TW201236777A - A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll - Google Patents

A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll Download PDF

Info

Publication number
TW201236777A
TW201236777A TW100107296A TW100107296A TW201236777A TW 201236777 A TW201236777 A TW 201236777A TW 100107296 A TW100107296 A TW 100107296A TW 100107296 A TW100107296 A TW 100107296A TW 201236777 A TW201236777 A TW 201236777A
Authority
TW
Taiwan
Prior art keywords
roll
less
ingot
weight
steel
Prior art date
Application number
TW100107296A
Other languages
Chinese (zh)
Other versions
TWI471420B (en
Inventor
Claude Gaspard
Catherine Vergne
Daniel Batazzi
Original Assignee
Aks Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aks Co Ltd filed Critical Aks Co Ltd
Priority to TW100107296A priority Critical patent/TWI471420B/en
Publication of TW201236777A publication Critical patent/TW201236777A/en
Application granted granted Critical
Publication of TWI471420B publication Critical patent/TWI471420B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

This invention relates in general to the field of forged rolls and to production of forged rolls. More particularly the present invention relates to forged rolls for use in the cold rolling industry. The present invention relates to a forged roll for use in the cold rolling industry and a method for production of such a roll. Said forged roll, comprises a steel composition and a microstructure that comprises: - tempered martensite with a retained austenite rate less than (< ) 5 % per volume; and - an open eutectic carbide network with eutectic carbides of less than (< ) 5 % per volume; and wherein the roll exhibits: a hardness between 780-840HV; and internal compressive between -300 to -500 MPa in absolute values.

Description

201236777 六、發明說明: 【發明所屬之技術領域】 本發明大體上係關於鍛造輥之領域且係關於鍛造輥之 製造。吏特定言之’本發明係關於符合冷軋產業之規定的 鍛造輥且主要針對鍛造輥在冷軋產業中之用途。 背景 一般背景 线及非鐵至屬產業之冷軋的一般發展趨勢為更快、更 薄且更寬之軋製。當前挑戰係在進行此的同時達成與高生 產力相今的對平坦度、厚度及表面外觀之完美控制。因此, 此趨勢要求使用控制關鍵軋製參數的先進之軋製技術。 可經由工作輥之鍍鉻來保證—些關鍵參數,諸如粗糙 度保持及表面外觀。此實踐為有效且有效率的,但歸因於 環境限制而變得越來越有問題且在不久的將來變成不可接 受的。 現今,具有表面鍍鉻之鍛造工作輥(2%至6% Cr)通 吊用在冷軋製耘中。應用此等輥之鍍鉻以在表面紋理保持 方面改良耐磨性,此又將確# (例如)車身在塗漆之後的 一致性及較高光澤。作為鑛鉻之硬電解沈積技術最初係為 了回火/表皮輥軋機應用而開發的。在此等應用中,鍍鉻之 工作輥展現出比無塗層之輥長2纟8倍的壽命,主要係由 於較好之㈣度保持。此技術之實施逐漸擴展至減縮軋機。 亦存在由高速鋼(HSS)製成的意欲在無塗層之情況下 使用的鍛造輥,但需要具有低殘餘内應力之輥且亦需要用 201236777 於製造此輥之工業製程’該棍意欲在乾機中 況下使用且同時提供與有塗層之輥 θ之滑 持。 ^效的粗糖度保 具體背景 經製造以在冷軋產業中使用之觀在使用期間必須管理 加工條件或具體操作應力,而不出現裂紋或傾於爆裂。親 之爆裂可涉及操作人員之安全及軋機中之間接損壞。因 此,需要一種具有低殘餘内應力之輥。 【先前技術】 揭示朝向不具有塗層之HSS輥的發展以達成冷軋目的 的先前技術之實例: C. Gaspard、C. Vergne、D. Batazzi、Τ. Nylen、Ρ·Η· Bolt、 S. Mul &gt; K.M. Reuver : ''Implementation ofin-service key parameters of HSS work roll grade dedicated to advanced201236777 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to the field of forging rolls and to the manufacture of forged rolls. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to forging rolls that meet the requirements of the cold rolling industry and is primarily directed to the use of forged rolls in the cold rolling industry. BACKGROUND General Background The general trend in cold rolling of wire and non-ferrous industries is faster, thinner and wider rolling. The current challenge is to achieve this while achieving perfect control over flatness, thickness and surface appearance consistent with high productivity. Therefore, this trend requires the use of advanced rolling techniques that control critical rolling parameters. The chrome plating of the work rolls ensures key parameters such as roughness retention and surface appearance. This practice is effective and efficient, but is becoming more problematic due to environmental constraints and becomes unacceptable in the near future. Today, forged work rolls with surface chrome plating (2% to 6% Cr) are used in cold rolling crucibles. The use of chrome plating of these rolls improves the wear resistance in terms of surface texture retention, which in turn will result in (for example) consistency and higher gloss of the body after painting. The hard electrolytic deposition technique as mineral chromium was originally developed for the application of tempering/skin rolling mills. In these applications, chrome-plated work rolls exhibit a lifespan of 2 to 8 times longer than uncoated rolls, primarily due to better (four) degrees of retention. The implementation of this technology has gradually expanded to reduce rolling mills. There are also forged rolls made of high speed steel (HSS) intended to be used without coating, but which require rolls with low residual internal stress and also need to use 201236777 for the industrial process of manufacturing this roll. The dryer is used in the middle and at the same time provides a sliding contact with the coated roller θ. EFFICIENT CORROBRICITY SECURITY BACKGROUND OF THE INVENTION The concept of being manufactured for use in the cold rolling industry must manage processing conditions or specific operational stresses during use without cracking or bursting. Pro-burst can involve operator safety and indirect damage in the mill. Therefore, there is a need for a roll having low residual internal stress. [Prior Art] An example of a prior art that reveals the development of an HSS roll without coating to achieve cold rolling purposes: C. Gaspard, C. Vergne, D. Batazzi, Τ. Nylen, Ρ·Η· Bolt, S. Mul &gt; KM Reuver : ''Implementation of in-service key parameters of HSS work roll grade dedicated to advanced

coWrc?//z’《g〃,IST 會議’2010 年 5 月 3 日至 6 日,Pittsburgh, Pa, USA C. Gaspard、S. Bataille、D. Batazzi、P.Thonus ·· &quot;Improvement For Advanced Cold Rolling Reduction Mills By fAykg ㈣d 〃,第 7屆鋼軋國際會議 (ISIJ ) ' Makuhari, Chiba, Japan &gt; 1998 P.H. Bolt、D. Batazzi、N.P. Belfiore、C. Gaspard、L. Goiset、M. Laugier、0. Lemaire、D. Matthews、T. Nylen、 K. Reuver、D· Stocchi、F. Stork、J. Tensen、M. Tornicelli、 R. Valle、E. van den Elzen、C. Vergne、Ι·Μ. Williams · 201236777coWrc?//z'"g〃, IST Conference' May 3-6, 2010, Pittsburgh, Pa, USA C. Gaspard, S. Bataille, D. Batazzi, P.Thonus ·· &quot;Improvement For Advanced Cold Rolling Reduction Mills By fAykg (d) d 〃, 7th International Conference on Steel Rolling (ISIJ) 'Makuhari, Chiba, Japan &gt; 1998 PH Bolt, D. Batazzi, NP Belfiore, C. Gaspard, L. Goiset, M. Laugier, 0. Lemaire, D. Matthews, T. Nylen, K. Reuver, D. Stocchi, F. Stork, J. Tensen, M. Tornicelli, R. Valle, E. van den Elzen, C. Vergne, Ι·Μ. Williams · 201236777

&quot;Damage Resistance and Roughness Retention ofwork Rolls h co/t/h///% Mz·//〆’,第5屆歐洲軋鋼會議,2009年ό月 23 至 25 日,London,UK 以下專利公開案中展示的先前技術之其他實例: JP09003603 ^ JP53077821 . JP57047849 ^ JP2002285284 ^ JP2002285285 、 JPl〇317102 、 Jpi2〇8437 ' Ep〇395477 及 JP08 1 5801 8,其描述用於冷軋以增強耐磨及耐裂性的工作 輥。 〜a &lt;砜員現此 Η 輥在冷軋軋機條件中期間操作所需之參數及特性的揭示 容。 【發明内容】 總體目標 本發明之總體目標為提供在冷軋軋機條件中期間操 的較佳呈無塗層形式之輥及用㈣』4令件中』間插 用於製ie_此觀之產業製程 具體之目標為提供此輥及 座系 與先前技術之有塗層輥至小广此報之製程’同時保 擦係數、高《度保持、的摩擦學特性’諸如低 展現出在操作中與已知轉::之灰塵污染,且此 性方面的改良之軋機效能。的在較高抗裂性及較高安 部分問題 本發明進-步尋求解決以下部分問題. -改良給予報較高效能之輥表面 •避免輥散裂事故 6 201236777 -避免非環境軋製製造方法 -改良輥之軋距或壽命,允許每札機服役期之 發明概述 $轉° 上文列出之問題、部分問題及態樣的解決方案為 本發明之具有改良之抗燒裂性及低裂紋擴展的輥該摩琛 減少對軋機意外事件之敏感性且同時保持較高耐磨^^將 本發明提供一種用在冷軋產業中之锻造槪及此概之製 造方法。該輥較佳為無塗層的,但亦可為有塗層的。 本發明之第一態樣係關於一種鍛造輥,其包含鋼組合 物’該鋼組合物按重量%計包含, α 0.2%至 〇·5%之 Μη, 〇·2%至 2.0%之 Si, 7.0%至 13.0%之 Cr, 0.6%至 ι·6%之 Mo, 大於(&gt;)1.0%至 3.0%之 V, 鋼之剩餘部分實質上為Fe及可能附帶及/或可能不可 避免之雜質; 且其中輥之微觀結構包含: -回火馬氏體’具有小於(&lt;)5體積❶/。之殘餘奥氏體比 率;及 -開放共晶碳化物網,具有小於(&lt;)5體積%之共晶碳 化物; 且其中該輥展現: 7 201236777 -介於780 HV至840 HV之間的硬度;及 -介於-300 MPa至_5〇〇Mpa之間的内部壓縮應力。 在本發明之其他實施例中,本發明之輥包含一開放共 晶碳化物網,其劃出共晶細胞之細胞狀圖案。 輕之其他變體包含以下可選、個別或可組合能樣 任一者: 〜7 一輕’其中該輥之開放共晶碳化物網包含枝曰臂 一輥,其中.該輥之開放共晶碳化物網形成為共曰 物網之實質上隔離之部分。 碳化 中 一輥,其中該輥之微觀結構至少存在於該輥之工作層 一輥’其按重量%計具有由以下各者組成 0.8%至小於(&lt;)1%之C, 0.2%至 0.5%之 Μη, 之鋼組合物; 0.2%至 2.0%之 Si, 7.〇Q/〇至 13.0%之 Cr, 0.6%至 1.6%之 Mo, 大於(&gt;)1.0%至 3.0%之 V, 小於(&lt;)0.01.5%之P,及 小於(&lt;)0.015%之S ’及 小於(&lt;)1%之Ni 小於(&lt; )30 ppm之〇2,及 小於(&lt;)100 ppm之N2,及 小於(&lt;)3 ppm之H2 8 201236777 小於(&lt;)2%之W,及 小於(&lt;)1%之Nb,及 小於(&lt;)1%之Ti,及 小於(&lt;)0.5%之Ta,及 小於(&lt;)0.5%之 Zr, 鋼之剩餘部分實質上為Fe及可能附帶及/或可能不可 避免之雜質; 根據本發明之輥,其中鋼組合物中之C含量按總輥重 量之重量%計介於0.8%至0.99% C之間。 根據本發明之報,其中鋼組合物中之C含量按總報重 量之重量%計介於0.85%至0.9% C之間。 根據本發明之輥,其中鋼組合物中之Μη含量按總報重 量之重量%計介於0.4%至0.5% Μη之間。 根據本發明之輥,其中鋼組合物中之Si含量按總輥重 量之重量%計介於0.2%至1.5% Si之間。 根據本發明之輥,其中鋼組合物中之S i含量按總輕重 量之重量%計介於0.85%至1.15%Si之間。 根據本發明之親,其中鋼組合物中之Cr含量按總輥重 量之重量%計介於7.0%至11% Cr之間。 根據本發明之輥,其中鋼組合物中之Cr含量按總親重 量之重量%計介於7_3%至小於(&lt;)8.0% Cr之間。 根據本發明之輥,其中鋼組合物中之Mo含量按總親重 量之重量%計介於1.45%至1.55% Mo之間。 根據本發明之輥,其中鋼組合物中之N i含量按總報重 201236777 量之重量%計小於(&lt; )0 3 Ni。 含量按總輥重 根據本發明之輥,其中鋼組合物中之V 量之重量%計介於13 %至2.1% V之間。 V含量按總親重 根據本發明之輥,其中鋼組合物中之 量之重量%計介於1.3%至16% V之間。 以下各者 根據本發明之輥,其中鋼組合物按重量%計由 組成: 0.8%至 0.99%之 C,及 0.4%至 〇.5%之 Μη,及 〇 · 2 % 至 1 · 5 % 之 s i,及 7.0%至 11 %之 Cr,及 0.6%至 1.6%之 Mo,及 小於(&lt; )1 ·〇之Ni,及 1.0%至 2.1%之 v,及 小於(&lt;)〇.〇15%之卩,及 小於(&lt;)0.015%之S,及 小於(&lt; )30 ppm之〇2,及 小於(&lt; )1 〇〇 ppm之n2,及 小於(&lt; )3 ppm之H2,及 輕之剩餘部分實質上為Fe及可能附帶及/或可能不可 避免之雜質。 根據本發明之輥’其中鋼組合物按重量%計由以下各者 組成: 0.85%至 0.9%之 c,及 10 201236777 0.4%至 0.5%之 Μη,及 0.85%至 1.1 5%之 Si,及 7.3%至小於(&lt;)8.0%之Cr,及 1_45%至 1.55%之 Mo,及 小於(&lt;)0.3之Ni,及 1.3%至 1.6%之 V,及 小於(&lt;)0.015%之卩,及 小於(&lt;)0.015%之S,及 小於(&lt; )30 ppm之〇2,及 小於(&lt;)l〇〇ppm之N2,及 小於(&lt;)3 pp.m之H2,及 輥之剩餘部分實質上為Fe及可能附帶及/或对* J月b不可 避免之雜質。 根據本發明之輥進一步經組態以用作冷軋中之工作 輥。 根據本發明之報進一步具有大於400 kg之重量。 根據本發明之報進一步具有在215 mm至800 mm之範 圍中的直徑。 本發明之另一態樣提供一種藉由包含以下步驟之製程 製造的鍛造轉: a,提供一鋼組合物,其按重量%計包含, 0.8 %至小於(&lt; )1 %之匸; 0.2%至 〇.5%之 Mn, 〇·2%至 2.0%之 si, 11 201236777 7.0%至 13.0%之 Cr, 0.6%至 1.6%之 Mo, 大於(&gt;)1.0%至 3.0%之 v, 鋼之剩餘部分實質上為Fe及可能附帶及/或可能不可 避免之雜質;在其他實施例中’根據本發明之組合物為上 述組合物中之任一者或組合物組合。 b. 製造一鑄塊,s亥鑄塊在凝固間隔中在該鑄塊之表面 層中維持高於1 5。(〕/min之凝固速率,與輥之表面層等效; c. 將該鑄塊鍛造成一輥; d. 藉由感應加熱來使該輥硬化; e·對該輥進行回火; 4 藉以達成該輥之一微觀結構’該微觀結構包含: -回火馬氏體,具有小於(&lt;)5體積%之殘餘奥氏體比 率;及 -一開放共晶碳化物網’具有小於(&lt;)5體積%之共晶 碳化物; 且其中輥(1 )展現: -介於780 HV至840 HV之間的硬度;及 -介於-300 MPa至-500 MPa之間的内部壓縮應力。 該輥之其他變體包含關於上述之輥的化學組合物或微 觀結構的以下可選、個別或可組合態樣中之任一者,且進 —步包含含有下述之以下可選、個別或可組合態樣中之任 者的特徵* 根據本發明’本發明之另一態樣提供一種製造非鍛造 12 201236777 輥之方法,該方法包含以下步驟: a.提供一鋼組合物,其按重量%計包含 0.8%至小於(&lt;)1%之C, 0.2%至 0.5%之 Μη, 0.2%至 2.0%之 Si, 7.0%至 13.0%之 Cr, 0.6%至 1.6%之 Mo, 大於(&gt;)1.0%至 3.0%之 v, 鋼之剩餘部分實質上為Fe及可能附 可能 避免之雜質;在其他實施例中 述組合物之組合中之任一者。 b. 製造一鑄塊,該鑄塊在凝固間隔中在該 層中維持高於15°C/min之凝固速率,與輥之工 作層等效 c. 將該鑄塊鍛造成一輥; d·藉由感應加熱來使該輥硬化; e.在介於450°C至530。(:之間的溫度下對該輥進行回 以達到介於780 HV至840 HV之間的硬度; ’根據本發明之說合物 不 為 率; 藉以達成該親(1 )之一微觀結構,該微觀結構包含 -回火馬氏體’具有小於(&lt;)5體積%之殘餘奥氏體 及 -一開放共晶碳化物網,具有小於(&lt;)5體積%之共 碳化物; 且其中親(1).展現: -介於780 HV至840 HV之間的硬度;及 可 上 作 9 火 比 晶 13 201236777 -介於-300 MPa至-500 Mpa之間的内部壓縮應力。 輥之其他變體包含下述之以下可選、個別或可組合態 樣中之任一者。 根據本發明之一方法’其中製造該鑄塊,其在工作層 以及核心中維持在以下範圍中之凝固速率:15t&gt;c/min至 55°C/min,或者 17t:/min 至 5(rc/min,或者 35t:/min 至 55°C/min,或者 45°C/min 至 55°C/min。 根據本發明之一方法’其中製造該铸塊,其在凝固間 隔中在該鑄塊之工作層或表面中維持高於35t/min之凝固 速率。 .根據本發明之一方法,其中對於該鑄塊,該凝固間隔 介於1400°C至1200。(:之間。 根據本發明之一方法,其中製造該鑄塊,其藉由根據 凝固速率之預定函數來控制安培電流源來在電渣精煉爐 (ESR )技術製程中維持預選之凝固速率。 一種方法’其中將該鑄塊鍛造成一輥之步驟包含以下 步驟: a. 將該铸塊加熱至約85〇。〇至11〇〇&lt;t或介於8〇〇艽至 1000 C之間的溫度,較佳持續了約6個小時之時段; b. 在尚於約80(rc或高於85〇。〇之溫度下鍛造該鑄塊; c. 重複步驟a-b,直至該鑄塊已形成為具有所要形狀及 大小之輥為止。&quot;Damage Resistance and Roughness Retention ofwork Rolls h co/t/h///% Mz·//〆', 5th European Steel Rolling Conference, 23 to 25, 2009, London, UK Other examples of prior art shown: JP09003603 ^ JP53077821 . JP57047849 ^ JP2002285284 ^ JP2002285285 , JP 〇 317102 , Jpi 2 〇 8437 ' Ep 395 477 477 and JP 08 1 5801 8 describe the work for cold rolling to enhance wear and crack resistance Roller. ~a &lt;The sulfone staff is now revealing the parameters and characteristics required for the operation of the roll during cold rolling mill conditions. SUMMARY OF THE INVENTION The overall objective of the present invention is to provide a roll that is preferably uncoated in the cold rolling mill condition and interposed between the four (4) and four-pieces. The specific goal of the industrial process is to provide the roll and the seat system and the prior art coated roll to the small process of the report. The simultaneous friction coefficient, high "degree of retention, tribological properties" such as low show in operation Improved mill performance with known transfer:: dust contamination and this aspect. The present invention further seeks to solve the following problems in terms of higher crack resistance and higher safety. - Improved the surface of the roller to give higher efficiency. Avoid roll spalling accidents 6 201236777 - Avoiding non-environmental rolling manufacturing methods - Improved roll pitch or life, allowing for an overview of the invention for each service period. The above listed problems, some of the problems and the solution of the aspect are improved crack resistance and low crack propagation for the present invention. The roller reduces the sensitivity to rolling mill accidents while maintaining high wear resistance. The present invention provides a forging crucible for use in the cold rolling industry and a manufacturing method therefor. The roll is preferably uncoated, but may also be coated. A first aspect of the present invention relates to a forged roll comprising a steel composition comprising, by weight %, α 0.2% to 5%·5% Μ, 〇·2% to 2.0% Si, 7.0% to 13.0% Cr, 0.6% to 6% 6% Mo, greater than (&gt;) 1.0% to 3.0% V, the remainder of the steel is substantially Fe and may be incidental and/or possibly unavoidable impurities And wherein the microstructure of the roll comprises: - tempered martensite 'having less than (&lt;) 5 volumes ❶ /. a residual austenite ratio; and an open eutectic carbide network having less than (&lt;) 5% by volume of eutectic carbide; and wherein the roll exhibits: 7 201236777 - between 780 HV and 840 HV Hardness; and - internal compressive stress between -300 MPa and _5 〇〇 Mpa. In other embodiments of the invention, the rolls of the present invention comprise an open eutectic carbide network that scribes a cell-like pattern of eutectic cells. Other variants of light include any of the following optional, individual or combinable energetics: 〜7一轻' wherein the open eutectic carbide network of the roll comprises a branch arm, wherein the open eutectic of the roll The carbide mesh is formed as a substantially isolated portion of the conjugate mesh. One roll in carbonization, wherein the microstructure of the roll is present at least in the working layer of the roll, a roll having a composition of 0.8% to less than (&lt;) 1% C, 0.2% to 0.5 by weight % % ,, steel composition; 0.2% to 2.0% Si, 7. 〇Q/〇 to 13.0% Cr, 0.6% to 1.6% Mo, greater than (&gt;) 1.0% to 3.0% V, Less than (&lt;) 0.01.5% of P, and less than (&lt;) 0.015% of S ' and less than (&lt;) 1% of Ni is less than (&lt;)30 ppm of ,2, and less than (&lt;) 100 ppm of N2, and less than (&lt;) 3 ppm of H2 8 201236777 is less than (&lt;) 2% of W, and less than (&lt;) 1% of Nb, and less than (&lt;) 1% of Ti, and Less than (&lt;) 0.5% of Ta, and less than (&lt;) 0.5% of Zr, the remainder of the steel is substantially Fe and possibly incidental and/or possibly unavoidable impurities; the roll according to the invention, wherein the steel combination The C content is between 0.8% and 0.99% C by weight of the total roll weight. According to the report of the present invention, the C content in the steel composition is between 0.85% and 0.9% C based on the total weight of the reported weight. The roll according to the present invention, wherein the content of Μ in the steel composition is between 0.4% and 0.5% by weight based on the total weight of the reported amount. The roll according to the present invention, wherein the Si content in the steel composition is between 0.2% and 1.5% Si by weight of the total roll weight. The roll according to the present invention, wherein the Si content in the steel composition is between 0.85% and 1.15% Si based on the total weight of the light weight. According to the invention, the Cr content in the steel composition is between 7.0% and 11% Cr by weight of the total roll weight. The roll according to the present invention, wherein the Cr content in the steel composition is between 7_3% and less than (&lt;)8.0% Cr by weight% of the total parent weight. The roll according to the present invention, wherein the Mo content in the steel composition is between 1.45% and 1.55% Mo by weight based on the total weight. The roll according to the present invention, wherein the content of N i in the steel composition is less than (&lt;) 0 3 Ni by weight % of the total weight of 201236777. The content is based on the total roll weight of the roll according to the invention, wherein the weight % of the V amount in the steel composition is between 13% and 2.1% V. V content is based on the total weight of the roll according to the invention, wherein the amount by weight of the steel composition is between 1.3% and 16% V. Each of the following is a roll according to the present invention, wherein the steel composition is composed by weight: 0.8% to 0.99% C, and 0.4% to 5% Μ, and 〇·2% to 1.7 % Si, and 7.0% to 11% of Cr, and 0.6% to 1.6% of Mo, and less than (&lt;)1·〇Ni, and 1.0% to 2.1% of v, and less than (&lt;)〇.〇 15% or less, and less than (&lt;) 0.015% of S, and less than (&lt;)30 ppm of ,2, and less than (&lt;)1 〇〇ppm of n2, and less than (&lt;)3 ppm The remainder of H2, and light, is essentially Fe and may be incidental and/or potentially unavoidable. The roll according to the present invention wherein the steel composition is composed by weight% by weight: 0.85% to 0.9% of c, and 10 201236777 0.4% to 0.5% of Μ, and 0.85% to 1.1% of Si, and 7.3% to less than (&lt;)8.0% of Cr, and 1_45% to 1.55% of Mo, and less than (&lt;)0.3 of Ni, and 1.3% to 1.6% of V, and less than (&lt;)0.015%卩, and less than (&lt;) 0.015% of S, and less than (&lt;) 30 ppm of 〇2, and less than (&lt;) l〇〇ppm of N2, and less than (&lt;)3 pp.m of H2 And the remainder of the roll is essentially Fe and may be incidental and/or unavoidable to the *J month b. The roll according to the invention is further configured for use as a work roll in cold rolling. The report according to the invention further has a weight of more than 400 kg. The report according to the invention further has a diameter in the range of 215 mm to 800 mm. Another aspect of the present invention provides a forging which is manufactured by a process comprising the steps of: a, providing a steel composition comprising, by weight %, 0.8% to less than (&lt;) 1%; 0.2 % to 5% Mn, 〇·2% to 2.0% si, 11 201236777 7.0% to 13.0% Cr, 0.6% to 1.6% Mo, greater than (&gt;) 1.0% to 3.0% v, The remainder of the steel is substantially Fe and may be incidental and/or potentially unavoidable impurities; in other embodiments, the composition according to the invention is any one of the above compositions or a combination of compositions. b. An ingot is produced which is maintained above 15 in the surface layer of the ingot during the solidification interval. The solidification rate of ()/min is equivalent to the surface layer of the roll; c. forging the ingot into a roll; d. hardening the roll by induction heating; e. tempering the roll; 4 One of the microstructures of the roll 'the microstructure comprises: - tempered martensite having a residual austenite ratio less than (&lt;) 5 vol%; and - an open eutectic carbide network 'having less than (&lt; 5% by volume of eutectic carbide; and wherein roll (1) exhibits: - a hardness between 780 HV and 840 HV; and - an internal compressive stress between -300 MPa and -500 MPa. Other variations of the roll include any of the following optional, individual or combinable aspects with respect to the chemical composition or microstructure of the roll described above, and further comprising the following optional, individual or optional Features of any of the combined aspects * According to another aspect of the invention, there is provided a method of making a non-forged 12 201236777 roll, the method comprising the steps of: a. providing a steel composition by weight % From 0.8% to less than (&lt;) 1% of C, 0.2% to 0.5% of Μη, 0.2% to 2. 0% Si, 7.0% to 13.0% Cr, 0.6% to 1.6% Mo, greater than (&gt;) 1.0% to 3.0% v, the remainder of the steel is substantially Fe and possibly with impurities that may be avoided; In any of the other embodiments, any one of the combinations of the compositions. b. An ingot is produced which maintains a solidification rate of greater than 15 ° C/min in the layer during the setting interval, working with the rolls Layer equivalent c. Forging the ingot into a roll; d· hardening the roll by induction heating; e. returning the roll at a temperature between 450 ° C and 530 ° a hardness of between 780 HV and 840 HV; 'the composition according to the invention is not a rate; thereby achieving a microstructure of the parent (1), the microstructure comprising - tempered martensite having less than ( &lt;) 5 vol% of retained austenite and - an open eutectic carbide network having less than (&lt;) 5% by volume of co-carbide; and wherein pro-(1). exhibits: - between 780 HV to 840 HV hardness; and can be used as 9 fire ratio crystal 13 201236777 - internal compression stress between -300 MPa to -500 Mpa. Other variants of the roll Any of the following optional, individual or combinable aspects described below. According to one of the methods of the invention, wherein the ingot is produced, the solidification rate is maintained in the working layer and in the core in the following range: 15 t &gt; c/min to 55 ° C / min, or 17t: / min to 5 (rc / min, or 35t: / min to 55 ° C / min, or 45 ° C / min to 55 ° C / min. According to one method of the invention, wherein the ingot is produced, it maintains a solidification rate of more than 35 t/min in the working layer or surface of the ingot during the solidification interval. According to one method of the invention, wherein the ingot interval is between 1400 ° C and 1200 for the ingot. (Between: Between the methods of the present invention, wherein the ingot is fabricated by maintaining a preselected solidification rate in an electroslag refining furnace (ESR) process by controlling the amperage current source according to a predetermined function of the solidification rate. A method wherein the step of forging the ingot into a roll comprises the steps of: a. heating the ingot to about 85 Torr. 〇 to 11 〇〇 &lt; t or between 8 〇〇艽 and 1000 C The temperature, preferably lasts for a period of about 6 hours; b. forging the ingot at a temperature of about 80 (rc or above 85 〇. c; c. repeating step ab until the ingot has been formed It has a roll of the desired shape and size.

一種方法在鍛造步驟之後進一步包含初步熱處理之步 驟,其施加於輥坯、較佳達到約7〇〇&lt;)(:至u〇〇&lt;t或介於8㈧。C 14 201236777 至900°C之間的溫度,該初步熱處理可包括氫擴散處理。 一種方法進一步包含藉由漸進感應加熱進行淺層硬化 之步驟,較佳在約900°C至ii50°C之溫度下。 一種方法,其中對該輥回火之步驟包含以下步驟: d.將該,輥加熱至約450。〇至530。&lt;3或介於45〇〇c至 5 2 0 C之間,較佳加熱3次, e·在加熱步驟之間用空氣冷卻該輥。 一後方法進一步包含加工該輥以對包含共晶碳化物之 白層進行紋理化。 另外,本發明之方法之變體包含關於上述之輥的化學 組合物或微觀結構的以下可選、個別或可組合態樣中之任 一者,且進一步包含含有下述之以下可選、個別或可組合 態樣中之任一者的特徵。 本發明之另一態樣提供一種在·棍之製造中的中間產品 鑄塊’該鑄塊包含一鋼組合物,該鋼組合物按重量%計包含 以下各者, 0 · 8 %至小於(&lt; )1 %之c, 0.2%至 0.5%之 Μη, 0.2%至 2.0%之 Si, 7.0%至 13.0%之 Cr, 〇 · 6 y 至 1.6 % 之 Μ 〇, 大於(&gt;)1.0%至 3.0%之 V, 鋼之剩餘部分實質上為Fe及可能附帶及/或可能不可 避免之雜質; 15 201236777 且其中自該鑄塊生成之最終輥之微觀結構包含: -回火馬氏體,具有小於(&lt;)5體積%之殘餘奥氏體比 率;及 -一開放共晶碳化物網,具有小於(&lt;)5體積%之共晶 碳化物。 另外’本發明之中間鑄塊之變體包含關於上述之鑄塊 的化學組合物的以下可選、個別或可組合態樣中之任一 者’且進一步包含含有下述之以下可選、個別或可組合態 樣中之任一者的特徵。 本發明之另一態樣提供根據本發明之鍛造輥對要求高 軋製負載之冷軋材料的用途。 本發明之其他實施例提供鍛造輥對高強度材料(如同 AHSS鋼等級)之冷軋的用途。 根據本發明之鍛造輥對以下各者之選擇的用途: -用於馬口鐵、片材、⑦鋼、不鏽鋼、銘及鋼之早期及 精軋機座、可逆及不可逆機座的冷軋減縮軋機;或’ -冷軋回火及/或表皮輥軋機;或 具有紋理化或非紋理化表面的為2報式(2七㈣ 式(4-High)及6輥式(6-High)機座之軋機組態。 根據本發明之鍛造輥作為工作親之用途。 根據本發明之輥在許多應用中可 ^ 用作無堂層之輥。妙 而,在本發明之其他態樣及實施例中, ,,、、、 任何當前或具體應用而選擇之塗層。可具備針對 鉻塗層。該輥亦可用在溫軋應用中。 ^為 16 201236777 【實施方式】 將借助於例示實施例來進一步描述本發明。 前言 本發明大體上係關於鍛造輥卜其較佳具有多於4〇〇 kg 之重量,或如在用於一般應用之實施例中,具有(例如) 多於1000 kg之重量。根據鍛造輥製造方法來製造根據本發 明之輥,該製造方法在其一般步驟中本質上為已知的但根 據發明性概念來特定調適以能夠製造根據本發明之輥。 本發明主要針對具有介於400 kg與10000 kg之間的重 夏之輥。根據本發明之輥具有通常大於200 mm且(例如) &quot;於215 mm至800 mm之間的直徑2,及通常介於i公尺 至3公尺之間的筒8的長度,及包括頸部10的通常約6公 二,最大長度。耗i具有工作層4’工作層4對應於外層之 p部分且直徑範圍通常介於2()咖肖12〇咖之間,此取 决於,體輥之應用及/或取決於總的親直徑2。—般地,棍 2仅2的外1/6部分6被稱作輥1之工作層4,見圖1。 34 鑄鬼34之直徑2之外1/6部分6亦被稱作鎮塊 •34之工作層4。 到之造大鍛造輥中歸因於在形成此等大件輥時所涉及 内應力而涉及到特玫 輥將不需要彳目I具有較小直徑之 於“… ,因為内部應用較低且彼等輥不傾 對於製造根: = 二二發明之輥製造方法12 經改良機械特性(諸4 的輥巾。為至關緊要的。 (諸如,本發明之輥的低殘餘内應力)由 17 201236777 幸昆製造方法12產生❶為達成所得親的低位準之殘餘内應 力,在貫穿鑄造、鍛造、熱處理及加工的該等製造方法之 所有階段中必須最小化藉由熱梯度及同素變態誘發之内應 力。根據本發明之輥丨之微觀結構包含具有低於5體積%之 殘餘奥氏體比率的回火馬氏體,此歸因於輥之製造方法且 歸因於根據本發明之化學組合物。 立根據本發明之親製造方法包含對在圆2之流程圆中示 意性展示之以下基本步驟的選擇: 1 4 _ ·^供鋼組合物 製造鑄塊34 1 8 ·將該鑄塊3 4鍛造成輥j 2 0 ·該輥1之初步熱處理 2 2 ·對該輥1進行粗加工 24.對該輥1進行感應硬化 26.該輥1之回火熱處理 28.對該輥1進行加工 °選擇輥之具體控制參 明之輥。 數 在各別步驟之後獲得中間產品 以及化學組合物以製造根據本發 輥製造方法 a·提供-鋼組合物’其按重 U%至小於(&lt;)1〇/kC, 0·2%至 0.5%之 Μη, 18 201236777 0.2%至 2.0%之 Si, 7·0%至 13.0%之 Cr, 0.6%至 1.6%之 Mo, 大於(&gt;)1.0%至 3.0%之 v, 鋼之剩餘部分實質上為Fe及可能附帶及/或可能不可 避免之雜質; b. 製造一鑄塊,其在凝固間隔中在該鑄塊之工作層中 維持,高於1 5。〇 /miη之凝固速率; c. 將該鑄塊鍛造成一輥; d. .藉由感應加熱來使該親硬化; e. 對該輥進行回火; 藉以達成該輥(1 )之一微觀結構,該微觀結構包含: -回火馬氏體,具有小於(&lt;)5體積%之殘餘奥氏體比 率; 及 -一開放共晶碳化物網,具有小於(〈)5體積之共晶 碳化物; 且其中輥(1 )展現: •大於780 HV之硬度;及 -小於-500 Mpa (絕對值)之内部壓縮應力。 其中在根據本發明之輥之微觀結構中,根據本發明之 所提供之化學組合物與根據本發明之所描述之製程步驟結 合使用給予根據本發明之輥所要特性。 根據本發明之製造鍛造輥之方法包含以下步驟: 19 201236777 步驟1 4 :提供鋼組合物。 在本發明之一實施例中,鋼組合物包含一合金 '該合 金包含如表1中列出的按重量%計指示之以下組份或由以 下組份組成。在表1中,解釋該等組份之影響及藉由選定 組份及具體間隔達成的本發明之輥的效應。 表1 化學組合物元素 根據本發明之實施例 的合金-重量% 根據本發明之間隔的影響(效應) C 0.8 5. 0.99 碳為鋼中最重要且最有影響力之合金元 素。然而,除了碳之外,任何非合金鋼亦將 含有矽、錳、磷及硫磺,其在製造期間無心 地出現。為達成特殊效應而添加其他合金元 素以及錳及矽含量之有意增加導致合金 鋼。在增加C含量之情況下,鋼之強_度及 硬化能力增加,但其延性、可鍛性、炼接性 及可加工性(使用切削機床)減少。在本發 明中,C之含量低於1%以避免形成共晶碳 化物之過大封閉網。 Μη 0.2 至 0.5 錳脫氧。其與硫磺化合以形成硫化錳,因此 減少硫化鐵之非所要效應。此在易切削鋼中 尤為重要;其減少紅脆性之危險。Μη極顯 然地減少臨界冷卻速率,因此增加可硬化 性。屈服點及強度藉由添加Μη來增加,且 另外,Μη有利地影響可鍛性及熔接性且顯 然地增加硬度穿透深度。在本發明中,Μη 保持低至0.5%以避免過度脆性。 Si 0.2 至 2.0 矽以與錳相同之方式含於所有鋼中,因為鐵 礦根據其組成併有一定量之矽。在鋼產品自 身中,石夕被吸收至來自财火爐襯之金屬中。 但僅彼等鋼被稱作具有&gt; 0.40%之Si含量的 石夕鋼。Si並非金屬,而是類金屬,(例如) 磷及硫亦如此。Si脫氧。由於電導率之顯 著減少、矯頑場強度及低瓦特數損失,在鋼 中使用Si以用於電品質片材。因此,在本 20 201236777 發明中,過高含量之Si在輥檢測期間影響 渦流回應,從而導致可能不真實之讀取且必 須保持在1.5%之下。 s &lt;0.015 硫碌產生所有鋼附生元素之最顯著偏析。硫 化鐵導致紅脆性或熱脆性,因為低熔點硫化 物共熔物以網狀形式環繞該等顆粒,使得該 等顆粒僅發生些微内聚,且在熱成形期間, 顆粒邊界傾向於峥塌。此藉由氧之行為來進 一步增加。由於硫墙對猛具有相當大之親和 力,因此其以硫化猛之形式來組合,因為此 為所有現存内含物中最少危險性的,以點形 式分散在鋼中。在橫向上之韌性藉由S顯著 減少。為保持在最低含量下。 P &lt;0.015 磷通常被視為鋼寄生體,因為P在熔體之凝 固時產生顯著之原生偏析且歸因於伽瑪相 之顯著限制在固態中產生次生偏析之可能 性。由於相對較低之擴散速率,在阿伐及伽 瑪晶體中,已發生之偏析只能在有困難之情 況下才得到校正。根據本發明,P將保持在 最低含量下,較佳&lt;0.015 W%。 Cr 7.0 至 13.0 鉻使鋼為油可硬化及空氣可硬化的。藉由減 少馬氏體形成所需之臨界冷卻速率,增加可 硬化性,因此改良其硬化及回火之易感性。 然而,凹口動性減少,但延性僅遭受些微損 害。鋼之拉伸強度增加了每1%之Cr 80至 100 N/mm2。Cr為碳化物形成元素。其碳化 物增加切削能力及耐磨性。高溫強度特性藉 由鉻促進。該元素限制伽瑪相且因此延長肥 粒鐡範圍。 在Cr含量高於13%之情況下,傾向於形成 延長之共晶碳化物。 在Cr含量低於7%之情況下,歸因於二次 硬化機制之欠缺,硬度之位準保持過低以用 於冷軋應用。 Mo 0.6 至 1.6 鉬通常與其他元素一起合金化。減少臨界冷 卻速率改良可硬化性。Mo顯著減少回火脆 性且促進細顆粒形成。屈服點及強度增加。 顯著之碳化物形成元素;藉此改良高速鋼之 切削特性。伽瑪相之極嚴格限制。增加之高 21 201236777 溫強度。在Mo含量增加之情況下,可鍛性 減少。因此,其含量維持在1.6%之下以避 免ό肥粒鐡之有害形成。 Ni &lt; 1.0 鋼產品中之鎳顯著增加凹口韌性,甚至在低 溫範圍中,且因此合金化以用於增加表面硬 化鋼、熱可處理鋼及零下韌性鋼中之韌性。 Ni並非碳化物形成元素。 V &gt;1.3 釩精煉初生晶粒且因此為鑄造結構。顯著之 碳化物形成元素(因此提供與冷軋製程相容 之硬度位準)使耐磨性、高切削能力及高溫 強度增加。其因此主要用作高速鋼、熱成形 鋼及抗潛變鋼中之額外合金元素。回火保持 力之顯著改良,過熱敏感性之減少。V限制 伽瑪相且在高溫下使居里點偏移。 在V含量低於1%之情況下,硬度位準保持 為低,關於冷軋製程。 在V含量高於3%之情況下,對於冷軋製 程,鋼易磨性變成禁止的。 W 0.0 至 2.0 鎢為非常顯著之碳化物形成元素(其碳化物 極硬)且限制伽瑪相。其改良韌性且防止顆 粒生長。W增加高溫強度及回火保持力以 及在高溫(赤熱)下之耐磨性以及因此增加 切削能力。因此,其主要合禽化至高速鋼及 熱成形工具鋼以及抗潛變鋼類型及超硬鋼。 Ti 0.0 至 1.0 由於鈦對氧、氮、硫及碳之極強親和力, Ti具有顯著之脫氧、顯著之脫氮及顯著之 碳化物形成行為。廣泛用作碳化物形成元 素。亦擁有顆粒細化特性。Ti極其顯著地 限制伽瑪相。在高濃度中,其導致沈澱製程 且添加至永久磁鐵合金以期達成高矯頑場 強度。Ti經由形成特殊氮化物而增加潛變 斷裂強度。最終,Ti顯著地傾向於偏析及 條紋。 Nb 0.0 JL 0.5 鈮(Nb)及钽(Ta)幾乎 Ta 0.0 至 0.5 專門出現在一起且極難以彼此分離,使得其 通常一起使用。極其顯著之碳化物形成元 素,因此尤其合金化為耐化學藥品之鋼的穩 定劑。兩種元素為肥粒鐵形成元素且因此減 少伽瑪相。由於歸因於Nb所致的高溫強度 22 201236777 及潛變斷裂強度之增加。 Zr 0.0 至 0.5 錄為碳化物形成元素;在冶金上用作合金元 素以進行脫氧、脫氮及脫硫,因為其留下最 小脫氧之產品。Zr添加至完全脫氧之含硫 易切削鋼對硫化物形成具有有利作用且因 此防止紅脆性。其增加加熱導體材料之壽命 且產生對伽瑪相之限制。 且進一步視情況地包含H2、N2、02、A1、Cu,其各自 的量低於0.4重量%,且其中鋼組合物之剩餘部分實質上為 Fe,除此之外亦有附帶元素及可能不可避免之雜質。 在本發明之一實施例中,鋼組合物按重量%計包含, 0.8%至小於(&lt;)1%之C, 0.2%至 0.5%之 Μη, 0.2%至 2.0%之 Si, 7.0%至 13.0%之 Cr, 0.6%至 1.6%之 Mo, 大於(&gt;)1.0%至 3.0%之 V, 其中鋼之剩餘部分實質上為Fe,除此之外亦有附帶元 素及可能不可避免之雜質。 在本發明之不同變體及實施例中,組合物包含根據以 下實例之組份(重量%)之組合或選擇或由該組合或選擇組 成。在一些例子中,前述實施例與組份量之以下變體組合、 藉由其替代或藉由其縮小。 一輥,其按重量%計具有由以下各者組成之鋼組合物: 0.8%至小於(&lt;)1%之C, 0.2%至 0.5%之 Μη, 23 201236777 0.2%至 2.0%之 Si, 7.0%至 13.0%之 Cr, 0.6%至 1.6%之 Mo, 大於(&gt;)1.0%至 3.0%之 V, 小於(&lt;)0.015%之P,及 小於(&lt;)0.015%之S,及 小於(&lt;)1%之Ni 小於(&lt; )30 ppm之〇2,及 小於(&lt;)100 ppm之N2,及 小於(&lt;)3 ppm之 小於(&lt;)2%之W,及 小於(&lt;)1%之Nb,及 小於(&lt;)1%之Ti,及 小於(&lt;)0.5%之Ta,及 小於(&lt;)0.5%之 Zr, 鋼之剩餘部分實質上為Fe及可能附帶及/或可能不可 避免之雜質; 根據本發明之輥,其中鋼組合物中之C含量按總輥重 量之重量%計介於0.8%至0.99% C之間。 根據本發明之輥,其中鋼組合物中之C含量按總輥重 量之重量%計介於0.85%至0.9% C之間。 根據本發明之棍,其中鋼組合物中之Μη含量按總親重 量之重量%計介於0.4%至0.5% Μη之間。 根據本發明之輥,其中鋼組合物中之Si含量按總輥重 24 201236777 量之重量%計介於0.2%至1.5% Si之間。 根據本發明之親,其中鋼組合物中之S i含量按總報重 量之重量%計介於0.85%至1.15% Si之間。 根據本發明之輥,其中鋼組合物中之Cr含量按總輥重 量之重量%計介於7.0%至11% Cr之間。 根據本發明之輥,其中鋼組合物中之Cr含量按總輥重 量之重量%計介於7.3 %至小於(&lt;)8.0% Cr之間。 根據本發明之輥,其中鋼組合物中之Mo含量按總輥重 量之重量%計介於1.45%至1.55% Mo之間。 根據本發明之概,其中鋼組合物中之Ni含量按總棍重 量之重量%計小於(&lt;)0.3 Ni。 根據本發明之輥,其中鋼組合物中之V含量按總輥重 量之重量%計介於1.3%至2.1%V之間。 根據本發明之輥,其中鋼組合物中之V含量按總輥重 量之重量%計介於1.3%至1.6%V之間。 根據本發明之輥,其中鋼組合物按重量%計由以下各者 組成: 0.8%至 0.99%之 C,及 0.4%至 0.5%之 Μη,及 0.2%至 1.5%之 Si,及 7.0%至 11%之 Cr,及 0.6%至 1.6%之 Mo,及 小於(&lt;)1.0之Ni,及 1.0%至 2.1%之 V,及 25 201236777 小於(&lt;)0.015%之P,及 小於(&lt;)0.015%之S,及 小於(&lt;)30 ppm之〇2,及 小於(&lt; )1〇〇 ppm之N2,及 小於(&lt; )3 ppm之H2,'及 輥之剩餘部分實質上為Fe及可能附帶及/或开 」月e不可 避免之雜質。 根據本發明之輥,其中鋼組合物按重量%計由ιυ λ下各者 組成: 0.85%至 0.9%之 C,及 0.4%至 0.5%之 Μη,及 0.85%至 1.15。/。之 Si,及 7.3%至小於(&lt;)8.0%之Cr,及 1.45%至 1.55%之 Mo,及 小於(&lt;)0.3之Ni,及 1.3%至 1.6%之 V,及 小於(&lt;)0.015%之P,及 小於(&lt;)0.015%之S,及 小於(&lt; )30 ppm之〇2,及 小於(&lt; )100 ppm之N2 ’及 小於(&lt; )3 ppm之H2,及 輥之剩餘部分實質上為Fe .及可能附帶及/或可能不可 避免之雜質。 步驟16:圓柱形形狀之鑄塊34的製造16 26 201236777 在本發明之一典型應用中,— 中間產0口(根據本發明 之方法製造之鑄塊34)較佳具有介 啕)丨於450 mm與1100 mm 之間的直徑32、高達6公尺之e许 △尺之長度30,及介於4〇〇 30000 kg之間的重量,見圖3。舻诚 根據本發明之製造鑄塊34 的方法涉及使用在鑄塊34製造期間實現快速冷卻的技術。 舉例而言,可使用不同鑄塊形成技術來製造铸塊Μ。合適 之製造技術為能夠受控以達成並料料之最小凝固速 的彼等製造技術。 + 根據本發明之實施例,在鑄塊形成期間控制平均凝固 速率使之在表面中高於饥“且在核心中較佳亦高於 1〇C/mi11。較佳地,維持此凝固速率,同時在可(例如)介 於1400 C至120(TC之凝固間隔中控制冷卻鑄塊材料。在本 發明之其他實施例中,在凝固間隔中控制平均凝固速率使 之在工作層中高於3 5 /min。 自實際觀點而言’通常難以在實施本發明時達成極高 '疑固速率本發明之其他實施例包含控制在工作層中以 及在核心中之平均凝固速率使之在以下範圍中: 至 55 C/min,或者 35t/min 至 55t:/min,或者 45°C/min 至 5 5 °C /min。 根據本發明,在本發明中用以關於凝固參數來控制方 法的技術(例如)為不同類型之電渣精煉爐(ESR),例如 移動模ESR熔化或ESR包層或喷鍍成形技術等。 根據本發明,俵用如上述實施例中之任一者中所描述 的凝固速率及化學組合物製造之鑄塊具有以下特性: 27 201236777 -極優良之枝晶宏觀結構。 -化學均一性。 -中間層中宏觀偏析及暗脈狀紋的缺乏。 _無小偏析。 另外,使用根據本發明之方法製造的鑄塊在軋製產品 上具有以下優點: -「橘皮」效應(其由歸因於枝晶間之區域的磨損差異 所致的枝晶圖案之外觀組成)之消除。 -無針孔問題。 -極明亮之表面修整。 -藉由紋理化獲得之紋理的均勻性。 -與結構之非均勻性有關的標記之缺少。 在本發明之一實施例中’根據本發明,使用電渣精煉 爐(ESR)來製造鱗塊34,示意圖參見圖4。電渣精煉爐(ESR) 月b夠炫化約300 kg/h至11 〇〇 kg/h,且包含電極夾36、導桿 38、電極40、用於冷卻水之冷卻夾套出口 42、冷卻夾套入 口 50。在ESR中,藉由熔化電極4〇來形成鑄塊,且因此 在鑄塊材料48中形成不同層,諸如渣池44(其位於電極附 近)及熔融金屬池46。 ESR亦包含經水冷卻54之起始板52,見圖4。根據本 發明,ESR技術可要求㈣化藉由習知炫化製程獲得之起 始鑄塊(電極40) α形成鑄塊48。根據本發明之實施例, 認真地控制㈣ESR進行之再炫化以便達成平均凝固速 率,例如在鑄塊之形成期間在鑄塊之工作層中且亦在核心 28 201236777 中的高於15°C/min之平均凝固速率。 根據本發明,在ESR劁鞀Φ , m # 一 K裂程中,因此藉由電流(例如, 尚安培電流)加熱電極4〇以再熔 丹烙化電極之鋼以形成鑄塊。 認真地控制電極40之高安培電流以控制再溶化之速度,且 此亦影響冷卻之速度且藉此影響凝固速率。凝固速率取決 於根據預定函數饋入至電極的安培電流。基本上,安培電 流愈高’為再熔化電極⑼而供應之電力愈高(參見歐^定 律)。所供應之電力愈高’渣溫愈高且凝固速率愈低。 藉由維持正確之再熔化速率及渣溫,根據本發明,可 藉由在某些間隔中在冷卻鑄塊時在核心及丄作層中之凝固 速率來達成方向性凝固。舉例而t,在—實施例中,在自 00 C至12GG C之凝固間隔中在冷卻鑄塊時的在鑄塊之核 “及工作層中平均值高於151:/min的凝固速率。 人根據本發明且由於發明性概念之鋼組合物與方法之組 二,鑄塊中之共晶碳化物含量保持低於5體積Q/^此給予所 传親良好之易磨性。親之易磨性為重要的,因為在最終輥 之使:期關於冷軋製程,研磨為達成足夠粗糙之輥的 重要製程。已知’高於5%的共晶碳化物之濃度給予此輥令 人不滿意之易磨性。 此外,低共晶碳化物含量之另一效應為在軋機中在操 作期間輥形成灰塵之趨勢較低。相反,在具有高濃度之磕 化物的輥中可產生灰塵形成,此對於軋製產品以及軋機中 之工作環境為負面的。 尤其重要的係在由包含高含量之Cr(例如,7%至13〇/〇) 29 201236777 的組合物製造鑄塊時控制凝固速率。在凝固速率過慢時獲 得之高偏析使高鉻鑄塊有缺陷。 在製造鑄塊時在凝固間隔期間高於15〇c/min之凝固速 率給予低偏析速率,導致低於5體積%之共晶碳化物含量。 藉由參考以下實例將更容易地理解本發明。 然而,此4貫例意欲說明本發明之鑄塊形成步驟的實 施例變體,且不被理解為限制本發明之範嘴。 比較實施例 實施例1演示本發明之方法對根據本發明之輥i之微 觀結構所具有的作用。實施例2為比較實例。該等實施例 係在按實物大小製造te原型期間執行的。該等實驗展示在 鑷造之後轉塊中之共晶碳化物之分佈及網形狀的重要變 體,此取決於所使用之凝固速率,見下文之實施例丨及2 及表2。根據本發明,在鑄塊中所見之共晶碳化物之分佈及 網形狀在鍛造及回火之後保留於最終親中。 實施例1 根據本發明,此實例展示在鑄塊34之形成期間使用高 於15 C /min之凝固速率時對根據本發明之輥中的微觀結構 的作用》 圖5 A至圖5B展示根據本發明之鑄塊1的微觀結構的 實例’該鑄塊1係在將鑄塊自14〇〇°c冷卻至12〇〇〇c時使用 具有平均為50°C/min (在鑄塊之90 mm深度上)的凝固速 率的方法來製造的。根據本發明之實施例鑄塊1中的共晶 細胞為小的(940、942 ),圖5B展示具有開放共晶網之分 30 201236777 之不同部分中的不 84、90 mm 86、50 段網。亦參見圖8,關於在凝固期間鑄塊 同凝固間隔,其展示核心82、中間半徑 mm 88、30 mm 90及表面92中的溫度速率。圖5B為圖5a 之放大圖。亦參見表2。圖6A至圖6β展示根據本發明之 鑄塊2的微觀結構的實施例,該鑄塊2係在將鑄塊自1 冷卻至1200°C時使用具有平均為18&lt;t/min(在鑄塊之9〇mm 深度上)的凝固速率的方法來製造的。圖6展示根據本發 明之實施例鱗塊2中的共晶細胞,且此等共晶細胞為小的, 見(例如)截面距離1024。亦參見圖9,關於在凝固8〇期 間鑄塊之不同部分中的不同凝固間隔,其展示核心1〇〇、中 間半:徑 102、90 mm 104、50 mm 106、30 mm 108 及表面 110 中的'溫度速率。圖6B為圖6A之放大圖。亦參見表2。 _結論 根據本發明之方法確保在鑄塊之中間半徑中偏析的缺 少。在中間半徑(或圓柱形輥之直徑的内部之5/6 )中偏析 之缺少保證在硬化製程期間輥之完整性。因此,在工作層 中尚於15 °C /min之凝固速率產生較小之微觀結構,如上文 所解釋,該微觀結構在研磨及灰塵污染方面更好,見圖5A 至圖5B及圖6A至圖6B。 實施例2 .. 此實施例展示在測試1鑄塊之形成期間使用低於 l5°C/min之凝固速率的效應。 圖7A至圖7C展示測試丨鑄塊之微觀結構的實施例, 該鑄塊係在自14001至1 20CTC之凝固間隔中冷卻鑄塊時使 31 201236777 用具有低於15 (實際上甚至低於i〇) 〇C /min之凝固速率的 方法來製造的。圖7A至圖7C之比較測試1鑄塊的細胞700 之大小較大’見(例如)截面708 ’根據本發明,細胞700 具有大於(例如)實施例1中之鑄塊1中的最大截面的截 面長度708。測試1鑄塊亦展示收縮孔隙率704。粗聚結共 晶網702亦在圖7A至圖7C中可見。亦參見表2。圖7B至 圖7C為圖7A之放大圖。 結論 在凝固間隔内低於/min之凝固速率給予碳化物及 粗碳化物網702之高偏析、測試1鑄塊結構之中間半徑, 亦及孔隙率704,見圖7A至圖7〇碳化物及粗碳化物網之 高偏析製造白坯輥或藉由根據測試丨脆性之鑄塊製造的成 品輥,且因此傾於在感應硬化(白坯輥)中或在冷軋軋機 (成品輥)中爆裂。 如根據本發明,實施例2亦展示低於丨5。〇 /min之凝固 速率亦使共sa細胞結構之大小與在使用高於丨5。〇 /min之凝 固速率製造鑄塊時相比為較大且較粗糙。在製造鑄塊時在 凝固間隔期間高於15t/min之凝固速率給予低偏析速率, 導致低於5體積%之共晶碳化物含量。 32 201236777A method further comprises the step of preliminary heat treatment after the forging step, which is applied to the roll blank, preferably up to about 7 Torr () to: u〇〇 &lt; t or between 8 (eight). C 14 201236777 to 900 ° C The preliminary heat treatment may include a hydrogen diffusion treatment. One method further comprises the step of shallow hardening by progressive induction heating, preferably at a temperature of from about 900 ° C to ii 50 ° C. One method, wherein The step of tempering the roll comprises the steps of: d. heating the roll to about 450. 〇 to 530. &lt; 3 or between 45 〇〇c and 5 2 0 C, preferably 3 times, e Cooling the roll with air between the heating steps. The method further comprises processing the roll to texturize the white layer comprising the eutectic carbide. Further, the variant of the method of the invention comprises the chemistry of the roll described above Any of the following optional, individual or combinable aspects of the composition or microstructure, and further comprising features comprising any of the following optional, individual or combinable aspects described below. Another aspect provides a manufacturing of the stick Intermediate product ingot 'The ingot comprises a steel composition comprising, by weight %, 0. 8 % to less than (&lt;) 1% c, 0.2% to 0.5% Μη, 0.2% to 2.0% Si, 7.0% to 13.0% Cr, 〇·6 y to 1.6% Μ 〇, greater than (&gt;) 1.0% to 3.0% V, the remainder of the steel is substantially Fe And possibly accompanying and/or possibly unavoidable impurities; 15 201236777 and wherein the microstructure of the final roll formed from the ingot comprises: - tempered martensite having less than (&lt;) 5 volume % of retained austenite And an open eutectic carbide network having less than (&lt;) 5% by volume of eutectic carbide. Further, the variant of the intermediate ingot of the present invention comprises the following chemical composition of the ingot described above Any of the optional, individual or combinable aspects' and further comprising features comprising any of the following optional, individual or combinable aspects described below. Another aspect of the invention provides Use of the invented roll of the invention for cold rolled materials requiring high rolling loads. Examples of the use of forging rolls for cold rolling of high strength materials (like AHSS steel grades). The use of the forging rolls according to the invention for the following: - for tinplate, sheet, 7 steel, stainless steel, Ming and Cold rolling reduction mill for early steel and finishing stands, reversible and irreversible stands; or '-cold rolling tempering and/or skin rolling mill; or textured or untextured surface for 2 newspapers (2-7) (4) Rolling mill configuration of the formula (4-High) and 6-high (6-High) base. The forging roller according to the present invention is used as a working pro. The roll according to the invention can be used as a roll without a layer in many applications. Surprisingly, in other aspects and embodiments of the invention, , , , , and coatings of any current or specific application are selected. Available with chrome coating. This roll can also be used in warm rolling applications. ^ is 16 201236777 [Embodiment] The present invention will be further described by way of illustrative embodiments. INTRODUCTION The present invention generally relates to forging rolls which preferably have a weight of more than 4 〇〇 kg or, as in a general application embodiment, have a weight of, for example, more than 1000 kg. The roll according to the present invention is manufactured according to the method of manufacturing a forging roll which is essentially known in its general course but which is specifically adapted according to the inventive concept to enable the manufacture of the roll according to the invention. The present invention is primarily directed to heavy rollers having a weight between 400 kg and 10,000 kg. The roller according to the invention has a diameter 2 of typically greater than 200 mm and, for example, &quot; between 215 mm and 800 mm, and a length of the cartridge 8 typically between i and 3 meters, and including the neck The portion 10 is usually about 6 gongs, the maximum length. I have a working layer 4' working layer 4 corresponding to the p portion of the outer layer and the diameter range is usually between 2 (), depending on the application of the body roll and / or depends on the total pro diameter 2. In general, the outer 1/6 portion 6 of the stick 2 only 2 is referred to as the working layer 4 of the roller 1, see Fig. 1. 34 The diameter of the caster 34 is 2 and the 1/6 part 6 is also called the town block. Into the large forging rolls, due to the internal stress involved in forming such large rolls, the special roll involved will not require the smaller diameter of the item I because of the lower internal application. The equal roll does not tilt for the manufacture of the root: = 2nd invention of the roll manufacturing method 12 The improved mechanical properties (the 4 rolls are critical. (such as the low residual internal stress of the roll of the invention) by 17 201236777 Xingkun's manufacturing method 12 produces a residual internal stress that is low in level to achieve the resulting pro, and must be minimized by thermal gradients and allogeneic metamorphism in all stages of such manufacturing processes throughout casting, forging, heat treatment, and processing. Internal stress. The microstructure of the roll 根据 according to the invention comprises tempered martensite having a residual austenite ratio of less than 5% by volume, due to the method of manufacturing the roll and due to the chemical combination according to the invention The pro-manufacturing method according to the present invention comprises the selection of the following basic steps schematically shown in the flow circle of circle 2: 1 4 _ · ^ steel composition for making ingot 34 1 8 · the ingot 3 4 forging roller j 2 0 - preliminary heat treatment of the roller 2 2 2 - roughing the roller 1 24. induction hardening the roller 1 26. tempering heat treatment of the roller 1 28. processing the roller 1 ° specific control of the selection roller The number of rolls is obtained after the respective steps, and the intermediate product and the chemical composition are obtained to produce a steel composition according to the present invention. The weight of the steel composition is 'U% to less than (1)/kC, 0· 2% to 0.5% Μη, 18 201236777 0.2% to 2.0% Si, 7.8% to 13.0% Cr, 0.6% to 1.6% Mo, greater than (&gt;) 1.0% to 3.0% v, steel The remainder is essentially Fe and possibly incidental and/or possibly unavoidable impurities; b. An ingot is produced which is maintained in the working layer of the ingot during the setting interval, above 15 5. 〇/miη a rate of solidification; c. forging the ingot into a roll; d. hardening the bond by induction heating; e. tempering the roll; thereby achieving a microstructure of the roll (1), the microstructure Including: - tempered martensite having a residual austenite ratio of less than (&lt;) 5 vol%; and - an open eutectic carbide network having Less than (<) 5 volumes of eutectic carbide; and wherein the roll (1) exhibits: • a hardness greater than 780 HV; and an internal compressive stress less than -500 Mpa (absolute). Wherein the roll according to the invention In the microstructure, the chemical composition provided according to the invention is used in combination with the process steps described in accordance with the invention to impart the desired characteristics of the roll according to the invention. The method for producing a forged roll according to the invention comprises the following steps: 19 201236777 Step 14: A steel composition is provided. In one embodiment of the invention, the steel composition comprises an alloy 'the alloy comprising or consisting of the following components as indicated in Table 1 by weight percent. In Table 1, the effects of the components and the effects of the rolls of the present invention achieved by selected components and specific intervals are explained. Table 1 Chemical composition elements Alloys according to examples of the invention - wt% Effect of the spacing according to the invention (effect) C 0.8 5. 0.99 Carbon is the most important and influential alloying element in steel. However, in addition to carbon, any non-alloyed steel will also contain barium, manganese, phosphorus and sulfur, which are unintentional during manufacturing. The addition of other alloying elements to achieve special effects and the intentional increase in the manganese and niobium contents lead to alloy steels. When the C content is increased, the strength and hardenability of the steel are increased, but the ductility, forgeability, refining property, and workability (using a cutting machine tool) are reduced. In the present invention, the content of C is less than 1% to avoid formation of an oversized closed network of eutectic carbide. Μη 0.2 to 0.5 manganese deoxidation. It combines with sulfur to form manganese sulfide, thus reducing the undesirable effects of iron sulfide. This is especially important in free-cutting steels; it reduces the risk of red-brittleness. Μη extremely reduces the critical cooling rate and therefore increases the hardenability. The yield point and strength are increased by the addition of Μη, and in addition, Μη advantageously affects the forgeability and weldability and significantly increases the hardness penetration depth. In the present invention, Μη is kept as low as 0.5% to avoid excessive brittleness. Si 0.2 to 2.0 含 is contained in all steels in the same manner as manganese because the iron ore is based on its composition and has a certain amount of enthalpy. In the steel product itself, Shi Xi was absorbed into the metal from the bonfire. However, only those steels are referred to as Shi Xigang with a Si content of &gt; 0.40%. Si is not a metal, but a metalloid, such as phosphorus and sulfur. Si deoxidation. Si is used in steel for electrical quality sheets due to significant reduction in conductivity, coercive field strength, and low wattage loss. Thus, in the invention of 2012 20127777, excessively high levels of Si affect the eddy current response during roll detection, resulting in potentially unrealistic readings and must remain below 1.5%. s &lt;0.015 Sulfur produces the most significant segregation of all steel epitaxial elements. Iron sulfide results in red brittleness or hot brittleness because the low melting point sulfide eutectic surrounds the particles in a network such that the particles only undergo a slight cohesion and the grain boundaries tend to collapse during thermoforming. This is further increased by the behavior of oxygen. Due to the considerable affinity of the sulphur wall, it is combined in the form of sulphide, as it is the least dangerous of all existing inclusions and is dispersed in the form of dots in steel. The toughness in the transverse direction is significantly reduced by S. To stay at the lowest level. P &lt; 0.015 Phosphorus is generally considered to be a steel parasite because P produces significant primary segregation upon solidification of the melt and is significantly limited by the possibility of secondary segregation in the solid state due to the gamma phase. Due to the relatively low diffusion rate, in the Avalan and Gamma crystals, segregation that has occurred can only be corrected if there is difficulty. According to the invention, P will be maintained at a minimum level, preferably &lt; 0.015 W%. Cr 7.0 to 13.0 Chromium makes steel hard and hardenable. By reducing the critical cooling rate required for martensite formation, the hardenability is increased, thereby improving the susceptibility to hardening and tempering. However, the movability of the notch is reduced, but the ductility suffers only slightly damage. The tensile strength of steel increases by 80% to 100 N/mm2 per 1%. Cr is a carbide forming element. Its carbonaceous material increases cutting ability and wear resistance. High temperature strength properties are promoted by chromium. This element limits the gamma phase and thus extends the range of fat mites. In the case where the Cr content is higher than 13%, an elongated eutectic carbide tends to be formed. In the case where the Cr content is less than 7%, the hardness level is kept too low for cold rolling applications due to the lack of secondary hardening mechanism. Mo 0.6 to 1.6 Molybdenum is usually alloyed with other elements. Reduce the critical cooling rate to improve hardenability. Mo significantly reduces temper brittleness and promotes fine particle formation. Yield point and strength increase. Significant carbide forming elements; thereby improving the cutting characteristics of high speed steel. The gamma phase is extremely strict. Increased height 21 201236777 Temperature strength. In the case where the Mo content is increased, the forgeability is reduced. Therefore, its content is maintained below 1.6% to avoid the harmful formation of sputum. Nickel in Ni&lt;1.0 steel products significantly increases notch toughness, even in the low temperature range, and is therefore alloyed to increase toughness in surface hardened steels, hot treatable steels, and sub-tough steels. Ni is not a carbide forming element. V &gt; 1.3 Vanadium refines primary grains and is therefore a cast structure. Significant carbide forming elements (thus providing a hardness level compatible with the cold rolling process) increase wear resistance, high cutting power and high temperature strength. It is therefore mainly used as an additional alloying element in high speed steel, hot formed steel and anti-potential steel. The tempering retention is significantly improved and the sensitivity to overheating is reduced. V limits the gamma phase and shifts the Curie point at high temperatures. In the case where the V content is less than 1%, the hardness level is kept low, regarding the cold rolling pass. In the case where the V content is more than 3%, the steel grindability becomes prohibitive for the cold rolling process. W 0.0 to 2.0 Tungsten is a very significant carbide forming element (its carbide is extremely hard) and limits the gamma phase. It improves toughness and prevents particle growth. W increases the high temperature strength and temper retention and wear resistance at high temperatures (red heat) and thus increases the cutting ability. As a result, it is mainly poultry to high speed steel and thermoformed tool steel as well as anti-submersible steel types and super-hard steel. Ti 0.0 to 1.0 Due to the strong affinity of titanium for oxygen, nitrogen, sulfur and carbon, Ti has significant deoxidation, significant denitrification and significant carbide formation behavior. Widely used as a carbide forming element. It also has particle refinement properties. Ti extremely restricts the gamma phase significantly. In high concentrations, it leads to a precipitation process and is added to the permanent magnet alloy in order to achieve high coercive field strength. Ti increases the latent breaking strength by forming a special nitride. Finally, Ti significantly tends to segregate and streak. Nb 0.0 JL 0.5 铌(Nb) and 钽(Ta) almost Ta 0.0 to 0.5 are specifically present together and extremely difficult to separate from each other, so that they are usually used together. Extremely significant carbide forming elements are therefore particularly alloyed into stabilizers for chemical resistant steels. The two elements form a ferrite iron forming element and thus reduce the gamma phase. Due to the high temperature strength due to Nb 22 201236777 and the increase in creep rupture strength. Zr 0.0 to 0.5 is recorded as a carbide forming element; it is used as an alloying element in metallurgy for deoxidation, denitrification and desulfurization because it leaves the product with minimal deoxidation. The addition of Zr to the fully deoxidized sulfur-containing free-cutting steel has a beneficial effect on sulfide formation and thus prevents red brittleness. It increases the lifetime of the heated conductor material and creates a limit to the gamma phase. And further optionally H2, N2, 02, A1, Cu, each of which is less than 0.4% by weight, and wherein the remainder of the steel composition is substantially Fe, in addition to incidental elements and possibly not Avoid impurities. In one embodiment of the invention, the steel composition comprises, by weight percent, from 0.8% to less than (&lt;) 1% C, 0.2% to 0.5% Μ, 0.2% to 2.0% Si, 7.0% to 13.0% Cr, 0.6% to 1.6% Mo, greater than (&gt;) 1.0% to 3.0% V, wherein the remainder of the steel is substantially Fe, in addition to incidental elements and possibly unavoidable impurities . In various variations and embodiments of the invention, the compositions comprise or consist of combinations or selections of components (% by weight) according to the following examples. In some instances, the foregoing embodiments are combined with, by, or by, the following variants of the amount of components. A roll having, by weight %, a steel composition consisting of: 0.8% to less than (&lt;) 1% C, 0.2% to 0.5% ,, 23 201236777 0.2% to 2.0% Si, 7.0% to 13.0% of Cr, 0.6% to 1.6% of Mo, greater than (&gt;) 1.0% to 3.0% of V, less than (&lt;) 0.015% of P, and less than (&lt;) 0.015% of S, And less than (&lt;) 1% of Ni is less than (&lt;) 30 ppm of 〇2, and less than (&lt;)100 ppm of N2, and less than (&lt;)3 ppm less than (&lt;) 2% of W And less than (&lt;) 1% of Nb, and less than (&lt;) 1% of Ti, and less than (&lt;) 0.5% of Ta, and less than (&lt;) 0.5% of Zr, the remainder of the steel Above is Fe and possibly incidental and/or possibly unavoidable impurities; a roll according to the invention wherein the C content of the steel composition is between 0.8% and 0.99% C by weight of the total roll weight. The roll according to the present invention, wherein the C content in the steel composition is between 0.85% and 0.9% C by weight of the total roll weight. The stick according to the present invention, wherein the content of Μ in the steel composition is between 0.4% and 0.5% by weight based on the total weight of the total weight. The roll according to the present invention, wherein the Si content in the steel composition is between 0.2% and 1.5% Si by weight of the total roll weight 24 201236777. According to the invention, the Si content in the steel composition is between 0.85% and 1.15% Si by weight percent of the total reported weight. The roll according to the present invention, wherein the Cr content in the steel composition is between 7.0% and 11% Cr by weight of the total roll weight. The roll according to the present invention, wherein the Cr content in the steel composition is between 7.3% and less than (&lt;)8.0% Cr by weight of the total roll weight. The roll according to the present invention, wherein the Mo content in the steel composition is between 1.45% and 1.55% Mo by weight of the total roll weight. According to the present invention, the Ni content in the steel composition is less than (&lt;) 0.3 Ni by weight % of the total stick weight. The roll according to the present invention, wherein the V content in the steel composition is between 1.3% and 2.1% V by weight of the total roll weight. The roll according to the present invention, wherein the V content in the steel composition is between 1.3% and 1.6% V by weight of the total roll weight. A roll according to the present invention, wherein the steel composition is composed by weight% by weight: 0.8% to 0.99% of C, and 0.4% to 0.5% of Μ, and 0.2% to 1.5% of Si, and 7.0% to 11% of Cr, and 0.6% to 1.6% of Mo, and less than (&lt;) 1.0 of Ni, and 1.0% to 2.1% of V, and 25 201236777 are less than (&lt;) 0.015% of P, and less than (&lt;;) 0.015% of S, and less than (&lt;) 30 ppm of 〇2, and less than (&lt;)1〇〇ppm of N2, and less than (&lt;)3 ppm of H2,' and the remaining part of the roll The upper part is Fe and may be incidental to and/or open to the inevitable impurities of the month e. The roll according to the present invention, wherein the steel composition is composed of ι υ λ by weight: 0.85% to 0.9% C, and 0.4% to 0.5% Μ, and 0.85% to 1.15. /. Si, and 7.3% to less than (&lt;) 8.0% of Cr, and 1.45% to 1.55% of Mo, and less than (&lt;) 0.3 of Ni, and 1.3% to 1.6% of V, and less than (&lt; ) 0.015% of P, and less than (&lt;) 0.015% of S, and less than (&lt;)30 ppm of ,2, and less than (&lt;)100 ppm of N2' and less than (&lt;)3 ppm of H2 And the remainder of the roll is substantially Fe. and may be incidental and/or possibly unavoidable. Step 16: Fabrication of a cylindrical shaped ingot 34 16 26 201236777 In a typical application of the invention, the intermediate production of 0 (the ingot 34 produced in accordance with the method of the present invention) preferably has a The diameter between mm and 1100 mm is 32, the length of the e-thickness of up to 6 meters is 30, and the weight between 4 and 30000 kg, see Figure 3. The method of making ingot 34 in accordance with the present invention involves the use of techniques for achieving rapid cooling during the manufacture of ingot 34. For example, different ingot forming techniques can be used to make the ingot. Suitable manufacturing techniques are those that can be controlled to achieve and minimize the rate of solidification of the material. + According to an embodiment of the invention, the average solidification rate is controlled during formation of the ingot to be higher than hunger in the surface and preferably also higher than 1 〇C/mi11 in the core. Preferably, this solidification rate is maintained while The cooling of the ingot material can be controlled, for example, in a solidification interval of between 1400 C and 120 (TC. In other embodiments of the invention, the average solidification rate is controlled during the setting interval to be higher than 3 5 in the working layer. Min. From a practical point of view 'It is often difficult to achieve a very high 'suspect rate' in the practice of the invention. Other embodiments of the invention include controlling the average solidification rate in the working layer and in the core to be in the following ranges: 55 C/min, or 35 t/min to 55 t:/min, or 45 ° C/min to 55 ° C / min. According to the present invention, techniques for controlling the method with respect to solidification parameters in the present invention (for example) For different types of electroslag refining furnaces (ESR), such as moving mold ESR melting or ESR cladding or spray forming techniques, etc. According to the invention, the solidification rate as described in any of the above embodiments and Chemical composition manufacturing The ingot has the following characteristics: 27 201236777 - Excellent dendritic macrostructure - Chemical uniformity - Macroscopic segregation in the intermediate layer and lack of dark veins. - No small segregation. In addition, using the method according to the invention The ingot has the following advantages in rolling products: - Elimination of the "orange peel" effect, which consists of the appearance of the dendritic pattern due to the difference in wear between the dendritic regions. - No pinhole problem - extremely bright surface finish - uniformity of texture obtained by texturing - lack of marks associated with structural non-uniformity. In one embodiment of the invention 'according to the invention, electroslag refining is used Furnace (ESR) to manufacture the scale 34, the schematic diagram is shown in Figure 4. The electroslag refining furnace (ESR) is capable of slashing about 300 kg/h to 11 〇〇kg/h, and includes an electrode holder 36, a guide rod 38, Electrode 40, cooling jacket outlet 42 for cooling water, cooling jacket inlet 50. In ESR, the ingot is formed by melting electrode 4, and thus different layers are formed in ingot material 48, such as a slag pool 44 (which is located near the electrode) and molten metal pool 46. ES R also includes a starting plate 52 that is cooled by water 54, see Fig. 4. In accordance with the present invention, the ESR technique may require (iv) forming the ingot 48 from the starting ingot (electrode 40) obtained by a conventional dazzling process. In accordance with an embodiment of the present invention, the re-shocking of (4) ESR is carefully controlled to achieve an average solidification rate, such as in the working layer of the ingot during formation of the ingot and also above 15 ° C in core 28 201236777 / The average solidification rate of min. According to the present invention, in the ESR 劁鼗 Φ , m # K K splitting process, the electrode 4 is heated by a current (for example, a current) to re-melt the steel of the electrode to form Ingot. The high amperage current of electrode 40 is carefully controlled to control the rate of remelting, and this also affects the rate of cooling and thereby affects the rate of solidification. The rate of solidification depends on the amperage current fed to the electrode according to a predetermined function. Basically, the higher the ampere current, the higher the power supplied to the remelted electrode (9) (see Eurocode). The higher the power supplied, the higher the slag temperature and the lower the solidification rate. By maintaining the correct remelting rate and slag temperature, directional solidification can be achieved in accordance with the present invention by the rate of solidification in the core and the crucible layer during cooling of the ingot at certain intervals. By way of example, in the embodiment, the solidification rate in the core of the ingot "and the working layer is higher than 151:/min in the solidification of the ingot during the solidification interval from 00 C to 12 GG C. According to the invention and due to the inventive concept of the steel composition and method group 2, the eutectic carbide content in the ingot is kept below 5 volumes Q/^ which gives the passed-in good wearability. Sex is important because in the final roll: during the cold rolling process, grinding is an important process for achieving a sufficiently rough roll. It is known that the concentration of eutectic carbide above 5% is unsatisfactory for this roll. In addition, another effect of the low eutectic carbide content is that the tendency of the rolls to form dust during operation is lower in the rolling mill. Conversely, dust formation can occur in rolls having a high concentration of telluride. It is negative for rolling products and the working environment in rolling mills. It is especially important to control the solidification rate when making ingots from compositions containing high levels of Cr (for example, 7% to 13 〇/〇) 29 201236777. High segregation obtained when the solidification rate is too slow makes it high Chromium ingots are defective. The rate of solidification above 15 〇c/min during the setting of the ingot gives a low segregation rate, resulting in a eutectic carbide content of less than 5% by volume. The invention is readily understood. However, this example is intended to illustrate an embodiment variant of the ingot forming step of the present invention and is not to be construed as limiting the scope of the invention. Comparative Example Example 1 demonstrates the method of the present invention. The effect on the microstructure of the roll i according to the invention. Embodiment 2 is a comparative example. These embodiments are carried out during the manufacture of the te prototype in a physical size. The experiments are shown in the transfer block after fabrication. Important variations of the distribution of eutectic carbides and the shape of the mesh, depending on the rate of solidification used, see Examples 丨 and 2 and Table 2 below. According to the invention, the eutectic carbides seen in the ingot The distribution and mesh shape remain in the final parent after forging and tempering. Example 1 According to the present invention, this example demonstrates the use of a solidification rate of greater than 15 C /min during the formation of ingot 34. The effect of the microstructure in the middle Fig. 5A to Fig. 5B show an example of the microstructure of the ingot 1 according to the present invention. The ingot 1 is cooled when the ingot is cooled from 14 ° C to 12 ° c. Manufactured using a method having a solidification rate of 50 ° C/min on average (on the 90 mm depth of the ingot). The eutectic cells in ingot 1 are small according to an embodiment of the invention (940, 942) Figure 5B shows a non-84, 90 mm 86, 50-segment net in a different section of the open eutectic mesh 30 201236777. See also Figure 8, for the ingot interval during solidification, showing core 82, middle Radius mm 88, 30 mm 90 and temperature rate in surface 92. Figure 5B is an enlarged view of Figure 5a. See also Table 2. Figures 6A to 6 show an embodiment of the microstructure of the ingot 2 according to the present invention, which is used to have an average of 18 &lt; t/min (ingot ingot) when cooling the ingot from 1 to 1200 °C. The method of solidification rate of 9 〇 mm depth is manufactured. Figure 6 shows eutectic cells in scale 2 according to an embodiment of the invention, and such eutectic cells are small, see, for example, a cross-sectional distance of 1024. Referring also to Figure 9, there are different solidification intervals in different portions of the ingot during solidification 8 ,, which show the core 1 〇〇, middle half: diameter 102, 90 mm 104, 50 mm 106, 30 mm 108 and surface 110 'Temperature rate. Fig. 6B is an enlarged view of Fig. 6A. See also Table 2. _ Conclusion The method according to the invention ensures a lack of segregation in the intermediate radius of the ingot. The lack of segregation in the intermediate radius (or 5/6 of the inside of the diameter of the cylindrical roll) ensures the integrity of the roll during the hardening process. Therefore, a solidification rate of 15 ° C / min in the working layer produces a smaller microstructure. As explained above, the microstructure is better in terms of grinding and dust contamination, as shown in Figures 5A to 5B and Figure 6A. Figure 6B. Example 2: This example demonstrates the effect of using a solidification rate of less than 15 °C/min during the formation of Test 1 ingot. 7A-7C show an embodiment of testing the microstructure of a bismuth ingot, which is used to cool the ingot during the solidification interval from 14001 to 20 CTC so that 31 201236777 has less than 15 (actually even lower than i) 〇) 〇C / min method of solidification rate to manufacture. 7A to 7C Comparison Test 1 The size of the cells 700 of the ingot is larger 'see, for example, section 708'. According to the present invention, the cell 700 has greater than, for example, the largest cross section in the ingot 1 of Example 1. Section length 708. Test 1 ingot also exhibited shrinkage porosity 704. The coarse coalescence eutectic mesh 702 is also visible in Figures 7A-7C. See also Table 2. 7B to 7C are enlarged views of Fig. 7A. Conclusion The solidification rate of less than /min in the solidification interval gives high segregation of carbide and coarse carbide mesh 702, the intermediate radius of test 1 ingot structure, and porosity 704, see Figure 7A to Figure 7 for carbides and High segregation of the coarse carbide mesh to produce a white blank roll or by a finished roll made from an intumescent piece that is tested for brittleness, and thus pours in an induction hardening (white blank roll) or in a cold rolling mill (finished roll) . As in accordance with the present invention, Example 2 also exhibits a lower than 丨5. The 凝固/min coagulation rate also makes the size of the co-sa cell structure higher than 丨5. The solidification rate of 〇 /min is relatively large and rough compared to the manufacture of ingots. The rate of solidification above 15 t/min during the setting interval during the manufacture of the ingot gives a low segregation rate resulting in a eutectic carbide content of less than 5% by volume. 32 201236777

表2 平均凝固 速率* c Μη Si Cr Mo Ni V 對偏析之作用/ 共晶碳化物形成 對微觀結構 之作用 鑄塊1 50°C/min 0.8 0.5 1.0 7.2 1.4 &lt;1 1.8 低偏析速率+對共 晶碳化物之控制 參見圖5A 至圖5B 鑄塊2 18°C/min 0.8 0.5 1.0 7.2 1.4 &lt;1 1.8 低偏析速率+對共 晶碳化物之控制 參見圖6A 至圖6B 測試1 &lt;15°C/min 0.8 0.5 1.0 7.2 1.4 &lt;1 1.8 高偏析速率-對共 晶碳化物無控制 參見圖7A 至圖7C 表2展示在鑄塊之90 mm深度上在將鑄塊自1400°C冷 卻至1200°C時藉由不同平均凝固速率(* )進行的鑄塊測試 的實驗資料。 比較實施例 實施例3演示(例如)本發明之方法及鑄塊之化學組 合物對鑄塊之微觀結構且因此亦對本發明之輥的作用。實 施例4為比較實例。實施例3及4展示藉由用受控凝固器 件及受控冷卻速度在實驗室中進行之實驗製造的鑄塊之微 觀結構。 鑄塊中之共晶碳化物網之形狀取決於所使用之化學組 合物而受影響,亦參見表3。 實施例3 此實施例展示根據本發明之方法藉由用受控凝固器件 及在凝固間隔中高於15°C/min之受控冷卻速度在實驗室中 進行之實驗來製造的鑄塊1微觀結構。當根據本發明使用 包含1.4%之.Mo的化學組合物時,在鑄塊結構中達成開放 共晶碳化物系統750,參見圖10A至圖10B。亦參見表3。 33 201236777 士根據本發明之輥i中所見,此開放共晶碳化物系統750 破表徵為枝晶圖案,且共晶碳化物結構752不形成封閉共 b曰厌化物、揭(如在比較實施例4中’測試2 ),而是形成網 中之枝晶臂’參見圖10A至圖10B,其展示根據本發明之 方法製造的具有1.4% Mo之鑄塊的微觀結構的圖片。根據 本發明,此開放共晶碳化物系統使得輥與使用高於丨.6%之 Mo量製造的輥相比更易於研磨。 實施例4 使用本發明之方法及一組合物來製造測試2鑄塊,在 該組合物中’主要組份係根據上述實施例但差別係化學組 合物在Mo量方面不同於本發明。此測試2鑄塊係根據本發 明之方法藉由用受控凝固器件及在凝固間隔中高於 15C/min之受控冷卻速度在實驗室中進行之實驗來製造 的。在測試2中,Mo量為2.77%,亦參見表3。在製造鑄 塊的本發明之方法中使用包含2 77% M〇之化學組合物製造 在封閉共晶碳化物之細胞中塑形之鑄塊的共晶碳化物系 統,參見圖11A至圖11B,且共晶碳化物852形成實質上 隔離之部分85〇 ’如同展示測試2之微觀結構的圖丨丨A至圓 11 B之島狀物或偏析細胞結構。圖丨丨A至圖11B中之白色 區域表示基質;主要為鐵’黑色為二次碳化物。 測s式2中合金元素之過度添加導致粗碳化物網之形 成’此與碳化物之偏析有關聯。亦參見表3。 34 201236777 表3 平均凝固 速率* C Μη Si 卜 Mo Ni V 對微觀結構之作用 測試2 18°C/min 0.8 0.6 1.11 7.19 2.77 &lt;1 0.44 圖11A至圖展示 封閉共晶碳化物網|。 鑄塊1 18°C/min 0.8 0.5 1.0 7.2 1.4 &lt;1 1.8 圖10A至圖10B展示 開放共晶碳化物網。 表3展示在將鑄塊自14〇〇。〇冷卻至1200。〇時藉由不同 平均凝固速率(* )進行的鑄塊測試的實驗資料。不同於 Mo之組份係在如上文所描述之間隔内。 步驟18 :將該鑄塊34鍛造成輥1 在本發明之典型應用中,接著鍛造根據本發明之前述 步驟製造的鑄塊34。在本發明之一實施例中,使用本質上 已知之方法來熱壓鍛造鑄塊34,用於藉由將鑄塊壓在錘子 與鐵砧之間來同時減少橫截面積及改變形狀’從而將鑄塊 成形為根據本發明之輥丨。在專用爐中加熱鑄塊,參見圖 12以獲得鍛造步驟之示意圖。 根據本發明之鍛造步驟18包括以下步驟,參見圖12 ; 預先加熱56鑄塊34持續約6個小時至介於8〇〇。(:至ΐ2〇(Γ(: 之間或介於850。以11〇(rc之間的溫度。肖先加熱步驟% 涉及加熱鑄塊34,自鑄塊之表面直通至核心。調整鍛造期 間之溫度使之在間⑮戰至湖。c内或介⑤8赃至 膽C之間,此係因為高於12⑼。以較高溫度導致鎮塊結 構歸因於輥之燃燒而出現缺陷。將鑄塊之溫度保持在所指 不之溫度間隔下的原因係低力8〇(rc之溫度導致鱗塊之裂 35 201236777 紋形成。隨著鑄塊34冷卻,其變得更強且較不具延性,若 變形繼續此便可誘發裂化。 在鑄塊1之預先加熱(步驟56)之後,使用135至2.〇 之鍛造率來鍛造鑄塊i (步驟6〇)β重複鍛造步驟6〇及預、 先加熱步驟56,此鍛造循環通常被稱作加熱58。在需要時 重複加熱58多次以形成根據本發明之輥,參見圖12。 在實施例中’使用3至6次加熱5 8來鍛造根據本發 明之輥1以將鑄塊鍛造成輥坯。輥坯為以下一種輥,其具 有輥之㈣但仍具有缺少最終處理以變成可在軋財使用、 之輥的筒。 在另一實施例中,在幾次加熱58中鍛造鑄塊34,參見 圖1 3以獲得鍛造一輥之示意圖: a) 首先,在幾次或1至2次加熱58中調整鑄塊w之 橫截面積, b) 在一次加熱中製造|昆之一頸部, c) 在下一次加熱中鍛造輥之另一頸部。 由於與鍛造實施例標準鋼等級相比為高之根據本發明 之合金含量,鍛造根據本發明之鋼組合物更難以進行。 在鍛造期間,鑄塊34在鍛造成根據本發明之輥i時 其直徑32減少了 3〇%至·。舉例而言,根據本發明之乾 1較佳具有介於25〇麵至800 mm之間的直徑 : 多 撞J 1 , 且根據本發明之鑄塊34較佳具有介於4〇〇爪爪 夕Pq斗、人士人, mm 曰1或;丨於450 mm至1100 mm之間的直徑32。 重要的係,鑄塊34具有在鑄塊34之製造方法 36 201236777 凝固步驟80期間形成的所要共晶碳化物微觀結構。展示, 有可能使用熱塵鍛造技術來鍛造具有具低於5體積%之共 晶碳化物量的根據本發明之共晶碳化物微觀結構的鑄塊 34。使用藉由另一方法(例如,用低於15&lt;&gt;c/min之凝固速 率)形成之鑄塊製造此等大型輥以導致在感應硬化期間或 在軋機中爆裂。 步驟20 :該輥i之初步熱處理 在本發明之製造方法中,藉由初步熱處理步驟來處理 。亥輥在本發明之一實施例中,在爐令在根據本發明之初 步熱處理2〇期間加熱該輥使之介於700。〇至丨1〇〇〇c之間, 2接著使該輥保持在彼溫度下持續某段時間,直至令人滿 意之氫擴散已發生為止。執行初步熱處理(正常化處理及 球化退火)以便改良輥之可加工性。 步驟22.該概之粗加工22 在本發明之製造方法中,藉由粗加工步驟22來處㈣ 根據本發明之所形成^之粗力_22意謂著移除料 '之外層。在本發明之-實施射,在粗加工期間移除外 層。該輥在受到粗加卫之前被稱作黑述。藉由移除輕之表 面上的氧化層’接著將黑坯輥轉化成白坯。 步驟24 :該輥1之感應硬化 中,藉由感應硬化來處理該輥。 形成輥之硬表面。參見圖14以獲 在本發明之製造方法 在該輥之感應硬化期間, 得感應硬化步驟之示意圖 在本發明之一實施例中 向下緩慢地移動該輥,同時 37 201236777 在感應硬化步驟期間經由·感應器配置70將介於5〇 Hz 1 000 Hz之間的電流或電壓頻率施加至該輥。在加熱步驟 後使用水冷卻72來冷卻輥1,參見圖14。所形成之硬表 亦被稱作輥之工作層4且為輥1之總直徑2的約1/6 (參 圖1,數字6)。在輥筒表面溫度降低時經由包含引向減火 槽中之電線圈的一系列感應器來快速地加熱輥筒表面。 •應硬化之快速熱滲透及使用水即刻滅火產生輥之表面的^ 一硬度之經界定層。輥之頸部及核心在整個方法中均維持 在低溫下。在感應硬化期間,將通常介於5〇112至Table 2 Average solidification rate * c Μη Si Cr Mo Ni V Effect on segregation / Effect of eutectic carbide formation on microstructure Ingot 1 50 °C/min 0.8 0.5 1.0 7.2 1.4 &lt;1 1.8 Low segregation rate + pair See Figure 5A to Figure 5B for eutectic carbide control. Ingot 2 18 °C/min 0.8 0.5 1.0 7.2 1.4 &lt;1 1.8 Low segregation rate + control of eutectic carbide See Figure 6A to Figure 6B Test 1 &lt; 15 ° C / min 0.8 0.5 1.0 7.2 1.4 &lt; 1 1.8 High segregation rate - no control on eutectic carbides See Figure 7A to Figure 7C Table 2 shows the ingot at 1400 ° C at 90 mm depth of the ingot Experimental data for ingot testing by different average solidification rates (*) when cooled to 1200 °C. Comparative Example Example 3 demonstrates, for example, the effect of the process of the present invention and the chemical composition of the ingot on the microstructure of the ingot and thus also on the rolls of the present invention. Example 4 is a comparative example. Examples 3 and 4 show the microstructure of the ingots produced by experiments conducted in the laboratory with controlled coagulation devices and controlled cooling rates. The shape of the eutectic carbide network in the ingot is affected by the chemical composition used, see also Table 3. EXAMPLE 3 This example demonstrates the microstructure of ingot 1 fabricated in a laboratory by controlled deposition equipment and controlled cooling rates above 15 ° C/min in the solidification interval in accordance with the method of the present invention. . When a chemical composition comprising 1.4% Mo is used in accordance with the present invention, an open eutectic carbide system 750 is achieved in the ingot structure, see Figures 10A-10B. See also Table 3. 33 201236777 As seen in the roll i of the present invention, the open eutectic carbide system 750 is broken into dendritic patterns, and the eutectic carbide structure 752 does not form a closed co-deformed product, as in the comparative example. 4 'Test 2', but forming a dendrite arm in the web', see Figures 10A-10B, which show a picture of the microstructure of an ingot having 1.4% Mo made according to the method of the present invention. In accordance with the present invention, this open eutectic carbide system allows the rolls to be more easily milled than rolls made using amounts of Mo greater than 6%. Example 4 A test 2 ingot was produced using the method of the present invention and a composition in which the 'main component' differs from the present invention in terms of the amount of Mo according to the above examples but the differential chemical composition. This test 2 ingot was made in accordance with the method of the present invention by experiments conducted in the laboratory with a controlled solidification device and a controlled cooling rate of more than 15 C/min in the solidification interval. In Test 2, the amount of Mo was 2.77%, see also Table 3. A eutectic carbide system for ingots shaped in cells occluding eutectic carbides is produced in a process of the invention for making ingots using a chemical composition comprising 277% M〇, see Figures 11A-11B, And the eutectic carbide 852 forms a substantially isolated portion 85' as an island or segregation cell structure from Figure A to Circle 11 B showing the microstructure of Test 2. The white areas in Figs. A to 11B indicate the matrix; mainly iron 'black is a secondary carbide. The excessive addition of the alloying elements in s 2 results in the formation of a coarse carbide network. This is associated with the segregation of carbides. See also Table 3. 34 201236777 Table 3 Average solidification rate* C Μη Si Bu Mo Ni V Effect on microstructure Test 2 18 °C/min 0.8 0.6 1.11 7.19 2.77 &lt;1 0.44 Figure 11A to Figure shows the closed eutectic carbide network. Ingot 1 18 ° C / min 0.8 0.5 1.0 7.2 1.4 &lt; 1 1.8 Figures 10A to 10B show an open eutectic carbide network. Table 3 shows the ingots from 14 〇〇. 〇 Cool to 1200. Experimental data for ingot testing by different average solidification rates (*). Components other than Mo are within the intervals as described above. Step 18: Forging the ingot 34 into a roll 1 In a typical application of the invention, the ingot 34 produced in accordance with the foregoing steps of the present invention is then forged. In one embodiment of the invention, a forged ingot 34 is hot pressed using a method known per se for simultaneously reducing the cross-sectional area and changing the shape by pressing the ingot between the hammer and the anvil. The ingot is formed into a roll according to the present invention. The ingot is heated in a special furnace, see Figure 12 for a schematic of the forging step. The forging step 18 in accordance with the present invention includes the following steps, see Figure 12; preheating 56 ingot 34 for about 6 hours to between 8 Torr. (: to ΐ 2 〇 (Γ (: between or between 850. to 11 〇 (temperature between rc. Xiao first heating step % involves heating the ingot 34, from the surface of the ingot to the core. Adjusting the forging period The temperature makes it between 15 and the lake. In c or between 58 and C, this is higher than 12 (9). The higher temperature causes the structure of the block to be defective due to the burning of the roller. The reason why the temperature is kept at the temperature interval that is not indicated is a low force of 8 〇 (the temperature of rc causes the crack of the scale 35 201236777 to form. As the ingot 34 cools, it becomes stronger and less ductile, if deformed After this, the cracking can be induced. After the pre-heating of the ingot 1 (step 56), the forging block i is forged using the forging rate of 135 to 2. (step 6〇) β repeated forging step 6〇 and pre-heating Step 56, this forging cycle is generally referred to as heating 58. Heating is repeated 58 times as needed to form a roll in accordance with the present invention, see Figure 12. In the embodiment '3 to 6 times of heating 5 8 for forging according to this The roller 1 of the invention forging the ingot into a roll blank. The roll blank is a roll having a roll However, there is still a cartridge that lacks the final treatment to become a roll that can be used for rolling. In another embodiment, the ingot 34 is forged in several heats 58, see Figure 13 for a schematic view of a forged roll: a First, adjust the cross-sectional area of the ingot w in a few times or 1 to 2 times of heating 58, b) make one neck in one heating, c) another neck of the forging roll in the next heating Forging the steel composition according to the invention is more difficult to carry out due to the alloy content according to the invention which is higher than the standard steel grade of the forged example. During the forging, the ingot 34 is forged into the roll i according to the invention. Its diameter 32 is reduced by 3% to 3. For example, the dry 1 according to the invention preferably has a diameter of between 25 and 800 mm: a multi-collision J 1 , and the ingot 34 according to the invention Preferably, there is a diameter of 32 between 4 mm paws, a person, a person, a mm 曰 1 or a diameter of between 32 mm and 1100 mm. An important system, the ingot 34 has a manufacturing method at the ingot 34 36 201236777 The desired eutectic carbide microstructure formed during the solidification step 80. Hot ingot forging techniques can be used to forge an ingot 34 having a eutectic carbide microstructure according to the present invention having an amount of eutectic carbide of less than 5% by volume. Use by another method (eg, with less than 15 &lt;&gt;c/min solidification rate) formed ingots to make such large rolls to cause bursting during induction hardening or in a rolling mill. Step 20: preliminary heat treatment of the roll i in the manufacturing method of the present invention, by preliminary The heat treatment step is applied. In one embodiment of the invention, the roll is heated to 700 during the initial heat treatment according to the present invention. 〇 between 丨1〇〇〇c, 2 then keep the roller at its temperature for a certain period of time until satisfactory hydrogen diffusion has occurred. A preliminary heat treatment (normalization treatment and spheroidizing annealing) is performed in order to improve the workability of the rolls. Step 22. This roughing 22 In the manufacturing method of the present invention, by the roughing step 22, the rough force _22 formed according to the present invention means the outer layer of the removed material. In the practice of the present invention, the outer layer is removed during roughing. The roller is referred to as a black description before being subjected to rough reinforcement. The black body roll is then converted into a white body by removing the oxide layer on the surface of the light. Step 24: In the induction hardening of the roller 1, the roller is treated by induction hardening. Form the hard surface of the roll. Referring to Figure 14 for obtaining a schematic diagram of the induction hardening step during induction hardening of the roll in the manufacturing process of the present invention, the roll is slowly moved downward in one embodiment of the invention while 37 201236777 is passed during the induction hardening step. • The sensor configuration 70 applies a current or voltage frequency between 5 Hz and 1 000 Hz to the roller. Cooling roll 1 is cooled using water cooling 72 after the heating step, see Figure 14. The resulting hard watch is also referred to as the working layer 4 of the roll and is about 1/6 of the total diameter 2 of the roll 1 (see Figure 1, number 6). The surface of the roll is rapidly heated via a series of inductors comprising electrical coils leading to the tempering tank as the surface temperature of the rolls is lowered. • Rapid thermal penetration that should be hardened and the use of water to extinguish the fire immediately to create a defined layer of hardness on the surface of the roll. The neck and core of the roll are maintained at low temperatures throughout the process. During induction hardening, it will usually be between 5 and 112

之間的頻率施加於輥1之表面,且選自彼間隔之下半部的Z 頻率給予輥1較深之工作層4。影響所形成工作層之深卢的 其他因素為感應器70之間的間隙(若使用.幾個感應器又)。、 感應器70與輥i之間的間隙或距離亦影響所形成工作層* 之深度。根據本發明,感應硬化步驟24可為單—頻率、雔 頻率或更多頻率。 &amp; :::本發明之輥使用習知硬化技術來爆裂,且感應硬 化為根據本發明之輥的硬化的最合適技術。藉由冷水之高 流動性來執行在感應硬化24期間輥i之冷卻。 在本發明之一實施例中’藉由雙重感應硬化 且在感應硬化24之後的親1之冷卻係藉由水之 =^性來進行,水具有听之溫度且以約3GGm3/h之流 丰翰送’且該輥以〇 3 _之速度向下移動。在 實施例中,感應硬化步驟24採用〇5至2小時之間。 步驟26 :該輥之回火 38 201236777 在本發明之製造方法中,對輥丨回火。回火步驟之目 的係為了減少輥之脆性及調整硬度位準。回火步驟26為輥 之形成期間的至關緊要之步驟’目為其減小内應力。在回 火步驟期間,輥藉由碳化物之擴散及二次沈澱來達成其最 終微觀結構。在回火加熱步驟之間應用空氣冷卻。輥較佳 在450°C至530。(:下回火3次。回火步驟使輥獲得高於78〇 HV或介於78〇11¥至84〇HV之間的所需硬度位準。在回火 製程期間對時間及溫度之精確控制為關鍵的以達成具有完 全平衡之微觀結構(例如,回火馬氏體)之金屬,使得根 據本發明之方法製造的輥在回火之後包含具有低於5體積 〇/〇之殘餘奥氏體比率的回火馬氏體。 步驟2 8 :該輥之加工 在本發明之製造方法中,該輥在用在軋機中之前較佳 藉由加工步驟28來處理。舉例而f,在軋機處,藉由研磨 及其他表面處理來執行該輥之特殊應用表面處理以在輥之 表面上獲得所要粗糙度及相關摩擦力。輥之表面處理之實 例為(例如).雷射束紋理化(LBT )、電子束紋理化(EM ) 或放電紋理化(EDT )。 在一實施例中,藉由研磨及放電紋理化(edt)表面處 =來處理該輥。圖15A.至圖15B展示在放電紋理化之後包 含低鉻化合物之輥的表面的微觀結構。圖15C至圖15D展 不在放電紋理化之後的根據本發明之輥的表面之微觀結 構。在圖15D中在白層遍之下,存在再奥氏體化層及更 薄之軟化區,因為此等級具有高回火溫度。亦請注意,在 39 201236777 圖15D中之白層内,共晶碳化物302未曾受電弧能影響。 為進行比較’此等種類之碳化物不存在於圖15A至圖ΐ5β 中所描述之輥中。根據本發明之輥歸因於白層中存在硬共 晶碳化物而具有比標準等級輥(見圖丨5 A至圖丨5B )更好 之特性及效能。 圖18展示圖15D之更示意性之圖’表示根據本發明之 輥表面的微觀結構,其中新形成之共晶碳化物3〇2(歸因於 再炼化而形成)存在於白層3〇4卜先前形成之共晶碳化 物300亦展示於圖18中。圖18中之報表面說明在根據本 發明之放電紋理化之後表面看起來如何。比例尺3〇6表示5 y m。 藉由上述方法製造的根據本發明之輥i 根據本發明之-典型輥具有介於215職與_随之 間或介於250_至700 mm之間的直徑,包括頸部之确長 度至多6公尺,其中筒長度介於i公尺至3公尺之間二昆 之典型重量介於彻以1G_kg之間。根據本發明之_ 貫施例之輥的微觀結構之特徵在於包含具有低力5 之殘餘奥氏體比率的回火馬氏體,且其中該報包含小於5° 體積。/。共晶碳化物之開放共晶碳化物網 於·_ 840 Ην之間的硬度;及介於_3〇〇Mp)a展至= MPa之間的内部壓縮應力。根據本發明之化學組合物 親之此等特性係歸因於本發明之輥製造方法 之化學組合物。 F 口於季比 據本發明之觀意欲用在冷帶材礼機中,該軋機需要 40 201236777 而于受尚麼之雜。相彳由 工作輥,且在軋事方去發明之輥意欲在冷帶材軋機中用作 至仙乾^ = 中為合適的’且在加 之粗衅择如 在表面上可具有〇·3μηι至〇.5μ]ΏThe frequency between them is applied to the surface of the roller 1, and the Z frequency selected from the lower half of the interval gives the deep working layer 4 of the roller 1. The other factor affecting the deep layer of the working layer formed is the gap between the inductors 70 (if several sensors are used). The gap or distance between the inductor 70 and the roller i also affects the depth of the working layer* formed. In accordance with the present invention, the induction hardening step 24 can be a single frequency, a chirp frequency or more. &amp;:: The roll of the present invention is bursted using conventional hardening techniques and is induction hardened to the most suitable technique for hardening of the roll according to the present invention. The cooling of the roll i during the induction hardening 24 is performed by the high fluidity of the cold water. In one embodiment of the invention, the cooling of the parent by the double induction hardening and after the induction hardening 24 is performed by the water, and the water has a temperature of about 3GGm3/h. John sent 'and the roller moved down at a speed of 〇3 _. In an embodiment, the induction hardening step 24 is carried out for between 5 and 2 hours. Step 26: Tempering of the roll 38 201236777 In the manufacturing method of the present invention, the roll is tempered. The purpose of the tempering step is to reduce the brittleness of the rolls and to adjust the hardness level. The tempering step 26 is a critical step during the formation of the roll to reduce the internal stress. During the tempering step, the roll achieves its final microstructure by diffusion and secondary precipitation of the carbide. Air cooling is applied between the tempering heating steps. The rolls are preferably at 450 ° C to 530. (: tempering 3 times. The tempering step gives the roller a desired hardness level above 78 〇 HV or between 78 〇 11 ¥ and 84 〇 HV. Accurate time and temperature during the tempering process Control is critical to achieve a metal having a perfectly balanced microstructure (eg, tempered martensite) such that the roll made according to the method of the present invention contains residual austenite having less than 5 volumes 〇/〇 after tempering Body ratio of tempered martensite. Step 2 8: Processing of the roll In the manufacturing method of the present invention, the roll is preferably treated by processing step 28 before being used in a rolling mill. For example, f, at the rolling mill The special application surface treatment of the roll is performed by grinding and other surface treatments to obtain the desired roughness and associated friction on the surface of the roll. An example of the surface treatment of the roll is, for example, laser beam texturing (LBT) , electron beam texturing (EM) or discharge texturing (EDT). In one embodiment, the roll is treated by grinding and discharging the textured (edt) surface = Figure 15A. to Figure 15B shows the discharge a table containing rolls of low chromium compounds after texturing Fig. 15C to Fig. 15D show the microstructure of the surface of the roll according to the present invention after discharge texturing. In Fig. 15D, under the white layer, there is a re-auped layer and a thinner softening. Zone, because this grade has a high tempering temperature. Also note that in the white layer in Figure 15D of 39 201236777, the eutectic carbide 302 has not been affected by the arc energy. For comparison, 'these types of carbides do not exist in In the rolls described in Figures 15A to 5β. The rolls according to the present invention have better characteristics than standard grade rolls (see Fig. 5A to Fig. 5B) due to the presence of hard eutectic carbides in the white layer. Figure 18 shows a more schematic view of Figure 15D' showing the microstructure of the roll surface according to the present invention, wherein the newly formed eutectic carbide 3〇2 (formed due to re-refining) is present in white Layer 3〇4 previously formed eutectic carbide 300 is also shown in Figure 18. The surface of Figure 18 illustrates how the surface looks after discharge texturing in accordance with the present invention. Scale 3〇6 represents 5 μm. Roller i according to the invention produced by the above method According to the invention - a typical roll has a diameter between 215 and _ or between 250 and 700 mm, including a neck length of up to 6 meters, wherein the length of the barrel is between i meters and The typical weight of the two cylinders between 3 meters is between 1 G_kg. The microstructure of the roller according to the present invention is characterized by the inclusion of a tempered Markov with a residual austenite ratio of low force 5. Body, and wherein the report contains less than 5° volume. /. The hardness of the open eutectic carbide network of the eutectic carbide between · 840 Η ν; and between _3 〇〇 Mp) a to = MPa Internal compressive stress between. The chemical composition according to the present invention has such properties as the chemical composition attributed to the roll manufacturing method of the present invention. F is used in the cold strip ritual machine according to the present invention, and the mill needs 40 201236777 and is still subject to the stagnation. The roller which is invented by the work roll and which was invented in the rolling mill is intended to be used as a suitable one in the cold strip mill, and may have a 〇·3μηι on the surface. 〇.5μ]Ώ

之粗“度,在精軋機座中 R 此粗籽厣盔、^ , I.5 至2.5 μηι之粗糙度, 此粗‘度為初始機座中所要求的。 藉由參考以下實你丨膝 + 字更谷易地理解本發明。然而,此 專貫例思欲說明本發明之鈕 明之。Μ 輕特性,且不被理解為限制本發 ▼。纟4巾,將不同輥與根據本發 較。所有親包含量介於0.2重量%至〇,5重量%之心/比 本發明之兩個實例 在表4中的根據本發明之觀i备使用根據本發明之方 法、使用在凝固間隔期間在工作層中高於i5t/min之凝固 速率且亦使用感應加熱、使用5〇 Hz至25〇 &amp;之頻率及在 450C至530C下回火3次來製造的。 在表4中的根據本發明之輥2係使用根據本發明之方 法、使帛在凝固F曰 1隔期間在工作層巾immin之凝固速率 且亦使用感應加熱、使用50沿至25〇 Hz之頻率及回火3 -人來製造的,首先係在490。(:下、接著在490°C下且最後— 次回火係在48(TC下。圖19展示在距輥2之表面4mm深度 上取樣的在回火及感應硬化之後的輥的微觀結構。具有輥 之開放共晶網及共晶碳化物1032之微觀結構1034亦展示 於圖19中。 201236777 表4 輥 C Cr Mo V 硬度(HV) 平均位準 二次硬化尖峰 備註 測試4 0.6 5 1.1 0.25 700 無 在冷軋應用中為工作輥軟化 測試5 0.8 10 1.1 0.25 730 些微 為後期機座軟化-在早期機座 中為便利的 測試6 0.7 5 2 0.5 750 些微 不可能製造。歸因於在鍛造加 熱期間在高溫下5肥粒鐵之形 成而被拒絕。參見圖16A至圖 16D展示在具有低鉻含量之輥 的製造期間所產生之輥上的有 害缺陷502。有害缺陷502 (例如)為孔隙率及收縮。 測試7 0.9 8 2 2 820 尖銳地 適合於冷軋(鋁軋製所需要的) 輥1 0.9 8 1.5 1.45 800 尖銳地 適合於冷軋且與(例如)測試7 相比更易於研磨。 輥2 0.87 7.8 1.5 1.5 800 尖銳地 適合於冷軋且與(例如)測試7 相比更易於研磨。 表4中之輥的Μη含量皆在範圍0.4至0.5内,表4中 之輥的Si含量皆在範圍0.2至2,0内,Ni總是低於1%。 輥之應用 輥適合之應用為: 铭產業: -單機座4Hi不可逆軋機 鋼產業; -4Hi單機座可逆 -在連續及不連續方法中用於片材之4Hi多站串聯式4 及5機座 -用於馬口鐵的4Hi多站串聯式4及5機座 -用於片材之6Hi多站串聯式軋機 42 201236777 輥用途 根據本發明之鍛造輥適合於用作(例如)冷札札機或 (例如)以下各者中之工作輥或中間輥; -用於馬口鐵、片材、石夕鋼、銘或銅之早期及精乾機座、 可逆及不可逆機座的冷軋減縮軋機。 -冷軋回.火及/或表皮輥軋機; -具有紋理化或非紋理化表面的為2輥式(2 High) 4報 式(4-High)及6輥式(6-High)機座之軋機組態。 -AHSS鋼等級之冷軋。 報表面 表面紋理 已知輥之-個問題為表面紋理在輥之使用期間被磨 損。表面紋理為重要的,係因為其確保摩擦係數以避免帶 材滑動及/錢軌。此外,其確定給精軋製帶材之深拉及 塗漆至關緊要之淺層特性的帶材表面紋理。根據本發明之 輥展現歸因於輥之白層而保持輥之表面紋理的增加之能力 且其中白層包含硬共晶碳化物,* Mr· j- J马Μ/3。在工作層中;在 最終熱處理之後的本發明之輥_的料翻社槐丄η &lt;视旳锨觀結構由具有低於5體 積%之殘餘奥氏體比率的回火馬氏駚β 4咖 J w人馬氏體及細微地且均勻地分 散至基質中的碳化物(為MC及μ r r μ a p 汉M2C ( M=金屬,(^碳)) 組成。已展示此類型之微觀結構對於体 冉对於保持輥之表面紋理為 重要的。 粗糙度轉移 輥表面之粗縫度轉移在M % μ &lt;1之用期間改變。根據本發 43 201236777 明之輥展現在軋製期間使粗糙度轉移保持恆定的增加之能 力’此對於輥之壽命而言為重要的。此歸因於特別主張之 組合物且亦歸因於當製造輥時所使用之製造方法。 軋機中之自由排程軋製 在輥之使用期間之一問題為輥表面上積累之塵土在帶 材上留下軌跡線。在工作層中,根據本發明之輥歸因於以 下事實而具有堅固表面:本發明之輥的微觀結構包含具有 低於5體積%之殘餘奥氏體比率的回火馬氏體及細微地且 均勻地分散至基質中的碳化物(為MC及ΜΚ ),其中M指 金屬且C指碳。此特殊微觀結構增加自由排程軋製之可能 性0 剝落 已知輥之另一問題為輥内部之裂紋擴展係藉由累積應 力控制、藉由輥之軋製操作及殘餘内應力之場誘發。使用 中之輥受到一組複合應力。根據本發明之輥顯示低位準之 殘餘内應力且因此顯示更佳之抗剝落性,且此使軋機意外 事件率變低。 與具有與本發明之輥相同之合金組合物但使用另一種 製造方法製造的輥相比,本發明之輥的機械強度較佳。根 據本發.明之輥的機械強度係歸因於輥之工作層中形成之開 放共晶網。此開放共晶網係'在輥製造方法中在冷卻步驟期 間形成的。當製造鑄塊時在冷卻步驟期間高於丨似此之 凝固速率對於存在於根據本發明之财的開放網的形成為 至關緊要的。 44 201236777 此外,在輥之製造期間在硬化之後在高溫(例如,介 於450 C至530°C之間)下的各種回火處理之累積誘發輥之 内應力的重要鬆弛。藉由使用外部層之差溫加熱來最小化 内應力。根據本發明之輥的硬度穿透深度可控制在自輥表 面且向内ϊ測的20 mm與120 mm (直徑)之間。本發明之 輕的内部壓縮應力較佳介於_3〇〇 MPa至_5〇〇 Mpa (絕對值) 之間或(例如)低於_4〇〇 Mpa。 幸昆微觀結構 圖1 7A展示根據本發明之例示輥微觀結構的示意圖。 在圖17 A中看到枝晶臂21 〇,包含藉由形成開放碳化物網形 成共晶細胞結構204的共晶碳化物。包含形成共晶細胞2〇4 之枝晶臂210 (其在圖ι7Α中可見)的開放共晶網係歸因於 根據本發明之具體化學組合物而在方法中形成。比例尺8 表示 100 μηι。 在本發明之一實施例中’本發明之輥的微觀結構包含 僅遍佈細胞結構之一個顆粒或兩個顆粒上的開放共晶網。 比較起來,圖1 7Β展示封閉共晶網,其中共晶碳化物 2〇〇形成具有明顯分離之共晶細胞2丨2的封閉共晶網。此類 型之網在根據本發明之輥中為非所要的,此歸因於在輥包 含此類型之微觀結構時輥所具有之脆性。比例尺2丨4表示 100 jam 〇 已借助於在所附申請專利範圍之範疇内的不同實施例 來解釋本發明。 【圖式簡單說明】 45 201236777 圖1展不根據本發明之輥之示意圖片。 圖2展示根據本發明之輥製造方法之示意圖 圖3展示根據本發明之鑄塊之示意圖片: 圖4展示根據本發明之鑄塊之製造方法。 圖5A至圖5B展示使 報等級的鑄造微觀結構。 面圖來展示。 用根據本發明之製造方法製造之 該輥等級以輥等級之工作層之截 广A至圖6B展示使用根據本發明之製造方法製造之 輥等級的鑄造微觀結構。該輥等級以輥等級之工作層之截 面圖來展示。 圖7展示使用根據本發明之製造方法製造之親等級的 鎮造微觀結構,但在使用過⑽固料時出現偏差。該概 等級以輥等級之工作層之戴面圖來展示。 圖8展示根據本發明之親製造方法之凝固速率的第一 組實例。 圖9展示根據本發明之輥製造方法之凝固速率的第二 組實例。 圖10A至圖10B展示在使用根據本發明之製造方法時 在貫驗室條件下製造之鑄塊的鑄造微觀結構。 圖11A至圖11B展示在使用根據本發明之製造方法時 在實驗室條件下製造之鑄塊的鑄造微觀結構但在使用過高 Mo含量時出現偏差。 圖12展示根據本發明之鍛造之示意圖。 圖13展不藉由將鑄塊鍛造成根據本發明之輥來形成鑄 46 201236777 塊之步驟的示意圖。 圖14展示根據本發明之輥的具有不同頻率之漸進感應 硬化之示意圖。 圖15A至圖15B展示在表面紋理化(EDT紋理化)之 後的根據標準等級之輥的表面之微觀結構。 圖15C至圖15D展示在表面紋理化(EDT紋理化)之 後的根據本發明之輥的表面之微觀結構。 圖16A至圖16D展示在具有低鉻含量及高鉬含量之輥 的製造期間所產生之輥上的有害缺陷。 圖17A展示具有開放共晶網的根據本發明之微觀結構 的實施例。 圖17B展示具有封閉共晶網之微觀結構的實例,其中 共晶碳化物200形成具有明顯分離之共晶細胞2· 12之封閉 共晶網。 圖1 8展示表示在放電紋理化之後的根據本發明之親表 面之微觀結構的實例。 圖19展示在輥之回火及感應硬化之後的輥表面上之4 mm深度之輥微觀結構。 【主要元件符號說明】 47The thickness of the rough, in the finishing stand R, the rough seed 厣 helmet, ^, I.5 to 2.5 μηι roughness, this rough 'degree is required in the initial frame. By reference to the following you kneel The word is more readily understood by the present invention. However, this specific example is intended to illustrate the light characteristics of the present invention, and is not to be construed as limiting the hair. 纟 4 towel, different rollers and according to the present invention All of the pro-inclusions range from 0.2% by weight to 5%, 5% by weight of the heart / according to the two examples of the invention in Table 4 according to the invention, using the method according to the invention, used in the setting interval During the working period, the solidification rate is higher than i5t/min and is also manufactured by induction heating, using a frequency of 5 〇 Hz to 25 〇 & and tempering 3 times at 450 C to 530 C. Roll 2 of the invention uses the method according to the invention to set the solidification rate of the crucible in the working layer during the solidification F曰1 interval and also uses induction heating, using a frequency of 50 to 25 Hz and tempering 3 - person To manufacture, first at 490. (:, then at 490 ° C and finally - the second tempering at 48 (T C. Figure 19 shows the microstructure of the roll after tempering and induction hardening at a depth of 4 mm from the surface of the roll 2. The microstructure 1034 of the open eutectic net with rolls and eutectic carbide 1032 is also shown Figure 19. 201236777 Table 4 Roll C Cr Mo V Hardness (HV) Average Level Secondary Hardening Peak Remarks Test 4 0.6 5 1.1 0.25 700 No Work Roll Softening Test in Cold Rolling Applications 5 0.8 10 1.1 0.25 730 Minor Seat softening - a convenient test in the early base 6 0.7 5 2 0.5 750 is slightly impossible to manufacture. It was rejected due to the formation of 5 ferrite iron at high temperatures during forging heating. See Figure 16A to Figure 16D Defective defects 502 on the rolls produced during the manufacture of rolls having a low chromium content are shown. Harmful defects 502 (for example) are porosity and shrinkage. Test 7 0.9 8 2 2 820 Sharply suitable for cold rolling (aluminum rolling) Required) Roller 1 0.9 8 1.5 1.45 800 Sharply suitable for cold rolling and easier to grind than, for example, Test 7. Roller 2 0.87 7.8 1.5 1.5 800 Sharply suitable for cold rolling and with (for example) Test 7 More easy to study The Μη content of the rolls in Table 4 is in the range of 0.4 to 0.5, and the Si content of the rolls in Table 4 is in the range of 0.2 to 2,0, and Ni is always less than 1%. Applications are: Ming industry: - Stand-alone 4Hi irreversible rolling mill steel industry; -4Hi single-seat reversible - 4Hi multi-station tandem 4 and 5 stands for sheet in continuous and discontinuous methods - 4Hi for tinplate Station tandem 4 and 5 stands - 6Hi multi-station tandem mill for sheets 42 201236777 Roll use The forging rolls according to the invention are suitable for use as, for example, a cold-song machine or, for example, in the following Work roll or intermediate roll; - Cold rolling reduction rolling mill for tinplate, sheet, Shixia steel, Ming or copper early and precision machine base, reversible and irreversible machine base. - Cold rolling back. Fire and/or skin roll mills; - 2-roll (2-High) 4-seater (6-High) and 6-high (6-High) stands with textured or untextured surfaces Rolling mill configuration. - Cold rolling of -AHSS steel grade. Report Surface Surface Texture A problem with known rolls is that the surface texture is worn during use of the roll. Surface texture is important because it ensures a coefficient of friction to avoid strip sliding and/or money rails. In addition, it determines the surface texture of the strip for deep drawing and painting of the finished rolled strip to the critical shallow properties. The roll according to the present invention exhibits the ability to maintain an increase in the surface texture of the roll due to the white layer of the roll and wherein the white layer comprises a hard eutectic carbide, * Mr. j-J. In the working layer; after the final heat treatment, the roll of the present invention has a tempered Martens' β 4 having a residual austenite ratio of less than 5% by volume. Jw human martensite and finely and uniformly dispersed carbides in the matrix (for MC and μ rr μ ap Han M2C (M = metal, (^ carbon)). This type of microstructure has been shown for the body冉 It is important to maintain the surface texture of the roll. The rough transfer of the surface of the roughness transfer roll is changed during the period of M % μ &lt; 1. The roll according to the present invention 43 201236777 shows the transfer of roughness during rolling The ability to maintain a constant increase 'this is important for the life of the roll. This is due to the specially claimed composition and also to the manufacturing method used when manufacturing the rolls. Free-rolling rolling in rolling mills One problem during the use of the rolls is that the dust accumulated on the surface of the rolls leaves a trajectory on the strip. In the working layer, the rolls according to the invention have a solid surface due to the fact that the rolls of the invention are microscopic Structure contains less than 5 bodies % retained austenite ratio of tempered martensite and finely and uniformly dispersed into the matrix of carbides (MC and ΜΚ), where M means metal and C means carbon. This special microstructure increases free scheduling Possibility of rolling 0 Another problem with spalling of known rolls is that the crack propagation inside the rolls is induced by cumulative stress control, by rolling of the rolls and by the field of residual internal stress. The rolls in use are subjected to a set of composites. Stress. The roll according to the invention exhibits a low level of residual internal stress and thus exhibits better resistance to spalling, and this results in a lower mill accident rate. Same as the alloy composition having the same roll as the invention but using another manufacture The mechanical strength of the roll of the present invention is preferred over the rolls produced by the method. The mechanical strength of the roll according to the present invention is attributed to the open eutectic network formed in the working layer of the roll. This open eutectic network is Formed during the cooling step in the roll manufacturing process. The solidification rate above the similarity during the cooling step during the manufacture of the ingot is critical to the formation of the open web present in the invention according to the invention. 44 201236777 Furthermore, the accumulation of various tempering treatments at high temperatures (for example between 450 C and 530 ° C) after hardening during the manufacture of the rolls induces an important relaxation of the internal stress of the rolls by using an outer layer. Differential temperature heating to minimize internal stress. The hardness penetration depth of the roller according to the present invention can be controlled between 20 mm and 120 mm (diameter) from the surface of the roller and inwardly guessed. The light internal compression of the present invention The stress is preferably between _3 〇〇 MPa to _5 〇〇 Mpa (absolute value) or, for example, less than _4 〇〇 Mpa. Xingkun Microstructure Figure 1 7A shows an exemplary roll microstructure according to the present invention. Schematic. The dendrite arm 21 看到 is seen in Figure 17A and comprises a eutectic carbide that forms a eutectic cell structure 204 by forming an open carbide network. An open eutectic network comprising dendritic arms 210 forming eutectic cells 2〇4, which are visible in Figure Α7Α, is formed in the process due to the specific chemical composition according to the present invention. Scale 8 means 100 μηι. In one embodiment of the invention, the microstructure of the roll of the present invention comprises an open eutectic network spread over only one particle or two particles of the cell structure. In comparison, Figure 17 shows a closed eutectic network in which the eutectic carbide 2〇〇 forms a closed eutectic network with clearly separated eutectic cells 2丨2. A net of this type is undesirable in rolls according to the present invention due to the brittleness of the rolls when the rolls comprise a microstructure of this type. The scale 2 丨 4 represents 100 jam 〇 The invention has been explained by means of different embodiments within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS 45 201236777 Fig. 1 shows a schematic picture of a roller not according to the present invention. Figure 2 shows a schematic view of a method of manufacturing a roll according to the present invention. Figure 3 shows a schematic view of an ingot according to the present invention: Figure 4 shows a method of manufacturing an ingot according to the present invention. Figures 5A through 5B show the cast microstructure of the graded grade. The surface is shown. The roll grade manufactured by the manufacturing method according to the present invention is shown in the roll-level working layer of the roll grade A to Fig. 6B showing the cast microstructure of the roll grade manufactured using the manufacturing method according to the present invention. This roller grade is shown in a cross-sectional view of the working layer of the roller grade. Figure 7 shows a pro-grade reinforced microstructure fabricated using the manufacturing method according to the present invention, but with variations in the use of (10) solids. This level is shown in the wear level of the working layer of the roller level. Figure 8 shows a first set of examples of the solidification rate of the pro-manufacturing method in accordance with the present invention. Figure 9 shows a second set of examples of the solidification rate of the roll manufacturing method according to the present invention. Figures 10A through 10B show the cast microstructure of an ingot manufactured under laboratory conditions when using the manufacturing method according to the present invention. Figures 11A to 11B show the cast microstructure of an ingot manufactured under laboratory conditions when using the manufacturing method according to the present invention, but deviation occurs when an excessively high Mo content is used. Figure 12 shows a schematic view of the forging according to the present invention. Figure 13 shows a schematic view of the steps of forming a cast 46 201236777 block by forging the ingot into a roll according to the present invention. Figure 14 is a schematic illustration of progressive induction hardening of rolls having different frequencies in accordance with the present invention. Figures 15A-15B show the microstructure of the surface of a roll according to a standard grade after surface texturing (EDT texturing). Figures 15C-15D show the microstructure of the surface of the roll according to the present invention after surface texturing (EDT texturing). Figures 16A through 16D show the detrimental defects on the rolls produced during the manufacture of rolls having a low chromium content and a high molybdenum content. Figure 17A shows an embodiment of a microstructure in accordance with the present invention having an open eutectic network. Figure 17B shows an example of a microstructure having a closed eutectic network in which eutectic carbide 200 forms a closed eutectic network with distinctly separated eutectic cells 2·12. Figure 18 shows an example showing the microstructure of the pro-surface according to the present invention after discharge texturing. Figure 19 shows the roll microstructure at a depth of 4 mm on the surface of the roll after tempering and induction hardening of the roll. [Main component symbol description] 47

Claims (1)

201236777 七、申請專利範圍: 1. 一種鍛造輥(1 ),其包含鋼組合物,該鋼組合物按重 量%計包含, 0.8%至小於(&lt;)1%之C, 0.2%至 0.5%之 Μη, 0.2%至 2.0%之 Si, 7.0%至 13.0%之 Cr, 0.6%至 1.6%之 Mo, 大於(&gt;)1.0%至 3.0%之 V ’ 該鋼之剩餘部分實質上為Fe及可能附帶及/或可能不 可避免之雜質; 且其中該輥(1 )之微觀結構包含: 回火鳥氏體,具有小於(&lt;)5體積%之殘餘奥氏體比 率;及 開放共晶碳化物網,具有小於(&lt;)5體積%之共晶碳 化物; 且其中該輥(1 )展現: 介於780 HV至840 HV之間的硬度;及 介於-3 00 MPa至-5 00 MPa之間的内部壓縮應力。 2.如前述申請專利範圍之輥’其中該開放共晶碳化物網 劃出共晶細胞之細胞狀圖案。 之輥,其中該開放共晶 之輥,其中該微觀結構 3. 如前述申請專利範圍中任一項 碳化物網包含枝晶臂。 4. 如前述申請專利範圍中任一項 48 201236777 至少存在於該輥之工作層中。 5 ·如前述申請專利範圍中任一項之輥,其具有鋼級合 物,該鋼組合物按重量。計由以下各者組成: 0.8%至小於(&lt;)1%之C ’ 0.2%至 0.5%之 Μη ’ 0.2%至 2.0%之 Si, 7.0%至 13.0%之 Cr ’ 0.6%至 1.6%之 Mo, 大於(&gt;)l.〇Q/〇至 3.0%之 V, 小於(&lt;)0.015〇/〇之 P,及 小於(&lt;)0.015%之3,及 小於(&lt;)1%之Ni, 小於(&lt;)30ppm之〇2,及 小於(&lt;)100 ppm之N2,及 小於(&lt; )3 ppm 之 H2, 小於(&lt;)2%之W,及 小於(&lt;)1%之Nb,及 小於(&lt;)1%之Ti,及 小於(&lt;)0.5%之Ta,及 小於(&lt;)0.5%之 Zr, 該鋼之剩餘部分實質上為 可避免之雜質。 “及可能附帶及/或可以 6·如前述申請專利範圍中任— 中之員之輥,其中該鋼組合彩 甲t L 3置按總輥重量之重 里;丨於〇.8%至〇 99% 〇之 49 201236777 月j边申凊專利範圍中任— 中之C八县項之觀’其中該鋼組合物 L含量按總輥 間。 量/〇叶介於0.85%至0.9%(:之 8.如前述申請專利範圍中任—由 中之Mr»人旦 項之親’其中該鋼組合物 疋Mn合量按總輥重量之重量 之間。 里/0叶介於0.4%至〇_5% Μη 該鋼組合物 0.2%至 1.5% Si 之 中之Si 間 汝月1J述申請專利範圍中任_ jg &gt; ± 置按總輥重量之重量%計介於 Q. ^ θ 項之輥,其中 S1含贯松她姑去_曰_ ι _ 〇·如則述申請專利範圍中任一 物中之項之輥,其中該鋼組合 τ h 3 S按總輥重量之 之間。 篁/〇计介於0.85%至1.15% Si 如前述申請專利範圍中任一 物中之CV人旦 貝之輥,其中該鋼組合 τ I Cr含量按總輥重量之 之間。. $ /〇β十介於7.0%至11% Cr 12. 如前述申請專利範圍令任一 物中之c . 之魏,其中該鋼組合 心^ a里按總輥重量之重 8.〇% Cr之間。 〇nt,丨於7.3%至小於(&lt;) 13. 如前述申請專利範圍中任一 物中之Mo冬θ + 之%,其中該鋼組合 &lt; Mo 3 $按總輥重量之 Mo之間。 里/〇叶介於1.45%至1.55% 士刖述申請專利範圍中任一 物中之Ni含晉 &gt; 祕±&lt; 輥,其中該鋼組合 3 ®按總輥重量之重量。 篁。6十小於(&lt;)〇.3 Ni。 50 201236777 15.如前述申請專利範圍中任— &amp; 士 — 人θ 1 . ’之輥,其中該鋼組合 物中之V 3 $知總輥重量之重量% T ;丨於1.3%至2.1% V之 間。 中4壬_ 負之輥,其中該鋼組合 重$%計介於1.3%至1.6% V之 16.如前述申請專利範圍 物中之V含量按總輥重量之 間0 之幸昆,其中該鋼組合 17.如前述申請專利範圍中任一項 物按重量%計由以下各者組成: 0.8%至 0.99%之 C,及 0.4%至 0.5%之 Μη,及 0.2%至 1.5%之 si ,及 7.0%至 Iiq/q之 cr,及 0.6%至 1.6%之 Mo,及 小於(&lt; )1.0之Ni,及 1.0%至 2.1%之 v,及 小於(&lt;)〇.〇15%之卩,及 小於(&lt;)0,015%之S,及 小於(&lt; )30 ppm之02,及 小於(&lt; )100 ppm之N2,及 小於(&lt;)3 ppm之H2,及 3亥輥之剩餘部分實質上為Fe及可能附帶及/或可能不 4避免之雜質。 18·如前述申請專利範圍中任一項之輥,其中該鋼組合 物按重量%計由以下各者組成: 51 201236777 0.85%至 0.9%之 C,及 0.4%至 0.5%之 Μη,及 0.85%至 1.15%之 Si ’ 及 7.3。/〇至小於(&lt;)8.〇%之(:1',及 1.45%至 1.55%之 M〇,及 小於(&lt;)0.3之Ni,及 1.3%至 1.6%之 V,及 小於(&lt;)0.015%之P,及 小於(&lt; )0.0 1 5 %之S,及 小於(&lt;)30 ppm之〇2,及 小於(&lt;)100 ppm之N2,及 小於(&lt;)3 ppm之H2,及 該輥之剩餘部分實質上為Fe 可避免之雜質。 及可能附帶及/或 19. 如前述申請專利範圍中任一項之親 態以用作冷軋中之工作輥。 20. 如前述申請專利範圍中任一項之輥 大於400 kg之重量。 21. 如前述申請專利範圍中任一項之輥 在215 mm至800 mm之範圍中的直徑。 22. 一種用於製造非鍛造輥之方法, 驟: 其進 其進 其進 該方法包- 可能不 步經級 步具有 步具有 以下步 a.提供鋼組合物,其按重量%計包含 〇·8%至小於(&lt;)1%之c , 52 201236777 ♦ 0.2%至 〇·5%之 Μη, 0.2%至 2.0%之 Si, 7.0%至 13.0%之 Cr, 0.6%至 1.6%之 Mo, 大於(&gt;)1.0%至 3.0%之 V, §玄鋼之剩餘部分實質上為Fe及可能附帶及/或可能不 可避免之雜質; ^ b. 製造鑄塊,其在凝固間隔中在該鑄塊之該工作層中 維持高於15°C/min之凝固速率; c. 將該鑄塊鍛造成一輥; d·藉由感應加熱來使該親硬化; e.在介於450。〇至530。(:之間的溫度下對該輥進行回火 以達到介於780 HV至840 HV之間的硬度; 藉以達成該輥(1 )之微觀結構,該微觀結構包含: 回火馬氏體,具有小於(&lt;)5體積%之殘餘奥氏體比 率;及 開放共晶碳化物網,具有小於(&lt;)5體積%之共晶碳 化物; 且其中該輥(1 )展現: 介於780 HV至840 HV之間的硬度;及 介於-300 MPa至_500 MPa之間的内部壓縮應力。 23.如申請專利範圍第22項之方法,其中製造該鑄塊, 該鑄塊在該工作層以及核心中維持在以下範圍中之凝固速 率.15ΐ/ηιιη 至 55°C/min ’ 或者 17ac/min 至 5〇〇c/min,或 53 201236777 者 35 C/min 至 55 C/min,或者 45°C/min 至 24_如申請專利範圍第22至23項中任一項之方法,其 中製造該鑄塊,該鑄塊在該凝固間隔中在該鑄塊之嗜工作 層中維持高於3 5 °C/min之凝固速率》 25·如申請專利範圍第22至24項中任一項之方法,其 中對於該鑄塊,該凝固間隔介於14〇〇。〇至12〇〇它之間。。 26·如申請專利範圍第22至乃項中任一項之方法其 中製造該鑄塊,該鑄塊藉由根據該凝固速率之預定函數來 控制安培電流源來在電渣精煉爐(ESR)技術製程中維持一 預選之凝固速率。 27.如申請專利範圍第22至26項中任一項之方法,其 中该將該鑄塊鍛造成輥的步驟包含以下步驟: 將該鑄塊加熱至介於8〇〇它至12〇〇。〇之間或介於 850 C至11 〇〇 C之間的溫度,較佳持續約6個小時之時段; b.在高於800。(:或高於85〇。〇之一溫度下鍛造該鑄塊; c•重複步驟a-b’直至該鑄塊已形成為具有所要形狀及 大小之輥為止。 28·如申請專利範圍第22至27項中任一項之方法,在 該鍛造步驟之後,其進一步包含初步熱處理步驟,較佳加 、丨於700 C至1100°c之間或介於800°c至900°C之間的 溫度,古女&amp; 十 Jg 上 。茨初步熱處理步驟可包括氫擴散處理。 上29.如申請專利範圍第22至29項中任一項之方法,其 中亥對该輥進行回火之步驟包含以下步驟: a•將該親加熱至約450°C至53〇t:,較佳3次, 54 201236777 b.在該加熱步驟之間用空氣冷卻該輥。 30.如申請專利範圍第22至29項中任一項之方法,其 進一步包含對該輥進行加工以對包含共晶碳化物之白層進 行紋理化。 3 1.如申請專利範圍第30項中任一項之方法,其中該白 層中之該等共晶碳化物係選自M7C3。 32.如申請專利範圍第22至3 1項中任一項之方法,其 進一步包含如申請專利範圍第1至21項中任一項之特徵。 33·—種藉由方法製造之鍛造輥(1)’該方法包含以下 步驟: a.提供鋼組合物,其按重量%計包含, 0-8%至小於(&lt; )1 %之c, 0.2%至 0.5%之 Μη, 〇·2%至 2.0%之 Si, 7.0%至 13.0%之 Cr, · 0.6%至 1.6%之 Mo, 大於(&gt; )1. 〇 % 至 3. 〇 % 之 v, s亥鋼之剩餘部分實質上為Fe及可能附帶及/或可能不 可避免之雜質; b· 1 ^鎿塊’其在凝固間隔中在該鑄塊之該工作層中 維持冋於1 51: /min之凝固速率; C .將該鑄塊鍛造成一輥; •藉由感應加熱來使該輥硬化; e,對該輥進行回火; 55 201236777 藉以達成該輥(1 )之微觀結構’該微觀結構包含: 回火馬氏體’具有小於(&lt;)5體積%之殘餘奥氏體比 率;及 開放共晶碳化物網,具有小於(&lt;)5體積%之共晶碳 化物; 且其中該輥(1 )展現: 介於780 HV至840 HV之間的硬度;及 介於-300 MPa至-500 MPa之間的内部壓縮應力。 34_如申請專利範圍第33項之輥,其進一步包含如申請 專利範圍第1至3 2項中任一項之特徵。 35.—種在如申請專利範圍第1至34項中任一項之輥的 製造中的中間產品鑄塊,該鑄塊包含一鋼組合物,該鋼組 合物按重量%計包含: 〇 · 8 °/。至小於(&lt; )1 〇/。之匸, 0.2%至 0.5%之 Μη, 〇·2%至 2.0%之 Si, 7.〇%至 13.0%之 Cr, 〇6%至1.6%之]^〇, 大於(&gt; )1 ·0%至 3.0%之 V, 5玄鋼之剩餘部分實質上為Fe及可能附帶及/或可能不 可避免之雜質; 且其中自該鑄塊生成之該最終輥之微觀結構包含: 回火馬氏體’具有小於(&lt;)5體積%之殘餘奥氏體比 率; 56 201236777 及 開玫共晶碳化物網 化物 ’具有小於(&lt; )5體積%之共晶碳 36. 如别述申請專利範圍之中間產品鑄塊,其進一步包 含如申請專利節If)埜,p, 祀固第1至34項中任一項之特徵。 37. 種如申請專利範圍第i至21項或第33至34項中 任項之輥在需要高軋製負載之冷礼材料上的用途。 38. 一種如申請專利範圍第1至21項或第33至34項中 任一項之幸昆在如同AHSS鋼等級之高強度材料之冷乳上的 用途。 39. 一種如中請專利範圍帛4 或第33至34項中 之任一項的輥在對以下各者之選擇上的用途: 用於馬口鐵、片材、石夕鋼、不鐵鋼、銘及銅之早期及 精軋機座、可逆及不可逆機座的冷礼減縮軋機;或 冷軋回火及/或表皮輥軋機;或 具有紋理化或非紋理化表面的為2 式(4-哪)及6輥式(6_High)機座之乾機組^。】g、4輥 後-種如申請專利範圍第】至21項或第33^項中 之任一項的輥作為工作輥之用途。 41. 如前述申請專利範圍中任一 之報、用於製造輥之方法及/或輥之用/、藉由方法製造 層的。 用途’其令該報為無塗 42. 如前述中請專利範圍中任一項 — 之輥、用於製造輥之方法及/或輥用昆由方法製造 用途,其令該輥塗佈有 57 201236777 可選塗層,例如鉻塗層。 八、圖式· (如次頁) 58201236777 VII. Patent Application Range: 1. A forging roll (1) comprising a steel composition comprising, by weight%, 0.8% to less than (&lt;) 1% C, 0.2% to 0.5% Μ, 0.2% to 2.0% Si, 7.0% to 13.0% Cr, 0.6% to 1.6% Mo, greater than (&gt;) 1.0% to 3.0% V 'The remainder of the steel is substantially Fe and Impurities that may be incidental and/or potentially unavoidable; and wherein the microstructure of the roll (1) comprises: tempered bird body having a residual austenite ratio less than (&lt;) 5 vol%; and open eutectic carbonization a mesh having less than (&lt;) 5% by volume of eutectic carbide; and wherein the roll (1) exhibits: a hardness between 780 HV and 840 HV; and between -300 MPa to -5 00 Internal compressive stress between MPa. 2. A roll as in the aforementioned patent application wherein the open eutectic carbide network delineates a cell-like pattern of eutectic cells. Roll, wherein the open eutectic roll, wherein the microstructure 3. Any of the foregoing patent ranges includes a dendrite arm. 4. Any one of the aforementioned patent claims 48 201236777 is present in at least the working layer of the roll. A roll according to any one of the preceding claims, which has a steel grade, the steel composition being by weight. It consists of: 0.8% to less than (&lt;) 1% of C '0.2% to 0.5% of Μ '0.2% to 2.0% of Si, 7.0% to 13.0% of Cr ' 0.6% to 1.6% Mo, greater than (&gt;) l. 〇Q/〇 to 3.0% of V, less than (&lt;) 0.015 〇 / 〇 P, and less than (&lt;) 0.015% of 3, and less than (&lt;) 1% Ni, less than (&lt;) 30 ppm of 〇2, and less than (&lt;) 100 ppm of N2, and less than (&lt;)3 ppm of H2, less than (&lt;) 2% of W, and less than (&lt; 1% of Nb, and less than (&lt;) 1% of Ti, and less than (&lt;) 0.5% of Ta, and less than (&lt;) 0.5% of Zr, the remainder of the steel is substantially avoidable Impurities. "and possibly accompanying and/or may be a roller of the member of the above-mentioned patent application, wherein the steel combination color armor t L 3 is placed in the weight of the total roller weight; 丨 〇 8% to 〇 99 % 〇之49 201236777 Month 凊 凊 凊 凊 凊 — — — — — 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中8. In the scope of the aforementioned patent application - by the middle of the Mr» person's relationship, wherein the steel composition 疋 Mn amount is between the weight of the total roll weight. 里 / 0 leaves between 0.4% to 〇 _ 5% Μη The steel composition is 0.2% to 1.5% Si among the Si 汝 1 1 1 _ jg &gt; ± 重量 according to the weight of the total roll weight Q. ^ θ , wherein S1 contains a stalk of her _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A roll of CV human Danbee in the range of 0.85% to 1.15% Si, as in any of the preceding claims, wherein the steel combination τ I Cr content is between the total roll weights $ / 〇 β 十 between 7.0% and 11% Cr 12. In the above-mentioned patent application, in any of the c, Wei, wherein the steel combination core is a weight of the total roll weight 8. Between 5% and 5%, 〇nt, 丨7.3% to less than (&lt;) 13. % of Mo winter θ + in any of the aforementioned patent claims, wherein the steel combination &lt; Mo 3 $ by total roll Between the weights of Mo. The inner/leaf leaves are between 1.45% and 1.55%. The Ni-containing inclusions in any of the patent applications are as follows: the roll, wherein the steel combination 3® is based on the total roll weight. The weight of 6.6 is less than (&lt;) 〇.3 Ni. 50 201236777 15. The roller of any of the preceding claims, & 士 - human θ 1 . ', wherein V 3 in the steel composition % knows the weight of the total weight of the weight T; 丨 between 1.3% and 2.1% V. Medium 4壬 _ negative roll, wherein the steel combination weight $% is between 1.3% and 1.6% V of 16. As mentioned above The V content in the patent application range is 0 in the total roll weight, wherein the steel combination 17. Any one of the foregoing patent claims is composed of the following: % by weight: 0.8% to 0.99% of C, and 0.4% to 0.5% of Μ, and 0.2% to 1.5% of si, and 7.0% to Iiq/q of cr, and 0.6% to 1.6% of Mo, and less than (&lt;)1.0 Ni, and 1.0% to 2.1% of v, and less than (&lt;)〇.〇15%卩, and less than (&lt;)0,015% of S, and less than (&lt;)30 ppm of 02, and less than ( &lt;) N2 of 100 ppm, and H2 less than (&lt;) 3 ppm, and the remainder of the 3H roll is substantially Fe and impurities that may be incidental and/or may not be avoided. A roll according to any one of the preceding claims, wherein the steel composition consists of: % by weight: 51 201236777 0.85% to 0.9% C, and 0.4% to 0.5% Μ, and 0.85 % to 1.15% of Si ' and 7.3. /〇 to less than (&lt;) 8.〇%(:1', and 1.45% to 1.55% of M〇, and less than (&lt;)0.3 of Ni, and 1.3% to 1.6% of V, and less than ( &lt;) 0.015% of P, and less than (&lt;)0.0 1 5 % of S, and less than (&lt;) 30 ppm of 〇2, and less than (&lt;)100 ppm of N2, and less than (&lt;) 3 ppm of H2, and the remainder of the roll is substantially Fe-avoidable impurities. And may be accompanied by and/or 19. The state of any of the preceding claims is used as a work roll in cold rolling. 20. The roll of any of the preceding claims, which is greater than 400 kg. 21. The roll of any of the preceding claims in the range of 215 mm to 800 mm. The method of non-forging rolls, the step of: entering the method package into it - may not step through the steps having the following steps a. Providing a steel composition comprising 〇·8% to less than (% by weight) ;) 1% of c, 52 201236777 ♦ 0.2% to 〇·5% of Μη, 0.2% to 2.0% of Si, 7.0% to 13.0% of Cr, 0.6% to 1.6% of Mo, greater than (&gt;)1.0 % to 3 .0%V, § The remainder of the steel is essentially Fe and possibly incidental and/or possibly unavoidable impurities; ^ b. Manufacture of ingots that are maintained in the working layer of the ingot during the solidification interval a solidification rate higher than 15 ° C / min; c. forging the ingot into a roll; d · by the induction heating to make the pro-hardening; e. between 450. 〇 to 530. (: between the temperature The roll is tempered to achieve a hardness of between 780 HV and 840 HV; thereby achieving the microstructure of the roll (1), the microstructure comprising: tempered martensite having less than (&lt;)5 % by volume of retained austenite ratio; and an open eutectic carbide network having less than (&lt;) 5% by volume of eutectic carbide; and wherein the roll (1) exhibits: between 780 HV and 840 HV And the internal compressive stress of between -300 MPa and _500 MPa. 23. The method of claim 22, wherein the ingot is manufactured, the ingot is maintained in the working layer and the core The solidification rate in the following range is 15ΐ/ηιιη to 55°C/min' or 17ac/min to 5〇〇c/min, </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; A method of maintaining a solidification rate of more than 35 ° C/min in the tropopause of the ingot, wherein the method of any one of claims 22 to 24, wherein the ingot is coagulated The interval is between 14 〇〇. 〇 to 12〇〇 between it. . The method of any one of claims 22 to wherein the ingot is manufactured by an electroslag refining furnace (ESR) technique by controlling an amperage current source according to a predetermined function of the solidification rate. A preselected solidification rate is maintained during the process. The method of any one of claims 22 to 26, wherein the step of forging the ingot into a roll comprises the step of: heating the ingot to between 8 Torr and 12 Torr. The temperature between 〇 or between 850 C and 11 〇〇 C preferably lasts for about 6 hours; b. is above 800. (: or above 85 〇. Forging the ingot at one temperature; c • repeating steps a-b' until the ingot has been formed into a roll of the desired shape and size. 28) The method of any one of the items 27, after the forging step, further comprising a preliminary heat treatment step, preferably between 700 C and 1100 ° C or between 800 ° C and 900 ° C The temperature, the ancient female &amp; ten Jg. The preliminary heat treatment step may include a hydrogen diffusion treatment. The method of any one of claims 22 to 29, wherein the step of tempering the roller comprises The following steps: a • heating the pro to about 450 ° C to 53 ° t: preferably 3 times, 54 201236777 b. cooling the roller with air between the heating steps. 30. The method of any of the preceding claims, further comprising processing the roll to texture the white layer comprising the eutectic carbide. The eutectic carbides in the white layer are selected from M7C3. The method of any one of clauses 22 to 31, further comprising the feature of any one of claims 1 to 21 of the patent application. 33. A forging roll (1) manufactured by the method The method comprises the steps of: a. providing a steel composition comprising, by weight %, 0-8% to less than (&lt;) 1% of c, 0.2% to 0.5% of Μη, 〇·2% to 2.0% of Si , 7.0% to 13.0% of Cr, · 0.6% to 1.6% of Mo, greater than (&gt;)1. 〇% to 3. 〇% of v, the remainder of s Haigang is substantially Fe and may be attached and / Or an unavoidable impurity; b. 1 ^鎿 block' which maintains a solidification rate of 1 51: /min in the working layer of the ingot during the solidification interval; C. forging the ingot into a roll; • hardening the roll by induction heating; e, tempering the roll; 55 201236777 to achieve the microstructure of the roll (1) 'The microstructure comprises: tempered martensite' has less than (&lt;) a residual austenite ratio of 5 vol%; and an open eutectic carbide network having less than (&lt;) 5% by volume of eutectic carbide; and wherein The roller (1) exhibits: a hardness of between 780 HV and 840 HV; and an internal compressive stress of between -300 MPa and -500 MPa. 34_, according to the roller of claim 33, further Including the features of any one of the first to third aspects of the application of the patent application. 35. An intermediate product ingot in the manufacture of a roll according to any one of claims 1 to 34, the ingot A steel composition comprising, by weight %, 〇· 8 °/ is included. To less than (&lt; )1 〇/. Thereafter, 0.2% to 0.5% of Μη, 〇·2% to 2.0% of Si, 7.〇% to 13.0% of Cr, 〇6% to 1.6% of ^^〇, greater than (&gt;)1 ·0 % to 3.0% of V, the remainder of the 5 Xuan Gang is substantially Fe and possibly incidental and/or possibly unavoidable impurities; and wherein the microstructure of the final roll formed from the ingot comprises: tempered martensite 'having a residual austenite ratio of less than (&lt;) 5 vol%; 56 201236777 and open eutectic carbide networked 'having less than (&lt;) 5% by volume of eutectic carbon 36. The intermediate product ingot further comprises the features of any one of items 1 to 34 as claimed in the patent section If), p, and tamping. 37. Use of a roller as claimed in any of claims i to 21 or 33 to 34 for a cold-rolling material requiring a high rolling load. 38. Use of Xingkun in any of the patent applications Nos. 1 to 21 or 33 to 34 on cold milk of high strength materials such as AHSS steel grades. 39. Use of a roller as claimed in any of the scope of patents 帛4 or 33 to 34 for the selection of: for tinplate, sheet, shishan steel, non-ferrous steel, Ming And the early stage of copper and the finishing stand, the reversible and irreversible stand cold rolling reduction mill; or the cold rolling tempering and / or skin rolling mill; or the textured or untextured surface is 2 (4-) And 6-roll (6_High) machine base dry unit ^. 】 g, 4 rolls, and the like, as the work roll, is used as a work roll. 41. A layer as claimed in any one of the preceding claims, a method for making a roll and/or a roll, or a layer produced by the method. Use 'There is a coating that is not coated 42. Any of the above-mentioned patent ranges - a method for manufacturing a roll and/or a roll for a method of manufacturing a roll, the roll is coated with 57 201236777 Optional coating, such as chrome coating. Eight, schema · (such as the next page) 58
TW100107296A 2011-03-04 2011-03-04 A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll TWI471420B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100107296A TWI471420B (en) 2011-03-04 2011-03-04 A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100107296A TWI471420B (en) 2011-03-04 2011-03-04 A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll

Publications (2)

Publication Number Publication Date
TW201236777A true TW201236777A (en) 2012-09-16
TWI471420B TWI471420B (en) 2015-02-01

Family

ID=47222932

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100107296A TWI471420B (en) 2011-03-04 2011-03-04 A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll

Country Status (1)

Country Link
TW (1) TWI471420B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768588B2 (en) * 1989-06-26 1995-07-26 株式会社日立製作所 Method for manufacturing metal rolling rolls
DE4143012C2 (en) * 1991-12-24 1993-11-25 Thyssen Edelstahlwerke Ag Use of steel for cold rolling
JPH06145886A (en) * 1992-11-11 1994-05-27 Kawasaki Steel Corp Material for rolling roll excellent in wear resistance

Also Published As

Publication number Publication date
TWI471420B (en) 2015-02-01

Similar Documents

Publication Publication Date Title
RU2661692C2 (en) Hot-rolled steel sheet for variable-thickness rolled blank, variable-thickness rolled blank, and method for producing same
TWI468532B (en) A hot stamp molded article and manufacturing method thereof
CN103276298B (en) It is high hard that high-ductility is cold and hot doubles as die steel and production method thereof
TWI475112B (en) Steel plate, plated steel plate, and method of manufacturing the same
RU2572269C2 (en) Forged roll complying with requirements of cold-rolled product manufacturing and method of such roll production
US8920296B2 (en) Forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll
WO2018151324A1 (en) Steel sheet and manufacturing method therefor
WO2007077637A1 (en) Centrifugally cast composite roll
JP2019214076A (en) Metal steel production by slab casting
CN105765096A (en) Recrystallization, Refinement, and Strengthening Mechanisms For Production Of Advanced High Strength Metal Alloys
KR101886030B1 (en) Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
TW201739931A (en) Rolling rod outer layer and composite rolling rod
EP2495340B1 (en) A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll
JP2018059196A (en) High strength ultrathin steel sheet and manufacturing method therefor
JP6114682B2 (en) Forging roll satisfying requirements of cold rolling industry and method for producing the roll
CZ20013818A3 (en) Steel-made machine tools for machining metals, its employment, and manufacture
JP2012184471A (en) Forging roll meeting requirement of cold rolling industry and method for manufacturing the same
TW201236777A (en) A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll
JP2012184471A5 (en)
KR101305410B1 (en) A forged roll meeting the requirements of the cold rolling industry and a method for production of such a roll
CN113490756B (en) Steel sheet, member, and method for producing same
BRPI1101419A2 (en) a forged roll that meets the requirements of the cold rolling industry and a method for producing such a roll
CN110114487B (en) Magnesium alloy plate and preparation method thereof
TW201636432A (en) Cold work tool and method for manufacturing same