1項所述之帶狀氧化物超電導 線材的製造方法,其中,配置多塊上述隔板。 3. 如申請專利範圍第1項或第2項所述之帶狀氧化物 超電導線材的製造方法,其中,上述超電導前驅體的上述 膜體為於基板上構成中間層,於上述中間層上塗佈將包含 26 201237889 41491pif 金屬元素的金屬有機酸鹽或有機金屬化合物溶解於有機溶 劑中而得到的混合溶液’之後藉由暫時燒結而形成的膜體。 4. 如申請專利範圍第3項所述之帶狀氧化物超電導 線材的製造方法,其中,上述混合溶液中的包含金屬元素 的上述金屬有機酸鹽包含選自辛酸鹽、環烷酸臨、新癸醅 鹽或三氟乙酸鹽的一種以上。 ’ 5. 如申請專利範圍第1項所述之帶狀氧化物超電導 線材的製造方法,其中,上述氧化物超電導線材具 形成於上述基板上的中間層; … 形成於上述中間層上的REBayCuH、超電導層;以 形成於上述超電導層上的穩定化層; 上述RE包含選自Y、Nd、Sm 種以上的元素。 Eu、Gd 及 Ho 的一 ===氧化物超㈣線材的熱處縣置 兩端=形:凸緣部將具備熱處理空間的筒狀本體部^ 圓筒狀的旋轉體,在上 ,爐芯管的爐芯轴可以旋轉的:以1内:, 多個貫通孔的表面纏繞形义、且於形成有 線材; ^ 超電‘剷驅體的膜體的帶狀 氣體供給管,u 以及 線材的上魏上额無上的上述帶狀 膜面供給環境氣體;n ;上方隔開的位置,向上述 27 201237889 41491pif ^«管’將反應後的氣體從上述旋轉體内部排出; 緣部=轉體中的旋轉轴方向的二=t述凸 線材帶狀氧化物超電導 Π 其中,配置多塊上述隔板。 8.如中請專利範圍第6項或第7 旋熱處嶋,其中,在上述隔板上插通上述 轉f的㈣’同時被_在上述轴部。 轉轴方向的端部非接觸:對述旋轉體中的旋 28201237889 414yipif VII. Patent application scope: A manufacturing method of a financial material super-material, in which a flange-shaped portion of a cylindrical body portion having a heat treatment space is used, and the inside of the heat treatment space is relatively The furnace core shaft is rotatably disposed, and a strip-shaped green material formed with a film body of the superconducting precursor is formed on the surface formed with =, 1, and the gas supply officer is configured to supply the ambient gas to the strip wire; And a gas discharge official for discharging the ambient gas from the inside of the rotating body to the outside of the furnace tube; wherein the manufacturing method is to use the heat treatment device to the above-mentioned strip-shaped wire wound around the red rotating body The membrane surface is supplied with the ambient gas at a position spaced apart from above, wherein 'the partition is separated from the end portion of the rotating body in the direction of the rotation axis by a partition plate' while being wound around the rotating body The ambient gas is supplied to the film surface of the film body of the strip wire. 2. The method for producing a strip-shaped oxide superconducting wire according to claim 1, wherein a plurality of the separators are disposed. 3. The method for producing a strip-shaped oxide superconducting wire according to the first or second aspect of the invention, wherein the film body of the superconducting precursor comprises an intermediate layer on a substrate and is coated on the intermediate layer. The cloth will contain a film body formed by temporary sintering after the mixed solution of the metal organic acid salt or the organometallic compound of the metal element of 26 201237889 41491pif dissolved in an organic solvent. 4. The method for producing a strip-shaped oxide superconducting wire according to claim 3, wherein the metal organic acid salt containing a metal element in the mixed solution is selected from the group consisting of octoate, naphthenic acid, and new More than one of a phosphonium salt or a trifluoroacetate salt. 5. The method for producing a strip-shaped oxide superconducting wire according to claim 1, wherein the oxide superconducting wire has an intermediate layer formed on the substrate; ... the REBayCuH formed on the intermediate layer, a superconducting layer; a stabilizing layer formed on the superconducting layer; wherein the RE comprises an element selected from the group consisting of Y, Nd, and Sm. One of the Eu, Gd, and Ho ===Oxide super (four) wire heat station at both ends = shape: the flange portion will have a cylindrical body portion of the heat treatment space ^ cylindrical rotating body, on the top, the core The furnace core shaft of the tube can be rotated: within 1:, the surface of the plurality of through holes is wound and shaped, and the wire material is formed; ^ The strip gas supply tube of the membrane body of the ultra-electric 'shovel body, u and the wire The upper strip-shaped membrane surface of the upper Wei upper surface is supplied with ambient gas; n; the upper separated position, the gas after the reaction is discharged from the inside of the above-mentioned rotating body to the above 27 201237889 41491pif ^«tube; In the direction of the rotation axis of the body, two = t are the convex strip-shaped oxide superconducting electrodes. Here, a plurality of the above-mentioned separators are arranged. 8. In the sixth or seventh hot-spinning section of the patent range, the (four)' of the above-mentioned turn f is inserted into the above-mentioned partition plate while being _ at the above-mentioned shaft portion. The end of the rotating shaft is non-contact: the rotation in the rotating body
TW101103393A 2011-02-03 2012-02-02 Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device TWI509635B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022116A JP5837751B2 (en) 2011-02-03 2011-02-03 Tape-like oxide superconducting wire manufacturing method and heat treatment apparatus

Publications (2)

Publication Number Publication Date
TW201237889A true TW201237889A (en) 2012-09-16
TWI509635B TWI509635B (en) 2015-11-21

Family

ID=46602467

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101103393A TWI509635B (en) 2011-02-03 2012-02-02 Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device

Country Status (4)

Country Link
JP (1) JP5837751B2 (en)
CN (1) CN103339692B (en)
TW (1) TWI509635B (en)
WO (1) WO2012105244A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7286032B1 (en) 2022-05-24 2023-06-02 三菱電機株式会社 Rotating electric machine
KR102593634B1 (en) * 2023-07-07 2023-10-26 주식회사 마루엘앤씨 Wire rod deposition system
KR102591747B1 (en) * 2023-07-07 2023-10-23 주식회사 마루엘앤씨 Wire rod deposition system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208209A (en) * 1989-02-08 1990-08-17 Furukawa Electric Co Ltd:The Production of oxide superconductor precursor
JP2511320Y2 (en) * 1989-12-11 1996-09-25 横河電機株式会社 Oxide high temperature superconductor manufacturing equipment
JP3789341B2 (en) * 2001-10-12 2006-06-21 財団法人国際超電導産業技術研究センター Atmosphere controlled heat treatment furnace
CN1296943C (en) * 2002-05-24 2007-01-24 住友电气工业株式会社 Oxide superconducting wire producing method
JP4401992B2 (en) * 2005-03-25 2010-01-20 財団法人国際超電導産業技術研究センター Tape-like oxide superconducting wire manufacturing method and manufacturing apparatus thereof
CN100372140C (en) * 2005-03-29 2008-02-27 清华大学 Method for making large area uniform film or long superconducting wire and its apparatus
JP4468901B2 (en) * 2006-01-13 2010-05-26 財団法人国際超電導産業技術研究センター Heat treatment equipment for oxide superconducting wire.
CN100575540C (en) * 2006-08-28 2009-12-30 北京有色金属研究总院 Batch preparation of double-faced high-temperature superconducting film device
JP4876044B2 (en) * 2007-08-16 2012-02-15 財団法人国際超電導産業技術研究センター Heat treatment apparatus for oxide superconducting wire and method for manufacturing the same
CN101471161B (en) * 2007-12-28 2010-12-08 北京有色金属研究总院 Method for producing high-temperature superconducting thin film by tri-fluorate

Also Published As

Publication number Publication date
JP5837751B2 (en) 2015-12-24
CN103339692A (en) 2013-10-02
WO2012105244A1 (en) 2012-08-09
JP2012164443A (en) 2012-08-30
TWI509635B (en) 2015-11-21
CN103339692B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
RU2597247C2 (en) Superconducting wire and method for formation thereof
WO2016129469A1 (en) Superconducting wire material production method and superconducting wire material joining member
AU2007252693A1 (en) Superconducting thin film material and method of manufacturing the same
JP5634166B2 (en) Oxide superconducting wire and method for producing the same
JP4468901B2 (en) Heat treatment equipment for oxide superconducting wire.
TW201237889A (en) Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device
JP4876044B2 (en) Heat treatment apparatus for oxide superconducting wire and method for manufacturing the same
CN108806881A (en) A kind of hyperconductive cable
US20070249841A1 (en) Band-Shaped High-Temperature Superconductor (HTSL) and Method of Producing
TWI517184B (en) Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device
JP5492681B2 (en) Superconducting wire and manufacturing method thereof, superconducting coil and manufacturing method thereof
JP2004039442A (en) Oxide superconductor tape filament
JP2013025892A (en) Manufacturing method of tape-like oxide superconductive wire material and heat treatment apparatus
JP5894907B2 (en) Oxide superconducting wire and method for producing the same
JP5690509B2 (en) Tape-like oxide superconducting wire manufacturing method and heat treatment apparatus
JP5663230B2 (en) Oxide superconducting wire and method for producing the same
JPH0721856A (en) Method for manufacturing superconductive wire
JP2015141830A (en) Method of producing tape-like oxide superconductive wire rod
JP2014072069A (en) Method of manufacturing oxide superconducting wire
JPH09161573A (en) Manufacture of superconducting wire, superconducting wire and superconducting magnet
JP2000299026A (en) Oxide superconductor, its manufacture and base material for oxide superconductor
JPS63291320A (en) Manufacture of oxide superconductive wire
JPS63266716A (en) Manufacture of oxide superconductor
JP2015141831A (en) Oxide superconductive wire
JPH01161617A (en) Manufacture of oxide superconducting wire

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees