TW201236559A - Plant cultivation device - Google Patents

Plant cultivation device Download PDF

Info

Publication number
TW201236559A
TW201236559A TW101105050A TW101105050A TW201236559A TW 201236559 A TW201236559 A TW 201236559A TW 101105050 A TW101105050 A TW 101105050A TW 101105050 A TW101105050 A TW 101105050A TW 201236559 A TW201236559 A TW 201236559A
Authority
TW
Taiwan
Prior art keywords
plant
radical
amount
generating portion
water vapor
Prior art date
Application number
TW101105050A
Other languages
Chinese (zh)
Inventor
Yukihiro Masuda
Tetsuya Maekawa
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of TW201236559A publication Critical patent/TW201236559A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Water Supply & Treatment (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Cultivation Of Plants (AREA)

Abstract

A plant cultivation apparatus (10) has a mist generating portion (12) and a sliding body (11). The mist generating portion (12) generates a microparticle including a radical when the density of the radical exceeds 5x10<SP>-9</SP>g / cm<SP>2</SP> on surface of the plant. The sliding body (11) changes relative position between the mist generating portion (12) spraying the mist and the plant (P).

Description

201236559 六、發明說明: 【發明所屬之技術領域】 置 本發明係關於-種利用自由基的植物育成裝 【先前技術】 至今為止,已知有植物育成裝置, 的葉等的黴菌的增殖’以輪、祐子等的各== 地成長(例如參照專利讀…專歡獻 ^ 置係產生含有自由基的奈米級還原„成裝 滴),對植物喷霧以抑制黴菌的產生。飞 微粒水 [先前技術文獻] [專利文獻] [專利文獻η日本專利公開公報特開2G1G—75州號 【發明内容】 然而,如上所述的植物育成裝置中,亦有所產生的自 由基的量無法抑制黴菌增殖的可能性。 種植了解決上述問題而完成’其目的係提供-種植物月成裝置,可更確實地抑制菌的繁殖。 ★成問題,本發明的—態樣係提供一種植物 對植:供給含有自由基的微粒子。其植物育成 ί時的自由基對於植物表面的到達量成為5X g/cm以上,產生含有自由基的微粒子的微粒子產生 X以及變更前述微粒子產生部的微粒子喷射位置與前述 植物之相對位置的位置變更裝置。 201236559 微粒子產生部以一小時的自由基對於植物表面的到達 量成為10xl(T9g/ cm2以上,產生含有自由基的微粒子為較 佳。 位置變更裝置係沿著配置有複數個前述植物的配置方 向,移動前述微粒子產生部與前述植物的至少一者而構成 為較佳。 位置變更裝置至少沿著前述植物的高度方向,移動前 述微粒子產生部與前述植物的至少一者而構成為較佳。 植物育成裝置具備一自由基測定裝置,測定前述植物 附近的前述自由基的濃度,前述自由基測定裝置所測定的 前述植物附近的前述自由基濃度達到基準值時,前述位置 變更裝置變更前述微粒子產生部與前述植物之相對位置為 較佳。 植物育成裝置具備一濕度計測裝置,計測前述植物的 環境濕度,前述微粒子產生部對應前述濕度計測裝置所計 測的濕度,變更前述微粒子的產生量為較佳。 微粒子產生部可切換於前述植物的環境濕度為閾值以 下的情況時,排出通常量的含有自由基的微粒子之通常模 式,以及於前述植物的環境濕度高於前述閾值的情況時, 排出較前述通常量多量的含有自由基的微粒子之高濃度模 式而構成為較佳。 植物育成裝置具備一顏色檢測裝置,檢測前述植物的 葉色,若前述顏色檢測裝置檢測到的前述植物的葉色為新 葉的顏色時,前述微粒子產生部對於該新葉產生前述含有 自由基的微粒子為較佳。 201236559 -例巾,自由基到達量係氫氧基換算值,微粒 β與位置變更裝置協_作,將對於植物的—日 = 到達量調整為l〇Xl〇-9g/cm2以上。 氧土 ’依據本發明的其他態樣,雜物供 粒子之植物育成裝置具備產生含有“其二:由基的微 、两座生δ有自由基的微粒子之微粒 子產生4 ’排出前述含有自由基的微粒子之微粒子喷射 口 :以及保持自由基到達量判定基準值,基於前述美 基準,進行前述微粒子產生部的驅動控制及i =微粒子喷射Π與植物之相對位置的變更控制之 ,㈣自由基到達量判定基準值,換 异為:氧基時於5xl(r9g/h.cm2以上為較佳。 電路係保持的自由基到達量判定基準值,換 异為氫氧基時於1 &quot;ay · cm2以上為較佳。 [發明的效果] ^據本發明’則可提供可更確實 植物育成裝置。 【實施方式】 (第一實施型態) 以下,依據圖式,說明本發明的第一實施型態。 如圖1所示,本實施型態的植物肓成裝置1〇具備沿著 複數個植物p的配置方向而設置的滑移機構U,以及配置 ^匕滑移機構11,可沿著前述植物P的配置方向移動的水 、/飞產生部12。 201236559 滑移機構11具備載置於例如地面、地板等未圖示的載 置面的導軌lla,以及可移動地裝設於此導軌Ua上的基板 lib。於基板lib的上面設置前述水汽產生部12。 接著,詳細說明水汽產生部12。 如圖1與圖2所示,水汽產生部12具備於箱狀的殼體 (省略圖示)内部構成主體的靜電霧化部2〇。構成此靜電 霧化部20的支持殼21係採用PBT樹脂、聚碳酸酯樹脂、 PPS樹脂等的絕緣性樹脂材料形成,且以略圓筒狀的筒部 21a構成主體。向外周側突出的圓環狀的固定凸緣部2ib 一體地形成於筒部21a的基端部(圖2中的下端部&gt;另外, 於筒部21a的内周面一體地形成分隔壁21c,將支持殼21 的内部空間分割為霧化空間S1與密閉空間幻,並且,於 此分隔壁21c的徑向中央部形成連通霧化空間§1與密閉空 間S2的連通孔21d。再者,筒部21a中,於包圍霧化空間 si外周的部位形成複數個空氣流入孔21e,連通霧化空間 S1與筒部21a的外部空間。另外’環狀的對向電極22藉 由埋入成形等一體地設於筒部21a的前端面(圖2中的上 端面)。此對向電極22的中央部的開口成為水汽排出口 22a ° 筒部21a的内部配置具有導電性的金屬製的放 23。放電電極23形成沿著筒部⑴的軸向延伸的略圓才 狀’並且,放電電極23的尖端側的部位形成朝向尖端縮才 的圓錐狀。另外’放電電極23於其尖端部具有球狀的放; =23a,另-方面,於其基端部具有向徑向外侧延設 環狀的凸緣部23b。 6 201236559 放電電極23以貫通分隔壁21c的連通孔21d的狀態, 配置於筒部21a内部,使尖端部的放電部23a配置於霧化 空間S1内。另外,放電電極23的凸緣部23d配置於密閉 空間S2内,並且接抵分隔壁21c的連通孔21d的外周部。 於如此配置的放電電極23與對向電極22之間設置間隔。 另外,放電電極23的基端部連接有用以施加高壓電的高壓 電施加板24。高壓電施加板24係延伸出筒部21a的外部, 並且連接於高壓電源電路HV (參照圖3)等的電源。 密閉空間S2内收容有冷卻用絕緣板25。冷卻用絕緣 板25係由熱傳導性及電絕緣性高的氧化銘(Alumina )、氮 化鋁等形成。冷卻用絕緣板25係與放電電極23的基端面 接抵。 另外,密閉空間S2内,與放電電極23之間隔著冷卻 用絕緣板25配置有帕耳帖模組26。帕耳帖模組26係於厚 度方向互相對向配置的一對電路基板27、28之間配置BTie 系的複數個熱電元件29而構成。電路基板27、28係於熱 傳導性高的絕緣板(例如氧化鋁、氮化鋁等)形成電路的 印刷電路板,電路分別形成於一對電路基板27、28的對外 對向的一面。另外,複數個熱電元件29藉由此電路電性連 接。再者,熱電元件29經由帕耳帖輸入導線30連接於帕 耳帖用電源PS (參照圖3)。如此的帕耳帖模組26若經由 帕耳帖輸入導線30對複數個熱電元件29通電,則熱從電 路基板27接抵冷卻用絕緣板25的一側,向電路基板27的 另一侧移動。 另外,支持殼21的固定凸緣部21b固定於放熱構件 201236559 ‘ , 31。此放熱構件31係用以使藉由對熱電元件29的通電而 從放電電極23側的電路基板27向放熱構件31 —側的電路 基板28+搬送的熱,效率良好地排出大氣。放熱構件31係 由具有面熱傳導性的氧化崔呂、氣化紹等形成,並且,接抵 於一對的電路基板27、28之中未與冷卻用絕緣板25接抵 的電路基板28 (圖2中的下側的電路基板28)。 另外,分隔壁21c的連通孔21d與放電電極23之間藉 由密封構件32而密封,藉由此密封構件32與放熱構件31 維持密閉空間S2的密閉狀態。 圖3所示的控制部CP可為微電腦。前述帕耳帖用電 源PS電性連接於控制部CP,並且受到來自控制部CP的 控制彳5號控制。另外,高壓電源電路Η V電性連接於控制 部cp,並且受到來自控制部cP的控制信號控制。再者, 高壓電源電壓檢侧電路35檢測高壓電源電絡HV對放電電 極23施加的電壓值,並且將對應所檢測的電壓值的高壓電 壓^號輸出至控制部CP。另外,放電電流檢測電路3 6檢 測由高壓電源電路HV對放電電極23施加高壓電時產生的 放電電流,將對應所檢測的放電電流的放電電流信號輸出 至控制部CP。 控制部CP控制高壓電源電路HV的導通•切斷’另 外’將基於從壓電源電壓檢測電路35輸入的高壓電壓信號 以及從放電電流檢測電路36輸入的放電電流信號而產生 的放電電壓調整信號,輸出至高壓電源電路HV。不僅是用 以控制高壓電源電路HV的導通•切斷的on/OFF控制信 號’咼壓電源電路HV基於放電電流調整信號而驅動’藉 8 201236559 此,將安定而可靜電霧化的電 , 、 加至放電電極23。 ,從高壓電源電路HV施 如圖2與圖3所示,水汽漆 帖用電源PS聽電元件29的部12中,熱係藉由帕耳 電路基板27,向放熱構件31電,從放電電極23 一側的 隨此熱移動,經由冷卻用絕緣/的電路基板27移動。伴 此,放電電極23周圍的空氣受2S冷卻放電電極23。如 而附著於放電電極23的表面。冷卻,空氣中的水分凝結 是放電部23a表面的狀態下,玫’、持於放電電極23特別 高壓電源電路HV施加高壓電於電極23成為負電極,由 電力被吸引向對向電極22側,形成 a的水藉由靜 然後,保持於放電部23a的水接受大能量泰勒錐的形狀。 裂,使成為水汽的帶電微粒水滴大量產生^進行瑞利分 的帶電微粒水滴通過對向電極22的水汽排’並且,所產生 化空間S1外排出。此水汽產生部12產飞生22a’向霧 含有0H錄氧基)的自由基,具有抑制:=水滴 殖的效果。另外,帶電微粒水滴中,除了前述自囷荨菌的増 亦含有微量的離子、臭氧,這些亦可對於_的=^外, 有所助益。又,關於臭氧’對於植物p的臭^的抑制 期間的臭氧濃度的積算值)依據AOT40的規範,、(育成 • h以下為較佳。 ’以1Ppm 接著’說明自由基對於附著於植物p的紫 抑制。 ’、巧圉的增殖 本案發明人依以下的順序評價自由基對於益 菌的增殖抑 201236559 制。首先,準備略四角形的氈布當作植物P的葉。於九個 氈布構件塗佈黴菌(例如炭疽菌),將氈布構件間隔約l〇cm 配置成一列’將靜電霧化部20的水汽排出口對向其一列配 置的中央的氈布構件來配置靜電霧化部20。水汽排出口與 中央的魅布構件的距離約20cm。此狀態下,預定時間(本 實施型態係一曰(二十四小時))内的僅一小時使靜電霧化 部20動作,將含有自由基的帶電微粒水滴對氈布構件喷 霧。觀察喷霧後的各魅布構件的黴菌,評價制菌效果(抑 制菌的增殖的效果)。 一日内僅喷霧一小時的理由在於假定水汽產生部12 與植物P相對移動。上述實施型態的植物育成裝置1〇的水 、/飞產生部12將帶電微粒水滴對於特定植物p喷霧之後,以 滑移機構11向次一植物P移動,因此,本實驗結果亦可用 於上述實施型態的評價。 又,靜電霧化部20的自由基量調整為〇xl〇.6g/h (靜 電霧化部20未驅動)、1.3χ10、/ h、2 7xl〇-6g / h、6⑸ /h各條件。此自由基量係裝有補集液之純水的培養置與 靜電霧化部20的水汽排出口距離6cm的狀態下,使靜電 霧化部20動作’藉由下述的吸光光度計測定,計算出補 液捕披的自由基量。 上述實驗結果表示於圖4 (a)。又,圖4 (a)、(b)及 以下的說明巾,自由基量為〇xl〇-6g/h時表示為「〇」,自 由J量為1.3xl〇-6g/h時表示為rh3」,自由基量為27χ g/h時表示為「2.7」,自由基量為6.〇xl〇-6g/h時表示 201236559 , 如圖4(a)所示,自由基量為「〇」的情況下,從靜 電霧化部20的水汽排出口向左右方向的偏移量為卜扣妳 之任意距離内皆可見菌的顯著生長。自由基量為「13」的 情況下,前述偏移量為Gem時,未見著生長,前述 偏移量為10cm時,於一部分可見菌的生長,前述偏移量 為10〜40cm的距離中,可見菌的顯著生長。自由基量為 —「2.7」的情況下,前述偏移量為〇〜2〇cm時,未見菌的顯 著生長,别述偏移量為30〜40cm時,於一部分可見菌的 生長。自由基量為「6.0」的情況下,前述偏移量為〇〜4〇cm 的全部的距離中,皆未見菌的顯著生長。 另外,本案發明人測定帶電微粒水滴中含有的自由基 量,特定出對於菌的增殖抑制有用的自由基量(自由基到 達量)。 在此具體地說明、帶電微粒水滴中含有的自由基量的測 定方法。 ^ 、本案發明人準備九個裝有補集液之純水的培養皿以取 代刖述氈布構件,將培養皿間隔約1〇cm配置成一列,將 靜電霧化部20的水汽排出口對向其一列配置的中央的培 養皿來配置靜電霧化部20。水汽排出口與中央的培養皿^ 距離約20cm。此狀態下,使靜電霧化部2〇動作一小時, 將3有自由基的帶電微粒水滴對培養孤喷霧。嘴霧後,計 測到達各培養皿的自由基量。 在此,於靜電霧化部20產生的自由基,主要依以下的 反應式變化為過氧化氫。 • OH+ · OH^H2〇2 · · .(1) 11 201236559 因此,補集液中的Ηζ〇2的量係對應於自由基到達量。 對於一小時喷霧後的補集液使用H2〇2PACKTEST藥包測 試的試藥。此H2〇2PACKTEST藥包測試的試藥,若測試對 象的試驗液(補集液)中含有過氧化氫,則呈現紫紅色。 利用吸光光度計測定試液的吸光度。依據h202packtest 藥包測試的試藥,預先製作555nm中的吸光度_濃度的檢量201236559 VI. Description of the Invention: [Technical Fields of the Invention] The present invention relates to a plant growing device using a free radical. [Prior Art] Up to now, there has been known a plant growth device, and the proliferation of molds such as leaves. Each of the rounds, the beggars, etc. grows (for example, refer to the patent reading...Specially, the system produces a nano-reduction containing free radicals), and sprays the plants to inhibit the production of mold. [Prior Art Document] [Patent Document] [Patent Document η Japanese Patent Laid-Open Publication No. 2G1G-75 No. [Invention] However, in the plant growing device as described above, the amount of free radicals generated is also not suppressed. The possibility of mold growth. Planted to solve the above problems and completed 'the purpose is to provide - plant monthly device, can more reliably inhibit the reproduction of bacteria. ★ As a problem, the present invention provides a plant-to-plant : Supplying microparticles containing free radicals. The amount of free radicals in the plant cultivating ί becomes 5X g/cm or more on the surface of the plant, and microparticles containing free radicals are generated. The sub-generation X and the position changing device for changing the relative position of the microparticle ejection position of the microparticle generating portion to the plant. 201236559 The amount of arrival of the free radical on the plant surface by the microparticle generating unit is 10xl (T9g/cm2 or more, resulting in inclusion). Preferably, the position changing device is configured to move at least one of the fine particle generating portion and the plant along a direction in which a plurality of the plants are arranged. The position changing device is at least along the plant. In the height direction, it is preferable to move at least one of the microparticle generating portion and the plant. The plant growing device includes a radical measuring device that measures the concentration of the radical in the vicinity of the plant, and is measured by the radical measuring device. When the concentration of the radical in the vicinity of the plant reaches a reference value, it is preferable that the position changing device changes the relative position of the microparticle generating portion and the plant. The plant growing device includes a humidity measuring device, and measures the environmental humidity of the plant. Microparticle production It is preferable that the amount of generation of the fine particles is changed in accordance with the humidity measured by the humidity measuring device. When the microparticle generating unit is switched to the case where the environmental humidity of the plant is equal to or less than the threshold value, the normal amount of the radical-containing fine particles is usually discharged. In the mode, and when the environmental humidity of the plant is higher than the threshold value, it is preferable to discharge a high concentration mode containing a large amount of radical-containing fine particles than the above-mentioned normal amount. The plant growing device includes a color detecting device for detecting the foregoing In the leaf color of the plant, when the leaf color of the plant detected by the color detecting device is the color of the new leaf, it is preferable that the fine particle generating portion generates the radical-containing fine particles for the new leaf. 201236559 - Case towel, free radical arrival The amount of the hydroxyl group-converted value is adjusted, and the particle β is adjusted in accordance with the position changing device, and the amount of plant-day = arrival is adjusted to be l〇Xl〇-9g/cm2 or more. Oxygen soil according to another aspect of the present invention, a plant growing device for a particle for a particle is provided with a particle containing a "second: a microparticle of a base, two particles of a radical having a radical δ, and a radical is generated 4' The fine particle ejection opening of the fine particles and the reference value for maintaining the amount of radical arrival, and based on the above-mentioned US standard, the driving control of the fine particle generating unit and the change control of the relative position of the microparticle injection and the plant are performed, and (4) the radical is reached. The amount of the reference value is changed to be 5xl (r9g/h.cm2 or more in the case of oxy group. The reference value of the amount of radical arrival held by the circuit system is judged, and when the difference is hydrogen group, 1 &quot;ay· It is preferable that it is cm2 or more. [Effects of the Invention] According to the present invention, a more reliable plant growth apparatus can be provided. [Embodiment] (First Embodiment) Hereinafter, a first embodiment of the present invention will be described based on the drawings. As shown in Fig. 1, the plant forming apparatus 1 of the present embodiment includes a slip mechanism U disposed along a direction in which a plurality of plants p are arranged, and a slide mechanism 11 disposed. The water/flying generating unit 12 that moves in the arrangement direction of the plant P. 201236559 The sliding mechanism 11 includes a guide rail 11a that is placed on a mounting surface (not shown) such as a floor or a floor, and is movably mounted thereto. The substrate lib on the guide rail Ua. The water vapor generation unit 12 is provided on the upper surface of the substrate lib. Next, the water vapor generation unit 12 will be described in detail. As shown in Fig. 1 and Fig. 2, the water vapor generation unit 12 is provided in a box-shaped housing (omitted) The electrostatic atomizing unit 2 that constitutes the main body is formed. The support shell 21 constituting the electrostatic atomizing unit 20 is formed of an insulating resin material such as PBT resin, polycarbonate resin or PPS resin, and is slightly cylindrical. The tubular portion 21a is formed in a main body, and an annular fixing flange portion 2ib that protrudes toward the outer peripheral side is integrally formed at a base end portion of the tubular portion 21a (lower end portion in Fig. 2), and is also inside the tubular portion 21a. The partition wall 21c is integrally formed in the circumferential surface, and the internal space of the support shell 21 is divided into the atomization space S1 and the closed space, and the radial center portion of the partition wall 21c forms the communication atomization space §1 and the closed space S2. Connecting hole 21d. Further, the tube portion 21 In a, a plurality of air inflow holes 21e are formed in a portion surrounding the outer circumference of the atomization space si, and the atomization space S1 and the outer space of the tubular portion 21a are communicated. Further, the annular counter electrode 22 is integrally formed by embedding or the like. The front end surface (upper end surface in Fig. 2) of the tubular portion 21a is provided. The opening of the center portion of the counter electrode 22 serves as a water vapor discharge port 22a. A conductive metal 23 is disposed inside the tubular portion 21a. The electrode 23 is formed in a slightly round shape extending along the axial direction of the cylindrical portion (1), and a portion on the tip end side of the discharge electrode 23 is formed in a conical shape which is tapered toward the tip end. Further, the 'discharge electrode 23 has a spherical shape at the tip end portion thereof. In addition, the lower end portion has a flange portion 23b extending in the radial direction on the outer side of the base portion. 6 201236559 The discharge electrode 23 is disposed inside the tubular portion 21a in a state of penetrating the communication hole 21d of the partition wall 21c, and the discharge portion 23a at the tip end portion is disposed in the atomization space S1. Further, the flange portion 23d of the discharge electrode 23 is disposed in the sealed space S2, and is abutted against the outer peripheral portion of the communication hole 21d of the partition wall 21c. A space is provided between the discharge electrode 23 and the counter electrode 22 thus configured. Further, the base end portion of the discharge electrode 23 is connected to a high voltage electric application plate 24 for applying a high voltage. The high-voltage application plate 24 extends outside the tubular portion 21a and is connected to a power source such as a high-voltage power supply circuit HV (see FIG. 3). The cooling insulating plate 25 is housed in the sealed space S2. The cooling insulating sheet 25 is formed of Alumina, aluminum nitride or the like having high thermal conductivity and electrical insulating properties. The cooling insulating plate 25 is in contact with the base end surface of the discharge electrode 23. Further, in the sealed space S2, a Peltier module 26 is disposed between the discharge electrodes 23 and the cooling insulating plate 25. The Peltier module 26 is configured by arranging a plurality of BTie-type thermoelectric elements 29 between a pair of circuit boards 27 and 28 which are arranged to face each other in the thickness direction. The circuit boards 27 and 28 are printed on a printed circuit board in which an insulating plate (e.g., alumina, aluminum nitride, or the like) having high heat conductivity is formed, and the circuits are formed on the outer surfaces of the pair of circuit boards 27 and 28, respectively. In addition, a plurality of thermoelectric elements 29 are electrically connected by the circuit. Further, the thermoelectric element 29 is connected to the Peltier power supply PS (see Fig. 3) via the Peltier input lead 30. When the Peltier module 26 energizes the plurality of thermoelectric elements 29 via the Peltier input wire 30, heat is transferred from the circuit board 27 to the side of the cooling insulating plate 25, and is moved to the other side of the circuit board 27. . Further, the fixing flange portion 21b of the support case 21 is fixed to the heat releasing member 201236559 ', 31. The heat radiating member 31 is configured to efficiently discharge the atmosphere from the circuit board 27 on the side of the discharge electrode 23 to the circuit board 28+ on the side of the heat radiating member 31 by the energization of the thermoelectric element 29. The heat radiation member 31 is formed of oxidized Cui Lu, gasification, or the like having surface thermal conductivity, and is connected to the circuit substrate 28 that is not in contact with the cooling insulating plate 25 among the pair of circuit boards 27 and 28 (Fig. The lower circuit board 28 of 2). Further, the communication hole 21d of the partition wall 21c and the discharge electrode 23 are sealed by the sealing member 32, whereby the sealing member 32 and the heat radiation member 31 maintain the sealed state of the sealed space S2. The control unit CP shown in FIG. 3 can be a microcomputer. The aforementioned Peltier power source PS is electrically connected to the control unit CP, and is controlled by the control unit CP from the control unit CP. Further, the high voltage power supply circuit Η V is electrically connected to the control unit cp and is controlled by a control signal from the control unit cP. Further, the high-voltage power source voltage detecting side circuit 35 detects the voltage value applied to the discharge electrode 23 by the high-voltage power source HV, and outputs a high-voltage voltage corresponding to the detected voltage value to the control unit CP. Further, the discharge current detecting circuit 36 detects a discharge current generated when the high voltage power supply circuit HV applies high voltage to the discharge electrode 23, and outputs a discharge current signal corresponding to the detected discharge current to the control unit CP. The control unit CP controls the on/off of the high voltage power supply circuit HV, and the discharge voltage adjustment signal generated based on the high voltage signal input from the voltage supply voltage detecting circuit 35 and the discharge current signal input from the discharge current detecting circuit 36, Output to the high voltage power supply circuit HV. It is not only the ON/OFF control signal for controlling the on/off of the high-voltage power supply circuit HV. The rolling power supply circuit HV is driven based on the discharge current adjustment signal. 'By 8 201236559 This will stabilize the electrostatically atomizable electricity, It is applied to the discharge electrode 23. From the high voltage power supply circuit HV, as shown in FIG. 2 and FIG. 3, in the portion 12 of the water vapor illuminating power supply PS listening element 29, the heat is supplied to the heat releasing member 31 by the Pell circuit substrate 27, from the discharge electrode. The heat transfer on one side of the 23 side moves through the insulating/circuit board 27 for cooling. Accordingly, the air around the discharge electrode 23 is cooled by the 2S discharge discharge electrode 23. It is attached to the surface of the discharge electrode 23 as it is. In the state where the moisture in the air is condensed on the surface of the discharge portion 23a, the high voltage power supply circuit HV is applied to the discharge electrode 23, and the high voltage is applied to the electrode 23 to become the negative electrode, and the electric power is attracted to the counter electrode 22 side. The water forming a is cooled, and then the water held in the discharge portion 23a receives the shape of the large energy Taylor cone. The splitting causes a large amount of charged fine particles of water vapor to be generated, and the charged fine particles of the Rayleigh fraction are discharged through the counter electrode 22, and the generated space S1 is discharged. This water vapor generating portion 12 produces a radical of the fly-in 22a' containing a 0H-recording atom in the mist, and has an effect of suppressing: = dripping. In addition, among the charged fine particle droplets, in addition to the above-mentioned self-bacterial bacteria, a trace amount of ions and ozone are also contained, which may be helpful for _ =. In addition, the integrated value of the ozone concentration during the inhibition of ozone o in the odor of the plant p is based on the specification of AOT40, and it is preferable to use cultivating h or less. '1Ppm followed by 'describes the free radical attached to the plant p. Purple inhibition. ', proliferation of Qiaoqi The inventors of the present invention evaluated the proliferation of free bacteria against beneficial bacteria in the following order. 201236559. First, prepare a slightly square-shaped felt cloth as the leaves of plant P. Apply to nine felt fabric members. In the case of the molds (for example, anthrax), the felt members are arranged in a row so that the water vapor discharge ports of the electrostatic atomization unit 20 are disposed in a center of the felt member, and the electrostatic atomization unit 20 is disposed. The distance between the water vapor discharge port and the center of the charm member is about 20 cm. In this state, the electrostatic atomization unit 20 is operated for only one hour in the predetermined time (this embodiment is one (24 hours)), and will contain The charged particle droplets of the radicals were sprayed on the felt member. The mold of each of the charm members after the spray was observed, and the bacteriostatic effect (the effect of inhibiting the growth of the bacteria) was evaluated. The reason for spraying only one hour in one day It is assumed that the water vapor generating portion 12 moves relative to the plant P. The water/flying generating portion 12 of the plant growing device 1 of the above-described embodiment sprays the charged particle water droplets on the specific plant p, and then slides the mechanism 11 to the next one. The plant P is moved, and therefore, the results of the present experiment can also be used for the evaluation of the above-described embodiment. Further, the amount of radicals in the electrostatic atomization unit 20 is adjusted to 〇xl 〇.6 g/h (the electrostatic atomization unit 20 is not driven), 1.3. Χ10, /h, 2 7xl〇-6g / h, 6(5) / h. The amount of free radical is the state in which the pure water containing the supplement liquid is placed at a distance of 6 cm from the water vapor discharge port of the electrostatic atomizing portion 20. The electrostatic atomization unit 20 is operated to measure the amount of radicals in the liquid-repellent coating by the following absorption photometer. The above experimental results are shown in Fig. 4 (a). Further, Fig. 4 (a), (b) And the following instructions, when the amount of free radicals is 〇xl〇-6g/h, it is expressed as "〇", the amount of free J is 1.3xl〇-6g/h, which is represented as rh3", and the amount of free radicals is 27χ g/h. The time is expressed as "2.7", and the amount of free radicals is 6.〇xl〇-6g/h, which means 201236559. As shown in Fig. 4(a), the amount of free radicals is "〇". In the case where the amount of the radical is "13", the amount of the offset is In the case of Gem, no growth was observed, and when the offset amount was 10 cm, the growth of a part of the visible bacteria was observed, and the distance between the offsets was 10 to 40 cm, and the growth of the bacteria was observed. The amount of free radicals was - "2.7". In the case where the amount of the offset is 〇2 to 2 cm, no significant growth is observed, and when the offset is 30 to 40 cm, the growth of a part of the bacteria is observed. When the amount of the radical is "6.0". Among the above distances, the offsets were all 〇~4〇cm, and no significant growth was observed. Further, the inventors of the present invention measured the amount of radicals contained in the water droplets of the charged particles, and specified the amount of radicals (radical arrival amount) which is useful for suppressing the growth of the bacteria. Here, a method of measuring the amount of radicals contained in the charged fine particle water droplets will be specifically described. ^ The inventor of the present invention prepares nine petri dishes containing pure water of the supplement liquid to replace the dummy cloth members, and arranges the culture dishes in a row at intervals of about 1 〇cm, and discharges the water vapor discharge ports of the electrostatic atomization unit 20 The electrostatic atomization unit 20 is disposed in a central petri dish arranged in a row. The water vapor discharge port is approximately 20 cm away from the center petri dish. In this state, the electrostatic atomization unit 2 was operated for one hour, and three charged particles of free radicals were sprayed on the culture. After the mist is applied, the amount of free radicals reaching each dish is measured. Here, the radical generated in the electrostatic atomization unit 20 is mainly changed to hydrogen peroxide by the following reaction formula. • OH+ · OH^H2〇2 · · (1) 11 201236559 Therefore, the amount of Ηζ〇2 in the supplemental liquid corresponds to the amount of free radical arrival. For the one-hour sprayed supplement, the H2〇2PACKTEST kit was used for the test. The test for the H2〇2PACKTEST kit test shows a purplish red color if the test solution (replenishment solution) of the test object contains hydrogen peroxide. The absorbance of the test solution was measured using an absorptiometer. According to the test of the h202packtest drug test, pre-measure the absorbance _ concentration in 555nm

線,基於其檢量線進行過氧化氫的定量分析,計算.自Z旯 到達量。 A 上述實驗結果表示於圖4 (b)。圖4 (b)中,橫軸係 表示面對水汽排出口的中央的培養皿至各培養皿的位置 (,離em)’對應距水汽排出口的距離,縱軸係表示 化氫(H2〇2)的量,即自由基到達量。 量為7:0-:2(/° 2(b)可知’若對於植物P的自由基到達 量為g/cm以上,則僅一部分可見菌的生長 增殖受到抑制。另外,由圖4 (a)、⑴可知,若 物=的自由基到達量為10xl0-9g/cm2以上’則 殖 受到抑制。由圖4(a)、(b)可知, J ^ :自由基到達量為7xl〇W以上較佳…:=p ?物P的自由基到達量為10xl0-9g/cm2 、 外,上述實驗中,若於二十 為更佳。另 後的帶電微粒子對菌喷霧,則至少之 制。依此,對於植物P的一日的自由基到t增殖受到抑 氧基時於10X10-9g/cm2以上為較佳。S,換算為氫 -例中,如控制部CP的控制電路係保持自由基到達 12. 201236559 量判定基準值。控制電路可 進行靜電霧化部20的驅動及由基到達置判疋基準’ 氫氧基時可於5x1().9g/h•自料基準值換算為 以上。基板lib可依摅桠认A g/dayCm或具 令而驅動,變更水汽產生^=^^電= =:如控制部CP _電路的=: 接著,記载本實施型態的特徵性效果。 於植物。二用以變更水汽產生部12對 置變更裝晉的碑狡Γ 移機構11。如此’作為位 置方白,魅構11 m配置有複數純物p的配 H i粒子產生料水汽產生部12移動而構 Ϊ有10可效率良好地對於植物p供給 作為微粒 if吾Λ炎1 -9妁尺久產生〇Ρ 12,以一小時的自由基到 水f產Ρ MO g/⑽2以上,產生含有自由基的微粒子。 物?喷霖⑷ ' 將含有自由基的帶電微粒水滴對於特定植 二^對於其植物P移動時,產生未將含有 而,二p#微粒水滴對於其特定植物p喷霧的期間。然 成菌的择子於其植物p喷霧的帶電微粒水滴的自由基已造 到達量受到抑9制或延遲。另外,藉由一小時的自由基 粒水滴:i〇x10 g/cm2以上’產生含有自由基的帶電微 可更抑制附著於植物p的菌的增瘦,抑制疾病的 .13 201236559 發生。 (2) 作為位置變更裝置的滑移機構丨丨係沿著配置有 複數個前述植物P的配置方向’使作為微粒子產生部的水 汽產生部12移動而構成。藉由如此的構成,即可由一個裝 置10,效率良好地對於例如通常以向一方向延伸配置的狀 態來栽培的植物P,供給靜電微粒水滴(微粒子)。 (3) 水汽產生部12係除了自由基之外,亦產生含有 離子及臭氧兩者的微粒子H除了藉由自由基抑制菌 的增瘦的效果之外,亦可藉由離子及臭氧抑制菌的增殖。 部12產生粒徑較小的奈米級微粒子, 因此,,散f生良好,渗透性佳,可進—步抑制菌的增殖。 ⑴水汽產生部12係產生帶電微 植物P的電位為〇,即大客&amp; 在此因 帶電,其微粒乡接也的狀態’微粒水滴藉由 帶電其微粒水滴受到植物p電性 植物P供給帶電微粒水滴。 卩了適自地對於 (6)水汽產生部12具備對放 壓電源電路,以;3 $ 電極3施加電壓的高 29。藉此,卩一個裝1極23供給液體的熱電元件 氧的帶電微粒水滴。、可產生含有自由基、離子、及臭 (7 )藉由控制部C pThe line, based on its calibration curve, performs quantitative analysis of hydrogen peroxide and calculates the amount of arrival from Z旯. A The above experimental results are shown in Figure 4 (b). In Fig. 4(b), the horizontal axis indicates the position of the petri dish from the center of the water vapor discharge port to each of the culture dishes (from em)' corresponding to the distance from the water vapor discharge port, and the vertical axis indicates hydrogenation (H2〇) 2) The amount, ie the amount of free radicals reached. When the amount is 7:0-:2 (/° 2 (b), it can be seen that if the amount of radicals reaching the plant P is g/cm or more, only the growth and proliferation of a part of the visible bacteria are suppressed. In addition, FIG. 4 (a) (1) It can be seen that if the amount of radicals reached = 10xl0-9g/cm2 or more, the colonization is suppressed. As can be seen from Fig. 4(a) and (b), the J ^ : radical arrival amount is 7xl 〇 W or more. Preferably, the amount of radicals of the substance P is 10xl0-9g/cm2, and in the above experiment, if it is more preferably twenty. The charged particles of the latter are sprayed on the bacteria at least. Accordingly, it is preferred that the free radical to t-proliferation of plant P is 10X10-9 g/cm2 or more when it is inhibited by oxygen. S, converted to hydrogen, for example, the control circuit of the control unit CP remains free. The base reaches 12.201236559 quantity determination reference value. The control circuit can drive the electrostatic atomization unit 20 and the basis of the base arrival determination. The hydroxyl group can be converted to 5x1().9g/h• self-material reference value. The above substrate lib can be driven by acknowledgment A g/dayCm or by command, and the water vapor generation is changed ^=^^==: as the control unit CP_circuit =: Next, the characteristic of this embodiment is described. Sexual effect. In the plant, the second is used to change the water vapor generation unit 12 to change the plaque mechanism of the arranging movement. Thus, as the position is white, the imaginary structure of 11 m is equipped with a plurality of pure objects p. The water vapor generating unit 12 moves and the structure 10 is efficiently supplied to the plant p as a microparticle if the sputum is 1 -9 feet long to produce 〇Ρ 12, with one hour of free radicals to water f Ρ MO g / (10) 2 or more, generating radicals containing radicals. The substance sprays (4) 'The droplets of charged particles containing free radicals are generated for the specific plant 2 when the plant P moves, and the 2p# particle water droplets are specific to it. During the spraying of plant p, the amount of free radicals in the droplets of charged particles sprayed by the plant p is reduced or delayed. In addition, by one hour of free radical droplets: i 〇x10 g/cm2 or more 'The generation of radicals containing free radicals can further inhibit the growth of bacteria adhering to plant p and inhibit disease. 13 201236559 occurs. (2) Slip mechanism as a position changing device Configuration with a plurality of the aforementioned plants P It is configured to move the water vapor generating portion 12 as the fine particle generating portion. With such a configuration, it is possible to supply static electricity to the plant P which is usually cultivated in a state of being extended in one direction by one device 10 efficiently. (3) The water vapor generating unit 12 generates a fine particle H containing both ions and ozone in addition to the radical, in addition to the effect of thinning by the free radical inhibiting bacteria, Ion and ozone inhibit the proliferation of bacteria. The portion 12 produces nano-sized fine particles having a small particle size. Therefore, the dispersion is good and the permeability is good, and the proliferation of the bacteria can be further inhibited. (1) The water vapor generating portion 12 generates a potential of the charged micro-plant P, that is, the large passenger &amp; here, due to electrification, the particle is also in the state of the particle. The particle droplet is charged by the particle water droplet by the plant p-electric plant P. Charged particles dripping. (6) The water vapor generation unit 12 is provided with a high voltage applied to the discharge power supply circuit by the voltage of the 3 3 electrode 3. Thereby, a charged particle droplet of the thermoelectric element oxygen supplied to the liquid is supplied to the first electrode 23. Can produce free radicals, ions, and odors (7) by the control unit C p

P 的臭氧劑量(育成期門1靜電霧化部20以對於植物 h以下的範圍產生c濃度的積算值)成為lppm· 過量供給臭氧,抑制臭二尺滴。因此,可抑制對植物p ⑷以熱電元件、以植物的育成造成阻礙。 從槽部供給水至敌電 f成液體供给部,因此,可省 電極23時必需於槽内補給水的手續 201236559 又,本發明的實施型態亦可變化如下。 •上述實施型態中,位置變更裝置係沿著植物p的配 置方向使水汽產生部12移動的滑移機構11。然而,位置 變更裝置亦可例如相對於水汽產生部12使植物P移動。 例如圖5的例中,位置變更裝置包含支持複數個植物 P而可旋轉驅動的一旋轉板材41。水汽產生部12 (靜電霧 化部20)配置於例如旋轉板材41的徑向外側,將水汽排 出口對向旋轉板材41的中心以朝向植物P。旋轉板材41 依據供給自如控制部CP (參照圖3) —般的控制電路的指 令而旋轉,變更水汽產生部12與植物P之相對位置。 圖6的例中,位置變更裝置包含輸送帶51。此輸送帶 51包含二滚輪52、以及架設於滚輪52,支持植物P的帶 體53。複數個水汽產生部12 (靜電霧化部20)沿著輸送 帶51配置。各水汽產生部12的水汽排出口朝向植物P。 滚輪52依據供給自如控制部CP (參照圖3) —般的控制 電路的指令而旋轉,以帶體53變更水汽產生部12與植物 P之相對位置。二滚輪52中之二者或一者可為驅動源而旋 轉驅動。 如圖11〜圖13所示,位置變更裝置亦可不改變水汽 產生部12的靜電霧化部20的位置,而改變水汽產生部12 的微粒子喷射位置。 例如圖11的例中,水汽產生部12包含與水汽排出口 22a (參照圖2)連接的水汽排出管部110。位置變更裝置 包含僅移動水汽排出管部110之由致動器所成的驅動部 111。驅動部111係使水汽排出管部110沿著沿植物P配置 15 201236559 方向的長條導軌112移動。前述驅動部ln以控制部 控制其驅動。X ’本構成中,水汽排出管部11〇的前端為 水汽(微粒子)喷射位置。 圖12的例中,沿植物p的配置方向配置複數個水汽產 生部12。這些水汽產生部12藉由個別的控制部cp控制。 控制部cp -個-個地驅動水汽產生部12,或者依序控制 驅動分組的水汽產生部12,藉此,可視覺上變更對於植物 p ^水π產生冑12 @微粒子喷射位置^例如藉由將對應於 特疋植物Ρ的-水汽產生部12的驅動停止,而驅動未對應 於其特定植物Ρ的其他水汽產生部12,改變對於其特定植 物Ρ的水汽產生部12的微粒子喷射位置。又,本構成中, 各水α產生部12的水汽排出口 22a(參照圖2)為水汽(微 粒子)喷射位置。 圖13的例中 不、/飞產生邰A 4 μ I &gt;%拼出口 連έ士 有長管狀的連結管部12〇。此連結管部m的長方 複數個排出口121。各排出ϋ121連接有電磁閥122。各^ :閥122以控制部cp控制。控制部cp 一個一個地驅動電 ,閥122或者依序控制驅動分組的電磁閥^,藉此, =覺上變更對於植物P的錢產生部12的餘子喷射位 ^控1部〇&gt;係例如將對應於特紐物p的—電磁闕⑵ 2 閉未對應於其特定植物P的其他電磁閥⑵。 =罢改變對於其特定植物P的水汽產生部12的微粒子喷 噴射位置本構成中’各排出口121為水汽(微粒子) 圖卜圖5至圖8、圖11的水汽產生部12的殼體上所 201236559 ^ 形成的水汽排出口可為圖2的水汽排出口 22a,而圖11的 水汽排出管部的前端、圖13的電磁閥122的排出口 ι21係 水汽產生部12的微粒子喷射口的其他實施例。 上述圖5、圖6、圖11、圖12、及圖13的位置變更震 置係將水汽產生部12的靜電霧化部20的位置保持原狀, 以改變水汽產生部12的微粒子喷射位置(微粒子噴射口的 位置)與植物P之位置,將含有自由基的帶電微粒水滴效 率良好地供給植物p,提高抑制疾病的效果。另外,因水 汽產生部12的靜電霧化部20不動,與水汽產生部12的靜 電霧化部20移動的情況相較,可較安定地生成(產生)帶 電微粒水滴。 •上述實施型態中,位置變更裝置係沿著植物P的配 置方向使水汽產生部12相對移動,但位置變更裝置亦可沿 著植物P的高度方向使水汽產生部12移動。例如,圖7的 例中’位置變更裝置可包含利用於高度方向(上下方向) 伸縮的升降機71之高度調整機構72。又’圖7的位置變 更裝置可藉由高度調整機構72與上述實施型態的滑移機 構11協同動作,於植物P的高度方向及植物P的配置方向 (水平方向)移動水汽產生部12。 高度調整機構72可對於一植物於高度方向複數次移 動水汽產生部12。位置變更裝置可於對應一植物P的位 置’將水汽產生部12沿高度方向的向上方向移動,之後, 將水汽產生部12移動至對應相鄰植物P的位置,一邊對植 物P施放含有自由基的帶電微粒水滴,一邊將水汽產生部 12沿向下方向移動。另外,亦可反覆進行這些動作。當然 17 201236559 地,位置變更裝置亦可不移動水汽產生部12而移動植物 P,另外,亦可移動水汽產生部12與植物P兩者。 •如圖8所示,亦可由可於栽培植物P的栽培空間SS 的地面全面性地移動的自動控制台車81,以及水汽產生部 12構成植物育成裝置10。藉由如此的構成,可對於栽培空 間SS内的植物P,以支持水汽產生部12而移動的自動控 制台車81,全面性地供給含有自由基的帶電微粒水滴。自 動控制台車81亦可變更為如遙控直升機、飛機一般的空中 飛行物。 •上述實施型態中,微粒子產生部包含藉由靜電霧化 產生含有自由基的奈米級微粒子(帶電微粒水滴)的靜電 霧化部20,但微粒子產生部亦可藉由靜電霧化以外的方法 產生含有自由基的微粒子。例如超音波霧化裝置、加壓式 霧化裝置等,藉由超音波、壓力使自由基起始劑的溶液微 粒子化亦可。 •上述實施型態中,採用熱電元件29作為對構成靜電 霧化部20的放電電極23供給水的供給裝置,但不限於此, 例如,亦可採用直接對放電電極23供給水的構成。另外, 亦可如由用於除濕的沸石構成,以加溫器加溫經除濕的沸 石,收集從沸石蒸發的水分,以取得液體。 •上述實施型態中,控制部CP控制靜電霧化部20以 使對於植物P的臭氧劑量於1 ppm · h以下,但不限於此, 例如,若為對臭氧耐性較高的植物,則控制部CP亦可控 制靜電霧化部20以使對於植物P的臭氧劑量高於lppm· h ° / 201236559 微粒子 白成裝置1G可具備測定魏對象之㈣p附近的 自=基的1或濃度的測定裝置(自由基測定裝置)。位置變 更裝置係於其败裝置關定的自由基量達到基準值時, 將喷霧對象轉換為次-植物p。藉由如此的構成,可實施 更細微的控制,適當地對於植物P供給含有自由基的帶電 又,測定裝置的例可舉例以下二者。 (X) 以純水補集植物P周圍的空氣,以試藥呈色, 利用分光器藉由檢量線計算自由基濃度。 (Y) 於植物P周圍配置過氧化氫試紙,拍攝此試紙, 影像處理此試紙的顏色,以L*a*b表色系中的L值來判 斷。過氧化氫試紙係對應自由基(過氧化氫)的量(濃度) 而呈色,因此可基於試紙的顏色測定自由基的量。 •植物育成裝置10亦可依據例如植物p的環境濕度調 整帶電微粒水滴的產生量。圖9的實施例中,植物育成裝 置具備計測植物P的環境濕度之濕度計測部90。此濕 度计測部90的計測結果亦可回授至前述控制部cp對於帶 電微粒水滴的產生量的控制。具體地,控制部CP與濕度 設定部91連接,以此濕度設定部91將例如7〇%RH設定 為濕度閾值。然後,控制部CP係於濕度計測部9〇所計測 的濕度為濕度閾值以下的情況時,以排出含有通常量(一 小時10xl(T9g/ cm2)自由基的帶電微粒水滴之通常模式來 驅動靜電霧化部20。控制部CP係於濕度計測部90所計測 的濕度兩於濕度閨值的情況時’以自由基量例如成為通常 量的二倍之高濃度模式來驅動靜電霧化部20。如此,適於 19 201236559 菌的增殖之濕度較高的情況時,控制部cp將靜電霧化部 20從通常模式切換為高濃度模式,藉此,可更適當地抑制 菌的增殖。 •上述實施型態中,亦可例如對應植物P的種類檢測 新葉,對於其新葉供給帶電微粒水滴。圖10所示的實施例 中,以顏色檢測部100檢測成為檢測對象的植物P (葉) 的顏色,若其顏色判定為顏色設定部101預先設定的新葉 的顏色,則控制部CP控制靜電霧化部20,供給植物P (新 葉)帶電微粒水滴。如此,特別對於抵抗力較低的新葉供 給帶電微粒水滴,藉此,可守護新葉及植物P整體遠離菌。 •上述實施型態中,以氈布構件當作植物P的葉,可 知以自由基到達量成為7x 10_9g / cm2以上,產生含有自由 基的帶電微粒水滴時,可獲得抑制菌的增殖的效果。另外, 可知進一步地以自由基到達量成為10xl(T9g/ cm2以上,產 生含有自由基的帶電微粒水滴時,更可獲得抑制菌的增殖 的效果。然而,例如,基於上述實施型態的實驗結果,可 推測對於實際的植物P,即使是5xl0_9g/ cm2以上的自由 基到達量,亦可抑制菌的增殖。因此,對於植物P表面的 前述自由基的到達量(面密度)為5xl0_9g/ cm2以上的構 成亦可。另外,依相同的理由,亦可採用一小時中對於植 物P表面的自由基到達量為5x1 CT9g / cm2以上的構成。 •變化例之間亦可互相組合。 【圖式簡單說明】 圖1係本發明一實施型態的植物育成裝置的概略圖。 20. 201236559 ‘ 圖2係水汽產生部的概略圖。 圖3係水汽產生部的電路方塊圖。 圖4 (a)係表示對應自由基量及培養皿位置的菌生育 狀態的評價結果的表,(b)係表示對應培養皿位置的自由 基到達量的測定結果的圖表。 圖5係其他實施例的植物育成裝置的概略構成圖。 圖6係其他實施例的植物育成裝置的概略構成圖。 圖7係其他實施例的植物育成裝置的概略構成圖。 圖8 (a)、(b)係其他實施例的植物育成裝置的概略 構成圖。 圖9係其他實施例的植物育成裝置的概略構成圖。 圖10係其他實施例的植物育成裝置的概略構成圖。 圖11係其他實施例的植物育成裝置的概略構成圖。 圖12係其他實施例的植物育成裝置的概略構成圖。 圖13係其他實施例的植物育成裝置的概略構成圖。 11 :滑移機構 lib :基板 20 :靜電霧化部 21a :筒部 21c :分隔壁 21e :空氣流入孔 22a :水汽与卜出口 23a :放電部 【主要元件符號說明】 10 :植物育成裝置 11a :導軌 12 :水汽產生部 21 :支持殼 21b :固定凸緣部 21d :連通孔 22 :對向電極 23 :放電電極 •21 201236559 23b 25 : 27 : 29 : 31 : 35 : 41 : 52 : 71 : 81 : 91 : 101 111 120 122 HV PS : S2 : :凸緣部 冷卻用絕緣板 電路基板 熱電元件 放熱構件 高壓電源電壓檢測電路 旋轉板材 滚輪 升降機 自動控制台車 濕度設定部 :顏色設定部 :驅動部 :連結管部 :電磁閥 :高壓電源電路 帕耳帖用電源 密閉空間 24 :高壓電施加板 26 :帕耳帖模組 28 :電路基板 30 :帕耳帖輸入導線 32 :密封構件 36 :放電電流檢測電路 51 :輸送帶 53 :帶體 72 :高度調整機構 90 :濕度計測部 100 :顏色檢測部 110 :水汽排出管部 112 :導軌 121 :排出口 CP :控制部 P :植物 S1 :霧化空間 SS :栽培空間 22The ozone dose of P (the accumulation value of the concentration of c in the range of the plant h below the planting period 1) is 1 ppm. The ozone is supplied in excess, and the odor is suppressed. Therefore, it is possible to suppress the hindrance of the plant p(4) by thermoelectric elements and plant growth. Since the water is supplied from the groove portion to the liquid supply portion, it is necessary to supply the water in the groove when the electrode 23 is saved. 201236559 Further, the embodiment of the present invention may be changed as follows. In the above embodiment, the position changing device is a slip mechanism 11 that moves the water vapor generating portion 12 in the arrangement direction of the plant p. However, the position changing means may move the plant P with respect to the water vapor generating portion 12, for example. For example, in the example of Fig. 5, the position changing device includes a rotating plate 41 that is rotatably driven by a plurality of plants P. The water vapor generating portion 12 (the electrostatic atomizing portion 20) is disposed, for example, on the radially outer side of the rotating plate member 41, and faces the center of the rotating plate member 41 toward the plant P toward the water vapor discharge port. The rotating plate member 41 is rotated in accordance with an instruction of the control circuit supplied from the control unit CP (see Fig. 3), and the relative position of the water vapor generating portion 12 and the plant P is changed. In the example of Fig. 6, the position changing device includes a conveyor belt 51. The conveyor belt 51 includes two rollers 52, and a belt 53 that is mounted on the rollers 52 to support the plants P. A plurality of water vapor generating portions 12 (electrostatic atomizing portions 20) are disposed along the conveying belt 51. The water vapor discharge port of each of the water vapor generating portions 12 faces the plant P. The roller 52 is rotated in accordance with an instruction from the control circuit that is supplied to the control unit CP (see Fig. 3), and the belt 53 changes the relative position of the water vapor generating unit 12 and the plant P. Two or one of the two rollers 52 may be rotationally driven for the drive source. As shown in Figs. 11 to 13, the position changing means may change the position of the electrostatic atomizing portion 20 of the water vapor generating portion 12 to change the particle ejection position of the water vapor generating portion 12. For example, in the example of Fig. 11, the water vapor generation unit 12 includes a water vapor discharge pipe portion 110 connected to the water vapor discharge port 22a (see Fig. 2). The position changing device includes a driving portion 111 formed of an actuator that moves only the water vapor discharge pipe portion 110. The drive unit 111 moves the water vapor discharge pipe unit 110 along the long rail 112 in the direction of the plant P arrangement 15 201236559. The drive unit ln controls the drive by the control unit. In the present configuration, the front end of the water vapor discharge pipe portion 11 is a water vapor (fine particle) injection position. In the example of Fig. 12, a plurality of water vapor generating portions 12 are arranged along the arrangement direction of the plants p. These water vapor generation units 12 are controlled by individual control units cp. The control unit cp drives the water vapor generation unit 12 one by one, or sequentially controls the water vapor generation unit 12 that drives the group, thereby visually changing the position of the p12@microparticle ejection for the plant p^water π^, for example, by The driving of the water vapor generating portion 12 corresponding to the plant raft is stopped, and the other water vapor generating portion 12 not corresponding to the specific plant raft is driven to change the particle ejection position of the water vapor generating portion 12 for the specific plant raft. In the present configuration, the water vapor discharge port 22a (see Fig. 2) of each water α generating unit 12 is a water vapor (microparticle) injection position. In the example of Fig. 13, the 邰A 4 μ I &gt;% splicing outlet is connected to the squirrel. The connecting pipe portion m has a plurality of rectangular discharge ports 121. A solenoid valve 122 is connected to each of the discharge ports 121. Each of the valves 122 is controlled by the control unit cp. The control unit cp drives the electric power one by one, and the valve 122 or the electromagnetic valve that drives the group is controlled in sequence, whereby the remaining portion of the money generating unit 12 of the plant P is controlled to be changed. For example, the electromagnetic 阙 (2) 2 corresponding to the plexus p is closed to other solenoid valves (2) that do not correspond to its particular plant P. = change the particle jet ejection position of the water vapor generating portion 12 of the specific plant P. In the present configuration, each of the discharge ports 121 is water vapor (fine particles). On the casing of the water vapor generating portion 12 of Figs. 5 to 8 and Fig. 11 201236559 ^ The formed water vapor discharge port may be the water vapor discharge port 22a of FIG. 2, and the front end of the water vapor discharge pipe portion of FIG. 11 and the discharge port ι21 of the electromagnetic valve 122 of FIG. 13 are other types of the fine particle injection port of the water vapor generation portion 12. Example. The positional change of the above-described FIG. 5, FIG. 6, FIG. 11, FIG. 12, and FIG. 13 maintains the position of the electrostatic atomization unit 20 of the water vapor generation unit 12 to change the particle ejection position of the water vapor generation unit 12 (microparticles). The position of the injection port and the position of the plant P efficiently supply the droplets of the charged fine particles containing the radicals to the plant p, thereby improving the effect of suppressing the disease. Further, the electrostatic atomization unit 20 of the water vapor generation unit 12 does not move, and the charged atom droplets can be generated (produced) more stably than when the electrostatic atomization unit 20 of the water vapor generation unit 12 moves. In the above embodiment, the position changing device relatively moves the water vapor generating portion 12 along the arrangement direction of the plant P. However, the position changing device can move the water vapor generating portion 12 in the height direction of the plant P. For example, in the example of Fig. 7, the position changing device may include a height adjusting mechanism 72 for the elevator 71 that expands and contracts in the height direction (vertical direction). Further, the position changing device of Fig. 7 can move the water vapor generating portion 12 in the height direction of the plant P and the arrangement direction (horizontal direction) of the plant P by the height adjusting mechanism 72 in cooperation with the sliding mechanism 11 of the above-described embodiment. The height adjusting mechanism 72 can move the water vapor generating portion 12 plural times for a plant in the height direction. The position changing device can move the water vapor generating portion 12 in the upward direction in the height direction at a position corresponding to one plant P, and then move the water vapor generating portion 12 to a position corresponding to the adjacent plant P while applying free radicals to the plant P. The charged particle droplets move the water vapor generating portion 12 in the downward direction. In addition, these actions can be repeated. Of course, the position changing device may move the plant P without moving the water vapor generating unit 12, and may move both the water vapor generating unit 12 and the plant P. As shown in Fig. 8, the planting apparatus 10 may be constituted by an automatic control vehicle 81 that can move integrally on the ground of the cultivation space SS of the cultivated plant P, and a water vapor generating unit 12. With such a configuration, the plant P in the cultivation space SS can be supplied with the charged particle droplets containing radicals in a comprehensive manner in the automatic control cart 81 that supports the water vapor generating unit 12. The automatic control car 81 can also be changed to a flying object such as a remote control helicopter or an airplane. In the above embodiment, the fine particle generating portion includes the electrostatic atomizing portion 20 that generates radical-containing nano-sized fine particles (charged fine particle water droplets) by electrostatic atomization, but the fine particle generating portion may be other than electrostatic atomization. The method produces microparticles containing free radicals. For example, an ultrasonic atomizing device, a pressurized atomizing device, or the like may be used to microparticleize a solution of a radical initiator by ultrasonic waves or pressure. In the above embodiment, the thermoelectric element 29 is used as the supply means for supplying water to the discharge electrode 23 constituting the electrostatic atomization unit 20. However, the present invention is not limited thereto. For example, a configuration may be adopted in which water is directly supplied to the discharge electrode 23. Further, it may be composed of zeolite for dehumidification, and the dehumidified zeolite is heated by a warmer to collect water evaporated from the zeolite to obtain a liquid. In the above embodiment, the control unit CP controls the electrostatic atomization unit 20 so that the ozone dose to the plant P is 1 ppm·h or less, but is not limited thereto. For example, if the ozone resistance is high, the control is controlled. The CP can also control the electrostatic atomization unit 20 so that the ozone dose for the plant P is higher than 1 ppm·h ° / 201236559. The microparticle whitening device 1G can have a measuring device for measuring the concentration or concentration of the self in the vicinity of the (4) p of the Wei object. (Free radical measuring device). The position changing device converts the spray object into a sub-plant p when the amount of free radicals determined by the defeat device reaches a reference value. With such a configuration, finer control can be performed, and the charging of the radicals is appropriately supplied to the plant P. Examples of the measuring device can be exemplified by the following. (X) The air around the plant P is supplemented with pure water to test the color of the reagent, and the radical concentration is calculated by the calibration line using a spectroscope. (Y) A hydrogen peroxide test paper is placed around the plant P, and the test paper is photographed, and the color of the image is processed by the image, and the L value in the L*a*b color system is judged. Since the hydrogen peroxide test paper is colored in accordance with the amount (concentration) of the radical (hydrogen peroxide), the amount of the radical can be measured based on the color of the test paper. The plant growing device 10 can also adjust the amount of generation of charged particle water droplets in accordance with, for example, the environmental humidity of the plant p. In the embodiment of Fig. 9, the plant growing device includes a humidity measuring unit 90 that measures the environmental humidity of the plant P. The measurement result of the humidity measuring unit 90 can also be fed back to the control unit cp for controlling the amount of generated droplets of charged particles. Specifically, the control unit CP is connected to the humidity setting unit 91, and the humidity setting unit 91 sets, for example, 7〇% RH as the humidity threshold. Then, when the humidity measured by the humidity measuring unit 9 is equal to or lower than the humidity threshold, the control unit CP drives the static mode by discharging the normal mode of the charged particle droplets containing the normal amount (10×1 (T9g/cm 2 ) of one hour per minute). The atomization unit 20. The control unit CP drives the electrostatic atomization unit 20 in a high concentration mode in which the amount of radicals is twice the normal amount, for example, when the humidity measured by the humidity measurement unit 90 is equal to the humidity threshold. When the humidity of the proliferation of the bacteria of the 2012 201236559 is high, the control unit cp switches the electrostatic atomization unit 20 from the normal mode to the high concentration mode, whereby the growth of the bacteria can be more appropriately suppressed. In the above-described form, for example, a new leaf may be detected corresponding to the type of the plant P, and a charged particle droplet may be supplied to the new leaf. In the embodiment shown in Fig. 10, the color detecting unit 100 detects the plant P (leaf) to be detected. When the color is determined as the color of the new leaf set in advance by the color setting unit 101, the control unit CP controls the electrostatic atomization unit 20 to supply the plant P (new leaf) charged particle water droplets. The new leaves with low resistance supply charged droplets of charged particles, thereby protecting the new leaves and the plants P from the bacteria. • In the above embodiment, the felt members are used as the leaves of the plant P, and the amount of free radicals is known. When it is 7x10_9g / cm2 or more, when the droplets of the charged particles containing radicals are generated, the effect of inhibiting the growth of the bacteria can be obtained. Further, it is understood that the amount of radicals reaches 10xl (T9g/cm2 or more, and the radicals are charged). In the case of the microparticles, it is possible to suppress the proliferation of the bacteria. However, for example, based on the experimental results of the above-described embodiment, it is presumed that the actual plant P can suppress the amount of radicals of 5x10_9g/cm2 or more. Therefore, the amount of arrival of the above-mentioned radicals (area density) on the surface of the plant P may be 5×10 −9 g/cm 2 or more. Further, for the same reason, the freedom of the surface of the plant P may be used for one hour. The base arrival amount is 5x1 CT9g / cm2 or more. • Variations can also be combined with each other. [Schematic Description] FIG. 1 is an embodiment of the present invention. Figure 2012 is a schematic diagram of a water vapor generation unit. Fig. 3 is a circuit block diagram of a water vapor generation unit. Fig. 4 (a) shows a bacteria corresponding to the amount of free radicals and the position of the culture dish. (b) is a graph showing the measurement result of the amount of radical arrival corresponding to the position of the culture dish. Fig. 5 is a schematic configuration diagram of the plant growth apparatus of another embodiment. Fig. 6 is a view showing another embodiment of the plant growth apparatus. Fig. 7 is a schematic configuration diagram of a plant growing device according to another embodiment. Fig. 8 (a) and (b) are schematic configuration diagrams of a plant growing device according to another embodiment. Fig. 9 is a schematic configuration diagram of a plant growing device of another embodiment. Fig. 10 is a schematic configuration diagram of a plant growing device of another embodiment. Fig. 11 is a schematic configuration diagram of a plant growing device of another embodiment. Fig. 12 is a schematic configuration diagram of a plant growing device of another embodiment. Fig. 13 is a schematic configuration diagram of a plant growing device of another embodiment. 11 : slip mechanism lib : substrate 20 : electrostatic atomization portion 21 a : cylindrical portion 21 c : partition wall 21 e : air inflow hole 22 a : water vapor and bub outlet 23 a : discharge portion [main element symbol description] 10 : plant growing device 11 a : Guide rail 12: Water vapor generation portion 21: Support case 21b: Fixing flange portion 21d: Communication hole 22: Counter electrode 23: Discharge electrode • 21 201236559 23b 25 : 27 : 29 : 31 : 35 : 41 : 52 : 71 : 81 : 91 : 101 111 120 122 HV PS : S2 : : Flange cooling board circuit board Thermoelectric element heat-dissipating component High-voltage power supply voltage detection circuit Rotating plate roller lift automatic console car humidity setting unit: Color setting unit: Drive unit: Link Pipe: solenoid valve: high voltage power supply circuit Peltier power supply confined space 24: high voltage electric application plate 26: Peltier module 28: circuit substrate 30: Peltier input wire 32: sealing member 36: discharge current detection Circuit 51: conveyor belt 53: belt body 72: height adjustment mechanism 90: humidity measurement unit 100: color detection unit 110: water vapor discharge pipe portion 112: guide rail 121: discharge port CP: control unit P: plant S1: atomization space SS :plant Space 22

Claims (1)

201236559 七、申請專利範圍: 子,植物育成裝置’對植物供給含有自由基的微粒 子產生部’以—小時的自由基對於植物表面的 達量成4 5X1() g/em2以上,產生含有自由 子;以及 7风孤 -位置變更裝置,變更前述微粒子產生部的微粒 射位置與前述植物之相對位置。 ^ 2.如申請專利範圍第1項所述之植物育成裝置,其中 ,述微粒子產生部以一小時的自由基對於植物表面的到達 置成為10xlG_9g/em2以上,產生含有自由基的微粒子。 么、3.如申請專利範圍第1項所述之植物育成裝置,其中 别述位置變更裝置係沿著配置有複數個前述植物的配置方 向,移動刚述微粒子產生部與前述植物的至少一者。 此…4.如申請專利範圍第1項所述之植物育成裝置,其中 則述位置變更裝置至少沿著前述植物的高度方向,移動前 述微粒子產生部與前述植物的炱少一者。 5.如申請專利範圍第1項所述之植物育成裝置,其具 ,一自由基測定裝置,測定前遂植物附近的前述自由基的 濃度, 則述自由基測定裝置所測定的前述植物附近的前述自 23 201236559 ' 由基濃度達到基準值時,前述位置變更裝置變更前述微粒 子產生部與前述植物之相對位置。 6. 如申請專利範圍第1項所述之植物育成裝置,其具 備一濕度計測裝置,計測前述植物的環境濕度, 前述微粒子產生部對應前述濕度計測裝置所計測的濕 度,變更前述微粒子的產生量。 7. 如申請專利範圍第6項所述之植物育成裝置,其中 前述微粒子產生部可切換: 通常模式,於前述植物的環境濕度為閾值以下的情況 時,排出通常量的含有自由基的微粒子;以及 高濃度模式,於前述植物的環境濕度高於前述閾值的 情況時,排出較前述通常量多量的含有自由基的微粒子 而構成。 8. 如申請專利範圍第1項所述之植物育成裝置,其具 備一顏色檢測裝置,檢測前述植物的葉色, 若前述顏色檢測裝置檢測到的前述植物的葉色為新葉 的顏色時,前述微粒子產生部對於該新葉產生前述含有自 由基的微粒子。 9. 如申請專利範圍第1項所述之植物育成裝置,其中 前述自由基到達量係氫氧基換算值,前述微粒子產生部與 前述位置變更裝置協同動作,將對於前述植物的一日的前 24 201236559 述自由基到達量調整為1〇xl〇-9g/cni2以上。 10.—種植物育成裝置,對植物供給含有自由基的微粗 子,其具備: 一微粒子產生部,產生含有自由基的微粒子; 一微粒子噴射口,排出前述含有自由基的微粒子;以 及 一控制電路,保持自由基到達量判定基準值,基於前 述自由基到達量判定基準,進行前述微粒子產生部的驅動 控制及前述微粒子喷射口與植物之相對位置的變更控制。 11.如申請專利範圍第1。項所述,植物育成裝置,其 中前述控制電路係保持的自由暮到達I判定基準值’換算 為氫氧基時於5xi〇-9g / h · cm2以二* 12.如申請專利範圍第U) 置換J 中前述控制電路係保持的自由基。4準值、 為氫氧基時於l〇xl〇-9g/day“m以 25201236559 VII. Patent application scope: Sub-plant breeding device 'Supply the microparticle-generating part containing free radicals to the plant'. The amount of free radicals on the plant surface is 4 5X1() g/em2 or more, resulting in the inclusion of free radicals. And a wind-orphan-position changing device that changes the relative position of the particle-forming position of the fine particle generating portion to the plant. 2. The plant growing device according to the first aspect of the invention, wherein the microparticle generating portion generates a radical containing radicals by causing a radical of one hour to reach a surface of the plant at 10x1G_9g/cm2 or more. 3. The plant growing device according to claim 1, wherein the position changing device moves at least one of the microparticle generating portion and the plant along the arrangement direction in which the plurality of plants are disposed. . The plant growing device according to the first aspect of the invention, wherein the position changing device moves the microparticle generating portion and the plant at least along the height direction of the plant. 5. The plant growth apparatus according to claim 1, wherein the radical measuring device measures the concentration of the radical in the vicinity of the plant before the plant, and the vicinity of the plant measured by the radical measuring device When the base concentration reaches the reference value from 23 201236559 ', the position changing device changes the relative position of the fine particle generating portion and the plant. 6. The plant growing device according to claim 1, comprising a humidity measuring device that measures an environmental humidity of the plant, wherein the fine particle generating unit changes the amount of the fine particles generated corresponding to the humidity measured by the humidity measuring device. . 7. The plant growing device according to claim 6, wherein the microparticle generating portion is switchable: in a normal mode, when a normal humidity of the plant is below a threshold value, a normal amount of free radical-containing microparticles is discharged; In the high-concentration mode, when the environmental humidity of the plant is higher than the threshold value, a large amount of radical-containing fine particles are discharged from the normal amount. 8. The plant growing device according to claim 1, comprising a color detecting device for detecting a leaf color of the plant, wherein the particle size of the plant detected by the color detecting device is a color of a new leaf, the microparticle The generating portion generates the aforementioned radical-containing fine particles for the new leaf. 9. The plant growing device according to claim 1, wherein the radical amount is a hydroxyl-based conversion value, and the fine particle generating unit cooperates with the position changing device to perform a day before the plant 24 201236559 The amount of free radical arrival is adjusted to 1〇xl〇-9g/cni2 or more. 10. A plant growing device for supplying a plant with a radical containing a radical, comprising: a microparticle generating portion for generating a radical containing a radical; a microparticle ejection port for discharging the radical containing the radical; and a control In the circuit, the radical arrival amount determination reference value is maintained, and the drive control of the fine particle generation unit and the change control of the relative position of the fine particle injection port and the plant are performed based on the radical arrival amount determination criterion. 11. If the scope of patent application is No. 1. In the plant growing device, wherein the control circuit maintains a free 暮 arrival I determination reference value 'in the case of a hydroxyl group at 5 xi -9 g / h · cm 2 to two * 12. As claimed in the U range The radicals held by the aforementioned control circuit in J are replaced. 4 quasi value, when the hydroxyl group is l〇xl〇-9g/day "m to 25
TW101105050A 2011-02-16 2012-02-16 Plant cultivation device TW201236559A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030899A JP2012165717A (en) 2011-02-16 2011-02-16 Plant cultivation device

Publications (1)

Publication Number Publication Date
TW201236559A true TW201236559A (en) 2012-09-16

Family

ID=46672644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101105050A TW201236559A (en) 2011-02-16 2012-02-16 Plant cultivation device

Country Status (3)

Country Link
JP (1) JP2012165717A (en)
TW (1) TW201236559A (en)
WO (1) WO2012111732A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460161B2 (en) * 2017-06-27 2019-01-30 井関農機株式会社 Mobile vehicle for cultivation facilities
JP6350726B2 (en) * 2017-06-27 2018-07-04 井関農機株式会社 Mobile work vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05153858A (en) * 1991-11-14 1993-06-22 Eroika Corp:Kk Foliar culture of plant and apparatus therefor
JP5652756B2 (en) * 2008-09-18 2015-01-14 独立行政法人農業・食品産業技術総合研究機構 Fruit processing equipment
JP5537010B2 (en) * 2008-09-25 2014-07-02 パナソニック株式会社 Plant growing device
JP5013346B2 (en) * 2009-04-22 2012-08-29 寿浩 百々 Local temperature control device, short-day local night cooling system and strawberry cultivation system

Also Published As

Publication number Publication date
WO2012111732A1 (en) 2012-08-23
JP2012165717A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
US20180290157A1 (en) Microfluidic delivery cartridge for use with a microfluidic delivery device
EP3609546B1 (en) Microfluidic delivery device and method for dispensing a fluid composition upward into the air
US20040251326A1 (en) Electrostatic atomisation device
US20180290158A1 (en) Microfluidic delivery device and method of jetting a fluid composition with the same
JPH10506324A (en) Electrostatic spray of particulate material
WO2008052000A3 (en) Holder for electrically charging a substrate during coating
CN104069968B (en) Spray nozzle and the application system of this spray nozzle of use
US9588105B1 (en) Portable in vitro multi-well chamber for exposing airborne nanomaterials at the air-liquid interface using electrostatic deposition
TW201236559A (en) Plant cultivation device
KR101981363B1 (en) Liquid-Agent-Spraying Device, Electrifying/Spraying Head, and Liquid-Agent-Spraying Method
CZ291778B6 (en) Device for producing a spray or stream of electrically charged particles and process for producing a high voltage generator comprised in such device
CN105188956A (en) Device and method for wetting a sample with an aerosol
CN202772421U (en) Ion feeding device and electrical equipment provided with the same
CN110140052B (en) Flat panel gas-liquid interface exposure module and method
JP2005078980A (en) Static eliminator
WO2012111733A1 (en) Plant cultivation device
JP2011067771A (en) Discharge apparatus
JP2008006422A (en) Electrostatic atomization apparatus
CN116419802A (en) Electrostatic spray nozzle film and electrostatic spray system provided with same
KR20150094399A (en) Sterilizer and method of controlling thereof
JP2010198874A (en) Luminaire
WO2015002607A1 (en) Interactive ionizers and methods for providing ions
CN114144261B (en) Apparatus and method for managing fine particle concentration
JP4409516B2 (en) Charged nanoparticle manufacturing method, charged nanoparticle manufacturing system, and charged nanoparticle deposition system
CN116348152A (en) Sterilization device