TW201235123A - Apparatus for controlling hot rolling line - Google Patents

Apparatus for controlling hot rolling line Download PDF

Info

Publication number
TW201235123A
TW201235123A TW100109075A TW100109075A TW201235123A TW 201235123 A TW201235123 A TW 201235123A TW 100109075 A TW100109075 A TW 100109075A TW 100109075 A TW100109075 A TW 100109075A TW 201235123 A TW201235123 A TW 201235123A
Authority
TW
Taiwan
Prior art keywords
rolling
rolled
time
target
speed
Prior art date
Application number
TW100109075A
Other languages
Chinese (zh)
Other versions
TWI481452B (en
Inventor
Kazutoshi Kitagou
Mitsuhiko Sano
Original Assignee
Toshiba Mitsubishi Elec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Elec Inc filed Critical Toshiba Mitsubishi Elec Inc
Publication of TW201235123A publication Critical patent/TW201235123A/en
Application granted granted Critical
Publication of TWI481452B publication Critical patent/TWI481452B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

This invention provides an apparatus for controlling hot rolling line capable of realizing a target rolling-required time and suppressing energy consumption amount. This apparatus includes an initial schedule calculation device calculating the flow rate of a cooling spray and a speed pattern of rolling speed, schedule modifying device modifying the flow rate of the cooling spray and modifying the speed pattern when a finish mill exit-side temperature can not reach a target value over the total length of a target rolled material only by modifying the flow rate of the cooling spray and when a speed change rate relevant to the speed pattern is inputted, a rolling time prediction device calculating a rolling-required time of the target rolled material by using the speed pattern, a rolling time adjusting device outputting a calculated speed change rate allowing the rolling-required time to be within a target rolling time to the schedule modifying device, and an energy consumption amount adjusting device outputting a calculated speed change rate, by which an energy consumption amount obtained by time-integration of the calculated rolling power by using the speed pattern becomes a minimum value, to the schedule modifying device.

Description

201235123 六、發明說明: 【發明所屬之技術領域】 本發明係關於製造金屬製品之熱軋作業線之控制參 置。 " 【先前技術】 通常’熱軋作業線係由:加熱被軋延材之加熱爐;札 延加熱過的被軋延材之粗軋機(roughing miu)*精札機 (finishing mill);使被軋延材冷卻之冷卻裝置;以及將 軋延後的被軋延材捲成線圈狀之捲取機所構成。 在熱軋作業線中之被軋延材的溫度履歷,會對被乳延 材的性質(機械性質)造成影響。另外,軋延處理中之被軋 延材的溫度會使被軋延材的硬度變化,會對於軋延處理所 需的能量消耗量造成很大的影響。因此,在熱軋作業線的 粗軋機的出口側、精軋機的入口侧、精軋機的出口側等配 置溫度計,進行溫度的量測。 針對被軋延材,為了實現希望的材質,而調整加熱爐 内的環境溫度來加熱被軋延材。表示一個被軋延材從加熱 爐抽出到下一個被軋延材從加熱爐抽出為止的時間之「抽 出間隔時間」,係由作業條件、搬送順序的預測等所決定, 以達成最大生產速度。例如,將抽出間隔時間決定成:前 面的已軋延處理過的被軋延材與後面的被軋延材不會在熱 札作業線上發生碰撞之最短的間隔。 此時’調整設於精軋機的軋延機架(r〇lling stand) 間之冷卻噴水器(cooling spray)(以下稱之為「ISC」)的 4 322913 201235123 流量、以及在精軋機内搬送被軋延材之軋延速度,來針對 被乳延材的全長,使得在精札機出口側之被乳延材的溫度 都達到且保持在目標溫度。 如上所述,在被軋延材的軋延處理中,係考慮製品的 材質生產塁來規劃軋延排程(rQlling schedule),據以 控制熱軋作業線。精軋機出口侧溫度(以下稱之為「fdt」), 有必要控制在指定的目標值,來確保製品的材質。另外, 在精軋機入口側,會發生被軋延材的溫度從被軋延材的前 ^在尾降低之稱為r熱緩降“hermal rund〇wn)」之 現象。因此,要使得被軋延材的全長其FDT都維持在目標 溫度’就有必要在被軋延材的全長都一邊加速一邊調整ISC 流量。 另一方面’為了增加製品的生產量,有必要縮短被軋 延材的抽出間隔時間。要縮短抽出間隔時間,就有必要在 熱軋作業線上在被軋延材相互間不發生碰撞的範圍内提高 軋延速度。然而,一般而言,使金屬材料變形時,即便所 施加的形變相同,形變速度越大變形所需的應力(變形阻力) 就越增大。因此’提高軋延速度會使軋延所需之能量消耗 量增加。 因而’有必要在可將FDT控制在目標值的範圍内儘可 能地提高軋延速度,來增加生產量,而且有必要儘可能地 降低軋延速度,來減低能量消耗量。 抑制能量消耗量之方法,有一種以在精軋機之前設置 加熱裝置之熱軋作業線為對象,而以讓由精軋機所做的軋 5 322913 201235123 延的最高速度及加熱裝置的升溋量所決定之能量消耗量變 為最小之方式’來決定精軋機之軋延最高速度及加熱裝置 的升溫量之方法曾經提出(參照例如專利文獻υ °然而’ 專利文獻1所提出之方法’1未考慮到使軋延速度降低所 造成之生產量降低之問題。 另外,進行能量消耗量的預測計算之方法,有一種根 據軋延處理的實際作業資料來預測每一條被軋延材之軋延 所需的時間,且從加熱爐内的扁鋼胚資料(slab data)來預 測每一個被軋延材的軋延時刻,根據軋延加工量來預測每 一條被軋延材的軋延電力,來預測軋延工廠的能量消耗量 之方法曾經提出(參照例如專利文獻2)。然而’專利文獻2 所提出之方法’並未考慮到軋延速度變化所對於能量消耗 量之影響。 [先前技術文獻] (專利文獻) 專利文獻1:曰 專利文獻2 :日 【發明内容】 本特許第3444267號公報 本特開昭64-15201號公報 (發明所欲解決之課題) 為了抑制熱軋作紫 θ 就有軋延所需時間變消耗量而降低乾延速度, 所必要的抽出間隔時=法確保要達成目標的生產量 度,雖然可實現目桿_ 力方面^间軋延速 增大之問I 、料延所料間,但卻有能量消耗量 322913 6 201235123 本土月係鐘於上述問題點而完成者,其目的在提供可 實現目心的軋延所需時間,且可抑制能量消耗量之熱乳作 業線之控制裝置。 (解決課題之手段) 根據本發明的一個態樣,提供一種熱札作業線之控制 裝置’其中,該熱軋作業線係具備有加熱爐、以及具有連 續配置的複數個軋延機架及配置於複數個札延機架間的冷 卻喷=器之精軋機者,該控制裝置係具備有:根據包含有 與預疋要軋延處理之複數個被軋延材有關的軋延處理排程 (schedule)之作業資訊,來算出從加熱爐中將複數個被軋 延材抽出的抽出間隔時間之抽出間隔算出裝置;使用抽出 間隔時間及作業資訊’來算出對象被軋延材(其為複數個被 軋延材中的一個)的目標軋延時間之目標軋延時間算出裝 置’根據作業資訊,來計算冷卻喷水器的流量、及在熱軋 作業線上搬送對象被軋延材之軋延速度的速度模型(speed pattern)之初期排程計算裝置;修正冷卻喷水器的流量, 並在只利用冷卻喷水器的流量的修正並無法遍及對象被軋 延材的全長地讓精軋機出口侧溫度都為目標值時、及輸入 與速度模型有關之速度變更率時,修正速度模型之排程修 正裝置;使用速度模型來算出對象被軋延材的軋延所需時 間之軋延時間預測算出裝置;以讓軋延所需時間在目標軋 延時間以内之方式算出速度變更率,並將算出的速度變更 率予以輸出至排程修正裝置之軋延時間調整裝置;以及使 用速度模型來計算出在設定於熱軋作業線上的複數個標的 7 322913 201235123 點的軋延功率,且對軋延功率進行時間積分而得到能量消 耗量,並以讓能量消耗量為最小之方式計算出速度變更率 且將之輸出至排程修正裝置之能量消耗量調整裝置,而 且,係在軋延所需時間在目標軋延時間以下之範圍内,決 定出讓能量消耗量為最小之冷卻喷水器的流量及速度模型 之控制裝置。 (發明之效果) 根據本發明,就可提供可實現目標的軋延所需時間, 且可抑制能量消耗量之熱軋作業線之控制裝置。 【實施方式】 接著,參照圖式來詳細說明本發明之第一至第四實施 形態。在以下的圖式的記載中,相同或類似的部份均標以 相同或類似的符號。以下所示的實施形態,係舉例來說明 用來使本發明的技術思想具體化之裝置或方法者,本發明 之實施形態,其構成部件的構造、配置等並不限定於以下 所述者。本發明之實施形態可在申請專利範圍内加上各種 變更。 (第一實施形態) 本發明第一實施形態之熱軋作業線之控制裝置10,係 如第1圖所示為熱軋作業線20之控制裝置,具備有:作業 條件處理裝置11、抽出間隔算出裝置12、目標軋延時間算 出裝置13、初期排程計算裝置14、排程修正裝置15、軋 延時間預測算出裝置16、軋延時間調整裝置17、及能量消 耗量調整裝置18。 8 322913 201235123 控制裝置10所控制之熱軋作業線20,係具備有加熱 爐、以及具有連續配置的複數個軋延機架及配置於複數個 軋延機架間的冷卻喷水器之精軋機。在說明控制裝置10的 詳細内容之前’先參照第2圖來說明熱軋作業線20。第2 圖所示之熱軋作業線20具有加熱爐21、粗軋機23、精札 機26、及捲取機28。第2圖顯示被軋延材1〇〇已從加熱爐 21搬出之狀態。 從加熱爐21抽出的被軋延材100,係由可逆式的粗車匕 機23加以軋延。粗軋機23通常具有一台至數台之軋延機 架’且使被軋延材100往復移動而使之通過粗軋機23數 次’以在粗軋機的出口側將之軋延到目標的中間條板厚 度。以下將「使被軋延材100通過粗軋機23的軋延機架」 這件事稱為「道次(pass)」。 經粗軋機23加以軋延後,將被軋延材100從粗乾機 23的出口侧搬送至精軋機26的入口侧,利用由例如5至7 台軋延機架260構成之精軋機26將之軋延到希望的製品板 厚度。精軋機26的軋延機架260間,設有第2圖中省略而 未圖示之冷卻喷水器(ISC)。 另外,如第2圖所示,在粗軋機23的入口侧配置有粗 軋機入口側去銹皮器(descaler)22,在精軋機26的入口側 配置有精軋機入口側去銹皮器25。以及,在粗軋機23與 精軋機26間之搬送台區域配置有盤捲箱(c〇ii box)24。 從精軋機26搬出之被軋延材1〇〇,經冷卻裝置27加 以冷卻之後,由捲取機28加以捲繞成線圈狀。冷卻裝置 9 322913 201235123 2 7係為例如水冷裝置。 再者/σ著熱軋作業線20的被軋延材1〇〇的搬送方 :::置有粗軋機出口側溫度計29卜精軋機入口侧溫度 精乾機出口側溫度計293等之複數個溫度計。利 用此等溫度計來量測在熱軋作業線2()的各位置之被札延 材100的溫度。 接著,針對第1圖所示之控制裝置1〇進行說明。 作業條件處理裝置11,係從所輸入的作業資訊將必要 =作業條件PDI輸出至抽出間隔算出裝置12及初期排程計 算裝置14。作業資訊係作為係為為了實現希望的生產量而 設定之作業指令、以及操作者所指定之輸人f訊等而輸入 至控制裝置10。作業資訊中包含有針對預定軋延處理的複 數個被軋延材之軋延處理排程,係為包含有例如Fdt的目 標值、製品的板厚、板寬、送入加熱爐21之扁鋼胚(slab) 的板厚、板寬、長度、從加熱爐21抽出的溫度等之資訊。 抽出間隔算出裝置12,係根據被處理材的條數及總處 理時間專之作業條件PD I來异出依序從加熱爐21抽出的被 軋延材1 〇〇的抽出間隔時間tEX。抽出間隔時間tEX係為一 個被札延材1 〇 〇從加熱爐21抽出到下一個被札延材1 〇 〇從 加熱爐21抽出為止的時間》 目標軋延時間算出裝置13 ’係使用抽出間隔時間tEX 及作業資訊中所含的軋延速度之資訊等,來針對預定在熱 軋作業線20接受處理的被軋延材100而算出目標軋延時間 tTar 0 322913 10 201235123 初期排程計算裝置14,係根據作業條件PDI來算出為 了達成在精軋機出口侧之目標板厚及被軋延材溫度所必需 之控制基準值之初始值SV0。具體而言,係計算出軋延所 必需之輥隙(roll gap)、配置於熱軋作業線20之冷卻喷水 器(ISC)的流量、及在熱軋作業線2〇上搬送處理對象之被 軋延材100之軋延速度的速度模型。 排程修正裝置15,係以讓被軋延材1〇〇的全長都達成 目標精軋機出口側溫度(目標FDT)之方式修正ISC的流 量。而且,若只利用ISC的流量之修正並無法遍及全長地 讓精軋機出口側溫度(FDT)都與目標值一致時,則修正軋延 速度的速度模型。或者,若輸入與軋延速度的速度模型有 關之速度變更率αν時,則使用所輸入的速度變更率αν來 修正軋延速度的速度模型。 修正過的ISC的流量或速度模型,係作為用來控制熱 軋作業線20之控制基準值SV而輸出至熱軋作業線2〇。例 如,ISC的流量係輸出至用來調整配置於熱軋作業線2〇之 ISC的閥以控制流量之致動器(actuator),速度模型係輸 出至用來驅動精軋機26的軋延機架260的輥(r〇ii)之驅動 器(driver)。 軋延時間預測算出裝置16,係使用排程修正裝置15 所決定出之控制基準值SV中所含的速度模型來算出被軋 延材100的軋延所需時間tnn。 軋延時間調整裝置17,係比較軋延時間預測算出裝置 1 6所异出的札延所需時間trm、與目標札延時間算出裝置 322913 11 201235123 1 3所算出的目標軋延時間tTar。然後’以讓軋延所需時間 trin在目標札延時間tTar以内之方式算出乾延速度的速度變 更率αν。算出的速度變更率αν係輸出至排程修正裝置15。 能量消耗量調整裝置18 ’係根據排程修正裝置15所 算出之速度模型來計算設定於熱軋作業線20上之複數個 計算點處的軋延功率,並對計算出的軋延功率進行時間積 分來算出能量消耗量。軋延功率係利用驅動軋延機架之馬 達的驅動電流而算出。此外,在可削減能量消耗量之情況, 能量消耗量調整裝置18 ’係以讓能量消耗量最小化之方式 計算出速度變更率αν並將之輸出至排程修正裝置15。 如上所述,第1圖所示之控制裝置10,係以在令軋延 所需時間trm於目標軋延時間tTar以内之條件下使能量消耗 量最小化之方式,來決定ISC的流量以及在熱軋作業線2〇 上搬送之被軋延材100的軋延速度的速度模型。 以下,參照第3圖來說明利用第1圖所示之控制裝置 1〇來控制熱軋作業線20的方法之例。第3圖中,左側的 流程圖31表示軋延運轉期(rolling campaign)的計算方 法。所謂的「軋延運轉期」’係預定要連續地軋延處理之被 軋延材的單位,例如,在熱軋作業線20更換輥以前預定要 軋延處理之被軋延材的單位。第3圖中右側的流程圖%表 示預定要在熱軋作業線20處理之複數個被軋延材中的一 個’亦即對象被軋延材丨〇〇[a]的計算方法。對象被軋延材 100[a] ’係為isc的流量及速度模型的作成對象,係預定 在第a個接受軋延處理之被軋延材。 322913 12 201235123 首先針對流程圖31所示之處理進行說明。 在乂驟S311中’將從作業條件處理裝置11傳送過來 之軋延運轉期内的作業條件刚予以輸入至抽出間 裝置12。 在,驟S312中,抽出間隔算出裝置12根據作業條件 PDI來算出抽出間隔時間tEx[a]。此抽出間隔時間^㈤並 非根據每一條被軋延材,而是根據軋延運轉期及加熱爐作 業條件來決定。符號[a]表示與對象被軋延材1〇〇[a]有關 之數值(以下皆同)。 抽出間隔時間tEx[a],在例如由在加熱爐21内的加熱 時間所決定時,係由被軋延材100的加熱時間及抽入加熱 爐21、或預測將抽入加熱爐21的時刻所決定。 對象被軋延材l〇〇[a]的抽出間隔時間tEx[a],係使用 軋延運轉期' 或未軋延的被軋延材1〇〇的材數P、及對上 述的所有被軋延材進行軋延所需的時間的目標(以下稱之 為「目標總乳延時間」)tTgt,而以如下之式(1)來算出: tEx[a] = tTgt/P+f(FDTa[a], SGF[a], dh[a], 1 [a]) ···(!) 式(1)之右邊第二項係為修正項,係表示成目標精軋機出n 側溫度FDTa、材種分類SGF、總軋下量dh、軋延材長度1 之函數。該等參數的值均預先決定。 -(2) ...(3) 抽出間隔時間tEx[a]的總和必須與目標總軋延時間 相等,所以要滿足以下之式(2)、式(3)之關係: tigt = Σ tEx[a] I(f(FDTa[a],SGF[a],dh[a], l[a]))= 322913 13 201235123 式(2)、式(3)中,Σ表示從a=1到P之總和。 接著,在步驟S313中,目標軋延時間算出裝置13算 出目標軋延時間tTar。目標軋延時間tTar係以軋延運轉期内 的被軋延材為對象而算出。以下,說明目標軋延時間tTar 的計算方法。 預定在第a個接受軋延之對象被軋延材100[a]的目標 軋延時間tTar[a] ’必須使得對象被軋延材100[a]在接受軋 延時不會被接下來預定要軋延處理之第a+Ι個被軋延材 100[a+Ι]追上。因此,對象被軋延材丨00[a]的目標軋延時 間tTar[a],係依照以下之式(4)來算出: tTar[a] = tEX[a+l]+tR[a+l] -..(4) 式(4)中’ tR[a]係為對象被軋延材i〇〇[a]的精軋機軋 延開始位置到達時間。「精軋機軋延開始位置到達時間」係 對象被軋延材100[a]從加熱爐21抽出直到到達精軋機軋 延開始位置之時間。「精軋機軋延開始位置」可任意設定, 但在例如對象被軋延材l〇〇[a]與前面的被軋延材丨⑽^一幻 過於接近時,係設定在對象被軋延材l〇〇[a]待機之位置。 精軋機軋延開始位置到達時間tR[a],係以如下之式(5) 加以表示: tR[a] = Σ tRr[n] [a]+Σ ΐτ[η] [a]+tTFN[a] …(5) 式(5)中,Σ表示從n=l到NR之總和。NR係為粗軋機23的 軋延機架的數目。另外,tRr[n]係為在粗軋機23的第η個 軋延機架中的軋延所需時間,tT[n]係為粗軋機23的第η 個軋延機架入口側搬送時間,tm係為粗軋機23的最終軋 322913 14 201235123 延機架出口侧搬送時間。 精軋機軋延開始位置係位於比精軋機26要為靠近熱 軋作業線20的上游侧之位置。因此,在精軋機軋延開始位 置的上游之粗軋機23進行軋延時的速度或搬送被軋延材 的速度’並未受到溫度控制之影響。因此,在此階段可精 度良好地預測精軋機軋延開始位置到達時間tR[a]。 在粗軋機23進行軋延的途中對象被軋延材1〇〇[a]被 下一被軋延材追上時,必須變更對象被軋延材1〇〇[a]或下 一被軋延材的軋延速度。因此,在粗軋機23的第m台軋延 機架中,必須滿足以下之式(6)的條件:201235123 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a control arrangement for a hot rolling line for manufacturing a metal product. " [Prior Art] Generally, the 'hot rolling line system consists of: a heating furnace for heating the rolled material; a roughing mill for heating the rolled material (a roughing miu)* finishing mill; A cooling device for cooling the rolled material; and a coiler for winding the rolled and rolled material into a coil shape. The temperature history of the rolled material in the hot rolling line affects the properties (mechanical properties) of the milk-extruded material. Further, the temperature of the rolled material in the rolling treatment changes the hardness of the rolled product, which greatly affects the energy consumption required for the rolling treatment. Therefore, a thermometer is placed on the outlet side of the roughing mill of the hot rolling line, the inlet side of the finishing mill, and the outlet side of the finishing mill, and the temperature is measured. In order to achieve a desired material, the rolled material is adjusted to adjust the ambient temperature in the heating furnace to heat the rolled material. The "extraction interval" of the time until the rolled material is taken out from the heating furnace until the next rolled material is taken out from the heating furnace is determined by the operation conditions and the prediction of the transportation sequence to achieve the maximum production speed. For example, the extraction interval is determined as the shortest interval between the roll-rolled rolled material that has been rolled before and the subsequent rolled material that does not collide on the hot-working line. At this time, the flow rate of the cooling spray (hereinafter referred to as "ISC") between the rolling stands of the finishing mill (hereinafter referred to as "ISC") is adjusted, and the flow is carried out in the finishing mill. The rolling speed of the rolled web is determined for the entire length of the extruded web so that the temperature of the heated web at the exit side of the finishing machine is reached and maintained at the target temperature. As described above, in the rolling process of the rolled material, the rQlling schedule is planned in consideration of the material production of the product, and the hot rolling line is controlled accordingly. The temperature at the exit side of the finishing mill (hereinafter referred to as "fdt") is necessary to control the specified target value to ensure the material of the product. In addition, on the inlet side of the finishing mill, a phenomenon in which the temperature of the rolled product is lowered from the front end of the rolled product to the end is called "hermal rund"). Therefore, in order to maintain the FDT of the entire length of the rolled material at the target temperature, it is necessary to adjust the ISC flow rate while accelerating the entire length of the rolled material. On the other hand, in order to increase the production amount of the product, it is necessary to shorten the extraction interval of the rolled material. In order to shorten the extraction interval time, it is necessary to increase the rolling speed in the range where the rolled material does not collide with each other on the hot rolling line. However, in general, when the metal material is deformed, the stress (deformation resistance) required for deformation is increased as the deformation speed is the same even if the applied deformation is the same. Therefore, increasing the rolling speed increases the energy consumption required for rolling. Therefore, it is necessary to increase the rolling speed as much as possible within the range in which the FDT can be controlled to the target value, and it is necessary to reduce the rolling speed as much as possible to reduce the energy consumption. For the method of suppressing the energy consumption, there is a hot rolling line which is provided with a heating device before the finishing mill, and the maximum speed of the rolling by the finishing mill 5 322913 201235123 and the amount of the heating device are increased. A method of determining the maximum rolling speed of the finishing mill and the heating amount of the heating device has been proposed (refer to, for example, the patent document 然而 ° 'the method proposed in Patent Document 1 '1 does not take into consideration The problem of reducing the production volume caused by the reduction of the rolling speed. In addition, the method of predicting the calculation of the energy consumption amount has a method of predicting the rolling of each rolled product according to the actual working data of the rolling process. Time, and predicting the rolling time of each rolled material from the slab data in the heating furnace, predicting the rolling power of each rolled product according to the rolling processing amount, and predicting the rolling A method of extending the energy consumption of a factory has been proposed (refer to, for example, Patent Document 2). However, the method proposed in Patent Document 2 does not take into consideration the rolling speed change. [Prior Art] (Patent Document) Patent Document 1: Patent Document 2: Japanese Patent Application No. 3444267 (Japanese Patent Application Laid-Open No. Hei. No. Hei. Problem to be solved) In order to suppress the hot rolling as the purple θ, there is a time required for rolling and the consumption is reduced to reduce the dry stretching speed. When necessary, the extraction interval is determined by the method to ensure that the target production measure is achieved, although the target can be achieved. In terms of force, the increase in rolling speed is between I and the material, but there is energy consumption. 322913 6 201235123 The local moon clock is completed at the above problem, and its purpose is to provide rolling that can achieve the goal. A control device for a hot milk line which can reduce the time required and can suppress energy consumption. (Means for Solving the Problem) According to an aspect of the present invention, a control device for a hot work line is provided, wherein the hot rolling operation The wire system includes a heating furnace, a plurality of rolling stands having a continuous arrangement, and a finishing mill disposed between the plurality of drying frames, and the control device is provided with: There is operation information of a rolling schedule associated with a plurality of rolled materials to be rolled, and an extraction interval for extracting a plurality of rolled materials from the heating furnace is calculated. The calculation device calculates the target rolling time calculation device of the target rolling time of the target rolled material (which is one of the plurality of rolled materials) using the extraction interval time and the operation information 'based on the operation information The initial schedule calculation device for cooling the flow rate of the water sprayer and the speed pattern of the rolling speed of the rolled product to be rolled on the hot rolling line; correcting the flow rate of the cooling water sprayer and using only the cooling When the flow rate of the sprinkler is corrected so that the temperature at the exit side of the finishing mill is the target value over the entire length of the rolled product, and the speed change rate relating to the speed model is input, the schedule correction device for correcting the speed model is corrected. a rolling time prediction calculation device for calculating the time required for the rolling of the object to be rolled and rolled using the speed model; so that the time required for rolling is within the target rolling time In this way, the speed change rate is calculated, and the calculated speed change rate is output to the rolling time adjustment device of the schedule correction device; and the speed model is used to calculate the plurality of targets 7 322913 201235123 set on the hot rolling line. Rolling power, time-integrating the rolling power to obtain energy consumption, and calculating the speed change rate in such a manner that the energy consumption is minimized and outputting it to the energy consumption adjusting device of the scheduling correction device, Further, in the range of the rolling time required for the rolling, which is below the target rolling time, the control device for the flow rate and velocity model of the cooling water sprayer which minimizes the energy consumption is determined. (Effects of the Invention) According to the present invention, it is possible to provide a control device for a hot rolling line which can achieve the desired rolling time and can suppress the amount of energy consumption. [Embodiment] Hereinafter, first to fourth embodiments of the present invention will be described in detail with reference to the drawings. In the description of the following drawings, the same or similar parts are denoted by the same or similar symbols. In the embodiment shown in the present invention, the configuration and arrangement of the components of the present invention are not limited to the following. Embodiments of the present invention can be modified in various ways within the scope of the patent application. (First Embodiment) A control device 10 for a hot rolling line according to a first embodiment of the present invention is a control device for a hot rolling line 20 as shown in Fig. 1, and includes a working condition processing device 11 and an extraction interval. The calculation device 12, the target rolling time calculation device 13, the initial schedule calculation device 14, the schedule correction device 15, the rolling time prediction calculation device 16, the rolling time adjustment device 17, and the energy consumption amount adjustment device 18. 8 322913 201235123 The hot rolling line 20 controlled by the control device 10 is provided with a heating furnace, a finishing mill having a plurality of rolling stands continuously arranged, and a cooling water sprayer disposed between the plurality of rolling stands . Before describing the details of the control device 10, the hot rolling line 20 will be described with reference to Fig. 2 first. The hot rolling line 20 shown in Fig. 2 has a heating furnace 21, a roughing mill 23, a finishing machine 26, and a coiler 28. Fig. 2 shows a state in which the rolled material 1 has been taken out from the heating furnace 21. The rolled product 100 taken out from the heating furnace 21 is rolled by a reversible roughing machine 23. The roughing mill 23 usually has one to several rolling stands 'and reciprocating the rolled material 100 to pass through the roughing mill 23 several times' to roll it to the center of the target at the exit side of the roughing mill Strip thickness. Hereinafter, the term "passing the rolled frame 100 through the rolling stand of the roughing mill 23" is referred to as "pass". After rolling by the roughing mill 23, the rolled product 100 is transferred from the outlet side of the roughing machine 23 to the inlet side of the finishing mill 26, and the finishing mill 26 composed of, for example, 5 to 7 rolling stands 260 will be used. Rolling is carried out to the desired thickness of the product panel. In the rolling stand 260 of the finishing mill 26, a cooling water sprayer (ISC), which is omitted in Fig. 2 and not shown, is provided. Further, as shown in Fig. 2, a roughing mill inlet side descaler 22 is disposed on the inlet side of the roughing mill 23, and a finishing mill inlet side descaling device 25 is disposed on the inlet side of the finishing mill 26. Further, a coil box 24 is disposed in the transfer table region between the roughing mill 23 and the finishing mill 26. The rolled product taken out from the finishing mill 26 is cooled by a cooling device 27, and then wound up in a coil shape by a coiler 28. Cooling device 9 322913 201235123 2 7 is for example a water cooling device. In addition, the carrier of the rolled product 1 of the hot rolling line 20 is: a plurality of thermometers provided with a roughing mill outlet side thermometer 29, a finishing mill inlet temperature, a refiner outlet side thermometer 293, and the like. . These thermometers are used to measure the temperature of the stranded material 100 at each position of the hot rolling line 2(). Next, the control device 1A shown in Fig. 1 will be described. The work condition processing device 11 outputs the necessary = work condition PDI to the extraction interval calculation device 12 and the initial schedule calculation device 14 from the input job information. The job information is input to the control device 10 as a work command set to achieve a desired throughput, an operator input designated by the operator, and the like. The operation information includes a rolling process schedule for a plurality of rolled products for a predetermined rolling process, which is a target value including, for example, Fdt, a thickness of the product, a plate width, and a flat steel fed to the heating furnace 21. Information on the thickness of the slab, the width of the plate, the length, and the temperature extracted from the heating furnace 21. The extraction interval calculation device 12 separates the extraction interval time tEX of the rolled material 1 抽 which is sequentially extracted from the heating furnace 21 in accordance with the number of the materials to be processed and the total processing time PDI. The extraction interval time tEX is the time from the extraction of the heat exchanger 21 from the heating furnace 21 to the extraction of the next heat exchanger 21 from the heating furnace 21. The target rolling time calculation device 13' uses the extraction interval. The information on the rolling speed included in the time tEX and the operation information is calculated for the rolled material 100 scheduled to be processed on the hot rolling line 20, and the target rolling time tTar 0 322913 10 201235123 initial scheduling calculation device 14 is calculated. The initial value SV0 of the control reference value necessary for achieving the target thickness and the temperature of the rolled material at the exit side of the finishing mill is calculated based on the working condition PDI. Specifically, a roll gap necessary for rolling, a flow rate of a cooling water sprayer (ISC) disposed on the hot rolling line 20, and a transfer processing target on the hot rolling line 2 are calculated. The speed model of the rolling speed of the rolled web 100. The schedule correction device 15 corrects the flow rate of the ISC so that the entire length of the rolled material 1 达成 is reached at the target finishing mill exit temperature (target FDT). Further, if the correction of the flow rate of the ISC is not used to make the finishing mill side temperature (FDT) coincide with the target value over the entire length, the speed model of the rolling speed is corrected. Alternatively, when the speed change rate αν associated with the speed model of the rolling speed is input, the speed model of the rolling speed is corrected using the input speed change rate αν. The flow rate or velocity model of the corrected ISC is output to the hot rolling line 2 as a control reference value SV for controlling the hot rolling line 20. For example, the flow rate of the ISC is output to an actuator for adjusting the valve of the ISC disposed on the hot rolling line 2 to control the flow rate, and the speed model is output to the rolling stand for driving the finishing mill 26. 260 roller (r〇ii) driver. The rolling time prediction calculation device 16 calculates the time required to roll the rolled material 100 by using the speed model included in the control reference value SV determined by the schedule correction device 15. The rolling time adjustment device 17 compares the time required to be delayed by the rolling time prediction calculation device 16 and the target rolling time tTar calculated by the target zapping time calculation device 322913 11 201235123 1 3 . Then, the speed change rate αν of the dry extension speed is calculated so that the time required for rolling is trin within the target delay time tTar. The calculated speed change rate αν is output to the schedule correction device 15. The energy consumption amount adjusting device 18' calculates the rolling power at a plurality of calculation points set on the hot rolling line 20 based on the velocity model calculated by the scheduling correction device 15, and performs time on the calculated rolling power. Integrate to calculate the energy consumption. The rolling power is calculated by the driving current of the motor that drives the rolling stand. Further, when the amount of energy consumption can be reduced, the energy consumption amount adjusting device 18' calculates the speed change rate αν so as to minimize the energy consumption amount, and outputs it to the schedule correction device 15. As described above, the control device 10 shown in Fig. 1 determines the flow rate of the ISC and the method of minimizing the amount of energy consumption under the condition that the rolling required time trm is within the target rolling time tTar. A speed model of the rolling speed of the rolled product 100 conveyed on the hot rolling line 2 . Hereinafter, an example of a method of controlling the hot rolling line 20 by the control device 1A shown in Fig. 1 will be described with reference to Fig. 3. In Fig. 3, a flow chart 31 on the left side shows a calculation method of a rolling campaign. The "rolling operation period" is a unit of the rolled material to be continuously rolled, for example, a unit of the rolled material to be subjected to the rolling treatment before the hot rolling line 20 is replaced. The flow chart % on the right side in Fig. 3 shows the calculation method of one of the plurality of rolled products to be processed in the hot rolling line 20, that is, the object to be rolled 丨〇〇 [a]. The target rolled product 100[a] ' is a target for the flow rate and velocity model of isc, and is intended to be rolled at the a-th rolling process. 322913 12 201235123 First, the processing shown in flowchart 31 will be described. In step S311, the working conditions in the rolling operation period transmitted from the working condition processing device 11 are immediately input to the drawing device 12. In step S312, the extraction interval calculation means 12 calculates the extraction interval time tEx[a] based on the operation condition PDI. This extraction interval ^(5) is not determined according to the rolling schedule of each strip, but is determined according to the rolling operation period and the furnace operating conditions. The symbol [a] indicates the value (the same applies hereinafter) relating to the object to be rolled 1 〇〇 [a]. The extraction interval time tEx[a] is determined by the heating time of the rolled material 100 and the time of drawing into the heating furnace 21 or predicting that the heating furnace 21 is to be drawn, for example, when the heating time in the heating furnace 21 is determined. Determined. The extraction interval time tEx[a] of the object to be rolled and rolled material l〇〇[a] is the number of times P of the rolled-rolling operation period or the unrolled rolled material 1〇〇, and all the above-mentioned The target of the time required for the rolling of the rolled material (hereinafter referred to as "target total emulsion delay time") tTgt is calculated by the following formula (1): tEx[a] = tTgt/P+f(FDTa [a], SGF[a], dh[a], 1 [a]) ···(!) The second term on the right side of equation (1) is the correction term, which indicates that the target finishing mill has the n-side temperature FDTa , the classification of the material type SGF, the total rolling amount dh, and the length of the rolled material 1. The values of these parameters are predetermined. -(2) ...(3) The sum of the extraction interval time tEx[a] must be equal to the target total rolling time, so the relationship of the following equations (2) and (3) is satisfied: tigt = Σ tEx[ a] I(f(FDTa[a], SGF[a], dh[a], l[a]))) = 322913 13 201235123 In equations (2) and (3), Σ denotes from a=1 to P The sum of them. Next, in step S313, the target rolling time calculation means 13 calculates the target rolling time tTar. The target rolling time tTar is calculated for the rolled material during the rolling operation period. Hereinafter, a calculation method of the target rolling time tTar will be described. The target rolling time tTar[a] ' of the object to be rolled and rolled 100[a], which is scheduled to be rolled over at the ath, must be such that the object being rolled and rolled 100[a] will not be scheduled for the next rolling delay. The a+th rolled product 100[a+Ι] of the rolling process is caught up. Therefore, the target rolling time tTar[a] of the object to be rolled 丨00[a] is calculated according to the following formula (4): tTar[a] = tEX[a+l]+tR[a+l ] - (4) In the formula (4), 'tR[a] is the rolling mill start position arrival time of the finish rolling mill i〇〇[a]. The "finishing mill rolling start position arrival time" is the time at which the rolled product 100 [a] is taken out from the heating furnace 21 until it reaches the rolling mill start position. The "rolling mill rolling start position" can be arbitrarily set. However, for example, when the target rolled material l〇〇[a] is too close to the front rolled material 10(10)^, it is set in the object to be rolled. L〇〇[a] Standby position. The rolling mill start position arrival time tR[a] is expressed by the following formula (5): tR[a] = Σ tRr[n] [a]+Σ ΐτ[η] [a]+tTFN[a ] (5) In the formula (5), Σ represents the sum from n = 1 to NR. The NR system is the number of rolling stands of the roughing mill 23. Further, tRr[n] is the time required for rolling in the n-th rolling stand of the roughing mill 23, and tT[n] is the inlet-side transfer time of the n-th rolling stand of the roughing mill 23, The tm is the final rolling of the roughing mill 23, 322913 14 201235123. The finishing rolling start position is located closer to the upstream side of the hot rolling line 20 than the finishing mill 26. Therefore, the speed at which the roughing mill 23 upstream of the rolling mill start position is rolled or the speed at which the rolled material is conveyed is not affected by the temperature control. Therefore, at this stage, the finish rolling mill start position arrival time tR[a] can be accurately predicted. When the object to be rolled and rolled 1 〇〇 [a] is caught by the next rolled material in the middle of the rolling of the roughing mill 23, it is necessary to change the object to be rolled and rolled 1 〇〇 [a] or the next rolling. The rolling speed of the material. Therefore, in the mth rolling stand of the roughing mill 23, the following condition (6) must be satisfied:

ImtRr[n][a]+ImtT[n][a]^tEx[a+l]+Zm-itRr[n][a-fl] +ImtRr[n][a]+ImtT[n][a]^tEx[a+l]+Zm-itRr[n][a-fl] +

ImtT[n][a+l] …(6) 式(6)中,Σ««表示從η=ι到m之總和,Σπ^表示從n=1到 m-Ι之總和。 此處所算出之各被軋延材1〇〇的抽出間隔時間tEx[a] 及精軋機軋延開始>(立置到達時間tR[a],係使用於乾延時間 調整裝置17所進行之軋延所需時間tno與目標軋延時間tTar 之比較中。 至此,流程圖31所示之處理結束。 —如上述,在進行針對軋延運轉期之流程圖31所示的計 算之時點’已預先進行目標軋延時間tTar之計算。另外, 在#作者藉由手動介人等而變更了乳延速度或抽出間隔時 間tEX時’必須再重新計算目標乳延時間w。 接著’說明針對對象被軋延材l〇〇[a]之流程圖32所 322913 15 201235123 執行針對對象被軋延材1〇〇[a]的計算之時點, 二在對對象被軋延材酬a]it行軋延之前的任意時點進 件處==321中,初期排程計算裝置14接收從作業條 發送過來之對象被軋轉關3]的作業條 在步驟S322中’初期排程計算襄置14根據作業條件 PDI而崎齡計#。在排料#+,為了達成在精乾機 出口侧的目標板厚及軋延材溫度,而根據減作業線別的 作業條件及操作者的輸人資料,來決定乾延所需之親隙、 冷卻水的流量及被軋延材100之在精軋機26接受軋延中的 速度模型等。 第4圖顯示作為與精軋機26有關之排程計算的對象之 精軋機排程計算區域。為了預測對象被軋延材1〇〇[a]的溫 度,將設置在精軋機26的各軋延機架間之isc 265的流量 的影響列入考慮,而由初期排程計算裝置14進行從精軋機 入口側溫度計292到精軋機出口側溫度計293之溫降計算。 此時,由於熱緩降或對象被軋延材100[a]的加減速, 在對象被軋延材l〇〇[a]的長度方向各位置,要達成目標 FDT所必需的ISC 265的流量會不同。因此,有必要對於 對象被軋延材1 〇〇[a]的長度方向的任意個計算點逐一進行 溫降計算。以下將該計算點稱為「標的點」。第5圖(a)至 (c)顯示被軋延材的片段編號及標的點編號。 第5圖(a)顯示被軋延材100,圖右端為前端,圖左端 16 322913 201235123 為尾端。為了以容易看懂的方式來顯示被軋延材100的長 度方向的任意的點,將假想地等間隔分割被軋延材100而 分割出的單位稱為片。第5圖(b)顯示被軋延 材100的片段。為了簡單起見,片段編號係從被軋延材100 的前端到尾端依序編列。第5圖(c)顯示標的點編號。標的 點0至Μ係經過選擇之軋延處理中之重要的點。標的點係 設定為例如咬入點、軋延速度會為最大之中間點、溫度會 為最低之尾端點等。 在第3圖之步驟S323至S325中,排程修正裝置15係 計算出可在對象被軋延材1〇〇的全長都達成目標FDT之如 以下的ISC 265的流量及速度模型。 在步驟S323中’排程修正裝置15計算可達成目標FDT 之ISC 265的流量。為此,使ISC 265的流量變化而進行 溫降計算’並以讓計算出的FDT與目標FDT —致之方式進 行收斂計算。關於使ISC 265的流量變化時的收斂計算的 詳細内容將在後面說明。 在即使應用了以上述收斂計算而得到的ISC 265的流 量而無法達到目標FDT時,就有必要變更軋延速度的速度 模型來達成目標FDT。具體而言,若在修正了 ISC 265的 流量時也無法在任一個標的點達到目標FDT時,則在步驟 S324中’排程修正裝置15將之判定為無法在被軋延材 的全長都達成目標FDT。此時,為了變更速度模型來達成 目標FDT,在步驟S325中,排程修正裝置15對軋延速度 的速度模型進行修正。關於速度模型的修正方法的詳細内 322913 17 201235123 容將在後面說明。 修正過速度模型之後,處理回到步驟S323,使用$ 過的速度模型來再度計算ISC 265的流量。重複步驟 至S325,直到決定出在對象被軋延材l〇〇[a]的全長都達成 目標FDT之速度模型。 接著,在步驟S326中,軋延時間預測算出裝置16 1 算對象被軋延材100[a]的軋延所需時間trn[a]。軋延所需 時間Wa]係由以下的式(7)加以表示: trm[a] = tR[a]+tF[a] ...(7) 式(7)中,tF[a]係為從精軋機軋延開始位置開始,一直到 對象被軋延材100[a]的尾端脫離精軋機26所需的軋延時 間(以下稱之為「精軋機軋延時間」)。 在步驟S326中,係從經排程修正裝置15加以修正過 的速度模型來計算軋延所需時間trm[a]。如式(7)所示,依 照式(5)而算出之精軋機軋延開始位置到達時間。^]與 軋機軋延時間tF[a]之和即為軋延所需時間trm[a]。 接著’在步驟S327至S329中,由軋延時間調整裝 延所需時間^]在目標軋延時間Wa]以内之 方式计算出速度變更率αν。 間t=rs327 47 ’判斷步驟S326中算出的軋延所需時 322913 201235123 置到達時間tR[a]後之對象被軋延材i〇〇[a]到達精軋機軋 延開始位置的那個時點的狀態。此時,只要在對象被軋延 材100[a]之後接受處理之被軋延材i〇〇[a+1]的抽出間隔 時間tEx[a+l]比對象被軋延材100[纠的抽出間隔時間tEX[a] 小’就將被軋延材1〇〇[&+1]從加熱爐21抽出。第6圖(c) 顯不在精軋機軋延時間“[a]後之對象被軋延材i〇〇[a]的 精軋機軋延結束的那個時點的狀態。 為了使軋延所需時間tda]在目標FDT以内,對象被 札延材100[a]必須在不被下一個被軋延材追上的情況下到 達精軋機軋延開始位置。因此,對象被軋延材1〇〇[a]的精 軋機軋延開始位置到達時間tR[a]與精軋機軋延時間tF[a] 的和’只要比被軋延材l〇〇[a+l]的抽出間隔時間tEx[a+1] 與精軋機軋延開始位置到達時間tR[a+l]的和小即可,亦 即’只要滿足以下之式(8)即可: tR[a]+tF[a] (cur) S tEx[a+l ]+tR[a+l ]-deltaM …(8) 式(8)中,deltaM表示餘裕的時間,係為了避免被軋延材 相互間在熱軋作業線20内靠得太近而預先設定的固定 值。此外’ tF[a](cur)係精軋機軋延時間tF[a]的現在值。 若滿足式(8)的條件,處理就前進到步驟S330,進行 消耗能量之計算。 若不滿足式(8)的條件,則在第3圖之步驟S328中, 判斷是否可變更ISC 265的流量、速度模型。若可變更, 就在步驟S329中計算速度變更率〇;v。是否能變更isc 265 的流量、速度模型,係根據ISC 265的最大流量及驅動軋 322913 19 201235123 延機架260的馬達的能力等來進行判斷。 另一方面,在步驟S328中若不能變更IS(: 265的流 量、速度模型,軋延時間調整裝置17就將之判斷為已無法 進一步變更精軋機軋延時間tF[a]。此時,就不進行速度模 型的修正,而使處理前進到步驟S330。 上述之步驟S329的速度變更率計算,係針對可滿足式 (8)之在精軋機26中的軋延速度來計算速度變更率αν。新 的精軋機軋延時間tF[a](new),係依照以下之式來算 出: tp[a](new) = tEX[a+l ]+tR[a+l ]-tR[a]-deltaM ...(9) 軋延時間調整裝置17係比較精軋機軋延時間的現在 值tF[a](cur)及精軋機軋延時間的目標速度,而用以下的 式(10)來計算必需的速度變更率: av = Cix(tp[a](cur)/tF[a](new)) ".(10) 式(10)中,C!係依經驗而決定之常數,係為固定值或資料 庫中記錄的表中之值。 在步驟S329中計算出精軋機速度的速度變更率之 後,使用該速度變更率αν來在步驟S325中進行速度模型 的修正,然後再在步驟S323中進行ISC 265的流量的修正 計算。藉此,修正速度模型及ISC 265的流量以期能夠達 到目標FDT。 在步驟S327中軋延所需時間trm[a]在目標軋延時間 tTar[a]以内時、或是在步驟S328中已無法進一步變更isc 265的流量及速度模型時,處理前進到步驟S33〇,計算對 322913 20 201235123 象被軋延材l〇〇[a]的軋延所需的能量消耗量。 在步驟S330至S333中’能量消耗量調整裝置18計算 能量消耗量’並計算使能量消耗量最小化所必需的速度變 更率α V。 步驟S330中之能量消耗量之計算,係使用排程修正裝 •.置15所計算出之速度模型來計算在標的點之軋延功率 • (kW)。能量消耗量調整裝置18使用計算出的軋延功率,來 計算從對象被軋延材l〇〇[a]被咬入到對象被軋延材100[a] 的尾端脫離為止,亦即在對象被軋延材100[a]的全長之能 量消耗量(kWh)。 對對象被軋延材100[a]進行軋延所必需之能量消耗量 EP ’係由以下的式(11)加以表示: ΕΡ =ΣΕ卜S{(l/3600)xSPWjWdt} …⑴) 式(11)中,S dt表示從t=〇到s之時間積分。此處,s(sec) 為軋延時間。另外,Σ表示粗軋機23及精軋機26所做的 所有軋延的和,Ej(kWh)係第j次的壓延的能量消耗量,「第 j次的壓延」係為粗軋機23的道次(R[i]至r[Nrp])及精軋 機26的軋延機架1至NP之任一者中的軋延之意。 式(11)之在標的點i的軋延功率Pffi(kw)係如以下般算 出:ImtT[n][a+l] (6) In the formula (6), Σ«« represents the sum from η=ι to m, and Σπ^ represents the sum from n=1 to m-Ι. The extraction interval time tEx[a] and the finish rolling start start> (the stand-up arrival time tR[a] of each of the rolled and rolled materials 1 calculated here are used in the dry extension time adjusting device 17 The rolling required time tno is compared with the target rolling time tTar. Up to this point, the processing shown in the flowchart 31 is completed. - As described above, the time point "the calculation shown in the flowchart 31 of the rolling operation period is performed" The calculation of the target rolling time tTar is performed in advance. In addition, when the author changes the milking speed or the extraction interval tEX by manual intervention, etc., the target milking time w must be recalculated. Flowchart l〇〇[a] Flowchart 32 322913 15 201235123 Execution of the calculation of the object being rolled and rolled 1〇〇[a], the second is rolling on the object In the previous arbitrary point entry==321, the initial schedule calculation device 14 receives the job bar from which the object sent from the job bar is rolled and turned off 3]. In step S322, the initial schedule calculation device 14 is based on the working condition. PDI and the age of the meter #. In the discharge #+, in order to achieve in the fine The target thickness on the exit side of the dryer and the temperature of the rolled and rolled material, and the required clearance, cooling water flow and rolled material are determined according to the operating conditions of the reduction line and the operator's input data. The finishing mill 26 receives the speed model in the rolling and the like. Fig. 4 shows the finishing mill scheduling calculation area which is the object of the schedule calculation relating to the finishing mill 26. In order to predict the object being rolled and rolled 1 〇〇 [ The temperature of a] takes into consideration the influence of the flow rate of the isc 265 disposed between the rolling stands of the finishing mill 26, and is performed by the initial scheduling calculation device 14 from the finishing mill inlet side thermometer 292 to the finishing mill exit side. The temperature drop of the thermometer 293 is calculated. At this time, due to the thermal slowdown or the acceleration/deceleration of the object to be rolled 100 [a], the target FDT is achieved at each position in the longitudinal direction of the object to be rolled. The flow rate of the necessary ISC 265 is different. Therefore, it is necessary to calculate the temperature drop one by one for any calculation point in the longitudinal direction of the object to be rolled 1 〇〇 [a]. The calculation point is hereinafter referred to as the "target point. Figure 5 (a) to (c) show the piece of rolled material Number and target point number. Figure 5 (a) shows the rolled material 100, the right end of the figure is the front end, and the left end of the figure 16 322913 201235123 is the end. In order to display the length direction of the rolled material 100 in an easy-to-understand manner. Any point that is imaginarily divided into the rolled material 100 at equal intervals is referred to as a sheet. Fig. 5(b) shows a fragment of the rolled material 100. For the sake of simplicity, the fragment number is from the The front end to the end end of the rolled web 100 are sequentially arranged. Figure 5 (c) shows the marked point number. The target point 0 to the tantalum is an important point in the selected rolling process. The target point is set to, for example, the bite point, the intermediate point where the rolling speed will be the maximum, and the end point where the temperature will be the lowest. In steps S323 to S325 of Fig. 3, the schedule correction means 15 calculates a flow rate and velocity model of the ISC 265 which can achieve the target FDT for the entire length of the object being rolled. In step S323, the schedule correction means 15 calculates the flow rate of the ISC 265 at which the target FDT can be achieved. To this end, the flow rate of the ISC 265 is changed to perform the temperature drop calculation' and the convergence calculation is performed in such a manner that the calculated FDT is compared with the target FDT. The details of the convergence calculation when the flow rate of the ISC 265 is changed will be described later. Even if the target FDT cannot be achieved even if the flow rate of the ISC 265 obtained by the above convergence calculation is applied, it is necessary to change the speed model of the rolling speed to achieve the target FDT. Specifically, if the target FDT cannot be reached at any of the target points when the flow rate of the ISC 265 is corrected, the schedule correction device 15 determines in step S324 that the target cannot be achieved for the entire length of the rolled material. FDT. At this time, in order to change the speed model to achieve the target FDT, the schedule correction device 15 corrects the speed model of the rolling speed in step S325. The details of the correction method of the speed model are described in 322913 17 201235123. After the speed model is corrected, the process returns to step S323, and the flow rate of the ISC 265 is recalculated using the used speed model. The steps are repeated until S325 until it is determined that the velocity model of the target FDT is achieved over the entire length of the object being rolled. Next, in step S326, the rolling time prediction calculation means 16 1 calculates the rolling required time trn [a] of the object to be rolled 100 [a]. The time required for rolling is determined by the following formula (7): trm[a] = tR[a]+tF[a] (7) In the formula (7), tF[a] is The rolling time required for the finishing end of the finishing mill 100 [a] to be separated from the finishing mill 26 (hereinafter referred to as "finishing mill rolling time") is started from the rolling mill starting position. In step S326, the time required to be rolled, trm[a], is calculated from the speed model corrected by the schedule correction means 15. As shown in the formula (7), the finish rolling mill start position arrival time calculated in accordance with the formula (5). The sum of the rolling time tF[a] of the rolling mill is the time trm[a] required for rolling. Then, in steps S327 to S329, the speed change rate αν is calculated so as to be within the target rolling time Wa by the time required for the rolling time adjustment and elongation. Between t = rs327 47 'determination of the rolling delay time calculated in step S326 322913 201235123 After the arrival time tR [a], the object to be rolled and rolled i 〇〇 [a] at the point of the rolling mill start position status. At this time, as long as the extraction interval time tEx[a+l] of the rolled material i〇〇[a+1] subjected to the treatment after the object is rolled and rolled 100[a] is larger than the object to be rolled 100 [corrected] When the extraction interval tEX[a] is small, the rolled material 1〇〇[&+1] is taken out from the heating furnace 21. Fig. 6(c) shows the state at the time when the finish rolling mill of the finishing mill rolling time "[a] is finished rolling and rolling mill i〇〇[a] is finished. The time required for rolling is tda In the target FDT, the object is rolled to the finishing position of the finishing mill without being caught by the next rolled material 100[a]. Therefore, the object is rolled and rolled. The sum of the rolling mill start position arrival time tR[a] and the finishing mill rolling time tF[a] is as long as the extraction interval tEx[a+1 is longer than the rolled material l〇〇[a+l] ] and the sum of the rolling mill start position arrival time tR[a+l] is small, that is, 'as long as the following formula (8) is satisfied: tR[a]+tF[a] (cur) S tEx [a+l]+tR[a+l]-deltaM (8) In the formula (8), deltaM represents the time of the margin, in order to prevent the rolled materials from being too close to each other in the hot rolling line 20. And a predetermined fixed value. Further, 'tF[a](cur) is the current value of the rolling mill rolling time tF[a]. If the condition of the formula (8) is satisfied, the process proceeds to step S330 to perform energy consumption. If the condition of equation (8) is not satisfied, In step S328 of Fig. 3, it is determined whether or not the flow rate and velocity model of the ISC 265 can be changed. If the change is possible, the speed change rate 〇 is calculated in step S329; v. Whether the flow rate and speed model of the isc 265 can be changed is Judgment is made based on the maximum flow rate of ISC 265 and the ability to drive the motor of 352913 19 201235123 to extend the frame 260. On the other hand, if the flow rate and velocity model of IS (: 265 cannot be changed in step S328, the rolling time adjustment is performed. The device 17 determines that the finish rolling mill rolling time tF[a] cannot be further changed. At this time, the speed model is not corrected, and the process proceeds to step S330. The speed change rate calculation of the above step S329 is performed. The speed change rate αν is calculated for the rolling speed in the finishing mill 26 which satisfies the formula (8). The new finishing mill rolling time tF[a](new) is calculated according to the following formula: tp[ a](new) = tEX[a+l ]+tR[a+l ]-tR[a]-deltaM (9) The rolling time adjusting device 17 compares the current value tF of the rolling mill rolling time [ a] (cur) and the target speed of the finishing mill rolling time, and are calculated by the following formula (10) Required speed change rate: av = Cix(tp[a](cur)/tF[a](new)) ".(10) In equation (10), C! is a constant determined by experience. The fixed value or the value in the table recorded in the database. After the speed change rate of the finishing mill speed is calculated in step S329, the speed model is corrected in step S325 using the speed change rate αν, and then in step S323. The correction calculation of the flow of the ISC 265 is performed. In this way, the speed model and the flow of the ISC 265 are corrected to achieve the target FDT. When the rolling required time trm[a] is within the target rolling time tTar[a] in step S327, or the flow rate and speed model of the isc 265 cannot be further changed in step S328, the process proceeds to step S33. Calculate the energy consumption required for the rolling of 322913 20 201235123 like the rolled material l〇〇[a]. The energy consumption amount adjusting means 18 calculates the energy consumption amount in steps S330 to S333 and calculates the speed change rate ?V necessary for minimizing the energy consumption amount. The calculation of the energy consumption amount in step S330 is performed by using the speed correction model calculated by the schedule correction device to calculate the rolling power at the target point (kW). The energy consumption amount adjusting device 18 calculates, using the calculated rolling power, that the object to be rolled material l〇〇[a] is bitten into the tail end of the object to be rolled material 100[a], that is, The energy consumption (kWh) of the entire length of the object to be rolled 100 [a]. The energy consumption amount EP ' necessary for rolling the object to be rolled 100 [a] is expressed by the following formula (11): ΕΡ = S S S{(l/3600)xSPWjWdt} (1)) In 11), S dt represents the time integral from t = 〇 to s. Here, s(sec) is the rolling time. In addition, Σ indicates the sum of all the rollings performed by the roughing mill 23 and the finishing mill 26, and Ej (kWh) is the energy consumption amount of the jth rolling, and the "jth rolling" is the pass of the roughing mill 23. Rolling of any of the rolling stands 1 to NP of (R[i] to r[Nrp]) and finishing mill 26 is intended. The rolling power Pffi(kw) of the formula (11) at the point i is calculated as follows:

Pwi - (1000xViXGi)/Ri + PffL〇SSi ”·(12) 式(12)之軋延輥速Vi(m/s)、輥轉矩Gi(kNm)、輥半徑Ri (mm)、損失功率pffLQSSi(kW),係使用排程修正裝置15所算 出之值或依經驗所得到之值。 322913 21 201235123 軋延功率Pwi係如式(12)所示,與軋延輥速Vi及輥轉矩 Gi成比例而變化。第7圖顯示在被軋延材長度方向之軋延 功率Pffi的變化。第7圖之粗線部A表示軋延功率Pwi的變 化,標的點間的值係做線性插值而得。面積E〇至E4分別表 示標的點間的能量消耗量。第7圖之晝斜線表示的面積即 為能量消耗量。亦即,能量消耗量係以如下的式(13)加以 表不. S Pwi(t)dt =Σ {(Pwi+Pw(i+i))xSi/2} …(13) 式(13)中,S dt表示從t=0到s之時間積分,Σ表示i=0 到Μ之總和。Μ為最終標的點。此外,Si表示標的點間之軋 延時間,此Si係以依速度變化情形之不同而異的手段來算 出。例如,使用ISC 265來控制FDT時,標的點間的速度 係根據指定的加速度而以等加速度變化。因此,軋延時間 Si係以如下的式(14)加以表示:Pwi - (1000xViXGi)/Ri + PffL〇SSi "·(12) Rolling speed Vi (m/s) of formula (12), roll torque Gi (kNm), roll radius Ri (mm), loss power pffLQSSi (kW) is a value calculated by the schedule correction device 15 or a value obtained empirically. 322913 21 201235123 Rolling power Pwi is as shown in the formula (12), and the rolling roll speed Vi and the roll torque Gi It varies proportionally. Figure 7 shows the change in rolling power Pffi in the length direction of the rolled material. The thick line A in Fig. 7 shows the change in rolling power Pwi, and the value between the points is linearly interpolated. The area E〇 to E4 respectively represent the energy consumption between the target points. The area indicated by the oblique line in Fig. 7 is the energy consumption. That is, the energy consumption is expressed by the following formula (13). S Pwi(t)dt = Σ {(Pwi+Pw(i+i))xSi/2} (13) In the formula (13), S dt represents the time integral from t=0 to s, and Σ denotes i= 0 is the sum of Μ. Μ is the final target point. In addition, Si represents the rolling time between the target points. This Si is calculated by means of the difference in speed. For example, when using ISC 265 to control FDT Subject The speed between the points changes at an equal acceleration according to the specified acceleration. Therefore, the rolling time Si is expressed by the following formula (14):

Si = 2Li / (Vm+Vi) …(14) 式(14)中,Li為各標的點間的距離。 在步驟S330之能量消耗量的計算之後,在步驟S331 中,能量消耗量調整裝置18判定是否可削減能量消耗量。 在軋延時間調整裝置17先前判定為已無法進一步變更精 軋機的軋延時間時,或者是在剛完成的能量消耗量的計算 中判斷為不可能削減能量消耗量時,能量消耗量調整裝置 18就不變更速度變更率αν,且在步驟S334中排程修正裝 置15將控制基準值SV予以輸出,然後結束處理。 另一方面,可削減能量消耗量時,則在步驟S332中判 22 322913 201235123 定是否可變更ISC 265的流量、速度模型。若可變更ISC 265 的流量、速度模型,就在步驟S333中計算新的速度變更率 a v ° 是否可削減能量消耗量,係以例如以下所述的方式來 判定。 . 能量消耗量一般而言,只要減低軋延速度就會減少。 ••此係因為軋延所需的形變速度變小’軋延負荷就變小的緣 故。另一方面,在軋延機架的輥與被軋延材之間施加有潤 滑油時(潤滑乾延),軋延速度越增大,潤滑油的膜厚就越 變厚’輥與被軋延材之間的摩擦所產生的發熱量就降低, 熱軋作業線的能量消耗量就會減少。通常,前者的影響較 大0 因此,在第一次的能量消耗量的計算中朝向使軋延速 度降低的方向來決定速度變更率αν,然後在第二次以後的 能量消耗量的計算中使用速度變更率α V及前次及此次的 能量消粍量計算結果,而以如下的方式來算出影響係數。 第一次的能量消耗量的計算’係如式(15)所示,朝向 使札延迷度降低的方向來決定速度變更率αν(。⑷: a V(OId) = C2 …(15) 式(15)中’C2為常數,係為固定值或資料庫的表中的值等。 C2係比1. 0小之值。 第二次以後的能量消耗量的計算,則是比較速度變更 率α v、以及前次計算出的能量消耗量Ep(〇id)及此次計算出的 能量消耗量Ep(new),且以如下之式(16)、式(17)來算出影響 23 322913 201235123 係數: (θΕ/3a v)(new) = (EP(new)-Ep(〇丨d))/( a v(〇id)-1) …(16) a V(„ew) = l-Ca/OE/a a v)(new)X I Ep(new)-Ep(old) | …(17) 前次及此次的能量消耗量的差很小時,亦即滿足以下 之式(18)時,或者速度變更率α V很小時,亦即滿足以下之 式(19)時,即判定為無法削減能量消耗量。此時,在下一 次的能量消耗量的計算時在步驟S331中,判定為無法削減 能量消耗量,然後在步驟S334中將控制基準值SV予以輸 出。 | Ep(new)-Ep(〇id) | < 〇4 …(18) I. CL V(〇ld)-l | <〇5 …(19) 其中’ C3、C4、C5係依經驗所得到之常數,係為固定值或資 料庫的表中之值等。 使用計算出的速度變更率av(nei〇,在步驟S325中修正 速度模型,然後在步驟S323中修正ISC 265的流量。藉此, 來決定可讓被軋延材100的全長的FDT都保持在目標溫 度’且可在目標軋延時間tTar以内之條件下使能量消耗量 最小化之速度模型及ISC 265的流量。 至此,流程圖32所示之處理結束。 在此’參照第8圖來說明在第3圖之步驟S323中使 ISC 265的流量變化時之收斂計算的例子。在第8圖的流 程圖中,i表示標的點的編號,ns為作為計算對象之標的 點編號的最小的編號,ne為最大的編號。另外,j表示精 軋機26的軋延機架260的編號,且最終軋延機架編號為 322913 24 201235123Si = 2Li / (Vm+Vi) (14) In the formula (14), Li is the distance between the points of the respective targets. After the calculation of the energy consumption amount in step S330, in step S331, the energy consumption amount adjusting device 18 determines whether or not the energy consumption amount can be reduced. When the rolling time adjustment device 17 previously determines that the rolling mill time of the finishing mill cannot be further changed, or determines that it is impossible to reduce the energy consumption amount in the calculation of the energy consumption amount that has just been completed, the energy consumption amount adjusting device 18 The speed change rate αν is not changed, and the schedule correction device 15 outputs the control reference value SV in step S334, and then ends the processing. On the other hand, if the amount of energy consumption can be reduced, it is determined in step S332 that the flow rate and velocity model of the ISC 265 can be changed. If the flow rate and velocity model of the ISC 265 can be changed, it is determined in step S333 whether or not the new speed change rate a v ° can be reduced or not, and is determined, for example, as described below. In general, energy consumption is reduced as long as the rolling speed is reduced. • This is because the deformation speed required for rolling is reduced, and the rolling load is reduced. On the other hand, when lubricating oil is applied between the roll of the rolling stand and the material to be rolled (lubrication dry), the thicker the rolling speed, the thicker the film thickness of the lubricating oil. The amount of heat generated by the friction between the strands is reduced, and the energy consumption of the hot rolling line is reduced. In general, the influence of the former is large. Therefore, in the calculation of the first energy consumption amount, the speed change rate αν is determined toward the direction in which the rolling speed is lowered, and then used in the calculation of the second and subsequent energy consumption amounts. The speed change rate α V and the previous and current energy consumption calculation results are calculated, and the influence coefficient is calculated as follows. The calculation of the first energy consumption amount is determined as shown in the equation (15), and the speed change rate αν is determined in the direction in which the zhayan fan is lowered (. (4): a V(OId) = C2 (15) (15) In 'C2 is a constant, which is a fixed value or a value in the table of the database. The C2 system is smaller than 1.0. The calculation of the second and subsequent energy consumption is the comparison speed change rate. α v, and the previously calculated energy consumption amount Ep(〇id) and the energy consumption amount Ep(new) calculated this time, and the influence is calculated by the following equations (16) and (17) 23 322913 201235123 Coefficient: (θΕ/3a v)(new) = (EP(new)-Ep(〇丨d))/( av(〇id)-1) (16) a V(„ew) = l-Ca/ OE/aav)(new)XI Ep(new)-Ep(old) | (17) The difference between the previous and current energy consumption is small, that is, when the following formula (18) is satisfied, or the speed is changed When the rate α V is small, that is, when the following formula (19) is satisfied, it is determined that the energy consumption cannot be reduced. At this time, in the calculation of the next energy consumption amount, it is determined in step S331 that the energy consumption cannot be reduced. And then control in step S334 The reference value SV is output. | Ep(new)-Ep(〇id) | < 〇4 ...(18) I. CL V(〇ld)-l | <〇5 ...(19) where 'C3, C4 C5 is a constant obtained by experience, which is a fixed value or a value in a table of the database, etc. The calculated speed change rate av (nei〇, the speed model is corrected in step S325, and then corrected in step S323. The flow rate of ISC 265. By this, the speed model and ISC which can minimize the energy consumption under the condition that the FDT of the rolled material 100 can be maintained at the target temperature and can be minimized within the target rolling time tTar can be determined. The flow rate of 265 has been completed. Here, the processing shown in the flowchart 32 is completed. Here, an example of the convergence calculation when the flow rate of the ISC 265 is changed in step S323 of Fig. 3 will be described with reference to Fig. 8. In the flowchart, i denotes the number of the target point, ns is the smallest number of the point number as the target of the calculation object, and ne is the largest number. In addition, j denotes the number of the rolling stand 260 of the finishing mill 26, and finally rolls. The extension rack number is 322913 24 201235123

Nf。在第8圖所示的步驟S600至S613中,針對標的點編 號ns至ne之所有標的點,使ISC 265的流量變化來使FDT 為目標FDT。 在步驟S601中’將FDT之計算所必需之標的點i的資 料讀入。必需的資料,係至少為精軋機入口侧溫度FETi…、 被軋延材100的尺寸、溫度分佈。此等資料,在已算出時 係使用該算出值,在未算出時係使用預測值。 在步驟S602至S611中,以讓每個標的點其計算溫度 FDTVal在目標FDT的容許值内之方式,修正ISC 265的流 量〇 首先’在步驟S602中’初期排程計算裝置14進行從 配置了精軋機入口側溫度計292之精軋機入口側溫度計位 置到精軋機2 6的第一個軋延機架入口側之溫降計算。 接著’在步驟S603至S607中,從精軋機26的第一個 軋延機架260[1]到最終的軋延機架260[NF],計算每個軋 延機架的軋延機架出口側溫度SDJ及軋延機架入口侧溫度 SEJ。軋延機架出口側溫度SDJ,係將因被軋延材100與 軋延機架260接觸而損失的溫降量、伴隨著軋延而產生之 加工發熱及摩擦熱所造成之溫升量都考慮在内而算出。在 步驟S606中,進行將設於精軋機%的軋延機架間之isc 265的流量、與大氣的熱傳遞所造成之熱損失、以及賴射 到大氣的輻射熱都已考慮進去之溫降計算。 在步驟S608中,算出在精軋機出口側溫度計位置之 FDT的計算溫度FDTieal。 322913 25 201235123Nf. In steps S600 to S613 shown in Fig. 8, the flow rate of the ISC 265 is changed to make the FDT the target FDT for all the points of the target points ns to ne. In step S601, the information of the target point i necessary for the calculation of the FDT is read in. The necessary information is at least the inlet side temperature FETi of the finishing mill, the size and temperature distribution of the rolled material 100. These data are used when the calculation is used, and the predicted value is used when not calculated. In steps S602 to S611, the flow rate of the ISC 265 is corrected so that each of the target points calculates the temperature FDTVal within the allowable value of the target FDT. First, 'in step S602, the initial schedule calculation means 14 performs the slave configuration. The temperature drop of the finishing mill inlet side thermometer position of the finishing mill inlet side thermometer 292 to the inlet side of the first rolling stand of the finishing mill 26 is calculated. Then, in steps S603 to S607, from the first rolling stand 260 [1] of the finishing mill 26 to the final rolling stand 260 [NF], the rolling frame exit of each rolling stand is calculated. Side temperature SDJ and rolling stand inlet side temperature SEJ. The exit side temperature SDJ of the rolling stand is the amount of temperature drop caused by the contact between the rolled material 100 and the rolling stand 260, and the temperature rise caused by the processing heat and frictional heat accompanying the rolling. Calculated in consideration. In step S606, the temperature drop of the isc 265 between the rolling stands of the finishing mill %, the heat loss caused by heat transfer to the atmosphere, and the radiant heat incident on the atmosphere are taken into account. . In step S608, the calculated temperature FDTieal of the FDT at the thermometer position on the exit side of the finishing mill is calculated. 322913 25 201235123

—在步驟S609中,判斷計算溫度斯,是否在目標FDT 的^許值内。若計算溫度帆…在目標蘭的容許值内, 則月j進至步驟S612。若並非所有的標的點土的計算都已結 束貝j在步驟S613令使標的點編號加i後,使處理回到步 驟S602。右所有的標的點i的計算都已結束,則使處理結 束。 另方面,在步驟S609中,若計算溫度FDTical並不在 目私FDT的容許值内,則前進至步驟s6i〇,判斷I% 265 的抓量疋否可變更。ISC 265的流量是否可變更,係依作 業操作者介入之可不可變更之資訊,或者 ISC 265 的/瓜量疋否在限度(limit)内而定。在ISC265的流量可變 更時’則在步驟S611中,在可變更的範圍内變更ISC 265 的’瓜量。然後,處理回到步驟S602。 如上述’進行從精軋機入口侧溫度計位置到精軋機出 口側μ度计位置之溫降計算’就可求出在各標的點之計算 溫度 FDTVal。 接著’參照第9圖來說明第3圖之步驟S325中的速度 修正方法。以下說明之迷度修正方法,係採用軋延時間調 整裝置17或能量消耗量調整裝置18所輸出的速度變更率 αν之方法’進行軋延速度的極限值檢查、及ISC 265的流 量的變更量的極限值檢查。 第9圖(a)中以虛線表示的速度模型spl,係為修正前 的速度模型之例。第9圖(a)的橫軸為時間軸,表示各時 點。「FETdn」為被軋延材1〇〇的前端通過精軋機入口侧溫度 26 322913 201235123 計292之時間’「FDTon」為被軋延材100的前端通過精軋機 出口側溫度計293之時間,「fDToff」為被軋延材100的尾 端通過精軋機出口側溫度計293之時間,「捲取機ον」為被 軋延材100的前端到達捲取機28之時間。 首先’進行軋延速度的極限值檢查。第9圖(b)顯示採 - 用速度變更率αν前後之速度模型。有給予速度變更率αν ••時’就將預測的速度模型加上速度變更率αν,來修正速度 模型。第9圖(b)中以實線表示的速度模型SP2,係為採用 速度變更率αν後的速度模型。 接著’進行ISC 265的流量的變更量的極限值檢查。 此處’係使用第9圖(b)所示之採用速度變更率α ν後的速 度模型SP2,探討在使isc 265的流量最大及最小之兩個 條件下之速度模型變更的必要性。速度模型變更的必要 性’係從精軋機入口側溫度計到精軋機出口側溫度計,逐 一就每一片段進行溫降計算來調查。第9圖(c)中以實線表 示之FDTTg為目標FDT’以虛線表示之FDTmax為在使ISC 265 的流量最小之條件下的FDT的計算結果,FDT_為在使ISC 265的流量最大之條件下的FDT的計算結果。第9圖(c)的 橫軸為從各片段的前端算起之位置。在各片段中,若FDTTg 在FDTmax與FDT·之間,就表示可藉由變更ISc 265的流量 來在被軋延材1〇〇的全長都達成目標FDT。 因此,在ISC 265的流量最小之條件下,若有FDT比 該目標溫度低之片段存在,就要使速度模型的速度變大來 使所有的片段都達成目標溫度。 27 322913 201235123 另一方面’在ISC 265的流量最大之條件下,若有FDT 比該目標溫度高之片段存在,就要使速度模型的速度變小 來使所有的片段都達成目標溫度。 最後’以讓設定的軋延速度在軋延速度的極限值以内 之方式來修正速度模型。第9圖(d)中以虛線表示之Smx 為軋延速度的上限值,Srmin為軋延速度的下限值。以讓被 軋延材100到達捲取機28之軋延速度不會超過由捲取機 28的空轉極限值所決定的通板速度極限值之方式來修正速 度模型。到達捲取機28後,則是以讓軋延速度不會超過由 驅動軋延機架的馬達的旋轉速度極限值所決定的軋延速度 極限值之方式來修正速度模型。另外,在被軋延材1〇〇的 尾端離開精軋機26的最終軋延機架之速度的極限值已經 決定時,係以讓軋延速度不會超過該極限值之方式來修正 速度模型。 依照以上的順序修正速度模型後,就進行第3圖之步 驟S323中的ISC 265的流量的修正計算,來決定在被軋延 材100的全長都達成目標精軋機出口侧溫度之速度模型及 流量15 如以上所說明的’根據本發明第一實施形態之控制裝 置10 ’以讓被軋延材100的全長的精軋機出口側溫度都保 持在目標溫度之方式,來決定ISC 265的流量及被軋延材 100的速度模型,並從決定出的速度模型來正確地算出軋 延所需時間trm。然後,以讓算出的軋延所需時間在根據與 生產量有關的作業指令或操作者的輸入資訊而計算出的目 28 322913 201235123 心幸L延時間tTar以内之方式,來修正ISC 265的流量及被 軋延材100的速度模型。 再來’使用速度模型來計算在複數個標的點之軋延功 率’並對§十算出的軋延功率進行時間積分來正確地算出軋 延所需的能量消耗量。再以在目標軋延時間tTar以内讓能 量消耗量最小之方式’來決定ISC 265的流量及速度模型。 因此’根據第1圖所示之控制裝置1〇,就可實現目標的軋 延所需時間’且可抑制熱軋作業線2〇的能量消耗量。 (第二實施形態) 第10圖係用來說明利用第1圖所示之熱軋作業線20 之控制裝置10來進行之與第二實施形態有關之決定抽出 間隔時間之方法之流程圖。 首先’在步驟S1010中,與參照第3圖之流程圖31說 明過之方法一樣,執行被軋延材1〇〇的總材數為P之軋延 運轉期的計算。接著,在步驟S1020至S1140中,針對軋 延運轉期内的被軋延材1〇〇[1]至1〇〇[Ρ-1],依照軋延順序 執行以下的計算。 在步驟S1030中,以已計算完之被軋延材l〇〇[a]的抽 出間隔時間tEx [ a ]與被軋延材100 [ a+1 ]的抽出間隔時間 tEx[a+l]之組合,作為第一抽出間隔時間組合。 在步驟S1040中,能量消耗量調整裝置18使用抽出間 隔時間tEx[a]、抽出間隔時間tEX[a+l],針對被軋延材l〇〇[a] 及被軋延材l〇〇[a+l],進行參照第3圖之流程圖32說明 過之能量消耗量之計算,分別算出能量消耗量Ep[a]、 29 322913 201235123 EP[a+l]。然後’在步驟sl〇5〇中,如以下般算出能量消耗 里Ep[a]與能量消耗量EP[a+i]之和ptot :- In step S609, it is judged whether or not the calculated temperature is within the value of the target FDT. If the temperature sail is calculated to be within the allowable value of the target blue, then the month j proceeds to step S612. If not all the calculations of the target point soil have been completed, the step j is made to increment the target point number in step S613, and the process returns to step S602. The calculation of all the target points i on the right has ended, and the processing is ended. On the other hand, if the calculated temperature FDTical is not within the allowable value of the FDT in step S609, the process proceeds to step s6i, and it is determined whether or not the grip amount of I% 265 can be changed. Whether the flow of the ISC 265 can be changed depends on the information that the operator can intervene, or whether the ISC 265 is within the limit. When the flow rate of the ISC 265 is variable, the amount of the ISC 265 is changed within the changeable range in step S611. Then, the process returns to step S602. The calculation of the temperature FDTVal at each target point can be obtained by performing the above-described 'temperature drop calculation from the thermometer position at the inlet of the finishing mill to the position of the micrometer at the outlet of the finishing mill. Next, the speed correction method in step S325 of Fig. 3 will be described with reference to Fig. 9. The method of correcting the ambiguity described below is a method of performing the limit value check of the rolling speed and the amount of change in the flow rate of the ISC 265 by the method of the speed change rate αν outputted by the rolling time adjustment device 17 or the energy consumption amount adjusting device 18. Limit check. The velocity model spl shown by a broken line in Fig. 9(a) is an example of a velocity model before correction. The horizontal axis of Fig. 9(a) is the time axis, indicating the respective time points. "FETdn" is the tip end of the rolled material 1 通过 through the finishing mill inlet side temperature 26 322913 201235123 292 time 'FDTon' is the time when the leading end of the rolled product 100 passes through the finishing mill exit side thermometer 293, "fDToff The time when the trailing end of the rolled product 100 passes through the finish rolling mill exit side thermometer 293, the "winding machine ον" is the time when the leading end of the rolled product 100 reaches the coiler 28. First, the limit value check of the rolling speed is performed. Fig. 9(b) shows the velocity model before and after the speed change rate αν. When the speed change rate αν •• is given, the speed model is corrected by adding the speed change rate αν to the predicted speed model. The velocity model SP2 indicated by the solid line in Fig. 9(b) is a velocity model obtained by using the speed change rate αν. Next, the limit value check of the amount of change in the flow rate of the ISC 265 is performed. Here, the speed model SP2 using the speed change rate α ν shown in Fig. 9(b) is used to investigate the necessity of changing the speed model under the conditions of maximizing and minimizing the flow rate of the isc 265. The necessity of changing the speed model is based on the temperature drop calculation of each segment from the inlet side thermometer of the finishing mill to the exit side thermometer of the finishing mill. In Fig. 9(c), the FDTTg indicated by the solid line is the target FDT', and the FDTmax indicated by the broken line is the calculation result of the FDT under the condition that the flow rate of the ISC 265 is minimized, and the FDT_ is the maximum flow rate of the ISC 265. The calculation result of FDT under the condition. The horizontal axis of Fig. 9(c) is the position from the front end of each segment. In each segment, if FDTTg is between FDTmax and FDT·, it means that the target FDT can be achieved for the entire length of the rolled material by changing the flow rate of ISc 265. Therefore, under the condition that the flow rate of the ISC 265 is the smallest, if there is a segment in which the FDT is lower than the target temperature, the velocity model is made to have a velocity so that all the segments reach the target temperature. 27 322913 201235123 On the other hand, under the condition that ISC 265 has the highest flow rate, if there is a segment with FDT higher than the target temperature, the speed model should be made smaller so that all the segments reach the target temperature. Finally, the speed model is corrected so that the set rolling speed is within the limit of the rolling speed. In Fig. 9(d), Smx indicated by a broken line is the upper limit of the rolling speed, and Srmin is the lower limit of the rolling speed. The speed model is corrected in such a manner that the rolling speed at which the rolled web 100 reaches the coiler 28 does not exceed the sheet speed limit determined by the idling limit of the coiler 28. When the coiler 28 is reached, the speed model is corrected so that the rolling speed does not exceed the rolling speed limit value determined by the rotational speed limit value of the motor that drives the rolling stand. In addition, when the limit value of the speed of the final rolling stand exiting the finishing mill 26 at the trailing end of the rolled product 1 has been determined, the speed model is corrected in such a manner that the rolling speed does not exceed the limit value. . After correcting the velocity model in the above order, the correction calculation of the flow rate of the ISC 265 in the step S323 of FIG. 3 is performed, and the velocity model and the flow rate at which the target finishing mill exit temperature is reached for the entire length of the rolled material 100 are determined. As described above, the control device 10' according to the first embodiment of the present invention determines the flow rate of the ISC 265 and the flow rate of the finishing mill on the outlet side of the entire length of the rolled material 100. The speed model of the rolled material 100 is accurately calculated from the determined speed model to calculate the rolling time trm. Then, the flow rate of the ISC 265 is corrected by the time required for the calculated rolling delay to be calculated within the range of tTar calculated according to the operation instruction related to the production amount or the input information of the operator. And the speed model of the rolled material 100. Then, using the velocity model to calculate the rolling power at a plurality of points, and time-integrating the rolling power calculated in § ten, the energy consumption required for the rolling is correctly calculated. The flow rate and velocity model of the ISC 265 is determined by the way in which the energy consumption is minimized within the target rolling time tTar. Therefore, according to the control device 1 shown in Fig. 1, the time required for the target rolling can be achieved and the amount of energy consumption of the hot rolling line 2 can be suppressed. (Second Embodiment) Fig. 10 is a flowchart for explaining a method of determining the extraction interval time according to the second embodiment by the control device 10 of the hot rolling line 20 shown in Fig. 1. First, in step S1010, as in the method described with reference to the flowchart 31 of Fig. 3, the calculation of the rolling operation period in which the total number of the rolled products 1 is P is performed. Next, in steps S1020 to S1140, the following calculation is performed in accordance with the rolling sequence for the rolled material 1〇〇[1] to 1〇〇[Ρ-1] in the rolling operation period. In step S1030, the extraction interval time tEx [a] of the rolled product l[a] that has been calculated and the extraction interval time tEx[a+l] of the rolled material 100 [a+1] are Combine as the first extraction interval combination. In step S1040, the energy consumption amount adjusting device 18 uses the extraction interval time tEx[a] and the extraction interval time tEX[a+l] for the rolled material l〇〇[a] and the rolled material l〇〇[ a+l], the calculation of the energy consumption amount described with reference to the flowchart 32 of Fig. 3 is performed, and the energy consumption amounts Ep[a], 29 322913 201235123 EP[a+l] are respectively calculated. Then, in step sl5〇, the sum of the energy consumption Ep[a] and the energy consumption amount EP[a+i] is calculated as follows:

Ptot = Ep[a]+ Ep[a+1] ...(20) 接著,步驟S1060中,使被軋延材100[a]的抽出間隔 時間tEX[a]減少微小時間,使被軋延材1〇〇[a+1]的抽出 間隔時間tEx[a+l]增加微小時間At : ϊεχ [a] = tEx[a]-At …(21) tExsu[a+l] = tEx[a+l] + At …(22) △ t為例如1至5(sec)程度之微小時間。以式(21)及式(22) 所表示之抽出間隔時間乜严|^;|、_^严[£1+1]之組合作為第二 抽出間隔時間組合。 在步驟S1070中’使用抽出間隔時間tExsu[a]、 hx u[a+l],針對被軋延材i〇〇[a]及被軋延材1〇〇[a+1],進 行參照第3圖之流程圖32說明過之能量消耗量之計算,分 別算出能量消耗量EPsu[a]、EPsu[a+l]。然後,在步驟sl〇8〇 中,算出能量消耗量EPsu[a]與能量消耗量Ep,a+1]之和 Pt〇tsu :Ptot = Ep[a]+ Ep[a+1] (20) Next, in step S1060, the extraction interval time tEX[a] of the rolled material 100[a] is reduced by a small time to be rolled. The extraction interval tEx[a+l] of the material 1〇〇[a+1] is increased by a small time At : ϊεχ [a] = tEx[a]-At ...(21) tExsu[a+l] = tEx[a+ l] + At ... (22) Δ t is a minute time of, for example, 1 to 5 (sec). The combination of the extraction interval time |||;|, _^strict [£1+1] represented by the equations (21) and (22) is used as the second extraction interval combination. In step S1070, 'the extraction interval time tExsu[a], hx u[a+l] is used, and the reference is made to the rolled material i〇〇[a] and the rolled material 1〇〇[a+1]. The flowchart of FIG. 3 illustrates the calculation of the energy consumption amount, and calculates the energy consumption amounts EPsu[a] and EPsu[a+l], respectively. Then, in step sl8〇, the sum of the energy consumption amount EPsu[a] and the energy consumption amount Ep, a+1] is calculated. Pt〇tsu:

Pt〇tsu = Epsu[a]+Epsu[a+1] ...(23) 接著,步驟S1090中’使被軋延材loo[a]的抽出間隔 時間tEx[a]增加微小時間△ t’使被軋延材i〇〇[a+1]的抽出 間隔時間tEx[a+l]減少微小時間Δ1:: tE^AD[a] = tEX[a] + At ...(24) tE’D[a+l] = tEx[a+l]-^t …(25) 以式(24)及式(25)所表示之抽出間隔時間tExAD[a]、 322913 30 201235123 hxAD[a+l]之組合作為第三抽出間隔時間組合。 在步驟siioo中,使用抽出間隔時間tEXAD[a]、 tExAD[a+l],針對被軋延材1()〇[a]及被軋延材i〇〇[a+1],進 行參照第3圖之流程圖32說明過之能量消耗量之計算,分 別舁出成量消耗量EpAD[a]、EpAD[a+l ]。然後,在步驟sili〇 中,算出能量消耗量EPAD[a]與能量消耗量EPAD[a+l]之和 D AD · Γ tot · P-AD = EpAD[a]+EpAD[a+l] …⑽) 在步驟S1120中,採用能量消耗量的和Ptc>t、Pt。严、Pt。, 之中能量消耗量最小時的抽出間隔時間的組合,亦即第 第一及第二抽出間隔時間組合的任一者。使用所採 用的抽出間隔時間組合,來決定ISC 265的流量及速度模 型。 、 依抽出間隔時間的組合而定,會有例如:接下來將處 理之被軋延材100[a+l]因為要等前面的被軋延材l〇〇[a] 的處理而在熱軋作業線20中停止之情況。因而產生被軋延 材100[a+l]因為停止時間等而冷卻了之問題。不過,根據 上述的抽出間隔時間的決定方法,就可採用最適合的抽出 間隔時間的組合。 如以上所說明的’根據參照第1〇圖而說明的抽出間隔 時間的决疋方法’預定的被乾延材1〇〇整體的總抽出間隔 時間並不會變化。因此’可決定出在確保生產量的情況下 削減預定的被軋延材的總計的能量消耗量之抽出間隔時 間。除以上所述者外,皆與第一實施形態實質相同,在此 31 322913 201235123 省略重複的記載。 (第三實施形態) 抽出間隔時間tEX除了使用式(丨)以外,亦可使用以下 的式(27)來計算: tEx = ΐτ8ΐ/Ρ+ χ (dh)(dh[a]~dhav) + χ (l)(l[a]-lav)^ X (FDTa)(FDTa[a]-FDTaAv)+^ (Rp(G〇)(Rp(GC[a])-Pt〇tsu = Epsu[a]+Epsu[a+1] (23) Next, in step S1090, 'the extraction interval time tEx[a] of the rolled material loo[a] is increased by a small time Δt' Decrease the extraction interval time tEx[a+l] of the rolled material i〇〇[a+1] by a small time Δ1:: tE^AD[a] = tEX[a] + At ...(24) tE' D[a+l] = tEx[a+l]-^t (25) The extraction interval time represented by the equations (24) and (25) is tExAD[a], 322913 30 201235123 hxAD[a+l] The combination is used as the third extraction interval combination. In the step siioo, the extraction interval time tEXAD[a], tExAD[a+l] is used, and the reference is made to the rolled material 1()〇[a] and the rolled material i〇〇[a+1]. The flow chart 32 of Fig. 3 illustrates the calculation of the energy consumption amount, and outputs the consumption amounts EpAD[a] and EpAD[a+l], respectively. Then, in the step sili〇, the sum of the energy consumption amount EPAD[a] and the energy consumption amount EPAD[a+l] is calculated. D AD · Γ tot · P-AD = EpAD[a]+EpAD[a+l] ... (10)) In step S1120, the sum of energy consumption amounts Ptc > t, Pt is employed. Strict, Pt. The combination of the extraction intervals when the energy consumption is the smallest, that is, any combination of the first and second extraction interval times. The flow and velocity models of the ISC 265 are determined using the combination of extraction intervals used. Depending on the combination of the extraction intervals, for example, the rolled material 100 [a+l] to be processed next will be hot-rolled because of the treatment of the preceding rolled material l〇〇[a]. The case where the line 20 is stopped. Therefore, there is a problem that the rolled material 100 [a + l] is cooled due to the stop time or the like. However, according to the above-described method of determining the extraction interval time, the most suitable combination of the extraction interval times can be employed. As described above, the method of determining the extraction interval time described with reference to Fig. 1 does not change the total extraction interval time of the entire dried material 1〇〇. Therefore, it is possible to determine the extraction interval time for reducing the total energy consumption of the predetermined rolled material when the production amount is secured. Except for the above, it is substantially the same as the first embodiment, and the repeated description is omitted here. (Third Embodiment) The extraction interval tEX can be calculated using the following equation (27) in addition to the equation (丨): tEx = ΐτ8ΐ/Ρ+ χ (dh)(dh[a]~dhav) + χ (l)(l[a]-lav)^ X (FDTa)(FDTa[a]-FDTaAv)+^ (Rp(G〇)(Rp(GC[a])-

Rp(GC)av) …(27) 式(27)中,dh為軋下量’ l為被軋延材長度,FDTa為目標 FDT,GC為材種碼。各項目中標註有AV的下標之值,係表 示預定的所有被軋延材的平均值。函數RP()係依據材種碼 來計算粗軋機23的軋延道次數。 另外’函數χ ()係計算相對於χ的變化之軋延所需時 間t的變化: % (x) = dt/dx ...(28) 亦即,本發明第三實施形態之控制裝置中,抽出間 隔算出裝置12係計算預定要處理的所有對象被軋延材 100[a]的平均軋下量dhav、平均軋延材長度lav、平均精軋 機出口侧溫度FDTaav。然後,使用對象被軋延材1〇〇[a]的 軋下直dh[a]與平均軋下量dhav之差、軋延材長度1[&]與 平句軋k材長度lav之差、以及目標精軋機出口侧溫度 FDTa[a]與平均精軋機出口側溫度FDTaav之差,來計算抽出 間隔時間。 根據上述的方法,考慮到各被軋延材的軋下量、軋延 材的長度、目標FDT及材種碼之對於抽出間隔時間的影 322913 32 201235123 響。對象被軋延材l〇〇[a](a=l至P)之以式(27)加以表示 之抽出間隔時間ϊεχ的總和即為目標總軋延時間tTgt,滿足 式(2 )、式(3),所以可決定出達成目標總札延時間tTgt之 抽出間隔時間tEX。除以上所述者外,皆與第一實施形態實 質相同’在此省略重複的記载。 (第四實施形態) 第11圖所示之本發明第四實施形態之控制裝置10, 係在不具備抽出間隔算出裝置12、目標軋延時間算出襄置 13之點與第1圖所示之控制裝置1〇不同。其他的構成則 與第1圖所示之第一實施形態相同。本第四實施形態另外 考慮到利用軋機節奏(mi 11 pacing)等之外部的機能來計 算目標軋延時間tTar之情況。第u圖所示之控制裝置1〇, 係使用藉由加缝21側之具有軋機節奏機能之外部裝置 30而计算出之目標軋延時間tTar,來控制熱軋作業線2〇。 在軋延時間s周整裝置,比較從外部裝置輸入之 目標軋延時間W、與在乾延時間預測算出裝置16算出之 軋延所需㈣而以讓軋延所f時間L在目標軋延時 間W以内之方<,來計算軋延速度之速度變更率…。根 據此速度變更率心,由排程修正《置15來修正速度模型 等。然後’在可削減能量消耗量時,在能量消耗量調整裝 純作#線20的能量消耗量最小化之方式算出 根據第11圖所示之控制裝置10,就可在乾延所 間匕在從軋機節奏機能輸人之目標軋延_仏以内之條 322913 33 201235123 件下,使能量消耗量最小 實施形態實質相同,在此省略==者外,皆與第- 上,然而不應將作為此揭^至第四實施形態而記載如 是用來限定本發明者。透:::部份之論述及圖面理解作 實施例及心技彳輯於錢各種代时施形態、 而易知。;不技術領域之業者而言都將變得顯 實施形態。因此,本地包含此處未記載的各種 【圖式簡單^】11中的發明肢事項所決定。 第 之模式圖 ^圖係顯示本發明第—實施形態之控制裝置的構成 第2圖係顯示熱軋作業線的構成例之模式圖。 =3圖係用來說明利用本發明第一實施形 置來异出控制基準值之方法之流程^ 工1义 1機周邊的 第4圖係顯示帛!圖所示之熱軋作業線的札 構成例之模式圖。 第5 的點 圖(a)至(c)係顯示被軋延材的片段編號及杈 編號之模式圖。 $ 第6圖(a)至(c)係用來說明本發明第一實施形態之栌 制裝置進行的軋延時間的決定方法之概念圖。 二 的變 第7圖係顯示在被壓延材的長度方向之軋 化之模式圖。 置所 第8圖係用來說明本發明第/實施形態之控制裝 322913 34 201235123 做的使冷卻喷水器的流量變化之情況的收斂計算之例之流 程圖。 第9圖(a)至(d)係用來說明本發明第一實施形態之控 制裝置進行的速度修正方法之例之概念圖。 第10圖係用來說明利用本發明第二實施形態之控制 裝置來決定抽出間隔時間之方法之流程圖。 第11圖係顯示本發明第四實施形態之控制裝置的構 成之模式圖。 【主要元件符號說明】 10 控制裝置 11 作業條件處理裝置 12 抽出間隔算出裝置 13 目標軋延時間算出裝置 14 初期排程計算裝置 15 排程修正裝置 16 軋延時間預測算出裝置 17 軋延時間調整裝置 18 能量消耗量調整裝置 20 熱軋作業線 21 加熱爐 22 粗軋機入口侧去銹皮器 23 粗軋機 24 盤捲箱 25 精軋機入口側去銹皮器 35 322913 201235123 26 27 28 30 100 260 265 291 292 293Rp(GC)av) (27) In the formula (27), dh is the rolling amount 'l is the length of the rolled product, FDTa is the target FDT, and GC is the material type code. The value of the subscript of AV is indicated in each item, and represents the average value of all the rolled products that are scheduled. The function RP() calculates the number of rolling passes of the roughing mill 23 based on the material type code. In addition, the 'function χ () is a change in the time t required for the rolling of the change with respect to χ: % (x) = dt / dx (28), that is, in the control device of the third embodiment of the present invention The extraction interval calculation means 12 calculates the average rolling amount dhav, the average rolled length lav, and the average finishing mill exit side temperature FDTaav of all the objects to be processed which are to be processed. Then, the difference between the straight dh[a] and the average rolling amount dhav of the rolled object 1[a], the length of the rolled product 1[&], and the length lav of the flattened rolled material are used. And the difference between the target finishing mill exit side temperature FDTa[a] and the average finishing mill exit side temperature FDTaav to calculate the extraction interval time. According to the above method, it is considered that the rolling amount of each rolled material, the length of the rolled material, the target FDT, and the material type code are affected by the extraction interval time 322913 32 201235123. The sum of the extraction interval time ϊεχ expressed by the formula (27) is the target total rolling time tTgt, which satisfies the formula (2), formula (2), (formula (2), 3), so it is possible to determine the extraction interval time tEX at which the target total delay time tTgt is reached. Except for the above, the first embodiment is substantially the same as the above description, and the duplicated description is omitted here. (Fourth Embodiment) The control device 10 according to the fourth embodiment of the present invention shown in Fig. 11 is a point where the extraction interval calculation means 12 and the target rolling time calculation means 13 are not provided, and the first figure is shown. The control device 1 is different. The other configuration is the same as that of the first embodiment shown in Fig. 1. The fourth embodiment additionally considers the case where the target rolling time tTar is calculated by the external function such as the mi 11 pacing. The control device 1 shown in Fig. u controls the hot rolling line 2〇 by using the target rolling time tTar calculated by the external device 30 having the rolling mill rhythm function on the slit 21 side. The rolling apparatus s is used to compare the target rolling time W input from the external device with the rolling required by the dry-time prediction calculation device 16 (4) to allow the rolling time f to be at the target rolling. The speed change rate of the rolling speed is calculated by the square inside the time W. According to this speed change rate, the schedule correction "set 15 to correct the speed model." Then, when the energy consumption can be reduced, the control device 10 shown in Fig. 11 can be calculated in such a manner that the energy consumption of the energy consumption adjustment device #20 is minimized, and the device can be placed between the dry extensions. From the goal of rolling mill rhythm function input, 322913 33 201235123, the minimum energy consumption is basically the same, except that == This disclosure is intended to limit the inventors of the present invention. Translucent::: Part of the discussion and the understanding of the drawing. The examples and the heart and technology are collected in the form of various generations of money. Anyone who is not in the technical field will become an embodiment. Therefore, it is determined locally by the various inventions in the various types of drawings [not shown]. Fig. 2 is a schematic view showing a configuration of a control device according to a first embodiment of the present invention. Fig. 2 is a schematic view showing a configuration example of a hot rolling line. The =3 diagram is used to illustrate the flow of the method for controlling the reference value by using the first embodiment of the present invention. A schematic view of a configuration example of a hot rolling line shown in the drawing. The fifth point (a) to (c) are schematic diagrams showing the segment number and the 杈 number of the rolled material. Fig. 6 (a) to (c) are conceptual diagrams for explaining a method of determining the rolling time by the tanning device according to the first embodiment of the present invention. Variation of the second Fig. 7 is a schematic view showing the rolling in the longitudinal direction of the rolled material. Fig. 8 is a flow chart for explaining an example of convergence calculation of a case where the flow rate of the cooling sprinkler is changed by the control device 322913 34 201235123 of the first embodiment of the present invention. Fig. 9 (a) to (d) are conceptual diagrams for explaining an example of a speed correcting method by the control device according to the first embodiment of the present invention. Fig. 10 is a flow chart for explaining a method of determining the extraction interval by the control device of the second embodiment of the present invention. Fig. 11 is a schematic view showing the configuration of a control device according to a fourth embodiment of the present invention. [Description of main component symbols] 10 Control device 11 Working condition processing device 12 Extraction interval calculation device 13 Target rolling time calculation device 14 Initial scheduling calculation device 15 Schedule correction device 16 Rolling time prediction calculation device 17 Rolling time adjustment device 18 Energy consumption adjustment device 20 Hot rolling line 21 Heating furnace 22 Roughing mill inlet side descaling machine 23 Roughing mill 24 coiling box 25 Finishing mill side descaling machine 35 322913 201235123 26 27 28 30 100 260 265 291 292 293

精軋機 冷卻裝置 捲取機 外部裝置 被軋延材 軋延機架 ISC 粗軋機出口侧溫度計 精軋機入口側溫度計 精軋機出口側溫度計 36 322913Finishing mill Cooling device Coiler External device Rolled material Rolling stand ISC Roughing mill exit side thermometer Finishing mill inlet side thermometer Finishing mill exit side thermometer 36 322913

Claims (1)

201235123 七、申請專利範圍: 1· 一種熱軋作業線之控制装置,其中,該熱軋作業線係具 備有加熱爐、以及具有連續配置的複數個軋延機架及配 置於前述複數個軋延機架間的冷卻噴水器之精軋機 者’該控制裝置係具備有: . 根據包含有與預定要軋延處理之複數個被軋延材 •有關2軋延處理排程之作業資訊,來算出從前述加熱爐 中將刖述複數個被軋延材抽出的抽出間隔時間之抽出 間隔算出裝置; 、使用剛述抽出間隔時間及前述作業資訊,來算出屬 於前述複數個被軋延材中的一個之對象被軋延材的目 標軋延時間之目標軋延時間算出裝置; β根據如述作業資訊,來計算前述冷卻噴水器的流 θ在刖述熱軋作業線上搬送前述對象被軋延材之軋 延速度的速度模型之初期排料算裝置; 修正刖述冷卻噴水器的流量’且在只利用前述冷卻 喷水器的流量的修正並無法遍及前述對象被軋延材的 ^長地讓精軋機出,溫度都為目標值時、及輸入有與 則述速度模財關之速度變更率時,修正前述速度模型 之排程修正裝置; 使用前述速度模型來算出前述對象被軋延材的軋 延所需時間之乾延時間預測算出裝置; 乂讓别述軋延所需時間在前述目標乳延時間以内 之方式算出前述速度變更率,並將算出的前述速度變更 322913 1 201235123 率予以輸出至前述排程修正裝置之軋延時間調整裝 置;以及 使用前述速度模型來計算出在設定於前述熱軋作 業線上的複數個標的點的軋延功率,且對前述軋延功率 進行時間積分而得到能量消耗量,並以讓能量消耗量為 最小之方式計算出速度變更率且將之輸出至前述排程 修正裝置之能量消耗量調整裝置, 而且,係在前述軋延所需時間在前述目標軋延時間 以下之範圍内,以讓前述能量消耗量為最小之方式決定 出前述冷卻喷水器的流量及前述速度模型。 2.如申請專利範圍帛i項所述之熱軋作業線之控 置’其中, 則述抽出間隔算出裝置,係算出從前述加熱 w叫1又圳地双7热獵將 一破軋延材抽出後到將前述第—被乾延材之後的第 .被軋延材抽出為止之第—抽出_時間、以及從前述 熱爐將前述第二被軋延材抽出後到將前述第二被乾 材之=的第三被軋延材抽出為正之第二抽出間隔時^ 前述能量消耗量調整裝置,係分別針對由前述第 抽出間隔時間及前述第二抽出間隔時間所組 抽出間隔時間組合、使前述第—抽出間隔時間增加一 時間且使前述第二抽出間隔時間減少前述-定時間, 出間隔時間組合、以及使前述第一抽出間; 寺别述一定時間且使前述第二抽出_ 加則述—料間而成之第三抽㈣隔_ 322913 2 201235123 前述第一被軋延材的軋延處理中消耗的第一能量消耗 莖與在前述第二被軋延材的軋延處理中消耗的第二能 量消耗•量之能量消耗量之和,然後使用前述能量消耗量 之和為最小之前述第一至第三抽出間隔時間組合的任 一組合’來決定前述冷卻喷水器的流量及前述速度模 型。 3. 如申請專利範圍第1或2項所述之熱軋作業線之控制裝 置’其中, 前述抽出間隔算出裝置,係使用前述對象被軋延材 的軋下量與前述複數個被軋延材的平均軋下量之差、前 述對象被軋延材的軋延材長度與前述複數個被軋延材 的平均軋延材長度之差、及前述對象被軋延材的 目標精 軋機出口侧溫度與前述複數個被軋延材的平均目標精 軋機出口側溫度之差,來計算前述抽出間隔時間。 4. 如申凊專利範圍第丨項所述之熱軋作業線之控制裝 置其中,使用藉由軋機節奏功能而算出之軋延時間來 作為前述目標軋延時間。 322913 3201235123 VII. Patent application scope: 1. A control device for a hot rolling operation line, wherein the hot rolling operation line is provided with a heating furnace, and a plurality of rolling stands having a continuous arrangement and disposed in the plurality of rolling rolls The finishing mill for the cooling sprinkler between the racks is provided with: . Based on the operation information including the plurality of rolled materials and the rolling schedules scheduled to be rolled, Extracting interval calculation means for extracting a plurality of times of extraction of the rolled material from the heating furnace; and calculating one of the plurality of rolled products by using the extraction interval time and the operation information The target rolling time calculation device for the target rolling time of the rolled material; β calculates the flow θ of the cooling water sprayer based on the operation information as described above, and transports the object to be rolled and rolled over the hot rolling line The initial discharge calculation device of the speed model of the rolling speed; correcting the flow rate of the cooling water sprayer' and using only the flow rate of the aforementioned cooling water sprayer It is not possible to correct the schedule correction of the speed model when the finishing mill is not allowed to pass the length of the rolled material, the temperature is the target value, and the speed change rate of the speed model is input. a device for calculating a dry delay time calculation device for calculating a time required for the rolling of the rolled product by using the speed model; and calculating the speed change by the time required for the rolling delay within the target emulsion delay time Rate, and the calculated speed change 322913 1 201235123 rate is output to the rolling time adjustment device of the schedule correction device; and the speed model is used to calculate a plurality of target points set on the hot rolling line Rolling power, and integrating the rolling power for a time to obtain an energy consumption amount, and calculating the speed change rate so as to minimize the energy consumption amount, and outputting the same to the energy consumption adjusting device of the schedule correction device Moreover, the time required for the rolling is within the range of the aforementioned target rolling time to allow the aforementioned Determines the amount of consumption of the cooling flow and the velocity model is the smallest of the sprinkler embodiment. 2. In the control of the hot rolling line as described in the scope of application of the patent item 帛i, the extraction interval calculation device is calculated from the above-mentioned heating w1 and the Shenzhen double 7 hot hunting will be a broken rolling material After the extraction, the first extraction-time from the extraction of the first rolled material after the first dry extrusion, and the extraction of the second rolled material from the hot furnace to the second drying When the third rolled material of the material = is extracted to be the second second extraction interval, the energy consumption amount adjusting device combines the interval between the first extraction interval and the second extraction interval, respectively. The first extraction interval is increased by one time and the second extraction interval is decreased by the aforementioned-determined time, the interval interval is combined, and the first extraction is performed; the temple is described for a certain time and the second extraction is added. The third pumping (four) partition formed between the materials _ 322913 2 201235123 The first energy consuming stem consumed in the rolling process of the first rolled product and the rolling process in the second rolled product Second The sum of the energy consumption of the quantity consumption amount, and then using any combination of the foregoing first to third extraction interval time combinations in which the sum of the foregoing energy consumption amounts is the smallest to determine the flow rate of the aforementioned cooling water sprayer and the aforementioned velocity model . 3. The control device for the hot rolling line according to the first or second aspect of the invention, wherein the extraction interval calculation device uses the rolling amount of the rolled object to be rolled and the plurality of rolled products The difference between the average rolling amount, the difference between the length of the rolled product of the rolled object and the average rolled length of the plurality of rolled products, and the temperature at the exit side of the target finishing mill of the object to be rolled The extraction interval time is calculated from the difference between the average target finishing mill exit side temperatures of the plurality of rolled webs. 4. The control apparatus of the hot rolling line as described in the ninth aspect of the patent application, wherein the rolling time calculated by the rolling mill rhythm function is used as the target rolling time. 322913 3
TW100109075A 2011-02-18 2011-03-17 Apparatus for controlling hot rolling line TWI481452B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033317A JP5616817B2 (en) 2011-02-18 2011-02-18 Control device for hot rolling line

Publications (2)

Publication Number Publication Date
TW201235123A true TW201235123A (en) 2012-09-01
TWI481452B TWI481452B (en) 2015-04-21

Family

ID=46655115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109075A TWI481452B (en) 2011-02-18 2011-03-17 Apparatus for controlling hot rolling line

Country Status (4)

Country Link
JP (1) JP5616817B2 (en)
KR (1) KR101204180B1 (en)
CN (1) CN102641893B (en)
TW (1) TWI481452B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562839B (en) * 2014-02-26 2016-12-21 China Steel Corp Method and system for monitoring shape of steel strip in hot rolling process

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118989A1 (en) * 2013-02-04 2014-08-07 東芝三菱電機産業システム株式会社 Energy-saving control device for rolling line
CN103272853B (en) * 2013-05-22 2015-01-28 沈阳工业大学 Device and method for setting rolling reduction and rolling speed of each rack in cold continuous rolling
CN103521517B (en) * 2013-10-30 2015-09-16 武汉钢铁(集团)公司 A kind of determination method and system of hot-rolled process parameter
CN103752621B (en) * 2014-01-09 2016-06-01 鞍钢股份有限公司 Automatic interchange and transfer method for emergency specification change materials of hot rolling line
JP6187603B2 (en) * 2014-01-24 2017-08-30 東芝三菱電機産業システム株式会社 Energy consumption prediction device for rolling line
JP2015205331A (en) * 2014-04-23 2015-11-19 株式会社日立製作所 Control device and control method of hot rolling mill
CN104998913B (en) * 2015-06-29 2017-03-15 东北大学 The Forecasting Methodology of power of motor during a kind of cold rolling
WO2019026292A1 (en) * 2017-08-04 2019-02-07 東芝三菱電機産業システム株式会社 Temperature control device for endless rolling line
EP3623068B1 (en) * 2018-09-12 2021-07-14 Primetals Technologies Germany GmbH Application devices for cooling lines with second connection
CN114417530B (en) * 2022-01-14 2023-01-20 北京科技大学 Optimized scheduling method and device for hot continuous rolling laminar cooling water supply pump station

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858905A (en) * 1981-10-05 1983-04-07 Kawasaki Steel Corp Controlling method for optimum rolling in hot rolling
JPH08243620A (en) * 1995-03-07 1996-09-24 Toshiba Corp Temperature controller for hot finishing mill
JPH10277627A (en) * 1997-04-01 1998-10-20 Mitsubishi Electric Corp Method for controlling outlet temperature of hot rolling mill and device therefor
JP2000126814A (en) * 1998-10-26 2000-05-09 Bridgestone Corp Metallic fiber bundle, and its manufacture
KR100973898B1 (en) 2003-08-05 2010-08-03 주식회사 포스코 Mill pacing control method for reheating furnance
CN1840252A (en) * 2005-03-28 2006-10-04 鞍钢集团新钢铁有限责任公司 Production process of continuous-casting tandem-rolling coiled sheet of medium thick plate
CN100577315C (en) * 2006-07-26 2010-01-06 东芝三菱电机产业系统株式会社 Device for forecasting and controlling material quality of roll line
JP4915376B2 (en) * 2008-03-24 2012-04-11 住友金属工業株式会社 Rolling order determination method and rolling order determination apparatus for hot rolling, and hot rolled steel sheet manufacturing method and manufacturing apparatus
JP4957663B2 (en) * 2008-06-26 2012-06-20 住友金属工業株式会社 Manufacturing method and manufacturing apparatus for hot-rolled steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562839B (en) * 2014-02-26 2016-12-21 China Steel Corp Method and system for monitoring shape of steel strip in hot rolling process

Also Published As

Publication number Publication date
TWI481452B (en) 2015-04-21
CN102641893B (en) 2014-08-20
JP5616817B2 (en) 2014-10-29
CN102641893A (en) 2012-08-22
KR20120095274A (en) 2012-08-28
KR101204180B1 (en) 2012-11-23
JP2012170963A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
TW201235123A (en) Apparatus for controlling hot rolling line
JP5054369B2 (en) Winding temperature control device and control method
KR101782281B1 (en) Energy consumption predicting device for rolling line
JP5821568B2 (en) Steel strip rolling method
CN110997169B (en) Temperature control device of headless rolling line
KR101535450B1 (en) Method, computer program and rolling mill train for rolling a metal strip
JP5861436B2 (en) Hot finishing temperature control method, hot finishing temperature control device, and hot rolled metal sheet manufacturing method
JP4585628B2 (en) Method for rolling steel strip and method for producing steel plate
JP2007301603A (en) Method for controlling coiling temperature of rolled stock and rolling equipment
JP2002045908A (en) Method and device for controlling flatness of metallic sheet
JP5932143B2 (en) Edge mask control method for cooling device
JP2017131951A (en) Setting device of steel sheet winding start time and method for the same, setting device of furnace extraction time and method for the same
JP7302104B2 (en) Method, control system and production line for controlling flatness of strip of rolled material
JP7156317B2 (en) Rolling mill control method, rolling mill control device, and steel plate manufacturing method
KR101451725B1 (en) Method for controlling temperature of strip into finishing mill stand
JP7156318B2 (en) Rolling mill control method, rolling mill control device, and steel plate manufacturing method
JP6188606B2 (en) Method for determining setup conditions in cold rolling
JP2018094608A (en) Draft leveling control device and draft leveling control method
JP2013039608A (en) Rolling control method in consideration of variation in rolling parameter
JP2008194740A (en) Rolling method of metal strip by tandem rolling mill and manufacturing method of metal strip using the same
JP2013123732A (en) Hot finish rolling method
JP2010253501A (en) Method and device for controlling tension in multistage rolling mill
JP2017177135A (en) Draft levelling control device and draft levelling control method
JP2003025008A (en) Control method for cooling metallic material to be rolled in hot rolling
JP4164306B2 (en) Edge drop control method in cold rolling