TW201234826A - Communication system and communication method - Google Patents

Communication system and communication method Download PDF

Info

Publication number
TW201234826A
TW201234826A TW100111789A TW100111789A TW201234826A TW 201234826 A TW201234826 A TW 201234826A TW 100111789 A TW100111789 A TW 100111789A TW 100111789 A TW100111789 A TW 100111789A TW 201234826 A TW201234826 A TW 201234826A
Authority
TW
Taiwan
Prior art keywords
station
time
slave
synchronization
relay
Prior art date
Application number
TW100111789A
Other languages
Chinese (zh)
Inventor
Bampei Kaji
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201234826A publication Critical patent/TW201234826A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

In a communication system of this invention, a master station (100) includes a offset time generator (101) generating a offset time, a synchronized frame generator (102) generating a synchronized frame with respect to a plurality of slave stations (120-1, 120-2), and a communication section (103); a relay station (110) includes communication sections (111a to 111c), and a synchronized-frames delay-time measuring section (112) measuring the required delay time between receiving a synchronized frame, which is transmitted from the master station (100) and addressed to the respective slave station(120-1, 120-2), and transmitting it, and then transmitting the delay time to the slave stations (120-1, 120-2); the slave stations (120-1, 120-2) includes a communication section (121), a synchronization counter (123) for use in synchronization of the plurality of slave stations (120-1, 120-2), and a delay-time compensating section (124) calculating a compensation time by subtracting the delay time from the offset time and resetting the synchronization counter (123) when the compensation time is elapsed after the synchronized frame has been received by the communication section (121).

Description

201234826 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種通訊系統及通訊方法。 【先前技術】 在主控站與複數個從屬站透過傳輸路而連接的控制 系統之網路中,較期望是以預定週期進行演算,並且使從 屬站彼此之演算週期一致而進行通訊。例如,為人所周知 者有如下技術:在雙重環型網路之一方傳輸路與另一方傳 輸路所備置的主控站或從屬站、中繼站等之通訊裝置不同 的非對稱式雙重環型網路中,計算訊框傳播於主控站至各 從屬站之路徑的延遲時間,且使用該延遲時間補正在從屬 站的控制之時序,藉此來確立從屬站彼此之同步的技術(參 照例如專利文獻1)。 專利文獻1 :日本特開2009-130519號公報 【發明内容】 (發明所欲解決之課題) 在專利文獻1所記載的技術中,係假設以中繼站等的 通訊裝置來中繼訊框時的延遲時間為一定,並補正主控站 與從屬站之間的訊框之傳輸時間的差異。但是,通常,通 過中繼站的訊框之延遲時間的變動幅度大,且延遲時間為 不定。因此,當透過延遲時間為不定的中繼站來進行時, 從屬站接收同步訊框的時序每次都會不同,且在專利文獻 1所記載的方法中,會有無法確立從屬站彼此之同步的問 題。 4 322988 201234826 本發明係有鑒於上述情事而開發完成者,其目的在於 獲得一種通訊系統及通訊方法,其即使在主控站與從屬站 之間夾介存在有中繼時之延遲時間為不定的1台以上之中 繼站的通訊系統中進行同步通訊的情況,仍可將從屬站的 控制週期設為一定,且可實現從屬站彼此之控制週期的同 步。 (解決課題之手段) 為了達成上述目的,本發明之通訊系統,係將管理同 步時序的主控站、和使用從前述主控站以預定週期發送的 同步訊框中之資料進行預定之處理的複數個從屬站,透過 中繼前述主控站與複數個前述從屬站之間的中繼站而連接 者,其特徵在於:前述主控站係具備:偏移時間(offset time) 產生手段,對複數個前述從屬站產生共通的偏移時間;同 步訊框產生手段,對複數個前述從屬站產生同步訊框;以 及通訊手段,在其與其他的通訊裝置之間進行訊框的收 發;前述中繼站係具備:通訊手段,將從通訊裝置接收到 的訊框發送至其他的通訊裝置;以及同步訊框延遲時間測 定手段,針對每一前述從屬站測定接收到從前述主控站發 給各前述從屬站之前述同步訊框之後直至發送該同步訊框 為止之期間所需的延遲時間,且將前述延遲時間對各前述 從屬站發送;前述從屬站係具備:通訊手段,在其與其他 的通訊裝置之間進行訊框的收發;同步計數手段,在複數 個前述從屬站間取得同步時使用;以及延遲補正手段,算 出從來自前述主控站之前述偏移時間減去來自前述中繼站 5 322988 201234826 之前述延遲時間後的補正時間,且在 =步訊框後經過前述補正時間之後 (發明效果) 站產ΓίΓΓ ’具有如下之效果:由於主控站在各從屬 偏移時間,中繼站測定從主控站至各從屬站 ====繼所需的延遲時間’且各從屬站從接收到 ==時序起’以經過了從偏移時間減去延遲時間後 的補正時間之時序重置同步計數手段,所以不用取決於中 繼站中的同步訊框之中繼處理之延遲時間的大 一。 各從屬站進行使用同步訊框中之資料之經同2的 理。 【實施方式】 以下參照附圖’詳細說明本發明的通訊系統及通訊方 法之較佳的實施形態。另外,本發明並麵此等實施形態 而被限定者。 實施形態1 第1圖係顯示實施形態1的通訊系統之構成之一例的 示意方塊圖。該通訊系統,係將進行全體通訊系統之同步 通訊之管理的主控站100、和依來自主控站100之指示進 行資料通訊的從屬站120,透過中繼站11〇而連接。此例 中,係顯示2台的從屬站120-1、120-2被連接於中繼站11〇 的情況。亦即’通訊系統係具有主控站100與從屬站 120-1、120-2,透過中繼站110而連接成星型的網路構成。 6 322988 201234826 各通成褒置間’係透過乙太(Ethernet : I主 傳輪路而連接。另外,此種的通訊系统°票)電纖等的 數個馬達同時啟動或依複數個感測器進行同於例如複 取等、複數個從屬站同時執行處理的系統。幻之資料採 主控站100係具備偏移時間產生部1〇1、 = 生部1〇2及通訊部1〇3。偏移時間產生部1 '訊框產 C從屬站Π0-Η20-2彼此之處理時序之同步的 3 Toff。該偏移時間T〇ff係設定為比在中繼站u〇 “夺 =繼處理中所產生的延遲時間還更長的時間。偏::: 間2 m ’係在通訊系統進行初始化處理時產生偏移時 王同步訊框產生部102係以初始化處理結束後之通常處 理在預定之週期内產生同步訊框。在同步訊框中係包= 有例如在從屬站120-1、120-2使用於同步處理的資料^3 通訊部103係在從屬站120_1、120-2之間進行訊框的 收發。在進行初始化處理時,將在偏移時間產生部ι〇ι產 生的偏移時間Toff對從屬站12CM、120-2發送。又,在進 行通常處理時,係發送在同步訊框中所產生的同步訊框。 中繼站110係具備複數個通訊部llla至lllc、同步1 植延遲時間測定部112及中繼處理部113。通訊部111&至 係接收來自主控站100或從屬站120-1、120-2的訊 樞’且發送發給主控站100或從屬站120-1、120-2的訊框。 在此例中,通訊部111a係與主控站100連接,通訊部1Ub 係與從屬站120-1連接,通訊部illc係與從屬站12〇_2連 322988 7 201234826 接。 同步讯框延遲時間測定部ip係測定直至將從主控站 100送出並在通訊部Ilia接收到的同步訊框,從其他的通 訊部mb、iiic送出為止的延遲時間Ts,且對各從屬站 120·卜120-2發送延遲時間Ts。在此,同步訊框延遲時間 測疋部112,係測定直至將在連接於主控站1〇()的通訊部 Ilia接收到訊框從連接於從屬站12(Kl、12〇 2的通訊部 111b、111c送出為止的時間,分別作為延遲時間丁犯〜丁^。 又,作為延遲時間之發送方法,係例如可為在所測定到的 發給各從屬站12G]、12G-2之同步訊樞中,設置儲存在中 繼站no之延遲時間的區域,且涵蓋於此處而予以發送, 亦可為以與同步訊框不同的訊框將延遲㈣發送至各從屬 站12(M、120-2。在後者的情況,雖然主控站1〇〇發送訊 框時’亦即在主控站100中有發送權時會從中義110發 送訊框,但是由於在傳輸路内麵與從主控站丨⑻發送來 的訊框衝突之虞,所以即使從中繼站⑽發送訊框亦無問 題。 中繼處理部113係進行將在通訊部llla至mc接收 到的訊框,從其他的通訊部叫至仙送出之控制。例 如,取得在某個通訊部llla至llle接㈣的訊框之接收 目的地,且進行將购轉送至連騎該接收目的地之通訊 裝置(主控站1〇〇或從屬站12(M、12〇 2)的通訊部uu至 lllc之中繼處理。 從屬站120-1、120-2係具備通訊部121、記憶部122、 322988 8 201234826 同步計數器123及延遲補正部124。通訊部121係在主控 站100或其他的從屬站120-2、120-1之間進行訊框的收 ' 發。記憶部122,係記憶來自主控站100之偏移時間Toff 與來自中繼站110之延遲時間Ts。 同步計數器123係在與其他的從屬站120-2、120-1之 間使控制處理之時序一致時使用的計時器,且在此會於進 行控制處理時被重置。 延遲補正部124係使用偏移時間Toff與延遲時間Ts 來補正同步計數器123之重置時刻。具體而言,算出從偏 移時間Toff扣除延遲時間Ts後的補正時間,且從接收到 來自主控站100之同步訊框的時序起,經過補正時間之後 重置同步計數器123。 其次,針對該通訊系統中的同步控制加以說明。第2 圖係顯示同步控制之一例的示意圖。第3圖係顯示主控站 與各從屬站間之通訊中的偏移時間、延遲時間、補正時間 及滯後時間的圖。在第2圖中,顯示了在從屬站120-1、 120-2的時間之經過與同步計數器123的重置之時序。又, 從主控站100至從屬站120-1、120-2係設為已發送偏移時 間 Toff。 首先,當在時刻t0從主控站100發送同步訊框時,同 步訊框會透過中繼站110到達各從屬站120-1、120-2。在 從屬站120-1的情況,從主控站100至中繼站110的傳輸 時間Tal、在中繼站110的中繼處理時間Tsa、從中繼站 110至從屬站120-1的傳輸時間Ta2,就被當作延遲時間來 9 322988 201234826 計算。然後,同步訊框係在時間 收。 U1由從屬站120-1所接 在從屬站120-2的情況也是同 」樣地,從主控站100至 中繼站110的傳輸時間Tbl、在 攸役 間Tsb、從中繼站no至從屬站〇站110的中繼處理時 當作延遲時間來計算。又,同步^的傳輸時間咖’被 站腿所接收。 Π步訊樞係在時間-由從屬 在此,從主控站100至中繼 , ^丄 駿站Uo的傳輸時間Tal、201234826 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a communication system and a communication method. [Prior Art] In a network of a control system in which a master station and a plurality of slave stations are connected through a transmission path, it is more desirable to perform calculations in a predetermined cycle and to make communication of the slave stations coincide with each other. For example, it is well known that there is a technique in which an asymmetric double ring network in which a transmission path of one of the dual ring networks is different from that of a master station or a slave station or a relay station provided for the other transmission path In the road, the delay time of the path of the communication frame from the master station to each slave station is calculated, and the timing of the control of the slave station is compensated by using the delay time, thereby establishing a technique in which the slave stations are synchronized with each other (refer to, for example, a patent) Document 1). [Problem to be Solved by the Invention] In the technique described in Patent Document 1, it is assumed that the delay is when a frame is relayed by a communication device such as a relay station. The time is constant and the difference in transmission time between the master station and the slave station is corrected. However, in general, the delay time of the frame passing through the relay station is large, and the delay time is indefinite. Therefore, when the relay station whose delay time is indefinite is performed, the timing at which the slave station receives the synchronization frame is different each time, and in the method described in Patent Document 1, there is a problem that the slave stations cannot be synchronized with each other. 4 322988 201234826 The present invention has been developed in view of the above circumstances, and an object thereof is to obtain a communication system and a communication method, which have a delay time even when there is a relay between the master station and the slave station. In the case where synchronous communication is performed in the communication system of one or more relay stations, the control period of the slave station can be set to be constant, and the synchronization periods of the slave stations can be synchronized. (Means for Solving the Problem) In order to achieve the above object, the communication system of the present invention performs predetermined processing on a master station that manages synchronization timing and data in a synchronization frame that is transmitted from the aforementioned master station in a predetermined cycle. A plurality of slave stations are connected by relaying a relay station between the master station and a plurality of the slave stations, wherein the master station has an offset time generating means for a plurality of slave stations The slave station generates a common offset time; the synchronization frame generating means generates a synchronization frame for the plurality of the slave stations; and the communication means transmits and receives the frame between the slave station and the other communication device; the relay station is provided Means for transmitting, by means of communication means, a frame received from the communication device to the other communication device; and means for measuring the delay time of the synchronization frame, for each of the aforementioned slave stations, receiving and transmitting from the aforementioned master station to each of the aforementioned slave stations The delay time required after the synchronization frame until the synchronization frame is transmitted, and the delay time is The slave station transmits: the slave station includes: a communication means for transmitting and receiving a frame between the other communication devices; and a synchronization counting means for synchronizing between the plurality of slave stations; and a delay correction means, Calculating the correction time after subtracting the aforementioned delay time from the relay station 5 322988 201234826 from the offset time from the master station, and after the correction time is passed after the step frame (the effect of the invention) The effect is as follows: due to the slave station offset time, the relay station measures the delay time from the master station to each slave station ==== and the slave stations receive the == timing from the Since the timing of the correction time after the delay time is subtracted from the offset time, the synchronization counting means is reset, so that it is not necessary to depend on the delay time of the relay processing of the synchronization frame in the relay station. Each slave station performs the same process as the data in the synchronization frame. [Embodiment] Hereinafter, preferred embodiments of the communication system and communication method of the present invention will be described in detail with reference to the accompanying drawings. Further, the present invention is not limited to these embodiments. (Embodiment 1) FIG. 1 is a schematic block diagram showing an example of a configuration of a communication system according to Embodiment 1. The communication system is a master station 100 that performs management of synchronous communication of all communication systems, and a slave station 120 that performs data communication in accordance with an instruction from the master station 100, and is connected through the relay station 11A. In this example, it is shown that two slave stations 120-1 and 120-2 are connected to the relay station 11A. That is, the communication system has a network in which the master station 100 and the slave stations 120-1 and 120-2 are connected to each other via the relay station 110. 6 322988 201234826 Each connection is connected via Ethernet (Ethernet: I main transmission route. In addition, this type of communication system is a ticket). Several motors such as electric fiber are activated at the same time or according to multiple sensing. The system performs a system that performs processing simultaneously with a plurality of slave stations, such as a multi-fetch. The magic data acquisition master station 100 includes an offset time generation unit 1〇1, a generation unit 1〇2, and a communication unit 1〇3. The offset time generating unit 1 'frames the C slave stations Π0-Η20-2 are synchronized with each other's processing timing 3 Toff. The offset time T 〇 ff is set to be longer than the delay time generated by the relay station 。 夺 = subsequent processing. The offset::: 2 m between them is generated when the communication system performs initialization processing. The shift time king sync frame generating unit 102 generates a sync frame in a predetermined period after the normal processing after the initialization processing is completed. The packet in the sync frame = is used, for example, in the slave stations 120-1, 120-2. Synchronized data ^3 The communication unit 103 performs frame transmission and reception between the slave stations 120_1 and 120-2. When the initialization process is performed, the offset time Toff generated by the offset time generating unit ι is dependent on the slave. The stations 12CM and 120-2 transmit. Further, when the normal processing is performed, the synchronization frame generated in the synchronization frame is transmitted. The relay station 110 includes a plurality of communication units 111a to 111c and a synchronization 1 plant delay time measuring unit 112. And a relay processing unit 113. The communication unit 111& receives the signal from the master station 100 or the slave stations 120-1, 120-2 and transmits the signal to the master station 100 or the slave stations 120-1, 120- In the example, the communication unit 111a is connected to the main control station 100. The communication unit 1Ub is connected to the slave station 120-1, and the communication unit illc is connected to the slave station 12〇_2 322988 7 201234826. The synchronization frame delay time measuring unit ip measures until it is sent out from the master station 100 and is in communication. The synchronization frame received by the Ilia is delayed by Ts from the other communication units mb and iiic, and the delay time Ts is transmitted to each of the slave stations 120 and 120-2. Here, the synchronization frame delay time is measured. The unit 112 measures the time until the communication unit Ilia connected to the master station 1() receives the frame from the communication units 111b and 111c connected to the slave stations 12 (K1, 12〇2). The delay time is delayed. In addition, as the transmission method of the delay time, for example, the delay stored in the relay station no may be set in the measured synchronization arm to each of the slave stations 12G] and 12G-2. The time zone, which is transmitted here, may be sent to the slave stations 12 (M, 120-2) in a different frame from the synchronization frame. In the latter case, although the master station 1〇〇When sending a frame, it is sent in the master station 100. When the right is sent, the frame is sent from Zhongyi 110. However, since the inside of the transmission path collides with the frame transmitted from the master station (8), there is no problem even if the frame is transmitted from the relay station (10). The 113 system performs the control of the frame received by the communication units 111a to mc from the other communication unit to the control of the send. For example, the destination of the frame received by the communication unit 111a to 11le is obtained, and The relay processing of the communication unit uu to lllc of the communication device (the master station 1 or the slave station 12 (M, 12〇2)) that is riding the destination is transferred. The slave stations 120-1 and 120-2 include a communication unit 121, a memory unit 122, a 322988 8 201234826 synchronization counter 123, and a delay correction unit 124. The communication unit 121 performs frame reception between the master station 100 or other slave stations 120-2 and 120-1. The memory unit 122 memorizes the offset time Toff from the master station 100 and the delay time Ts from the relay station 110. The synchronization counter 123 is a timer used when the timing of the control processing is matched with the other slave stations 120-2 and 120-1, and is reset here when the control processing is performed. The delay correcting unit 124 corrects the reset timing of the synchronous counter 123 using the offset time Toff and the delay time Ts. Specifically, the correction time after the delay time Ts is subtracted from the offset time Toff is calculated, and the synchronization counter 123 is reset after the correction time has elapsed from the timing of receiving the synchronization frame from the master station 100. Next, the synchronization control in the communication system will be described. Fig. 2 is a diagram showing an example of synchronization control. Figure 3 is a diagram showing the offset time, delay time, correction time, and lag time in communication between the master station and each slave station. In Fig. 2, the timing of the reset of the slave stations 120-1, 120-2 and the reset of the sync counter 123 is shown. Further, from the master station 100 to the slave stations 120-1 and 120-2, the offset time Toff is transmitted. First, when the synchronization frame is transmitted from the master station 100 at time t0, the synchronization frame arrives at each of the slave stations 120-1, 120-2 through the relay station 110. In the case of the slave station 120-1, the transmission time Tal from the master station 100 to the relay station 110, the relay processing time Tsa at the relay station 110, and the transmission time Ta2 from the relay station 110 to the slave station 120-1 are regarded as The delay time is calculated by 9 322988 201234826. Then, the sync frame is received at the time. The case where U1 is connected to the slave station 120-2 by the slave station 120-1 is also the same, the transmission time Tbl from the master station 100 to the relay station 110, the service station Tsb, and the slave station no to the slave station station. The relay processing of 110 is calculated as a delay time. Also, the transmission time of the sync ^ is received by the leg. Π步讯系 at the time - by slave Here, from the master station 100 to the relay, ^丄 Jun station Uo transmission time Tal,

Tbl、與從中繼站no至各從屬 寻 i 攸屬站UO-l、120_2的傳輸時 間%心,9由於是傳播於通訊線路(網路電親)的時間所 以為-疋。但是’為人周知的是,在中繼站iiq的中繼處 理時間(以下,亦稱為延遲時間如、城之變動幅度通常 會較大,且延遲時間Tsa、Tsb為不定。 從同步訊框之發送至同步計數器123被重置之在各從 屬站120-1、120-2的滯後時間Tda、Tdb,係分別以下列 的(1-1)式與(1-2)式求得。Tbl, and the transmission time % heart from the relay station no to the subordinate 寻 i 攸 stations UO-1, 120_2, 9 is because the time of propagation on the communication line (network e-home) is -疋. However, it is well known that the relay processing time at the relay station iiq (hereinafter, also referred to as the delay time, the fluctuation range of the city is usually large, and the delay times Tsa and Tsb are indefinite. Transmission from the synchronization frame The lag times Tda and Tdb at the respective slave stations 120-1 and 120-2, which are reset to the synchronization counter 123, are obtained by the following equations (1-1) and (1-2), respectively.

Tda=Tal+Ta2+Toff *··(ΐ-ΐ) T db=Tb 1 +Tb2+Toff ...(1-2) 如(1-1)式與(1-2)式所示,由於不論傳輸時間Tal、 Ta2、Tbl、Tb2或偏移時間Toff均為一定,所以同步計數 器123被重置的時間,並不受在中繼站11〇的延遲時間所 左右。 另一方面,當在從屬站120-1、120-2接收到同步訊框 之後直至重置同步計數器123為止的時間分別設為補正時 322988 10 201234826 間Tea、Tcb時,從同步訊框之發送直至重置同步計數器 123為止之在各從屬站120-1、120-2的滞後時間Tda、Tdb, ' 係可從第2圖以下列(2-1)式與(2-2)式求得。 T da=Ta 1 +Tsa+Ta2+Tca ...(2-1)Tda=Tal+Ta2+Toff *··(ΐ-ΐ) T db=Tb 1 +Tb2+Toff (1-2) as shown in the equations (1-1) and (1-2), Regardless of whether the transmission time Tal, Ta2, Tb1, Tb2 or the offset time Toff is constant, the time at which the synchronization counter 123 is reset is not affected by the delay time of the relay station 11〇. On the other hand, when the time until the synchronization counter 123 is reset after the slave station 120-1, 120-2 receives the synchronization frame is set to be 322988 10 201234826 between Tea and Tcb, the transmission from the synchronization frame is performed. The lag time Tda, Tdb, ' at each of the slave stations 120-1 and 120-2 until the synchronization counter 123 is reset can be obtained from the following figure by the following equations (2-1) and (2-2). Got it. T da=Ta 1 +Tsa+Ta2+Tca ...(2-1)

Tdb=Tb 1 +Tsb+Tb2+Tcb ...(2-2) 由於如此求得的(1-1)式與(2-1)式係彼此相等,且(ι_2) 式與(2-2)式也是彼此相等,所以根據此等數式可以下列 (3-1)式與(3-2)式求得有關各從屬站120-1、120-2的補正時 間 Tea、Tcb。Tdb=Tb 1 +Tsb+Tb2+Tcb (2-2) Since the equations (1-1) and (2-1) thus obtained are equal to each other, and (ι_2) and (2-2) The equations are also equal to each other. Therefore, according to the equations, the correction times Tea and Tcb for the respective slave stations 120-1 and 120-2 can be obtained by the following equations (3-1) and (3-2).

Tca=Toff-Tsa ...(3-1)Tca=Toff-Tsa ...(3-1)

Tcb=Toff-Tsb …(3-2) 各從屬站120-1、120-2的補正時間Tca、Tct),由於可 以(3-1)式與(3-2)表示,所以可使用該補正時間Tca、Tcb 來補正重置同步計數器123的時間。換句話說,在各從屬 站120-卜120-2中,由於接收到同步訊框的時刻⑴卜t〇2、 偏移時間Toff、及在中繼站11〇的延遲時間Tsa、Tsb為已 知’所以藉由從同步訊框之接收時刻t〇1、t〇2起,經過(3_ι) 式與(3-2)式所示的補正時間Tea、Tcb之後重置同步計數器 123,就可吸收在中繼站no的不定之延遲時間Tsa、Tsb 並在各從屬站120-1、120-2取得同步。另外,在以上的說 明中’為了簡單起見有關從主控站1〇〇至中繼站11〇的傳 輸時間係設為Tal=Tbl,且有關從中繼站110至各從屬站 120-1、120-2的傳輸時間則是設為Ta2=Tb2。 如此’在從主控站1〇〇接受同步訊框後的各從屬站 11 322988 201234826 120-1、120-2彼此,係可大致同時地重置同步計數器123, 且可實現從屬站120-1、120-2彼此之同步。 ' 其次,針對在通訊系統的同步方法加以說明。第4圖 係顯示實施形態1的同步控制方法之處理順序之一例的流 程圖。首先,在通訊系統中,雖然可進行用以進行同步通 訊的初始化處理,但是在該初始化處理中可進行下列步驟 S11至步驟S16的處理。 主控站100的偏移時間產生部101,係在從屬站 120-卜120-2產生共通的偏移時間Toff(步驟S11),且將包 含偏移時間Toff的訊框朝向從屬站120-1、120-2發送(步 驟 S12)。 從主控站100送出之包含偏移時間Toff的訊框,係在 由中繼站110的通訊部111a接收之後(步驟S13),從中繼 站110之中繼處理部113之連接有從屬站120-1、120-2的 通訊部111b、111c發送(步驟S14)。然後,在各從屬站 120-1、120-2接收包含偏移時間Toff的訊框(步驟S15)。 各從屬站120-卜120-2係當在通訊部121接收包含偏 移時間Toff的訊框時(步驟S15),會在記憶部122記憶偏 移時間Toff(步驟S16)。 在初始化處理之後可進行以下所示的通常處理。首 先,主控站100係判定是否初始化處理已結束、且已移行 至通常處理(步驟S17)。在初始化處理尚未結束的情況(在 步驟S17之「否」的情況),會成為等待狀態直至移行至通 常處理。在進行同步通訊用的預定之初始化處理已結束的 12 322988 201234826Tcb=Toff-Tsb (3-2) The correction times Tca and Tct) of the respective slave stations 120-1 and 120-2 can be expressed by (3-1) and (3-2), so that the correction can be used. The times Tca, Tcb correct the time at which the synchronization counter 123 is reset. In other words, in each of the slave stations 120-Bu 120-2, since the timing of receiving the synchronization frame (1), t2, offset time Toff, and delay time Tsa, Tsb at the relay station 11 are known ' Therefore, by resetting the synchronization counter 123 after the correction times Te, Tcb shown by the equations (3_ι) and (3-2) from the reception timings t1 and t2 of the synchronization frame, the synchronization counter 123 can be absorbed. The indefinite delay times Tsa, Tsb of the relay station no are synchronized at the respective slave stations 120-1, 120-2. Further, in the above description, the transmission time from the master station 1 to the relay station 11 is set to Tal = Tbl for the sake of simplicity, and the slave relay station 110 to the slave stations 120-1, 120-2 are concerned. The transmission time is set to Ta2=Tb2. Thus, each of the slave stations 11 322988 201234826 120-1, 120-2 after receiving the synchronization frame from the master station 1 can reset the synchronization counter 123 substantially simultaneously, and the slave station 120-1 can be implemented. 120-2 are synchronized with each other. Second, explain the synchronization method in the communication system. Fig. 4 is a flow chart showing an example of the processing procedure of the synchronization control method of the first embodiment. First, in the communication system, although the initialization processing for performing the synchronous communication can be performed, the processing of the following steps S11 to S16 can be performed in the initialization processing. The offset time generation unit 101 of the master station 100 generates a common offset time Toff at the slave station 120-b 120-2 (step S11), and directs the frame including the offset time Toff toward the slave station 120-1. And 120-2 transmits (step S12). The frame including the offset time Toff sent from the master station 100 is received by the communication unit 111a of the relay station 110 (step S13), and the slave station 120-1 is connected to the relay processing unit 113 of the relay station 110. The communication units 111b and 111c of 120-2 transmit (step S14). Then, a frame including the offset time Toff is received at each of the slave stations 120-1, 120-2 (step S15). Each of the slave stations 120-Bu 120-2 receives the frame including the offset time Toff when the communication unit 121 (step S15), and stores the offset time Toff in the memory unit 122 (step S16). The normal processing shown below can be performed after the initialization processing. First, the master station 100 determines whether or not the initialization process has ended and has moved to the normal process (step S17). In the case where the initialization processing has not been completed (in the case of "NO" in the step S17), the waiting state is reached until the transition to the normal processing. The scheduled initialization process for synchronous communication has ended 12 322988 201234826

If況(在步驟S17之「是」的情況),同步訊框產生部1〇2 係產生& 3在從屬站12〇-1、120-2同步控制時所執行的資 料之同V 框(步驟S18),且從通訊部聊發送(步驟$⑼。 在中繼站11〇’係在通訊部Ula接收同步訊框之後(步 驟S2〇) ’從中繼處理部之連接有從屬站120-1、120-2 的通5ί1部Ulb、lllc發送(步驟S21)。又,同步訊框延遲 時間測定部112,係測定在通訊部1Ua接收同步訊框之後 直至彳文連接於各從屬站12(Μ、12〇 2的通訊部mb、ulc 送出為止之在中繼站11〇的延遲時間Ts(步驟S22)。在如 第1圖所示的通訊系統中’同步訊框延遲時間測定部112, 係對從屬站120-1測定延遲時間Tsa,且對從屬站12〇_2測 定延遲時間Tsb。 然後’同步訊框延遲時間測定部112,係產生包含延 遲時間Ts的訊框,且對各從屬站120-卜120-2,發送中繼 同步訊框時所產生的延遲時間Ts(步驟S23)。之後,在中 繼站110的處理會回到步驟S20。 在從屬站120-卜Π0-2之通訊部121中,首先是接收 同步訊框(步驟S24)’其次接收包含延遲時間Ts的訊框(步 驟S25)。所接收到的訊框中之延遲時間Ts,係記憶在記憶 部 122。 接著,各從屬站120-1、120-2之延遲補正部124,係 使用記憶於記憶部122的偏移時間Toff與延遲時間Ts而 算出補正時間Toff-Ts,且從接收同步訊框後的時序起,以 滯後了補正時間Toff-Ts的時序重置同步計數器123(步驟 13 322988 201234826 S26)。之後,從屬站120-1、120-2係配合同步計數器123 之重置,執行使用含於同步訊框内的資料之控制處理(步驟 ' S27)。之後,在各從屬站120-1、120-2的處理會回到步驟 S24 ° 另一方面,在主控站100的同步訊框產生部102中, 係判定從前次的同步訊框之發送起是否已經過了預定時間 (例如通訊週期之時間)(步驟S28)。在尚未經過預定時間的 情況(在步驟S28之「否」的情況),會成為等待狀態直至 經過預定時間為止。另一方面,在已經過預定時間的情況 (在步驟S28之「是」的情況),係回到步驟S18,且重複 進行上述的通常處理。 另外,在第4圖中,雖然是藉由與同步訊框不同的訊 框進行依中繼站110而產生的延遲時間Ts之對從屬站 120-1、120-2的發送,但是亦可在同步訊框内包含已測定 的延遲時間來發送。 在該實施形態1中,主控站100在各從屬站120-1、 120-2產生共通的偏移時間Toff,中繼站110測定中繼處 理之延遲時間Ts,且從屬站120-;1、120-2求出作為偏移時 間Toff與延遲時間Ts之差的補正時間,並且以接收到同 步訊框並經過補正時間後的時序來重置同步計數器123。 藉此,具有如下的效果:不用取決於中繼站中的同步訊框 之中繼處理的延遲時間Ts,就可在各從屬站120-1、120-2 同步進行使用了同步訊框中之資料的控制處理。結果,例 如複數個馬達同時啟動或依複數個感測器進行同時刻之資 14 322988 201234826 料採取等、複數個從屬站就可同時地執行處理。 又,除了上述的實施形態1之方法以外,亦可將從主 ' 控站100發送訊框至中繼站110時所產生的傳輸時間、和 從中繼站110發送訊框至各從屬站120-:1、120-2時所產生 的傳輸時間,發送至從屬站120-1、120-2,且在從屬站 120-1、120-2,進行使用所接收到的傳輸時間而取得在與 其他的從屬站120-2、120-1之間的同步之控制,藉此也可 補正從屬站 120-1 與從屬站 120-2 之誤差 Tal+Ta2-(Tbl+Tb2),且也可實現從屬站 120-1、120-2 彼 此之高精度的同步。 實施形態2 在實施形態1中,雖然已顯示在主控站與從屬站之間 存在有1台中繼站的情況,但是即使在主控站與從屬站之 間存在有複數台中繼站的情況,亦可藉由與實施形態1同 樣的手法來執行同步控制。 第5圖係顯示有複數台的中繼站存在於主控站與從屬 站之間的通訊系統之構成之一例的方塊圖。在此,係顯示 在主控站100與從屬站120-:!、120-2之間,配置有複數台 中繼站 110-1、…、110-i.....110-n(i$n,i、η 為 2 以上 之整數)的情況。 在第5圖的情況,各中繼站110-1至110-n的同步訊 框延遲時間測定部,係在通常處理的同步訊框之中繼處理 中,測定在該中繼站110-1至110-n的延遲時間Ts-Ι至 Ts-n,且發送至位於下游的各從屬站120-1、120-2。例如, 15 322988 201234826 第5圖的情況,由於相對於從屬站12〇1之 1HM、110-i、l10-n的延遲時間係分別為Tsa】、Ba i、If the condition is "YES" in the step S17, the synchronization frame generating unit 1 〇 2 generates the same V frame of the data executed when the slave stations 12 〇-1, 120-2 are synchronously controlled ( Step S18), and transmitting from the communication unit (step $(9). After the relay station 11〇 receives the synchronization frame in the communication unit Ula (step S2〇) 'The slave station 120-1, 120 is connected to the relay processing unit. Further, the synchronization frame delay time measuring unit 112 determines that the synchronization frame is received after the communication unit 1Ua receives the synchronization frame until the text is connected to each of the slave stations 12 (Μ, 12). The delay time Ts of the relay station 11A until the communication units mb and ulc of the port 2 are sent (step S22). In the communication system shown in Fig. 1, the "synchronization frame delay time measuring unit 112" pairs the slave station 120. -1 determines the delay time Tsa, and measures the delay time Tsb for the slave station 12〇_2. Then, the 'synchronization frame delay time measuring unit 112 generates a frame including the delay time Ts, and for each slave station 120-Bu 120 -2, the delay time Ts generated when the relay sync frame is transmitted (step S23). After that, in the middle The processing of the relay station 110 returns to step S20. In the communication unit 121 of the slave station 120-BuΠ0-2, first, the synchronization frame is received (step S24)', and the frame including the delay time Ts is received next (step S25). The delay time Ts of the received frame is stored in the memory unit 122. Next, the delay correction unit 124 of each of the slave stations 120-1 and 120-2 uses the offset time Toff stored in the memory unit 122. The correction time Toff-Ts is calculated with the delay time Ts, and the synchronization counter 123 is reset at a timing delayed by the correction time Toff-Ts from the timing after receiving the synchronization frame (step 13 322988 201234826 S26). Thereafter, the slave station 120-1, 120-2 cooperate with the reset of the synchronization counter 123 to execute control processing using the data contained in the synchronization frame (step 'S27). Thereafter, processing at each of the slave stations 120-1, 120-2 Returning to step S24 °, on the other hand, in the synchronization frame generating unit 102 of the master station 100, it is determined whether or not a predetermined time (e.g., the time of the communication cycle) has elapsed since the transmission of the previous synchronization frame (step S28). In the case where the predetermined time has not passed ( In the case of "NO" in the step S28, the waiting state is reached until the predetermined time elapses. On the other hand, when the predetermined time has elapsed (in the case of "YES" in the step S28), the process returns to the step S18, and The above-described normal processing is repeated. In addition, in FIG. 4, the transmission of the slave station 120-1, 120-2 by the delay time Ts generated by the relay station 110 by the frame different from the synchronization frame is performed. However, it is also possible to include the measured delay time in the sync frame to send. In the first embodiment, the master station 100 generates a common offset time Toff at each of the slave stations 120-1 and 120-2, and the relay station 110 measures the delay time Ts of the relay process, and the slave stations 120-; 1, 120 -2 Finds the correction time which is the difference between the offset time Toff and the delay time Ts, and resets the synchronization counter 123 at the timing after the synchronization frame is received and the correction time has elapsed. Thereby, the effect of using the data in the synchronization frame can be synchronously performed in each of the slave stations 120-1, 120-2 without depending on the delay time Ts of the relay processing of the synchronization frame in the relay station. Control processing. As a result, for example, a plurality of motors are simultaneously activated or simultaneously in accordance with a plurality of sensors. 14 322988 201234826 It is assumed that a plurality of slave stations can perform processing simultaneously. Further, in addition to the above-described method of the first embodiment, the transmission time generated when the frame is transmitted from the master station 100 to the relay station 110 and the frame transmitted from the relay station 110 to the slave stations 120-: 1, may be transmitted. The transmission time generated at 120-2 is transmitted to the slave stations 120-1 and 120-2, and the slave stations 120-1 and 120-2 perform the use of the received transmission time to acquire the slave stations. Control of synchronization between 120-2 and 120-1, whereby the error Tal+Ta2-(Tbl+Tb2) of the slave station 120-1 and the slave station 120-2 can also be corrected, and the slave station 120- can also be implemented. 1, 120-2 High-precision synchronization with each other. (Embodiment 2) In the first embodiment, although one relay station exists between the master station and the slave station, even if there are a plurality of relay stations between the master station and the slave station, Synchronization control is performed by the same method as in the first embodiment. Fig. 5 is a block diagram showing an example of a configuration of a communication system in which a plurality of relay stations exist between a master station and a slave station. Here, it is displayed between the master station 100 and the slave stations 120-:!, 120-2, and a plurality of relay stations 110-1, ..., 110-i.....110-n (i$n) are arranged. , where i and η are integers of 2 or more). In the case of Fig. 5, the synchronization frame delay time measuring unit of each of the relay stations 110-1 to 110-n measures the relay stations 110-1 to 110-n in the relay processing of the normally processed synchronization frame. The delay time Ts-Ι to Ts-n is transmitted to each of the slave stations 120-1, 120-2 located downstream. For example, in the case of 15 322988 201234826 Figure 5, since the delay times of 1HM, 110-i, l10-n with respect to the slave stations 12〇1 are respectively Tsa], Ba i,

Tsa-n,且相對於從屬站12〇·2之在各中繼站ιι〇_卜 110-n的延遲時間係分別為Tsb_卜Tsb_i、Tsb n,所以會將 此等的延遲時間發送至各自的從屬站12〇1、12〇_2。曰 然後,各從屬站m-i、120_2的延遲補正部,係算出 作為在全部的中繼站11(M至11〇_n之延遲時間Μ至 —的合計值之累積延遲時間,且使用從偏移時間Toff扣 除累積延遲時間後的值作為補正時間,以補正同步計數器。 另外,由於其他的構成係與實施形態1同樣,所以省 略其說明。又,由_步控制方法也是與實施形態1同樣, 所以也省略其說明。 、又’在上述的說明中,雖然是在從屬站12G·卜120-2 求出在各中繼站 至110_η之延遲時間Ts-1至Ts-n的 和,但是各中繼站l10_i(i=1、., 11Λ . U ··、η),亦可測定在中繼站 110-i被中繼的同步訊框之 之遲時間,且對於從位於上游的 中繼站110_(i-l)接收至,丨& 、艰_的累積延遲時間加上已測定到的延 遲時間’並將所算出的累藉 L 的累積延遲時間發送至位於下游的中 繼站110-(i+l)或是從屬站 從屬站如^ 1、120·2。在該情況下,在 使用评兄之捕切己憶部’係只記憶有累積延遲時間。 正時間後的同步計數器 方法也是與上述同樣。 在上述的說明中,雖麸 卞化虫上士仏, …、匕顯不中繼站110-1至110-n 被配置成直線狀的情況,作 疋即使在非為直線狀而是以途 322988 201234826 中分歧的方式配置的情況亦可同樣地實現同步控制。 依據實施形態2,即使在主控站1〇〇與從屬站12〇1、 120-2之間存在有複數個中繼站Hoq至的情況,亦 具有如下效果:吸收在各中繼站至11〇_n的延遲時 間Ts-1至Ts-n之滯後,並在各從屬站、12〇 2進行 同步控制。 另外’上述的實施形態1、2中,雖然已例示設置有2 台從屬站的情況’但是並非被限定於此。又,上述之例中, 雖然已例示設置有根據所接收到的訊框之接收目的地而決 疋所要送出的通訊部111a至lllc之中繼處理部113的中 繼站no’但是亦可為將從某個通訊部111&至Ulc接收到 的訊框,從該通訊部llla至lllc以外的通訊部送出的構 造之中繼站110。 (產業上之可利用性) 如以上所述’本發明的通訊系統,係有用於需要進行 從屬站之同步的星型網路之通訊系統,尤其是適於具有延 遲時間之變動幅度大之中繼站的星型網路之通訊系統中的 同步控制。 【圖式簡單說明】 第1圖係顯示實施形態1的通訊系統之構成之一例的 示意方塊圖。 第2圖係顯示同步控制之一例的示意圖。 第3圖係顯示主控站與各從屬站間之通訊中的偏移時 間、延遲時間、補正時間及滞後時間的圖。 17 322988 201234826 第4圖係顯示實施形態1的同步控制方法之處理順序 之一例的流程圖。 第5圖係顯示有複數台的中繼站存在於主控站與從屬 站之間的通訊系統之構成之一例的方塊圖。 【主要元件符號說明】 100 主控站 101 偏移時間產生部 102 同步訊框產生部 103、111a 至 111c、121 通訊部 110 中繼站 112 同步訊框延遲時間測定部 113 中繼處理部 120、120-1、120-2 從屬站 122 記憶部 123 同步計數器 124 延遲補正部 t01、t02 時刻 Tal、Ta2 、Tbl、Tb2 傳輸時間 Tea、Tcb 補正時間Tsa-n, and the delay time of each relay station ι 〇 _ 110-n relative to the slave station 12 〇 2 is Tsb_b Tsb_i, Tsb n respectively, so the delay time is sent to the respective The slave stations are 12〇1, 12〇_2. Then, the delay correction unit of each of the slave stations mi and 120_2 calculates the cumulative delay time as the total value of the delay values Μ to _ of all the relay stations 11 (M to 11 〇 n), and uses the slave offset time Toff. The value obtained by subtracting the cumulative delay time is used as the correction time to correct the synchronization counter. The other configuration is the same as that of the first embodiment, and therefore the description thereof is omitted. The _step control method is also the same as that of the first embodiment. In the above description, the sum of the delay times Ts-1 to Ts-n at the respective relay stations to 110_n is obtained in the slave stations 12G and 120-2, but the relay stations l10_i(i) =1, ., 11Λ . U ··, η), the delay time of the synchronization frame relayed by the relay station 110-i can also be measured, and is received from the relay station 110_(il) located upstream, 丨& , the cumulative delay time of the hard_plus plus the measured delay time' and the calculated cumulative delay time of the accumulated borrowing L is sent to the downstream station 110-(i+l) or the slave station of the slave station such as ^ 1, 120·2. In this case, at The use of the judge's catching and remembering the memory department has only accumulated delay time. The synchronous counter method after the positive time is also the same as above. In the above description, although the bran worms are sergeant, ... The relay stations 110-1 to 110-n are arranged in a straight line, and synchronization control can be realized in the same manner even if they are arranged in a manner that is not linear but is different in the way of 322988 201234826. According to the second embodiment, Even if there are a plurality of relay stations Hoq to between the master station 1 and the slave stations 12A1, 120-2, there is an effect of absorbing the delay time Ts-1 at each relay station to 11〇_n. In the above-described first and second embodiments, the case where two slave stations are provided has been exemplified, but the lag is not limited thereto. Further, in the above-described example, the relay station no' of the relay processing unit 113 of the communication units 111a to 111c to be sent based on the reception destination of the received frame is provided as an example. a communication department 111&amp The relay station 110 of the structure sent from the communication unit 111a to the communication unit other than the 11c. The industrial communication system is as described above. A communication system for a star network that synchronizes slave stations, especially for a synchronous control in a star network communication system with a relay station having a large fluctuation range of delay time. [Simplified Schematic] Fig. 1 A schematic block diagram showing an example of the configuration of the communication system of the first embodiment is shown. Fig. 2 is a view showing an example of synchronization control. Figure 3 is a diagram showing the offset time, delay time, correction time, and lag time in communication between the master station and each slave station. 17 322988 201234826 Fig. 4 is a flow chart showing an example of the processing procedure of the synchronization control method of the first embodiment. Fig. 5 is a block diagram showing an example of a configuration of a communication system in which a plurality of relay stations exist between a master station and a slave station. [Description of Main Element Symbols] 100 Master Station 101 Offset Time Generation Unit 102 Synchronization Frame Generation Units 103, 111a to 111c, 121 Communication Unit 110 Relay Station 112 Synchronization Frame Delay Time Measurement Unit 113 Relay Processing Unit 120, 120- 1. 120-2 Slave station 122 Memory unit 123 Synchronization counter 124 Delay correction unit t01, t02 Time Tal, Ta2, Tbl, Tb2 Transmission time Tea, Tcb Correction time

Tda、Tdb 延遲時間Tda, Tdb delay time

Toff 偏移時間 Ts 延遲時間 Tsa、Tsb 延遲時間(中繼處理時間) 18 322988Toff offset time Ts delay time Tsa, Tsb delay time (relay processing time) 18 322988

Claims (1)

201234826 七、申請專利範圍: " 1. 一種通訊系統,係將管理同步時序的主控站、和使用從 前述主控站以預定週期發送的同步訊框中之資料進行 預定之處理的複數個從屬站,透過中繼前述主控站與複 數個前述從屬站之間的中繼站而連接者,其中, 前述主控站係具備: 偏移時間產生手段,對複數個前述從屬站產生共通 的偏移時間; 同步訊框產生手段,對複數個前述從屬站產生同步 訊框;以及 通訊手段,在其與其他的通訊裝置之間進行訊框的 收發; 前述中繼站係具備: 通訊手段,將從通訊裝置接收到的訊框發送至其他 的通訊裝置;以及 同步訊框延遲時間測定手段,針對每一前述從屬站 測定接收到從前述主控站發給各前述從屬站之前述同 步訊框之後直至發送該同步訊框為止之期間所需的延 遲時間,且將前述延遲時間對各前述從屬站發送; 前述從屬站係具備: 通訊手段,在其與其他的通訊裝置之間進行訊框的 收發; 同步計數手段,在複數個前述從屬站間取得同步時 使用;以及 1 322988 201234826 延遲補正手段,算出從來自前述主控站之前述偏移 時間減去來自前述中繼站之前述延遲時間後的補正時 間,且在前述通訊手段接收到前述同步訊框後經過前述 補正時間之後使前述同步計數手段重置。 2. 如申請專利範圍第1項所述之通訊系統,其中,在有複 數個前述中繼站存在於前述主控站與前述從屬站之間 的情況時,前述從屬站之延遲補正手段將從前述偏移時 間減去累積延遲時間後的值,當作前述補正時間來使 用,而該累積延遲時間係將存在於前述主控站至該從屬 站之間的前述中繼站之延遲時間予以合計而得者。 3. —種通訊方法,係將管理同步時序的主控站、和使用從 前述主控站以預定週期發送的同步訊框中之資料進行 預定之處理的複數個從屬站,透過中繼前述主控站與複 數個前述從屬站之間的中繼站而連接之通訊系統的通 訊方法,其中係具備: 偏移時間發送步驟,係由前述主控站對複數個前述 從屬站產生共通的偏移時間,且發送至前述從屬站; 偏移時間接收步驟,係由前述從屬站接收前述偏移 時間; 同步訊框發送步驟,係由前述主控站將同步訊框對 複數個前述從屬站發送; 同步訊框中繼步驟,係由前述中繼站中繼從前述主 控站發給各前述從屬站的前述同步訊框; 延遲時間發送步驟,係由前述中繼站測定前述同步 2 322988 201234826 訊框之中繼所需的延遲時間,且將前述延遲時間發送至 已測定前述延遲時間的前述同步訊框之接收目的地的 前述從屬站; 同步訊框接收步驟,係由前述從屬站接收前述同步 訊框;以及 同步處理步驟,係由前述從屬站算出從前述偏移時 間減去前述延遲時間後的補正時間,且在從接收到前述 同步訊框後的時序起延遲了前述補正時間後的時序進 行使用了前述同步訊框中之資料的處理。 4.如申請專利範圍第3項所述之通訊方法,其中,在前述 同步處理步驟,係在有複數個前述中繼站存在於前述主 控站與前述從屬站之間的情況時,將從前述偏移時間減 去累積延遲時間後的值,當作前述補正時間來使用,而 該累積延遲時間係將存在於前述主控站至該從屬站之 間的中繼站之延遲時間予以合計而得者。 3 322988201234826 VII. Patent application scope: 1. A communication system is a plurality of communication stations that manage synchronization timing and a plurality of processing using the data in the synchronization frame sent from the aforementioned master station in a predetermined cycle. The slave station is connected by relaying a relay station between the master station and a plurality of the slave stations, wherein the master station has: an offset time generating means for generating a common offset to the plurality of slave stations a synchronization frame generating means for generating a synchronization frame for a plurality of the aforementioned slave stations; and a communication means for transmitting and receiving frames between the other communication devices; the relay station having: means for communication, the slave device Receiving the frame sent to the other communication device; and the synchronization frame delay time measuring means, after measuring, receiving, for each of the foregoing slave stations, the synchronization frame sent from the foregoing master station to each of the slave stations until transmitting The delay time required during the synchronization of the frame, and the aforementioned delay time is sent to each of the aforementioned slave stations. The slave station has: a communication means for transmitting and receiving a frame between the other communication devices; a synchronous counting means for synchronizing between the plurality of slave stations; and 1 322988 201234826 delay correction means for calculating The correction time after the delay time from the relay station is subtracted from the offset time from the master station, and the synchronization counting means is reset after the correction time is passed after the communication means receives the synchronization frame. 2. The communication system according to claim 1, wherein in the case where a plurality of the foregoing relay stations exist between the master station and the slave station, the delay correction means of the slave station will be offset from the foregoing The value obtained by subtracting the accumulated delay time from the shift time is used as the correction time, and the accumulated delay time is obtained by summing the delay times of the relay stations existing between the master station and the slave station. 3. A communication method in which a plurality of slave stations that manage synchronization timing and a plurality of slave stations that use predetermined data in a synchronization frame transmitted from a predetermined period of the master station are scheduled to relay the foregoing main a communication method of a communication system in which a control station is connected to a relay station between a plurality of the aforementioned slave stations, wherein the method includes: an offset time transmitting step, wherein the master station generates a common offset time for the plurality of the slave stations, And sending to the foregoing slave station; the offset time receiving step is: receiving, by the foregoing slave station, the offset time; and the synchronization frame sending step, wherein the synchronization station sends the synchronization frame to the plurality of the slave stations; The frame relaying step is performed by the relay station relaying the synchronization frame sent from the master station to each of the slave stations; and the delay time transmitting step is performed by the relay station to determine the relay of the synchronization 2 322988 201234826 frame Delay time, and transmitting the aforementioned delay time to the aforementioned destination of the synchronization frame of the aforementioned delay time a slave station receiving step of receiving the synchronization frame by the slave station; and a synchronization processing step of calculating, by the slave station, a correction time after subtracting the delay time from the offset time, and receiving from the slave station The processing after the timing of the synchronization frame is delayed by the timing after the correction time is performed using the data in the synchronization frame. 4. The communication method according to claim 3, wherein in the synchronization processing step, when a plurality of the relay stations exist between the master station and the slave station, The value obtained by subtracting the accumulated delay time from the shift time is used as the correction time, and the accumulated delay time is obtained by summing the delay times of the relay stations existing between the master station and the slave station. 3 322988
TW100111789A 2011-02-10 2011-04-06 Communication system and communication method TW201234826A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052928 WO2012108049A1 (en) 2011-02-10 2011-02-10 Communication system and method of communication

Publications (1)

Publication Number Publication Date
TW201234826A true TW201234826A (en) 2012-08-16

Family

ID=46638288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111789A TW201234826A (en) 2011-02-10 2011-04-06 Communication system and communication method

Country Status (2)

Country Link
TW (1) TW201234826A (en)
WO (1) WO2012108049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635707B (en) * 2017-12-08 2018-09-11 陞達科技股份有限公司 System and method for detecting signal transmission latency of fan chip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410625B1 (en) * 2007-03-28 2014-06-20 가부시키가이샤 야스카와덴키 Communication device, synchronized communication system, and synchronized communication method
JP5228714B2 (en) * 2008-09-02 2013-07-03 富士通株式会社 Time synchronization method and relay device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635707B (en) * 2017-12-08 2018-09-11 陞達科技股份有限公司 System and method for detecting signal transmission latency of fan chip
US10440857B2 (en) 2017-12-08 2019-10-08 Sentelic Corporation Detection system and method of signal transmission delay for fan chip

Also Published As

Publication number Publication date
WO2012108049A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US8953645B2 (en) Communication system, communication apparatus and time synchronization method
JP5561426B2 (en) Synchronization system, synchronization method, first synchronization device, second synchronization device, and computer program
CN102907021B (en) Optimize timing and be grouped transmission
WO2013066437A3 (en) Systems and methods of network synchronization
JP6058713B2 (en) Time synchronization method and time synchronization apparatus
EP2448168A1 (en) Method and system for bearing time synchronization protocol in optical transport network
JP2009065579A (en) Time synchronizing system, time synchronizing method, node, and program
JP2013017104A (en) Communication system
JP5650072B2 (en) Frequency / time synchronization method and frequency / time synchronization apparatus
JP2013098788A (en) Time synchronization system and time synchronization method
JPWO2012176894A1 (en) Communication system, communication method, and slave station of communication system
JP2001177570A (en) Communication network system, and slave unit, master unit, repeater and synchronization controlling method in communication network system
JP6481807B2 (en) Time synchronization method, network system, CPU, relay device, and user device
TW201234826A (en) Communication system and communication method
JP2012114815A (en) Phase synchronization device and phase synchronization method
JP6529063B2 (en) PON system, OLT and transmission method
JP2008109268A (en) Synchronization communication method of communication apparatus and its synchronization device
JP6456787B2 (en) Time synchronization apparatus and time synchronization method
JP6385849B2 (en) Time synchronization method and time synchronization apparatus
JP2011071869A (en) Clock synchronizing method and packet communication system
JP5458904B2 (en) Communication system synchronization method, communication system, master station
JP6049535B2 (en) Wireless communication system
KR101344596B1 (en) Clock synchronization method of single ring network based on hsr(high-availability seamless redundancy) protocol
KR20110057578A (en) Time synchronization apparatus for asymmetrical communication link and method thereof
JP6503271B2 (en) Time synchronization system