TW201236214A - LED-based illumination modules with thin color converting layers - Google Patents

LED-based illumination modules with thin color converting layers Download PDF

Info

Publication number
TW201236214A
TW201236214A TW100149601A TW100149601A TW201236214A TW 201236214 A TW201236214 A TW 201236214A TW 100149601 A TW100149601 A TW 100149601A TW 100149601 A TW100149601 A TW 100149601A TW 201236214 A TW201236214 A TW 201236214A
Authority
TW
Taiwan
Prior art keywords
color conversion
layer
conversion layer
phosphor particles
particles
Prior art date
Application number
TW100149601A
Other languages
Chinese (zh)
Inventor
Padmanabha Rao Ravillisetty
Gerard Harbers
Original Assignee
Xicato Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/328,974 external-priority patent/US8425065B2/en
Application filed by Xicato Inc filed Critical Xicato Inc
Publication of TW201236214A publication Critical patent/TW201236214A/en

Links

Landscapes

  • Optical Filters (AREA)
  • Led Device Packages (AREA)

Abstract

An illumination module includes a plurality of Light Emitting Diodes (LEDs). The illumination module may include a reflective color converting element with a PTFE layer and a color converting layer fixed to the PTFE layer. The color converting layer includes phosphor particles embedded in a polymer matrix and has a thickness that is less than five times an average diameter of the phosphor particles. The illumination module may include a transmissive color converting element. The color converting elements may be produced by mixing a polymer binder with a solvent and phosphor particles to form a homogeneous suspension of the phosphor particles. The homogeneous suspension is applied to a surface to form an uncured color converting layer, which is heated to vaporize the solvent. The cured color converting layer includes the phosphor particles suspended in the polymer binder.

Description

201236214 六、發明說明: 【發明所屬之技術領域】 所闡述之貫施例係關於包含發光二極體(LED)之照明模 組。 本申凊案依據35 USC 119主張於201〇年12月30日提出申 請之美國臨時申請案第61/428691號之優先權,該美國臨 時申請案以全文引用方式併入本文中。 【先前技術】 由於照明裝置所產生之光輸出位準或通量之限制,因此 一般照明中之發光二極體之使用仍受限。使用LED之照明 裝置亦通常遭受具有色點不穩定性之特徵之較差色品質。 該色點不穩定性隨時間以及逐部分變化。較差色品質亦具 有較差現色性之特徵,此歸因於LED光源所產生之光譜具 有無功率或幾乎沒有功率之譜帶。此外,使用LED之照明 裝置通常具有色彩之空間變化及/或角度變化。另外,除 其他外,由於對用以維持光源之色點之所需色彩控制電子 器件及/或感測器之需要或僅使用滿足應用之色彩及/或通 量要求之所生產led之小部分,因此使用LED之照明裝置 較昂貴。 因此,期望對使用發光二極體作為光源之照明裝置之改 良。 【發明内容】 一種照明模組包含複數個發光二極體(LED)。該照明模 組可包含具有一 PTFE層及固定至該PTFE層之一色彩轉換 161207.doc 201236214 層之一反射色彩轉換元件。該色彩轉換層包含嵌入於一聚 合物基質中之磷光體粒子且具有小於該等磷光體粒子之一 平均直徑的五倍之一厚度。該照明模組可包含一透射色彩 轉換元件。該等色彩轉換元件可藉由將一聚合物黏結劑與 一溶劑及磷光體粒子混合以形成該等磷光體粒子之一均質 懸浮液而產生。將該均質懸浮液施加至一表面以形成一未 經固化色彩轉換層,加熱該未經固化色彩轉換層以使該溶 劑蒸發。經固化色彩轉換層包含懸浮於該聚合物黏結劑中 之該等磷光體粒子》 在一實施例中,一設備包含一光源子總成,其具有複數 個發光二極體(LED);及一反射色彩轉換元件,其包括一 聚四氟乙烯(PTFE)層及固定至該PTFE層之一第一色彩轉 換層’其中該第一色彩轉換層包含嵌入於一聚合物基質中 之複數個一第一類型之磷光體粒子,且其中該第一色彩轉 換層之一厚度係小於該%·填光體粒子之一平均直徑的五 倍。 在一實施例中’一設備包含一光源子總成,其具有複數 個發光二極體(LED); —反射色彩轉換元件,其包括一聚 四氟乙烯(PTFE)層及固定至該PTFE層之-第一色彩轉換 層’其中該第一色彩轉換層包含嵌入於一聚合物基質中之 複數個一第一類型之鱗光體粒子’且其中該第一色彩轉換 層之一厚度係小於該等磷光體粒子之一平均直徑的五倍; 及一透射色彩轉換元件,其包括一光學透明層及固定至該 光學透明層之一第二色彩轉換層’其中該第二色彩轉換層 161207.doc 201236214 包3複數個第二碟光體粒子’其中該等第二該等填光體粒 子具有不超過600奈米之一峰值發射波長。 在貫施例中,一設備包含複數個發光二極體(LED); 透射色彩轉換總成,其經定位以接收自該複數個發 射之一光,該透射色彩轉換總成包括:一第一透射光學元 件,一第二透射光學元件;一第一色彩轉換材料,其安置 於。亥第透射光學元件與該第二透射光學元件之間;及一 :封材料’其安置於該第-透射光學元件與該第二透射光 千元件之間,其固定地將該第一透射光學元件耦合至該第 一透射光學元件,纟中該第一色彩轉換材料係由該第一透 射光子元件及该第二透射光學元件以及該密封材料包含。 在-實施例中’一方法包含將一聚合物黏結劑與一溶劑 及複數個碟光體粒子混合以形成該等鱗光體粒子之一均質 愍’予液,將該均質懸浮液施加至一表面以形成一未經固化 色洛轉換層,及加熱該未經固化色彩轉換層以使該溶劑蒸 發以形成經固化色彩轉換層,其中該經固化色彩轉換層 包含懸*於該聚合物黏结劑中之該等鱗光體粒?,且其中 該、’呈固化色彩轉換層之一厚度係小於該等磷光體粒子之一 平均直徑的五倍。 下文之實施方式中闡述進一步細節及實施例及技術。本 發月内今並不界定本發明。本發明係由申請專利範圍界 定。 【實施方式】 現在將詳細參考先前技術實例及本發明之某些實施例, 161207.doc • 6 - 201236214 本發明之實例圖解說明於隨附圖式中。 圖1、圖2及圖3圖解說明三種例示性照明器具,全部標 記為150。⑸中所圖解說明之照明器具包含具有一矩形外 觀尺寸之一照明模組丨00。圖2中所圖解說明之照明器具包 含具有-圓形外觀尺寸之_照明模⑽。圖3中所圖解說 明之照明器具包含整合至一改裝燈裝置中之—照明模組 此等實例係出於說明性之目的。亦可預期—般多邊 形及橢圓形形狀之照明模組之實例。照明器具15〇包含照 明模組100、反射器140及燈具130。如所繪示,燈具13〇包 含一散熱片能力。然而,燈具130可包含其他結構及裝御 元件(未展示)。反射器140安裝至照明模組100以準直自昭 明模組1⑽發射之光或使其偏轉。反射器14〇可係由一導孰 材料(諸如包含紹或銅之一材料)製成且可熱輕合至照明模 組100。熱藉由透過照明模組1〇〇及導熱反射器丨4〇之傳導 而流動。熱亦經由反射器140上面之熱對流而流動。反射 器140可係一複合抛物面聚焦器,其中該聚焦器係由-高 度反射材料構造而成或塗佈有該高度反射材料。光學元件 (諸如-漫射器或反射器140)可係(例如)藉助螺紋、一夾 具、一扭鎖機構或其他適當配置以可移除方式耗合至昭明 模組⑽。如圖3中所圖解㈣,反” 土佈有(例如)一波長轉換材料、漫射材料或任 望材料之側壁141及一窗142。 、听期 如圖1、圖2及圖3中所繪示,照明模組1〇〇安裝至散熱片 130。散熱片130可係由-導熱材料(諸如包含鋁或鋼之一 I61207.doc 201236214 材料)製成且可熱耦合至照明模組100。熱藉由透過照明模 組100及導熱散熱片13Q之傳導而流動。&亦經由散熱片 130上面之熱對流而流動。照明模組100可藉助用以將照明 模組100夾緊至散熱片13G之螺紋而附接至散熱片130。為 促成谷易移除及替換照明模組丨00,照明模組丨00可係(例 如)藉助一夾具機構、一扭鎖機構或其他適當配置以可移 除方式耗合至散熱片130。照明模組100包含(例如)直接或 使用熱油脂、熱膠帶、熱襯墊或熱環氧樹脂熱耦合至散熱 片130之至少—個導熱表面。為了充分冷卻LED,流動至 板上LED之每一瓦特之電能應使用至少5〇平方毫米(但較佳 地係100平方毫米)之一熱接觸面積。舉例而言,在使用 個LED時之情形中,應使用1000至2000平方毫米之散熱片 接觸面積。使用一較大散熱片13〇可准許以較高功率驅動 LED 102,且亦允許不同的散熱片設計。舉例而言,某些 設計可展示較不依據於散熱片之定向之一冷卻能力。另 外,可使用用於強制冷卻之風扇或其他解決方案而自該裝 置進行熱移除。底部散熱片可包含一孔隙以使得可進行至 照明模組100之電連接。 圖4藉由實例之方式圖解說明圖i中所繪示之以Led為基 礎之照明模組100之組件之一分解圖。應理解,如本文中 所疋義’一以LED為基礎之照明模組並非一 led,而係一 LED光源或燈具,或一 LED光源或燈具之組件部分。舉例 而言,一以LED為基礎之照明模組可係諸如圖3中所繪示 之一以LED為基礎之備用燈。以Led為基礎之照明模組1〇〇 161207.doc 201236214 包含一或多個LED晶粒或經封裝LED以及LED晶粒或經封 裝LED附接至之一安裝板《在一項實施例中,LED 102係 經封裝之LED’諸如由philips Lumileds Lighting所製造之 Luxeon Rebel。亦可使用其他類型之經封裝之LED,諸如 由 OSRAM(Oslon 封裝)、Luminus 裝置(美國)、Cree(美 國)、Nichia(曰本)、或Tridonic(奥地利)所製造之彼等經封 裝之LED。如本文中所定義,一經封裝之]led係一或多個 LED晶粒之一總成,其含有電連接(諸如導線結合連接或柱 形凸塊)且可包含一光學元件及熱、機械及電介面^ led晶 片通常具有約1 mmX 1 mmX0.5 mm之一大小,但此等尺寸 可變化。在某些實施例中’ LED 102可包含多個晶片。該 多個晶片可發射類似或不同色彩(例如紅色、綠色及藍色) 之光。安裝板104附接至安裝基座1〇1且藉由安裝板定位環 103固定於適當位置。同時,填充有LED 1〇2之安裝板 及安裝板疋位環1 〇3構成光源子總成丨丨5。光源子總成j 15 係可操作以使用LED 102將電能轉換成光。將自光源子總 成U 5發射之光引導至光轉換子總成〖丨6以進行色彩混合及 色衫轉換。光轉換子總成116包含腔體1〇5及一輸出埠,該 輸出埠經圖解說明為(但不限於)一輸出窗1〇8。光轉換子總 成116視情況包含底部反射器嵌件1〇6與側壁嵌件丨〇7任一 者或兩者。輸出窗1〇8(若用作輸出埠)固定至腔體1〇5之頂 部。在某些實施例中,輸出窗108可藉由一黏合劑固定至 腔體105。為促進自輸出窗至腔體1()5之熱耗散,—導熱黏 合劑係所期望的。黏合劑應可靠耐受輪出窗108與腔體105 161207.doc 201236214 之介面處存在之溫度。此外,較佳地,該黏合劑反射或透 射儘可能多之入射光,而非吸收自輸出窗108所發射之 光。在一項實例中,由Dow Corning(美國)製造之數種黏合 劑(例如,Dow Corning SE4420、SE4422、SE4486、Ι- ογ] 、 或 SE9210型號)中之一者之耐 熱性、 導熱性及光學 性質之組合提供適合效能。然而’亦可考量其他導熱黏合 劑。 腔體105或侧壁嵌件1 〇7(當視情況置於腔體ι〇5内部時) 之内部側壁係反射的以使得來自LED 102之光以及任一經 波長轉換之光在腔109内被反射直至當輸出埠(例如,輸出 窗108)安裝於光源子總成115上方時透射穿過該輸出窗。 底部反射器嵌件1 06可視情況置於安裝板1 〇4上方。底部反 射器嵌件106包含若干孔以使得每一 LED 1 02之發光部分不 被底部反射裔嵌件1 〇 6遮撞。側壁敌件1 〇 7可視情況置於腔 體105内部以使得當腔體105安裝於光源子總成U5上方時 側壁嵌件107之内部表面將光自LED 102引導至該輸出窗。 儘管如所繪示’如自照明模組1〇〇之頂部觀看,腔體1〇5之 内部側壁係矩形形狀’但可預期其他形狀(例如,三葉草 形狀或多邊形)。另外,腔體1〇5之内部側壁可自安裝板 1〇4至輸出窗108向外錐形化或彎曲,而非如所繪示垂直於 輸出窗108 » 底部反射器嵌件106及側壁嵌件1〇7可係高度反射以使得 在腔109中向下反射之光通常反射朝向輸出埠(例如,輸出 窗。另外,嵌件1〇6及107可具有一高導熱性,以使得 161207.doc •10-201236214 VI. Description of the Invention: [Technical Field of the Invention] The illustrated embodiment relates to an illumination module including a light-emitting diode (LED). The present application is based on the priority of US Provisional Application No. 61/428,691, filed on Dec. 30, 201, the entire disclosure of which is hereby incorporated by reference. [Prior Art] Due to the limitation of the light output level or flux generated by the illumination device, the use of the light-emitting diode in general illumination is still limited. Illumination devices that use LEDs also typically suffer from poor color quality with features of color point instability. This color point instability varies over time and from part to time. Poor color quality is also characterized by poor color rendering due to the spectrum produced by the LED source with or without power. In addition, illumination devices that use LEDs typically have spatial variations in color and/or angular variations. In addition, due to the need for the required color control electronics and/or sensors to maintain the color point of the source, or only a small portion of the led produced to meet the color and/or flux requirements of the application Therefore, lighting devices using LEDs are more expensive. Therefore, improvement of an illumination device using a light-emitting diode as a light source is desired. SUMMARY OF THE INVENTION A lighting module includes a plurality of light emitting diodes (LEDs). The illumination module can include a reflective color conversion element having a PTFE layer and a layer of color conversion 161207.doc 201236214 fixed to the PTFE layer. The color conversion layer comprises phosphor particles embedded in a polymer matrix and has a thickness that is less than one-fifth the average diameter of one of the phosphor particles. The lighting module can include a transmissive color conversion element. The color conversion elements can be produced by mixing a polymer binder with a solvent and phosphor particles to form a homogeneous suspension of the phosphor particles. The homogeneous suspension is applied to a surface to form an uncured color conversion layer, and the uncured color conversion layer is heated to evaporate the solvent. The cured color conversion layer comprises the phosphor particles suspended in the polymer binder. In one embodiment, an apparatus includes a light source subassembly having a plurality of light emitting diodes (LEDs); and a a reflective color conversion element comprising a polytetrafluoroethylene (PTFE) layer and a first color conversion layer fixed to the PTFE layer, wherein the first color conversion layer comprises a plurality of first embedded in a polymer matrix A type of phosphor particle, and wherein one of the first color conversion layers has a thickness that is less than five times the average diameter of one of the %·filler particles. In one embodiment, a device includes a light source subassembly having a plurality of light emitting diodes (LEDs); a reflective color conversion element comprising a layer of polytetrafluoroethylene (PTFE) and being affixed to the PTFE layer a first color conversion layer, wherein the first color conversion layer comprises a plurality of first type of scale particles embedded in a polymer matrix and wherein one of the first color conversion layers has a thickness smaller than the And a transmission color conversion element comprising an optically transparent layer and a second color conversion layer fixed to the optically transparent layer, wherein the second color conversion layer 161207.doc 201236214 A plurality of second-disc photo-particles of the package 3 wherein the second such filler particles have a peak emission wavelength of no more than 600 nm. In one embodiment, a device includes a plurality of light emitting diodes (LEDs); a transmissive color conversion assembly positioned to receive light from the plurality of emitted light, the transmitted color conversion assembly comprising: a first a transmissive optical element, a second transmissive optical element; a first color conversion material disposed thereon. Between the first transmissive optical element and the second transmissive optical element; and a: a sealing material disposed between the first transmissive optical element and the second transmissive optical element, which fixedly the first transmissive optical An element is coupled to the first transmissive optical element, wherein the first color conversion material is comprised by the first transmissive photonic element and the second transmissive optical element and the sealing material. In an embodiment, a method comprises mixing a polymer binder with a solvent and a plurality of disc particles to form a homogenous 愍' pre-liquid of the scalar particles, and applying the homogeneous suspension to the solution. Forming an uncured color conversion layer, and heating the uncured color conversion layer to evaporate the solvent to form a cured color conversion layer, wherein the cured color conversion layer comprises a suspension of the polymer binder What are these scales in the body? And wherein the thickness of one of the cured color conversion layers is less than five times the average diameter of one of the phosphor particles. Further details and embodiments and techniques are set forth in the following embodiments. The present invention is not defined in this month. The invention is defined by the scope of the patent application. [Embodiment] Reference will now be made in detail to the prior art examples and certain embodiments of the present invention, 161 207. doc. 6 - 201236214 Examples of the invention are illustrated in the accompanying drawings. 1, 2 and 3 illustrate three exemplary lighting fixtures, all labeled 150. The lighting fixture illustrated in (5) comprises a lighting module 丨00 having a rectangular outer dimension. The lighting fixture illustrated in Figure 2 comprises an illumination die (10) having a -round appearance dimension. The lighting fixture illustrated in Figure 3 includes a lighting module integrated into a retrofit lamp unit. These examples are for illustrative purposes. Examples of lighting modules of a generally polygonal shape and an elliptical shape are also contemplated. The lighting fixture 15 includes a lighting module 100, a reflector 140, and a luminaire 130. As shown, the luminaire 13 〇 includes a heat sink capability. However, luminaire 130 can include other structures and mounting components (not shown). Reflector 140 is mounted to illumination module 100 to collimate or deflect light emitted from illumination module 1 (10). The reflector 14 can be made of a conductive material, such as a material comprising one or a piece of copper, and can be thermally coupled to the illumination module 100. The heat flows through the conduction through the illumination module 1 and the thermally conductive reflector 丨4〇. Heat also flows through the heat convection above the reflector 140. Reflector 140 can be a compound parabolic focus, wherein the focus is constructed of or coated with a highly reflective material. The optical component (such as a diffuser or reflector 140) can be removably consuming to the illustrated module (10), for example, by means of a thread, a clamp, a twist-lock mechanism, or other suitable configuration. As illustrated in FIG. 3 (4), the anti-soil cloth has, for example, a wavelength conversion material, a diffusing material or a side wall 141 of a desired material and a window 142. The listening period is as shown in FIG. 1, FIG. 2 and FIG. The lighting module 1 is mounted to the heat sink 130. The heat sink 130 can be made of a thermally conductive material such as one of aluminum or steel I61207.doc 201236214 and can be thermally coupled to the lighting module 100. The heat flows through the conduction through the illumination module 100 and the heat dissipation fins 13Q. Theample also flows through the heat convection on the heat sink 130. The illumination module 100 can be used to clamp the illumination module 100 to the heat sink. The 13G thread is attached to the heat sink 130. To facilitate the removal and replacement of the lighting module 丨00, the lighting module 丨00 can be, for example, by a clamp mechanism, a twist-lock mechanism, or other suitable configuration. The removal method is consuming to the heat sink 130. The lighting module 100 includes, for example, at least one thermally conductive surface that is thermally coupled to the heat sink 130, either directly or using thermal grease, thermal tape, thermal pad or thermal epoxy. Cool the LED and flow to the watt of each LED on the board A thermal contact area of at least 5 square millimeters (but preferably 100 square millimeters) should be used. For example, in the case of using one LED, a heat sink contact area of 1000 to 2000 square millimeters should be used. A larger heat sink 13 准许 permits the LEDs 102 to be driven at a higher power, and also allows for different heat sink designs. For example, some designs may exhibit cooling capabilities that are less dependent on the orientation of the heat sink. The device may be thermally removed using a fan or other solution for forced cooling. The bottom fin may include an aperture to enable electrical connection to the lighting module 100. Figure 4 illustrates by way of example An exploded view of the components of the LED-based lighting module 100 illustrated in Figure i. It should be understood that, as used herein, an LED-based lighting module is not a LED but an LED. A light source or luminaire, or an LED light source or a component part of a luminaire. For example, an LED-based lighting module can be an LED-based backup lamp such as that depicted in Figure 3. Based on Led It Ming module 1〇〇161207.doc 201236214 includes one or more LED dies or packaged LEDs and LED dies or packaged LEDs attached to one of the mounting boards. In one embodiment, the LEDs 102 are packaged LEDs such as Luxeon Rebel manufactured by philips Lumileds Lighting. Other types of packaged LEDs can also be used, such as OSRAM (Oslon package), Luminus device (USA), Cree (USA), Nichia (曰本), Or their packaged LEDs manufactured by Tridonic (Austria). As defined herein, a packaged LED is an assembly of one or more LED dies that contain electrical connections (such as wire bond connections or stud bumps) and may include an optical component and thermal, mechanical, and The dielectric ^ led wafer typically has a size of about 1 mm X 1 mm X 0.5 mm, but these dimensions can vary. In some embodiments the 'LED 102' can comprise a plurality of wafers. The plurality of wafers can emit light of similar or different colors (e.g., red, green, and blue). Mounting plate 104 is attached to mounting base 110 and secured in place by mounting plate retaining ring 103. At the same time, the mounting plate filled with the LED 1〇2 and the mounting plate clamping ring 1 〇3 constitute the light source sub-assembly 丨丨5. The light source subassembly j 15 is operable to convert electrical energy into light using the LEDs 102. The light emitted from the light source sub-assembly U 5 is directed to the light conversion sub-assembly [丨6 for color mixing and color shirt conversion. The light conversion sub-assembly 116 includes a cavity 1〇5 and an output port, which is illustrated as, but not limited to, an output window 1〇8. The light converter subassembly 116 optionally includes either or both of the bottom reflector insert 1〇6 and the sidewall insert丨〇7. The output window 1〇8 (if used as an output port) is fixed to the top of the cavity 1〇5. In some embodiments, the output window 108 can be secured to the cavity 105 by an adhesive. To promote heat dissipation from the output window to cavity 1 () 5, a thermally conductive adhesive is desirable. The adhesive should be reliably resistant to the temperature present at the interface between the wheel window 108 and the cavity 105 161207.doc 201236214. Moreover, preferably, the adhesive reflects or transmits as much incident light as possible, rather than absorbing light emitted from the output window 108. In one example, heat resistance, thermal conductivity, and optics of one of several adhesives manufactured by Dow Corning (USA) (eg, Dow Corning SE4420, SE4422, SE4486, Ι-ογ), or SE9210 model) The combination of properties provides the right performance. However, other thermal adhesives can also be considered. The inner sidewall of the cavity 105 or sidewall insert 1 〇 7 (when placed inside the cavity ι 5 as appropriate) is reflected such that light from the LED 102 and any wavelength converted light are within the cavity 109 The reflection is transmitted through the output window when the output port (eg, output window 108) is mounted over the light source subassembly 115. The bottom reflector insert 106 can be placed over the mounting plate 1 〇4 as appropriate. The bottom reflector insert 106 includes a plurality of apertures such that the illuminated portion of each LED 102 is not obscured by the bottom reflector 1 〇 6. The sidewall entrapment 1 〇 7 can be placed inside the cavity 105 as such such that when the cavity 105 is mounted over the light source subassembly U5, the interior surface of the sidewall insert 107 directs light from the LED 102 to the output window. Although the inner side walls of the cavity 1〇5 are rectangular in shape as viewed from the top of the illumination module 1〇〇, other shapes (e.g., clover shapes or polygons) are contemplated. In addition, the inner side wall of the cavity 1〇5 can be tapered or curved outward from the mounting plate 1〇4 to the output window 108 instead of being perpendicular to the output window 108 as shown in the bottom reflector insert 106 and sidewall embedded The member 1〇7 can be highly reflective such that the light reflected downward in the cavity 109 is typically reflected toward the output port (eg, the output window. Additionally, the inserts 1〇6 and 107 can have a high thermal conductivity such that 161207. Doc •10-

201236214 額外散熱器。藉由實例之方式,嵌件1〇6及ι〇7可 係藉助—高度導熱材料(諸如,—以銘為基礎之材料其 經處理以使該材料高度反射且耐久)製成。藉由實例之方 式,可使用由Alanod(—德國公司)製造稱為Mir〇⑧之一材 料。高反射性可藉由拋光鋁或藉由藉助一或多種反射塗層 覆蓋嵌件106及1〇7之内部表面來達成。另一選擇為,嵌件201236214 Extra radiator. By way of example, the inserts 1〇6 and ι7 can be made by means of a highly thermally conductive material such as a material based on the name which is treated to render the material highly reflective and durable. By way of example, a material called Mir(R) 8 made by Alanod (-Germany) can be used. High reflectivity can be achieved by polishing the aluminum or by covering the inner surfaces of the inserts 106 and 1 by means of one or more reflective coatings. Another option is the insert

106及107可係由一高度反射薄材料(諸如,如由3M(美國) 所銷售之Vikuiti™ ESR、由Toray(日本)所製造之Lumirr〇rTM E60L、或諸如由Furukawa別⑽咖有限公司(曰本)所製造 之微晶聚對酞酸乙二酯(MCPET))製成。在其他實例中, 嵌件106及107可係由一聚四氟乙烯(pTFE)材料製成。在某 些實例中’嵌件106及107可係由如由W.l. Gore(美國)及 Berghof(德國)銷售之一至二毫米厚之一 PTFE材料製成。 在又一些實施例中,嵌件106及107可係由藉由一薄反射層 (諸如一金屬層或一非金屬層)加襯裏之一 PTFE材料(諸如 ESR、E60L、或MCPET)構造。此外,高度漫射反射塗層 可施加至側壁嵌件107、底部反射器嵌件106、輸出窗 1〇8、腔體105、及安裝板104中之任一者。此等塗層可包 含二氧化鈦(Ti〇2)、氧化鋅(ZnO)及硫酸鋇(BaS04)粒子, 或此等材料之一組合。 圆5A及圖5B圖解說明如圖1中所繪示之以LED為基礎之 照明模組1 〇〇之透視剖視圖。在此實施例中,安置於安裝 板I 04上之側壁嵌件107、輪出窗1 及底部反射器嵌件106 在以LED為基礎之照明模組1〇〇中界定一光洗合腔109(圖106 and 107 may be made of a highly reflective thin material such as VikuitiTM ESR sold by 3M (USA), Lumirr〇rTM E60L manufactured by Toray (Japan), or such as by Furukawa (10) Coffee Co., Ltd. ( It is made of microcrystalline polyethylene terephthalate (MCPET) manufactured by 曰本). In other examples, the inserts 106 and 107 can be made of a polytetrafluoroethylene (pTFE) material. In some instances, inserts 106 and 107 can be made from one of the PTFE materials sold by W.l. Gore (USA) and Berghof (Germany) to one millimeter thick. In still other embodiments, the inserts 106 and 107 can be constructed from a PTFE material (such as ESR, E60L, or MCPET) lined with a thin reflective layer such as a metal layer or a non-metallic layer. Additionally, a highly diffuse reflective coating can be applied to either of the sidewall insert 107, the bottom reflector insert 106, the output window 〇8, the cavity 105, and the mounting plate 104. These coatings may comprise titanium dioxide (Ti〇2), zinc oxide (ZnO) and barium sulfate (BaS04) particles, or a combination of such materials. Circle 5A and Figure 5B illustrate a perspective cross-sectional view of the LED-based lighting module 1 as shown in Figure 1. In this embodiment, the sidewall insert 107, the wheel exit window 1 and the bottom reflector insert 106 disposed on the mounting board I 04 define a light-washing cavity 109 in the LED-based lighting module 1 . (Figure

S 161207.doc 201236214 5A中所圖解說明)。來自LED ι〇2之光之一部分在光混合腔 109内反射直至其射出穿過輪出窗108。在射出輸出窗ι〇8 之前在腔109内反射該光具有混合該光且提供自以led為 基礎之照明模組100所發射之該光之一更均勻分佈之效 應。 LED 102可藉由直接發射或藉由磷光體轉換而發射不同 或相同色彩,例如,其中將磷光體層作為LED封裝之一部 分而施加至該LED。因此,照明裝置ι〇〇可使用有色led 102(諸如紅色、綠色、藍色、琥珀色或藍綠色)之任一組 合,或LED 102可全部產生相同色彩之光或某些或全部可 產生白色光。舉例而言,LED 102可全部發射藍色光或uv 光。另外’ LED 102可發射偏振光或非偏振光且以led為 基礎之照明裝置100可使用偏振LED或非偏振LED之任一組 合。當與磷光體(或其他波長轉換構件)組合使用時,該等 麟光體(或其他波長轉換構件)可(例如)在輸出窗丨〇8中或輸 出窗1 08上 '施加於腔體J 05之側壁中或腔體i 〇5之側壁上 (諸如在側壁嵌件1 〇7中或在側壁嵌件! 〇7上),施加於底部 反射器106中或底部反射器1〇6上,或施加至置於該腔内部 之其他組件(未展示),以使得照明裝置1 〇〇之輸出光具有所 期望之色彩。波長轉換材料之光致轉換性質與在腔109内 之光之混合組合導致輸出埠(例如’輸出窗〗〇8)發射經色彩 轉換之光。藉由調整該等波長轉換材料之化學性質及/或 物理性質(諸如厚度及濃度)及腔109之内部表面上塗層之幾 何性質’可指定藉由輸出窗108輸出之光之特定色彩性 161207.doc 201236214 質,例如,色點、色溫及現色性指數(CRI)。 腔109之部分(諸如,底部反射器嵌件1〇6、側壁嵌件〖ο? 及腔體105)可塗佈有—波長轉換材料。ffi5B圖解說明塗佈 有一波長轉換材料之側壁嵌件1〇7之部分。此外,輪出窗 108之部分可塗佈有相同或一不同波長轉換材料。另外, 底部反射器嵌件106之部分可塗佈有相同或一不同波長轉 換材料。在另一實例(未展示)中,側壁嵌件1〇7被省略且腔 體105之面向内部之壁可塗佈有一波長轉換材料。 藉由實例之方式,該等磷光體可選自由以下化學式所標 示之組:YsAisO丨2:Ce(亦稱為YAG:Ce ,或簡稱yag)、 (Y,Gd)3Al50,2:Ce、CaS:Eu、SrS:Eu、SrGa2S4:Eu、S 161207.doc 201236214 5A). A portion of the light from LED ι 2 is reflected within the light mixing chamber 109 until it exits through the wheel exit window 108. Reflecting the light within the cavity 109 prior to exiting the output window ι 8 has the effect of mixing the light and providing a more even distribution of the light emitted by the LED-based lighting module 100. LEDs 102 can emit different or the same color by direct emission or by phosphor conversion, for example, where a phosphor layer is applied to the LED as part of an LED package. Thus, the illumination device ι can use any combination of colored LEDs 102 (such as red, green, blue, amber or cyan), or the LEDs 102 can all produce the same color of light or some or all of which can produce white Light. For example, LEDs 102 can all emit blue light or uv light. In addition, the LEDs 102 can emit polarized or unpolarized light and the LED-based lighting device 100 can use any combination of polarized LEDs or non-polarized LEDs. When used in combination with a phosphor (or other wavelength converting member), the spheroids (or other wavelength converting members) can be applied to the cavity J, for example, in the output window 8 or on the output window 108. Applied in the bottom reflector 106 or the bottom reflector 1〇6 in the side wall of the 05 or on the side wall of the cavity i 〇5 (such as in the side wall insert 1 〇 7 or on the side wall insert! 〇 7), Or applied to other components (not shown) placed inside the cavity such that the output light of the illumination device 1 has the desired color. The combination of the photoconversion properties of the wavelength converting material and the light within cavity 109 causes the output chirp (e.g., 'output window 〇 8') to emit color converted light. The specific color 161207 of the light output by the output window 108 can be specified by adjusting the chemical and/or physical properties (such as thickness and concentration) of the wavelength converting materials and the geometric properties of the coating on the inner surface of the cavity 109. .doc 201236214 Quality, for example, color point, color temperature, and color rendering index (CRI). Portions of the cavity 109, such as the bottom reflector insert 1〇6, the sidewall inserts, and the cavity 105, may be coated with a wavelength converting material. ffi5B illustrates the portion of the sidewall insert 1〇7 coated with a wavelength converting material. Additionally, portions of the wheeled window 108 may be coated with the same or a different wavelength converting material. Additionally, portions of the bottom reflector insert 106 may be coated with the same or a different wavelength of transition material. In another example (not shown), the sidewall insert 1〇7 is omitted and the inner facing wall of the cavity 105 can be coated with a wavelength converting material. By way of example, the phosphors may be selected from the group indicated by the following chemical formula: YsAisO丨2:Ce (also known as YAG:Ce, or yag for short), (Y,Gd)3Al50,2:Ce, CaS :Eu, SrS:Eu, SrGa2S4:Eu,

Ca3(Sc5Mg)2Si3012:Ce ^ Ca3Sc2Si3012:Ce ^ Ca3Sc204:Ce > Ba3Si6012N2:Eu > (Sr,Ca)AlSiN3:Eu > CaAlSiN3:Eu >Ca3(Sc5Mg)2Si3012:Ce^Ca3Sc2Si3012:Ce^Ca3Sc204:Ce > Ba3Si6012N2:Eu > (Sr,Ca)AlSiN3:Eu > CaAlSiN3:Eu >

CaAlSi(ON)3:Eu、Ba2Si04:Eu、Sr2Si04:Eu、Ca2Si04:Eu、 CaSc204:Ce、CaSi2〇2N2:Eu、SrSi202N2:Eu、BaSi202N2:Eu、 Ca5(P04)3Cl:Eu、Ba5(P〇4)3ChEu、Cs2CaP2〇7、Cs2SrP207、 Lu3Al5012:Ce、Ca8Mg(Si04)4Cl2:Eu、Sr8Mg(Si04)4Cl2:Eu、 La3Si6Nu:Ce、Y3Ga5012:Ce、Gd3Ga5012:Ce、Tb3Al5012:Ce、CaAlSi(ON)3: Eu, Ba2Si04: Eu, Sr2Si04: Eu, Ca2Si04: Eu, CaSc204: Ce, CaSi2〇2N2: Eu, SrSi202N2: Eu, BaSi202N2: Eu, Ca5(P04)3Cl: Eu, Ba5 (P〇 4) 3ChEu, Cs2CaP2〇7, Cs2SrP207, Lu3Al5012:Ce, Ca8Mg(Si04)4Cl2:Eu, Sr8Mg(Si04)4Cl2:Eu, La3Si6Nu:Ce, Y3Ga5012:Ce, Gd3Ga5012:Ce, Tb3Al5012:Ce,

Tb3Ga50i2:Ce及Lu3Ga5012:Ce。在一項實例中,照明裝置 之色點之調節可藉由替換可類似地塗佈或浸潰有一或多種 波長轉換材料之側壁嵌件107及/或輸出窗1〇8來實現。在 一項實施例中’ 一發射紅色之磷光體(諸如一種經銪活化 之驗土石夕氮化物(例如,(Sr,Ca)AlSiN3:Eu))在腔1〇9之底部 處覆蓋側壁嵌件107及底部反射器嵌件106之一部分,且— 161207.doc 201236214 YAG鱗光體覆蓋輸出窗log之一部分。在另一實施例中, 一發射紅色磷光體(諸如鹼土氧矽氮化物)在腔! 〇9之底部處 覆蓋側壁嵌件1 07及底部反射器嵌件1 〇6之一部分,且一發 射紅色之鹼土氧矽氮化物與一發射黃色之YAG磷光體之一 推合物覆蓋輸出窗108之一部分。在某些實施例中,該等 峨光體與一黏結劑及(視情況)一表面活性劑及一塑化劑混 合於一適合溶劑介質中。藉由喷塗、絲網印刷、刮刀塗佈 或其他適合手段中之任一者而沈積所產生之混合物。藉由 挑選界定該腔之該等側壁之形狀及高度,及選擇該腔之該 等部件中之哪一者將覆蓋有磷光體或者不覆蓋磷光體,及 藉由光混合腔109之表面上之磷光體層之層厚度及密度之 最佳化’可如所期望調整自該模組發射之光之色點。 在一項實例t ’ 一單個類型之波長轉換材料可在側壁 (其可係(例如)圖5B中所示之側壁嵌件丨07)上經圖案化。藉 由實例之方式,一紅色磷光體可在側壁嵌件1〇7之不同區 域上經圖案化且一黃色磷光體可覆蓋輸出窗1〇8。該等磷 光體之覆蓋範圍及/或濃度可變化以產生不同色溫◊應理 解紅色磷光體之覆蓋面積及/或該等紅色及黃色填光體 之濃度將需要針對不同照明模組100而變化以便使不同照 明模組100能在不同照明模組1〇〇中之LED 1〇2所產生之藍 色光變化之情況下產生相同所期望之色溫。LED 102、側 壁嵌件107上之紅色磷光體及輸出窗1〇8上之黃色磷光體之 色彩效能可在組裝之前加以量測且基於效能而選定以使得 所組裝之件產生所期望之色溫。 161207.docTb3Ga50i2: Ce and Lu3Ga5012: Ce. In one example, the adjustment of the color point of the illumination device can be accomplished by replacing sidewall inserts 107 and/or output windows 1〇8 that can similarly coat or impregnate one or more wavelength converting materials. In one embodiment 'a red-emitting phosphor (such as a yttrium-activated geotechnical nitride (eg, (Sr, Ca)AlSiN3:Eu)) covers the sidewall insert at the bottom of the cavity 1〇9 One of the 107 and bottom reflector inserts 106, and - 161207.doc 201236214 YAG scales cover one portion of the output window log. In another embodiment, a red phosphor (such as an alkaline earth oxynitride) is emitted in the cavity! A portion of the sidewall insert 107 and the bottom reflector insert 1 〇6 is covered at the bottom of the crucible 9, and a red-emitting alkaline earth oxynitride nitride and a yellow-emitting YAG phosphor are used to cover the output window 108. Part of it. In some embodiments, the phosphors are mixed with a binder and, optionally, a surfactant and a plasticizer in a suitable solvent medium. The resulting mixture is deposited by spraying, screen printing, knife coating or other suitable means. By selecting the shape and height of the sidewalls defining the cavity, and selecting which of the components of the cavity will be covered with or without the phosphor, and by the surface of the optical mixing cavity 109 The optimization of the layer thickness and density of the phosphor layer can be adjusted as desired to adjust the color point of the light emitted from the module. In an example t' a single type of wavelength converting material can be patterned on a sidewall (which can be, for example, the sidewall insert 丨 07 shown in Figure 5B). By way of example, a red phosphor can be patterned in different regions of the sidewall inserts 1〇7 and a yellow phosphor can cover the output window 1〇8. The coverage and/or concentration of the phosphors can be varied to produce different color temperatures. It should be understood that the coverage of the red phosphors and/or the concentration of the red and yellow fillers will need to be varied for different lighting modules 100. The different lighting modules 100 can produce the same desired color temperature under the blue light changes generated by the LEDs 1〇2 in the different lighting modules. The color performance of the LEDs 102, the red phosphors on the side wall inserts 107, and the yellow phosphors on the output windows 1-8 can be measured prior to assembly and selected based on performance to cause the assembled parts to produce the desired color temperature. 161207.doc

-14· 201236214 在諸多應用中,期望產生具有小於凱氏4,2〇〇度(諸如小 於凱氏3,1〇〇度)之一相關色溫(CCT)之白色光輸出。舉例 而言,在諸多應用中,具有凱氏2,700度之一 CCT之白色光 係所期望的。通常需要一定量之紅光發射以將自在光譜之 藍色或UV部分中發射之LED所產生之光轉換成具有小於凱 氏4,2〇〇度之一 CCT之一白色光輸出。正努力將黃色磷光體 與發射紅色磷光體(諸如CaS:Eu、SrS:Ell、SrGa2S4:Eu、-14· 201236214 In many applications, it is desirable to produce a white light output having a correlated color temperature (CCT) that is less than 4,2 degrees Kelvin (such as less than 3,1 degrees Kelvin). For example, in many applications, white light with a CCT of 2,700 degrees Kelvin is desirable. A certain amount of red light emission is typically required to convert light produced by LEDs emitted from the blue or UV portion of the spectrum into a white light output having one CCT less than 4,2 degrees Kelvin. Efforts are being made to combine yellow phosphors with red-emitting phosphors (such as CaS:Eu, SrS:Ell, SrGa2S4:Eu,

Ba3Si6〇12N2:Eu、(Sr,Ca)AlSiN3:Eu、CaAlSiN3:Eu、 CaAlSi(〇N)3:Eu ' Ba2Si04:Eu、Sr2Si04:Eu、Ca2Si04:Eu、Ba3Si6〇12N2:Eu, (Sr,Ca)AlSiN3:Eu, CaAlSiN3:Eu, CaAlSi(〇N)3:Eu 'Ba2Si04:Eu, Sr2Si04:Eu, Ca2Si04:Eu,

CaSi202N2:Eu 、SrSi202N2:Eu 、BaSi202N2:Eu 、 Sr8Mg(Si〇4)4Cl2:Eu ' Li2NbF7:Mn4+ ' Li3ScF6:Mn4+、 1^2〇28:£113 + 及]\^0.]^?2.〇6〇2:^1114+)摻合以達到所期望之 CCT。然而,由於輸出光之CCT對摻合物中之紅色磷光體 成份之敏感性,因此輸出光之色彩一致性通常較差。在經 摻合磷光體之情形下,尤其在照明應用中,較差色彩分佈 更顯著。藉由藉助不包含任一發射紅色磷光體之一磷光體 或破光體摻合物塗佈輸出窗1 〇 8,可避免色彩一致性問 題。為產生具有小於凱氏4,200度之一 CCT之白色光輸出, 將一發射紅色之磷光體或磷光體摻合物沈積於以LEd為基 礎之照明模組1 〇〇之側壁及底部反射器中之任一者上。特 定發射紅色之磷光體或磷光體摻合物(例如,自600奈米至 70G奈米之峰值波長發射)以及發射紅色磷光體或磷光體摻 合物之濃度經選擇以產生具有小於凱氏4,200度之一CCT之 一白色光輸出。以此方式,一以LED為基礎之照明模組可 161207.doc •15· 201236214 在不包含-發射紅色填光體成份之一輸出窗之情況下產生 具有小於4,200Κ之一CCT之白色光。 在某些實施例巾,底部反射器1〇6 '腔體ι〇5、輸出窗 ⑽及側壁嵌件107中之任—者可係由—pTFE材料構造或 在面向光混合腔109.之一内部表面處包含_ρτ -項實例中’輸出窗108、底部反射器嵌件1〇6、側壁嵌件 ⑽及腔體105中之任一者可係由一 pTFE材料製成。在另 一實例中,輸出窗1〇8、底部反射器嵌件1〇6、側壁嵌件 107及腔體105中之任一者可包含由一反射層(諸如一經拋 光之金屬層)加襯裏之一打叩層。該PTFE材料可係由經燒 結PTFE粒子形成。在某些實施例中,由—ρτ_料構造 之底部反射器106、腔體1〇5及側壁嵌件1〇7中之任一者之 面向内部之表面中之任一者之部分可塗佈有一波長轉換材 料。在其他實施例中,一波長轉換材料可混合有PTFE材 料。出於本專利文件之目的,一波長轉換材料係執行一色 彩轉換功能(例如,吸收一定量之一個峰值波長之光,且 作為回應,以另一峰值波長發射一定量之光)之任一單個 化學化合物或不同化學化合物之混合物。 在其他實施例中’底部反射器1 〇6、腔體1 〇5及側壁嵌件 107中之任一者可由一反射陶瓷材料(諸如由CerFlex International(荷蘭)生產之陶瓷材料)構造或在面向光混合 腔109之一内部表面處包含該反射陶瓷材料(諸如由CerFiex International(荷蘭)生產之陶瓷材料)。在一項實例中,由 一陶變材料構造之底部反射器1 〇 6、腔體1 〇 5及側壁嵌件 I61207.doc -16 · •3 201236214 107中之任一去夕 布(面向内部之表面中之任一者之部分可塗 佈有一波長轉換材料。 在其他實施例中’底部反射器1 06、腔體1 05及側壁嵌件 107中之你—本·上 有了由一反射金屬材料(諸如由Alan〇d(德國) 生產之鋁或Miro®)構造或在面向光混合腔1〇9之一内部表 面爽包3該反射金屬材料(諸如由Alan〇d(德國)生產之鋁或 〇⑧)在一項實例中’由-反射金屬材料構造之底部反 射器丨〇6、腔體105及側壁嵌件1〇7中之任一者之面向内部 之表面中之任一者之部分可塗佈有一波長轉換材料。 在其他實施例中,底部反射器106、腔體105及側壁嵌件 107中之任一者可由一反射塑膠材料(諸如mcpet)構造或 在面向光混合腔109之一内部表面處包含該反射塑膠材料 (諸如實例中,由—反射塑膠材料構造之 底部反射器106、腔體105及側壁嵌件1〇7中之任一者之面 向内部之表面中之任-者之部分可塗佈有—波長轉換材 料。 可藉助一非固態材料(諸如空氣或一惰性氣體)來填充腔 109以使得LED 102發射光至該非固態材料中。藉由實例之 方式,可密封該腔並使用氬氣來填充該腔,另一選擇為, 可使用氮氣》在其他實_中’可藉助一固態囊封材料來 填充腔109。藉由實例之方式,可使用聚矽氧來填充該 腔。 PTFE材料之反射性弱於可用於底部反射器嵌件丨%、側 壁嵌件i 07或腔體i 05之其他材料(諸如由Aian〇d生產之 161207.doc •17· 201236214CaSi202N2:Eu, SrSi202N2:Eu, BaSi202N2:Eu, Sr8Mg(Si〇4)4Cl2:Eu 'Li2NbF7:Mn4+ ' Li3ScF6:Mn4+, 1^2〇28:£113 + and]\^0.]^?2. 〇6〇2:^1114+) blend to achieve the desired CCT. However, due to the sensitivity of the CCT of the output light to the red phosphor composition of the blend, the color consistency of the output light is generally poor. In the case of blended phosphors, especially in lighting applications, the poor color distribution is more pronounced. Color consistency can be avoided by coating the output window 1 〇 8 with a phosphor or a light-blown blend that does not contain any of the emitted red phosphors. To produce a white light output having a CCT less than 4,200 degrees Kelvin, a red-emitting phosphor or phosphor blend is deposited in the LED-based lighting module 1 side wall and bottom reflector Any one. The concentration of a particular red-emitting phosphor or phosphor blend (eg, from a peak wavelength of from 600 nm to 70 G nm) and the concentration of the red-emitting phosphor or phosphor blend are selected to produce less than 4,200 Kjeldahl One of the CCT's white light output. In this manner, an LED-based lighting module can produce white light having a CCT of less than 4,200 在 without including an output window that emits one of the red fill components. In some embodiments, any of the bottom reflector 1 〇 6 'cavity ι 5, the output window (10), and the sidewall insert 107 may be constructed of -pTFE material or one facing the optical mixing cavity 109. Any of the 'output window 108, the bottom reflector insert 1〇6, the sidewall insert (10), and the cavity 105 in the example including the _ρτ-item at the inner surface may be made of a pTFE material. In another example, any of output window 〇8, bottom reflector insert 〇6, sidewall insert 107, and cavity 105 can include a lining of a reflective layer, such as a polished metal layer. One of the snoring layers. The PTFE material can be formed from sintered PTFE particles. In some embodiments, a portion of the inner facing surface of any of the bottom reflector 106, the cavity 1〇5, and the sidewall inserts 1〇7 constructed from the —ρτ_ material may be coated The cloth has a wavelength converting material. In other embodiments, a wavelength converting material can be mixed with a PTFE material. For the purposes of this patent document, a wavelength converting material performs a color conversion function (eg, absorbing a certain amount of light of a peak wavelength and, in response, emitting a certain amount of light at another peak wavelength). A chemical compound or a mixture of different chemical compounds. In other embodiments, either of the bottom reflector 1 〇 6, the cavity 1 〇 5, and the sidewall insert 107 may be constructed of a reflective ceramic material such as a ceramic material produced by CerFlex International (Netherlands) or The reflective ceramic material (such as a ceramic material produced by CerFiex International (The Netherlands)) is contained at an inner surface of one of the optical mixing chambers 109. In one example, a bottom reflector 1 〇6, a cavity 1 〇 5, and a sidewall insert I61207.doc -16 · • 3 201236214 107 constructed of a ceramic material (inwardly facing) A portion of any of the surfaces may be coated with a wavelength converting material. In other embodiments, the bottom reflector 106, the cavity 105, and the sidewall insert 107 have a reflective metal A material such as aluminum or Miro® manufactured by Alan〇d (Germany) or an internal surface facing the light mixing chamber 1〇3, such as a reflective metal material (such as aluminum produced by Alan〇d (Germany)) Or 〇8) in any one of the 'inner-facing surfaces of the bottom reflector 丨〇6, the cavity 105 and the sidewall inserts 1〇7 constructed of a reflective metal material, Portions may be coated with a wavelength converting material. In other embodiments, any of bottom reflector 106, cavity 105, and sidewall insert 107 may be constructed of a reflective plastic material (such as mcpet) or facing optical mixing cavity 109. One of the interior surfaces contains the reflective plastic material (such as in an example) A portion of the inner surface of any of the bottom reflector 106, the cavity 105, and the sidewall inserts 1A7 constructed of a reflective plastic material may be coated with a wavelength converting material. The cavity 109 is filled with a non-solid material such as air or an inert gas to cause the LED 102 to emit light into the non-solid material. By way of example, the cavity can be sealed and filled with argon, another Alternatively, nitrogen can be used to fill the cavity 109 by means of a solid encapsulating material. By way of example, polyfluorene can be used to fill the cavity. The PTFE material is less reflective than can be used. Bottom reflector insert 丨%, sidewall insert i 07 or other material of cavity i 05 (such as 161207.doc •17· 201236214 produced by Aian〇d)

Miro®)。在一項實例中’將構造有未經塗佈之Mir〇⑧側壁 後件107之一以LED為基礎之照明模組1 〇〇之藍色光輸出與 構造有由Berghof(德國)製造之經燒結PTFE材料構造之一 未經塗佈之PTFE侧壁嵌件1 〇7之相同模組相比較。藉由使 用一 PTFE側壁嵌件,來自模組1〇〇之藍色光輸出減少7%。 類似地,與未經塗佈之Miro®側壁嵌件1 〇7相比較,藉由使 用由W.L. Gore(美國)製造之經燒結PTFE材料構造之一未 經塗佈之PTFE側壁嵌件1〇7,來自模組1〇〇之藍色光輸出 減少5%。自模組100之光萃取係與腔1 〇9内部之反射性直 接相關,且因此,與其他可用反射材料相比,PTFE材料 之劣反射性將與在腔109中使用PTFE材料背離。然而,發 明者已判定,當PTFE材料塗佈有鱗光體時,與具有一類 似磷光體塗層之其他更反射之材料(諸如Miro®)相比較, 該PTFE材料出乎意料地產生發光輸出之一增加。在另一 實例中’將以凱氏4,000度之一相關色溫(CCT)為目標之構 造有經磷光體塗佈之Miro®側壁嵌件1 〇7之一照明模組1 〇〇 之白色光輸出與構造有由Berghof(德國)製造之經燒結 PTFE材料構造之一經磷光體塗佈之PTFE側壁嵌件107之相 同模組相比較。與經磷光體塗佈之Miro®相比較,藉由使 用一經磷光體塗佈之PTFE側壁嵌件,來自模組1〇〇之白色 光輸出增加7%。類似地,與經填光體塗佈之Miro®側壁嵌 件107相比較,藉由使用由W.L. Gore(USA)製造之經燒結 PTFE材料構造之一 PTFE側壁嵌件107,來自模組100之白 色光輸出增加14%。在另一實例中,將以凱氏3,000度之一 161207.doc 18 201236214 相關色溫(CCT)為目標之構造有經磷光體塗佈之⑧側 壁嵌件107之一照明模組100之白色光輸出與構造有由 Berghof(德國)製造之經燒結PTFE材料構造之一經磷光體 塗佈之PTFE側壁嵌件1〇7之相同模組相比較。與經磷光體 塗佈之Miro®相比較,藉由使用一經磷光體塗佈之pτFE側 壁嵌件,來自模組100之白色光輸出增加1〇%。類似地, 與經磷光體塗佈之Miro®側壁嵌件丨07相比較,藉由使用由 W.L. G〇re(USA)製造之經燒結PTFE#料構造之一 pTFMJ 壁嵌件107,來自模組1〇〇之白色光輸出增加12%。 因此,已發現,儘管係較少反射,但期望由一 p 丁叩材 料構造光混合腔109之經磷光體覆蓋部分。此外,發明者 亦已發現,與具有一類似磷光體塗層之其他更反射材料 (諸如Miro®)相比,經磷光體塗佈之pTFE材料當(例如)在 一光混合腔109中曝露至來自LED之熱時具有較佳耐久 性。 儘管可似乎期望將厚磷光體層(例如,大於構光體粒子 之平均直徑的五倍之層厚度)施加至一基板上以形成一反 射或透射色彩轉換元件,但發明者已發現光子往往被陷獲 厚層中且效率丟失。相比而言,藉由利用經填充至適當密 度之薄層’尚百分比之傳入光子經色彩轉換或以一未經轉 換狀態恢復為可使用光。 在一項態樣中,可將磷光體施加於一薄層中來以一反射 模式及以一透射模式提供高效色彩轉換。在一反射模式 中’該薄層經密集堆積以使經色彩轉換之入射光之量最大 161207.doc •19- 201236214 化。在一透射模式中,該薄層經稀疏填充以允許入射光之 一部分未經轉換通過。在一項實例中,磷光體係沈積於一 基板上達小於該等磷光體粒子之平均直徑的五倍之一厚 度。在另一實例中,填光體係沈積於一基板上達小於該等 磷光體粒子之平均直徑的三倍之一厚度。在又一實例中, 璃光體係沈積於一基板上呈一單個層。在以一透射模式提 供色彩轉換之實例中’磷光體係以小於9〇%之一填充密度 沈積以使得入射至該基板之光之一部分經反射或透射而無 需色彩轉換。在以一反射模式提供色彩轉換之實例中,磷 光體係以大於50%之一填充密度沈積以使得實質上入射至 該基板之所有光經色彩轉換。在另一態樣中,將前述薄鱗 光體層沈積於一 PTFE基板上。已發現,沈積至一pTFE基 板上成一薄層之鱗光體粒子在一以LED為基礎之照明裝置 中產生高效色彩轉換。 圖6係圖解說明將一薄磷光體層施加至一反射基板上之 一方法150之一流程圖。在所圖解說明之方法15〇之實例 中,採用一低溫處理以將一薄磷光體粒子層沈積於一 PTFE基板上。在其他實例中,可採用方法15()以將一薄碟 光體粒子層沈積於其他反射表面(例如,玻璃、鋁、經塗 佈之鋁、陶瓷、或塑膠基板)上。在低溫處理中,一黏結 劑與該等填光體粒子保持於該基板上作為成品之一部分, 而非被分解(通常藉由一高溫固化步驟)。 在方塊151中’一聚合物黏結劑(例如,乙基纖維素)血 -溶劑(例如’乙酸丁氧基乙峨合且與一波長轉換材料 161207.doc -20- 201236214 (例如,構光體粒子或磷光體粒子之換合物)組合以形成一 均質鱗光體懸浮液。在某些實例中,磷光體粒子之平均粒 子大小可係介於一微米與二十五微米之間。作為方法150 之-部分,可採用不同聚合物黏結劑(例如,$乙烯醇縮 丁醛、以纖維素為基礎之黏結劑、以聚矽氧為基礎之黏社 劑、及以胺基甲酸乙脂為基叙黏結劑)。類似地,作為 方法150之—部分,可採用針對其與所選定之黏結劑之相 容性而選擇之溶劑(例如,莊品醇、異丁醇、丁基磺烴酚 膠乙酸自旨(butyi earbome aeetate)、丁基纖維素、聚石夕氧溶 劑及胺基甲㈣溶劑)。在某些實施例中,㈣光體粒子 外,可添加小量(例如,按重量計〇1%至5%)之塑化劑(例 如,鄰苯二甲酸二異丁醋)以促成磷光體粒子至基板之黏 合。在某些實施例中,可將一表面活性劑(例如,硬脂 酸、聚乙二醇(PEG))添加至該等磷光體粒子。舉例而言, 可添加小量表面活性劑(例如,按重量計小於5%)。表面活 性背I反應以阻止該等磷光體粒子一起凝結成塊且促進磷光 體粒子在該懸浮液中之均勻分佈。 在不同實例中,磷光體粒子與減少之聚合物黏結劑之比 例可變化。在-項實例中,可用溶劑以_5G:5G之比例(按 重量計)將磷光體粒子與減少之聚合物黏結劑混合。已發 現此比例對產生具有大於9G%之—填充密度且具有小於該 等磷光體粒子之平均直徑的五倍之一厚度之色彩轉換層有 用。在另一實例中,磷光體粒子可以20:80之一比例與減 少之聚合物黏結劑混合。已發現此比例對產生具有小於 161207.docMiro®). In one example, the blue light output of an LED-based lighting module 1 having an uncoated Mir〇8 sidewall back member 107 is constructed and sintered by Berghof (Germany). One of the PTFE material constructions was compared to the same module of the uncoated PTFE sidewall insert 1 〇7. By using a PTFE sidewall insert, the blue light output from the module 1 is reduced by 7%. Similarly, an uncoated PTFE sidewall insert 1〇7 was constructed using a sintered PTFE material manufactured by WL Gore (USA) compared to the uncoated Miro® sidewall insert 1 〇7. The blue light output from the module 1 is reduced by 5%. The light extraction from the module 100 is directly related to the reflectivity inside the cavity 1 , 9 and, therefore, the poor reflectivity of the PTFE material will deviate from the use of the PTFE material in the cavity 109 as compared to other available reflective materials. However, the inventors have determined that when a PTFE material is coated with a scale, the PTFE material unexpectedly produces a luminous output compared to other more reflective materials (such as Miro®) having a similar phosphor coating. One of them increases. In another example, a white light output of a phosphor coated Ramir-coated Miro® sidewall insert 1 〇7 is designed for one of Kelvin's 4,000 degrees correlated color temperature (CCT). It is compared to the same module constructed of a phosphor coated PTFE sidewall insert 107 constructed of a sintered PTFE material made by Berghof (Germany). The white light output from the module 1 was increased by 7% by using a phosphor coated PTFE sidewall insert compared to the phosphor coated Miro®. Similarly, white from module 100 was constructed by using a PTFE sidewall insert 107 constructed of sintered PTFE material manufactured by WL Gore (USA) as compared to a filler coated Miro® sidewall insert 107. Light output increased by 14%. In another example, a white light output of the illumination module 100 of one of the phosphor coated 8-side sidewall inserts 107 is targeted to one of Kelvin's 3,000 degrees 161207.doc 18 201236214 correlated color temperature (CCT). It is compared with the same module constructed of a phosphor coated PTFE sidewall insert 1〇7 constructed of a sintered PTFE material made by Berghof (Germany). The white light output from module 100 is increased by 1% by using a phosphor coated pτFE sidewall insert compared to the phosphor coated Miro®. Similarly, a module from the module was constructed using a sintered PTFE# material constructed from WL G〇re (USA) using a pTFMJ wall insert 107 compared to a phosphor coated Miro® sidewall insert 丨07. The white light output of 1〇〇 is increased by 12%. Thus, it has been found that, although less reflective, it is desirable to construct a phosphor-covered portion of the optical mixing cavity 109 from a p-butadiene material. In addition, the inventors have also discovered that phosphor coated pTFE materials are exposed, for example, to a light mixing chamber 109, as compared to other more reflective materials having a similar phosphor coating, such as Miro®. The heat from the LED has better durability. Although it may appear desirable to apply a thick phosphor layer (e.g., a layer thickness greater than five times the average diameter of the illuminant particles) to a substrate to form a reflective or transmissive color conversion element, the inventors have discovered that photons are often trapped Get thick layers and lose efficiency. In contrast, the available light is recovered by color conversion or by an unconverted state by using a thin layer filled with a suitable density. In one aspect, the phosphor can be applied to a thin layer to provide efficient color conversion in a reflective mode and in a transmissive mode. In a reflective mode, the thin layer is densely packed to maximize the amount of color-converted incident light. 161207.doc •19- 201236214. In a transmissive mode, the thin layer is sparsely filled to allow a portion of the incident light to be unconverted. In one example, the phosphorescent system is deposited on a substrate to less than one-fold the thickness of the average diameter of the phosphor particles. In another example, the fill system is deposited on a substrate to a thickness that is less than one-third the average diameter of the phosphor particles. In yet another example, the glazing system is deposited on a substrate in a single layer. In an example where color conversion is provided in a transmissive mode, the phosphorescent system is deposited at a fill density of less than 9% by weight such that a portion of the light incident on the substrate is reflected or transmitted without color conversion. In an example where color conversion is provided in a reflective mode, the phosphorescent system is deposited at a fill density greater than one of 50% such that substantially all of the light incident on the substrate is color converted. In another aspect, the aforementioned thin scale layer is deposited on a PTFE substrate. It has been discovered that a thin layer of spheroidal particles deposited onto a pTFE substrate produces efficient color conversion in an LED based illumination device. Figure 6 is a flow diagram illustrating a method 150 of applying a thin phosphor layer to a reflective substrate. In the illustrated method 15A, a low temperature treatment is employed to deposit a thin layer of phosphor particles on a PTFE substrate. In other examples, method 15() can be employed to deposit a thin disk of light body particles on other reflective surfaces (e.g., glass, aluminum, coated aluminum, ceramic, or plastic substrates). In the low temperature process, a binder and the filler particles are held on the substrate as part of the finished product rather than being decomposed (usually by a high temperature curing step). In block 151, a polymer binder (eg, ethylcellulose) blood-solvent (eg, 'butoxyacetate acetate and with a wavelength converting material 161207.doc -20- 201236214 (eg, vitriger The particles or the phosphor particles are combined to form a homogeneous scale suspension. In some examples, the average particle size of the phosphor particles can be between one micron and twenty-five micrometers. In the 150-part, different polymer binders can be used (for example, vinyl butyral, cellulose-based binder, polyoxyl-based adhesive, and urethane) Similarly, as part of the method 150, a solvent selected for its compatibility with the selected binder may be employed (eg, sterol, isobutanol, butyl sulfonol) a gelatinic acid (butyi earbome aeetate), a butyl cellulose, a polyoxoic acid solvent, and an amine methyl (tetra) solvent. In some embodiments, (iv) light particles may be added in small amounts (for example, by weight) Depending on the plasticizer (for example, phthalic acid) Diisobutyl vinegar) to promote adhesion of the phosphor particles to the substrate. In certain embodiments, a surfactant (eg, stearic acid, polyethylene glycol (PEG)) may be added to the phosphor particles. For example, a small amount of surfactant (eg, less than 5% by weight) may be added. The surface active back I reaction prevents the phosphor particles from coagulating together and promotes the phosphor particles in the suspension. Uniform distribution. In different examples, the ratio of phosphor particles to reduced polymer binder can vary. In the case of - item, the solvent can be reduced with a ratio of _5G: 5G (by weight). Polymer binder mixing. This ratio has been found to be useful for producing a color conversion layer having a packing density greater than 9 G% and having a thickness less than one-fifth the average diameter of the phosphor particles. In another example, phosphorescence The bulk particles can be mixed with a reduced polymer binder in a ratio of 20:80. This ratio has been found to produce less than 161207.doc

S -21· 201236214 95%之一填充密度且具有小於該等磷光體粒子之平均直徑 的三倍之一厚度之色彩轉換層有用。 在方塊152中,將均質磷光體懸浮液施加至_pTFE基板 以形成一未經固化色彩轉換層。可藉由若干種方法將均質 碟光體懸浮液施加至PTFE基板。適合方法之實例包含刮 刀塗佈、絲網印刷及噴塗。可依據所期望黏度以不同比例 將溶劑與聚合物黏結劑混合。舉例而言,針對藉由到刀塗 佈或絲網印刷之至一基板之有效施加,可以—適合比例 (例如,按重量計介於5:1與10:1之間)將溶劑與聚合物黏結 劑混合。針對藉由噴塗之至一基板之有效施加,可以一適 合比例(例如,按重量計介於1〇4與2〇:1之間)將溶劑與聚 合物黏結劑混合。 在某些實例中’可藉由刮刀塗佈將均㈣浮液施加至一 表面。使用-藍寶石或不鏽鋼刮刀來分散懸浮液…自動 塗膜器維持到刀與表面之間的一恆定距離。可採用一不鏽 鋼模板以將懸浮液之施加引導至表面之一特定部分(例 如’特定圖案或表面幾何)。 在某些實例中’亦可藉由絲網印刷將均質懸浮液施加至 表面.4、.周可經定製以完全遮蔽或部分遮蔽各種大小及 形狀。絲網之開C7都公*?Γ A _ P刀了包含不同縱橫比以使所施加之磷 光體粒子之濃度變&。针對絲網印刷,已發現具有"Ο至 之.祠眼數目之定製絲網係有效的。藉助一絲網覆蓋在 真工下將預切基板⑽如,ptfe、施副、MCpET)附接至 一鋁基座。使用一適合擠壓施加器(例如,橡膠施加器)以 161207.docS - 21 · 201236214 95% One of the color conversion layers having a packing density and having a thickness less than one third of the average diameter of the phosphor particles is useful. In block 152, a homogeneous phosphor suspension is applied to the _pTFE substrate to form an uncured color conversion layer. The homogeneous disc suspension can be applied to the PTFE substrate by several methods. Examples of suitable methods include knife coating, screen printing, and spraying. The solvent can be mixed with the polymer binder in different proportions depending on the desired viscosity. For example, for effective application to a substrate by knife coating or screen printing, solvent and polymer can be used in a suitable ratio (eg, between 5:1 and 10:1 by weight). The binder is mixed. The solvent can be mixed with the polymer binder in a suitable ratio (e.g., between 1 and 4:2 by weight) for effective application by spraying to a substrate. In some instances, the (four) float can be applied to a surface by knife coating. Use a sapphire or stainless steel spatula to disperse the suspension... The automatic applicator maintains a constant distance between the knife and the surface. A stainless steel template can be used to direct the application of the suspension to a particular portion of the surface (e. g., 'specific pattern or surface geometry). In some instances, a homogeneous suspension can also be applied to the surface by screen printing. 4. Weeks can be customized to completely mask or partially obscure various sizes and shapes. The opening of the screen C7 is public*? The A_P knife contains different aspect ratios to change the concentration of the applied phosphor particles. For screen printing, it has been found that a custom screen with a number of blinks is effective. The pre-cut substrate (10) such as ptfe, sputum, MCpET) is attached to an aluminum pedestal by means of a screen cover. Use a suitable applicator (for example, rubber applicator) to 161207.doc

-22- 201236214 恆定速度及壓力來分散磷光體粒子之一均質懸浮液。 在方塊1 53中,未經固化色彩轉換層經加熱至高於溶劑 之閃點之一溫度以使溶劑蒸發以形成具有小於該等磷光體 粒子之平均直徑的五倍之一厚度之一經固化色彩轉換層。 舉例而言’該未經固化色彩轉換層經加熱至攝氏8〇至15〇 度之一溫度達30至300分鐘以使該溶劑蒸發。處理溫度保 持低於黏結劑開始分解之溫度。因此’經固化色彩轉換層 包含懸浮於聚合物黏結劑中之一薄磷光體粒子層。該聚合 物黏結劑保持磷光體粒子以一穩定方式相對於彼此定位。 此外’低溫處理並不使璃光體之化學組合物變性或以其他 方式分解或改變,因此其色彩轉換性質保持完整。此對某 些磷光體族(例如’氮基矽酸鹽及氧矽氮化物)尤其重要。 另外’低溫處理並不使PTFE材料之機械結構分解、變性 或以其他方式退化’從而維持其漫射、反射性質。 使用方法15 0可有效採用變化直徑之填光體粒子。發明 者已發現使用具有6 m至8 m之一平均直徑之填光體粒子係 有用的。然而,有益地,亦可使用具有介於1爪與25爪之 間的—平均直徑之磷光體粒子。 回7係圖解說明將一薄半透明色彩轉換層施加至一透明 基板(例如,藍寶石、氧化鋁、玻璃、聚碳酸酯 '塑膠)上 之—方法160之一流程圖。在方塊161中,一聚合物黏結劑 (例如,乙基纖維素)與一溶劑(例如,乙酸丁氧基乙酯)混 合且與磷光體粒子組合以形成一均質磷光體懸浮液。作為 方法160之一部分,可採用不同聚合物黏結劑(例如,聚乙-22- 201236214 Constant velocity and pressure to disperse a homogeneous suspension of phosphor particles. In block 153, the uncured color conversion layer is heated to a temperature above one of the flash points of the solvent to vaporize the solvent to form one of five times the thickness of one of the average diameters of the phosphor particles. Floor. For example, the uncured color conversion layer is heated to a temperature of from 8 Torr to 15 Torr for 30 to 300 minutes to evaporate the solvent. The treatment temperature is kept below the temperature at which the binder begins to decompose. Thus the cured color conversion layer comprises a layer of thin phosphor particles suspended in a polymeric binder. The polymer binder maintains the phosphor particles in a stable manner relative to each other. Furthermore, the low temperature treatment does not denature or otherwise decompose or change the chemical composition of the glazing, so that its color conversion properties remain intact. This is especially important for certain phosphor families, such as 'nitrosulphonate and oxonium nitride. In addition, 'low temperature processing does not decompose, denature or otherwise degrade the mechanical structure of the PTFE material to maintain its diffuse, reflective properties. The use of the method 150 can effectively use the filler particles of varying diameters. The inventors have found that it is useful to use a filler particle having an average diameter of one of 6 m to 8 m. However, advantageously, phosphor particles having an average diameter between 1 and 25 jaws can also be used. Back to Figure 7 illustrates a flow diagram of a method 160 for applying a thin translucent color conversion layer to a transparent substrate (e.g., sapphire, alumina, glass, polycarbonate 'plastic). In block 161, a polymeric binder (e.g., ethylcellulose) is mixed with a solvent (e.g., butoxyethyl acetate) and combined with the phosphor particles to form a homogeneous phosphor suspension. As part of the method 160, different polymeric binders can be employed (eg, polyethyl b)

I6I207.doc*23' S 201236214 烯醇縮丁醛、以纖維素為基礎之黏結劑、以聚矽氧為基礎 之黏結劑、及以胺基甲酸乙脂為基礎之黏結劑)。類似 地’作為方法160之一部分,可採用針對其與所選定之黏 結劑之相容性而選擇之溶劑(例如’萜品醇、異丁醇、丁 基續煙盼膠乙酸酯、丁基纖維素、聚矽氧溶劑及胺基甲酸 乙脂溶劑)》在某些實施例中,除磷光體粒子外,可添加 塑化劑(例如,鄰笨二甲酸二異丁酯)以促成磷光體粒子至 基板之黏合。在某些實施例中,可添加一表面活性劑(例 如,硬脂酸、PEG)。表面活性劑反應以阻止該等磷光體粒 子一起凝結成塊且促進磷光體粒子在該懸浮液中之均勻分 佈。 在不同實例中,磷光體粒子與減少之聚合物黏結劑之比 例可變化。在一項實例中,磷光體粒子可以一 95:5之比例 (按重量計)與減少之聚合物黏結劑混合。已發現此比例對 產生具有小於95%之一填充密度且具有小於該等磷光體粒 子之平均直徑的三倍之一厚度之一半透明色彩轉換層有 用,其中至少1〇%之入射光透射穿過該層而無需色彩轉 換。在某些實例中’小於3〇%之入射光透射穿過該層而無 需色彩轉換。 在方塊162中,如相對於方法15〇所論述,將均質磷光體 懸浮液施加至一透明基板以形成一未經固化钱明之色彩 轉換層。可藉由若干種方法將均質磷光體懸浮液施加至該 透明基板。適合方法之實例包含刮刀塗佈、絲網印刷及喷 塗。可依據所期望黏度以不同比例將溶劑與聚合物黏結劑 161207.doc •24-I6I207.doc*23' S 201236214 Enol butyral, cellulose-based binder, polyoxyl-based binder, and urethane-based binder). Similarly, as part of the method 160, a solvent selected for its compatibility with the selected binder can be employed (eg, 'terpineol, isobutanol, butyl contiguous acetate, butyl, butyl Cellulose, polyoxyl solvent and ethyl urethane solvent) In some embodiments, a plasticizer (eg, diisobutyl phthalate) may be added in addition to the phosphor particles to promote the phosphor Adhesion of particles to the substrate. In certain embodiments, a surfactant (e.g., stearic acid, PEG) may be added. The surfactant reacts to prevent the phosphor particles from coagulating together and promotes uniform distribution of the phosphor particles in the suspension. In different examples, the ratio of phosphor particles to reduced polymer binder can vary. In one example, the phosphor particles can be mixed with a reduced polymeric binder in a ratio of 95:5 by weight. This ratio has been found to be useful for producing a translucent color conversion layer having a fill density of less than 95% and having a thickness less than one-third the thickness of the average diameter of the phosphor particles, wherein at least 1% of the incident light is transmitted through This layer does not require color conversion. In some instances, less than 3% of incident light is transmitted through the layer without color conversion. In block 162, a homogeneous phosphor suspension is applied to a transparent substrate as discussed with respect to method 15A to form an uncured color conversion layer. A homogeneous phosphor suspension can be applied to the transparent substrate by several methods. Examples of suitable methods include knife coating, screen printing, and spray coating. Solvent and polymer binders can be applied in different proportions depending on the desired viscosity. 161207.doc •24-

201236214 混合。舉例而言,針對藉由刮刀塗佈或絲網印刷之至一基 板之有效施加,可以一適合比例(例如,按重量計介於5q 與10:1之間)將溶劑與聚合物黏結劑混合。針對藉由喷塗之 至一基板之有效施加,可以一適合比例(例如,按重量計 介於10:1與20:1之間)將溶劑與聚合物黏結劑混合。 在方塊163中,未經固化半透明色彩轉換層經加熱至高 於溶劑之閃點之一溫度以使溶劑蒸發以形成具有小於該等 磷光體粒子之平均直徑的五倍之一厚度之一經固化半透明 之色彩轉換層。 在某些實例中,處理溫度保持低於黏結劑開始分解之溫 度。在一項實例中,未經固化半透明色彩轉換層經加熱至 攝氏100至120度之一溫度達30至60分鐘以使乙酸丁氧基乙 酯溶劑蒸發。因此,經固化半透明色彩轉換層包含懸浮於 聚合物黏結劑中之一薄磷光體粒子層。該聚合物黏結劑保 持磷光體粒子以一穩定方式相對於彼此定位。此外,低溫 處理並不使磷光體之化學組合物變性或以其他方式分解或 改變,因此其色彩轉換性質保持完整。此對某些磷光體族 (例如’氮基矽酸鹽及氧矽氮化物)尤其重要。 在某些實施例中,採用導致黏結劑分解或以其他方式變 性之一處理溫度。藉由移除黏結劑,其對光透射穿過經固 化半透明色彩轉換層之效率的影響係無效的。可採用耐受 固化溫度之一塑化劑來將磷光體粒子黏合至基板或在該經 固化半透明色彩轉換層中維持一均勻磷光體粒子分佈。在 一項實例中,可採用攝氏36〇度之一溫度以完全分解一乙 161207.doc -25- 201236214 基纖維素黏結劑及乙酸丁氧基乙酯溶劑。 使用方法160可有效採用變化直徑之磷光體粒子。發明 者已發現使用具有6 m至8 m之一平均直徑之磷光體粒子係 有用的。然而,有益地,亦可使用具有介於】瓜與25功之 間的一平均直徑之碌光體粒子。 圖8圖解說明包含根據方法15〇塗佈之反射色彩轉換元件 129及130以及根據方法ι60塗佈之一透射色彩轉換元件133 之以LED為基礎之照明模組1 〇〇之一剖視圖。在一項態樣 中,以LED為基礎之照明模組1 〇〇包含一透射色彩轉換元 件133,該透射色彩轉換元件133包含一光學透明層134及 固定至該光學透明層134之半透明色彩轉換層135。在另一 態樣中’以LED為基礎之照明模組1 〇〇包含一反射色彩轉 換元件130,該反射色彩轉換元件13〇包含一反射層131及 固定至反射層13 1之色彩轉換層13 2。在又一態樣中,以 LED為基礎之照明模組1 〇〇包含一反射色彩轉換元件丨29, 該反射色彩轉換元件129包含一反射層128及固定至反射層 128之色彩轉換層127。在一項實施例中,透射色彩轉換元 件133係輸出窗1〇8且反射色彩轉換元件13〇係側壁嵌件 107。另外’在一項實施例中,反射色彩轉換元件129係底 部反射器嵌件106。LED 102發射與色彩轉換元件129、130 及133交互作用之藍色光子。 透射色彩轉換元件133在一透射模式中提供高效之色彩 轉換。色彩轉換層135包含根據方法160施加之一稀疏薄磷 光體層。未經轉換之光之透射在被灌注以UV或次UV輻射 161207.doc -26- 201236214 之照明裝置中係非所期望的,此乃因對曝露至此等波長下 之輕射之人類的健康危害。然而’針對由具有超過uv之 發射波長之LED灌注之一以LED為基礎之照明模組,期望 大量百分比之未經轉換之光(例如’自LED 102發射之藍色 光)通過光混合腔109且穿過輸出窗1〇8(例如’透射色彩轉 換元件133)而無需色彩轉換。此促進高效率,此乃因避免 色彩轉換過程固有之損失。經稀疏堆積之薄磷光體層適於 對一部分入射光進行色彩轉換。舉例而言,期望允許至少 百分之十之入射光透射穿過色彩轉換層135而無需轉換。 特定而言’已發現小於該等磷光體粒子之一平均直徑的三 倍且具有大於80%之聚合物基質中之磷光體粒子之一填充 密度之一色彩轉換層有利地表現。 在一項實施例中’色彩轉換層1 32以大於90%之一填充 达' 度以係該等磷光體粒子之平均直徑的兩倍之一厚度沈積 於反射層13 1上。在此實施例中,平均磷光體粒子直徑係 介於六微米與八微米之間。為將色彩轉換層132沈積於反 射層131上,將50克至1〇〇克的乙基纖維素及聚乙烯醇縮丁 搭黏結劑中之一者或其一組合與2〇〇克至600克的適合溶劑 (諸如,萜品醇、異丁醇、丁基磺烴酚膠乙酸酯、或丁基 纖維素)混合。藉由一緩慢移動之滾筒使混合物在一瓶中 滾動達2至4天直至形成一透明黏結劑膏為止。黏結劑膏之 黏度隨 >谷劑含1而變化。在一單獨混合物中,將1 〇克至3 〇 克的一表面活性劑(諸如硬脂酸或聚乙二醇)混合於50克至 10 0克的溶劑中以形成一表面活性劑膏。在一最終混合物 I61207.doc -27- 201236214 中,將〗克至5克的發射紅色之磷光體粒子與1克至10克的 黏結劑膏' ό.Ι克至0.5克的表面活性劑膏及2滴至1〇滴塑化 劑在一 3D混合器(ΤΗΙΝΚγ ARE_25〇)中混合達2至丨〇分鐘以 產生磷光體粒子之一均質懸浮液。依據應用,調整黏結 劑、表面活性劑、塑化劑及磷光體之比率。 在一更特定實例中,將1 〇克的乙基纖維素黏結劑與8〇克 的丁基磺烴酚膠乙酸酯(BAC)溶劑在一玻璃瓶中混合。將 混合物在一玻璃瓶中攪拌達數小時且然後將其在一緩慢移 動之滾筒中滾動達2至4天直至形成一透明黏結劑膏為止。 在一單獨混合物中,將1〇克的聚乙二醇表面活性劑混合於 1〇〇克的BAC中直至形成一光學透明表面活性劑膏為止。 將一克的平均10微米粒子大小之發射紅色之碟光體 {(Sf,Ca)AlSiN3:Eu}與1克的黏結劑膏、〇. i克的表面活性劑 膏及2滴塑化劑在一 3D混合器(THINKY ARE-250)中混合達 2分鐘。 可藉由刮刀塗佈將色彩轉換層132沈積至反射層131上。 一自動塗膜器(Elcometer 4340)與預切不鏽鋼模板一起使用 以判定覆蓋面積。在將反射層13 1及一模板在真空下保持 於一紹基座上時,使用一緩慢移動(例如’ 5至6〇 mm/秒) 之藍寶石或不鏽鋼刮刀來分散磷光體粒子之均質懸浮液。 在塗佈之後,將反射色彩轉換元件130轉移至一爐中且以 攝氏80至1 50度在開放氛圍中加熱達1至5小時以形成經固 化色彩轉換層132。 可藉由絲網印刷將色彩轉換層13 2沈積至反射層丨3丨上。 161207.doc -28 - 201236214 使闬具有150至300之網眼數目之絲網。絲網係完全敞開或 藉助不同縱橫比之各種大小及形狀遮蔽。使用前述自動塗 膜器,將反射層13 1及所需絲網在真空下附接至一鋁基座 且在恒定壓力及速度(例如,5至100 mm/秒)下使用一適合 擠壓來分散磷光體粒子之均質懸浮液《在絲網印刷之後, 將反射色彩轉換元件130轉移至一爐中且以攝氏80至15〇度 在開放氛圍中加熱達1至5小時以形成經固化色彩轉換層 132 ° 在熱處理之後,在一以LED為基礎之照明模組中採用經 固化色♦轉換層132以產生具有介於飢氏2, 〇〇〇度至凱氏 6,000度之間的一 CCT之白色光。 四9圖解說明LED照明模組1〇〇之一部分之一剖視圖,其 中側重於由具有透射色彩轉換元件13 3之LED 102所發射之 光子之交互作用。透射色彩轉換元件133包含透射層134及 半透明色彩轉換層135。透射層134可係由一光學透明介質 (例如,玻璃、藍寶石、聚碳酸酯、塑膠)構造。透射色彩 轉換元件133可包含額外層(未展示)以增強光學系統效能。 在一項實例中’透射色彩轉換元件133可包含光學膜(諸如 一種二色濾光片、一低折射率塗層)、額外層(諸如一散射 粒子層)、或包含磷光體粒子之額外色彩轉換層。半透明 色心轉換層1 3 5包含嵌入於一聚合物黏結劑14 2中之磷光體 粒子141。 在一項實施例中,半透明色彩轉換層135係以大於8〇% 之一填充密度且以係磷光體粒子141之平均直徑的三倍之 161207.doc201236214 Mixed. For example, for effective application to a substrate by knife coating or screen printing, the solvent can be mixed with the polymer binder in a suitable ratio (for example, between 5q and 10:1 by weight). . For effective application to a substrate by spraying, the solvent can be mixed with the polymeric binder in a suitable ratio (e.g., between 10:1 and 20:1 by weight). In block 163, the uncured translucent color conversion layer is heated to a temperature above one of the flash points of the solvent to vaporize the solvent to form one of five times the thickness of one of five times less than the average diameter of the phosphor particles. Transparent color conversion layer. In some instances, the processing temperature remains below the temperature at which the binder begins to decompose. In one example, the uncured translucent color conversion layer is heated to a temperature of from 100 to 120 degrees Celsius for 30 to 60 minutes to evaporate the butyl acetate acetate solvent. Thus, the cured translucent color conversion layer comprises a layer of thin phosphor particles suspended in a polymeric binder. The polymeric binder maintains the phosphor particles positioned relative to one another in a stable manner. Moreover, the low temperature treatment does not denature or otherwise decompose or alter the chemical composition of the phosphor, so its color conversion properties remain intact. This is especially important for certain phosphor families such as 'nitrosity citrate and oxonium nitride. In some embodiments, the temperature is treated with one that causes the binder to decompose or otherwise variably. By removing the binder, its effect on the efficiency of light transmission through the cured translucent color conversion layer is ineffective. A plasticizer that is resistant to one of the cure temperatures can be used to bond the phosphor particles to the substrate or maintain a uniform phosphor particle distribution in the cured translucent color conversion layer. In one example, one of the temperatures of 36 degrees Celsius can be used to completely decompose a B 161207.doc -25- 201236214-based cellulose binder and a butyrate acetate solvent. The method 160 can be used to effectively utilize phosphor particles of varying diameters. The inventors have found that the use of phosphor particles having an average diameter of from 6 m to 8 m is useful. However, advantageously, a photon particle having an average diameter between the melon and the 25th work can also be used. Figure 8 illustrates a cross-sectional view of an LED-based illumination module 1 including reflective color conversion elements 129 and 130 coated according to method 15 and one transmission color conversion element 133 according to method ι. In one aspect, the LED-based illumination module 1 includes a transmissive color conversion component 133 that includes an optically transparent layer 134 and a translucent color affixed to the optically transparent layer 134. Conversion layer 135. In another aspect, the LED-based illumination module 1 includes a reflective color conversion component 130 that includes a reflective layer 131 and a color conversion layer 13 that is fixed to the reflective layer 13 1 . 2. In another aspect, the LED-based illumination module 1 includes a reflective color conversion component 129 that includes a reflective layer 128 and a color conversion layer 127 that is coupled to the reflective layer 128. In one embodiment, the transmissive color conversion element 133 is an output window 1 〇 8 and reflects the color conversion element 13 〇 the sidewall insert 107. Additionally, in one embodiment, reflective color conversion element 129 is a bottom reflector insert 106. LED 102 emits blue photons that interact with color conversion elements 129, 130, and 133. The transmissive color conversion element 133 provides efficient color conversion in a transmissive mode. Color conversion layer 135 includes a thin layer of thin phosphor applied in accordance with method 160. Transmission of unconverted light is undesirable in luminaires that are infused with UV or sub-UV radiation 161207.doc -26- 201236214 due to health hazards to humans exposed to light radiation at these wavelengths . However, for an LED-based illumination module that is infused with an LED having an emission wavelength in excess of uv, it is desirable that a large percentage of unconverted light (eg, 'blue light emitted from LED 102') passes through the optical mixing cavity 109 and It passes through the output window 1〇8 (eg, 'transmissive color conversion element 133') without color conversion. This promotes high efficiency because it avoids the inherent loss of the color conversion process. The sparsely stacked thin phosphor layer is adapted to color convert a portion of the incident light. For example, it is desirable to allow at least ten percent of incident light to be transmitted through the color conversion layer 135 without conversion. In particular, a color conversion layer has been found to be less than one of the average diameters of one of the phosphor particles and one of the phosphor particles in the polymer matrix having greater than 80%. In one embodiment, the color conversion layer 1 32 is deposited to a thickness of one of more than 90% to a thickness of one of two times the average diameter of the phosphor particles. In this embodiment, the average phosphor particle diameter is between six and eight microns. To deposit the color conversion layer 132 on the reflective layer 131, one or a combination of 50 grams to 1 gram of ethyl cellulose and polyvinyl condensed binder is used to 2 to 600 A suitable solvent such as terpineol, isobutanol, butylsulfonate, or butylcellulose is mixed. The mixture was rolled in a bottle for 2 to 4 days by a slowly moving roller until a clear adhesive paste was formed. The viscosity of the adhesive paste varies with > the granule contains 1. In a separate mixture, from 1 g to 3 g of a surfactant such as stearic acid or polyethylene glycol is mixed in a solvent of 50 g to 100 g to form a surfactant paste. In a final mixture I61207.doc -27- 201236214, gram to 5 grams of red-emitting phosphor particles and 1 to 10 grams of binder paste 'ό. 至 to 0.5 grams of surfactant paste and 2 drops to 1 drop of plasticizer were mixed in a 3D mixer (ΤΗΙΝΚγ ARE_25〇) for 2 to 丨〇 minutes to produce a homogeneous suspension of one of the phosphor particles. The ratio of binder, surfactant, plasticizer and phosphor is adjusted depending on the application. In a more specific example, 1 gram of ethylcellulose binder is mixed with 8 grams of butyl sulfophenolic acetate (BAC) solvent in a glass vial. The mixture was stirred in a glass bottle for several hours and then rolled in a slow moving roller for 2 to 4 days until a clear adhesive paste was formed. In a separate mixture, 1 gram of polyethylene glycol surfactant was mixed in 1 gram of BAC until an optically clear surfactant paste was formed. One gram of an average of 10 micron particle size red-emitting disc {{S, Ca)AlSiN3:Eu} with 1 gram of adhesive paste, 〇. 克 of surfactant paste and 2 drops of plasticizer Mix in a 3D mixer (THINKY ARE-250) for 2 minutes. The color conversion layer 132 can be deposited onto the reflective layer 131 by doctor blade coating. An automatic film applicator (Elcometer 4340) was used with the pre-cut stainless steel template to determine the coverage area. When the reflective layer 13 1 and a template are held on a susceptor under vacuum, a slow moving (eg, '5 to 6 〇mm/sec) sapphire or stainless steel scraper is used to disperse the homogeneous suspension of phosphor particles. . After coating, the reflective color conversion element 130 is transferred to a furnace and heated in an open atmosphere at 80 to 150 degrees Celsius for 1 to 5 hours to form a cured color conversion layer 132. The color conversion layer 13 2 can be deposited onto the reflective layer 3 by screen printing. 161207.doc -28 - 201236214 A mesh with a mesh number of 150 to 300. The screen is completely open or shaded by various sizes and shapes of different aspect ratios. Using the aforementioned automatic film applicator, the reflective layer 13 1 and the desired screen are attached to an aluminum base under vacuum and a suitable extrusion is used at a constant pressure and speed (eg, 5 to 100 mm/sec). A homogeneous suspension of dispersed phosphor particles. After screen printing, the reflective color conversion element 130 is transferred to a furnace and heated in an open atmosphere at 80 to 15 degrees Celsius for 1 to 5 hours to form a cured color conversion. Layer 132 ° After heat treatment, a cured color conversion layer 132 is employed in an LED-based lighting module to produce a CCT having a hungry range of 2 to 6,000 degrees Kelvin. White light. Four 9 illustrates a cross-sectional view of one of the LED illumination modules, one of which focuses on the interaction of photons emitted by LEDs 102 having transmissive color conversion elements 13 3 . The transmissive color conversion element 133 includes a transmissive layer 134 and a translucent color conversion layer 135. The transmission layer 134 can be constructed of an optically transparent medium (e.g., glass, sapphire, polycarbonate, plastic). Transmissive color conversion element 133 may include additional layers (not shown) to enhance optical system performance. In one example, the transmission color conversion element 133 can comprise an optical film (such as a dichroic filter, a low refractive index coating), an additional layer (such as a layer of scattering particles), or an additional color comprising phosphor particles. Conversion layer. The translucent color center conversion layer 135 includes phosphor particles 141 embedded in a polymer binder 14 2 . In one embodiment, the translucent color conversion layer 135 is at a fill density of greater than 8% and is three times the average diameter of the phosphor particles 141.

S -29· 201236214 一厚度T]35沈積於光學透明層134上。磷光體粒子Μ〗之平 均直徑可介於一微米與二十五微米之間。在某些例 中,填光體粒子141在直徑上平均係五至十微米Υ填光體 粒子141經配置以使得光之一部分能透射穿過透射色彩轉 換元件丨33而無需色彩轉換。在此實施例中, 粒子直徑DAVG係十微米。為將半透明色彩轉換層⑴沈積 於光學透明層m上,將10克的乙基纖維素黏結劑與喊 的丁基磺烴酚膠乙酸酯(BAC)溶劑在一玻璃瓶中混合且在 一寬口玻璃瓶中攪拌達數小時且然後在緩慢移動之滾筒中 滾動達2至4天直至形成一透明黏結劑膏為止。在一單獨混 合物中,將10克的聚乙二醇表面活性劑混合於1〇〇克的 BAC中直至形成一光學透明表面活性劑膏為止。在一最終 混合物中,將一克的1〇微米平均粒子大小之發射黃色之磷 光體(諸如克的黏結劑膏、〇丨克的表面活性 劑膏及2滴塑化劑在一 3D混合器(ΤΗΙΝΚγ ARE_25〇)中混合 達2分鐘。 可藉由到刀塗佈將半透明色彩轉換層135沈積至光學透 明層134上。一自動塗膜器(Eic〇meter 434〇)與預切不鏽鋼 模板一起使用以判定覆蓋面積。在將光學透明層i 34及一 模板在真空下保持於一鋁基座上時,使用一缓慢移動(例 如’ 10 mm/秒)之藍寶石或不鏽鋼刮刀來分散磷光體粒子 之均質懸浮液。 可藉由絲網印刷將半透明色彩轉換層135沈積至光學透 月層134上。使用具有15〇至3〇〇之網眼數目之絲網。絲網 161207.doc 201236214 係完全敞開或藉助不同縱橫比之各種大小及形狀遮蔽。使 用前述自動塗膜器,將光學透明層134及所需絲網在真空 下附接至一鋁基座且在恆定壓力及速度(例如,2〇 mm/秒) 下使用一適合擠壓來分散磷光體粒子之均質懸浮液。 可藉由喷漆將半透明色彩轉換層丨35沈積至光學透明層 134上。藉由將1克的發射黃色之磷光體(諸如YAG:Ce)、 1.2克之黏結劑膏、〇.丨克之表面活性劑膏、2滴塑化劑及十 克的BAC混合來製備一低黏度漿液。已使用具有精尖之在 10 P.S.I下50 cc容量之一手動喷槍得到滿意結果。 在塗佈之後’將透射色彩轉換元件133轉移至一爐中且 以攝氏120度在開放氛圍中加熱達1小時以形成經固化半透 明色彩轉換層1 3 5。 在熱處理之後,在一以LED為基礎之照〒模組中採用經 固化半透明色彩轉換層135以產生具有具有介於凱氏2,〇〇〇 度至凱氏6,000度之間的一 CCT之白色光。 如圖9中所繪示’自led 102所發射之藍色光子139通過 透射色彩轉換元件133而無需色彩轉換且促成組合光14〇作 為一藍色光子。然而,自LED 102所發射之藍色光子138係 被嵌入於色彩轉換層135中之一磷光體粒子吸收。回應於 由藍色光子138提供之刺激,該等磷光體粒子以一各向同 性發射圖案發射一較長波長之一光。在所圖解說明之實例 中’礴光體粒子發射黃色光。如圖9中所圖解說明,該黃 色發射之_部分通過透射色彩轉換元件133且促成組合光 HO作為一黃色光子。該黃色發射之另一部分係被毗鄰磷 161207.docS -29· 201236214 A thickness T] 35 is deposited on the optically transparent layer 134. The average diameter of the phosphor particles can be between one micron and twenty-five micron. In some instances, the filler particles 141 are on average five to ten microns in diameter. The filler particles 141 are configured such that a portion of the light can be transmitted through the transmissive color conversion element 丨 33 without color conversion. In this embodiment, the particle diameter DAVG is ten microns. In order to deposit the translucent color conversion layer (1) on the optically transparent layer m, 10 g of the ethyl cellulose binder is mixed with the shouted butyl sulfophenolic acetate (BAC) solvent in a glass bottle and Stir in a wide-mouth glass bottle for several hours and then roll in a slowly moving roller for 2 to 4 days until a clear adhesive paste is formed. In a separate mixture, 10 grams of polyethylene glycol surfactant was mixed in 1 gram of BAC until an optically clear surfactant cream was formed. In a final mixture, one gram of a 1 μm average particle size of a yellow-emitting phosphor (such as a gram of binder paste, a gram of surfactant paste, and 2 drops of plasticizer in a 3D mixer) ΤΗΙΝΚγ ARE_25〇) is mixed for 2 minutes. The translucent color conversion layer 135 can be deposited onto the optically transparent layer 134 by knife coating. An automatic film applicator (Eic〇meter 434〇) together with the pre-cut stainless steel template Used to determine the coverage area. When the optically transparent layer i 34 and a template are held under vacuum on an aluminum base, a slow moving (eg, '10 mm/sec) sapphire or stainless steel scraper is used to disperse the phosphor particles. A homogeneous suspension. The translucent color conversion layer 135 can be deposited onto the optical menstrual layer 134 by screen printing. A screen having a mesh number of 15 to 3 inches is used. Screen 161207.doc 201236214 Fully open or shaded by various sizes and shapes of different aspect ratios. Using the aforementioned automatic applicator, the optically clear layer 134 and the desired screen are attached under vacuum to an aluminum base at constant pressure and speed. For example, 2 〇mm/sec) uses a suitable suspension to disperse the phosphor particles. The translucent color conversion layer 丨35 can be deposited onto the optically transparent layer 134 by painting. A low-viscosity slurry is prepared by mixing a yellow phosphor (such as YAG:Ce), a 1.2 gram binder paste, a bismuth surfactant paste, 2 drops of plasticizer, and 10 grams of BAC. A satisfactory result was obtained with a manual spray gun of 50 cc capacity at 10 PSI. After coating, the transmission color conversion element 133 was transferred to a furnace and heated in an open atmosphere at 120 degrees Celsius for 1 hour to form a cured Translucent color conversion layer 1 3 5. After heat treatment, a cured translucent color conversion layer 135 is employed in an LED-based illumination module to have a relationship between Kelvin 2 and Kelvin A white light of a CCT between 6,000 degrees. As shown in Figure 9, the blue photon 139 emitted from the LED 102 passes through the transmission color conversion element 133 without color conversion and contributes to the combined light 14 as a blue Photon. However, since LED 10 The two emitted blue photons 138 are absorbed by one of the phosphor particles embedded in the color conversion layer 135. In response to the stimulus provided by the blue photon 138, the phosphor particles are emitted in an isotropic emission pattern. One of the long wavelengths of light. In the illustrated example, the phosphor particles emit yellow light. As illustrated in Figure 9, the portion of the yellow emission passes through the transmissive color conversion element 133 and contributes to the combined light HO as a yellow Photon. Another part of the yellow emission is adjacent to the phosphorus 161207.doc

S 201236214 光體粒子吸收且經重新發射或丟失。該黃色發射之又一部 分散射回至光混合腔1〇9(其中該黃色發射之該部分經反射 朝向透射色彩轉換元件133)中或在光混合器1〇9内被吸收 且丢失。 圖10圖解說明具有透射色彩轉換元件13 3之LED照明模 組100之一部分之一剖視圖,該透射色彩轉換元件具有一 具有一單個磷光體粒子141層之色彩轉換層135。在一項實 施例中’磷光體粒子141可藉由聚合物黏結劑142隔開。在 另一實施例中’磷光體粒子141可沈積於透射層134及如本 專利文件中所闡述移除之聚合物黏結劑142上。在任一實 施例中’層厚度T | 3 S係如此小以使得使由鄰近麟光體粒子 對經轉換之光之再吸收最小化。另外,使與光透射穿過色 彩轉換層135相關聯之費芮耳損失(Fresnel loss)最小化。此 外’使由於色彩轉換層135内之總内部反射(TIR)所致之損 失最小化。如此,已發現固定至透射層134呈一單層之碟 光體粒子以一有效方式透射未經轉換之光及經轉換之光。 針對一以LED為基礎之照明模組,期望在光混合腔ι〇9 中將自LED所發射之光(例如,自LED 102所發射之藍色光) 之一部分轉換成較長波長光同時使光子損失最小化。經密 集填充之薄磷光體層適於有效將入射光之一顯著部分進行 色彩轉換同時使與由毗鄰磷光體粒子進行之再吸收 '總内 部反射(TIR)及費芮耳效應相關聯之損失最小化。 圖U圖解說明具有反射色彩轉換元件1 3 0之LED照明模 組100之一部分之一剖視圖,該反射色彩轉換元件具有一 161207.doc -32· 201236214 五倍之一厚度之色S 201236214 Light body particles are absorbed and re-emitted or lost. A further portion of the yellow emission is scattered back into the light mixing chamber 1〇9 (where the portion of the yellow emission is reflected toward the transmissive color conversion element 133) or absorbed and lost in the optical hybrid 1〇9. Figure 10 illustrates a cross-sectional view of a portion of an LED illumination module 100 having a transmissive color conversion element 13 having a color conversion layer 135 having a single layer of phosphor particles 141. In one embodiment, the phosphor particles 141 may be separated by a polymeric binder 142. In another embodiment, the phosphor particles 141 can be deposited on the transmission layer 134 and the polymeric binder 142 removed as set forth in this patent document. In any of the embodiments, the layer thickness T | 3 S is so small that the re-absorption of the converted light by adjacent smear particles is minimized. In addition, the Fresnel loss associated with transmission of light through the color conversion layer 135 is minimized. In addition, the loss due to total internal reflection (TIR) in the color conversion layer 135 is minimized. Thus, it has been found that the disk particles fixed to the transmission layer 134 in a single layer transmit unconverted light and converted light in an efficient manner. For an LED-based lighting module, it is desirable to convert a portion of the light emitted from the LED (eg, the blue light emitted from the LED 102) into a longer wavelength light while making the photon in the light mixing chamber ι〇9 The loss is minimized. The densely packed thin phosphor layer is adapted to effectively color convert a significant portion of the incident light while minimizing losses associated with re-absorption of total internal reflection (TIR) and Fergu effect by adjacent phosphor particles. . Figure U illustrates a cross-sectional view of a portion of a LED illumination module 100 having a reflective color conversion component 130 having a color of one of 161207.doc -32· 201236214

具有小於磷光體粒子141之平均直徑的五倍之一 彩轉換層132。磷光體粒子141之平均直徑可介於 二十五微米之間。在某些實施例中,磷光體粒, 均直徑係介於五微米與十微米之間。磷光體粒^ 5,自L D 102發射之藍色光子137入射至反射色彩轉換元 件:30且被色彩轉換層132之一磷光體粒子吸收。回應於由 藍色光子137提供之刺激,該磷光體粒子以一各向同性發 射圆案發射一較長波長之一光。在所圖解說明之實例中, 該磷光體粒子發射紅色光。如圖丨丨中所圖解說明,紅色發 射之一部分進入光混合腔109。紅色發射之另一部分係被 毗鄰磷光體粒子吸收且經重新發射或丟失。該紅色發射之 又一部分自反射層131反射且透射穿過色彩轉換層132至光 混合腔109或被一毗鄰磷光體粒子吸收且經重新發射或丟 失。 圆12圖解說明具有反射色彩轉換元件丨3 〇之led照明模 組100之一部分之一剖視圖,該反射色彩轉換元件13〇具有 一具有一單個磷光體粒子141層之色彩轉換層132。在一項 實施例中,磷光體粒子141可藉由聚合物黏結劑142隔開, 舉例而言,如方法150中所闡述《在另一實施例中,磷光 體粒子141可沈積於反射層131及如本專利文件中所闡述移 除之聚合物黏結劑142上。在任一實施例中,層厚度係如 此小以使得使由鄰近磷光體粒子對經轉換之光之再吸收最 161207.doc -33· 201236214 小化。另外,使與光透射穿過色彩轉換層132相關聯之費 芮耳損失(Fresnel loss)最小化。此外,使由於色彩轉換層 132内之總内部反射(TIR)所致之損失最小化。如此,已發 現固定至反射層131呈一單層之峨光體粒子有效地轉換 光。 圖13圖解說明具有一透射色彩轉換總成144之LED照明 模組100之一剖視圖。在所繪示之實施例中,透射色彩轉 換總成144包含具有一單個磷光體粒子141層之一色彩轉換 層135。磷光體粒子141可沈積於透射層134及如本專利文 件中所闡述移除之聚合物黏結劑142上。色彩轉換層135係 由一第二透射層136容納,該第二透射層136係藉由密封元 件143密封至透射層134。以此方式,使色彩轉換層135與 環境隔離。在某些實施例中,密封元件143可係一玻璃料 密封玻璃’諸如無Pb之以Bi為基礎之玻璃粉(BSF-1307)。 在某些其他實施例中’密封元件143可係一光學黏合劑(例 如,J-91 Lens Bond類型黏合劑/光學膠)〇 圖1 4圖解說明透射色彩轉換總成144之一俯視圖。特定 而言’圖解說明密封元件143。密封元件143沿總成144之 周邊延伸。以此方式,自以LED為基礎之照明裝置1〇〇所 發射之光受密封元件143之存在之影響最小。藉由使色彩 轉換層135與環境隔離,可成功採用通常對環境因素(諸 如’濕度)敏感之磷光體。此外,藉由使色彩轉換層135中 之黏結劑之存在最小化,透射色彩轉換總成144可在較高 溫度下操作而不遭受光學效能之退化。 161207.doc • 34· 201236214 圖15係圖解說明將一薄半透明色彩轉換層容納於兩個透 明基板(例如’藍寶石、氧化鋁、玻璃、聚碳酸酯、塑膠) 之間及自環境密封該色彩轉換層之一方法17〇之一流程 圖。在一項態樣中,色彩轉換層不包含黏結劑或溶劑。以 此方式,雖然在操作期間對磷光體進行加熱,但不存在由 於黏結劑退化所致之對光效能之影響。在另一態樣中,將 色彩轉換層與環境分離准許使用寬廣範圍之環境敏感磷光 體作為以LED為基礎之照明模組1 〇〇之一元件。 在方塊171中,一聚合物黏結劑(例如,乙基纖維素)與 一浴劑(例如,乙酸丁氧基乙酯)混合且與磷光體粒子組合 以形成一均質磷光體懸浮液。作為方法16〇之一部分,可 採用不同聚合物黏結劑(例如,聚乙烯醇縮丁醛、以纖維 素為基礎之黏結劑、以聚矽氧為基礎之黏結劑、及以胺基 甲酸乙脂為基礎之黏結劑)。類似地,作為方法17〇之一部 分,可採用針對其與所選定之黏結劑之相容性而選擇之溶 剑(例如’萜品醇、異丁醇' 丁基磺烴酚膠乙酸酯、丁基 纖維素、聚矽氧溶劑及胺基甲酸乙脂溶劑卜在某些實施 例中’除磷光體粒子外,可添加塑化劑(例如,鄰苯二甲 S夂一異丁酯)以促成磷光體粒子至基板之黏合。在某些實 !中可添加-表面活性劑(例如,硬脂酸、pEG)。表 面活性mx阻止該㈣光體粒子—起凝結成塊且促進 磷光體粒子在該懸浮液中之均勻分佈。 在不同實例中,磷光體粒子與減少之聚合物黏結劑之比 例可變化。在-項實例t,鱗光體粒子可以—95:5之比例 161207.docThere is a color conversion layer 132 which is less than five times the average diameter of the phosphor particles 141. Phosphor particles 141 may have an average diameter of between twenty and five microns. In certain embodiments, the phosphor particles have a mean diameter between five microns and ten microns. Phosphor particles 5, blue photons 137 emitted from L D 102 are incident on the reflective color conversion element: 30 and are absorbed by the phosphor particles of one of the color conversion layers 132. In response to the stimulus provided by blue photon 137, the phosphor particles emit light of a longer wavelength in an isotropic emission circle. In the illustrated example, the phosphor particles emit red light. As illustrated in Figure ,, one portion of the red emission enters the light mixing cavity 109. Another portion of the red emission is absorbed by the adjacent phosphor particles and re-emitted or lost. A further portion of the red emission is reflected from the reflective layer 131 and transmitted through the color conversion layer 132 to the optical mixing cavity 109 or absorbed by an adjacent phosphor particle and re-emitted or lost. Circle 12 illustrates a cross-sectional view of a portion of a led illumination module 100 having a reflective color conversion element 〇3 〇 having a color conversion layer 132 having a single layer of phosphor particles 141. In one embodiment, the phosphor particles 141 may be separated by a polymer binder 142, for example, as illustrated in the method 150. In another embodiment, the phosphor particles 141 may be deposited on the reflective layer 131. And removed from the polymeric binder 142 as set forth in this patent document. In either embodiment, the layer thickness is so small that the re-absorption of the converted light by adjacent phosphor particles is minimized by 161207.doc -33·201236214. Additionally, the Fresnel loss associated with transmission of light through the color conversion layer 132 is minimized. In addition, losses due to total internal reflection (TIR) within the color conversion layer 132 are minimized. Thus, it has been found that the phosphor particles fixed to the reflective layer 131 in a single layer efficiently convert light. FIG. 13 illustrates a cross-sectional view of an LED lighting module 100 having a transmissive color conversion assembly 144. In the illustrated embodiment, the transmissive color conversion assembly 144 includes a color conversion layer 135 having a single layer of phosphor particles 141. Phosphor particles 141 can be deposited on the transmission layer 134 and the polymeric binder 142 as removed as set forth in this patent document. The color conversion layer 135 is received by a second transmission layer 136 that is sealed to the transmission layer 134 by a sealing member 143. In this way, the color conversion layer 135 is isolated from the environment. In some embodiments, the sealing element 143 can be a frit sealing glass such as a Bi-based glass frit (BSF-1307) without Pb. In some other embodiments, the sealing element 143 can be an optical adhesive (e.g., J-91 Lens Bond type adhesive/optical glue). Figure 14 illustrates a top view of the transmission color conversion assembly 144. In particular, the sealing element 143 is illustrated. Sealing element 143 extends along the perimeter of assembly 144. In this way, the light emitted by the LED-based illumination device 1 is minimally affected by the presence of the sealing element 143. By isolating the color conversion layer 135 from the environment, phosphors that are generally sensitive to environmental factors such as 'humidity can be successfully employed. Moreover, by minimizing the presence of the bonding agent in the color conversion layer 135, the transmissive color conversion assembly 144 can operate at higher temperatures without suffering degradation of optical performance. 161207.doc • 34· 201236214 Figure 15 illustrates the packaging of a thin translucent color conversion layer between two transparent substrates (eg 'sapphire, alumina, glass, polycarbonate, plastic) and sealing the color from the environment One of the conversion layers is a flow chart of one of the methods 17〇. In one aspect, the color conversion layer does not contain a binder or solvent. In this way, although the phosphor is heated during operation, there is no effect on the light efficacy due to degradation of the binder. In another aspect, separating the color conversion layer from the environment permits the use of a wide range of environmentally sensitive phosphors as one of the LED-based lighting modules. In block 171, a polymeric binder (e.g., ethylcellulose) is mixed with a bath (e.g., butoxyethyl acetate) and combined with the phosphor particles to form a homogeneous phosphor suspension. As part of Process 16, a different polymeric binder (eg, polyvinyl butyral, a cellulose based binder, a polyoxyl based binder, and a urethane) may be employed. Based on the binder). Similarly, as part of Method 17, a solution may be employed which is selected for its compatibility with the selected binder (eg, 'terpineol, isobutanol' butyl sulfophenolic acetate, Butyl Cellulose, Polyoxyxyl Solvent, and Ethyl Formate Solvent In some embodiments, a plasticizer (eg, phthalic acid S-isobutyl acrylate) may be added in addition to the phosphor particles. Promotes the bonding of the phosphor particles to the substrate. In some implementations, a surfactant (for example, stearic acid, pEG) may be added. The surface active mx prevents the (4) photo-particles from agglomerating into agglomerates and promoting the phosphor particles. Uniform distribution in the suspension. In different examples, the ratio of phosphor particles to reduced polymer binder can vary. In the case of example t, the scale particles can be -95:5 ratio 161207.doc

S -35. 201236214 (按重量計)與減少之聚合物黏結劑混合。已發現此比例對 產生具有小於0.95之一填充密度且具有小於該等磷光體粒 子之平均直徑的三倍之一厚度之色彩轉換層以產生一半透 明之色彩轉換層(其中至少1〇%之入射光透射穿過該層而無 需色彩轉換)有用。 在方塊172中,如相對於方法155所論述,將均質磷光體 懸浮液施加至一透明基板以形成一未經固化半透明之色彩 轉換層。可藉由若干種方法將均質磷光體懸浮液施加至該 透明基板。適合方法之實例包含刮刀塗佈、絲網印刷及喷 塗。可依據所期望黏度以不同比例將溶劑與聚合物黏結劑 混合。舉例而言,針對藉由刮刀塗佈或絲網印刷之至一基 板之有效施加,可以一適合比例(例如,按重量計介於 與10.1之間)將溶劑與聚合物黏結劑混合。針對藉由喷塗之 至一基板之有效施加,可以—適合比例(例如,按重量計 介於10:1與20:1之間)將溶劑與聚合物黏結劑混合。 在方塊1 73中,未經固化半透明色彩轉換層經加熱至足 以使浴劑蒸發且使黏結劑變性之—溫度以形成具有小於該 等磷光體粒子之平均直徑的五倍之一厚度之一半透明色彩 轉換層^ 處理溫度保持尚於黏結劑開始分解之溫度。在一項實例 中,未經固化半透明色彩轉換層經加熱至攝氏3〇〇至35〇度 之一溫度達20至30分鐘。以此方式,半透明色彩轉換層更 大量地係由其中僅殘留有黏結劑材料之微量元素之磷光體 粒子構成。 161207.doc -36-S -35. 201236214 (by weight) mixed with reduced polymer binder. This ratio has been found to produce a color conversion layer having a fill density of less than 0.95 and having a thickness less than one-third the thickness of the average diameter of the phosphor particles to produce a semi-transparent color conversion layer (at least 1% of which is incident) Light is transmitted through the layer without the need for color conversion) useful. In block 172, a homogeneous phosphor suspension is applied to a transparent substrate as discussed with respect to method 155 to form an uncured translucent color conversion layer. A homogeneous phosphor suspension can be applied to the transparent substrate by several methods. Examples of suitable methods include knife coating, screen printing, and spray coating. The solvent can be mixed with the polymer binder in different proportions depending on the desired viscosity. For example, for effective application to a substrate by knife coating or screen printing, the solvent can be mixed with the polymeric binder in a suitable ratio (e.g., between 10.1 by weight). For effective application to a substrate by spraying, the solvent can be mixed with the polymeric binder in a suitable ratio (e.g., between 10:1 and 20:1 by weight). In block 143, the uncured translucent color conversion layer is heated to a temperature sufficient to evaporate the bath and denature the binder to form one half of a thickness that is less than one-fifth the average diameter of the phosphor particles. The transparent color conversion layer ^ treatment temperature is maintained at the temperature at which the binder begins to decompose. In one example, the uncured translucent color conversion layer is heated to a temperature of 3 to 35 degrees Celsius for 20 to 30 minutes. In this way, the translucent color conversion layer is composed more largely of phosphor particles in which only trace elements of the binder material remain. 161207.doc -36-

201236214 在方塊174中,將色彩轉換層容納於第—透射元件與一 第一透射元件之間(例如,在兩個玻璃板之間)。一密封元 件固定地耗合該兩個透射元件且將色彩轉換層容納於該兩 個透射兀件之間。以此方式,使色彩轉換元件與環境隔 離。 使用方法170可有效採用變化直徑之磷光體粒子。發明 者已發現使用具有6_至8μιη之一平均直徑之-光體粒子 係有用的。然而’有益地,亦可使用具有介於i _與Μ μιη之間的一平均直徑之磷光體粒子。 圖16圖解說明具有安置於透射層134上且藉助一密封元 件145囊封之-色彩轉換層135之LED照明模組ι〇〇之一剖 視0。在所繪示之實施例中,透射色彩轉換總成144包含 具有一單個磷光體粒子141層之一色彩轉換層13^磷光體 粒子⑷可沈積於透射層134及如本專利文件中所闡述移除 之聚合物黏結劑丨42上。色彩轉換層135係藉由密封元件 145囊封。以此方式,使色彩轉換層135與環境隔離。在某 些實施例中,密封元件145可係一金屬石夕酸鹽(諸如碎酸納) 或任一有機金屬矽酸鹽(諸如四乙氧矽)。 例中,密封元件⑷可係-光學黏合劑(例如Γ[91 = BCHHI類型黏合劑/光學膠)。藉由使色彩轉換層135與環境 隔離,可成功採用通常對環境因素(諸如,濕度)敏感之磷 光體。此外,藉由使色彩轉換層135中之黏結劑之存在最 小化,色彩轉換層135可在較高溫度下操作而不遭受光學 效能之退化。 I61207.doc •37· 201236214 圖17係圖解說明將一薄半透明色彩轉換層囊封於一透射 基板(例如,藍寶石、氧化鋁、玻璃、聚碳酸酯、塑膠)上 及自環境密封色彩轉換層之一方法18〇之一流程圖。在一 項態樣中,色彩轉換層不包含黏結劑或溶劑。以此方式, 雖然在操作期間對磷光體進行加熱,但不存在由於黏結劑 退化所致之對光效能之影響。在另一態樣中,將色彩轉換 層與環境分離准許使用寬廣範圍之環境敏感磷光體作為以 LED為基礎之照明模組100之一元件。 在方塊181中,如上文中相對於方法155、16〇及17〇所論 述,一聚合物黏結劑(例如,乙基纖維素)與一溶劑(例如, 乙酸丁氧基乙酯)混合且與磷光體粒子組合以形成一均質 破光體懸浮液。 在方塊1 82中,如相對於方法丨55所論述,將均質磷光體 懸浮液施加至一透明基板以形成一未經固化半透明之色彩 轉換層。 在方塊183中’未經固化半透明色彩轉換層經加熱至足 以使岭劑蒸發且使黏結劑變性之_溫度以形成具有小於該 等峨光體粒子之平均直徑的五倍之一厚度之—半透明色彩 轉換層。 處理恤度保持㊉於黏結劑開始分解之溫度。在—項實例 中未,,巫固化半透明色彩轉換層經加熱至攝氏3〇〇至35〇度 之/皿度達10至30分鐘。以此方式,半透明色彩轉換層更 大1地係由其中僅殘留有黏結劑材料之微量元素之填光體 粒子構成》 161207.doc201236214 In block 174, a color conversion layer is received between the first transmissive element and a first transmissive element (e.g., between two glass sheets). A sealing member fixedly affixes the two transmissive elements and accommodates a color conversion layer between the two transmissive elements. In this way, the color conversion element is isolated from the environment. The method 170 can be used to effectively utilize phosphor particles of varying diameters. The inventors have found that the use of photo-particles having an average diameter of 6 to 8 μm is useful. However, advantageously, phosphor particles having an average diameter between i _ and Μ μηη can also be used. Figure 16 illustrates a cross-sectional view of one of the LED lighting modules ι having a color conversion layer 135 disposed on a transmissive layer 134 and encapsulated by a sealing member 145. In the illustrated embodiment, the transmissive color conversion assembly 144 includes a color conversion layer having a single layer of phosphor particles 141. Phosphor particles (4) can be deposited on the transmissive layer 134 and as described in this patent document. In addition to the polymer binder 丨42. The color conversion layer 135 is encapsulated by a sealing member 145. In this way, the color conversion layer 135 is isolated from the environment. In some embodiments, the sealing element 145 can be a metallosilicate (such as sodium sulphate) or any organometallic silicate (such as tetraethoxy hydrazine). In the example, the sealing element (4) can be an optical adhesive (for example Γ [91 = BCHHI type adhesive / optical glue). By isolating the color conversion layer 135 from the environment, phosphors that are generally sensitive to environmental factors such as humidity can be successfully employed. Moreover, by minimizing the presence of the binder in the color conversion layer 135, the color conversion layer 135 can operate at higher temperatures without suffering degradation of optical performance. I61207.doc •37· 201236214 Figure 17 illustrates the encapsulation of a thin translucent color conversion layer on a transmissive substrate (eg, sapphire, alumina, glass, polycarbonate, plastic) and a self-sealing color conversion layer One of the methods 18 is one of the flowcharts. In one aspect, the color conversion layer does not contain a binder or solvent. In this way, although the phosphor is heated during operation, there is no effect on the light efficiency due to degradation of the binder. In another aspect, separating the color conversion layer from the environment permits the use of a wide range of environmentally sensitive phosphors as an element of the LED-based lighting module 100. In block 181, a polymer binder (eg, ethyl cellulose) is mixed with a solvent (eg, butoxyethyl acetate) and phosphorescent as discussed above with respect to methods 155, 16A and 17B. The bulk particles are combined to form a homogeneous light-breaking suspension. In block 182, a homogeneous phosphor suspension is applied to a transparent substrate as discussed with respect to method 55 to form an uncured translucent color conversion layer. In block 183, the 'uncured translucent color conversion layer is heated to a temperature sufficient to evaporate the ridge agent and denature the binder to form a thickness that is less than one-fifth the thickness of the average diameter of the phosphor particles. Translucent color conversion layer. The handling level is maintained at a temperature at which the binder begins to decompose. In the case of the item, the witch cured translucent color conversion layer is heated to a temperature of 3 to 35 degrees Celsius/dish for 10 to 30 minutes. In this way, the translucent color conversion layer is made up of the filler particles of the trace elements in which only the binder material remains. 161207.doc

•38- 201236214 在方塊184中,藉由一密封元件囊封色彩轉換層。該密 封元件將色彩轉換層135與環境隔絕。 使用方法1 80可有效採用變化直徑之磷光體粒子。發明 者已發現使用具有6 μιη至8 μηι之一平均直徑之磷光體粒子 係有用的。然而’有益地’亦可使用具有介於i μηι與25 μηι之間的一平均直徑之磷光體粒子。 圖18圖解說明具有嵌入於透射層I”之表面中之一色彩 轉換層1 3 5之LED照明模組1 〇〇之一剖視圖。在所繪示之實 施例中,具有一單個磷光體粒子141層之一色彩轉換層135 嵌入於一透射層134之表面中。在一項實施例中,透射層 1 34係低軟化玻璃’諸如浮式玻璃(fi〇at giass)。碗光體粒 子141可沈積於透射層134及如本專利文件中所闡述移除之 聚合物黏結劑142上。透射層134經加熱至其玻璃軟化溫度 且將磷光體粒子141嵌入至玻璃表面中。在某些實例中, 施加壓力以促成將磷光體粒子嵌入於玻璃表面中。透射層 1 34經緩慢冷卻以解馳内部應力。以此方式,將磷光體粒 子141固定至透射層134而無需黏結劑。以此方式,色彩轉 換層135可在較高溫度下操作而不影響光學效能。在某些 實施例中,色彩轉換層135隨後藉由密封元件145囊封。以 此方式,使色彩轉換層135與環境隔離。 0 19圖解說明打叩材料之一反射層131。如所繪示,磷 光體粒子141係嵌入於PTFE反射層131中。在某些實施例 中,將磷光體粒子141與PTFE顆粒混合,且隨後一起燒結 以達成包含磷光體粒子141之所期望之光學結構。反射層 I61207.doc •39· 201236214 131可經細分成多個層。舉例而言,反射層m可包含由不 包含鱗光體粒子141之另-反射層加襯裏之嵌人㈣光體 粒子141之一反射層。 儘管在上文中出於指導目的闡述了某些特定實施例,但 本專利文件之教示内容具有—般適用性且不限於上文所闊 述之特定實施例。舉例而言,側壁嵌件1〇7、底部反射器 嵌件106及輸出窗ι〇8中之任_者可與鱗光體一起圖案化。 圖案自身及磷光體組合物兩者可變化。在一項實施例中, …、月裝置可包含定位於光混合腔1〇9之不同區域處之不同 類型之磷光體。舉例而言,-紅色罐光體可定位於嵌件 1〇7與底部反射器嵌件106中之任-者或兩者上且黃色及綠 色填光體可定位於窗108之頂部表面或底部表面或嵌入於 窗1〇8内。在一項實施例中,-中心反射器可具有不同類 型之磷光體圖t,例如’位於一第一區域上之一 體及位於一單獨第二區域上之一綠色磷光體。在另一實施 例中,不同類型之填光體(例如,紅色及綠色)可定位於傲 件…上之不同區域上。舉例而…種類型之碟光體可 在側錢件1()7上-第—區域處經圖案化(例如)呈條帶 '斑 點、點或其他圖案’而另-類型之磷光體定位於嵌件1〇7 之-不同第二區域上。若期望,可使用額 定位於腔料之不同區域中…,若期 :將其 右肩1,可僅使用 -單個類型之波長轉換材料且將其在腔1〇9中(例如,在側 壁上)圖案化。在另一實例中’圖4A及圖4B將側壁圖解說 明為具有-線性組態,但應理解,侧壁可具有任—所期望 161207.doc 201236214 組態,例如,彎曲、非垂直、傾斜等等。舉例而言,藉由 使用錐形化側壁來進行光之預準直來透過光混合腔1〇9達 成一較尚轉移效率。在另一實例中,使用腔體1〇5來將安 裝板104直接夾緊至安裝基座1〇1而無需使用安裝板定位環 103。在其他貫例中,安裝基座101及散熱片130可係一單 個組件。在另一實例中,以LED為基礎之照明模組1〇〇在 圖1、圖2及圖3中經繪示為一照明器具15〇之一部分。如圖 3中所圖解說明,以led為基礎之照明模組丨〇〇可係一備用 燈或改裝燈之-部分。然而’在另—實施例中,以LED為 基礎之照明模組1〇〇可經定形狀為一備用燈或改裝燈且經 視為此備用燈或改裝燈。因此,可在不背離如申請專利範 圍中所陳述之本發明範疇之情形下實踐對所述實施例之各 種特徵之各種修改、改動及組合。 【圖式簡單說明】 圆1 '圖2及圖3圖解說明三種例示性照明器具,其包含 一照明裝置、反射器及燈具。 0 4展示圖解說明如圖丨中所繪示之以led為基礎之照明 裝置之組件之一分解圖。 0 5A及圖5B圖解說明如圖!中所繪示之以LED為基礎之 照明裝置之一透視剖視圖。 圆6係圆解說明將一薄磷光體層施加至一反射基板上之 一方法之一流程圖。 0 7係圖解A明將—薄半透明色彩轉換層施加至一透明 基板上之一方法之一流程圖。 161207.doc 201236214 圖8圖解說明包含塗佈有—㈣光體層之反射及透射色 彩轉換元件之以led為基礎之照明模組之一剖視圖。 圖9圖解說明具有透射色彩轉換元件之led照明模組之 -部分之剖視圖’該透射色彩轉換元件具有一具有小於磷 光體粒子之平均直徑的五倍之一厚度之色彩轉換層。 圖10圖解說明具有透射色彩轉換元件之LED照明模組之 一部分之一剖視圖,該透射色彩轉換元件具有一具有一單 個磷光體粒子層之色彩轉換層。 圓11圖解說明具有反射色彩轉換元件之LED照明模組之 一部分之一剖視圖,該反射色彩轉換元件具有一具有小於 磷光體粒子之平均直徑的五倍之一厚度之色彩轉換層。 圖12圖解說明具有反射色彩轉換元件之LED照明模組之 一部分之一剖視圖,該反射色彩轉換元件具有一具有一單 個磷光體粒子層之色彩轉換層。 圖13圖解說明具有一透射色彩轉換總成之lED照明模組 之一剖視圖。 圖〗4圖解說明圖13中所示之透射色彩轉換總成之一俯視 圖。 圖15係圖解說明將一薄半透明色彩轉換層容納於兩個透 明基板之間及自環境密封該色彩轉換層之一方法之一流程 圖。 圖16圖解說明具有安置於透射層上且藉助一密封元件囊 封之一色彩轉換層之LED照明模組之一剖視圖。 圖17係圖解說明將一薄半透明色彩轉換層囊封於一透射 161207.doc -42·• 38- 201236214 In block 184, the color conversion layer is encapsulated by a sealing element. The sealing element isolates the color conversion layer 135 from the environment. The use of method 1 80 can effectively utilize phosphor particles of varying diameters. The inventors have found that the use of phosphor particles having an average diameter of from 6 μηη to 8 μηι is useful. However, it is also advantageous to use phosphor particles having an average diameter between i μηι and 25 μηι. Figure 18 illustrates a cross-sectional view of an LED illumination module 1 具有 having a color conversion layer 135 embedded in the surface of the transmission layer I". In the illustrated embodiment, there is a single phosphor particle 141 One of the layers of color conversion layer 135 is embedded in the surface of a transmission layer 134. In one embodiment, the transmission layer 134 is a low softening glass such as a floating glass giass. Deposited on a transmission layer 134 and a polymeric binder 142 as removed as set forth in this patent document. The transmission layer 134 is heated to its glass softening temperature and embeds the phosphor particles 141 into the glass surface. In some instances Pressure is applied to facilitate embedding the phosphor particles in the glass surface. The transmission layer 134 is slowly cooled to relax the internal stress. In this manner, the phosphor particles 141 are fixed to the transmission layer 134 without the need for a binder. The color conversion layer 135 can operate at higher temperatures without affecting optical performance. In some embodiments, the color conversion layer 135 is then encapsulated by a sealing member 145. In this manner, the color conversion layer 135 and the environment are rendered 0 19 illustrates a reflective layer 131 of a snoring material. As illustrated, phosphor particles 141 are embedded in PTFE reflective layer 131. In certain embodiments, phosphor particles 141 are mixed with PTFE particles, And then sintered together to achieve the desired optical structure comprising phosphor particles 141. The reflective layer I61207.doc • 39· 201236214 131 may be subdivided into a plurality of layers. For example, the reflective layer m may comprise no scale light The other-reflective layer of the bulk particles 141 is lined with a reflective layer of one of the four (four) light body particles 141. Although certain specific embodiments have been set forth above for instructional purposes, the teachings of this patent document are generally applicable. And not limited to the specific embodiments described above. For example, any of the sidewall insert 1〇7, the bottom reflector insert 106, and the output window 〇8 can be patterned with the scale. Both the pattern itself and the phosphor composition can vary. In one embodiment, the month device can comprise different types of phosphors positioned at different regions of the light mixing chamber 1 。 9. For example, - Red can light body can be positioned Any or both of the insert 1〇7 and the bottom reflector insert 106 and the yellow and green fill bodies may be positioned on the top or bottom surface of the window 108 or embedded in the window 1〇8. In an embodiment, the central reflector may have a different type of phosphor map t, such as 'one body on one first region and one green phosphor on a separate second region. In another embodiment, Different types of light-filling bodies (for example, red and green) can be positioned on different areas of the proud piece. For example, the type of the light body can be on the side money piece 1 () 7 - the first area The patterning is, for example, in the form of a strip 'spot, dot or other pattern' and the other type of phosphor is positioned on a different second region of the insert 1〇7. If desired, use a different rating in the cavity area..., if it is: right shoulder 1, use only a single type of wavelength conversion material and place it in cavity 1〇9 (for example, on the side wall) Patterned. In another example, FIGS. 4A and 4B illustrate the sidewall as having a -linear configuration, but it should be understood that the sidewall may have any desired 161207.doc 201236214 configuration, eg, curved, non-vertical, tilted, etc. Wait. For example, by using a tapered sidewall for pre-collimation of light to achieve a better transfer efficiency through the optical mixing chamber 1〇9. In another example, the cavity 1〇5 is used to clamp the mounting plate 104 directly to the mounting base 1〇1 without the use of the mounting plate retaining ring 103. In other embodiments, the mounting base 101 and the heat sink 130 can be a single component. In another example, an LED-based lighting module 1 is illustrated in Figures 1, 2, and 3 as part of a lighting fixture 15 . As illustrated in Figure 3, the LED-based lighting module can be part of a spare or retrofit lamp. However, in another embodiment, the LED-based lighting module 1 can be shaped into a spare or retrofit lamp and is considered to be the backup or retrofit lamp. Various modifications, changes and combinations of the various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS A circle 1 'Figure 2 and Figure 3 illustrate three exemplary lighting fixtures including a lighting device, a reflector and a light fixture. An illustration of an exploded view of the components of a led-based lighting device as illustrated in FIG. 0 5A and Figure 5B illustrate the figure! A perspective cross-sectional view of one of the LED-based lighting devices depicted therein. A circular 6-system circular solution illustrates one of a flow chart of a method of applying a thin phosphor layer to a reflective substrate. 0 7 is a flow chart of one of the methods of applying a thin translucent color conversion layer to a transparent substrate. 161207.doc 201236214 Figure 8 illustrates a cross-sectional view of a LED-based lighting module including reflective and transmissive color conversion elements coated with a - (iv) photo-layer. Figure 9 illustrates a cross-sectional view of a portion of a led illumination module having a transmissive color conversion element having a color conversion layer having a thickness less than one-fifth the average diameter of the phosphor particles. Figure 10 illustrates a cross-sectional view of a portion of an LED illumination module having a transmissive color conversion element having a color conversion layer having a single layer of phosphor particles. Circle 11 illustrates a cross-sectional view of a portion of an LED illumination module having a reflective color conversion element having a color conversion layer having a thickness less than one-fifth the average diameter of the phosphor particles. Figure 12 illustrates a cross-sectional view of a portion of an LED illumination module having a reflective color conversion element having a color conversion layer having a single layer of phosphor particles. Figure 13 illustrates a cross-sectional view of an lED illumination module having a transmissive color conversion assembly. Figure 4 illustrates a top view of the transmission color conversion assembly shown in Figure 13. Figure 15 is a flow diagram illustrating one method of accommodating a thin translucent color conversion layer between two transparent substrates and sealing the color conversion layer from the environment. Figure 16 illustrates a cross-sectional view of an LED illumination module having a color conversion layer disposed on a transmissive layer and encapsulating a color via a sealing element. Figure 17 is a diagram illustrating a thin translucent color conversion layer encapsulated in a transmission 161207.doc -42·

201236214 基板上且自環境密封該色彩轉換層之一方法之一流程圖。 018圖解說明具有嵌入於透射層之表面中之—色彩轉換 層之LED照明模組之一剖視圖。 0 19圖解說明PTFE材料之一反射層。 【主要元件符號說明】 100 以發光二極體為基礎之照明模組 101 安裝基座 102 發光二極體 103 安裝板定位環 104 安裝板 105 腔體 106 底部反射器嵌件 107 側壁嵌件 108 輸出窗 109 光混合腔 115 光源子總成 116 光轉換子總成 127 色彩轉換層 128 反射層 129 反射色彩轉換元件 130 反射色彩轉換元件/燈具 131 反射層 132 色彩轉換層 133 透射色彩轉換元件 161207.doc -43- 201236214 134 光學透明層 135 半透明色彩轉換層 136 第二透射層 137 藍色光子 138 藍色光子 139 藍色光子 140 反射器 141 側壁 142 窗 143 密封元件 144 透射色彩轉換總成 145 密封元件 150 照明器具 161207.doc -44-201236214 Flowchart of one of the methods of sealing the color conversion layer on the substrate and from the environment. 018 illustrates a cross-sectional view of an LED lighting module having a color conversion layer embedded in a surface of the transmissive layer. 0 19 illustrates a reflective layer of one of the PTFE materials. [Main component symbol description] 100 Light-emitting diode-based lighting module 101 Mounting base 102 Light-emitting diode 103 Mounting plate positioning ring 104 Mounting plate 105 Cavity 106 Bottom reflector insert 107 Side wall insert 108 Output Window 109 Light mixing cavity 115 Light source sub-assembly 116 Light conversion sub-assembly 127 Color conversion layer 128 Reflective layer 129 Reflective color conversion element 130 Reflective color conversion element / Luminaire 131 Reflective layer 132 Color conversion layer 133 Transmission color conversion element 161207.doc -43- 201236214 134 Optically transparent layer 135 Translucent color conversion layer 136 Second transmission layer 137 Blue photon 138 Blue photon 139 Blue photon 140 Reflector 141 Side wall 142 Window 143 Sealing element 144 Transmission color conversion assembly 145 Sealing element 150 lighting fixtures 161207.doc -44-

Claims (1)

201236214 七、申請專利範圍: 1. 一種設備,其包括: 一光源子總成’其具有複數個發光二極體(LED);及 反射色彩轉換元件,其包括一聚四氟乙烯(pTFE)層 及固定至該PTFE層之-第一色彩轉換層,其中該第一色 彩轉換層包含嵌入於一聚合物基質中之複數個一第一類 型之磷光體粒子,且其中該第一色彩轉換層之一厚度係 小於該等填光體粒子之一平均直徑的五倍。 2. 如請求項1之設備,其進一步包括: 一透射色彩轉換元件,其包括一光學透明層及固定至 該光學透明層之一第二色彩轉換層,其中該第二色彩轉 換層包含嵌入於一第二聚合物基質中之複數個一第二類 型之第二填光體粒子,其中該第二色彩轉換層之一厚度 係小於該等第二磷光體粒子之該平均直徑的三倍,且其 中該第二聚合物基質中之該等第二磷光體粒子之一填充 欲度係小於百分之九十β 3. 如請求項2之設備,其中透射小於百分之三十之入射至 該透射色彩轉換元件冬一光而無需色彩轉換。 4. 如請求項1之設備,其中該第一類型之該等鱗光體粒子 在直徑上係介於五微米與二十微米之間。 5. 如請求項2之設備,其中該反射色彩轉換元件係一以ί]ΒΙ) 為基礎之照明模組之一可替換側壁嵌件,其中該可替換 側壁嵌件係士對其色彩轉換性質而選擇且該透射色彩轉 換元件係一以LED為基礎之照明模組之一可替換輸出 161207.doc S 201236214 窗,其中S亥可替換輸出窗係針對其色彩轉換性質而選 擇。 6. 如請求項2之設備,其中該第—色彩轉換層及該第二色 彩轉換層包含按每一色彩轉換層之重量計小於百分之五 之一塑化劑及按每一色彩轉換層之重量計小於百分之五 之一表面活性劑。 7. 如請求項2之設備,其中該第一色彩轉換層及該第二色 彩轉換層中之至少一者係磷光體粒子之一單層。 8·如請求項2之設備,其中該第一色彩轉換層及該第二色 彩轉換層中之任一者包含光散射粒子。 9.如請求項1之設備,其中該反射色彩轉換元件及該透射 色衫轉換元件甲之至少一者進一步包括複數個一第三類 型之磷光體粒子。 10·如請求項丨之設備’其中該聚合物基質係取自由以下材 料組成之一群組:乙基纖維素及聚乙烯醇縮丁醛。 11 · 一種設備,其包括: 一光源子總成,其具有複數個發光二極體(LED); 一反射色彩轉換元件,其包括一聚四氟乙烯(PTFE)層 及固定至該PTFE層之一第一色彩轉換層,其中該第一色 彩轉換層包含嵌入於一聚合物基質中之複數個一第一類 型之磷光體粒子,且其中該第一色彩轉換層之一厚度係 小於該等鱗光體粒子之一平均直徑的五倍;及 一透射色彩轉換元件,其包括一光學透明層及固定至 s亥光學透明層之一第二色彩轉換層,其中該第二色彩轉 161207.doc 201236214 其中該第二 之一译值發 換層包含複數個一第二類型之磷光體粒子, 類型之s亥等碟光體粒子具有不超過600奈米 射波長。 12. 13. 14. 15. 如請求項U之設備’其中該第—色彩轉換層及該第二色 彩轉換層中之至少—者分別具有小於該第—色彩轉換層 及該第二色彩轉換層内之該等磷光體粒子之該平均直徑 的二倍之一厚度。 如請求項11之設備,其中透射穿過該第二色彩轉換層之 一光具有小於凱氏4,200度之一相關色溫。 一種設備,其包括: 複數個發光二極體(LED); 一透射色彩轉換總成’其經定位以接收自該複數個 LED發射之一光,該透射色彩轉換總成包括: 一第一透射光學元件; —第二透射光學元件; 一第一色彩轉換材料,其安置於該第一透射光學元 件與該第二透射光學元件之間;及 一密封材料,其安置於該第一透射光學元件與該第 二透射光學元件之間,其固定地將該第一透射光學元 件輕合至該第二透射光學元件,其中該第一色彩轉換 材料係由該第一透射光學元件及該第二透射光學元件 以及該密封材料包含。 如請求項14之設備,其進一步包括: 一反射色彩轉換元件,其包含一第二色彩轉換材料。 16I207.doc 201236214 16. 如:求項14之設備’其中該第一色彩轉換材料包含複數 、.與第類型之磷光體粒子,且其中安置於該第一透射 光牛與該第二透射光學元件之間的該第一色彩轉換 材’斗之一厚度係小於該等磷光體粒子之一平均直徑 倍。 17. 如請求们6之設備,其中安置於該第—透射光學元件與 該第-透射光學元件之間的第—色彩轉換材料之該厚度 係小於該等填光體粒子之—平均直徑的三倍。 如-月求項14之設備’其中安置於該第__透射光學元件與 該第-透射光學元件之間的該第—色彩轉換材料具有不 超過6〇〇奈来之一峰值發射波長,且其中透射穿過該透 射色彩轉換總成之一光具有小於凱氏4,2〇〇度之一相關色 溫。 19. 如請求項15之設備’其中該第二色彩轉換材料係嵌入於 一聚合物基質中。 20. 如請求項15之設傷’其中該第二色彩轉換材料包含複數 個峨光體粒子且該第二色彩轉換材料之—厚度小於該等 磷光體粒子之一平均直徑的三倍。 21. —種方法,其包括: 將-聚合物黏結劑與一溶劑及複數個碗光體粒子混合 以形成该等磷光體粒子之—均質懸浮液· 將該均質懸浮液施加至-基板之一表面以形成一未經 固化色I轉換層’其中该基板係、—聚四氟乙烯(pTFE)材 料; 161207.doc 4 … S 201236214 加熱該未經固化色彩轉換層以使該溶劑蒸發以形成一 經固化色彩轉換層,其中該經固化色彩轉換層包含懸浮 於該聚合物黏結劑中之該等磷光體粒子,且其中該經固 化色彩轉換層之一厚度係小於該等磷光體粒子之一平均 直徑的五倍。 • 22.如請求項21之方法,其中該加熱涉及將該未經固化色彩 轉換層加熱至不超過攝氏三百度。 23.如請求項21之方法,其中該聚合物黏結劑係取自由以下 材料組成之一群組:乙基纖維素及聚乙烯醇縮丁醛。 24_如請求項2 1之方法,其中該溶劑係取自由以下材料組成 之一群組:丁基磺烴酚膠乙酸酯及祐品醇。 25. 如請求項2 1之方法,其中該混合涉及混合按重量計不小 於百分之二十之一比例的磷光體粒子及按重量計不小於 80%的溶劑及該聚合物黏結劑。 26. 如請求項21之方法,其中該混合進一步涉及混合一塑化 劑以形成該等填光體粒子之該均質懸浮液。 27. 如凊求項21之方法,其中該混合進一步涉及混合一表面 活性劑以形成該等磷光體粒子之該均質懸浮液。 28. 如凊求項21之方法’其中該施加涉及喷塗、刮刀塗佈及 絲網印刷中之任一者。 29. 如請求項21之方法,其中該經固化色彩轉換層之該厚度 係该等碟光體粒子之一單層。 30. 如請求項21之方法’其中該經固化色彩轉換層之一填充 密度係大於50%。 161207.doc 201236214 3 1.如請求項21之方法,其中該等磷光體粒子之該平均直徑 係介於五微米與二十微米之間。 32.如請求項21之方法,其中該表面係一以LED為基礎之照 明模組之一内部表面。 161207.doc -6-201236214 VII. Patent Application Range: 1. A device comprising: a light source subassembly having a plurality of light emitting diodes (LEDs); and a reflective color conversion element comprising a polytetrafluoroethylene (pTFE) layer And a first color conversion layer fixed to the PTFE layer, wherein the first color conversion layer comprises a plurality of first type phosphor particles embedded in a polymer matrix, and wherein the first color conversion layer A thickness is less than five times the average diameter of one of the filler particles. 2. The device of claim 1, further comprising: a transmissive color conversion element comprising an optically transparent layer and a second color conversion layer affixed to the optically transparent layer, wherein the second color conversion layer comprises embedded in a plurality of second filler particles of a second type in a second polymer matrix, wherein one of the thicknesses of the second color conversion layer is less than three times the average diameter of the second phosphor particles, and Wherein one of the second phosphor particles in the second polymer matrix has a filling degree of less than ninety percent β. 3. The apparatus of claim 2, wherein the transmission is less than thirty percent incident to the The transmission color conversion element is lighted in winter without color conversion. 4. The device of claim 1, wherein the first type of the scale particles are between five and twenty microns in diameter. 5. The device of claim 2, wherein the reflective color conversion component is a replaceable sidewall insert of a lighting module based on the color conversion property of the replaceable sidewall insert The transmissive color conversion component is selected to be an LED-based illumination module replaceable output 161207.doc S 201236214 window, wherein the S-replaceable output window is selected for its color conversion properties. 6. The device of claim 2, wherein the first color conversion layer and the second color conversion layer comprise less than one-fifth of a plasticizer and one color conversion layer per weight of each color conversion layer The weight is less than one-five percent of the surfactant. 7. The device of claim 2, wherein at least one of the first color conversion layer and the second color conversion layer is a single layer of one of phosphor particles. 8. The device of claim 2, wherein any of the first color conversion layer and the second color conversion layer comprises light scattering particles. 9. The device of claim 1, wherein at least one of the reflective color conversion element and the transmissive color conversion element A further comprises a plurality of third type phosphor particles. 10. The apparatus of claim </RTI> wherein the polymer matrix is selected from the group consisting of ethyl cellulose and polyvinyl butyral. 11 . An apparatus comprising: a light source subassembly having a plurality of light emitting diodes (LEDs); a reflective color conversion element comprising a layer of polytetrafluoroethylene (PTFE) and being fixed to the PTFE layer a first color conversion layer, wherein the first color conversion layer comprises a plurality of first type phosphor particles embedded in a polymer matrix, and wherein one of the first color conversion layers has a thickness smaller than the scale a transmission color conversion element comprising an optically transparent layer and a second color conversion layer fixed to one of the optically transparent layers, wherein the second color is 161207.doc 201236214 Wherein the second one of the translating layers comprises a plurality of phosphor particles of a second type, and the disc particles of the type shai have a wavelength of not more than 600 nanometers. 12. 13. 14. 15. The device of claim U, wherein at least one of the first color conversion layer and the second color conversion layer has less than the first color conversion layer and the second color conversion layer One tenth of the average diameter of the phosphor particles within the thickness. The apparatus of claim 11, wherein the light transmitted through the second color conversion layer has a correlated color temperature of less than 4,200 degrees Kelvin. An apparatus comprising: a plurality of light emitting diodes (LEDs); a transmissive color conversion assembly 'which is positioned to receive light emitted from the plurality of LEDs, the transmissive color conversion assembly comprising: a first transmission An optical element; a second transmissive optical element; a first color conversion material disposed between the first transmissive optical element and the second transmissive optical element; and a sealing material disposed on the first transmissive optical element Between the second transmissive optical element and the second transmissive optical element, the first transmissive optical element is fixedly coupled to the second transmissive optical element, wherein the first transmissive optical element is the first transmissive optical element and the second transmissive optical element The optical element and the sealing material are included. The device of claim 14, further comprising: a reflective color conversion element comprising a second color conversion material. 16I207.doc 201236214 16. The apparatus of claim 14, wherein the first color conversion material comprises a plurality of phosphor particles of a first type, and wherein the first transmitted light cattle and the second transmissive optical element are disposed The thickness of one of the first color conversion materials 'buckets' is less than the average diameter of one of the phosphor particles. 17. The apparatus of claim 6, wherein the thickness of the first color conversion material disposed between the first transmission optical element and the first transmission optical element is less than three of the average diameter of the filler particles Times. The apparatus of claim 14, wherein the first color conversion material disposed between the first transmission optical element and the first transmission optical element has a peak emission wavelength of not more than 6 〇〇, and The light transmitted through the transmission color conversion assembly has a correlated color temperature that is less than one of Kelvin's 4,2 turns. 19. The device of claim 15 wherein the second color conversion material is embedded in a polymer matrix. 20. The invention of claim 15 wherein the second color conversion material comprises a plurality of phosphor particles and the thickness of the second color conversion material is less than three times the average diameter of one of the phosphor particles. 21. A method comprising: mixing a polymer binder with a solvent and a plurality of bowls of particles to form a homogeneous suspension of the phosphor particles - applying the homogeneous suspension to one of the substrates Surface to form an uncured color I conversion layer 'where the substrate system, polytetrafluoroethylene (pTFE) material; 161207.doc 4 ... S 201236214 heating the uncured color conversion layer to evaporate the solvent to form a Curing a color conversion layer, wherein the cured color conversion layer comprises the phosphor particles suspended in the polymer binder, and wherein one of the cured color conversion layers has a thickness less than an average diameter of the phosphor particles Five times. 22. The method of claim 21, wherein the heating involves heating the uncured color conversion layer to no more than three degrees Celsius. 23. The method of claim 21, wherein the polymeric binder is selected from the group consisting of ethyl cellulose and polyvinyl butyral. The method of claim 2, wherein the solvent is selected from the group consisting of butyl sulfonate phenol acetate and acenamyl alcohol. 25. The method of claim 2, wherein the mixing involves mixing phosphor particles in a ratio of not less than one-twentieth by weight and a solvent of not less than 80% by weight and the polymer binder. 26. The method of claim 21, wherein the mixing further involves mixing a plasticizer to form the homogeneous suspension of the filler particles. 27. The method of claim 21, wherein the mixing further involves mixing a surfactant to form the homogeneous suspension of the phosphor particles. 28. The method of claim 21, wherein the applying involves any of spraying, knife coating, and screen printing. 29. The method of claim 21, wherein the thickness of the cured color conversion layer is a single layer of the ones of the optical particles. 30. The method of claim 21, wherein one of the cured color conversion layers has a fill density greater than 50%. The method of claim 21, wherein the average diameter of the phosphor particles is between five microns and twenty microns. 32. The method of claim 21, wherein the surface is an interior surface of an LED-based illumination module. 161207.doc -6-
TW100149601A 2010-12-30 2011-12-29 LED-based illumination modules with thin color converting layers TW201236214A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42869110P 2010-12-30 2010-12-30
US13/328,974 US8425065B2 (en) 2010-12-30 2011-12-16 LED-based illumination modules with thin color converting layers

Publications (1)

Publication Number Publication Date
TW201236214A true TW201236214A (en) 2012-09-01

Family

ID=47222779

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149601A TW201236214A (en) 2010-12-30 2011-12-29 LED-based illumination modules with thin color converting layers

Country Status (1)

Country Link
TW (1) TW201236214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568262A (en) * 2020-04-29 2021-10-29 中强光电股份有限公司 Wavelength conversion device and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568262A (en) * 2020-04-29 2021-10-29 中强光电股份有限公司 Wavelength conversion device and method for manufacturing same

Similar Documents

Publication Publication Date Title
US9033531B2 (en) LED-based illumination modules with thin color converting layers
EP2748522B1 (en) Reduced phosphor lighting devices
CN102859259B (en) Pedestal-type light structures based on LED
CN103348476B (en) White LED light source with luminescence generated by light transducer
US9360188B2 (en) Remote phosphor element filled with transparent material and method for forming multisection optical elements
US8899767B2 (en) Grid structure on a transmissive layer of an LED-based illumination module
TWI614452B (en) Photoluminescence wavelength conversion components for solid-state light emitting devices and lamps
RU2457393C1 (en) Light-emitting diode source of white light with remote photoluminescent converter
WO2012142279A1 (en) Led-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion
TW201217702A (en) LED-based illumination modules with PTFE color converting surfaces
RU2475887C1 (en) Light-emitting diode source of white light having remote reflecting multilayer photoluminescent converter
TW201236214A (en) LED-based illumination modules with thin color converting layers
TW201144699A (en) High efficacy LED lamp with remote phosphor and diffuser configuration
TW201142215A (en) LED lamp with remote phosphor and diffuser configuration utilizing red emitters