201234660 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種用以控制發光二極體光度之技術,特 別是指一種可以有效控制四元化合物發光二極體之光度,藉 以增加四元化合物發光-—極體應用領域之發光二極體光度控 制方法。 【先前技術】 鲁按,發光二極體(Light Emitting Diode,簡稱LED)是 由半導體材料製成的發光元件,屬於冷光源。它既可作為發 光元器件,也可作為光電顯示器件。按波長劃分,發光二極 體包括可見光(波長450-680 nm)和不可見光(波長85〇155〇 nm)兩大類;按半導體材料區分則可分為元素半導體與化合物 半導體等二類。 ' ° 其中,化合物半導體,由字面上意思可知此材料内含兩 種或兩種以上的元素,也就是兩種或兩種以上的元素所組成 #的具有半導體特性之化合物,稱之為化合物半導體材料。 目前常見的化合物半導體材料有二元化合物(砷化鎵 GaAs、磷化銦ΙηΡ、氮化鎵GaN等)、三元化合物 =、氮化銦鎵論N等),以及四元化合物申二 InGaAsP、磷砷化鋁銦MGaAsp等)。於實際應用時,高亮度 發光二極體多使用四元化合物及GaN係化合物, 光二極體則多使用GaN係以外 -一元化合物和三元化人物 由於發光二極體具有指向性,各廠商衡量標準也不一, 直接衡量發光二極體光度並無法正確區分出高亮度發光二極 201234660 體及一般亮度發光二極體。再加上發光二極體發光亮度、發 光效率與磊晶層材料直接相關,因此一般即以使用磊晶層材 料種類作為區分高亮度發光二極體及一般亮度發光二極體標 準。 再者’ 一般高功率發光二極體超過一定亮度之能量係多 直接轉換成為熱量,因此必須仰賴有效的散熱技術把熱排 出以避免降低其發光效率及壽命,這也使得目前四元化合 物及GaN係化合物之發光二極體元件多被應用於戶外全彩看 板、交通號誌、背光源及或車用照明等領域。 縱使四元化合物之發光二極體雖然具有能帶隙較大,可 降低暗電流之特性,但卻因為傳統四元化合物發光二極體之 亮度不易控制’反而使得四元化合物發光二極體之應用領域 遭受到限制。 【發明内容】 物路^鑑本發明即在提供—種可以有效控制四元化合 之光度,藉以增加四元化合物發光二極體應用 7員域之發光二極體光度控制方法,為其主要目的者。 有半的’發光二極體之光度控制方法’係在一具 製程。俾可利用金屬薄膜對其以下之第二型 光一極體μ㈣產生—定程度之喊仙,達到控制發 之目的,進而得以增加其應用之領域,以及可 _金㈣膜之導電性,提升發光二極體之運作效能。 201234660 時,所述具有半導體編之發光二極體 ϋί材其中一面依序建構有-第-型批覆層、-活 性發光層,以及一第二型批覆層。201234660 VI. Description of the Invention: [Technical Field] The present invention relates to a technique for controlling the luminosity of a light-emitting diode, and more particularly to an illuminance capable of effectively controlling a quaternary compound light-emitting diode, thereby increasing the quaternary Compound Luminescence - Luminous diode photometric control method for polar body applications. [Prior Art] Light Emitting Diode (LED) is a light-emitting element made of a semiconductor material and belongs to a cold light source. It can be used as both a light-emitting component and an optoelectronic display device. Divided by wavelength, the light-emitting diodes include visible light (wavelength 450-680 nm) and invisible light (wavelength 85〇155〇 nm); they can be classified into elemental semiconductors and compound semiconductors according to semiconductor materials. ' ° Among them, a compound semiconductor, literally means that the material contains two or more elements, that is, two or more elements composed of semiconductor compounds having a semiconductor characteristic, called a compound semiconductor material. At present, common compound semiconductor materials include binary compounds (GaAs GaAs, Indium Phosphide Ι Ρ, GaN GaN, etc.), ternary compounds =, indium gallium nitride (N, etc.), and quaternary compound Shen 2 InGaAsP, Phosphorus aluminide indium MGaAsp, etc.). In practical applications, high-brightness light-emitting diodes use quaternary compounds and GaN-based compounds, and light-diodes use GaN-based one-component compounds and ternary people because of the directivity of light-emitting diodes. The standard is different. Direct measurement of the illuminance of the LEDs does not correctly distinguish the high-brightness LED 201234660 body and the general brightness LED. In addition, the luminance and the light-emitting efficiency of the light-emitting diode are directly related to the material of the epitaxial layer. Therefore, the type of the epitaxial layer material is generally used as a standard for distinguishing the high-brightness light-emitting diode from the general brightness light-emitting diode. Furthermore, the energy of a general high-power light-emitting diode that exceeds a certain brightness is directly converted into heat, so it is necessary to rely on effective heat-dissipation technology to discharge heat to avoid reducing its luminous efficiency and lifetime, which also makes the current quaternary compound and GaN. Luminescent diode components of the compound are mostly used in outdoor full color billboards, traffic signs, backlights, and automotive lighting. Even though the luminescent diode of the quaternary compound has a large band gap, it can reduce the characteristics of dark current, but because the brightness of the conventional quaternary compound light-emitting diode is difficult to control, the quaternary compound light-emitting diode is The application area is subject to restrictions. SUMMARY OF THE INVENTION The present invention provides a method for controlling the luminosity of a quaternary compound by effectively controlling the luminosity of a quaternary compound, thereby increasing the luminosity photometric control method of a quaternary compound light-emitting diode in a 7-member domain. By. Half of the 'photometric control methods for light-emitting diodes' are in one process.俾Using a metal film to produce a certain degree of sensation to the following second-type photo-polar body μ (four), to achieve the purpose of controlling the hair, thereby increasing the field of application, and the conductivity of the _ gold (four) film, enhancing the luminescence The operational efficiency of the diode. In 201234660, one side of the semiconductor-made light-emitting diode material is sequentially constructed with a --type cladding layer, an active light-emitting layer, and a second type of cladding layer.
發光二極體在第二型批覆層表面建構-預定厚度之 之後,再利用蝕刻方式,移除部分金屬薄膜、部分 第二型批覆層、及部分活性發光層,以顯露其下之第一型批 覆層°並且於金屬薄膜表面減鍍形成-第-電極、於第-型 批覆層表面濺鍍形成一第二電極。 上述發光二極體之第一型批覆層及第二型批覆層係互為 相異電性之四元化合物半導體。 上述四元化合物半導體材料可以選擇為磷砷化銦鎵 (InGaAsP)、碟砷化鋁銦(AiGaAsp)或氮化鋁銦鎵(A1InGaN)。 於實施時,本發明發光二極體之光度控制方法,利用蒸 鑛技術建構於該第二型批覆層表面金屬薄膜之材料可以為金 (Au) 〇 具體而言,本發明之發光二極體光度控制方法,係可應 用於四元化合物發光二極體之光度控制,透過改變金屬薄膜 之方式控制四元化合物發光二極體之光度,使利用本發明之 方法加工完成之四元化合物發光二極體亮度降至正常四元化 合物發光二極體亮度之10%以下,不但可以取代傳統二元化合 物發光二極體或三元化合物發光二極體之應用領域,更可利 用金屬薄膜之導電性提升四元化合物發光二極體之運作效 能’同時保有四元化合物發光二極體能帶隙較大,可降低暗 電流乏特性。 201234660 【實施方式】 本發明之特點,可參閱本案圖式及實施例之詳細說明而 獲得清楚地瞭解。 本發明主要提供一種可以有效控制四元化合物發光二極 體之光度,藉以增加四元化合物發光二極體應用領域之發光 二極體光度控制方法;如第一圖本發明之加工流程圖、第二 圖利用本發明加之方法加工完成之發光二極體晶粒結構剖視 圖所示,本發明一種發光二極體之光度控制方法,係包括有 下列步驟: 籲 a.提供一具有半導體磊晶層之發光二極體10。 b·利用蒸鍍技術於該發光二極體1〇最上方第二型批覆 層表面14,利用蒸鍍技術建構一預定厚度之金屬薄膜20,該 金屬薄膜之材料可以為金(AU)。 c.完成後續之電極(如圖所示之第電極31及第二電極3 加工。 」 d·對該發光二極體10進行切割,始獲致完整之發光二 體晶粒。 一性 其據以,所元成之發光二極體晶粒即可利用金屬薄膜2〇對 遮=下之第二型批覆層14及活性發光層13產生一定程度之 其廄作用,達到控制發光二極體亮度之目的,進而得以增加 J用之領域’以及可利用金屬薄膜2電: ,體之運作效能。 係在士 rtr父該具有半導體為晶層之發光二極_ 1性面依序建構有一第一型批覆層L 發先層13,以及一第二型批覆層14。該發光二極_After the surface of the second type of cladding layer is constructed to a predetermined thickness, a portion of the metal film, a portion of the second type of cladding layer, and a portion of the active light-emitting layer are removed by etching to reveal the first type The coating layer is formed by deplating the surface of the metal film to form a first electrode, and a second electrode is formed by sputtering on the surface of the first type of cladding layer. The first type of cladding layer and the second type of cladding layer of the light-emitting diode are mutually different quaternary compound semiconductors. The above quaternary compound semiconductor material may be selected from indium gallium arsenide (InGaAsP), aluminum indium aluminide (AiGaAsp) or aluminum indium gallium nitride (A1InGaN). In the implementation, the photometric control method of the light-emitting diode of the present invention, the material of the metal film formed on the surface of the second type of cladding layer by using the steaming technology may be gold (Au), specifically, the light-emitting diode of the present invention. The luminosity control method can be applied to the luminosity control of the quaternary compound light-emitting diode, and the luminosity of the quaternary compound light-emitting diode is controlled by changing the metal film, so that the quaternary compound light-emitting process processed by the method of the invention is used. The brightness of the polar body is reduced to less than 10% of the brightness of the normal quaternary compound light-emitting diode, which can not only replace the application field of the traditional binary compound light-emitting diode or the ternary compound light-emitting diode, but also utilize the conductivity of the metal film. Improve the operating efficiency of the quaternary compound light-emitting diodes' while retaining the quaternary compound light-emitting diode with a large band gap, which can reduce the dark current depletion characteristics. 201234660 [Embodiment] The features of the present invention can be clearly understood by referring to the drawings and the detailed description of the embodiments. The invention mainly provides a light-emitting diode photometric control method capable of effectively controlling the luminosity of a quaternary compound light-emitting diode, thereby increasing the application field of the quaternary compound light-emitting diode; 2 is a cross-sectional view of a light-emitting diode structure processed by the method of the present invention. The photometric control method of the light-emitting diode of the present invention comprises the following steps: a. providing a semiconductor epitaxial layer Light-emitting diode 10. b. Using a vapor deposition technique on the surface 14 of the second type of cladding layer on the uppermost surface of the light-emitting diode 1 , a metal film 20 of a predetermined thickness is formed by an evaporation technique, and the material of the metal film may be gold (AU). c. Completing the subsequent electrodes (the first electrode 31 and the second electrode 3 are processed as shown in the drawing.) d. Cutting the light-emitting diode 10 to obtain a complete light-emitting two-body crystal grain. The light-emitting diode of the element can be used to produce a certain degree of enthalpy effect on the second type of cladding layer 14 and the active light-emitting layer 13 under the cover of the metal film 2, to control the brightness of the light-emitting diode. The purpose, in order to increase the field of J's use, and the use of metal film 2: the operational efficiency of the body. The system is based on the light-emitting diode of the semiconductor layer. The coating layer L sends the first layer 13 and a second type of cladding layer 14. The light emitting diode _
S 6 201234660 在第-型批覆層Η表φ建構-財厚度之金屬薄膜2()之後, 係可再利祕刻方式,㈣部分金屬賴2()、部分第二变批 覆層14、及部分活性發光層13,以顯露其下之第_型批覆唐 12。 最後,於該金屬薄膜2〇表面濺鍍形成一第一電極31,以 及於該第-型批覆層12表面賤錢形成一第二電極犯即可完成 電極之加工,成為一點型之侧通式發光二極體。S 6 201234660 After the first type of cladding layer φ construction - the thickness of the metal film 2 (), the system can be further refined, (4) part of the metal lai 2 (), part of the second batch of coating 14, and parts The active luminescent layer 13 is exposed to reveal the underlying type of the coating. Finally, a first electrode 31 is sputtered on the surface of the metal film 2, and a second electrode is formed on the surface of the first-type cladding layer 12 to form a second electrode. Light-emitting diode.
再者,該發光二極體之第一型批覆層12及第二型批覆層 14係互為相異電性之四元化合物半導體;其四元化合物半導 體材料則可以選擇為㈣化銦鎵(InGaAsP)、射化銘姻 (AlGaAsP)或氮化鋁銦鎵(A1InGaN)。 與傳統習用之四元化合物發光二極體製造技術相較,本 發明之之發光二極體光度控制方法,透過改變金屬薄膜之方 式控,四元化合物發光二極體之光度,使利用本發明之方法 加工疋成之四兀化合物發光二極體亮度降至正常四元化合物 發光二極體亮度之1G%以下’不但可以取代傳統二元化合物 發光一極體或三元化合物發光二極體之3c電子產品、消費性 電子產品或資訊電子產品之應用領域。 ^其,利用本發明之方法加I完成之四元化合物發光二 ==可利用金屬薄膜之導電性提升四元化合物發光二極體 :乍效能’同時保有四元化合物發光 可降低暗電流之特性。 ^ 乂入 制方法上提供—較佳可行之發光二極體光度控 枯牲’、發明專利之巾請;本發明之技術内容及 特點巳揭不如上,然而熟悉本項技術之人士仍可能基於 201234660 本發明之揭示而作各種不背離本案發明精神之替換及修飾。 因此,本發明之保護範圍應不限於實施例所揭示者,而應包 括各種不背離本發明之替換及修飾,並為以下之申請專利範 圍所涵蓋。 【圖式簡單說明】 第一圖係為本發明之加工流程圖。 第二圖係為利用本發明加之方法加工完成之發光二極體 晶粒結構剖視圖。 【主要元件符號說明】 10發光二極體 11磊晶基材 12第一型批覆層 13活性發光層 14第二型批覆層 20金屬薄膜 31第一電極Furthermore, the first type cladding layer 12 and the second type cladding layer 14 of the light emitting diode are mutually different quaternary compound semiconductors; and the quaternary compound semiconductor material may be selected as (four) indium gallium ( InGaAsP), imprinted ingot (AlGaAsP) or aluminum indium gallium nitride (A1InGaN). Compared with the conventional quaternary compound light-emitting diode manufacturing technology, the light-emitting diode photometric control method of the present invention controls the luminosity of the quaternary compound light-emitting diode by changing the metal thin film, so that the present invention can be utilized. The method of processing the brightness of the luminescent compound of the ruthenium compound is reduced to less than 1 G% of the brightness of the normal quaternary compound light-emitting diode. 'Not only can replace the traditional binary compound luminescent one or the ternary compound luminescent diode. 3c Applications of electronic products, consumer electronics or information electronics. ^, the quaternary compound luminescence obtained by the method of the present invention plus two == can utilize the conductivity of the metal film to enhance the quaternary compound light-emitting diode: 乍 performance ' while retaining the quaternary compound luminescence can reduce the characteristics of dark current . ^ Provided on the method of intrusion - the preferred and feasible light-emitting diode photometric control of the animal's invention patent; the technical content and characteristics of the present invention are not as above, but those familiar with the technology may still be based on 201234660 The disclosure of the present invention is made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is not to be construed as limited by the scope of the invention, and BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a processing flow chart of the present invention. The second drawing is a cross-sectional view of the crystal structure of the light-emitting diode processed by the method of the present invention. [Main component symbol description] 10 light-emitting diode 11 epitaxial substrate 12 first type cladding layer 13 active light-emitting layer 14 second type coating layer 20 metal film 31 first electrode