TW201236183A - Group III-V solar cell package and manufacturing method thereof - Google Patents

Group III-V solar cell package and manufacturing method thereof Download PDF

Info

Publication number
TW201236183A
TW201236183A TW100105025A TW100105025A TW201236183A TW 201236183 A TW201236183 A TW 201236183A TW 100105025 A TW100105025 A TW 100105025A TW 100105025 A TW100105025 A TW 100105025A TW 201236183 A TW201236183 A TW 201236183A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
insulating layer
iii
forming
Prior art date
Application number
TW100105025A
Other languages
Chinese (zh)
Inventor
Yee-Lee Chen
Yu-Pei Huang
Wen-Bin Yang
Pei-Hsuan Wu
Original Assignee
Everphoton Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everphoton Energy Corp filed Critical Everphoton Energy Corp
Priority to TW100105025A priority Critical patent/TW201236183A/en
Publication of TW201236183A publication Critical patent/TW201236183A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a manufacturing method for Group III-V solar cell package, which includes the following steps: providing a solar cell having a first side and a second side opposite to each other; forming a first insulation layer on the first side of the solar cell, and forming a second insulation layer on the second side of the solar cell; forming a transparent layer on the first insulation layer, and forming a protective layer on the second insulation layer; and pressing the transparent layer and the protective layer to adhere the first insulation layer with the transparent layer and the solar cell, and to adhere the second insulation layer with the protective layer and the solar cell. Because the insulation layer, the transparent layer and the protective layer all possess the flexibility, the solar cell package may be formed with flexibility. The present invention also provides a solar cell package.

Description

201236183 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種電池封裝件及其製法,尤指一種 太陽能電池封裝件及其製法。 【先前技術】 目前太陽能電池之封裝目的主要係保護太陽能電池及 連結之焊線,使電池及焊線不受空氣中水份、其他化合物 之侵蝕及灰塵等的侵害,而可提升轉換效率,並延長封裝 φ 件之使用壽命。太陽能電池之電能產生係利用光線撞擊在 電池作用面,使自由電子脫離而產生電流;其中,具高透 光率之材料易使光通過,故封裝材之透光率極為重要。 請參閱第1圖,係習知太陽能電池封裝件1之示意圖。 其製作方法係首先將太陽能電池10固定於基板11上,且 藉由焊線100以相互電性連接,接著,於該基板11上形成 環氧樹脂系之封裝材12,再利用紫外線、紅外線或真空方 式除去氣泡及硬化該封裝材12,即完成封裝製程。 _ 惟,習知太陽能電池封裝件1因具有基板11而使其重 量過重及厚度過厚,且無法彎曲或彎曲率不佳,導致無法 滿足微小化之需求,且僅能作平板式的產品應用,而無法 用於弧線型產品。 再者,環氧樹脂系之封裝材12經長期使用後,其表面 易變黃變暗而影響光的穿透率,造成該太陽能電池10之轉 換效率不佳。 因此,如何克服前述現有技術之種種問題,實為業界 3 111734 201236183 急迫之需求。 【發明内容】 鑑於上述習知技術之缺失,本發明目的之一係在提供 一種具有可撓性之太陽能電池封裝件及其製法。 本發明之另一目的係在提供一種經薄化之太陽能電池 封裝件及其製法。 為達上述及其他目的,本發明揭露一種III-V族太陽能 電池封裝件之製法,係包括:提供一其上設有隔離層之基 板;於該隔離層上形成作用層單元,且該作用層單元具有 · 結合至該隔離層上之第一表面及相對之第二表面,並於該 第二表面上形成底層,又形成該作用層單元之材質係為 III-V族化合物;移除該基板;移除該隔離層,以露出該作 用層單元之第一表面;於該作用層單元之第一表面上形成 電極,再於該底層上形成一承載件,以形成具有相對第一 侧及第二側之太陽能電池;於該太陽能電池之第一側上形 成第一絕緣層,且於該太陽能電池之第二側形成第二絕緣 層;於該第一絕緣層上形成透光層,且於該第二絕緣層上 ® 形成防護層,使該第一及第二絕緣層分別夾置於該太陽能 電池與透光層之間、及太陽能電池與防護層之間;以及真 空加熱且壓合該透光層及防護層,以令該第一絕緣層黏接 該透光層與太陽能電池,且該第二絕緣層黏接該防護層與 太陽能電池。 所述之製法中,可使複數個該太陽能電池於形成該絕 緣層之前先進行串聯或並聯。 4 111734 201236183 所述之製法復包括於移除該隔離層之後,先形成承載 件於該底層上,再形成該電極。 所述之製法中,該透光層係含可撓材質或不可撓材 質,例如.四氟乙稀與六氟乙稀共聚物(Fluorinated ethylene propylene, FEP)屬可撓材質或玻璃屬不可撓材質。 所述之製法中,該第一絕緣層及第二絕緣層可為乙烯-乙酸乙烯自旨(ethylene-vinyl acetate, EVA)材質或環氧樹脂 (Epoxy)材質,亦可包含上述材質,但不侷限上述材質, # 凡可接合透光層及太陽能電池的材質皆適用,並藉此絕緣 層黏接透光層與太陽能電池。 本發明復揭露一種ιπ·ν族太陽能電池封裝件,係包 括:太陽能電池’係具有相對之第一側及第二側’其包括: 作用層單元,係具有相對之第一表面及第二表面,且形成 該作用層單元之材質係為ιπ_ν族化合物;電極,係設於該 作用層單元之第〜表面上;及底層,係設於該作用層單元 之第二表面上;第一絕緣層,係設於該太陽能電池之第一 側上;第二絕緣層,係設於該太陽能電池之第二侧上;透 光層,係設於該第一絕緣層上,使該第一絕緣層失置於該 太陽能電池與透光層之間;以及防護層,係設於該第二絕 緣層上,使該第二絕緣層夾置於該太陽能電池與防護層之 間。 所述之太陽能電池封裝件中,該太陽能電池係有複數 個’並以串聯或ϋ聯方式電性連接。 於另一實施例中,所述之太陽能電池復包括承載件, 5 111734 201236183 係設於該底層上,使該底層位於該作用層單元與該承載件 之間。 所述之太陽能電池封裝件中,該透光層係含可撓材質 或不可撓材質’例如:四氟乙烯與六氟乙烯共聚物 (Fluorinated ethylene propylene,FEP)屬可撓材質或玻璃屬 不可撓材質。 所述之太陽能電池封裝件中,該防護層含透光材質或 反光材質’例如:聚氟乙烯(卩〇1丫\^11丫1?1〇111*丨(16,?\^)或玻 璃為透光材質、t氣乙缚複合膜(Tedlar/Polyester/Tedlar, TPT)為反光材質。 由上可知,本發明III-V太陽能電池封裝件及其製法, 係於該太陽能電池之兩側上分別壓合絕緣層與透光層、及 絕緣層與防護層,以利用該絕緣層、透光層和防護層具有 可撓性,而達到具有可撓性之目的。 再者’利用該絕緣層及透光層具有高透明度的特性, 使該絕緣層與透光層經長期使用後均保持正常光穿透率, 俾該太陽能電池仍可維持正常轉換效率。 · 又本發明藉由移除該基板,以降低太陽能電池之厚 度,因而無需使用如習知技術中之基板,使本發明有效降 低整體結構之重量及厚度,可達到輕薄之目的。 【實施方式】 以下藉由特定的具體實施例說明本發明之實施方式, 熟悉此技藝之人士可由本說明書所揭示之内容輕易地瞭解 本發明之其他優點及功效。 6 Π1734 201236183 請參閱第2A至2C圖’係為本發明之my族 ▲ 電池封裝件2之製法 如第2A圖所示,首先,提供一具有相對之第—側 及第二側20b之太陽能電池20;於另一實施例中,如第2八, 圖所示,可將複數個太陽能電池20',藉由如焊線2〇〇之^ 電元件進行串聯,或亦可進行並聯電性連接(未表示於圖1 中)。 ^ 如第2Β圖所示,接著,於該太陽能電池2〇之笙, 〜乐一側 • 20a及第二侧20b上分別形成第一絕緣層21a及第二絕緣層 21b,形成該第一及第二絕緣層21a、21b之材料係為乙歸 乙酸乙烯酯(ethylene-vinyl acetate,EVA);利用 EVA 材的古 透明度之特性,可增加吸收光能之效率,以增加轉換電流 之流量。 如第2C圖所示,再於該第一絕緣層21a上形成四氟乙 烯與六氟乙烯共聚物(Fluorinated ethylene propylene,FEP) 擊層(透光層)22 ’使該第一絕緣層21a夾置於該太陽能電 池20與FEP層22之間,且所述之FEP係一般俗稱的鐵氟 龍(Teflon)。另於第二絕緣層21b上形成聚氟乙烯複合膜 (Tedlar/Polyester/Tedlar,TPT)(防護層)23,使該第二絕 緣層21b夾置於該太陽能電池20與TPT層23之間,且所 述之TPT係俗稱的背膜(Backsheet)。 最後’於真空下,進行加壓及加熱步驟,以壓合該太 陽能電池20之第一及第二側20a、20b上方之FEP層22 及TPT層23,使該第一絕緣層21a黏接該FEP層22與太 7 111734 201236183 陽能電池20,而該第二絕緣層21b黏接該TPT層23與太 陽能電池20。 本發明係於該太陽能電池20之兩側上壓合該第一絕 緣層21a及該FEP層22和該第二絕緣層21b及該ΤΡΤ層 23,以利用該EVA層、FEP層22、及TPT層23具有可撓 性,使該太陽能電池封裝件2具有可撓性,相較於習知技 術,本發明不僅能作平板式的產品應用,也能應用於弧線 型產品。 再者,利用該EVA層及FEP層22具有高透明度的特 籲 性、及該EVA層與該FEP層22兩者之結合性質,經長期 使用後,該EVA層與FEP層22均不會變黃或變暗,故該 EVA層與FEP層22均可保持光穿透率,使該太陽能電池 20之轉換效率維持正常狀態。 又本發明無需使用如昔知技術中之基板,有效降低整 體結構之重量及厚度,因而達到輕薄之目的。 另外,於該太陽能電池20之兩側上壓合薄膜結構,可 降低材料及製作成本。 ® 請參閱第3A至3E圖,係為所述之太陽能電池20之 製程。 如第3A圖所示,首先,提供一其上設有隔離層31之 基板30,於該隔離層31上形成作用層單元32,且該作用 層單元32具有結合至該隔離層31上之第一表面32a及相 對之第二表面32b,並於該第二表面32b上形成底層33, 且形成該底層33之材質係為高分子聚合物、金屬或聚合物 8 111734 201236183 與金屬之合成物,其中,該高分子聚合物(polymer)可例 如為Kapton,而該金屬可例如為金(Au )、銅(Cu )、铭(A1)、 鈦(Ti)、鉑(Pt)、銀(Ag)、鎢(W)或其它合金。再者, 該作用層單元32係具有至少一作用層320,或可為如圖所 示之兩層,亦可由單層或更多層構成作用層單元32,且形 成該作用層單元32之材質係為III-V族化合物。 如第3B圖所示,進行剝離(lift-off)製程,以移除該基 板30。 如第3C圖所示,移除該隔離層31,以露出該作用層 單元32之第一表面32a。本發明之太陽能電池20藉由移 除該基板30與隔離層31,有助於降低整體封裝件之重量 及厚度。 如第3D圖所示,於該作用層單元32之第一表面32a 上形成電極34。 如第3E圖所示,可將承載件35接置於該底層33上。 本發明藉由剝離製程,以將厚度最大的基板30移除, 而製成薄膜式太陽能電池20,有效降低其厚度,而滿足微 小化之需求。 本發明復提供一種太陽能電池封裝件2,係包括:具 有相對第一側20a及第二側20b之太陽能電池20、分別設 於該太陽能電池20之第一側20a及第二侧20b上之第一絕 緣層21a及第二絕緣層21b、設於該第一絕緣層21a上之 FEP層(透光層)22、以及設於該第二絕緣層21b上之TPT 層(防護層)23。 9 111734 201236183 所述之太陽能電池20之形式係為III-V族,係包括: 由III-V族化合物組成且具有相對之第一表面32a及第二表 面32b之作用層單元32、設於該作用層單元32之第一表 面32a上之電極34、以及設於該作用層單元32之第二表 面32b上之底層33。 於其中一實施例,所述之太陽能電池20復包括承載件 35,係設於該底層33上,使該底層33位於該作用層單元 32與該承載件35之間。 於另一實施例中,係可具有複數個太陽能電池20’,並 φ 以串聯或並聯方式電性連接。 综上所述,本發明III-V族太陽能電池封裝件及其製 法,係於該太陽能電池之第一側上壓合EVA層及FEP層、 及第二側上壓合EVA層及TPT層,以利用該EVA層、FEP 層及TPT層具有可撓性,使封裝件具有可撓性,且利用該 EVA層及FEP層具有高透明度的特性,該EVA層與FEP 層經長期使用後均保持正常光穿透率,使該太陽能電池仍 可維持正f轉換效率。 ^ 又本發明藉由EVA層及FEP層、及EVA層及TPT層 壓合太陽能電池,以降低整體結構之重量及厚度,有效達 到輕薄之目的。 上述實施例係用以例示性說明本發明之原理及其功 效,而非用於限制本發明。任何熟習此項技藝之人士均可 在不違背本發明之精神及範疇下,對上述實施例進行修 改。因此本發明之權利保護範圍,應如後述之申請專利範 10 111734 201236183 圍所列。 【圖式簡.單說明】 第1圖係為習知太陽能電池封裝件之剖視示意圖; 第2A至2C圖係為本發明之III-V族太陽能電池封裝 件之製法之剖面示意圖;第2A'圖係為第2A圖之另一實施 例;以及 第3A至3E圖係為本發明中所述之太陽能電池之製程 之剖面示意圖。 • 【主要元件符號說明】 1、2 太陽能電池封裝件 10、 20、20, 太陽能電池 100 、200 焊線 11、 30 基板 12 封裝材 20a 第一側 20b 第二侧 21a 第一絕緣層 21b 第二絕緣層 22 四氟乙烯與六氟乙烯共聚物(FEP)層 23 聚氟乙烯複合膜(TPT)層 31 隔離層 32 作用層單元 32a 第一表面 32b 第二表面 11 111734 201236183 320 作用層 33 底層 34 電極 35 承載件201236183 VI. Description of the Invention: [Technical Field] The present invention relates to a battery package and a method of manufacturing the same, and more particularly to a solar battery package and a method of manufacturing the same. [Prior Art] At present, the packaging purpose of the solar cell is mainly to protect the solar cell and the connected bonding wire, so that the battery and the bonding wire are not damaged by moisture in the air, other compounds, dust, etc., and the conversion efficiency can be improved, and Extend the life of the package φ. The electric energy generation of the solar cell utilizes light to impinge on the active surface of the battery, causing the free electrons to be detached to generate electric current; among them, the material having high transmittance is easy to pass light, so the transmittance of the packaging material is extremely important. Please refer to FIG. 1 , which is a schematic diagram of a conventional solar cell package 1 . In the manufacturing method, the solar cell 10 is first fixed on the substrate 11 and electrically connected to each other by the bonding wire 100. Then, the epoxy resin-based packaging material 12 is formed on the substrate 11, and ultraviolet rays, infrared rays or The encapsulation process is completed by removing bubbles and hardening the package 12 in a vacuum manner. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Can not be used for arc type products. Further, after the epoxy resin-based package material 12 is used for a long period of time, the surface thereof tends to become yellowish and dark, which affects the transmittance of light, resulting in poor conversion efficiency of the solar cell 10. Therefore, how to overcome the above problems of the prior art is an urgent need of the industry 3 111734 201236183. SUMMARY OF THE INVENTION In view of the above-described deficiencies of the prior art, one of the objects of the present invention is to provide a solar cell package having flexibility and a method of fabricating the same. Another object of the present invention is to provide a thinned solar cell package and a method of fabricating the same. To achieve the above and other objects, the present invention discloses a method for fabricating a III-V solar cell package, comprising: providing a substrate having an isolation layer thereon; forming an active layer unit on the isolation layer, and the active layer The unit has a first surface and an opposite second surface bonded to the isolation layer, and a bottom layer is formed on the second surface, and the material forming the active layer unit is a III-V compound; the substrate is removed Removing the isolation layer to expose the first surface of the active layer unit; forming an electrode on the first surface of the active layer unit, and forming a carrier on the bottom layer to form the opposite first side and the first a solar cell on the two sides; a first insulating layer is formed on the first side of the solar cell, and a second insulating layer is formed on the second side of the solar cell; a light transmitting layer is formed on the first insulating layer, and Forming a protective layer on the second insulating layer, so that the first and second insulating layers are respectively sandwiched between the solar cell and the light transmissive layer, and between the solar cell and the protective layer; and vacuum heating and pressing The transparent layer and the protective layer to the first insulating layer so that the transparent bonding layer and the solar cell, and bonding the second insulating layer and the protective layer of the solar cell. In the above method, a plurality of the solar cells can be connected in series or in parallel before forming the insulating layer. 4 111734 201236183 The method described above includes removing the spacer layer, forming a carrier on the underlayer, and forming the electrode. In the method of manufacturing, the light transmissive layer is made of a flexible material or a non-flexible material, for example, a tetragonal ethylene and a hexafluoroethylene (FEP) is a flexible material or a glass non-flexible material. . In the above method, the first insulating layer and the second insulating layer may be made of ethylene-vinyl acetate (EVA) material or epoxy resin (Epoxy) material, and may also include the above materials, but not Limiting the above materials, #All materials that can be used to join the light-transmitting layer and the solar cell are applicable, and the insulating layer is used to bond the light-transmitting layer and the solar cell. The present invention discloses an ιπ·ν family solar cell package, comprising: a solar cell having a first side and a second side opposite to each other, comprising: an active layer unit having opposite first and second surfaces And the material forming the active layer unit is an ιπ_ν compound; the electrode is disposed on the first surface of the active layer unit; and the bottom layer is disposed on the second surface of the active layer unit; the first insulating layer Is disposed on the first side of the solar cell; the second insulating layer is disposed on the second side of the solar cell; and the light transmissive layer is disposed on the first insulating layer to make the first insulating layer Loss between the solar cell and the light transmissive layer; and a protective layer disposed on the second insulating layer such that the second insulating layer is sandwiched between the solar cell and the protective layer. In the solar cell package, the solar cell has a plurality of 'and is electrically connected in series or in a cascading manner. In another embodiment, the solar cell comprises a carrier, and 5 111734 201236183 is disposed on the bottom layer such that the bottom layer is between the active layer unit and the carrier. In the solar cell package, the light transmissive layer is made of a flexible material or a non-flexible material. For example, a tetragonal ethylene and a hexafluoroethylene copolymer (FEP) is a flexible material or a glass is inflexible. Material. In the solar cell package, the protective layer comprises a light transmissive material or a reflective material 'for example: polyvinyl fluoride (卩〇1丫\^11丫1?1〇111*丨(16,??^) or glass) The light-transmitting material and the Tedlar/Polyester/Tedlar (TPT) are reflective materials. It can be seen from the above that the III-V solar cell package of the present invention and the manufacturing method thereof are on both sides of the solar cell. The insulating layer and the light transmissive layer, and the insulating layer and the protective layer are respectively pressed to utilize the insulating layer, the light transmissive layer and the protective layer to have flexibility, thereby achieving flexibility. Further, the insulating layer is utilized. And the light transmissive layer has high transparency, so that the insulating layer and the light transmissive layer maintain normal light transmittance after long-term use, and the solar cell can maintain normal conversion efficiency. The substrate is used to reduce the thickness of the solar cell, so that it is not necessary to use a substrate as in the prior art, so that the present invention can effectively reduce the weight and thickness of the overall structure, and can achieve the purpose of thinness and lightness. [Embodiment] The following is a specific embodiment. Illustrating the invention The embodiments of the present invention can be easily understood by those skilled in the art from the disclosure of the present specification. 6 Π1734 201236183 Please refer to Figures 2A to 2C for the my family of the invention ▲ Battery package 2 The method of manufacturing is as shown in FIG. 2A. First, a solar cell 20 having a first side and a second side 20b is provided. In another embodiment, as shown in FIG. The battery 20' is connected in series by an electric component such as a bonding wire, or may be electrically connected in parallel (not shown in Fig. 1). ^ As shown in Fig. 2, next to the solar cell After the second insulating layer 21a and the second insulating layer 21b are formed on the first side and the second side 20b, the material of the first and second insulating layers 21a and 21b is made of acetic acid. Ethylene-vinyl acetate (EVA); utilizing the characteristics of the ancient transparency of the EVA material, the efficiency of absorbing light energy can be increased to increase the flow rate of the switching current. As shown in FIG. 2C, the first insulating layer 21a is further Forming tetrafluoroethylene with hexafluoroethylene Fluorinated ethylene propylene (FEP) layered (transmissive layer) 22' sandwiches the first insulating layer 21a between the solar cell 20 and the FEP layer 22, and the FEP is commonly known as Teflon. (Teflon). A Teflar/Polyester/Tedlar (TPT) (protective layer) 23 is formed on the second insulating layer 21b, and the second insulating layer 21b is sandwiched between the solar cell 20 and the TPT layer. Between 23, and the TPT is commonly known as the Backsheet. Finally, under vacuum, a pressurization and heating step is performed to press the FEP layer 22 and the TPT layer 23 over the first and second sides 20a, 20b of the solar cell 20 to bond the first insulating layer 21a. The FEP layer 22 and the solar cell 20 of the 7111734 201236183, and the second insulating layer 21b adhere to the TPT layer 23 and the solar cell 20. The present invention presses the first insulating layer 21a and the FEP layer 22 and the second insulating layer 21b and the germanium layer 23 on both sides of the solar cell 20 to utilize the EVA layer, the FEP layer 22, and the TPT. The layer 23 has flexibility to make the solar cell package 2 flexible, and the present invention can be applied not only to a flat product application but also to an arc type product as compared with the prior art. Furthermore, the EVA layer and the FEP layer 22 have a high transparency and a combination of the EVA layer and the FEP layer 22, and the EVA layer and the FEP layer 22 do not change after long-term use. Yellow or darkened, so that both the EVA layer and the FEP layer 22 can maintain light transmittance, so that the conversion efficiency of the solar cell 20 is maintained in a normal state. Further, the present invention does not require the use of a substrate as in the prior art, and effectively reduces the weight and thickness of the entire structure, thereby achieving the purpose of being thin. Further, by pressing the film structure on both sides of the solar cell 20, the material and the manufacturing cost can be reduced. ® See Figures 3A through 3E for the process of the solar cell 20 described. As shown in FIG. 3A, first, a substrate 30 having an isolation layer 31 thereon is provided, and an active layer unit 32 is formed on the isolation layer 31, and the active layer unit 32 has a structure bonded to the isolation layer 31. a surface 32a and an opposite second surface 32b, and a bottom layer 33 is formed on the second surface 32b, and the material of the bottom layer 33 is formed of a polymer, metal or polymer 8 111734 201236183 and a metal composition, Wherein, the polymer may be, for example, Kapton, and the metal may be, for example, gold (Au), copper (Cu), Ming (A1), titanium (Ti), platinum (Pt), silver (Ag). , tungsten (W) or other alloys. Furthermore, the active layer unit 32 has at least one active layer 320, or may be two layers as shown in the figure, or may be composed of a single layer or more layers, and form the material of the active layer unit 32. It is a III-V compound. As shown in Fig. 3B, a lift-off process is performed to remove the substrate 30. As shown in Fig. 3C, the spacer layer 31 is removed to expose the first surface 32a of the active layer unit 32. The solar cell 20 of the present invention helps to reduce the weight and thickness of the overall package by removing the substrate 30 and the spacer layer 31. As shown in Fig. 3D, an electrode 34 is formed on the first surface 32a of the active layer unit 32. As shown in Fig. 3E, the carrier 35 can be attached to the bottom layer 33. In the present invention, the thin film type solar cell 20 is formed by removing the substrate 30 having the largest thickness by a lift-off process, thereby effectively reducing the thickness thereof, and meeting the demand for miniaturization. The present invention provides a solar cell package 2, comprising: a solar cell 20 having a first side 20a and a second side 20b, respectively disposed on the first side 20a and the second side 20b of the solar cell 20. An insulating layer 21a and a second insulating layer 21b, an FEP layer (light transmitting layer) 22 provided on the first insulating layer 21a, and a TPT layer (protective layer) 23 provided on the second insulating layer 21b. 9 111734 201236183 The solar cell 20 is in the form of a III-V family, comprising: an active layer unit 32 composed of a III-V compound and having a first surface 32a and a second surface 32b opposite thereto. An electrode 34 on the first surface 32a of the active layer unit 32 and a bottom layer 33 disposed on the second surface 32b of the active layer unit 32. In one embodiment, the solar cell 20 further includes a carrier 35 disposed on the bottom layer 33 such that the bottom layer 33 is located between the active layer unit 32 and the carrier 35. In another embodiment, there may be a plurality of solar cells 20', and φ are electrically connected in series or in parallel. In summary, the III-V solar cell package of the present invention is prepared by pressing the EVA layer and the FEP layer on the first side of the solar cell, and pressing the EVA layer and the TPT layer on the second side. In order to utilize the EVA layer, the FEP layer and the TPT layer to have flexibility, the package has flexibility, and the EVA layer and the FEP layer have high transparency, and the EVA layer and the FEP layer are maintained after long-term use. The normal light transmittance allows the solar cell to maintain positive f-conversion efficiency. ^ In the present invention, the solar cell is pressed by the EVA layer and the FEP layer, and the EVA layer and the TPT layer to reduce the weight and thickness of the overall structure, thereby effectively achieving the purpose of thinness. The above-described embodiments are intended to illustrate the principles of the invention and its advantages, and are not intended to limit the invention. Any of the above-described embodiments can be modified by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as described in the patent application No. 10 111734 201236183. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a conventional solar cell package; FIGS. 2A to 2C are cross-sectional views showing a method of manufacturing a III-V solar cell package of the present invention; The figure is another embodiment of FIG. 2A; and FIGS. 3A to 3E are schematic cross-sectional views showing the process of the solar cell described in the present invention. • [Main component symbol description] 1, 2 solar cell package 10, 20, 20, solar cell 100, 200 bonding wire 11, 30 substrate 12 package material 20a first side 20b second side 21a first insulating layer 21b second Insulating layer 22 Tetrafluoroethylene and hexafluoroethylene copolymer (FEP) layer 23 Polyvinyl fluoride composite film (TPT) layer 31 Separating layer 32 Working layer unit 32a First surface 32b Second surface 11 111734 201236183 320 Working layer 33 Bottom layer 34 Electrode 35 carrier

Claims (1)

201236183 七、申請專利範圍: 1. 一種III-V族太陽能電池封裝件之製法,係包括: 提供一其上設有隔離層之基板; 於該隔離層上形成作用層單元,且該作用層單元具 有結合至軸離層上之第—表面及㈣之第二表面,並 於該第二表面上形成底層’又形成該作用層單元之材質 係為III-V族化合物; 移除該隔離層,以露出該作用層單元之第-表面; 於該作用層單元之第—表面上形成電極,再於該底 層上形成—承載件,以形成具有相對第—側及第二側之 太陽能電池; 》 ▲=該太陽能電池之第—側上形成第—絕緣層,且於 該太陽能電池之第二側上形成第二絕緣層; 於該第-絕緣層上形成透光層,且於該第二絕緣 ==層且Γί第一絕緣層夾置於該太陽能電池 防護層“二及 層爽置於該太陽能電池與 真空加熱且壓合魏^層及防制,以令該第 緣層黏接該透光層與太陽能電池,且 接 該防護層與域能電池。 缘層黏接 2. ΐΙΞΓΓΓ1項所述之ΙΠ·ν族太陽能電池封裝 第一絕綾=Γ該太陽能電池財複數個,於形成該 、緣層及第二絕緣層之前’先進行串聯或並聯。 111734 1 201236183 3.如申請專利範圍第1項所述之III-V族太陽能電池封裝 件之製法,其中,形成該透光層之材質係為四氟乙烯與 /、氟乙稀共聚物(Fluorinated ethylene propylene,FEP) 或玻璃。 4·如申請專利範圍第1項所述之ιιι-ν族太陽能電池封裝 件之製法’其中,該透光層係含可撓材質或不可撓材質。 5·如申請專利範圍第1項所述之m_v族太陽能電池封裝 件之製法,其中,形成該第一絕緣層及第二絕緣層之材 質係為乙烯-乙酸乙烯酉旨(ethylene-vinyl acetate, EVA)材 φ 質或環氧樹脂(Epoxy)材質。 6· 一種III-V族太陽能電池封裝件,係包括: 太陽能電池,係具有相對之第一側及第二側,且包 括: 作用層單元,係具有相對之第一表面及第二表 面,且形成該作用層單元之材質係為III-V族化合 物; 電極,係設於於該作用層單元之第一表面上;鲁 及 底層,係設於該作用層單元之第二表面上; 第一絕緣層,係設於該太陽能電池之第一側上; 第二絕緣層,係設於該太陽能電池之第二側上; 透光層,係設於該第一絕緣層上,使該第一絕緣 層夾置於該太陽能電池與透光層之間;以及 防護層,係設於該第二絕緣層上,使該第二絕緣層 2 111734 201236183 夾置於該太陽能電池與防護層之間。 7. 如申請專利範圍第6項所述之III-V族太陽能電池封裝 件’其中,該太陽能電池係有複數個,並以串聯或並聯 方式電性連接。 8. 如申請專利範圍第6項所述之III-V族太陽能電池封裝 件’其中,形成該透光層之材質係為四氟乙烯與六氟乙 烯共聚物(Fluorinated ethylene propylene, FEP)或玻璃。 9·如申請專利範圍第6項所述之III-V族太陽能電池封裝 •件’其中,該透光層係含可撓材質或不可撓材質。 10. 如申請專利範圍第6項所述之III-V族太陽能電池封裝 件’其中,形成該第一絕緣層及第二絕緣層之材質係為 乙埽-乙酸乙烯醋(ethylene-vinyl acetate,EVA)材質或環 氣樹脂(Epoxy)材質。 11. 如申請專利範圍第6項所述之III-V族太陽能電池封裝 件’其中,形成該防護層之材質含透光材質或反光材質。 φ 12·如申請專利範圍第6項所述之III-V族太陽能電池 封裴件,其中,形成該防護層之材質為聚氟乙烯 (Poly Vinyl Flouride,PVF)、聚氟乙烯複合膜 (Tedlar/Polyester/Tedlar,TPT)材質或玻璃。 3 111734201236183 VII. Patent application scope: 1. A method for manufacturing a III-V solar cell package, comprising: providing a substrate having an isolation layer thereon; forming an active layer unit on the isolation layer, and the active layer unit Having a first surface bonded to the first surface of the shaft separation layer and (4), and forming a bottom layer on the second surface, and forming a material of the active layer unit is a III-V compound; removing the isolation layer, The surface of the active layer unit is exposed; an electrode is formed on the first surface of the active layer unit, and a carrier is formed on the bottom layer to form a solar cell having a first side and a second side; ▲= forming a first insulating layer on the first side of the solar cell, and forming a second insulating layer on the second side of the solar cell; forming a light transmissive layer on the first insulating layer, and the second insulating layer == layer and Γί the first insulating layer is sandwiched between the protective layer of the solar cell, “the second layer is placed on the solar cell and vacuum-heated and pressed and layered to prevent the first edge layer from bonding. Light layer and The solar cell is connected to the protective layer and the domain energy battery. The edge layer is bonded. 2. The ΙΠ·ν family solar cell package described in item 1 is the first absolute 绫 = Γ the solar cell is financially complex, forming the edge The method of manufacturing the III-V solar cell package according to claim 1, wherein the material of the light transmissive layer is formed by the method of manufacturing the III-V solar cell package according to claim 1 of the invention. It is a tetrafluoroethylene and/or a fluoroethylene copolymer (FEP) or a glass. 4. The method for preparing a ιιι-ν solar cell package according to claim 1 of the patent application, wherein the light transmission The method of manufacturing the m_v solar cell package according to claim 1, wherein the material of the first insulating layer and the second insulating layer is ethylene. - Ethylene acetate (EVA) material or epoxy resin (Epoxy) material. 6. A III-V solar cell package, including: solar cells, with relative a side layer and a second side, and comprising: an active layer unit having a first surface and a second surface opposite to each other, and the material forming the active layer unit is a III-V compound; the electrode is disposed in the function a first surface of the layer unit; a bottom layer disposed on the second surface of the active layer unit; a first insulating layer disposed on the first side of the solar cell; and a second insulating layer disposed on the first surface a second side of the solar cell; a light transmissive layer disposed on the first insulating layer, the first insulating layer being sandwiched between the solar cell and the light transmissive layer; and a protective layer disposed on the On the second insulating layer, the second insulating layer 2 111734 201236183 is sandwiched between the solar cell and the protective layer. 7. The III-V solar cell package as claimed in claim 6, wherein the solar cell has a plurality of solar cells and is electrically connected in series or in parallel. 8. The III-V solar cell package according to claim 6, wherein the material of the light transmissive layer is tetrafluoroethylene and hexafluoroethylene (FEP) or glass. . 9. The III-V solar cell package according to claim 6, wherein the light transmissive layer comprises a flexible material or a non-flexible material. 10. The III-V solar cell package according to claim 6, wherein the first insulating layer and the second insulating layer are made of ethylene-vinyl acetate. EVA) material or epoxy resin (Epoxy). 11. The III-V solar cell package as described in claim 6 wherein the material forming the protective layer comprises a light transmissive material or a reflective material. Φ 12· The III-V solar cell sealing device according to claim 6, wherein the protective layer is made of polyvinyl Vinyl Flouride (PVF) and polyvinyl fluoride composite film (Tedlar). /Polyester/Tedlar, TPT) Material or glass. 3 111734
TW100105025A 2011-02-16 2011-02-16 Group III-V solar cell package and manufacturing method thereof TW201236183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105025A TW201236183A (en) 2011-02-16 2011-02-16 Group III-V solar cell package and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105025A TW201236183A (en) 2011-02-16 2011-02-16 Group III-V solar cell package and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201236183A true TW201236183A (en) 2012-09-01

Family

ID=47222775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105025A TW201236183A (en) 2011-02-16 2011-02-16 Group III-V solar cell package and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201236183A (en)

Similar Documents

Publication Publication Date Title
JP6586080B2 (en) Solar cell module and manufacturing method thereof
US9825188B2 (en) Solar cell module
JP2008135654A (en) Solar battery module
CN103022201A (en) Crystal silicon solar battery module and manufacturing method thereof
WO2014190608A1 (en) Solar cell assembly without welding strip and preparation method therefor
JP2010272725A (en) Thin film solar cell module and method for manufacturing the same
JP5089456B2 (en) Crimping apparatus and solar cell module manufacturing method
WO2013061757A1 (en) Solar cell module having double glass structure
CN113178501A (en) Flexible photovoltaic module and preparation method thereof
JP2014057059A (en) Solar cell module and method of manufacturing solar cell module
WO2015008646A1 (en) Conductive adhesive tape, conductive adhesive tape connection method, solar cell module, and production method therefor
CN202373593U (en) Crystal silicon solar cell module
JP2012028806A (en) Solar cell module
WO2013014972A1 (en) Photovoltaic module
JP2012253062A (en) Solar cell module and manufacturing method of the same
WO2015098872A1 (en) I-v measurement method for solar cell, i-v measurement device for solar cell, manufacturing method for solar cell, manufacturing method for solar cell module, and solar cell module
WO2014050193A1 (en) Photoelectric conversion module
US20140202528A1 (en) Thin film solar cell and method of manufacturing the same
TW201236183A (en) Group III-V solar cell package and manufacturing method thereof
TWI612684B (en) Solar panel module and method for fabricating the same
US20120260971A1 (en) Iii-v solar cell package and method of fabricating the same
JP6684278B2 (en) Solar cell module
JP2015233096A (en) Solar battery unit and method for manufacturing solar battery unit
JP2011210766A (en) Bonding method for solar cell, and bonded type solar cell device
EP2515349A1 (en) III-V solar cell package and method of fabricating the same