TW201237452A - Hybrid indoor positioning method combining signal intensity characteristics matching and position prediction analysis - Google Patents
Hybrid indoor positioning method combining signal intensity characteristics matching and position prediction analysis Download PDFInfo
- Publication number
- TW201237452A TW201237452A TW100108217A TW100108217A TW201237452A TW 201237452 A TW201237452 A TW 201237452A TW 100108217 A TW100108217 A TW 100108217A TW 100108217 A TW100108217 A TW 100108217A TW 201237452 A TW201237452 A TW 201237452A
- Authority
- TW
- Taiwan
- Prior art keywords
- user
- predicted position
- reference point
- prediction analysis
- signal strength
- Prior art date
Links
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Description
201237452 六、發明說明: « 【發明所屬之技術領域】 本發明係有關於一種結合訊號強度特徵比對與位置預測分析 之混合式室内定位方法,尤指一種包括設定步驟及追蹤定位步驟, 俾能由運算手段之判斷模組決定由第一預測位置或是第二預測位 置作為使用者下一次移動的預測位置者。 【先前技術】 隨著無線通訊技術的迅速發展,使得行動定位服務愈來愈受到 眾人的重視,目前行動定位服務是以全球定位系統GPS為代表,室 内定位服務存在著龐大的商機。然而,要提供室内定位服務必須利 用不同於全球定位系統的技術。全球定位系統GPS技術最大的限制 在於必須與衛星系統隨時保持視連線狀態,於室内或是建築物時, 由於無線訊號無法直接與用戶端設備直接做訊號的連結,加上室内 環境擺設複雜、精密度要求較高,所以室内定位系統在實作上存在 著如訊號強度擷取、資料庫建置以及定位演算法等許多難題需要克 服與解決。 目前在無線網路環境下進行定位服務的定位模式大致有收訊 角度法(Angle of Arrival,Α0Α)、收訊時間(Time 〇f ArHval, TOA)、收訊時間差(Time Difference of Arrival,TDOA)以及訊號 強度法(Received Signal Strength,RSS)等定位模式,上述四種定 位模式中以訊號強度法較適合於室内環境,其他三種定位模式在室 内環境受到多重路徑問題的影響程度較大;反觀訊號強度法對於位 201237452 置移動時訊號強弱的變化是比較可麵,換言之,訊號強度法可以 獲得較高的定位精確度。 另一方面’由於GPS無法提供室内的定位服務,故使用^^的 定位系統是有其必要性,選擇適♦畴輸(Ap)也能改善定位的精 準度’且在樓層的定位判斷中,刪的定位系統也提供了可行的方 案。在室内多重路徑(multipath)嚴重的環境,或是人群動態走動 的%境,其定位誤差結果也會隨著訊號震盈而有震蘆或預測突然非 常不準確的情形發生。 隨著室内定位服務範疇、應用愈來愈廣泛,現今8〇2. u WLAN 廣泛被佈建於至内的環境,而且訊號傳播(si即a!师卿州⑽) 在至内的環i兄受到至内嚴重的多重路樹咖出阳也)的影響,故訊 號傳播在至内的環境相當複雜。且環境的些微改變,都可能造成訊 號嚴重震獅情形’例如:障礙物的出現或是人群的移動等等。因 為上述的情形,使得即使使用者在同一個地點,在不同時間從 802.11存取點(access points Ap)收到的訊號強度都會不一樣, 這種情形將會導致定位精準度的降低。 再者,經本中請人檢索本國專利檢索祕後發現有本國發明第 1243255號『使舰«本策略之"定位方法及綠』,以及發 明公開第201020578『室内定位方法及其系統』等二件專利前案, 該二件專利前案只著重在定位演算法本身或是_較適合的 Access point的資訊來當做定位演算法的參數’來提升定位的精 準,惟,峨錢的情勒無法敎,沉域二件專術案並無存 201237452 取點及參考缝量騎濾魏,及以躲雜合與峨強度進行評 分的功能設置,以朗減處辦_長而影響室蚊位追縱的效 能,以及定位的精確度。 此外,經本申請人經檢索美國專利系統後發現與本發明相關的 專利刚案分別為美國專利第’176583號、專利第_257831號,及 專利第MJ317677號等三件,其中美國第㈣176583號專利則未考慮 信號波動(signal fluctuation)對於定位精確度所造成的影響,故 與本發明技術内容以及達成功效皆有所不同。至於美國第 257831號錢第腿7677鮮二件專淋僅沒有考慮信號波動 (signal fluctuation)對於定位精確度所造成的影響,而且沒有考 慮到移動客戶端的流動(mobile clienmm〇bility)的特性,故上 述之該等專利前案確實與本發明的技術内容以及所達成功效皆有 所不同。 【發明内容】 本發明之主要目的,在於提供—種結合訊號強度特徵比對與 位置預測分析之混合式室内定位方法,主要是絲解決室内訊號震 盪的問題’藉以將較佳的定位演算法配合移動預測技術,將訊號驗 所致的不良影響降至最低,並可進—步校正被追縱者的酬位置在 室内多重路徑嚴錄_環境下,_可以提供精麵Μ定位品質 更佳的至蚊位祕’藉以達龍難算合理她正不準確的預測 結果’而可獲得較低的定位誤差率。 201237452 . &達上述力效本判制之技術模組係於㈣區域設置複數 存取點’並於室内區域劃分設定複數個參考點,以上網裝置於每— 參考點收集複數存取點所發射的識別訊號,並將複數該識別訊號以 及識別訊號的訊號強度龍透過無_路傳輸至運算手段之資料 庫内,運算手段以過雜組對轉考_多餘的識職號以及參考 點進行過濾、,讓使用者之上網裝置於一預定時間收集複數存取點所 發射的識別訊號,運算手段之評分模組依據使用者所收集到識別訊 號及訊號強麟每-參考闕行評分,手狀估算模組再依據 評分結果選出-參考點為使用者所在的第一預測位置,運算手段另 以移動預賴組依據複數初步預測位置來估算使用者平均的移動 速度’進而估算出使用者預備移動的第二預測位置運算手段再以 纖模組決定由第__位置歧第二麵純料伽者下一 次移動的預測位置。 【實施方式】 壹.本發明應用領域與欲解決的問題 隨著移動計算能力的提升,使得室峡錄務愈來愈受到重 視,故對於使用者的位置與移祕徑必須要有—定程度的掌握才 行。由於現今的上網裝置αο)如行動電話、PDA筆電以及平板電腦 等電子產品大多已内建Wi-Fi通訊模組(如無線網卡),因此,本發 明採用接收Wi-Fi減來制定位的目的更顯得具市場價值。本發 明之室内定位技術除可以應用在大型的展館或是展場,以對進入展 館或是展場之使用者進行相關的參觀導覽與路徑的指引,並可應用 201237452 _在宿舍、居家或辦公室,以實現辦公室自動化、家庭自動化等用途 上,亦可應用此定位技術,讓外勤人員(如業務、保全人員、邀察 人員以及計程車司機)可以獲悉知自己目前所處的位置資訊。心、 由於室内定位服務系統大多是建構在指紋運算法的架構之 下’致使義峨-直是訊號強度法(卿關侧鍵所在。這些 波動訊號會讓室狀位精確敍斷低,為解決此—嚴重問題任 何現有的指紋為基礎的室内定位算法皆可被集成到本發明的室内 定位技術架構中,藉以進-步估算上網裝置的所在位置。本發明是 利用模型預測中的布朗運動,且進—步提出—種移動性預測的技 術’進而達到預測估算合理與校正誤差率高的預測結果,而可獲得 較低的纽誤差率,此外’當某些室内區域⑴的實驗訓練記錄或 是無線電地圖過時而不符實際所需時,亦可經由本發明的運作而加 以發現,並且給予即時的更正與重建。 貳.本發明基本實施例 請參看第一至四圖所示,基於上述功效目的,本發明發基本 實施例係於室内區域(1)不同位置設置複數存取點(4〇)(access points, AP),此方法更包含下列步驟: 設定步驟:於室内區域(1)劃分設定複數個參考點(la),如第 四圖所示,再以上網裝置(1〇)於每一參考點(la)收集複數存取點 (40)所發射的識別訊號,並將收集到之複數識別訊號以及識別訊號 的訊號強度資料透過通訊網路(2〇)傳輸至資料庫(31)内,藉以建置 出一套可供比對的無線電地圖(radio map);及 201237452 追蹤定位步驟:以一過濾模組對各參考點(la)内多餘的識別訊 號以及參考點(la)進行過濾刪除,讓使用者手持之上網裝置(1〇) 於一預疋時間内收集複數存取點(40)所發射的識別訊號;並以一運 算手段(30)之評分模組(33)依據使用者所收集到之複數識別訊號 及識別訊號的訊號強度對每一參考點(la)進行評分,運算手段(3〇) 之估算模組(34)則依據評分結果而選出一個參考點(1 a)作為使用 者所在的第一預測位置;另一方面,運算手段(3〇)以移動預測模組 (35)依據複數個初步預測位置來估算使用者平均的移動速度,進而 估算出使用者預備移動的第二預測位置,運算手段(3〇)再以一判斷 模組(36)決定由第一預測位置或是第二預測位置作為使用者下一 次移動的預測位置。 參•本發明技術特徵的具體實施例 3.1設定步驟 請參看第三、四圖所示,本發明過濾模組包含一存取點過濾 器(320)及-㈣縣n(321),此存取闕絲(32Q)係將微弱訊 號以及新增的存取點(40)予以過濾刪除,經存取點(4〇)過濾後,空 間過遽器(321)再挑選出畴可財到複數_取點⑽)集合裡面 所有存取點(4G)的參考點(ia) ’藉以删除無法收到複數個存取點 (40)集合裡面所有存取點(4〇)的參考點(la)。 詳細言之,經過存取點過濾後,假設使用者在某個時間點可以 收到複數個存取點集合ΑπΗΑΡ1,AP2, ···,APm}這些縱n Aps的 識別訊號’空間過渡器(321)即是挑選出同時可以收到Am裡面所有 201237452 存取點(40)AP的參考點(la),這些參考點(ia)構成了一個集合s, 假設S={refl,ref2,...’refk} ’此集合稱為一個候選集合 (candidate set)。 3. 2追蹤定位步驟 請參看第一至四圖所示’評分模組(33)的評分運算法主要是基 於公式1、公式2及公式3,以對各參考點(ia)進行評分,其中, ssi為使用者從其中一個存取點⑽)(APi)收到的訊號強度,Wi〗與 d i,〗分別為在其中一該參考點(丨a ) (r e f】·)從其中一該存取點 (40)(APi)收到的平均訊號強度與標準差(如公式2中所示),並利 用高斯分佈(Gaussiandistribution)來估量從該存取點(4〇)(APi) 所收到的訊號強度,如第六圖所示,則使用者之訊號強度與 Wu之間的差異則可用面積(Areai j)(以式j來表示),該參考點 (la)(refj)上所能收到的該存取點(4〇)(APi)數的集合為釣,則幻 與Am的差距愈小表示該使用者的位置愈有可能在該參考點 (la)(refj)上,並由公式3來執各行該參考點(la)(refj)的評分, 再將刀、、’σ果送至估算模組(34)中。於一種具體的實施例中,估算 模組(34)係獅評分最小的參相〇a)料上述的第_賴位置。
Area •⑴
Mean_Diff^l_^Area 〜, …⑵ 造1 MeanD此 …(3) 201237452 請參看第三、五圖所示,本發明運算手段(3〇)建立有一特徵資 料庫(39),用以儲存使用者的移動軌跡記錄,估算步驟更包括一實 驗訓練步驟,於實驗訓練步驟中可將複數個定位實驗結果做為統 計資料的推論分析雜,並可針對多個麟(r)以崎雜來推論 計算定位誤差小於r的機率(pel,r);另,移動酬模組(35)則是利 用布朗運動法(BiOwnian mc)tiQn)計算第二預測位置會在以距離⑺ 為半徑圓裡的機率(Pn+1,r),如附件圖丨所示,當移動執跡記錄少於 預設數量時,判斷模組⑽則以第一預測位置作為使用者下一次移 動的預測位置。 再請參看第五_示,當移驗跡記錄大於鱗於該預設數量 時’判斷模組(36)則選擇一個正實數(〇由統計資料推算機率(peI,r) 與機率(Pn+1,r),當機率(pel r)大於或等於機率(㈣時,則以該第 一預測位置作為該使用者下—次移動的預測位置,當機率(_)小 於機率(Μ,0時’則以第二預測位置作為該使用者下-次移動的預 測位置;反之’當第一預測位置與該第二預測位置的差異過大時, 判斷模組⑽則以統計資料進行推論分析,而可依據推論分析結果 來修正使用者下-次移動的預測位置。 具體言之,本發明移動預測模組(35)是根據前面_PEL的位 置來計算使用者平均的移動速度(v)來預測下-點的位置(point Q)。(以最近-個FEL的位置開始計算),並利用布朗運動法計算下 點的位置會在以❻伟的__率咖 201237452
Xit') = vt+cr B{t) tor / > 0
Pn+J.r'
Pr{^f(i LCs) + Xt + r \ X{,s) = Ζ(λ)> ⑷ (5) (6) -Pr{X(s+0^ Lis') + vt- r j X(s) = L(s)} r φ(^^φ(泛) 1.3運算手段 請參看第一、二圖所示,於一種較為具體的實施例中,上述資 料庫(31)(radiomap)建立有室内區域(1)的地圖資料,當運算手段 (30)之判斷模組(36)決定使用者下一次移動的預測位置時,判斷模 組(36)則將與預測位置相應的地圖資料傳輸至使用者的上網裝置 (10)中,而且參考點(la)係以框格狀的方式密佈劃分於該室内區域 (1)。另外,通訊網路(2〇)則包括一無線區域網路,及一網際網路, 至於連結在上網裝置(1〇)與各存取點(4〇)及運算手段(3〇)之間的 通訊網路(20)則為一種無線區域網路,此無線區域網路為ieee所 制定之802·11系列標準的無線區域網路(20) (WLAN,Wireless LAN)。 請參看第一、二圖所示,本發明運算手段(3〇)的具體實施例係 包含至少一近端的伺服器(37)及一遠端的主伺服器(38),當使用者 第一次啟用室内定位服務時,必須向遠端主伺服器(38)申請註冊, 如第二圖所示,當使用者通過註冊程序後,即可啟用上述的室内定 位服務,上述資料庫(31)可以建立在伺服器(37)上,此舰器(37) 201237452 用以接收由上網裝置(10)所傳輸的複數識別訊號以及識別訊號的 也號強度資料,並以評分模組(33)對各參考點(ia)進行評分,再將 評分對結果上傳至主伺服器(38),以進行使用者下一次移動位置預 測的運算,主伺服器(38)再以估算模組(34)、移動預測模組(35) 及判斷模組(36)進行運算,再將運算結果經伺服器而傳輸至上網裝 置(10)之中,如此使用者即可獲悉目前所處的室内位置資訊。 肆•本發明的實驗例 為驗證本發明所提出的室内定位方法確實為可行有效技術方 案,本發明係透過上網裝置⑽來收集室内區域⑴環境中各存取 點(40)的IEEE802.11無線訊號,如附件圖2所示為台大資工系4 樓的建築物俯視圖,其中建築物内設有2〇組存取點(4〇),參考點 (la)的數量為8G,且分佈在賴物各處,即東,&,西北的方 向,各參考點⑽之間相互間隔2公尺左右,藉以建構出一無線地 圖,同時使用的上網裝置⑽為採用Andr〇idl.5操作系統的行動 電話’而且收集約1GG個訊號樣本,並讓|人走動,藉以實際_ 人員移動之動向,並預測出人員欲移動的位置。經實驗例的驗證 ^儘管有-些第-_位置(FPELs)較為不準確,追究原因是波 動Q所致,同時亦發現本發明對於無線電地圖的重建,確實大有 助益,當預測位置結果總是依靠移動預測模組⑽推論時,即可合 ^的懷疑此t嘱⑴嶋物恤㈣,應該予以重 在移動性預測技術方面,是以M個第—糊位置㈣LS)來計 201237452 .算上網裝置⑽的平均移動速度,因此,M的數量值不能設置過大 亦不能設置太λ!、,如此方能獲得上哺置⑽準確的平均移動速 度Μ的數量值的最佳數量為6個第一預測位置(舰^)。 第七圖則顯示三種定位預測模式,第一種為訓練階段且無移動 預測模式(ML),第二種為無移動預測模式(with〇utMp),第三種則 為具有移動預測模式(with MP),本發明定位方法在不同採樣週期 則會有不同的定位精度,事實上,定位射度是以第三種定位預測 模式(with MP)為最佳,第一種定位模式則最差…般而言,當上 網裝置(10)接收訊號的採樣週期較長時,齡錄好的定位精度, 在附件圖1所示可以看到,第—種定位預測模式㈣賴技術定位 效果較差是因為訊號波動的問題所致。本發明可以利用移動預測模 組(35)來校正定位偏差’因此,當採樣週驗長且超過2. 5秒時, 則定位平均誤差率較低,而且更為穩定。 伍•結論 因此’藉由上述技術特徵的設置,本發明確實可以解決室内 訊號震躺問題,藉以將較佳攸位演算法配合移動預測技術,將訊 號震·__舰至敎,並仰—她正被追翁的預測位 置’在室内多重路徑嚴重影響的環境下,仍然可以提供精確度高且定 位品質更佳的室内定位服務,藉以達到預測估算合理與校正不準確 的預測結果,而可獲得較低的定位誤差率。 以上所述’僅為本發明之—可行實施例,並_以限定本發 明之專利翻,凡舉依據下列請求項所述之内容、特徵以及其精 13 201237452 神而為之其他變化的等效實施,皆應包含於本發明之專利範圍 内。本發明所具體界定於請求項之結構特徵,未見於同類物品’ U貫用__ ’已符合瓣峨,綱具文提出申 請’謹請_依法核予翻,以維護本ψ請人合法之權益。 【圖式簡單說明】 第一圖係係本發明基本架構的實施示意圖。 第二圖係本發明具體架構的實施示意圖。 第三圖係本發明控制手段的控制方塊示意圖。 第四圖本發明於室内區域具體實施的示意圖。 第五圖係本發明的控制流程示意圖。 第六圖係本發明訊號強度差異以高斯分佈表示的示意圖。 第七圖係本發明以三種預測位置模式進行誤差率比對的示意圖。 附件:圖1係以布朗運動推論預測位置的示意圖;圖2係以台大 資工系4樓的建築物俯視圖。 【主要元件符號說明】 0)室内區域 (10)上網裝置 (30)運算手段 (320)存取點過濾器 (33)評分模組 (35)移動預測模組 (37)伺服器 (la)參考點 (20)無線網路 (31)資料庫 (321)空間過濾器 (34)估算模組 (36)判斷模組 (38)主伺服器 201237452 (40)存取點 (39)特徵資料庫 15
Claims (1)
- 201237452 七、申請專利範圍: 1. 一種結合訊號強度特徵比對與位置預測分析之混合式室内 定位方法,其係於一室内區域不同位置設置複數存取點(access points, AP),該方法包括下列步驟: 設定步驟:於該室内區域劃分設定複數個參考點,以一上網裝 置於每一該參考點收集複數該存取點所發射的識別訊號,並將收集 到之複數個該識別訊號及該識別訊號的訊號強度資料透過一通訊 網路傳輸至一資料庫;及 追蹤定位㈣:以-過舰㈣各該參考簡多餘的該識別訊 號及該參考點進行過濾;一使用者以該上網裝置於一預定時間收集 複數個該存取點所發射的該識別訊號,經一運算手段之評分模組依 據所收集狀餘健識觀號及該朗訊朗訊麵度對每一 該參考點騎評分;該運料狀—估龍_雜評分結果而選 出一該參考點為使用者所在的第-預酿置;該運算手段另以一移 動預測模組依魏數個初步賴㈣來估算該使用者平均的移動 速度’進而估算__者韻機的第二_位置;該運算手段 再以-判斷模組決定由該第—預測位置或是該第二預測位置作為 該使用者下一次移動的預測位置。 2.如清求項1所述之結合喊強麟徵比對與位置預測分析 二=疋位方法’其中’該_模組包含—存取點過滤器及 一 該存取點職⑽將微弱訊號及新增的該存取點予 以磁刪除,萄後,__再_ _可以收 201237452 到該複數贿取點集合裡酬有該存取關該參考點藉以刪除無 法收到該複數個存取點集合裡面所有該存取點的該參考點。 3.如請求項1所述之結合域賊特徵比對與位置預測分析 之混合式室内^位方法,其中,該評分模組係透過式丨式2及式 3以對各該參考點進行評分: Area: p,r Ki rXexp{ 2d })dx ij 式1 Mean 一 Dijf产 l^AreaiJ …式2 ;及 …式3 ; W /=1 · 其中’ SSi為該上網裝置從其中一該存取點(Ap〇收到的訊號強 度;Wu與L分別為在其中一該參考點(refj)從其中一該存取點 ⑽收到的平均訊號強度與標準差,並利用高斯分佈 (G嶋iandistributiQn)絲倾該存取點撕)所_的訊號強 度,則該上網裝置之訊號強銳與^之_差異用面積(Areaij) 以式1來表示’該參考點(refjU所能收到的該存取點(Αρ)數的 集°為HUj與&的差距愈小表示該使用者的位置愈有可能在 s參考點(refD上’並由式3來執各行該參考點(邮)的評分 將評分結果送至該估算模組中。 奢求項3所述之結合訊號強麟徵比對與位置預測分析 之混合式室喊位方法,其中,該估算模_選擇評分最小的該參 考點作為該第一預測位置。 201237452 5u項1所叙結合織财龍比對触置預測分析 之混合式室内定位方法,其十,該運算手段建立有一特徵資料庫, 用以儲存該使用者的移動軌跡記錄,該估算步驟則更包括一實驗 練步驟,於該實驗爾步驟中可將複數個定位實驗結果做為 資料的推論分析依據,並可針對多個距離(r)以該統計資料來推論 計算定健差健r的機率(⑽),該飾酬顯_布朗運: 法(Br〇wmanmotion)計算該第二預測位置會在以距離㈦為半徑 圓裡的機率(pn+1,r),當移動軌跡記錄少於預設數量時,該判斷模組 則以該第-預測位置作為該使用者下—次移動的預測位置。、、 6. 如請求項5所述之結合訊號強度特徵比對與位置預測分析之 在σ式至内核H其巾,當移動軌跡記錄大於或等於該預設數 量時,該判斷模組則選擇一個正實數⑺由該統計資料推算機率 (Pel,r)與機率(Pn+1,r) ’當機率(Ρ心)大於或等於機率(Pn+1,r)時, 則以該第i麻置作為該使用者下—次移__位置,當機率 (pel,r)小於機率(Pn+1,r)時,則以該第二刪位置作為該使用者下— 次移動的預測位置。 7. 如請求項5或6所述之結合訊號強度特徵比對 析之混合式室内定位方法,其中,當該第一預測位置與該 位置的差異過大時,該判斷模組則以該統計資料進行推論分析而 可依據推論分析結果來修正該使用者下一次移動的預測位置。 8. 如請求項丨所述之結合減強度特徵比對與位置預測分析 之混合式室内定位方法,其中,該資料庫建立有該室内區域的地圖 18 201237452 資料,當該判斷模組決定該使用者下一次移動的預測位置時,該判 斷模組則將與該預測位置相應的該地圖資料傳輸至該使用者的該 上網裝置中。 9. 如請求項1所述之結合訊號強度特徵比對與位置預測分析 之混合式室内定位方法,其中,該參考點係以框格狀的方式密佈劃 分於該室内區域’該通訊網路包括一無線區域網路以及一網際網 路’連結在該上網裝置與各該存取點及該運算手段之間的該通訊網 路為該無線區域網路,該無線區域網路為IEEE所制定之802.11系 列標準的無線區域網路(WLAN,Wireless LAN)e 10. 如請求項1所述之結合訊號強度特徵比對與位置預測分析 之混合式室喊位方法’其巾,該運算手段包含至少—近端的飼服 器及-遠端的主舰H,該資料庫係建立在該服^上,鋪服器用 以接收由該上網裝置所傳輸的複數該識職號以及該識別訊號的 訊號強度mxm情敝對各够考鱗行評分,再將評分 對結果上傳域服H,崎行該_打—次移誠置預測的 運算,該主伺服器再以該估算模組、該移動賴模組及該判斷模组 進行運算,再將運算結果經該舰器而傳輸至該上網裝置、、
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100108217A TWI425241B (zh) | 2011-03-11 | 2011-03-11 | Combining the signal intensity characteristic comparison and position prediction analysis of hybrid indoor positioning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100108217A TWI425241B (zh) | 2011-03-11 | 2011-03-11 | Combining the signal intensity characteristic comparison and position prediction analysis of hybrid indoor positioning method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201237452A true TW201237452A (en) | 2012-09-16 |
TWI425241B TWI425241B (zh) | 2014-02-01 |
Family
ID=47223136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100108217A TWI425241B (zh) | 2011-03-11 | 2011-03-11 | Combining the signal intensity characteristic comparison and position prediction analysis of hybrid indoor positioning method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI425241B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI554136B (zh) * | 2014-09-24 | 2016-10-11 | 緯創資通股份有限公司 | 室內定位方法以及使用該方法的裝置 |
TWI624677B (zh) * | 2013-03-15 | 2018-05-21 | 惠斯特實驗室公司 | 一種用以決定裝置間適當實體距離的電腦實施方法及非暫態性電可讀取媒體 |
TWI669615B (zh) * | 2018-12-10 | 2019-08-21 | 中華電信股份有限公司 | 行動定位修正之系統與方法 |
US10849205B2 (en) | 2015-10-14 | 2020-11-24 | Current Lighting Solutions, Llc | Luminaire having a beacon and a directional antenna |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI113092B (fi) * | 2002-05-31 | 2004-02-27 | Ekahau Oy | Paikannusepävarmuuden mittauksia ja niiden sovelluksia |
ATE515911T1 (de) * | 2004-04-06 | 2011-07-15 | Koninkl Philips Electronics Nv | Auf position basierende weiterreichung für mobile einrichtungen |
US8155662B2 (en) * | 2007-02-19 | 2012-04-10 | Microsoft Corporation | Self-configuring wireless network location system |
US8811349B2 (en) * | 2007-02-21 | 2014-08-19 | Qualcomm Incorporated | Wireless node search procedure |
TWI362500B (en) * | 2008-03-03 | 2012-04-21 | Ind Tech Res Inst | Transformation apparatus for the signal strength in a wireless location system and method thereof |
TWI361634B (en) * | 2008-07-30 | 2012-04-01 | Univ Chang Gung | Method for calibration-free wireless localization algorithm |
CN101695152B (zh) * | 2009-10-12 | 2013-01-30 | 中国科学院计算技术研究所 | 室内定位的方法及其系统 |
-
2011
- 2011-03-11 TW TW100108217A patent/TWI425241B/zh not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI624677B (zh) * | 2013-03-15 | 2018-05-21 | 惠斯特實驗室公司 | 一種用以決定裝置間適當實體距離的電腦實施方法及非暫態性電可讀取媒體 |
TWI554136B (zh) * | 2014-09-24 | 2016-10-11 | 緯創資通股份有限公司 | 室內定位方法以及使用該方法的裝置 |
US10849205B2 (en) | 2015-10-14 | 2020-11-24 | Current Lighting Solutions, Llc | Luminaire having a beacon and a directional antenna |
TWI669615B (zh) * | 2018-12-10 | 2019-08-21 | 中華電信股份有限公司 | 行動定位修正之系統與方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI425241B (zh) | 2014-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6297094B2 (ja) | 近接フィンガープリントによる位置推定 | |
Torres-Sospedra et al. | UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems | |
CN109275095B (zh) | 一种基于蓝牙的室内定位系统、定位设备和定位方法 | |
CN103068035B (zh) | 一种无线网络定位方法、装置及系统 | |
JP4980247B2 (ja) | 測位システムにおける連続データ最適化 | |
CN104185270B (zh) | 室内定位方法、系统和定位平台 | |
JP5450689B2 (ja) | 測位システムにおける連続データ最適化 | |
Pirzada et al. | Device-free localization technique for indoor detection and tracking of human body: A survey | |
Zhang et al. | WiBall: A time-reversal focusing ball method for decimeter-accuracy indoor tracking | |
JP2015531053A (ja) | 無線マップを動的に作成するためのシステム、方法、及びコンピュータプログラム | |
Kim et al. | A multi-pronged approach for indoor positioning with WiFi, magnetic and cellular signals | |
WO2015104211A1 (en) | Feedback in a positioning system | |
Tian et al. | HiQuadLoc: A RSS fingerprinting based indoor localization system for quadrotors | |
He et al. | WiFi iLocate: WiFi based indoor localization for smartphone | |
TW201237452A (en) | Hybrid indoor positioning method combining signal intensity characteristics matching and position prediction analysis | |
Feng et al. | Anonymous indoor navigation system on handheld mobile devices for visually impaired | |
Hu | Wi-Fi based indoor positioning system using smartphones | |
Ai et al. | Robust low-latency indoor localization using Bluetooth low energy | |
Bozkurt et al. | A novel multi-sensor and multi-topological database for indoor positioning on fingerprint techniques | |
CN110519693B (zh) | 一种面向智能移动终端的融合定位方法 | |
Xie et al. | Accelerating crowdsourcing based indoor localization using CSI | |
Xu et al. | Variance-based fingerprint distance adjustment algorithm for indoor localization | |
Ja’afar et al. | Analysis of indoor location and positioning via Wi-Fi signals at FKEKK, UTeM | |
Kawauchi et al. | FineMesh: High-Density Sampling Platform Using an Autonomous Robot | |
Liang et al. | Indoor region localization with asynchronous sensing data: A Bayesian probabilistic model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |