TW201234639A - SiOx n-layer for microcrystalline pin junction - Google Patents

SiOx n-layer for microcrystalline pin junction Download PDF

Info

Publication number
TW201234639A
TW201234639A TW100149060A TW100149060A TW201234639A TW 201234639 A TW201234639 A TW 201234639A TW 100149060 A TW100149060 A TW 100149060A TW 100149060 A TW100149060 A TW 100149060A TW 201234639 A TW201234639 A TW 201234639A
Authority
TW
Taiwan
Prior art keywords
layer
doped
doped layer
directly
conversion device
Prior art date
Application number
TW100149060A
Other languages
Chinese (zh)
Inventor
Markus Kupich
Daniel Lepori
Original Assignee
Oerlikon Solar Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Solar Ag filed Critical Oerlikon Solar Ag
Publication of TW201234639A publication Critical patent/TW201234639A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention concerns a light conversion device comprising at least one photovoltaic light conversion layer stack (43, 51) comprising a p-i-n junction and situated between a front (42) and back (47) electrode, wherein the n-layer (49) of the layer stack (43) situated closest to the back electrode (47) consists of a n-doped silicon- and oxygen-containing (SiOx) microcrystalline layer, and is in direct contact with the back electrode (47). The invention equally concerns a corresponding method for manufacturing such a light conversion device. The requirement for intermediate adhesion/interface layers between SiOx layer and back electrode can thus be obviated, resulting in simplified manufacture.

Description

.201234639 六、發明說明: 【發明所屬之技術領域】 發明領域 $景而為可能以環境友善的 &amp; ’近年來,發展出成本效 70的製造方法引起注意。在 的不同方法當中,薄膜矽太 ‘點:首先,可藉由已知的薄 強化學氣相沈積(PECVD), 因此藉由使用來自顯示器製 而減少製造成本的遠景。其 成努力朝向10 %及超過之高 製造以薄膜矽基太陽能電池 光伏打太陽能轉換提供 手段來產生電力作準備。因 果更向之光伏打能量轉換單 用來製造低成本太陽能電池 陽能電池結合數個優良的觀 骐沈積技術,例如:電漿加 來製備薄膜矽太陽能電池, 造技術的經驗提供協同作用 •欠,薄膜矽太陽能電池可達 能量轉換效率。第三,用來 之主要原料係充足且無毒。 定義 加工”在本發明的觀念中包括作用在基材上之任 何化學、物理或機械效應。 “基材”在本發明的觀念中係欲在加工設備中處理 構件組件或工件。基材包括,但不限於具有矩形、 开/或圓形形狀之平坦的板形組件。在較佳的具體實例 中,本發明基本上滿足尺寸&gt;1平方公尺的平面基材,諸 如薄玻璃板。 真空加工或真空處理系統或設備”包含至少一個 外殼,其係用於欲在低於周圍大氣壓力的壓力下處理之 基材。 201234639 “ CVD化學氣相沈積”係一種允許在經加熱的基材 上沈積層之熟知技術。將一般液體或氣體前驅物材料進 料至製程系統,於此該前驅物的熱反應產生該層之沈 積。“ LPCVD”係低壓CVD的共同用詞。 DEZ(二乙基鋅)係用來在真空加工設備中製造TCO 層之前驅物材料。 TCO代表透明導電氧化物,因此,TCO層係透明導 電層。 用詞“層、塗布物、沈積物及膜”在本揭示中可互換 地使用,其使用於在真空加工設備(其係CVD、LPCVD、 電漿加強CVD(PECVD)或PVD(物理氣相沈積))中所沈積 的膜。 “太陽能電池或光伏打電池(PV電池),,係一電構件, 其能錯由光電效應將光(基本上為太陽光)直接轉換成電 能。 薄膜太陽能電池”在總稱的觀念中包括在一支樓基 材上至少一個p-i_n接面,其藉由失在二個電極或電極層 中間之半導體化合物的薄膜沈積物而建立。p_i_n接面或 薄膜光電轉換單元包括一夹在?_摻雜與n摻雜的半導體 化合物層中間之本質半導體化合物層。用詞,’薄膜,,指出 所提及的層係藉由如PECVD、c VD、p VD或相似方法之 方法沈積’如為薄層或膜。薄層基本上意謂著具有厚度 1 〇微米以下的層,特別是小於2微米。 【先前技術】 發明背景/相關技術 201234639 在多種製備薄膜石夕太陽能電池的方法當中,特別是 非晶相-微晶矽多接面太陽能電池之概念提供達成超過 1 〇 %能量轉換效率的遠景,此係由於與例如非晶*夕單一 接面太陽能電池比較,而其具有較好的太陽照射使用。 在此多接面太陽能電池中,可藉由隨後沈積該等相應層 來堆疊2個以上的次單元。若使用不同能帶隙的材料作為 吸收層時,邊具有最大能帶隙之材料將在該裝置定向至 光的入射方向之邊上。此太陽能電池結構提供數種可能 的優點:首先,由於使用2個以上不同能帶隙的光伏打接 面,且由於熱化的損失減低而可更有效率地使用具有寬 廣的光譜分布之光(例如:太陽照射)。其次,由於高品 質的微晶矽不遭受光誘發衰退(如已知對非晶矽來說,其 係由於所謂的史坦伯_勞斯基(Staebler Wr〇nski)效應之 事[相較於非晶矽單一接面太陽能電池,非晶相-微晶 矽多接面太陽能電池顯示出其初始轉換效率的較小衰 退。 第1圖顯示出如在技藝中已知之串聯式接面石夕薄膜 太陽忐電池。此薄膜太陽能電池5 0通常包括一第一或正 面電極42 4固以上半導體薄膜P-i-n接面(52-54,Si, 44-46 ’ 43)、及—第二或背面電極47,其相繼地堆疊在 基材41上。入射光的方向在圖形中係以箭號指示。:個 P小η:面5 i,43或薄臈光電轉換單元皆包括夾在p型層 52,44” η-型層54’46中間的卜型層曰 型=負換雜〜實質上本質)…上下文;摻雜二 本質經了解係、未掺雜或具有基本上無產生的摻雜。光電 201234639 轉換主要發生在此i-型層中,因此,其亦稱為吸收層。 依1-型層53,45的結晶分量(結晶性)而定,太陽能電 池或光電(轉換)裝置具有如非晶相(a_Si,53)或微晶 (Mc-Si,45)太陽能電池的特徵,而與毗連的p&amp;n•層之結 晶性種類無關。“微晶,,層經了解(如在技藝中常見般)如 ^在非晶相基質中包含明顯的結晶矽分量(所謂的微結 晶)的層。p-i-n接面的堆疊稱為串聯或三接面式光伏打電 池。非晶相與微晶p-i-n_接面之組合(如顯示在第i圖中) 亦稱為非微晶堆疊(micr〇m〇rph)申聯式電池。 在技藝中已知的缺點 為了非晶相-微晶多接面薄膜太陽能電池的最理想 轉換效率太^此電池需要具有好的Voc和高電流密度 Jsc二者,二者皆在好的填充因子卯處。為了達成此,— 個重要因素係用於微晶矽底層電池(在第1圖中的43)之 有效率的η-型層46。此η-型層必需滿足2個功能:第一, 其必需提供該微晶底層電池足夠的内建電場;其次,其 必需對所施加的反向接觸提供有效率的低電阻接觸。再 者,第二需求為特別在光譜的長波長部分中具有低吸 收’ ϋ為在此層中所吸收的光將不促成光電流產生,因 此從。亥反向接觸/背面反射器反射的光之損失將減低電 池之電&quot;IL岔度。當製備具有徹底精心製作的光管理之薄 太陽能電池結構時’後者理由變成特別有關聯,其關於 工業生產線的生產量係高度令人滿意的。 已顯示出具有結晶性(例如.,藉由拉曼散射測量大於 RC 60 /❶)的间度結晶微晶矽可容易地摻雜及最佳化成低 201234639 電阻率’因此在電池中為鬲内建場和低歐姆接觸作準 備。但是,由於高度結晶微晶矽之1 . 1電子伏特的低能帶 隙在光譜之長波長部分中具有高吸收,從而導致光在電 池中損失。此外’高度結晶微晶矽通常在使用非常高的 氫稀釋比率之製程氣體的沈積條件下製備,導致低沈積 速率,因此導致沈積時間長,此對製造系統的生產量有 害,因此對製造成本有害。 由於薄非晶石夕層之較大約1 ·7電子伏特的能帶隙,其 在光譜之低能量部分中具有較低的吸收,因此就吸收損 失而§為有益的。但疋,非晶石夕具有遠遠較低的摻雜效 率,因此導致較低的自由載體量’因此導致在電池中較 無效率的内建場及朝向反向接觸之非最理想的接觸行 為,因此需要較大的摻雜層厚度’此亦可導致衰退擴大。 為了解決此問題,ΕΡ 1 650 8 1 2 A 1描述出雙結構的 η-層,其中該第一部分係由高氧化的心層組成及該第二 部分係由咼導電的微晶石夕(其對該電池之反向接觸層提 供接觸)組成。ΕΡ 1 650 8 12提出使用藉由該高度含氧的 η-型層之光學性質在電池中的光捕捉上有益的效應,但 是它們亦描述出該第二接觸層需要保持該η_層之導電度 為可接受的’因為該高含氧層的電阻非常高。但是,此 第二接觸層亦在沈積時間上及因此在該薄膜矽太陽能電 池裝置之製造成本上具有負面影響。 類似地’ US 2009/0 1 33753闡述出藉由提供下列來改 良太陽能電池的性能:在一個具體實例中,由η_型微晶 石夕組成與該背面電極赴連的第一層,接著心型 201234639 層’接著主要由氣化的非晶石夕製得之i-型缓衝層’其自 身接著習知的i_型石夕層。此複雜的結構在沈積時間及薄 膜矽太陽能電池裝置之製造成本上相等地具有負面影 響。 進〆步實施例係由jp 4167473提供。 【發明内容】 發明概述 本發明的目標為補救上述提及的先述技術之缺點。 此係藉由如獨立请求項第1項的光轉換襄置達成,其包括 一正面電極及背面電極,及位於該正面與背面電極間之 至少一個光伏打光轉換層堆疊。此層堆疊包含一 p_摻雜 的石夕層’及一基本上本質碎層’及一 n_摻雜層,這些層 一起形成p-i-n接面。該位於最靠近背面電極(即,離該正 面電極及基材最遠)之層堆疊的η-摻雜層直接位於該背 面電極上且與其親密接觸,及基本上由含矽及氧之經摻 雜的微晶材料組成(其它方面已知為η_摻雜的微晶δι〇χ 層)。要瞭解此微晶層、表示能在合適於沈積微晶層之製程 條件下沈積一層。此具有將η-摻雜的Si〇x層直接提供在 背面電極上(即,直接向那裏毗連而沒有任何中間接觸或 點附層)之層安排簡化了該結構且減少製造時間與成 本。該材料可說成實質上由含矽及童沾规s ,及氧的微晶材料組成, 如其額外習慣上包含(及如由熟練 m L 八士嫺熟地已知)氫, 因此更正確地滿足如為SiOx : Η。 在具體實例中’該η-摻雜層額外 ,.貝外地直接位於該基本 上本貝矽層上且與其親密接觸, U此4除任何在這二層 201234639 間的中間層,簡化該結構及減少製造時間及成本。此外, 將該SiOxI1-摻雜層直接安排在本質層上會於該本質矽層 上產生月面鈍化效應,減少由高度不平坦的界面表面所 產生之問題’及增加該光轉換裝置的效率及壽命。 在具體實例中,選擇該n_摻雜層的氧含量使得該n_ 摻雜層於500奈米的光波長處之折射率n大於或等於 2.〇 °此讓該η-摻雜層能夠額外地作用為反射器,因此藉 由造成更多光在到達背面電極前被反射回吸收層中而增 加該光轉換裝置的效率,因為此反射光不需要兩次穿過 電極層’因此不由此後者減弱。 在具體實例中,該η_摻雜層之厚度在1〇_15〇奈米 間,較佳為20-50奈米,最佳化該光轉換裝置的製造及光 轉換之效率。 再者,已預見包含上述提及的型式之光轉換裝置的 太陽能電池或太陽能面板。 又進一步,本發明的目標亦藉由—用來製造如獨立 請求項第7項之光轉換裝置的方法達成。此方法包括提供 -透明基材及-直接或間接在其上的正面電極。在此正 面電極上直接或間接提供至少一個光伏打光轉換層堆疊 的至少一個p_i_n接面。每個堆疊皆包含一 摻雜的矽 層,及一直接或間接提供在該ρ_摻雜的矽層上之基本上 本質矽層’及一直接或間接提供在該本質矽層上的^摻 雜層。最後,在該η-摻雜層上提供—背面電極。將該背 面電極直接提供在位於離該基材最遠處之η_摻雜層上, 其中在單層堆疊的情況中將係該唯—的η_摻雜層,及此.201234639 VI. Description of the Invention: [Technical Field to Which the Invention Is Affected] Field of the Invention $Environment is likely to be environmentally friendly &amp;&gt; In recent years, the development of a cost-effective manufacturing method has attracted attention. Among the different methods, the film is too ‘point: first, it can be known by thin-strength chemical vapor deposition (PECVD), thereby reducing the manufacturing cost by using a display system. Its efforts toward 10% and beyond have resulted in the production of thin-film germanium-based solar cells that provide solar energy conversion to generate electricity. Causal is more energy-efficient for photovoltaics. It is used to make low-cost solar cells. It combines several excellent deposition techniques, such as plasma to produce thin-film solar cells. The experience of manufacturing technology provides synergy. The thin film tantalum solar cell can achieve energy conversion efficiency. Third, the main raw materials used are sufficient and non-toxic. "Definition processing" includes any chemical, physical or mechanical effect on a substrate in the concept of the invention. "Substrate" is in the concept of the invention intended to process a component assembly or workpiece in a processing apparatus. However, it is not limited to a flat plate-shaped member having a rectangular, open/or circular shape. In a preferred embodiment, the present invention substantially satisfies a planar substrate of a size &gt; 1 m ^ 2 , such as a thin glass plate. The processing or vacuum processing system or apparatus" includes at least one outer casing for use with a substrate to be treated at a pressure below ambient atmospheric pressure. 201234639 "CVD chemical vapor deposition" is a well-known technique that allows deposition of layers on heated substrates. A general liquid or gas precursor material is fed to the process system where the thermal reaction of the precursor produces a deposit of the layer. "LPCVD" is a common term for low pressure CVD. DEZ (diethyl zinc) is used to make precursor materials for TCO layers in vacuum processing equipment. The TCO represents a transparent conductive oxide, and therefore, the TCO layer is a transparent conductive layer. The terms "layer, coating, deposit and film" are used interchangeably in the present disclosure for use in vacuum processing equipment (which is CVD, LPCVD, plasma enhanced CVD (PECVD) or PVD (physical vapor deposition). The film deposited in ))). "Solar cells or photovoltaic cells (PV cells), an electrical component that can directly convert light (essentially sunlight) into electrical energy by photoelectric effect. Thin film solar cells are included in the general concept. At least one p-i_n junction on the support substrate is established by a thin film deposit of a semiconductor compound that is lost between the two electrodes or electrode layers. Is the p_i_n junction or thin film photoelectric conversion unit included? An intrinsic semiconductor compound layer intermediate the n-doped semiconductor compound layer. The word "film" is used to indicate that the layer is referred to as a thin layer or film by a method such as PECVD, c VD, p VD or the like. A thin layer essentially means a layer having a thickness of less than 1 μm, in particular less than 2 μm. [Prior Art] Background of the Invention / Related Art 201234639 Among various methods for preparing a thin film solar cell, in particular, the concept of an amorphous phase-microcrystalline germanium multi-junction solar cell provides a vision for achieving an energy conversion efficiency of more than 1%, which is It is used for better solar illumination because it is compared to, for example, an amorphous*singular single-junction solar cell. In this multi-junction solar cell, more than two sub-units can be stacked by subsequently depositing the respective layers. If a material with a different band gap is used as the absorbing layer, the material having the largest band gap will be oriented on the side of the device in the direction of incidence of the light. This solar cell structure offers several possible advantages: first, the use of more than two different band gaps of photovoltaic junctions, and the use of light with a broad spectral distribution can be used more efficiently due to reduced heat loss ( For example: sun exposure). Second, because high-quality microcrystalline germanium does not suffer from light-induced decay (as is known for amorphous germanium, it is due to the so-called Staebler Wr〇nski effect [compared to Amorphous tantalum single junction solar cells, amorphous phase-microcrystalline tantalum multijunction solar cells exhibit a small degradation of their initial conversion efficiency. Figure 1 shows a tandem junction as described in the art. The solar cell battery 50. The thin film solar cell 50 generally includes a first or front electrode 42 4 fixed to the semiconductor film Pin junction (52-54, Si, 44-46 '43), and - a second or back electrode 47, It is successively stacked on the substrate 41. The direction of the incident light is indicated by an arrow in the figure.: P small η: face 5 i, 43 or thin 臈 photoelectric conversion unit includes a p-type layer 52, 44 </ br> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> The conversion mainly occurs in this i-type layer, so it is also called the absorption layer. Depending on the crystal component (crystallinity) of 53,45, the solar cell or photoelectric (conversion) device has characteristics such as an amorphous phase (a_Si, 53) or a microcrystalline (Mc-Si, 45) solar cell, and is adjacent to The crystalline species of the p&amp;n• layer is irrelevant. “Microcrystalline, the layer is understood (as is common in the art) as a layer containing a distinct crystalline yttrium component (so-called microcrystalline) in the amorphous phase matrix. The stack of p-i-n junctions is called a series or triple junction photovoltaic cell. The combination of the amorphous phase and the microcrystalline p-i-n_ junction (as shown in Figure i) is also referred to as a non-microcrystalline stack (micr〇m〇rph). Disadvantages known in the art for the optimum conversion efficiency of amorphous phase-microcrystalline multi-junction thin film solar cells. The battery needs to have both good Voc and high current density Jsc, both of which are in good fill factor. Awkward. To achieve this, an important factor is the efficient n-type layer 46 for the microcrystalline bottom cell (43 in Figure 1). This η-type layer must satisfy two functions: first, it must provide sufficient built-in electric field for the microcrystalline underlayer battery; second, it must provide efficient low resistance contact to the applied reverse contact. Furthermore, the second requirement is that there is a low absorption in the long wavelength portion of the spectrum, especially that the light absorbed in this layer will not contribute to the generation of photocurrent, and thus. The loss of light reflected by the reverse contact/back reflector will reduce the battery's power. The latter reason became particularly relevant when preparing a thin solar cell structure with thoroughly elaborated light management, and its production volume with respect to industrial production lines was highly satisfactory. Intermittent crystalline microcrystalline germanium having crystallinity (eg, measured by Raman scattering greater than RC 60 /❶) has been shown to be easily doped and optimized to a low 201234639 resistivity 'and therefore in the cell Prepare for construction and low ohmic contact. However, the low energy band of 1.1 electron volts of the highly crystalline microcrystalline enthalpy has high absorption in the long wavelength portion of the spectrum, resulting in loss of light in the battery. In addition, 'highly crystalline microcrystalline germanium is usually prepared under deposition conditions using process gases with very high hydrogen dilution ratios, resulting in low deposition rates, thus resulting in long deposition times, which are detrimental to the throughput of the manufacturing system and therefore detrimental to manufacturing costs. . Since the thin amorphous layer has an energy band gap of about 1.7 eV, which has a lower absorption in the low energy portion of the spectrum, it is beneficial to absorb the loss. However, erbium, Amorphous Shishi has a much lower doping efficiency, thus resulting in a lower amount of free carrier', thus resulting in a less efficient built-in field in the cell and a non-optimal contact behavior towards reverse contact. Therefore, a larger doped layer thickness is required 'this can also lead to an expansion of the recession. In order to solve this problem, ΕΡ 1 650 8 1 2 A 1 describes a double-structured η-layer, wherein the first portion is composed of a highly oxidized core layer and the second portion is composed of a ruthenium-conducting microcrystalline stone (which The contact layer of the battery is provided with a contact composition. ΕΡ 1 650 8 12 proposes the use of optical properties of the highly oxygen-containing η-type layer in the light trapping effect in the battery, but they also describe that the second contact layer needs to maintain the conductivity of the η layer The degree is acceptable 'because the resistance of the high oxygen layer is very high. However, this second contact layer also has a negative impact on deposition time and therefore on the manufacturing cost of the thin film solar cell device. Similarly, 'US 2009/0 1 33753 describes the improvement of the performance of a solar cell by providing the following: In a specific example, the first layer of the η-type microcrystalline stone is connected to the back electrode, followed by the heart. The type 201234639 layer 'follows the i-type buffer layer which is mainly produced by gasification of amorphous australis' itself, which is followed by the conventional i_type layer. This complex structure has a negative impact on the deposition time and the manufacturing cost of the thin film solar cell device. The advanced embodiment is provided by jp 4167473. SUMMARY OF THE INVENTION The object of the present invention is to remedy the disadvantages of the aforementioned prior art. This is achieved by a light conversion device according to item 1 of the independent claim, which comprises a front electrode and a back electrode, and at least one photovoltaic light conversion layer stack between the front and back electrodes. This layer stack comprises a p-doped layer and a substantially intrinsic layer&apos; and an n-doped layer which together form a p-i-n junction. The η-doped layer of the layer stack closest to the back electrode (ie, the farthest from the front electrode and the substrate) is directly on the back electrode and in intimate contact therewith, and is substantially doped with yttrium and oxygen. The composition of the heterocrystalline material (other known as the η-doped microcrystalline δι〇χ layer). It is to be understood that the microcrystalline layer is capable of depositing a layer under conditions suitable for depositing the microcrystalline layer. This layer arrangement with the η-doped Si〇x layer provided directly on the back electrode (i.e., directly adjacent thereto without any intermediate contacts or dot attachment layers) simplifies the structure and reduces manufacturing time and cost. The material can be said to consist essentially of microcrystalline material containing bismuth and children's s, and oxygen, as it is additionally customarily included (and as known by skilled m L october) hydrogen, so it is more correctly satisfied SiOx : Η. In a specific example, the η-doped layer is additionally located directly on and in intimate contact with the substantially Benbe layer, and U simplifies the structure except for any intermediate layer between the two layers 201234639 Reduce manufacturing time and costs. In addition, directly arranging the SiOxI1-doped layer on the intrinsic layer produces a lunar passivation effect on the intrinsic germanium layer, reducing the problem caused by the highly uneven interface surface and increasing the efficiency of the optical switching device. life. In a specific example, the oxygen content of the n-doped layer is selected such that the refractive index n of the n-doped layer at a wavelength of light of 500 nm is greater than or equal to 2. 〇° to allow the η-doped layer to additionally Acting as a reflector, thus increasing the efficiency of the light conversion device by causing more light to be reflected back into the absorption layer before reaching the back electrode, since this reflected light does not need to pass through the electrode layer twice. . In a specific example, the thickness of the η-doped layer is between 1 〇 15 〇 nanometers, preferably 20-50 nm, which optimizes the efficiency of fabrication and optical conversion of the light converting device. Furthermore, solar cells or solar panels comprising the above-mentioned type of light converting device have been foreseen. Still further, the object of the present invention is also achieved by a method for manufacturing a light converting device according to item 7 of the independent claim. The method includes providing a transparent substrate and a front electrode directly or indirectly thereon. At least one p_i_n junction of at least one photovoltaic light conversion layer stack is provided directly or indirectly on the front electrode. Each stack includes a doped germanium layer, and a substantially intrinsic germanium layer directly or indirectly provided on the p-doped germanium layer and a direct or indirect bias provided on the intrinsic germanium layer Miscellaneous layer. Finally, a back electrode is provided on the η-doped layer. Providing the back electrode directly on the n-doped layer located furthest from the substrate, wherein in the case of a single layer stack, the only n-doped layer is used, and

S -201234639 η-摻雜層由含矽及氧之摻雜的微晶層組成,也就是說, 該層係在合適於沈積微晶層之製程條件下沈積❶此消除 對任何中間黏附或界面層的需求,因此簡化製造及減少 製造時間與成本。 在具體實例中’將該η-摻雜層直接提供在該基本上 本質石夕層上。此簡化該結構及減少製造時間與成本。此 外’將该S i Ο χ η -摻雜層直接安排在該本質層上會於該本 質石夕層上具有背面鈍化效應,減少由於高度不平坦的界 面表面所產生之問題,及增加該光轉換裝置的效率及壽 命。 在具體實例中,選擇該η -摻雜層的氧含量使得該η _ 摻雜層在500奈米的光波長處之折射率η大於或等於 2·〇。此讓該η-摻雜層能夠額外地作用為反射器,因此藉 由造成更多光在到達背面電極前被反射回吸收層而增加 該光轉換裝置的效率’因為此反射光不需兩次穿過電極 層而不由此後者減弱。 在具體實例中’該方法係藉由電漿加強化學蒸氣沈 積PECVD在相應的PECVD反應器中進行。此能夠有效率 地製造出品質好的層。 在具體實例中,該η-摻雜層係藉由以電漿處理而施 加經控制的背面鈍化來塗布在該本質層上。使用此處理 來塗布該η-摻雜層保證最大化該Si〇x層之鈍化效應。 在具體實例中’該η-摻雜層係藉由在該PECVD電漿 反應器中建立一第一電漿沈積條件而產生。在此條件 中’對欲處理的基材尺寸建立一實質上〇·3_1 seem/平方 -10- 201234639 =之整體製程氣體流,該製程氣體包含找(sm4)、氮 =n-摻雜氣體。此η·摻雜氣體可為膦(pH。,其在氫 中稀釋至濃度0.5%。矽烷對n,雜氣體之比率在i : i至 U之間,及石夕烧對氫之比率在1:5〇至1:2〇〇之間,較 佳為…〇〇。該製程壓力經選擇係在15至8毫巴之間, =佳為2.5-5毫巴’且在該PECVD電浆反應器的反應搶 ,於頻率13.56-60百萬赫兹下,較佳為4()百萬赫兹下 產生之RF功率為15㈡〇〇毫瓦/平方公分較佳為17〇刚 毫瓦/平方公分。維持此第一電漿條件時間為1〇 2〇秒, 然後,保留全部其它製程參數為相同,額外地將一含氧 氣體流(較佳為二氧化碳)引進該反應艙中。在矽烷與含 氧氣體間之氣流比㈣在2:⑴:㈣,較佳為在卜i 至1 : 2間。^製程參數能夠對該塗布沈積出具有高度 令人滿意的性質之Si〇x層,包括適#的導電度及在下層 石夕層上具有好的背面鈍化效應。 【實施方式】 發明之詳細說明 “發見了甚至沒有第二接觸層而達成對該η -層之二 個而求,諸如對光譜的長波長部分之高穿透和參與在到 達反向接觸前將光背反射回吸收層中且組合有足夠好的 電行為已顯示出當最佳化此層之性質而在適當的範圍 内且與適當的η-層/反向接觸界面組合時,能藉由塗布單 Si〇x η-型層49(第2圖)取代先述技術之習知的〇摻雜石夕 層46(第1圖)而獲得此。該最佳化可藉由下列實現: a)選擇本發明的SiOx層之氧含量在一定範圍内,使 201234639 得其在500奈米的光波長處之折射率n不小於2 〇。 b)藉由足夠高的摻雜物氣體流來增加本發明的Si〇x 層之摻雜以達成合理的導電度。 左C)藉由如在W〇 2010/012674 A2(其全文以參考方式 Ik函併入)中所描述之電漿處理施加經控制的背面鈍化。 此外’上述提及的SiOxn-層49係藉由在PECVD電漿 反應器中建立一第一電漿沈積條件而達成,其中欲處理 的基材尺寸之整體氣體流基本上係sccm/平方公 刀。忒製程氣體包含矽烷、氫及n_摻雜劑氣體(例如,在 氫中稀釋至濃度〇 _ 5 %的膦)。矽烷對摻雜劑氣體之比率保 持在1 . 1至1 . 5之間。在矽烷與氫間之比率應該建立在1 : 50至1 . 200之間,較佳為i : 1〇〇。選擇該整體製程壓力 在範圍1.5至8毫巴間,較佳為2·5_5毫巴,同時建立 150-200毫瓦/平方公分,較佳為17〇1 8〇毫瓦/平方公分的 RF功率(13.56-60百萬赫茲,較佳為4〇百萬赫茲)。此第一 電漿條件應該保持10-20秒的時間,在此之後,開始第二 電4條件’其考慮到功率密度、矽烷、膦 '氫比率係相 同。額外的是,建立一含氧氣體(諸如,二氧化碳)流。 在石夕烧與含氧氣體間之氣流比率應該在2 : 1至1 : 3之間, 較佳為在1 : 1至1 : 2之間。對經濟理由來說,整體η_層 厚度在10-150奈米之間已足夠’較佳為2〇_5〇奈米。 在裝配歐瑞康太陽界(〇er〗 ik〇n Solar ΚΑΙ) 1 200電漿 沈積系統之電漿放電反應器時,此層可藉由選擇下列沈 積條件來沈積: 首先’在能加工1.4平方公尺基材的沈積反應器中激 -12- ,201234639 發電漿放電。每個反應器之製程氣體組成物係由下列規 定:矽烷流F(SiH4) = 80sccm’ 氫流F(H2) = 7800 sccm,膦 的摻雜劑氣體流(在氫中稀釋’濃度〇.5%)F(PH3/H2) = 400 seem。該製程壓力在2500瓦的電漿放電功率處設定為2 5 毫巴。 在1 5秒的短電漿穩定步驟後,加入二氧化碳氣體流 F(C〇2) = 120 seem作為氧來源氣體,同時其它製程參數保 持不變。在這些條件下,導致在18埃/秒之沈積速率下大 約40奈米的層厚度,將於22〇秒内製備出該想要的卜型 層。 在貫驗中’可顯示出藉由塗布此型式的n —層,該太 陽能電池特徵可如下改良:使用此n_層型式的樣品: AVoc = + 〇.〇2〇/〇 &gt; AFF = -〇.〇6% » AJsc = + 2.2% &gt; Δ(η) = + 2.2% 〇 雖然本發明已經就特定的具體實例來描述,本發明 不推斷為限制於此,而是包含落在所附加的申請專利範 圍之忒圍内的全部具體實例。例如,η_、丨及摻雜的 矽層可為微晶氫化的矽(//c sir Η)或非晶相微晶氫化的矽 U-S广H)二者,及可有任何數目的電池構成該光轉換 置。 【圖式簡單說明】 第1圖顯示出先前技術之串聯接面薄膜矽光伏打電 池(未呈比例);及 第2圖顯示出根據本發明的具體實例之薄膜矽光伏 打電池’其在底層電池中併入微晶n-Si〇』(未呈比例)。 201234639 【主要元件符號說明】 41 基材 42 正面 電 極 43 底層 電 池 44 P-摻 雜 的 Si層(ρ pc-Si :H) 45 i-層, μο· -Si :Η 46 η-摻 雜 的 Si層(η a-Si : H/n μο- Si : H) 47 背面 電 極 48 背面 反 射 器 49 η-摻 雜 的 Si層(η μ c - S i Ox) 50 薄膜 太 陽 能電池 51 上層 電 池 52 Ρ-摻 雜 的 Si層(ρ a-Si : H/p μ c. Si : H) 53 i-層 a-Si : Η 54 η-摻 雜 的 Si層(η a-Si : H/n μ c- Si : H) -14-S -201234639 The η-doped layer consists of a microcrystalline layer doped with yttrium and oxygen, that is, the layer is deposited under process conditions suitable for depositing the microcrystalline layer, thereby eliminating any intermediate adhesion or interface. The need for layers, thus simplifying manufacturing and reducing manufacturing time and costs. In a specific example, the n-doped layer is provided directly on the substantially intrinsic layer. This simplifies the structure and reduces manufacturing time and cost. Furthermore, directly arranging the S i Ο χ η - doped layer directly on the intrinsic layer has a back passivation effect on the intrinsic layer, reducing the problem caused by the highly uneven interface surface, and increasing the light The efficiency and longevity of the conversion unit. In a specific example, the oxygen content of the η-doped layer is selected such that the refractive index η of the η-doped layer at a wavelength of light of 500 nm is greater than or equal to 2·〇. This allows the η-doped layer to act additionally as a reflector, thus increasing the efficiency of the light conversion device by causing more light to be reflected back to the absorbing layer before reaching the back electrode 'because the reflected light does not need to be twice Pass through the electrode layer without being weakened by the latter. In a specific example, the process is carried out in a corresponding PECVD reactor by plasma enhanced chemical vapor deposition PECVD. This makes it possible to efficiently produce a good quality layer. In a specific example, the η-doped layer is coated on the intrinsic layer by applying a controlled back passivation by plasma treatment. The use of this process to coat the n-doped layer ensures maximum passivation of the Si〇x layer. In a specific example, the η-doped layer is produced by establishing a first plasma deposition condition in the PECVD plasma reactor. In this condition, an overall process gas flow of substantially 〇·3_1 seem/square -10- 201234639 = is established for the substrate size to be treated, and the process gas contains a (sm4), nitrogen=n-doped gas. The η·doping gas may be a phosphine (pH., which is diluted to a concentration of 0.5% in hydrogen. The ratio of decane to n, the heterogas is between i: i and U, and the ratio of the sulphur to hydrogen is 1 Between 5〇 and 1:2〇〇, preferably 〇〇. The process pressure is selected between 15 and 8 mbar, = preferably 2.5-5 mbar' and in the PECVD plasma reaction The RF power generated at a frequency of 13.56-60 megahertz, preferably 4 (1 million Hz), is 15 (two) 〇〇 milliwatts/cm 2 , preferably 17 〇 just milliwatts per square centimeter. Maintaining the first plasma condition for 1 〇 2 sec, and then retaining all other process parameters to be the same, additionally introducing an oxygen-containing gas stream (preferably carbon dioxide) into the reaction chamber. In decane and oxygen The gas flow ratio (4) between the gases is 2:(1):(4), preferably between ii and 1:2. The process parameters can deposit a highly satisfactory Si〇x layer for the coating, including 适# The conductivity and the good backside passivation effect on the underlying layer. [Embodiment] Detailed description of the invention "I have seen or even no second contact And achieving two of the η-layers, such as high penetration of the long wavelength portion of the spectrum and participation in reflecting back the light back into the absorbing layer before reaching the reverse contact and combining the sufficiently good electrical behavior has been shown When the properties of this layer are optimized and combined in the appropriate range and with the appropriate η-layer/reverse contact interface, the technique described above can be replaced by coating a single Si〇x η-type layer 49 (Fig. 2). This is achieved by the conventional erbium doped layer 46 (Fig. 1). This optimization can be achieved by: a) selecting the oxygen content of the SiOx layer of the present invention within a certain range, making 201234639 The refractive index n at a wavelength of light of 500 nm is not less than 2 〇 b) The doping of the Si〇x layer of the present invention is increased by a sufficiently high flow of dopant gas to achieve a reasonable conductivity. Controlled back passivation is applied by plasma treatment as described in W〇2010/012674 A2, which is incorporated by reference in its entirety by reference in its entirety. A first plasma deposition condition is established in the plasma reactor, wherein the size of the substrate to be processed is The bulk gas stream is essentially a sccm/millimeter. The helium process gas contains decane, hydrogen, and an n-dopant gas (eg, phosphine diluted to a concentration of 〇 5 % in hydrogen). The ratio is maintained between 1.1 and 1.5. The ratio between decane and hydrogen should be between 1:50 and 1.20, preferably i:1〇〇. The overall process pressure is chosen to be in the range 1.5. Between 8 mbar, preferably 2·5_5 mbar, while establishing 150-200 mW/cm 2 , preferably 17 〇 18 〇 mW/cm 2 of RF power (13.56-60 megahertz, It is preferably 4 〇 million Hz). This first plasma condition should be maintained for a period of 10-20 seconds, after which a second electrical condition 4 is initiated which takes into account that the power density, decane, and phosphine 'hydrogen ratios are the same. Additionally, an oxygen-containing gas (such as carbon dioxide) stream is established. The gas flow ratio between the stone and the oxygen-containing gas should be between 2:1 and 1:3, preferably between 1:1 and 1:2. For economic reasons, the overall η_ layer thickness is between 10 and 150 nm, which is preferably ', preferably 2 〇 5 〇 nanometer. When assembling the plasma discharge reactor of the 1 200 plasma deposition system in the Oerlikon Solar world, this layer can be deposited by selecting the following deposition conditions: First, 'can process 1.4 square meters. In the deposition reactor of the substrate, the -12-, 201234639 power generation slurry was discharged. The process gas composition of each reactor is specified by the following: decane flow F (SiH4) = 80 sccm' hydrogen flow F (H2) = 7800 sccm, phosphine dopant gas stream (diluted in hydrogen 'concentration 〇.5 %)F(PH3/H2) = 400 seem. The process pressure was set at 2 5 mbar at a plasma discharge power of 2,500 watts. After a short plasma stabilization step of 15 seconds, a carbon dioxide gas stream F(C〇2) = 120 seem is added as the oxygen source gas while other process parameters remain unchanged. Under these conditions, resulting in a layer thickness of about 40 nm at a deposition rate of 18 angstroms per second, the desired layer would be prepared in 22 seconds. In the inspection, it can be shown that by coating this type of n-layer, the solar cell characteristics can be improved as follows: Samples using this n-layer type: AVoc = + 〇.〇2〇/〇&gt; AFF = - 〇.〇6% » AJsc = + 2.2% &gt; Δ(η) = + 2.2% 〇 Although the invention has been described with respect to specific specific examples, the invention is not intended to be limited thereto, but rather All specific examples within the scope of the patent application. For example, the η_, 丨, and doped ruthenium layers may be both microcrystalline hydrogenated yttrium (//c sir Η) or amorphous phase microcrystalline hydrogenated 矽 US wide H), and may have any number of cells Light conversion. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a prior art tandem junction film tantalum photovoltaic cell (not to scale); and FIG. 2 shows a thin film tantalum photovoltaic cell according to a specific example of the present invention. Microcrystalline n-Si〇 was incorporated into the battery (not to scale). 201234639 [Description of main component symbols] 41 Substrate 42 Front electrode 43 Bottom cell 44 P-doped Si layer (ρ pc-Si : H) 45 i-layer, μο· -Si : Η 46 η-doped Si Layer (η a-Si : H/n μο- Si : H) 47 Back electrode 48 Back reflector 49 η-doped Si layer (η μ c - S i Ox) 50 Thin film solar cell 51 Upper battery 52 Ρ- Doped Si layer (ρ a-Si : H/p μ c. Si : H) 53 i-layer a-Si : Η 54 η-doped Si layer (η a-Si : H/n μ c- Si : H) -14-

Claims (1)

,201234639 七、申請專利範圍: 1-種光轉換裝置,其包含一正面電極(42)及一背面電 極(47),及位於該正面(42)與背面(47)電極間之至少— 個光伏打光轉換層堆疊(43),該層堆疊㈠包含一 p_ 払雜的矽層(44)、一基本上本質矽層(45)及一 η-摻雜 層⑷),s亥等層(44、45、49)一起形成p_i-n接面,其 特徵為最靠近該背面電極(47)的n_摻雜層(49)直接位 於該背面電極(47)上並與其親密接觸,且基本上由含 矽及氧之摻雜的微晶材料組成。 2.如 '述申請專利範圍之光轉換裝置其十該n摻雜層 (9)進步直接位於該基本上本質矽層(45)上且盥並 親密接觸。 '、’、 3:申請專利範圍第2項之光轉換裝置,其中該。_摻雜 層(叫經安排以便造成該眺連的本質石夕層(45)之背面 Τι::述申請專利範圍之光轉換襄置,其中選擇該 卜θ (49)的軋含量使得該η-摻雜層(49)在5〇〇夺米 之先波長處的折射率η大於或等於2〇。 5 ·如任何前述申諳衰 雜居“… 光轉換裝置,其中該摻 雜層(49)的厚度在1〇 6 一種太陽能電池或太陽^ 佳為2G-50奈米。 請專利範圍的光轉換裝二-包含如任何前述申 7.=來透T轉換裝置的方法,其包括下列步驟: a)k供一透明基材(41); W直接或間接在該基材(41)上提供—正面電極(42); -15- S 201234639 c)直接或間接在該正面電極(42)卜担似^ , 、)上杈供至少一個光伏 打光轉換層堆疊(43、5 1)的至少 加 . ;J主夕一個P-卜η接面,每 個轉換層堆疊皆包含一卜摻雜的矽層(44 ' Μ)、一 直接或間接提供在該Ρ -摻雜的♦層(4 4、5 2)上之吴 本上本質石夕層(45、53)及-直接或曰間接提供在職 本上本質矽層(45、53)上之η摻雜層(49、Η); Ο在位於離該基材(41)最遠的該η_摻雜層(49)上提供 一背面電極(47), 其特徵為該背面電極(47)係直接提供在位於離該基材 (41)最遠的η-摻雜層(49)上,及此η_摻雜層(49)基本上 由含石夕及氧之摻雜的微晶材料組成。 8·如申請專利範圍第7項之方法,其中該η-摻雜層(49) 直接提供在該毗連的基本上本質矽層(45)上。 9.如申請專利範圍第7至9項中任一項之方法,其中選擇 該η-摻雜層(49)的氧含量使得該η_掺雜層(49)在5〇〇奈 米的光波長處之折射率η大於或等於2 〇。 10.如申請專利範圍第7至9項中任一項之方法其中該方 法係藉由在相應的PECVD電漿反應器中之電漿加強 化學氣相沈積PECVD進行。 1 1 ’士申明專利範圍第10項之方法,其中該η-摻雜層(49) 係藉由以電漿處理而施加經控制的背面鈍化塗布在 該本質層(45)上。 12.如申凊專利範圍第1〇至η項中任一項之方法,其中該 η-摻雜層(49)係藉由在該pECVD電漿反應器中建立第 電名沈積條件而產生,其中欲處理的基材尺寸之整 -16- 201234639 體製程氣體流量實質上係0.3-1 seem/平方公分,該製 程氣體包含矽烷、氫及η-掺雜劑氣體,該心摻雜劑氣 體較佳為在氫中0.5%的膦,矽烷對η-摻雜劑氣體之比 率在1 : 1至1 : 5之間,及矽烷對氫之比率在1 : 5〇至j : 2 0 0之間,較佳為1 : 1 〇 〇。 13. 如申請專利範圍第12項之方法,其中該製程壓力經選 擇在1_5至8毫巴間,較佳為2.5-5毫巴,及在該1^(^〇 反應器中建立在頻率13.56-60百萬赫茲下,較佳為在 頻率40百萬赫茲下的rf功率係150-200毫瓦/平方公 分’較佳為170-180毫瓦/平方公分。 14. 如申請專利範圍第12或13項之方法,其中該第一電漿 ”牛、.隹持 #又時間1 0-20秒,在此之後,額外引進含 氧的氣體流’較佳為二氧化碳,全部其它製程參數皆 保持相同,及Μ &amp; &amp; 错此在矽烷與含氧氣體間之氣流比率在 2 : 1至1 . 1夕 • 間,較佳為在1 : 1至1 : 2之間。 -17-, 201234639 VII, the scope of application patent: 1- kinds of light conversion device, comprising a front electrode (42) and a back electrode (47), and at least one photovoltaic between the front (42) and back (47) electrodes a light conversion layer stack (43), the layer stack (1) comprising a p_ doped germanium layer (44), a substantially intrinsic germanium layer (45) and an n-doped layer (4)), and a layer of (s) , 45, 49) together form a p_i-n junction, characterized in that the n-doped layer (49) closest to the back electrode (47) is directly on the back electrode (47) and in intimate contact therewith, and substantially It consists of a microcrystalline material doped with antimony and oxygen. 2. A light conversion device as described in the patent application, wherein the n-doped layer (9) progresses directly on the substantially intrinsic layer (45) and is in intimate contact. ', ', 3: The optical conversion device of claim 2, wherein. a doped layer (called a back surface of the intrinsic layer (45) arranged to cause the enthalpy of the Τ ::: a light conversion device of the patent application scope, wherein the φ (49) is selected so that the η - the refractive index η of the doped layer (49) at a wavelength of 5 〇〇 〇〇 大于 is greater than or equal to 2 〇. 5 · Any of the foregoing 谙 谙 “ ” ” ” ” ” ” ” ” ” ” ” The thickness of the solar cell or the solar cell is preferably 2G-50 nm. Please patent the scope of the light conversion device II - including the method of any of the foregoing 7: = through T conversion device, which comprises the following steps: a) k for a transparent substrate (41); W is provided directly or indirectly on the substrate (41) - front electrode (42); -15-S 201234639 c) directly or indirectly on the front electrode (42) The top of the stack is provided with at least one photovoltaic light-converting layer stack (43, 5 1); at least one P-b η junction, each of the conversion layer stacks comprises a doping The enamel layer (44 ' Μ), one directly or indirectly provided on the Ρ-doped ♦ layer (4 4, 5 2) - directly or indirectly providing an n-doped layer (49, Η) on the intrinsic 矽 layer (45, 53); Ο at the η-doped layer farthest from the substrate (41) (49 Providing a back electrode (47), characterized in that the back electrode (47) is directly provided on the η-doped layer (49) located farthest from the substrate (41), and the η-doping The layer (49) consists essentially of a microcrystalline material containing a mixture of australis and oxygen. 8. The method of claim 7, wherein the η-doped layer (49) is directly provided in the contiguous base The method of any one of clauses 7 to 9, wherein the oxygen content of the η-doped layer (49) is selected such that the η-doped layer (49) The refractive index η at a wavelength of light of 5 〇〇 nanometers is greater than or equal to 2 〇. 10. The method according to any one of claims 7 to 9 wherein the method is carried out by a corresponding PECVD plasma reaction The method of claim 10, wherein the η-doped layer (49) is controlled by plasma treatment by a plasma enhanced chemical vapor deposition (PECVD) process. The backside passivation is applied to the intrinsic layer (45). The method of any one of the preceding claims, wherein the n-doped layer (49) is by the pECVD plasma The first electric name deposition condition is established in the reactor, wherein the whole process of the substrate to be processed has a gas flow rate of 0.3-1 seem/cm 2 , and the process gas contains decane, hydrogen and η- The dopant gas, the core dopant gas is preferably 0.5% phosphine in hydrogen, the ratio of decane to η-dopant gas is between 1:1 and 1:5, and the ratio of decane to hydrogen is 1 : 5 〇 to j : 2 0 0 , preferably 1: 1 〇〇. 13. The method of claim 12, wherein the process pressure is selected between 1 and 5 mbar, preferably between 2.5 and 5 mbar, and is established at a frequency of 13.56 in the reactor. At -60 megahertz, preferably the rf power at a frequency of 40 megahertz is 150-200 mW/cm<2>, preferably 170-180 mW/cm<2>. Or the method of item 13, wherein the first plasma "Niu, 隹 # 又 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The same, and Μ &amp;&amp; wrong, the ratio of gas flow between decane and oxygen-containing gas is between 2:1 and 1.1, preferably between 1:1 and 1:2.
TW100149060A 2010-12-29 2011-12-28 SiOx n-layer for microcrystalline pin junction TW201234639A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US42786510P 2010-12-29 2010-12-29

Publications (1)

Publication Number Publication Date
TW201234639A true TW201234639A (en) 2012-08-16

Family

ID=47070152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149060A TW201234639A (en) 2010-12-29 2011-12-28 SiOx n-layer for microcrystalline pin junction

Country Status (1)

Country Link
TW (1) TW201234639A (en)

Similar Documents

Publication Publication Date Title
US8648251B2 (en) Tandem thin-film silicon solar cell and method for manufacturing the same
Schropp et al. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells
US20080173347A1 (en) Method And Apparatus For A Semiconductor Structure
US20090255574A1 (en) Solar cell fabricated by silicon liquid-phase deposition
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
KR20150114792A (en) Ultra thin hit solar cell and fabricating method for the same
CN103038897A (en) Thin film solar cell with microcrystalline absorpber layer and passivation layer and method for manufacturing such a cell
US20150136210A1 (en) Silicon-based solar cells with improved resistance to light-induced degradation
CN102403369A (en) Passivation dielectric film for solar cell
JP2001267598A (en) Laminated solar cell
Multone et al. Triple-junction amorphous/microcrystalline silicon solar cells: Towards industrially viable thin film solar technology
US8642115B2 (en) Photovoltaic device and manufacturing method thereof
JP2001028452A (en) Photoelectric conversion device
KR101484620B1 (en) Silicon solar cell
US20130291933A1 (en) SiOx n-LAYER FOR MICROCRYSTALLINE PIN JUNCTION
US7122736B2 (en) Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique
JP2004363577A (en) Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
CN112382680A (en) HJT battery and preparation method thereof based on laser induction
TWI483405B (en) Photovoltaic cell and method of manufacturing a photovoltaic cell
TW201234639A (en) SiOx n-layer for microcrystalline pin junction
US20110005588A1 (en) Photovoltaic Device and Manufacturing Method Thereof
JPWO2013031906A1 (en) Photoelectric conversion device and manufacturing method thereof
KR101302373B1 (en) Method of Manufacturing Solar Cell
KR101089416B1 (en) Solar cell and method for fabricating the same
JP2013536991A (en) Improved a-Si: H absorber layer for a-Si single-junction and multi-junction thin-film silicon solar cells