201236047 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種電子束微影方法、電子束微影词月艮 控制方法及系統,詳而言之,係涉及一種利用定點控制技 術之電子束微影方法、電子束微影伺服控制方法及系統。 【先前技術】 奈米微影(nanolithography)技術為專門用來製造應用 於現代電子工業及積體電路製程中微小圖形的技術。根據 摩爾定律(Moor’s Law),一積體電路(integrated circuit)上< 佈置的電晶體(transistor)約每兩年呈雙倍成長,此成長遂 率透過計算機硬體的發展更呈指數性的成長。 為因應未來市場的需求,必須使用奈米光刻技術製造 奈米結構。目前使用奈米光刻技術配合極短波長已能製造 出小於30奈米(nm)的微影圖形,亦逐漸發展出其他奈米光 刻技術’如.鄰近 X 光微影(pr〇ximity X_ray lith〇graphy, PXL)極紫外光微影(Extreme Ultraviolet Lithography, EUV)、探針掃描微景MScanning Probe Lithography,SPL)、 電子束微影(Electron Beam Lithography, EBL)等。其中,電 子束微影由於操作簡單、波長極短,且可避免繞射造成的 圖形解析度影響,因而被廣泛應用於光罩製作、小體積的 半導體結構之研究與開發上。此外,電子束微影系統不但 具有直寫性質’且能製作高解析度的微影圖形。藉由電子 束微影系統的光點尺寸(sp〇t size)能達到低成本、任意曝光 形狀的次奈米圖形之製作。 4 111902 .201236047 然而,電子束雖具有較高的解析度,但由於其曝光範 圍(亦稱為曝光場(Frame of View,FOV))過小,導致生產率 僅約為一般光學曝光的十萬分之一。常見的電子束微影方 法係將晶圓片放於知描式電子顯微鏡(scanning electron microscope, SEM)的載台上’接著移動載台以使其對準電 子搶,曝光時同步移動該載台以進行週期性的排列、曝光 而產生週期性的圖形。此種應用載台的動態配合電子束開 關來產生欲得的圖形,對載台的運動性能要求較高,載台 • 的誤差及載台與電子槍開關之同步性會影響圖形的精確 性。 另外’習知電子束微影方法或系統之載台的位置或速 度的回授控制不完善,亦會產生擴大效應(broadening effect)、鄰近效應(proximity effect)及圖形失真(pattern distortion),降低了電子束微影製造高精度半導體元件的效 率。 【發明内容】 為解決前述習知技術之種種問題,本發明提出電子束 微影方法、電子束微影伺服控制方法及系統方法,可進行 曝寫的定點控制及加強回授控制。 本發明所提出之一種電子束微影方法,係將由一圖形 所分割的複數個子圖形依序曝寫至基材,包括以下步驟: (1)設定各該子圖形的曝寫位置;(2)驅動一定位平台以將設 置於其上的該基材移動至一設定的曝寫位置;(3)量測該基 材的實際位置,判斷該基材的實際位置與該設定的曝寫位s 111902 201236047 置之誤差是否小於一設定值,當該基材的實際位置與該設 定的曝寫位置之誤差大於或等於該設定值時,進至步驟 (4);當該基材的實際位置與該設定的曝寫位置之誤差小於 該設定值時,進至步驟(5) ; (4)調整該定位平台的位置,以 補償該基材的實際位置與該設定的曝寫位置之誤差,接著 返回步驟(3); (5)令電子束將對應該設定的曝寫位置之子圖 形曝寫至該基材上;以及(6)更新該設定的曝寫位置,並返 回步驟(2),直到曝寫至該基材上的複數個子圖形接合成該 圖形為止。 籲 上述之步驟(5)包括以下步驟:(5-1)微調該定位平台的 位置,以補償該基材的實際位置與該設定的曝寫位置之誤 差;(5-2)量測該基材的實際位置,判斷該基材的實際位置 與該設定的曝寫位置之誤差是否小於該設定值,當該基材 的實際位置與該設定的曝寫位置之誤差大於或等於該設定 值時,進至步驟(5-3);當該基材的實際位置與該設定的曝 寫位置之誤差小於該設定值時,進至步驟(6);以及(5-3) 粗調該定位平台的位置,以補償該基材的實際位置與該設 ® 定的曝寫位置之誤差,接著返回步驟(3)。 其次,本發明所提出之一種電子束微影伺服控制系 統,包括:基材;定位平台,係承載該基材,該定位平台 依序移動至設定的曝寫位置以供一電子束將由一圖形所分 割的複數個子圖形依序曝寫至該基材上;全域位置感測 器,係量測並輸出該基材的移動速度及/或實際位置;伺服 器,係供預先輸入該複數個子圖形的圖形及曝寫位置,並 6 111902 201236047 接收該全域位置感測器所輸出的實際位置,以依據該基材 的實際位置與該設定的曝寫位置之誤差發出控制信號;以 及控制器,係與耦接至該定位平台的驅動器耦接,該控制 器接收該伺服器所發出的控制信號而令該驅動器驅動該定 位平台,以補償該誤差並對該定位平台進行回授控制,俾 使承載該基材的定位平台依序移動至該設定的曝寫位置且 該電子束將該複數個子圖形依序曝寫在該基材上並接合為 該圖形。 • 所述之該定位平台包括承載該基材的微動平台及承 載該微動平台的移動平台,該驅動器包括耦接該微動平台 的微調驅動器和耦接該移動平台的粗調驅動器。該控制器 包括耦接該微動驅動器的微調控制器及耦接該粗調驅動器 的粗調控制器。 復次,本發明所提供之一種電子束微影伺服控制方 法,係將由一圖形所分割的複數個子圖形依序曝寫至基 $ 材,包括以下步驟:(1)設定各該子圖形的曝寫位置並將各 該子圖形的圖形及曝寫位置輸入一伺服器;(2)驅動一定位 平台,以將設置於其上的該基材移動至設定的曝寫位置; (3)令一全域位置感測器量測該基材的速度及/或實際位置 並輸出至該伺服器;(4)令該伺服器判斷該基材的實際位置 與該設定的曝寫位置之誤差是否小於一設定值,當該基材 的實際位置與該曝寫位置的誤差大於或等於該設定值時, 進至步驟(5);當該基材的實際位置與該曝寫位置的誤差小 於該設定值時,進至步驟(6) ; (5)該伺服器輸出控制信號至 7 111902 201236047 控制器,以令驅動器對該定位平台進行回授控制,以驅動 該定位平台補償該誤差,接著返回步驟(3); (6)令電子束將 該設定的曝寫位置所對應的子圖形曝寫至該基材上;以及 (7)更新該設定的曝寫位置,並返回步驟(2),直到曝寫至基 材上的複數個子圖形接合成該圖形為止。 上述之步驟(5)包括以下步驟:(5-1)微調控制器令微調 驅動器驅動微動平台以補償該誤差,並對該微動平台進行 回授控制;(5-2)令該全域位置感測器量測該基材的速度及 /或實際位置並輸出至該伺服器;(5-3)令該伺服器判斷該基 鲁 材的實際位置與該設定的曝寫位置之誤差是否小於該設定 值,當該基材的實際位置與該曝寫位置的誤差大於或等於 該設定值時,進至步驟(5-3);當該基材的實際位置與該曝 寫位置的誤差小於該設定值時,進至步驟(6);以及(5-4) ^ 粗調控制器令粗調驅動器驅動移動平台以補償該誤差,並 對該移動平台進行回授控制,接著返回步驟(3)。 相較於習知技術,本發明可進行全曝光範圍之位置量 測及其回授,配合定位平台以電子束曝寫出任意圖形,達 到大面積高解析度連續圖形的曝寫,能提高定位精度、圖 形解析度,進而提昇電子束微影製造高精度半導體元件的 效率。 【實施方式】 以下藉由特定的具體實施形態說明本發明之實施方 式,熟悉此技術之人士可由本說明書所揭示之内容輕易地 了解本發明之其他優點與功效,亦可藉由其他不同的具體 8 111902 201236047 實施形態加以施行或應用。 請參閱第1A圖,本發明之電子束微影方法包括步驟 S11至S17。於步驟S11中,設定各子圖形的曝寫位置。 首先根據一圖形的局部複雜度、局部關鍵尺寸或電子束最 大單次曝寫範圍(field of view)決定該圖形的切割方式,再 將該圖形分割成複數個子圖形並設定各該子圖形的曝寫位 置,即曝寫座標。接著進至步驟S12。 於步驟S12中,驅動一定位平台以將設置於其上的該 • 基材移動至設定的曝寫位置。具體來說,先從該複數個子 圖形中選擇其中一子圖形且設定所選擇的子圖形的曝寫座 標作為設定的曝寫位置,再令承載有基材的定位平台移至 該設定的曝寫位置。接著進至步驟S13。 於步驟S13中,量測該基材的實際位置。接著於步驟 S14中,判斷該基材的實際位置與該設定的曝寫位置之誤 差是否小於一設定值,即所謂的合理範圍,所述的合理範 圍可按曝寫線寬或曝寫面積而決定。若該誤差沒有小於該 設定值時,進至步驟S15 ;若該誤差小於該設定值時,進 至步驟S16。 承前所述,若該定位平台的實際位置與該設定的曝寫 位置之誤差大於或等於該設定值時,則於步驟S15中調整 該定位平台,以補償該基材的實際位置與該設定的目標位 置之誤差,並返回步驟S13,以再次量測該基材的實際位 置。 另一方面,若該基材的實際位置與該設定的曝寫位置 111902 201236047 之誤差小於該設定值時,則於步驟S16中驅動電子束進朽 曝寫,即開啟電子束快門(blanker)發射電子束,而將步^ S12 t定位平台所需移動到的曝寫位置之對應子圖形曝寫 至該基材上。接著進至步驟S17中。 於步驟S17中,更新該設定的曝寫位置,所述之更新 該設定的曝寫位置係指將該複數個子圖形中鄰近先前電子 束所曝寫的子圖形的曝寫位置之子圖形的曝寫位置設定為 下一個的設定㈣寫位置,並返回步驟犯以令該定位平 台移動至設定的曝寫位置。如此重複步驟17,直至 ^序曝寫至該基材上的複數個子圖形接合成為該圖形為 其次’關於前述步驟S15調整定位平台的位置以補 該誤差,還可進—步地包括步驟S151至步驟⑽。 =所示。於步驟S151中微調該定位平台的位置 该决差,接著於步驟S152中量測該基材的實際位置 =驟S⑸中判斷該基材的實際位置與該衫的目摔位 值’若該誤差沒有小於該設定 則進至步驟S154 ;若該誤差小於該設定值,則 署6開始進行曝寫。於步驟S154中,粗調該定位平I ^立置以補償該誤差,並返回步驟S13,以再 ^ 位平台的實際位置。 里巧该疋 Μ之步驟S16電子束進行曝寫的步驟係 子束施加偏向電壓的方法,』 了落電 寫位置之子圖形曝寫至:基:上一將對應該設定的曝 111902 201236047 /又於本實細形悲中,該圖形可為點陣圖形。於將該 圖形轉換成點陣圖形時,可考慮鄰近效應(p㈣崎沿㈣ 而對圖形作修正。於前述步驟叫中,可包括控制承載基 材的定位平台’相步階或線性移動方式配合電子束快門 進行切換而達成點陣圖形的曝寫,且於點陣圖形曝寫的過 私中無需對電子束施加偏向電M,即係以定電子束進行曝 寫。如—此重複前述步驟S11 i 17,直至依序曝寫至該基材 上的複數個子圖形接合成為該圖形為止。201236047 VI. Description of the Invention: [Technical Field] The present invention relates to an electron beam lithography method, an electron beam lithography word 艮 control method and system, and more particularly, to an electronic using fixed point control technology Beam lithography method, electron beam lithography servo control method and system. [Prior Art] Nanolithography is a technology specifically designed to manufacture small patterns used in the modern electronics industry and integrated circuit processes. According to Moor's Law, the transistor disposed on an integrated circuit doubles approximately every two years, and this growth rate is more exponential through the development of computer hardware. growing up. In order to meet the needs of the future market, nanostructures must be fabricated using nanolithography. At present, nanolithography technology can be used to produce lithography patterns of less than 30 nanometers (nm) with very short wavelengths, and other nanolithography techniques have been developed. For example, adjacent X-ray lithography (pr〇ximity X_ray) Lith〇graphy, PXL) Extreme Ultraviolet Lithography (EUV), MScanning Probe Lithography (SPL), Electron Beam Lithography (EBL), etc. Among them, the electron beam lithography is widely used in the research and development of reticle fabrication and small-volume semiconductor structures due to its simple operation, extremely short wavelength, and the influence of pattern resolution caused by diffraction. In addition, the electron beam lithography system not only has a write-through property but also enables high-resolution lithography. The sub-nano pattern of a low-cost, arbitrary-exposure shape can be produced by the sp〇t size of the electron beam lithography system. 4 111902 .201236047 However, although the electron beam has a high resolution, its exposure range (also known as the Frame of View (FOV)) is too small, resulting in a productivity of only about 100,000 points for general optical exposure. One. A common electron beam lithography method is to place a wafer on a stage of a scanning electron microscope (SEM). Then move the stage to align it with the electron, and move the stage synchronously during exposure. A periodic pattern is generated by periodically arranging and exposing. The dynamic loading of the application stage with the electron beam switch produces the desired pattern, which requires high performance of the stage. The error of the stage and the synchronization of the stage with the gun switch can affect the accuracy of the pattern. In addition, the feedback control of the position or speed of the stage of the conventional electron beam lithography method or system is not perfect, and the broadening effect, the proximity effect and the pattern distortion are also reduced. The efficiency of manufacturing high-precision semiconductor components by electron beam lithography. SUMMARY OF THE INVENTION In order to solve the above problems of the prior art, the present invention proposes an electron beam lithography method, an electron beam lithography servo control method, and a system method, which can perform fixed point control and enhanced feedback control of exposure writing. The electron beam lithography method of the present invention exposes a plurality of sub-pictures divided by a pattern to a substrate sequentially, and includes the following steps: (1) setting an exposure position of each sub-picture; (2) Driving a positioning platform to move the substrate disposed thereon to a set exposure position; (3) measuring the actual position of the substrate, determining the actual position of the substrate and the set exposure position s 111902 201236047 Whether the error is less than a set value, when the error between the actual position of the substrate and the set exposure position is greater than or equal to the set value, proceed to step (4); when the actual position of the substrate is If the error of the set exposure position is less than the set value, proceed to step (5); (4) adjust the position of the positioning platform to compensate for the error between the actual position of the substrate and the set exposure position, and then Returning to step (3); (5) causing the electron beam to expose a sub-pattern corresponding to the set exposure position to the substrate; and (6) updating the set exposure position, and returning to step (2) until A plurality of sub-patterns exposed to the substrate are joined into The graph is up. The above step (5) includes the following steps: (5-1) fine-tuning the position of the positioning platform to compensate for the error between the actual position of the substrate and the set exposure position; (5-2) measuring the base The actual position of the material, determining whether the error between the actual position of the substrate and the set exposure position is less than the set value, when the error between the actual position of the substrate and the set exposure position is greater than or equal to the set value Going to step (5-3); when the error between the actual position of the substrate and the set exposure position is less than the set value, proceeding to step (6); and (5-3) coarsely adjusting the positioning platform The position is compensated for the error between the actual position of the substrate and the set exposure position, and then returns to step (3). Secondly, an electron beam lithography servo control system according to the present invention comprises: a substrate; a positioning platform carrying the substrate, the positioning platform sequentially moving to a set exposure position for an electron beam to be composed of a graphic The divided plurality of sub-pictures are sequentially exposed to the substrate; the global position sensor measures and outputs the moving speed and/or the actual position of the substrate; the server is configured to input the plurality of sub-pictures in advance Graphic and exposure position, and 6 111902 201236047 receives the actual position output by the global position sensor to issue a control signal according to the error between the actual position of the substrate and the set exposure position; and the controller The controller is coupled to the driver coupled to the positioning platform, and the controller receives the control signal sent by the server to cause the driver to drive the positioning platform to compensate the error and perform feedback control on the positioning platform to enable the bearing Positioning platform of the substrate sequentially moves to the set exposure position and the electron beam sequentially exposes the plurality of sub-patterns on the substrate and joins the same Shape. • The positioning platform includes a micro-motion platform carrying the substrate and a mobile platform supporting the micro-motion platform, the driver comprising a fine-tuning driver coupled to the micro-motion platform and a coarse-tuning driver coupled to the mobile platform. The controller includes a trim controller coupled to the jog driver and a coarse controller coupled to the coarse driver. In the following, an electron beam lithography servo control method provided by the present invention sequentially exposing a plurality of sub-patterns divided by a graphic to a base material, comprising the following steps: (1) setting exposure of each sub-graphic Writing a position and inputting a graphic and an exposure position of each of the sub-graphics into a server; (2) driving a positioning platform to move the substrate disposed thereon to a set exposure position; (3) making one The global position sensor measures the speed and/or actual position of the substrate and outputs to the server; (4) causes the server to determine whether the error between the actual position of the substrate and the set exposure position is less than one Setting value, when the error between the actual position of the substrate and the exposure position is greater than or equal to the set value, proceeding to step (5); when the error between the actual position of the substrate and the exposure position is less than the set value Then, proceed to step (6); (5) the server outputs a control signal to the 7 111902 201236047 controller, so that the driver performs feedback control on the positioning platform to drive the positioning platform to compensate the error, and then returns to the step ( 3); (6) Order electron beam Exposing the set sub-graph corresponding to the set exposure position to the substrate; and (7) updating the set exposure position, and returning to step (2) until the plurality of sub-pictures on the substrate are exposed Joined into the figure. The above step (5) comprises the following steps: (5-1) fine-tuning the controller to cause the fine-tuning driver to drive the micro-motion platform to compensate for the error, and performing feedback control on the micro-motion platform; (5-2) making the global position sensing Measuring the speed and/or actual position of the substrate and outputting to the server; (5-3) causing the server to determine whether the error between the actual position of the base material and the set exposure position is less than the setting a value, when the error between the actual position of the substrate and the exposure position is greater than or equal to the set value, proceeding to step (5-3); when the error between the actual position of the substrate and the exposure position is less than the setting When the value is up, proceed to step (6); and (5-4) ^ The coarse adjustment controller causes the coarse adjustment driver to drive the mobile platform to compensate for the error, and feedback control is performed on the mobile platform, and then returns to step (3). Compared with the prior art, the present invention can perform position measurement and feedback of the full exposure range, and cooperate with the positioning platform to write an arbitrary pattern by electron beam exposure, thereby achieving large-area high-resolution continuous graphic exposure and improving positioning. Accuracy, graphics resolution, and thus the efficiency of electron beam lithography to manufacture high-precision semiconductor components. [Embodiment] Hereinafter, embodiments of the present invention will be described by way of specific embodiments, and those skilled in the art can easily understand other advantages and functions of the present invention by the disclosure of the present disclosure, and may also 8 111902 201236047 Embodiments are implemented or applied. Referring to Fig. 1A, the electron beam lithography method of the present invention comprises steps S11 to S17. In step S11, the exposure position of each sub-graphic is set. Firstly, according to the local complexity of a graphic, the local key size or the maximum single field of view of the electron beam, the cutting mode of the graphic is determined, and then the graphic is divided into a plurality of sub-graphics and the exposure of each sub-graphic is set. Write position, that is, the coordinates are written. Then it proceeds to step S12. In step S12, a positioning platform is driven to move the substrate disposed thereon to a set exposure position. Specifically, first selecting one of the plurality of sub-pictures and setting the exposed coordinates of the selected sub-picture as the set exposure position, and then moving the positioning platform carrying the substrate to the set exposure position. Then it proceeds to step S13. In step S13, the actual position of the substrate is measured. Next, in step S14, it is determined whether the error between the actual position of the substrate and the set exposure position is less than a set value, which is a so-called reasonable range, and the reasonable range may be according to the exposed line width or the exposed area. Decide. If the error is not less than the set value, the process goes to step S15; if the error is smaller than the set value, the process goes to step S16. As described above, if the error between the actual position of the positioning platform and the set exposure position is greater than or equal to the set value, then the positioning platform is adjusted in step S15 to compensate the actual position of the substrate and the set The error of the target position is returned to step S13 to measure the actual position of the substrate again. On the other hand, if the error between the actual position of the substrate and the set exposure position 111902 201236047 is less than the set value, then the electron beam is driven to be exposed in step S16, that is, the electron beam shutter is turned on. The electron beam is exposed to the substrate by the corresponding sub-pattern of the exposure position to which the S12 t positioning platform needs to be moved. Then it proceeds to step S17. In step S17, updating the set exposure position, wherein updating the set exposure position refers to exposing the sub-graphics of the exposure position of the sub-picture exposed by the adjacent electron beam in the plurality of sub-pictures The position is set to the next setting (4) the writing position, and the returning step is made to move the positioning platform to the set exposure position. Repeating step 17 in this way, until the plurality of sub-patterns exposed on the substrate are joined to become the pattern, and the position of the positioning platform is adjusted with respect to the foregoing step S15 to compensate for the error, and step S151 may be further included. Step (10). = shown. In step S151, the position of the positioning platform is finely adjusted, and then the actual position of the substrate is measured in step S152=the actual position of the substrate and the target value of the shirt are determined in step S(5). If it is not less than the setting, the process proceeds to step S154; if the error is less than the set value, the department 6 starts the exposure. In step S154, the positioning level is coarsely adjusted to compensate for the error, and the process returns to step S13 to re-position the actual position of the platform. The step of the S16 electron beam to perform the exposure process is to apply the bias voltage to the beam, and the sub-pattern of the power-down write position is exposed to: base: the previous one will set the exposure 111902 201236047 / again In this subtle form of sadness, the graphic can be a dot pattern. When converting the pattern into a dot pattern, the pattern can be corrected by considering the proximity effect (p(four)) (4). In the foregoing step, the positioning platform for controlling the carrier substrate can be included to be stepped or linearly moved. The electron beam shutter is switched to achieve the dot pattern drawing, and in the over-latching of the dot pattern, there is no need to apply a biasing electric M to the electron beam, that is, the electron beam is used for exposure. For example, the above steps are repeated. S11 i 17, until a plurality of sub-patterns sequentially exposed onto the substrate are joined to form the pattern.
S 於本實施形態中,該圖形復可為向量圖形。於將該圖 形轉換成向量圖形時,可考慮鄰近效應(P職lmity effect) 而對圖形作修正。於步驟su中,除了設定各該子圖形的 曝寫位置外,另設定各該子圖形的曝寫路徑,並於前述步 驟S12 +包括,依據以線性移動該定位平台所需的時間來 設定該設定的曝寫位置,且於前述步驟si6中包括控制承 载該基材較位平^祕移㈣方式,俾依肋曝寫路 徑配合電子束快門的切換而曝寫出該向量圖形。如此重複 步驟S11至17’直至料曝寫至縣材上的複數個子圖形 能接合成為該圖形為止。具體而言,例如,當圖形被轉換 為向量圖形時,可根據線性移動該定位平台所需的時間來 設定該設定的曝寫位置,且該設定的曝寫位置係動態地隨 時間而改變。換言之,由於定位平台至設定的曝寫位置後 是以線性移動的方式來曝寫向量圖形,因而接下來的設定 的曝寫位置勢必隨著以線性移動該定位平台所需之時間改 變’故在此需考量所f的時間來設定該設定的曝寫位置。 111902 11 201236047 · 因此,在承载基材的定位平台以相對低速的情況下,向量 圖形之曝寫能得到高解析度、小線寬的圖形。 6月參閱第2圖,其係繪示電子束快門於微影過程中的 竭關狀L Ts表示電子束快門開啟以將一子圖形曝寫至基 於此時期,承載基材的定位平台的位置可: 曝寫路徑微牛知描或供定電子束曝寫’亦可根據所設定的 平台於一夕移動以進行向量圖形的曝寫。ΔΤ表示定位 ° 曝寫位置移至下一個曝寫位置的時間。 藉由第1 Λ , 操作範 、1Β圖所示之步驟S11至S17及第2圖的 定位平本發明之電子束微影方法可在承载基材的 點控制^搶之相對位置固定的情況下,僅需做到定 C_r〇l),以Z〇mt C〇Iltr〇1)而無需追縱控制(加啪ng 關的同步位平台的運動誤差及其與電子束快門開 形沾… 對圖形精確度的影響。此外,還可枏摅溫办 形的複雜度箸姓R ^ 還了根據曝寫圖 速圖形^ 同的單次曝光區域,有助於加 請參閱第3 $發明又提出一種電子束微影飼服控制系統, 服器32、二,要包括基材30、全域位置感測器31、伺 驅動器(包“二(包括微調控制器33和粗調控制器36)、 台(包括微1134和粗調驅動器37)以及定位平 双動平台35和移動平台38)。 饥十 置,以ί㈣3〇的定位平台依序移動至設定的曝心 曝寫至基材3。上。詳言之 丄:複:個子圖形依序 戰有基材30的微動平台35 111902 12 .201236047 汉置於移動平台38上,微動平台35可使基材30相對於電 子束快門進行較小的運動,移動平台38可使基材3〇相對 於電子束快門進行較大的運動。 王域位置感測器31量測並輸出基材3〇的移動速度及 /或實際位置。全域位置感測器31包括量測模組31〇,量 測模組310對基材3〇發射雷射,以量測基材3〇的位置及 速度’且全域位置感測器31依據量測模組310的雷射量測 結果輸出訊號至伺服器32。 • ㈤服器32係供預先輸人該複數個子圖形的圖形及曝 寫位置與接收全域位置感測器31所輸出的實際位置,以依 據忒设定的曝寫位置與該量測的實際位置之誤差發出控制 ^唬至該控制器。伺服器32包括高速取樣(high Speed 、pie)模、、且321、低通濾波(i〇w pass mter)模組μ〗、微動 平。控制模組323、觸發邏輯(triggering i〇gic)324和移動 平台控制模組325。詳言之,伺服器32自全域位置感測器 • 31所接收到的量測結果,依序經高速取樣和低通濾波處理 後,進至微動平台控制模組323,以發出微調控制信號至 微凋控制器33。接著該量測結果再經觸發邏輯324的觸發 後進至移動平台控制模組325,以發出粗調控制信號至粗 調控制器36 〇 5亥控制器與耦接至該定位平台的驅動器耦接,該控制 f接收伺服H 32所發出的控㈣號,而令該驅動器驅動該 定位平台以補償該誤差,並對該定位平台進行回授控制, 皁使承載基材3〇的定位平台依序移動至該設定的曝寫位 111902 13 201236047 置’且該$子束將該複數個子㈣依科寫 接合為該㈣。詳言之,定料台由轉基材t 並 台35及承載微動平台35的移動平台 的微動平 器33與耦接至微動平台35的微調驅動器34 微調控制 伺服器32的微調控额號而令微魏動 接,並依據 台35來補償該誤差。粗調控制器%與編,動微動平 的粗調驅動器37_,且依據伺㈣32 =動平台38 而令粗調驅動器37驅動移動平台38來補償該,制信號 而說明的疋,微動平台35的回授是直接差 控制器33,因而微調控制器33可直漏測 回至微調 回授信號而對微調驅動器34下達命令,以台35的 34調整微動平台35的運動方向或速度。微則器 依據目前微動平台35的回授狀況而調整輸:3會 _命令。同樣地,移動平台38的回授是直動 粗調控制器36’因而粗調控制器託可直接偵测移= 38的回授信號而對粗調驅動器37下達命令,以令粗口。 動器37調整移動平台38的運動方向或速度。粗調控制】 36會依據目前移動平台38的回授狀況而調整輸出至❸周 驅動器37的命令。因此,此種微動平台%與移動平台% 分開的㈣回授,可提供電子束微影舰祕完 ^ 的回授機制。 於本實施形態中,微動平台35可例如為壓電平台 (piezoelectric stage),微調驅動器34可為壓電平台驅動$ (piezoelectric stage driver),微調控制器33可為壓電控制 111902 201236047 器 (piezoelectric controller),移動平台控制模紐 η)。 電平台控制器(piezoelectric stage contr〇iler)。 可為壓 知以下所述的電子束微影伺服控制方法可用來達成r 第3圖所示之電子束微影伺服控制系統,實現第μ及二 圖所述之電子束微影方法之應用。請參閱第4圖,本發明 所提供之電子束微影健控制方法包括步驟至印。 於乂驟S31中,設定各子圖形的曝寫位置,並將各該 子圖形的_形及曝S位置輸人-伺服器。 於步驟S32中’驅動一定位平台以將設置於其上的基 材移動至一設定的曝寫位置。 於步顿S33中’令一全域位置感測器量測該基材的移 動速度及/或實際位置並輪出至該㈣ϋ。 於步騍S34中,令該伺服器判斷該基材的實際位置與 該設定的曝寫位置之誤差是否小於一設定值。當該基材的 實際位置與該曝寫位置的誤差大於或等於該設定值時,進 •至步驟S351;當該基材的實際位置與該曝寫位置的誤差小 於該設定值時,進至步驟S36。 於步驟S36中’令電子束將該設定的曝寫位置所對應 的子圖形曝寫至該基材上。 於步騍S37中,更新該設定的曝寫位置,姐返回步驟 S32直到曝寫至基材上的複數個子圖形接合成該圖形為 止,其中,所述之更新係指將該電子束所曝寫的子圖形的 曝寫位置It新為在該複數個子圖形的曝寫位置巾,鄰近s亥 對應電子束所曝寫的子圖形的曝寫位置。 111902 201236047 於步驟S351中,微調控制器令微調驅動器驅動微動 平台以補償該誤差,並對該微動平台進行回授控制。 於步驟S352中,令該全域位置感測器量測該基材的 速度及/或實際位置並輸出至該伺服器。 於步驟S353中,令該伺服器判斷該基材的實際位置 與該設定的曝寫位置之誤差是否小於該設定值,當該基材 的實際位置與該曝寫位置的誤差大於或等於該設定值時, 進至步驟S354;當該基材的實際位置與該曝寫位置的誤差 小於該設定值時,則進至步驟S36。 ⑩ 於步驟S354中,粗調控制器令該粗調驅動器驅動該 移動平台以補償該誤差,並對該移動平台進行回授控制, 接著返回步驟S33。詳言之,該定位平台包括承載該基材 的微動平台及承載該微動平台的移動平台,該驅動器包括 搞接該微動平台的微調驅動器和柄接該移動平台的粗調驅 動器。該控制器包括耦接該微動驅動器的微調控制器及耦 接該粗調驅動器的粗調控制器。因而步驟S351中該微調 $ 驅動器驅動該微動平台時,該微動平台發送回授信號至該 微調控制器,以供該微調控制器依據該回授信號調整發至 微調驅動器的命令。而步驟S354中該粗調驅動器驅動該 移動平台時,該移動平台發送回授信號至該粗調控制器, 以供該粗調控制器依據該回授信號調整發至粗調驅動器的 命令。 於上述之步驟S36中,電子束掃描的步驟係先對該電 子束施加偏向電壓,再以掃描方式將對應該設定的曝寫位 16 111902 ‘201236047 置之子圖形曝寫至該基材上。 於該圖形為點陣圖形之實施形態中,步驟S36包括控 制承載該基材的定位平台以步階或線性移動的方式,配合 電子束快門的切換而達成點陣圖形的曝寫。 於該圖形為向量圖形之實施形態中,步驟S 31包括設 定各該子圖形的曝寫路徑,且步驟S36包括控制承載該基 材的定位平台以線性移動的方式,配合電子束快門的切換 而達成向量圖形的曝寫。 _ 接著,請參閱第5(a)至5(c)圖,其為本發明之電子束 微影伺服控制方法的具體實施例。 如第5(a)圖所示,基材於座標原點,於曝光前利用定 位平台配合全域位置感測器將基材移至曝寫位置22〇,利 用電子搶曝光出預先設定的電子束微影子圖形24〇;接著 關閉電子搶,再利用定位平台配合全域位置感測器將基材 移動向量a後到達第二個曝寫位置221,接著利用電子束 •曝光而得到與子圖形24〇相同的子圖形241。此時在基材 上變形成兩個曝寫子圖形240和241。 ^接著如第5(b)圖所示,依照上述第5(a)圖的方法驅動 定位平台且配合全域位置感測器進行電子束曝寫。圖形28 可分割為子圖形281、282、283和284。首先將基材移至 曝寫位置271並以電子束曝寫出子圖形281,接著關閉電 子束且疋位平台移動向量bl以使基材至曝寫位置272並以 電子束曝寫出子圖形282。其次,關閉電子束並移動定位 平台向量b2以使基材至曝寫位置273並以電子束曝寫出子 17 111902 201236047 圖形283 ’接著關帛電子束。最後移動定位平台向量b3以 使基材至曝寫位置274並以電子束曝寫出子圖形284。透 過此種湘定位平纟及全域位置制$移動基材、開啟電 #胃彡 '關閉電子束快門、再回到移動基材 步驟之方法’可將子圖形281、282、283和284接合為圖 形28。 再如第5(c)圖所示’如前述的操作方法,利用定位平 台和全域位置感測器依序移動定位平台向量cl、c2、c3、 c4、c5以將基材移至曝寫位置2921、2922、2923、2924、 φ 2925和2926’配合電子束快門而分別於前述曝寫位置曝寫 子圖形 2931、2932、2933、2934 ' 2935 和 2936。因此, 在基材上的接合為圖形2930。 由於圖形被分割為複數個子圖形以分別曝寫至基材 上’因而其解析度比將一未分割的圖形直接曝寫在基材上 來的高。此外,定位平台的步進移動配合電子束快門的開 關更可提昇圖形接合的精確度。需說明的是,所屬技術中 具通常技術者可任意變更第5圖所示之定位平台的移動次鲁 數、向量的大小及方法、圖形的分割方式、圖形的曝寫位 置等,以於基材上曝寫接合出大面積的週期性圖形。 需補充說明者,係上揭該些實施形態所述之圖形與子 圖形’僅係為說明圖形間之相對關係之便,並非用以限定 其間之絕對關係,亦即並非用以圖形必由複數個子圖形所 組成’某一圖形亦可為其他圖形之子圖形,某一子圖形亦 可相對的為由其他子圖形所組成的圖形。 18 111902 201236047 綜上所述,本發明之電子束微影方法,其承載基材的 定位平台與電子槍之相對位置固定,以進行定點控制而無 需追蹤控制之圖形曝寫,可降低定位平台的運動誤差及其 與電子束快門開關的同步性對圖形精確度的影響。另外, 本發明之電子束微影伺服控制奉統及其方法利用伺服器、 全域位置感測器和微調平台及粗調平台的回授控制,能提 昇定位平台移動的精確性、使得系統穩定性增加,進而產 生高解析度的圖形。 • 因此,藉由本發明之運用,得以步進、穩定、及曝寫 的循環機制達成大面積、高解析度、及高精確性之週期性 圖形的曝寫。 上述實施形態僅例示性說明本發明之原理、特點及其 功效,並非用以限制本發明之可實施範疇,任何熟習此項 技藝之人士均可在不違背本發明之精神及範疇下,對上述 實施形態進行修飾與改變。任何運用本發明所揭示内容而 _ 完成之等效改變及修飾,均仍應為下述之申請專利範圍所 涵蓋。因此,本發明之權利保護範圍,應如後述之申請專 利範圍所列。 【圖式簡單說明】 第1A圖係本發明之電子束微影方法的流程圖; 第1B圖係本發明之電子束微影方法的較詳細流程圖; 第2圖係繪示本發明之電子束微影方法之電子束快門 於微影過程中的開關狀態; 第3圖係本發明之電子束微影伺服控制系統的方塊; 19 111902 201236047 第4圖係本發明之番 電子束微衫伺服控制方法的流程 圖;以及 第至5(c)圖係本發明之電子束微影祠服控制方法 的具體實施例示意圖。 【主要元件符號說明】 30 基材 31 全域位置感測器 310 量測模組 32 伺服器 321 高速取樣模組 322 低通滤·波模組 323 微動平台控制模組 324 觸發邏輯 325 移動平台控制模組 33 微調控制器 34 微調驅動器 35 微動平台 36 粗調控制器 37 粗調驅動器 38 移動平台 220、221、27卜 272、273、274、292卜 2922、2923、2924、 2925、2926 曝寫位置 28、2930 圖形 240、24卜 28卜 282、283、284、293卜 2932、2933、2934、 20 111902 201236047 2935 ' 2936 子圖形 a、bl、b2、b3、cl、c2、c3、c4、c5 向量 Sll 〜S17、S31 〜S37 步驟 S151 〜S154、S351 〜S354 步驟 △ T、Ts 時間 21 111902In this embodiment, the graphic complex is a vector graphic. When converting the graph into a vector graph, the graph can be corrected by considering the proximity effect. In step su, in addition to setting the exposure position of each sub-pattern, the exposure path of each sub-pattern is further set, and in the foregoing step S12+, the setting is set according to the time required to linearly move the positioning platform. The set exposure position, and in the foregoing step si6, includes controlling the carrying of the substrate to be relatively flat (4), and exposing the vector graphic according to the switching of the rib exposure path and the electron beam shutter. The steps S11 to 17' are repeated in this manner until a plurality of sub-patterns which are exposed to the county material can be joined to form the pattern. Specifically, for example, when a graphic is converted into a vector graphic, the set exposure position can be set according to the time required to linearly move the positioning platform, and the set exposure position dynamically changes with time. In other words, since the vector graphics are exposed by linear movement after the positioning platform to the set exposure position, the next set exposure position is bound to change with the time required to linearly move the positioning platform. This takes into account the time of f to set the exposure position of the setting. 111902 11 201236047 · Therefore, in the case of a relatively low-speed positioning platform that carries the substrate, the vector graphics can be printed with high resolution and small line width. Refer to Figure 2 in June, which shows the exhaustion of the electron beam shutter in the lithography process. L Ts indicates that the electron beam shutter is turned on to expose a sub-pattern to the position of the positioning platform that carries the substrate based on this period. Can: the exposure path micro-know or the supply of electron beam exposure can also be moved according to the set platform to perform vector graphics exposure. ΔΤ indicates the time at which the positioning position is moved to the next exposure position. By the first step, the operation range, the steps S11 to S17 and the second figure shown in the figure, the electron beam lithography method of the present invention can be used in the case where the relative position of the point control of the carrier substrate is fixed. , only need to be fixed C_r〇l), with Z〇mt C〇Iltr〇1) without tracking control (the motion error of the synchronization bit platform of the plus ng off and its opening with the electron beam shutter... The effect of accuracy. In addition, the complexity of the shape can be reduced. The surname R ^ is also based on the exposure of the graph. The same single exposure area is helpful. Please refer to the 3rd invention and propose a The electron beam micro shadow feeding control system, the server 32, 2, includes a substrate 30, a global position sensor 31, a servo driver (package "two (including the fine adjustment controller 33 and the coarse controller 36), the platform ( The micro 1134 and the coarse adjustment drive 37) and the positioning flat double action platform 35 and the mobile platform 38) are hungry, and the positioning platform of the ί(4)3〇 is sequentially moved to the set exposure to the substrate 3. The words: complex: a sub-picture in sequence with the micro-motion platform of the substrate 30 35 111902 12 .201236047 Han placed On the moving platform 38, the micro-motion platform 35 allows the substrate 30 to move relatively small relative to the electron beam shutter, and the moving platform 38 allows the substrate 3 to move relatively large relative to the electron beam shutter. 31 measures and outputs the moving speed and/or actual position of the substrate 3〇. The global position sensor 31 includes a measuring module 31〇, and the measuring module 310 emits a laser to the substrate 3〇 to measure the base. The position and speed of the material 3' and the global position sensor 31 output a signal to the server 32 according to the laser measurement result of the measurement module 310. • (5) The server 32 is configured to pre-enter the graphic of the plurality of sub-pictures. And exposing the position and receiving the actual position output by the global position sensor 31 to issue a control to the controller according to the error of the set exposure position and the measured actual position. The server 32 includes a high speed. Sampling (high speed, pie) mode, and 321 , low pass filtering (i〇w pass mter) module μ, micro-motion flat. Control module 323, triggering logic (triggering i〇gic) 324 and mobile platform control mode Group 325. In particular, server 32 from the global location sensor • The received measurement result of 31 is sequentially processed by the high-speed sampling and the low-pass filtering, and then proceeds to the micro-motion platform control module 323 to issue a fine-tuning control signal to the micro-controller controller 33. Then the measurement result is triggered again. The triggering of the logic 324 proceeds to the mobile platform control module 325 to issue a coarse control signal to the coarse controller 36. The controller is coupled to a driver coupled to the positioning platform, and the control f receives the servo H 32. The control (4) is issued, and the driver drives the positioning platform to compensate the error, and feedback control is performed on the positioning platform, and the soap moves the positioning platform of the carrier substrate 3〇 to the set exposure position 111902. 13 201236047 Set 'and the $ sub-beam to join the plurality of sub-fours (4) to the (4). In detail, the table is fine-tuned to control the micro-regulation amount of the servo 32 by the substrate t and the micro-motion flat 33 of the mobile platform carrying the micro-motion platform 35 and the fine-tuning driver 34 coupled to the micro-motion platform 35. Let Wei Wei move and compensate for the error according to station 35. The coarse controller % and the knitting controller, the coarse adjustment driver 37_, and the coarse adjustment driver 37 drives the moving platform 38 according to the servo (four) 32 = moving platform 38 to compensate for the signal, the description of the signal, the micro-motion platform 35 The feedback is the direct difference controller 33, and thus the fine adjustment controller 33 can directly measure the return to the fine adjustment feedback signal and issue a command to the fine adjustment driver 34 to adjust the movement direction or speed of the fine movement platform 35 with the 34 of the stage 35. The micro-controller adjusts the input according to the feedback status of the current micro-motion platform 35: 3 will _ command. Similarly, the feedback of the mobile platform 38 is the direct motion coarse adjustment controller 36'. Thus, the coarse controller can directly detect the feedback signal of the shift = 38 and issue a command to the coarse adjustment driver 37 to make the coarse mouth. The actuator 37 adjusts the direction or speed of movement of the mobile platform 38. The coarse adjustment control 36 adjusts the command output to the peripheral driver 37 in accordance with the feedback status of the current mobile platform 38. Therefore, the (4) feedback of the % of the micro-motion platform and the mobile platform% can provide a feedback mechanism for the electron beam micro-mirror. In this embodiment, the micro-motion platform 35 can be, for example, a piezoelectric stage, the fine-tuning driver 34 can be a piezoelectric platform driver, and the fine-tuning controller 33 can be a piezoelectric control 111902 201236047 (piezoelectric) Controller), mobile platform control module η). Electric platform controller (piezoelectric stage contr〇iler). The electron beam lithography servo control method described below can be used to achieve the electron beam lithography servo control system shown in Fig. 3, and the application of the electron beam lithography method described in Figs. Referring to Figure 4, the electron beam lithography control method provided by the present invention includes steps to printing. In step S31, the exposure position of each sub-pattern is set, and the _ shape and the exposure S position of each sub-picture are input to the server. In step S32, a positioning platform is driven to move the substrate disposed thereon to a set exposure position. In step S33, a global position sensor is used to measure the moving speed and/or actual position of the substrate and rotate to the (four) turn. In step S34, the server determines whether the error between the actual position of the substrate and the set exposure position is less than a set value. When the error between the actual position of the substrate and the exposure position is greater than or equal to the set value, proceeding to step S351; when the error between the actual position of the substrate and the exposure position is less than the set value, proceeding to Step S36. In step S36, the electron beam is caused to expose the sub-pattern corresponding to the set exposure position to the substrate. In step S37, the set exposure position is updated, and the sister returns to step S32 until a plurality of sub-patterns exposed on the substrate are joined into the pattern, wherein the updating refers to exposing the electron beam. The position of the sub-graphics of the sub-picture is as the position of the sub-graphics exposed by the electron beam in the vicinity of the exposure position of the plurality of sub-pictures. 111902 201236047 In step S351, the fine tuning controller causes the fine tuning driver to drive the micro-motion platform to compensate for the error and perform feedback control on the micro-motion platform. In step S352, the global position sensor is caused to measure the speed and/or actual position of the substrate and output to the server. In step S353, the server determines whether the error between the actual position of the substrate and the set exposure position is less than the set value, and the error between the actual position of the substrate and the exposure position is greater than or equal to the setting. When the value is up, the process goes to step S354; when the error between the actual position of the substrate and the exposure position is less than the set value, the process goes to step S36. In step S354, the coarse adjustment controller causes the coarse adjustment driver to drive the mobile platform to compensate for the error, and performs feedback control on the mobile platform, and then returns to step S33. In detail, the positioning platform comprises a micro-motion platform carrying the substrate and a mobile platform carrying the micro-motion platform, the driver comprising a fine-tuning driver for engaging the micro-motion platform and a coarse-tuning driver for arranging the mobile platform. The controller includes a trim controller coupled to the jog driver and a coarse controller coupled to the coarse driver. Therefore, when the fine tuning $ driver drives the micro-motion platform in step S351, the micro-motion platform sends a feedback signal to the fine-tuning controller, so that the fine-tuning controller adjusts the command sent to the fine-tuning driver according to the feedback signal. When the coarse adjustment driver drives the mobile platform in step S354, the mobile platform sends a feedback signal to the coarse adjustment controller, so that the coarse adjustment controller adjusts the command sent to the coarse adjustment driver according to the feedback signal. In the above step S36, the electron beam scanning step first applies a bias voltage to the electron beam, and then scans the sub-pattern corresponding to the set write position 16 111902 '201236047 onto the substrate. In the embodiment in which the graphic is a dot pattern, step S36 includes controlling the positioning platform carrying the substrate to step or linearly move, and performing the dot pattern drawing in conjunction with the switching of the electron beam shutter. In the embodiment in which the graphic is a vector graphic, step S31 includes setting an exposure path of each of the sub-patterns, and step S36 includes controlling a positioning platform carrying the substrate to linearly move in conjunction with switching of the electron beam shutter. Achieve the introversion of vector graphics. _ Next, please refer to Figures 5(a) to 5(c), which are specific embodiments of the electron beam lithography servo control method of the present invention. As shown in Fig. 5(a), the substrate is at the coordinate origin, and the substrate is moved to the exposure position 22〇 by the positioning platform and the global position sensor before exposure, and the predetermined electron beam is exposed by electron exposure. The micro-shadow pattern is closed; then the electronic grab is turned off, and then the positioning platform is used together with the global position sensor to move the substrate to the second exposure position 221, and then the electron beam/exposure is used to obtain the sub-picture 24〇. The same sub-picture 241. At this time, two exposure sub-patterns 240 and 241 are formed on the substrate. Then, as shown in Fig. 5(b), the positioning platform is driven in accordance with the method of Fig. 5(a) above and the electron beam exposure is performed in conjunction with the global position sensor. The graphic 28 can be divided into sub-pictures 281, 282, 283, and 284. First, the substrate is moved to the exposure position 271 and the sub-pattern 281 is exposed by electron beam exposure, then the electron beam is turned off and the clamping platform moves the vector bl to make the substrate to the exposure position 272 and the sub-pattern is exposed by the electron beam. 282. Next, the electron beam is turned off and the positioning platform vector b2 is moved to bring the substrate to the exposure position 273 and the electron beam is used to expose the image 17 117902 201236047 pattern 283 'and then the electron beam. Finally, the positioning platform vector b3 is moved to expose the substrate to the exposure position 274 and the sub-pattern 284 is exposed by electron beam. The sub-patterns 281, 282, 283, and 284 can be joined by such a method of positioning the flat and global position to move the substrate, turn on the power, turn off the electron beam shutter, and return to the step of moving the substrate. Figure 28. As shown in FIG. 5(c), the positioning platform vector cl, c2, c3, c4, and c5 are sequentially moved by the positioning platform and the global position sensor to move the substrate to the exposed position. 2921, 2922, 2923, 2924, φ 2925, and 2926' cooperate with the electron beam shutter to expose sub-patterns 2931, 2932, 2933, 2934 ' 2935 and 2936 at the aforementioned exposure positions, respectively. Thus, the bond on the substrate is a pattern 2930. Since the pattern is divided into a plurality of sub-patterns to be separately exposed onto the substrate, the resolution is higher than that of directly un-dividing the image on the substrate. In addition, the stepping movement of the positioning platform in conjunction with the switch of the electron beam shutter enhances the accuracy of the pattern joint. It should be noted that those skilled in the art can arbitrarily change the moving sub-rule of the positioning platform shown in FIG. 5, the size and method of the vector, the segmentation mode of the graphic, the exposure position of the graphic, etc. The material is exposed to a large area of periodic pattern. It is to be noted that the figures and sub-pictures described in the embodiments are merely for explaining the relative relationship between the figures, and are not intended to limit the absolute relationship therebetween, that is, not for the figures to be plural. A certain graphic can also be a sub-graphic of other graphics, and a sub-graphic can also be a graphic composed of other sub-graphics. 18 111902 201236047 In summary, the electron beam lithography method of the present invention has a fixed position of the positioning platform of the carrier substrate and the electron gun, so as to perform fixed-point control without tracking and controlling the graphic exposure, thereby reducing the movement of the positioning platform. The error and its effect on the accuracy of the pattern with the synchronization of the electron beam shutter switch. In addition, the electron beam lithography servo control system and the method thereof of the invention can improve the accuracy of the positioning platform movement and make the system stability by using the servo, the global position sensor and the fine adjustment platform and the feedback control of the coarse adjustment platform. Increase, which in turn produces high-resolution graphics. • Therefore, with the application of the present invention, it is possible to achieve a large-area, high-resolution, and high-accuracy periodic pattern exposure by a looping mechanism of stepping, stabilization, and exposure. The above-described embodiments are merely illustrative of the principles, features, and effects of the present invention, and are not intended to limit the scope of the present invention. Any person skilled in the art can recite the above without departing from the spirit and scope of the present invention. The embodiment is modified and changed. Any equivalent changes and modifications made using the disclosure of the present invention should still be covered by the scope of the following claims. Therefore, the scope of protection of the present invention should be as set forth in the scope of the application patents described below. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a flow chart of the electron beam lithography method of the present invention; FIG. 1B is a more detailed flowchart of the electron beam lithography method of the present invention; FIG. 2 is a diagram showing the electron of the present invention The electron beam shutter of the beam lithography method is in a switching state in the lithography process; FIG. 3 is a block diagram of the electron beam lithography servo control system of the present invention; 19 111902 201236047 Fig. 4 is an electron beam micro-shirt servo of the present invention A flowchart of a control method; and a fifth to (c) diagram showing a specific embodiment of the electron beam lithography control method of the present invention. [Main component symbol description] 30 Substrate 31 Global position sensor 310 Measurement module 32 Server 321 High-speed sampling module 322 Low-pass filter/wave module 323 Micro-motion platform control module 324 Trigger logic 325 Mobile platform control mode Group 33 fine-tuning controller 34 fine-tuning driver 35 micro-motion platform 36 coarse-tuning controller 37 coarse-tuning driver 38 moving platform 220, 221, 27, 272, 273, 274, 292, 2922, 2923, 2924, 2925, 2926 exposure write position 28 , 2930 graphics 240, 24 128 28 282, 283, 284, 293 2932, 2933, 2934, 20 111902 201236047 2935 ' 2936 sub-pattern a, bl, b2, b3, cl, c2, c3, c4, c5 vector Sll ~S17, S31~S37 Steps S151~S154, S351~S354 Step △ T, Ts Time 21 111902