TW201232893A - Multi-layer article of polyimide nanoweb with amidized surface - Google Patents

Multi-layer article of polyimide nanoweb with amidized surface Download PDF

Info

Publication number
TW201232893A
TW201232893A TW100145522A TW100145522A TW201232893A TW 201232893 A TW201232893 A TW 201232893A TW 100145522 A TW100145522 A TW 100145522A TW 100145522 A TW100145522 A TW 100145522A TW 201232893 A TW201232893 A TW 201232893A
Authority
TW
Taiwan
Prior art keywords
aromatic
layer
nanoweb
article
functional group
Prior art date
Application number
TW100145522A
Other languages
Chinese (zh)
Inventor
T Joseph Dennes
Stephen Mazur
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/963,982 external-priority patent/US8428255B2/en
Application filed by Du Pont filed Critical Du Pont
Publication of TW201232893A publication Critical patent/TW201232893A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention is directed to the preparation and use of aromatic polyimide nanowebs with amide-modified surfaces. Uses include as a filtration medium, and as a separator in batteries, particularly lithium-ion batteries. The invention is also directed to a method comprising the aromatic polyimide nanoweb with amide-modified surface. The invention is further directed to a multi-layer article comprising the aromatic polyimide nanoweb with amide-modified surface, and to an electrochemical cell comprising the multi-layer article.

Description

201232893 六、發明說明: 【發明所屬之技術領域】 本發明係關於具有醯胺改質表面之芳族聚醯亞胺 奈米網(aromatic polyimide nanoweb)的製備與用途。 用途包括作為一過濾介質以及在電池中作為一隔板,特 別是經離子電池。本發明亦關於一種過濾、裝置,其包含 該具有醯胺改質表面之芳族聚醯亞胺奈米網。本發明進 一步關於一種多層物品’其包含該具有醢胺改質表面之 芳族聚醯亞胺奈米網,並且關於一種包含該多層物品之 電化學電池單元。 【先前技術】 聚醯亞胺由於同時具有強度、在各式不同環境中的 化學惰性以及熱穩定性,而在市場上深具價值。在過去 幾年中’已由聚酿亞胺製成電纺(electrospun)或電吹 (electroblown)非織奈米網,並且首度同時具備聚醯 亞胺所亟需性質以及高多孔性之片型結構。 共同申請案 61/286618、61/286628 與 61/286623 揭 露了全芳族聚醯亞胺奈米網作為Li離子電池與其他電 化學電池單元中之隔板的用途。201232893 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to the preparation and use of an aromatic polyimide nanoweb having a modified surface of a guanamine. Uses include as a filter medium and as a separator in a battery, especially an ion battery. The invention also relates to a filtration apparatus comprising an aromatic polyamidene nanonet having a guanamine-modified surface. The invention further relates to a multilayer article comprising an aromatic polyamidene nanoweb having a guanamine-modified surface and to an electrochemical cell comprising the multilayer article. [Prior Art] Polyimine is of great value in the market due to its strength, chemical inertness and thermal stability in various environments. In the past few years, 'electrospun or electroblown non-woven nano-networks have been made from poly-imine, and for the first time, the properties of poly-imine and the high porosity are required. Type structure. The use of a wholly aromatic polyamidene nanowire as a separator in Li-ion batteries and other electro-chemical cells is disclosed in co-pending applications 61/286,618, 61/286,628 and 61/286,623.

Honda等人在JP2004-308031A中揭露了聚醯亞胺 奈米網之製備方法,其係藉由電紡聚醯胺酸(p〇lyamic acid)溶液接著進行醯亞胺化而製備。已揭露數千種聚 醯亞胺組成物’包括芳族聚醯亞胺。已揭露作為一電池 隔板之應用。 4 201232893Honda et al., JP-A-2004-308031A, discloses a process for the preparation of a polyamidene nanowire which is prepared by electrospun polyplyamic acid solution followed by oxime imidization. Thousands of polyimine compositions have been disclosed as including aromatic polyimine. The application as a battery separator has been disclosed. 4 201232893

Jo等人之W02008/018656揭露了一非全芳族聚酿 亞胺奈米網在Li與Li離子電池中作為一電池隔板的用 途0Jo et al., WO2008/018656, discloses the use of a non-all aromatic polyamidene network as a battery separator in Li and Li ion batteries.

Hayes之歐洲專利0 401 00581揭露了將烴類接枝 到一半透性 (semipermeable )、選擇性滲透 (permselective)聚醯亞胺膜之表面。 已知聚醯亞胺在溫度高於l〇(TC時易受水解而不穩 定。亦已知要將聚醯亞胺膜黏附於某些基材(如環氧樹 脂)’常需要在層之間使用特殊配方之黏著劑。 針對各式最終用途,所亟需者為改質芳族聚醯亞胺 奈米網之表面化學以改良相容性、增加或降低可濕性、 保護表面免受化學侵蝕,同時保有奈米網結構之多孔 性。 【發明内容】 在一態樣中,本發明提供一種包含芳族聚醯亞胺 (aromatic polyimide)奈米纖維(nan0fiber)之奈米網 的物品,該奈米網具有一自由表面區域,該自由表面區 域之至少一部分包含一二級醯胺(SeC〇ndary amide), 該二級醯胺包含一含一烴基自由基之官能基。 在實施例中,该官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 在另一態樣中’本發明提供一種用於化學改變一芳 族聚醯亞胺奈米網之表面的方法,該方法包含使一芳姨 t酿亞版奈米網接觸 級胺(primary amine)之容 201232893 液’接觸溫度在室溫至150°c之範圍,接觸期間在1至 240分鐘之範圍,其中該一級胺包含一含一煙基自由基 之官能基。 在一實施例中,該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 在另一態樣中,本發明提供一種用於過濾之方法’ 該方法包含使一固體與一流體之混合物可濕性地碰撞 於一表面改質之聚醯亞胺奈米網的表面,而使該混合物 之一富含流體部分輸送通過該表面改質之聚醯亞胺奈 米網’而該混合物之一富含固體部分則未輸送通過,益 且其中該表面改質之聚醯亞胺奈米網包含一含芳族聚 醯亞胺奈米纖維之奈米網,該奈米網具有一自由表面區 域,該自由表面區域之至少一部分包含一· 一級醯胺包含一含一烴基自由基之官能基。 在一實施例中,該官能基進一步包含一含氧、氮 ,,官能基。在一進一步實施例中,該含氧、氮或硫 g月t*基為一胺基基團。 在另一態樣中,本發明提供一種過濾裝置,該裝 包含:殼體,該殼體提供有一第一通口以引入一擬過; ::=物,以及一第二通口以排出一濾出流體,該殼 表面改質之芳族聚醢亞胺奈米網,該奈米網係: ’叹置以使擬過濾之混合物可濕性地碰撞於該奈米, 3 t而使該混合物之-富含流體部分輪送通:該: 分則聚醯亞胺奈米網,而該混合物之—富含固體— 輪送通過,並且其中該表面改質之聚酸亞胺奈: 6 201232893 眉一含芳知聚醮亞胺奈米纖維之奈米網,該奈米網 具有一自由表面區域,該自由表面區域之至少一部分包 % —級醯胺,該二級醯胺包含一含一烴基自由基之官 能基。 在一實施例中,該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 吕月>=*基為一胺基基團。 在另一態樣中,本發明提供一種多層物品,該多層 物品包含-第-電極材料、—第二電極材料與一設置於 該第一與第二電極材料間且與其接觸之多孔性隔板,其 中》亥多孔性隔板包含—含芳族聚醯亞胺奈米纖維之奈 米網,該奈米網具有-自由表面區域,該自由表面區域 之至j/ 一部分包含一二級醯胺,該二級醯胺包含一含一 烴基自由基之官能基。 在-實施例中,該官能基進一步包含一含氧、氣或 硫之官能基。在-進-步實_中,該含氧、氮或硫之 官能基為一胺基基團。 在另一態樣中,本發明提供一種電化學電池單元, 該電池單兀包含一設置於其中之殼體、一電解質與一至 少部分浸入於該電解質中之多層物品·,該多層物品包含 -第-金屬電流收集器、—與該第—金屬電流收集器電 傳導性接觸之第-電極材料、—與該第—賴材料離子 傳導性接觸之第二電極材料、—設置於該第一電極材料 與該第二電極材料間讀其接觸之多孔性隔板;以及一 與該第二電極材料電料性接觸之第二金屬電流收集 器,其中該多孔性隔板包含—含芳族聚醯亞胺奈采纖維 201232893 之奈米網’該奈米網具有一自由表面區域,該自由表面 區域之至少一部分包含一二級醯胺’該二級醯胺包含一 含一烴基自由基之官能基。 在一實施例中,該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 吕月b基為一胺基基團。 【實施方式】 本發明提供表面改質之芳族聚醯亞胺奈米網,其各 式特徵為表面張力改變、新穎之化學官能性與對化學劣 化之抵抗力提高。該表面改質之芳族聚醯亞胺奈米網可 用於作為過濾介質與在電池中作為隔板,特別是鋰離子 電池。 針對本發明之用途,用語「不織(nonw〇ven)」應 使用ISO 9092之定義:「一經製造且具有方向性排列或 雜亂排列纖維之片體、網體或毛層,其由摩擦力與/或 =聚力與/或黏附力所結合,排除紙張與編織、針織、 族絨、縫合合併接結紗(binding yarn )或絲或者以濕式 縮絨法氈化之產品,無論是否有額外之縫紉」。纖維可 為天然或人造來源者。它們可為棉狀纖維或連續絲或者 就地形成。用語「m當使驗本文時,代表不 物品之一子集,其中該纖維係指定為「奈米纖維」,其 特徵在於截面直徑小於!微米。用於本文之奈米網、 一相對平坦、撓性且多孔之平面結構,且係由鋪設^ 多條連續絲所形成。 < 201232893 如本文所述之用語「奈米纖維」,係指數量平均直 位小於1000 nm、甚至小於nm、甚至介於約5〇 及500 nm之間以及甚至介於約100 nm及400 nm之間 之纖維。在非圓形截面奈米纖維之情形中,本文之用語 「直徑」係指最大截面尺寸。 本發明採用之|米纖維主要由一或多種全芳族聚 醯亞胺所組成。舉例而言,本發明採用之奈㈣維可由 超過8J)重量百分比的—或多種全芳族聚醯亞胺、超過 9j)重量百分比的一或多種全芳族聚醯亞胺、超過%重 量百刀比的一或多種全芳族聚酿亞胺、超過重量百 分比的一或多種全芳族聚醯亞胺、超過99 9重量百分 比的-或多種全芳族聚醯亞胺或刚重量百分比的— 或多種全芳族聚醯亞胺製備而得。 成之群組的方法而製成:電吹 (PA A )溶液,接著酼凸拉乂 ^用於本發明之奈米網可藉由一選自由下列所組European Patent 0 401 00 581 to Hayes discloses the grafting of hydrocarbons onto the surface of a semipermeable, permselective polyimine film. Polyethylenimine is known to be susceptible to hydrolysis at temperatures above 1 〇 (TC is susceptible to hydrolysis. It is also known to adhere polyimine films to certain substrates (such as epoxy resins). Specially formulated adhesives are used. For all end uses, the surface chemistry of modified aromatic polyamidene mesh is modified to improve compatibility, increase or decrease wettability, and protect surfaces from Chemical etching while preserving the porosity of the nano mesh structure. [Invention] In one aspect, the present invention provides an article comprising a nano network of aromatic polyimide nanofibers (nan0fiber). The nanoweb has a free surface region, at least a portion of which comprises a primary phthalamide (SeC〇ndary amide), the secondary guanamine comprising a functional group containing a hydrocarbon radical. Wherein the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment, the functional group containing oxygen, nitrogen or sulfur is an amine group. In another aspect, The invention provides a chemical for changing an aromatic A method for the surface of a ruthenium amide network, the method comprising: contacting a primary amine of a sulphide tanning nanocapsule with a primary amine of 201232893 liquid contact temperature in the range of room temperature to 150 ° C, contact The period is in the range of 1 to 240 minutes, wherein the primary amine comprises a functional group containing a ketone radical. In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In an embodiment, the oxygen, nitrogen or sulfur containing functional group is an amine group. In another aspect, the invention provides a method for filtering 'the method comprising: mixing a solid with a fluid Wetly colliding with the surface of a surface-modified polyimine mesh, and one of the mixture is enriched with a fluid portion transported through the surface-modified polyamidene network' and one of the mixtures The solid-rich portion is not transported through, and wherein the surface-modified polyimine mesh comprises a nanoweb containing aromatic polyamidene nanofibers having a free surface region At least one of the free surface areas The first-stage guanamine comprises a functional group containing a hydrocarbon-based radical. In one embodiment, the functional group further comprises an oxygen-containing, nitrogen-, functional group. In a further embodiment, the oxygen-containing, nitrogen-containing Or the sulfur g month t* group is an amine group. In another aspect, the present invention provides a filtering device comprising: a housing, the housing is provided with a first opening to introduce a dummy; ::=, and a second port to discharge a filtered fluid, the surface of the shell is modified with an aromatic polyamidene network, the nano-network: 'sigh so that the mixture to be filtered can be Wetly colliding with the nano, 3 t to make the fluid-rich portion of the mixture pass: this: the poly-imine mesh, and the mixture - rich in solids - passes through, And wherein the surface modified polyamic acid imide: 6 201232893 The first mesh of the polyamidene nanofiber, the nano mesh has a free surface area, and at least a portion of the free surface area %-grade guanamine, which contains a functional group containing a hydrocarbon radical. In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment, the oxygen, nitrogen or sulfur-containing lyophilized >=* group is an amine group. In another aspect, the present invention provides a multilayer article comprising a -electrode material, a second electrode material, and a porous separator disposed between and in contact with the first and second electrode materials Wherein the "Hylon porous separator" comprises a nanoweb containing aromatic polyamidene nanofibers, the nanoweb having a free surface region, the portion of the free surface region comprising a primary amine The secondary guanamine contains a functional group containing a hydrocarbon radical. In an embodiment, the functional group further comprises a functional group containing oxygen, gas or sulfur. In the -in-step, the functional group containing oxygen, nitrogen or sulfur is an amino group. In another aspect, the present invention provides an electrochemical cell comprising a housing disposed therein, an electrolyte, and a plurality of articles at least partially immersed in the electrolyte, the multilayer article comprising - a first metal current collector, a first electrode material electrically conductively contacting the first metal current collector, a second electrode material in conductive contact with the first material, and a first electrode material disposed on the first electrode a porous separator in which the material is in contact with the second electrode material; and a second metal current collector in electrical contact with the second electrode material, wherein the porous separator comprises - an aromatic polyfluorene The nanoweb of 201238893 has a free surface region, at least a portion of which contains a first-order guanamine. The secondary guanamine contains a functional group containing a hydrocarbon radical. . In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment, the oxygen, nitrogen or sulfur-containing sulphate b group is an amine group. [Embodiment] The present invention provides a surface-modified aromatic polyamidene nanonet having various characteristics characterized by a change in surface tension, novel chemical functionality, and resistance to chemical deterioration. The surface modified aromatic polyamidene nanowire can be used as a filter medium and as a separator in a battery, particularly a lithium ion battery. For the purposes of the present invention, the term "nonw〇ven" shall be defined in accordance with ISO 9092: "A sheet, mesh or batt that is manufactured and has a directional arrangement or a disorderly arrangement of fibers, which is frictionally / or = combination of strength and / or adhesion, exclude paper and woven, knitted, velvet, stitched binding yarn or silk or wet felting products, whether or not there is extra Sewing." Fibers can be natural or artificial sources. They may be cotton fibers or continuous filaments or formed in situ. The term "m" when referring to this document, represents a subset of the non-articles, where the fiber system is designated "nanofiber" and is characterized by a cross-sectional diameter that is less than! Micron. The nanoweb used herein, a relatively flat, flexible and porous planar structure, is formed by laying a plurality of continuous filaments. < 201232893 The term "nanofiber" as used herein means an average number of straight positions less than 1000 nm, even less than nm, even between about 5 and 500 nm and even between about 100 nm and 400 nm. The fiber between. In the case of non-circular cross-section nanofibers, the term "diameter" as used herein refers to the largest cross-sectional dimension. The rice fiber used in the present invention is mainly composed of one or more wholly aromatic polyimine. For example, the present invention employs more than 8 J) by weight of more than 8 J) by weight—or a plurality of wholly aromatic polyimines, more than 9% by weight of one or more wholly aromatic polyimines, more than 100% by weight. Knife ratio of one or more wholly aromatic polyimine, more than one weight percent of one or more wholly aromatic polyimine, more than 99 9 weight percent - or more wholly aromatic polyimine or just percentage by weight - or a variety of wholly aromatic polyimines are prepared. It is made by a method of grouping: an electric blowing (PA A ) solution, followed by a slanting ridge. The nano net used in the present invention can be selected from the group consisting of the following

从不不砜蹕之余米網」。合一聚醯胺酸而形成,該聚醯 201232893 胺酸的特徵在於在其聚合物主鏈重複單元中具有至少 一個芳族基團。一合適之PAA係藉由縮聚至少一種羧 酸二酐與至少一種二胺而製備,至少其中一者為芳族。 在一實施例中,該芳族聚醯亞胺為一全芳族聚醯亞 胺。用語「全芳族聚醯亞胺奈米網」係指一由醯亞胺化 一 PAA奈米網而形成之奈米網,前述paa係藉由縮聚 至少一種芳族羧酸二酐與至少一種芳族二胺而製備。在 一實施例中,適用於本文之全芳族聚醯亞胺奈米網包含 一·至少90%酿亞胺化之聚酿亞胺,並且其中至少95%的 聚合物主鏈中之相鄰苯環間的鍵聯係由一共價鍵或一 醚鍵聯所達成。至多25%、較佳至多20%、最佳至多 1 〇%的鍵聯可由脂族碳、硫化物、;ε風、磷化物(ph〇sphide ) 或膦(phosphone)官能性或其組合所達成。至多5〇/〇的 構成該聚合物主鏈之芳環可具有脂族碳、硫化物、砜、 磷化物或膦之環取代基。90%醯亞胺化意指90%的聚醯 胺酸前驅物之醯胺酸官能性已轉化為醯亞胺。較佳的 是,該全芳族聚醯亞胺未含有脂族碳、硫化物、砜、磷 化物或膦。 合適之芳族二酐包括但不限於焦蜜石酸二酐 (PMDA)、聯苯四羧酸二酐(BPDA)與其混合物。合 適之芳族二胺包括但不限於二氨基二苯醚(0DA)、1,3-雙(4_胺基苯氧基)苯(R0DA)與其混合物。較佳之二 酐包括焦蜜石酸二酐、聯笨四羧酸二酐與其混合物。較 佳之二胺包括二氨基二苯醚、1,3-雙(4-胺基苯氧基)苯 與其混合物。最佳者為PMDA與〇DA。 合適之全芳族聚醢亞胺係以下列結構式描述 10 201232893 Ο ΟNever suffocate the sulphur sputum." Formed by a poly-polyamine, the polyamine 201232893 aminic acid is characterized by having at least one aromatic group in its polymer backbone repeat unit. A suitable PAA is prepared by polycondensation of at least one carboxylic acid dianhydride with at least one diamine, at least one of which is aromatic. In one embodiment, the aromatic polyimine is a wholly aromatic polyimine. The phrase "all-aromatic polyamidene network" refers to a nanoweb formed by hydrazide-PAA nanoweb, which is obtained by polycondensation of at least one aromatic carboxylic dianhydride and at least one Prepared from an aromatic diamine. In one embodiment, a fully aromatic polyamidene nanoweb suitable for use herein comprises at least 90% aminated iminated chitosan, and wherein at least 95% of the polymer backbones are adjacent The bond between the benzene rings is achieved by a covalent bond or an ether bond. Up to 25%, preferably up to 20%, and most preferably up to 1% by weight of the bond may be achieved by aliphatic carbon, sulfide, ε wind, ph〇sphide or phosphine functionality or a combination thereof . The aromatic ring constituting the polymer backbone of up to 5 Å/Å may have a ring substituent of an aliphatic carbon, a sulfide, a sulfone, a phosphide or a phosphine. 90% quinone imidization means that 90% of the proline precursor of the polyproline precursor has been converted to quinone. Preferably, the wholly aromatic polyimine does not contain an aliphatic carbon, sulfide, sulfone, phosphide or phosphine. Suitable aromatic dianhydrides include, but are not limited to, pyromellitic dianhydride (PMDA), biphenyltetracarboxylic dianhydride (BPDA), and mixtures thereof. Suitable aromatic diamines include, but are not limited to, diaminodiphenyl ether (0DA), 1,3-bis(4-aminophenoxy)benzene (R0DA), and mixtures thereof. Preferred dianhydrides include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, and mixtures thereof. Preferred diamines include diaminodiphenyl ether, 1,3-bis(4-aminophenoxy)benzene, and mixtures thereof. The best are PMDA and 〇DA. Suitable wholly aromatic polyimines are described by the following structural formula 10 201232893 Ο Ο

II II --、Α( —Ατ·- —II II --, Α ( —Ατ·- —

V VV V

II II ο ο L Jn 其中500,較佳為21000,Ar與Ar,各獨立為形成自 务族化合物之一 ^族基,戎芳族化合物包括但不限於 苯、萘、聯苯、二苯胺、二苯基酮、二苯烯基(其中該 稀基包含1-3個碳)、二苯ί風酮(diphenylsulfonone)、 二苯硫喊(diphenylsulfide )、二苯膦 (diphenylphosphone )、 磷酿 二苯酯 (diphenylphosphate)、〇比咬、II II ο ο L Jn wherein 500, preferably 21000, Ar and Ar are each independently formed as a group of a compound of the formula, and the oxime aromatic compound includes, but not limited to, benzene, naphthalene, biphenyl, diphenylamine, Diphenyl ketone, diphenylenyl (wherein the dilute contains 1-3 carbons), diphenylsulfonone, diphenylsulfide, diphenylphosphone, phosphorus diphenyl Diphenylphosphate, bismuth bite,

其中Rl、R2與R3獨立為一具有1-3個碳之烯基自由 基。 在一實施例中,該聚醯亞胺奈米網主要由形成自焦 蜜石酸二酐(PMDA)與氧基二苯胺(ODA)之聚醯亞 胺奈米纖維所組成,其具有以下列結構代表之重複單 201232893Wherein R1, R2 and R3 are independently an alkenyl radical having 1-3 carbons. In one embodiment, the polyamidene nanoweb consists essentially of polyamidene nanofibers formed from pyromellitic dianhydride (PMDA) and oxydiphenylamine (ODA) having the following Structure representative, repeat, single 201232893

聚醯亞胺-般係指形成該重複气 應物 的名稱。本文將延續此操作方式。該=胺‘指= 表之重複單元所組成的聚醯炎 a … PMDA/ODA。 龙严# 人 雖然本文之發明並非僅限於此,一 ^方法可 影響一芳族聚醯亞胺奈米網之化學#择。過=一肝會導 致具有帶化學活性氫之胺端基的聚雛由°周整其 化學計量以使二酐稍微過量,或者藉由:去::如鄰苯 二甲酐)終端封阻該胺’而將這些活’降乳、' 〇 先在溶液中製備該聚醢胺酸;〆據/谷A甲基乙 醯胺(DMAC)或二甲基甲醯胺於 實施本發明之方法中’係藉由電吹該聚•胺液而形 成-奈米網,如Kim等人之文獻中户斤述/詳、、田内谷後 述。在另-適用於實施本發明之方法中’ I#電纺該 聚醯胺酸溶液而形成一奈米網,如^uang et al‘’ Adv· Mat. DOI: 10.1002/adma.200501806 所述。用於本發明之 全芳族聚醯亞胺係高度不可溶。本發明之技術人士必須 先從聚醯胺酸形成奈米網,之後再醢亞胺化所形成之奈 米網。 欲簡便地醯亞胺化所形成之聚醯胺酸奈米網,可先 將奈米網在約100°C之溫度下在具有氮氣吹洗之真空烘 箱中進行溶劑萃取;在萃取後,接著將該奈米網加熱至 201232893 300至350 C之溫度歷時約10分鐘或更短時間,較佳為 5分鐘或更短時間,以完全醯亞胺化該奈米網。根據本 文之方法進行H亞胺化會達到至少慨,較佳為· 的醯亞胺化。在大部分的情形+,分析方法顯示醯亞胺 化‘=少可達到100%,即便是進行長時_醯亞胺化。 為只用的目的起見,當醯亞胺化百分比對時間之曲線的 斜率為零時’即視為達到徹細亞胺化。 適用於實施本發明之芳族聚醯亞胺奈米網可為所 謂的增強型奈米網,其特徵在於結晶度指數為至少 0.2。在一實施例中,該增強型奈米網主要由結晶度指 數,至少G.2之PMDa/qDA奈,纖維所組成。一增強 型芳族聚ϋ亞胺奈米網的特徵在於強度較高、電解質溶 劑吸收較低以及電解質溶劑引起的物理性質損失降 低此係相較於對應的未強化芳族聚醜亞胺奈米網。據 信該增強型芳族聚醯亞胺奈米網中所觀察到的性質強 化至少部分來自於結晶度之增加,此結晶度增加係在製 備一增強型奈米網之程序中所發展出來。Polyimine-like refers to the name that forms the repeating gas. This article will continue this mode of operation. The =amine ‘ refers to the polyfluorene a ... PMDA/ODA composed of repeating units of the table. Long Yan #人 Although the invention of this article is not limited to this, a method can affect the chemical choice of an aromatic polyamidene network. Over = one liver will result in a polyglycol with amine-bearing end groups with chemically active hydrogen being stoichiometrically adjusted to give a slight excess of dianhydride, or by: de:: such as phthalic anhydride) The amines are used to prepare the polylysine in solution, and the glutamic acid/DMAA methyl acetamide (DMAC) or dimethylformamide is used in the practice of the present invention. 'The system is formed by electroblowing the polyamine liquid, which is described in the literature of Kim et al., and is described later in Tanaka. In another method suitable for use in the practice of the invention, the I-electrolytic solution of the polyaminic acid solution is formed to form a nanoweb, as described in ^uang et al'' Adv. Mat. DOI: 10.1002/adma.200501806. The wholly aromatic polyamidene used in the present invention is highly insoluble. The person skilled in the art must first form a nanoweb from polylysine and then iodize the resulting nanoweb. For the simple formation of the polyamidite network formed by imidization, the nanoweb may be first subjected to solvent extraction in a vacuum oven with nitrogen purge at a temperature of about 100 ° C; after extraction, followed by extraction The nanoweb is heated to a temperature of 201232893 300 to 350 C for about 10 minutes or less, preferably 5 minutes or less, to completely iridize the nanoweb. H-imidization according to the method of the present invention achieves at least a general, preferably ruthenium imidization. In most cases, the analytical method showed that 醯 imidization was less than 100%, even for long-term 醯 醯 imidization. For the purpose of use only, when the slope of the curve of the yttrium imidation versus time is zero, it is considered to achieve thorough imidization. The aromatic polyamidene nanoweb suitable for use in the practice of the invention may be a so-called enhanced nanoweb characterized by a crystallinity index of at least 0.2. In one embodiment, the enhanced nanoweb consists essentially of a crystallinity index, at least G.2 of PMDa/qDA, fiber. An enhanced aromatic polyamidene nanonet is characterized by higher strength, lower electrolyte solvent absorption, and reduced physical property loss caused by electrolyte solvent compared to the corresponding unreinforced aromatic polyugly imidate network. It is believed that the enhancement of the properties observed in the enhanced aromatic polyamidene nanonet is due, at least in part, to an increase in crystallinity which is developed in the process of preparing an enhanced nanoweb.

適用於本發明之增強型芳族聚醯亞胺奈米網係藉 由在一退火範圍内加熱一芳族聚醯亞胺奈米網而製 備。退火fe圍與材料之組成高度相關。對於pMDA/〇DA 而言,退火範圍為400至500°C。對於BPDA/RODA而 言,其為約為200¾ ;若加熱到4〇〇t,BpDA/R〇DA 會分解。一般而言,於本文之方法中,退火範圍開始之 溫度係咼於其酿亞胺化溫度至少5〇。匸。針對本發明之 目的,一特定芳族聚醯胺酸奈米網之醯亞胺化溫度為低 於500°C之溫度,在此溫度下在加熱率為5(^c/min下進 201232893 行熱重分析,其熱逸失°/〇/°C會減少至低於1.0,較佳為 低於0.5,而精確度為±0.005%(以重量%計)以及士 0 05 。(:。該全芳族聚醯亞胺奈米網係在退火範圍中加熱一段 5秒鐘至20分鐘的期間’較佳為5秒鐘至10分鐘的期 間。 在一實施例中,一藉由縮聚自溶液接著電吹該奈米 網而製成之PMDA/ODA醯胺酸奈米網,係先於真空烘 箱中加熱至約l〇〇°C以移除殘餘溶劑。在溶劑移除後, 將該奈米網加熱至在3 00-3 5 0°C範圍之溫度並保持一段 低於15分鐘的期間’較佳為低於1〇分鐘,最佳為低於 5分鐘’直到至少90%的醯胺官能性已轉化(醯亞胺化) 為醢亞胺官能性’較佳為直到100%的酿胺官能性已醯 亞胺化。而後將如上醯亞胺化之奈米網加熱至在400至 500°C範圍之溫度’較佳為在400至450°C範圍,加熱 一段5秒鐘至20分鐘的期間,直到達到結晶度指數為 0.2。 本文所使用的參數「結晶度指數」係指由廣角χ 射線繞射(WAXD )所測得的相對結晶度參數。此WAXd 掃瞄係由下列所組成:1) 一背景訊號;2)來自有序但 非晶質區的散射;3)來自結晶質區的散射。辨識為結 晶質峰之峰下積分值對整體掃瞄曲線下積分值扣除背 景值的比例即為結晶度指數。 在一態樣中,本發明提供一種包含芳族聚醯亞胺奈 米纖維之奈米網的物品,該奈米網具有一表面,該表面 之至少一部分包含一二級醯胺,該二級醯胺包含一含一 烴基自由基之官能基。該烴基自由基可為飽和或烯烴不 201232893 芙自由其a 芳族取代基°在_實施例中,該烴 基為-飽和烴。在一進一步實施例中,該烴為一 说基自由基。在—進—步實施例中,該燒基自由基為一 正院基自由基之形式。在—進—步實施例中,該正炫基 自由基之長度為在1〇至30個碳之範圍。在又一進一: 實施例中’該正絲自由基之長度為15至20個碳。 在一實施例中,該官能基進一步包含一含 硫之官能基。在-進—步實施例中,該含 之 官能基為一胺基基團。 虱次爪之 、適用於本文用途之奈米網係由隨機重疊之纖維所 構成,其特徵在於具有—自由表面區域。該奈米網之自 由表面區域為能夠被—液體或氣體試劑接觸的表面區 域。=奈米網之自由表面區域為基本上為各組成纖維之 表面區域的加總,扣除因兩或多個纖維重疊而阻擋掉之 區域。直接測量自由表面區域的方法係為熟知,諸如氮 吸附法、水銀測孔法(mercury p〇r〇simetry)與氦比重 瓶測定法(helium pycnometry)。針對本發明之目的, 一合適聚醯亞胺奈米網的特徵在於孔隙率為介於2〇與 80%間。在一實施例中,其孔隙率係在3〇至6〇0/〇之範 圍0 在另一態樣中’本發明提供一種用於化學改變一芳 族聚酿亞胺奈米網之表面的方法,該方法包含使一芳族 聚醯亞胺奈米網接觸--級胺(primary amine)之溶 液’接觸溫度在室溫至150。〇之範圍,接觸期間在1至 240分鐘之範圍,其中該一級胺包含一含一烴基自由基 之官能基。該烴基自由基可為飽和或烯烴不飽和,並且 201232893 由A為nr :—實施例團鎮陰離子該烴基自 由基為-飽和煙。在-進―步實施例中,該烴 自由基。在-進一步實施例中’該烷基二一:二 基自由基之形式。在一進一步實施例中,該:烷美自: 基之長度為在10至30個碳之範圍。 " 例中,該正院基自由基之長度為一步實施 在一實施例中,該官能基進一步包人—=°、知 硫之官能基*>在一進一步實施例中:3二或 官能基為-胺基基團。 &氣、乳或硫之 發明之濃度未有特別限制,在實施本 =月時發現,在以重量計約1%或更低的濃度下,對於 该聚醯亞胺奈米網表面幾乎沒有可觀察到之效應。、 在醯胺化該聚醯亞胺奈米網表面後,所亟需者為在 ,次甲苯絲中潤洗該如上處理之奈米網以去除未反 應之胺。在*些情況下,㈣需者為賴舰胺化之聚 醯亞胺奈米網。乾燥可在95。(:下達成。 在本文方法之一實施例中,該一級胺溶液之濃度係 在0.1至0_5 Μ之範圍。在一實施例中,該段期間係在 1至60分鐘之範圍。 適用於形成该脂族胺溶液之溶劑包括但不限於 Ν,Ν-二f基甲醯胺、Ν,Ν-二甲基乙醯胺、Ν•甲基吡咯啶 酉同、甲苯與二甲苯。在一實施例中,該溶劑為Ν,Ν_二 曱基甲酿胺。適用於實施本發明之脂族胺包括但不限於 十八胺(octadecylamine)、十六胺(hexadecyiamine) 或十二胺(dodecylamine)、己二胺、組織胺、乙二胺。 201232893 在另-態樣中,本發明提供—種用於過濾之方法, 二一法包含使―固㈣_流體之混合物可濕性地碰撞 於^面改質之聚醯亞胺奈米_表面,而使該混合物 =_含流體部分輸送通過該表面改質之聚醯亞胺奈 只網’而該混合物之-富含固體部分則未輸送通過,並 且其中該表面改質之聚醯亞胺奈米網包含一含芳族聚 醯亞上胺奈米纖維之奈米網,該奈米網具有—自由表面區 域’該自由表面區域之至少—部分包含—二級醯胺,該 二級酿胺包含-含-烴基自由基之官能基。該烴基自由 基可為飽和或烯烴不飽和,並且可包括一芳族取代基。 在實施例中,该煙基自由基為一飽和烴。在一進一步 實施例中,該烴為一烷基自由基。在一進一步實施例 中,該烷基自由基為一正烷基自由基之形式。在一進一 步實施例中,該正烷基自由基之長度為在10至30個碳 之範圍。在又一進一步實施例中,該正烷基自由基之長 度為15至20個碳。 在一實施例中,該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 在該方法之一實施例中,該奈米纖維的特徵在於數 量平均直徑小於1000 nm、甚至小於800 nm、甚至介於 約50 nm及500 nm之間以及甚至介於約100 nm及400 nm之間之纖維。在非圓形截面奈米纖維之情形中,如 本文所述之用語「直徑」係指最大截面尺寸。 17 201232893 在該方法之一實施例中,該芳族聚醯亞胺為一入— 族聚醯亞胺。在一進一步實施例中,該全劣’王芳 為一 PMDA/ODA。 、聚醯亞胺 本文之奈米網相當適用於所謂的深層過淚,r 流體流中移除細小的微粒物質。在一實施例:,自 4 y szT 召接 混合物為一帶有微粒物質之氣體且該微粒物, 該氣體中。在另一實施例中,該流體混合物為—於 粒物質之液體且該微粒物質夾帶於該液體中1 、微 步實施例中,該氣體為一氣體混合物。在又一進一 中,該液體為一液體混合物。本發明之表面改 醯亞胺奈米網的特徵在於可調整其表面對於—^體4 親和力,取決於該二級醯胺之烴基自由基的特定^ ^ ,例而言,如比較爿A所示…未經酿胺化表面改質之 方族聚醯亞胺奈米網的水接觸角為1〇5。,而在實例9 :,在以十八胺醯加以胺化後,其接觸角為146。,二一 ^水性顯著增加。本文之表面改㈣族聚酿亞胺= :’係特別適歸在強驗條件下以及在特 =環境中的過編。本文之表面改質芳= 胺不米網顯示在水蒸氣存在下,其膨脹明顯降低而尺 2狀性亦隨之降低^體之輸送可藉由現有方式如 重力、壓力與毛細作用而達成。 勹人在另態樣中,本發明提供一種過濾裝置,該裝置 ^ δ喊體,該殼體提供有一第一通口以引入一擬分離 勹】5物’以及一第一通口以排出一濾出流體,該殼體 ^表面改質之芳族聚醢亞胺奈米網,該奈米網係密 、設置以使該混合物可濕性地碰撞於該奈米網的表 201232893 面’而使該混合物之一富含流體部分輸送通過該表面改 質之聚醯亞胺奈米網,而該混合物之一富含固體部分則 未輸送通過’並且其中該表面改質之聚醯亞胺奈米網包 含一含芳族聚醯亞胺奈米纖維之奈米網,該奈米網具有 一自由表面區域,該自由表面區域之至少一部分包含一 二級醯胺’該二級醯胺包含一含一烴基自由基之官能 基。該烴基自由基可為飽和或烯烴不飽和,並且可包括 一芳族取代基。在一實施例中,該烴基自由基為一飽和 烴。在一進一步實施例中,該烴為一烷基自由基。在一 進一步實施例中,該烷基自由基為一正烷基自由基之形 式。在一進一步實施例中,該正烷基自由基之長度為在 10至30個碳之範圍。在又一進一步實施例中,該正烷 基自由基之長度為15至20個碳。 在一實施例中,該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 在該過濾裝置之一實施例中,該奈米纖維的特徵在 於數量平均直徑小於1000 nm、甚至小於800 nm、甚至 介於約50 nm及5 00 nm之間以及甚至介於約1 〇〇 nm及 400 nm之間之纖維。在非圓形截面奈米纖維之情形中, 如本文所述之用語「直徑」係指最大截面尺寸。 在該過濾裝置之一實施例中’該芳族聚醯亞胺為一 全芳族聚醯亞胺。在一進一步實施例中,該全芳族聚醯 亞胺為一 PMDA/ODA。 在一實施例中,該過濾裝置進一步包含一剛性支撐 構件,以防止該表面改質之芳族聚醢亞胺奈米網因為該 19 201232893 不米.周厚度pg的壓力差而扭曲變形。該剛性支樓構件為 =開放設計結構以容許誠出流體在流出該奈米網時 月匕夠自由机動n慮敦置之一個實施例係示於圖卜 请^照圖卜11為-殼體並定義出-内部空間12。一合 適;>又體可由任何制於特定過瀘、應用之材料而製成。針 對多種應用,不錄鋼(特別是316型)為一可接受之殼體 材料如圖所示该殼體提供有一輸入通口 13 (擬過滤 之混〇物係透過5亥輸入通口而引入至該内部空間12), 以及^出通α 14 (該濾出流體係藉由該輸出通口而 tit支撐二ί t面改質芳族聚醢亞胺奈米網15係與-、 組合,該剛性支撐件具有一開放結構The enhanced aromatic polyamidene nanowires suitable for use in the present invention are prepared by heating an aromatic polyamidene nanoweb in an annealing range. Annealing fe is highly correlated with the composition of the material. For pMDA/〇DA, the annealing range is 400 to 500 °C. For BPDA/RODA, it is about 2003⁄4; if heated to 4〇〇t, BpDA/R〇DA will decompose. In general, in the process of the present invention, the temperature at which the annealing range begins is at least 5 Torr at the temperature at which it is made. Hey. For the purpose of the present invention, the specific imidization temperature of a specific aromatic polyamidonet network is lower than 500 ° C, and the heating rate is 5 (^c/min into 201232893 at this temperature). Thermogravimetric analysis, the thermal loss ° / 〇 / ° C will be reduced to less than 1.0, preferably less than 0.5, and the accuracy is ± 0.005% (% by weight) and ± 0 05. (:. The aromatic polyamidene nanowire is heated in the annealing range for a period of from 5 seconds to 20 minutes, preferably from 5 seconds to 10 minutes. In one embodiment, one is followed by polycondensation from the solution. The PMDA/ODA glutamic acid nanoweb prepared by electrically blowing the nanoweb is heated in a vacuum oven to about 10 ° C to remove residual solvent. After the solvent is removed, the nanometer is removed. The web is heated to a temperature in the range of 300-500 ° C for a period of less than 15 minutes 'preferably less than 1 minute, preferably less than 5 minutes' until at least 90% of the indoleamine function Sexually transformed (醯iminated) is a quinone imine functional 'preferably up to 100% of the enriched amine functionality has been imidized. Then the above-mentioned hydrazine imidized nanoweb is heated The temperature in the range of 400 to 500 ° C is preferably in the range of 400 to 450 ° C, and is heated for a period of 5 seconds to 20 minutes until the crystallinity index is 0.2. The parameter "crystallinity index" used herein. Refers to the relative crystallinity parameter measured by wide-angle ray diffraction (WAXD). This WAXd scan consists of: 1) a background signal; 2) scattering from an ordered but amorphous region; ) scattering from the crystalline region. The ratio of the integral value under the peak identified as the crystallization peak to the integral value of the overall scan curve minus the background value is the crystallinity index. In one aspect, the invention provides an article comprising a nanoweb of an aromatic polyamidene nanofiber, the nanoweb having a surface, at least a portion of the surface comprising a primary guanamine, the secondary The guanamine contains a functional group containing a hydrocarbon radical. The hydrocarbyl radical may be saturated or the olefin is free of its a aromatic substituent. In the embodiment, the hydrocarbyl group is a saturated hydrocarbon. In a further embodiment, the hydrocarbon is a radical. In the further embodiment, the alkyl radical is in the form of a positively charged radical. In the further embodiment, the length of the n-radical radical is in the range of from 1 Torr to 30 carbons. In still another embodiment: In the embodiment, the strand free radical has a length of 15 to 20 carbons. In one embodiment, the functional group further comprises a sulfur-containing functional group. In the further embodiment, the functional group is an amine group. Nanowires, which are suitable for use herein, are composed of randomly overlapping fibers characterized by a free surface area. The free surface area of the nanonet is a surface area that can be contacted by a liquid or gaseous reagent. = The free surface area of the nanoweb is essentially the sum of the surface areas of the individual constituent fibers, minus the areas that are blocked by the overlap of two or more fibers. Methods for directly measuring free surface regions are well known, such as nitrogen adsorption, mercury p〇r〇simetry, and helium pycnometry. For the purposes of the present invention, a suitable polyamidene network is characterized by a porosity of between 2 and 80%. In one embodiment, the porosity is in the range of 3 〇 to 6 〇 0 / 0 0. In another aspect, the invention provides a method for chemically modifying the surface of an aromatic polyamidene network. The method comprises contacting an aromatic polyamidene network with a solution of a primary amine at a contact temperature between room temperature and 150. The range of bismuth, the range of contact is in the range of from 1 to 240 minutes, wherein the primary amine comprises a functional group containing a hydrocarbyl radical. The hydrocarbyl radical may be saturated or olefinically unsaturated, and 201232893 is a nr from A: - an example of an anion radical which is a saturated smoke. In the further embodiment, the hydrocarbon radical. In the further embodiment 'the alkyl di-: diradical form. In a further embodiment, the alkyl group has a length in the range of 10 to 30 carbons. " In the example, the length of the radical-based radical is one step. In one embodiment, the functional group further encapsulates -=°, the functional group of sulfur*> In a further embodiment: 3 or The functional group is an -amino group. The concentration of the invention of gas, milk or sulfur is not particularly limited, and it is found that at the concentration of about 1% by weight or less, there is almost no surface for the polyamidene nanonet at the time of implementation of this month. Observable effect. After the surface of the polyamidene nanoweb is halogenated, the above-mentioned treated nanoweb is rinsed in the sub-toluene to remove the unreacted amine. In some cases, (4) the demander is a polyamidene nanoweb that is aminated. Drying can be at 95. (In one embodiment of the method herein, the concentration of the primary amine solution is in the range of 0.1 to 0-5 Torr. In one embodiment, the period is in the range of 1 to 60 minutes. The solvent of the aliphatic amine solution includes, but is not limited to, hydrazine, hydrazine-di-f-carbamamine, hydrazine, hydrazine-dimethylacetamide, hydrazine methylpyrrolidine, toluene and xylene. In one embodiment, the solvent is hydrazine, hydrazine-dimercaptoamine. Suitable aliphatic amines for use in the practice of the invention include, but are not limited to, octadecylamine, hexadecyiamine or dodecylamine. , hexamethylenediamine, histamine, ethylenediamine. 201232893 In another aspect, the present invention provides a method for filtration, and the two-method method comprises causing a mixture of a solid (tetra) fluid to wetly collide with ^ The surface modified polytheneimine _ surface, such that the mixture = _ containing the fluid portion transported through the surface modified poly phthalimide network and the mixture - the solid portion is not transported through And wherein the surface modified polyamidene network comprises an aromatic poly A nanoweb of an amine nanofiber having a free surface region, at least a portion of the free surface region comprising - a secondary guanamine, the secondary amine comprising a functional group containing a -hydrocarbyl radical. The hydrocarbyl radical may be saturated or olefinically unsaturated and may include an aromatic substituent. In an embodiment, the nicotine radical is a saturated hydrocarbon. In a further embodiment, the hydrocarbon is monoalkyl free. In a further embodiment, the alkyl radical is in the form of a n-alkyl radical. In a further embodiment, the n-alkyl radical has a length in the range of 10 to 30 carbons. In still a further embodiment, the n-alkyl radical has a length of from 15 to 20 carbons. In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment The functional group containing oxygen, nitrogen or sulfur is an amine group. In one embodiment of the method, the nanofiber is characterized by a number average diameter of less than 1000 nm, even less than 800 nm, or even about Between 50 nm and 500 nm and even A fiber between about 100 nm and 400 nm. In the case of a non-circular cross-section of nanofibers, the term "diameter" as used herein refers to the largest cross-sectional dimension. 17 201232893 In one embodiment of the method, The aromatic polyimine is a poly-imine. In a further embodiment, the total inferior 'Wang Fang is a PMDA/ODA. The polyamidene network is suitable for the so-called nano mesh. The deep tears, the fine fluid matter is removed from the r fluid stream. In one embodiment: the mixture is picked up from 4 y szT as a gas with particulate matter and the particulate matter, in the gas. In another embodiment The fluid mixture is a liquid of particulate matter and the particulate matter is entrained in the liquid. In a microstep embodiment, the gas is a gas mixture. In still another aspect, the liquid is a liquid mixture. The surface modified imine mesh of the present invention is characterized in that the affinity of the surface for the body 4 is adjusted, depending on the specificity of the hydrocarbon radical of the secondary guanamine, for example, as compared with 爿A The water contact angle of the unreacted aminated surface modified polyamidene network is 1〇5. And in Example 9: after amination with octadecylamine, the contact angle was 146. , 21 ° ^ water significantly increased. The surface modification of this article (four) family of polyimine = : ' is particularly suitable for under the strong conditions and in the special environment. The surface modification of the aryl = amine glutamine network shows that in the presence of water vapor, its swelling is significantly reduced and the ruler shape is also reduced. The transport of the body can be achieved by existing methods such as gravity, pressure and capillary action. In another aspect, the present invention provides a filtering device, the device is provided with a first opening to introduce a pseudo-separating device and a first port to discharge a The fluid is filtered out, and the surface of the shell is modified with an aromatic polyamidene net, which is densely arranged so that the mixture can wetly collide with the surface of the nano-net 201232893 Having a fluid-rich portion of the mixture transported through the surface-modified polyimine mesh, and one of the mixture is enriched in a solid portion and is not transported through the ' and the surface-modified poly-imine The rice mesh comprises a nanoweb containing aromatic polyamidene nanofibers, the nanoweb having a free surface region, at least a portion of the free surface region comprising a primary guanamine - the secondary guanamine comprises a A functional group containing a hydrocarbon radical. The hydrocarbyl radical may be saturated or olefinically unsaturated and may include an aromatic substituent. In one embodiment, the hydrocarbyl radical is a saturated hydrocarbon. In a further embodiment, the hydrocarbon is a monoalkyl radical. In a further embodiment, the alkyl radical is in the form of a n-alkyl radical. In a further embodiment, the n-alkyl radical has a length in the range of 10 to 30 carbons. In yet a further embodiment, the n-alkyl radical has a length of from 15 to 20 carbons. In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment, the oxygen, nitrogen or sulfur containing functional group is an amine group. In one embodiment of the filtration device, the nanofibers are characterized by a number average diameter of less than 1000 nm, even less than 800 nm, even between about 50 nm and 500 nm, and even between about 1 〇〇 nm. And between 400 nm fiber. In the case of a non-circular cross-section of nanofibers, the term "diameter" as used herein refers to the largest cross-sectional dimension. In one embodiment of the filtration device, the aromatic polyimine is a wholly aromatic polyimine. In a further embodiment, the wholly aromatic polyimine is a PMDA/ODA. In one embodiment, the filtering device further comprises a rigid support member to prevent the surface modified aromatic polyamidene nanowire from being distorted by the pressure difference of the 19 201232893 non-meter thickness pg. The rigid slab member is an open design structure to allow the expiratory fluid to be freely maneuverable when flowing out of the nanonet n. An embodiment of the susceptor is shown in Figure 224. And define - internal space 12. A suitable; > can be made of any material that is made for a specific application. For a variety of applications, non-recording steel (especially Type 316) is an acceptable housing material. The housing is provided with an input port 13 as shown (the mixed filter to be filtered is introduced through the 5H input port) To the internal space 12), and to pass through the α 14 (the filtered outflow system is supported by the output port and the titer supports the combination of the two layers of the modified polyamidene network 15 and -, The rigid support has an open structure

Li ιΓ器構件17。該滤器構件17係設置於該内部 二1 18隔固體與濾、出流體’並且係藉由使用密 中習知且適:、、内 渗漏。任何該項技術 Α ^夂過濾應用的密封裝置皆適用於實 :密封裝置包括。形環、塾片_ 金屬白可)n潤滑脂與類似者。 在、寸喝中,應將用語「適用」理解為章指該過 滤裝置必須考慮擬分離混合物二學性質 受腐蝕、破裂或其他劣化作用, 、:秦材才 七 流體流之汙染。 仙‘態樣巾可避免該 在::iM!中’本發明提供-種多層物品,該多層 物::二電極材料、—第二電極材料與-設置於 間且與其接觸之多孔性隔板,其 ^ 匕3 一含複數奈米纖維之奈米網,其中 20 201232893 該奈米纖維主要由芳族聚醯亞胺所組成’該奈米網具有 一自由表面區域,該自由表面區域之至少一部分包含一 二級醯胺,該二級醯胺包含一含一烴基自由基之官能 基。該烴基自由基可為飽和或烯烴不飽和,並且可包括 一芳族取代基。在一實施例中,該烴基自由基為一飽和 烴。在一進一步實施例中,該烴為一烷基自由基。在一 進一步實施例中,該烷基自由基為一正烷基自由基之形 式。在一進一步實施例中,該正烷基自由基之長度為在 10至30個碳之範圍。在又一進一步實施例中,該正烷 基自由基之長度為15至20個碳。 在一實施例中,該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 在該過濾裝置之一實施例中,該奈米纖維的特徵在 於數量平均直徑小於1000 nm、甚至小於800 nm、甚至 介於約50 nm及500 nm之間以及甚至介於約100 nm及 400 nm之間之纖維。在非圓形截面奈米纖維之情形中, 如本文所述之用語「直徑」係指最大截面尺寸。 在該多層物品之一實施例中,該芳族聚醯亞胺為一 全芳族聚酿亞胺。在一進一步實施例中,該全芳族聚醯 亞胺為一 PMDA/ODA。 在一實施例中,該第一及第二電極材料為不同者, 且本文之多層物品係可用於電池。在另一實施例中,該 第一及第二電極材料為相同者,且本文之多層物品係可 用於電容器,特別是一類稱為「電子雙層電容器」之電 容器。 21 201232893 在一實施例中,該第一帝 二電極材料係以-層合材料、該隔板以及該第 施例中,各電極材料係皮峰著_。在一實 組合以形成-膏’該膏係勘著施添加劑 之奈米網隔板的一表面。1、、兩相對表面 黏著層合物。 壓力及/或如形成- 在-本發明之多層物品可用於鐘離子 例中,該第-電極材料為—包含―用於u ^之實施 材料的負電極材料。在—f# 、 子之插層 自由碳、石墨、煤焦、料= 複合材料與其混合物所組成之群組。在一進一二, 中’該第二電極材料為—正電極材料,其係選 氧化物、雜鐵链、鋰錄氧化物、碟酸猛鐘 · MNC (LiMn(1/3 ) Cg(1/3 ) Ni(i/3 ) 銘鐘、 (L^ 該第層物品進一步包括至少-個與 雷〜上 至少一者黏著性接觸之金屬 搞该多層物品較佳為進—步包括—與各今電 極材料黏紐接觸之金屬㈣㈣ϋ。 各5亥電 料之ί々:之一進-步實施例中,該電極材 孔性金屬麵㈣器之非多 屬二ίί電化學電池單元的電池實施例中,續金 机收集杏包含不同金屬。在本文之電化學電池單ζ元 22 201232893 的電容器實施例中,該金屬電流收集器包含相同金屬。 適用於本發明之金屬電流收集器較佳為金屬荡。 圖2描繪本發明多層物品之一個實施例。請參照圖 2 ’其中所描繪之本發明多層物品包含一多孔性奈米網 隔板21,其主要由聚醯亞胺奈米纖維(主要由一全芳 族聚醯亞胺所組成)所組成並設置於一負電極22與一 正電極23間,各電極係分別沉積於一非多孔性導電金 屬箔24a與24b上。在一實施例中,該負電極22包含 碳’較佳為石墨,而該金屬箔24a為銅箔。在另一實施 例中’該正電極23為鐘銘氧化物 '墙酸鐵鐘或經猛氧 化物,而該金屬箔24b為鋁箔,並且其中該奈米網具有 —自由表面區域’該自由表面區域之至少一部分包含一 二級醯胺,該二級醯胺包含一含一烴基自由基之官能 基。該烴基自由基可為飽和或烯烴不飽和,並且可包括 =芳族取代基。在一實施例中,該烴基自由基為一飽和 蛵。在一進一步實施例中,該烴基自由基為一烷基自由 基。在一進一步實施例中,該烷基自由基為一正烷基自 由基之形式。在一進一步實施例中,該正烷基自由基之 長度為在10至30個碳之範圍。在又一進一步實施例 中,該正烷基自由基之長度為15至20個碳。 在一實施例中,該多層物品包含 一第一層,其包含一第一金屬電流收集器; 一第二層,其包含該與該第一金屬電流收集器 黏著性接觸之第一電極材料; 一第三層,其包含該與該第一電極材料黏著性 接觸之芳族聚醯亞胺奈米網,其中該奈米網具 23 201232893 有一自由表面區域,該自由表面區域之至少一 部分包含一二級醯胺,該二級醯胺包含一含一 烴基自由基之官能基。 一第四層,其包含一黏著性接觸該芳族聚醯亞 胺奈米網之第二電極材料。 以及, 一第五層’其包含一黏著性接觸該第二電極材 料之第二金屬電流收集器。 该煙基自由基可為飽和或烯烴不飽和,並且可包括 二芳族取代基。在一實施例中,該烴基自由基為一飽和 煙。在一進一步實施例中,該烴為—烷基自由基。在一 進一步實施例中,該烷基自由基為—正烷基自由基之形 式在一進一步實施例中,該正炫基自由基之長度為在 10至30個故之範圍。在又一進一步實施例中,該正院 基自由基之長度為15至20個碳。 在—實施例中,該官能基進一步包含一含氧、氮或 瓜之g忐基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 ^在一實施例中,該第一層為銅箔,而該第二層為 反車乂佳為石墨。在一進一步實施例中,該第三層之芳 族聚醯亞胺奈米網為一增強型芳族聚醢亞胺奈米網。在 一進二步實施例中,該第三層之芳族聚醯亞胺奈米網為 =全芳族聚醯亞胺奈米網。在一進一步實施例中,該第 二層之全芳族聚醯亞胺奈米網為一增強型全芳族聚醯 ,胺奈米網。在一進一步實施例中,該第三層之全芳族 '亞胺奈米網為PMDA/ODA。在一進一步實施例 24 201232893 中’該第三層之pmda/oda奈米網為增強型 PMDA/ODA奈米網。在另一實施例中,該四層為鐘銘 氧化物’且該第五層為鋁箔。 在一實施例中’該第一層為銅箔,該第二層為碳, 較佳為石墨’該第三層為一主要由pmda/oda奈米纖 維所組成之奈米網,該第四層為鋰鈷氧化物而該第五層 為鋁箔,並且其中該奈米網具有一自由表面區域,該自 由表面區域之至少一部分包含一二級醯胺,該二級醯胺 包含一含一烴基自由基之官能基。該烴基自由基可為飽 和或烯烴不飽和,並且可包括一芳族取代基。在一實施 例中’§亥煙基自由基為一飽和煙。在一進一步實施例 中,《•亥&為一烧基自由基。在一進一步實施例中,該燒 基自由基為一正烧基自由基之形式。在一進一步實施例 中,该正院基自由基之長度為在10至3〇個碳之範圍。 在又一進一步實施例中,該正烷基自由基之長度為15 至20個碳。 在一實施例中,該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 在-進-步實施例中,㈣之兩側係以該正或負電 活性材料塗布。此讓-任意大小—與電壓之稜柱型堆愚 能夠迅速形成’其铺由财文之輕胺奈米二 與该具有兩側之箔交替層疊而連成,如圖3所繪示。如 圖所繪示之堆疊一般設置於一殼體31中,該殼體係填 充有-電解質溶液32。該堆疊包含複數互相連接之本 發明多層物品’該多層物品如圖2所繪示。請參昭圖3, 25 201232893 複數多孔性聚醯亞胺奈米網隔板21係與交替之負電極 層22與正電極層23堆疊。在一實施例中,該負電極材 料22為碳,較佳為石墨,且沉積於銅箔24a之兩側, 而該正電極材料23為經鈷氧化物且沉積於鋁箔2朴之 兩側,並且其中该奈米網具有一自由表面區域,該自由 表面區域之至少一部分包含一二級醯胺,該二級醯胺包 含一含一烴基自由基之官能基。該烴基自由基可為飽和 或烯烴不飽和,並且可包括一芳族取代基。在一實施例 中,該烴基自由基為一飽和烴。在一進一步實施例中, 該烴為一烷基自由基。在一進一步實施例中,該烷基自 由基為一正烷基自由基之形式。在一進一步實施例^, 該正烷基自由基之長度為在10至3〇個碳之範圍。在又 一進一步實施例中,該正烷基自由基之長度為15至2〇 個碳。 在一實施例中,該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 本發明物品之另一實施例如圖4a所示。請參照圖 4a,本發明物品包含適用於本發明之多孔性奈米網隔板 21,其主要由一全芳族聚醯亞胺之奈米纖維所組成,且 係設置於一負電極22與一正電極23間,各電極係直接 沉積於該奈米網之相對兩側上,並且其中該奈米網具有 /自由表面區域,該自由表面區域之至少一部分包含一 二級醯胺,該二級醯胺包含一含一烴基自由基之官能 基。該烴基自由基可為飽和或烯烴不飽和,並且可包括 一芳族取代基。在一實施例中,該烴基自由基為一飽和 26 201232893 實施例中,該煙為-·自由基。在一 ..^ ,该烷基自由基為一正烷基自由基之形 二二固基自由基之長度為在 基自15 i ^‘步實施例中,該正坡 卫材料係藉由該項技術中熟知的方法沉積於 sMJl包括膏壓出、印刷。在一實施例中,該負 電3,較佳為石墨。在另一實施例中,該正電極 包含鋰钻氧化物、伽鐵贱鐘㈣化物,較佳為鐘銘 氧化物。 圖4a組態之—進一步實施例係繪示於圖4b,其中 —層金屬箔24係加入至圖4a之結構,如圖所示。在— 較,實施例中’圖扑之多層結構係經過層合,以提供 緊在 、的表面對表面接觸並在該些層間形成黏著。 ^ 在另一態樣中,本發明提供一種電化學電池單元, 為電池單元包含—^置於其巾之殼體、—電解質與—至 少部分浸人於該電解質中之多層物品;該多層物品包含 一第一金屬電流收集器、一與該第一金屬電流收集器電 傳導性接觸之第一電極材料、一與該第一電極材料離子 傳導性接觸之第二電極材料、一設置於該第一電極材料 與該第二電極材料間且與其接觸之芳族聚醯亞胺奈米 網隔板;以及一與該第二電極材料電傳導性接觸之第二 金屬電流收集器,其中該芳族聚醯亞胺奈米網隔板包含 一含複數奈米纖維之奈米網,其中該奈米纖維主要由一 芳族聚醯亞胺所組成,該奈米網具有一自由表面區域, 27 201232893 s玄自由表面區域之至少一部分包含一二級酿胺,該二級 醯胺包含一含一烴基自由基之官能基。 該烴基自由基可為飽和或稀烴不飽和,並且可包括 一芳族取代基。在一實施例中,該烴基自由基為一飽和 烴。在一進一步實施例中,該烴為一烷基自由基。在一 進一步實施例中,該烷基自由基為一正烷基自由基之形 式。在一進一步實施例中,該正烷基自由基之長度為在 10至30個碳之範圍。在又一進一步實施例中,該正院 基自由基之長度為15至20個碳。 在一實施例中’該官能基進一步包含一含氧、氮或 硫之官能基。在一進一步實施例中,該含氧、氮或硫之 官能基為一胺基基團。 在該過濾裝置之一實施例中,該奈米纖維的特徵在 於數量平均直徑小於1000 nm、甚至小於800 nm、甚至 介於約50 nm及500 nm之間以及甚至介於約1〇〇 nm及 400 nm之間之纖維。在非圓形截面奈米纖維之情形中, 如本文所述之用語「直徑」係指最大截面尺寸。 在該電化學電池單元之一實施例中,該芳族聚醯亞 胺為一全方族聚酿亞胺。在一進一步實施例中,該全芳 族聚醯亞胺為一 PMDA/ODA。 在本文之電化學電池的一實施例中,該多層物品之 第一層為銅箔並其第二層為碳,較佳為石墨。在本文之 電化學電池的一進一步實施例中,該第三層之芳族聚醯 亞胺奈米網隔板包含一增強型全芳族聚醯亞胺奈米 網。在一進一步實施例中,該第三層之芳族聚醯亞胺奈 米網隔板包含一全芳族聚酿亞胺奈米網。在一進一步實 28 201232893 施例中’該第三層之全芳族聚醯亞胺奈米網隔板包含一 增強型全芳族聚醯亞胺奈米網。在一進一步實施例中, 該第三層之全芳族聚醯亞胺奈米網包含PMDA/ODA。 在一進一步實施例中,該第三層之PMDA/ODA奈米網 隔板包含—増強型PMDA/ODA奈米網。在另一實施例 中’該四層為鋰鈷氧化物,且該第五層為鋁箔。 在一實施例中,該第一層為銅箔;該第二層為碳, 較佳為石墨,該第三層為一主要由PMDA/ODA奈米纖 維所組成之奈米網,該第四層為鋰鈷氧化物;而該第五 層為銘羯,並且其中該奈米網具有一自由表面區域,該 自由表面區域之至少一部分包含一二級醯胺,該二級醯 胺包含一含一烴基自由基之官能基。 該烴基自由基可為飽和或烯烴不飽和,並且可包括 二芳族取代基。在一實施例中,該烴基自由基為一飽和 烴。在一進一步實施例中,該烴為一烷基自由基。在一 進一步實施例中,該烷基自由基為一正烷基自由基之形 式。在一進一步實施例中,該正烷基自由基之長度 至30個碳之範圍。在又—進—步實施例中,該正燒 基自由基之長度為15至20個碳。 〜 步包含一含氧、氮或 ,該含氧、氮或硫之 在一實施例中,該官能基進一 硫之官能基。在一進一步實施例中 官能基為一胺基基團。 第早7"的一實施例中,該第-與 早元 且 之另-實施例中,該第一輿第電化學電池專 豕弟與第一電極材料為相同者, 29 201232893 本文之電化學電池單元為一電容器,較佳 電容器。當本文提及電極材料為㈣者時子雙層 極材料包含相同化學組成。然而, 1表喊等電 粒徑上可能不同。 、於某些結構成分如 請參照圖3,當該層疊堆疊(如圖3所 一液密殼體31中時,即形成本發明之^於 元’該殼體可為一金屬「罐體」且含有一液=單 32。在-進一步實施例中,該液體電解 ^質 劑與-可溶於其中之㈣。在—進—步實施财有=溶 鹽為Lim、LiBF4或Lie·在又—進—步實施例= S玄有機溶劑包括一或多種碳酸烷酯。在一進一步實方 中’該-或多種碳酸賴包括-碳酸伸乙s旨與 酯之混合物。鹽與溶劑濃度之最佳範圍可依所採用: 定材料以及預期之使用條件而變化;例如,依預期的操 作溫度。在一實施例中,該溶劑為70體積份的碳酸伸 乙酯與30體積份的碳酸二甲酯,而該鹽為LipF6。或 者,該電解質鹽可包含六氟砷酸鋰、雙三氟甲基磺醯胺 鐘、雙(草酸)硼酸鋰(lithiumbiS(oxalate) boronate)、 二氟草酸蝴酸鐘或者多氟化團簇陰離子(clusterani〇n) 之Li+鹽或這些物質之組合。 或者’該電解質溶劑可包括碳酸伸丙酯、乙二醇或 聚(乙二醇)之酯、醚或三甲基矽院衍生物或這些物質 之組合。此外,該電解質可含有已知可改良Li離子電 池之性胃b或穩定性的各式添加劑,例如回顧於k. Xu inLi Γ device member 17. The filter member 17 is disposed on the inner portion of the solid and the filter and the fluid, and is conventionally used and sealed by the use of the seal. Any such technology Α ^ 夂 filtration application of the sealing device is suitable for: the sealing device includes. Ring, bracts _ metal white can be n grease and similar. In the case of in-drinking, the term "applicable" should be understood to mean that the filter device must consider the nature of the separation of the mixture to be corroded, cracked or otherwise degraded, and: the pollution of the fluid flow. The invention can avoid the above-mentioned:: iM! 'The present invention provides a multi-layer article: the two-electrode material, the second electrode material and the porous separator disposed between and in contact with it , ^3 a nanoweb containing a plurality of nanofibers, wherein 20 201232893 the nanofiber is mainly composed of an aromatic polyimine. The nanoweb has a free surface region, and the free surface region is at least A portion comprises a first or second guanamine comprising a functional group containing a hydrocarbyl radical. The hydrocarbyl radical may be saturated or olefinically unsaturated and may include an aromatic substituent. In one embodiment, the hydrocarbyl radical is a saturated hydrocarbon. In a further embodiment, the hydrocarbon is a monoalkyl radical. In a further embodiment, the alkyl radical is in the form of a n-alkyl radical. In a further embodiment, the n-alkyl radical has a length in the range of 10 to 30 carbons. In yet a further embodiment, the n-alkyl radical has a length of from 15 to 20 carbons. In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment, the oxygen, nitrogen or sulfur containing functional group is an amine group. In one embodiment of the filtration device, the nanofibers are characterized by a number average diameter of less than 1000 nm, even less than 800 nm, even between about 50 nm and 500 nm, and even between about 100 nm and 400 nm. The fiber between. In the case of a non-circular cross-section of nanofibers, the term "diameter" as used herein refers to the largest cross-sectional dimension. In one embodiment of the multilayer article, the aromatic polyimine is a wholly aromatic polyimine. In a further embodiment, the wholly aromatic polyimine is a PMDA/ODA. In one embodiment, the first and second electrode materials are different, and the multilayer articles herein are useful in batteries. In another embodiment, the first and second electrode materials are the same, and the multilayer articles herein can be used in capacitors, particularly a type of capacitor known as an "electronic double layer capacitor." 21 201232893 In one embodiment, the first electrode material is a laminate, the separator, and the electrode material of the first embodiment. In a combination, a paste is applied to form a surface of the nanoweb separator to which the additive is applied. 1. Two opposite surface adhesive laminates. Pressure and/or as formed - in the multilayer article of the invention may be used in the case of a bell ion, the first electrode material being - a negative electrode material comprising - a material for the implementation of u ^ . In the group of -f#, sub-intercalation free carbon, graphite, coal char, material = composite and its mixture. In one to two, the second electrode material is a positive electrode material, which is selected from oxides, hetero-chains, lithium oxides, and acid-acids. MNC (LiMn(1/3) Cg(1) /3) Ni(i/3) Ming Zhong, (L^ The first layer of articles further includes at least one metal that is in adhesive contact with at least one of the mines and the upper ones. The metal material of the electrode material is contacted by the metal (4) (4) ϋ. Each of the 5 hai materials is one of the steps. In the embodiment, the electrode material of the electrode material is not the battery of the electrochemical cell. In the example, the gold machine collects apricots containing different metals. In the capacitor embodiment of the electrochemical cell unit 22 201232893 herein, the metal current collector comprises the same metal. The metal current collector suitable for use in the present invention is preferably Figure 2 depicts an embodiment of the multilayer article of the present invention. Referring to Figure 2, the multilayer article of the present invention depicted therein comprises a porous nanoweb separator 21 which is primarily composed of polyamidene nanofibers. (mainly composed of a wholly aromatic polyimine) Between a negative electrode 22 and a positive electrode 23, each electrode is deposited on a non-porous conductive metal foil 24a and 24b. In one embodiment, the negative electrode 22 comprises carbon 'preferably graphite, and The metal foil 24a is a copper foil. In another embodiment, the positive electrode 23 is a Zhongming oxide 'wall iron iron clock or a fine oxide, and the metal foil 24b is an aluminum foil, and wherein the nano mesh has - a free surface region - at least a portion of the free surface region comprising a primary guanamine comprising a functional group containing a hydrocarbyl radical. The hydrocarbyl radical may be saturated or olefinically unsaturated and may comprise An aromatic substituent. In one embodiment, the hydrocarbyl radical is a saturated hydrazine. In a further embodiment, the hydrocarbyl radical is a monoalkyl radical. In a further embodiment, the alkyl radical is free The base is in the form of a n-alkyl radical. In a further embodiment, the n-alkyl radical has a length in the range of 10 to 30 carbons. In yet a further embodiment, the n-alkyl radical The length is 15 to 20 carbons. In an embodiment, the multilayer article comprises a first layer comprising a first metal current collector; a second layer comprising the first electrode material in adhesive contact with the first metal current collector; a three layer comprising the aromatic polyamidene nanoweb in adhesive contact with the first electrode material, wherein the nano mesh 23 201232893 has a free surface region, at least a portion of the free surface region comprising a second The guanamine contains a functional group containing a hydrocarbon radical. A fourth layer comprising a second electrode material adhesively contacting the aromatic polyimide network. The five layers 'contain a second metal current collector that adhesively contacts the second electrode material. The nicotine free radical can be saturated or olefinically unsaturated and can include a diaromatic substituent. In one embodiment, the hydrocarbyl radical is a saturated fumes. In a further embodiment, the hydrocarbon is an alkyl radical. In a further embodiment, the alkyl radical is in the form of a -n-alkyl radical. In a further embodiment, the length of the n-radical radical is in the range of 10 to 30. In yet a further embodiment, the positively charged radicals are 15 to 20 carbons in length. In the embodiment, the functional group further comprises an oxo group containing oxygen, nitrogen or melon. In a further embodiment, the oxygen, nitrogen or sulfur containing functional group is an amine group. In one embodiment, the first layer is a copper foil and the second layer is a counter rut preferably graphite. In a further embodiment, the third layer of the aromatic polyamidene network is a reinforced aromatic polyamidene network. In a further two-step embodiment, the third layer of the aromatic polyamidene network is a = wholly aromatic polyamidene network. In a further embodiment, the second layer of the wholly aromatic polyamidene network is a reinforced all aromatic polyfluorene, amine nanonet. In a further embodiment, the third layer of the wholly aromatic 'imine nanoweb is PMDA/ODA. In a further embodiment 24 201232893, the third layer of pmda/oda nanonet is an enhanced PMDA/ODA nanoweb. In another embodiment, the four layers are Zhongming Oxide' and the fifth layer is an aluminum foil. In one embodiment, the first layer is a copper foil, and the second layer is carbon, preferably graphite. The third layer is a nano mesh mainly composed of pmda/oda nanofibers. The layer is lithium cobalt oxide and the fifth layer is an aluminum foil, and wherein the nanoweb has a free surface region, at least a portion of the free surface region comprising a primary guanamine, the secondary guanamine comprising a hydrocarbon-containing group a functional group of a radical. The hydrocarbyl radical may be saturated or olefinically unsaturated and may include an aromatic substituent. In one embodiment, the § 烟 radical is a saturated smoke. In a further embodiment, "•海& is a calcined radical. In a further embodiment, the alkyl radical is in the form of a normal alkyl radical. In a further embodiment, the length of the positively charged radical is in the range of 10 to 3 carbons. In yet a further embodiment, the n-alkyl radical is from 15 to 20 carbons in length. In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment, the oxygen, nitrogen or sulfur containing functional group is an amine group. In the step-for-step embodiment, both sides of (iv) are coated with the positive or negative electroactive material. This allows - an arbitrary size - and the prismatic stack of voltages can be rapidly formed. The pavement is composed of the light amine adiamine two and the foils having the two sides alternately stacked, as shown in Fig. 3. The stack as shown is generally disposed in a housing 31 which is filled with an electrolyte solution 32. The stack comprises a plurality of interconnected multilayer articles of the invention. The multilayer article is illustrated in Figure 2. Referring to Fig. 3, 25 201232893, a plurality of porous polyimine mesh spacers 21 are stacked with alternating negative electrode layers 22 and positive electrode layers 23. In one embodiment, the negative electrode material 22 is carbon, preferably graphite, and is deposited on both sides of the copper foil 24a, and the positive electrode material 23 is cobalt oxide and deposited on both sides of the aluminum foil 2 And wherein the nanoweb has a free surface region, at least a portion of the free surface region comprising a primary guanamine, the secondary guanamine comprising a functional group containing a hydrocarbon radical. The hydrocarbyl radical may be saturated or olefinically unsaturated and may include an aromatic substituent. In one embodiment, the hydrocarbyl radical is a saturated hydrocarbon. In a further embodiment, the hydrocarbon is a monoalkyl radical. In a further embodiment, the alkyl radical is in the form of a n-alkyl radical. In a further embodiment, the length of the n-alkyl radical is in the range of 10 to 3 carbons. In yet a further embodiment, the n-alkyl radical is from 15 to 2 carbons in length. In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment, the oxygen, nitrogen or sulfur containing functional group is an amine group. Another embodiment of the article of the invention is shown in Figure 4a. Referring to FIG. 4a, the article of the present invention comprises a porous nanonet separator 21 suitable for use in the present invention, which is mainly composed of a nanofiber of a wholly aromatic polyimide, and is disposed on a negative electrode 22 and Between a positive electrode 23, each electrode is directly deposited on opposite sides of the nanonet, and wherein the nanoweb has a /free surface region, at least a portion of the free surface region comprising a primary guanamine, the second The guanamine contains a functional group containing a hydrocarbon radical. The hydrocarbyl radical may be saturated or olefinically unsaturated and may include an aromatic substituent. In one embodiment, the hydrocarbyl radical is a saturated 26 201232893. In the embodiment, the fumes are -· radicals. In the case of a ..^, the alkyl radical is a n-alkyl radical, and the length of the di-diyl radical is in the group from the 15 i ^' step, and the positive barrier material is The method well known in the art for deposition on sMJl includes paste extrusion and printing. In one embodiment, the negative charge 3 is preferably graphite. In another embodiment, the positive electrode comprises a lithium diamond oxide, a gamma neodymium (tetra), preferably a sigma oxide. Figure 4a is configured - a further embodiment is shown in Figure 4b, wherein a layer of metal foil 24 is added to the structure of Figure 4a as shown. In the embodiment, the multilayer structure of the pattern is laminated to provide a tight surface contact to the surface and adhesion between the layers. In another aspect, the present invention provides an electrochemical cell comprising a plurality of articles disposed in a housing of the napkin, an electrolyte, and at least partially immersed in the electrolyte; the multilayer article The first electrode current collector, a first electrode material electrically conductively contacting the first metal current collector, and a second electrode material electrically conductively contacting the first electrode material are disposed on the first electrode An aromatic polyamidene nanomesh separator between and contacting the electrode material and the second electrode material; and a second metal current collector electrically conductively contacting the second electrode material, wherein the aromatic The polyimine mesh separator comprises a nanoweb comprising a plurality of nanofibers, wherein the nanofiber is mainly composed of an aromatic polyamine, the nanoweb having a free surface area, 27 201232893 At least a portion of the s-free free surface region comprises a first-stage, captanamine comprising a functional group containing a hydrocarbyl radical. The hydrocarbyl radical may be saturated or dilute hydrocarbon unsaturated and may include an aromatic substituent. In one embodiment, the hydrocarbyl radical is a saturated hydrocarbon. In a further embodiment, the hydrocarbon is a monoalkyl radical. In a further embodiment, the alkyl radical is in the form of a n-alkyl radical. In a further embodiment, the n-alkyl radical has a length in the range of 10 to 30 carbons. In yet a further embodiment, the positively charged radicals are 15 to 20 carbons in length. In one embodiment, the functional group further comprises a functional group containing oxygen, nitrogen or sulfur. In a further embodiment, the oxygen, nitrogen or sulfur containing functional group is an amine group. In one embodiment of the filtration device, the nanofibers are characterized by a number average diameter of less than 1000 nm, even less than 800 nm, even between about 50 nm and 500 nm, and even between about 1 〇〇 nm and Fiber between 400 nm. In the case of a non-circular cross-section of nanofibers, the term "diameter" as used herein refers to the largest cross-sectional dimension. In one embodiment of the electrochemical cell, the aromatic polyamidiamine is a full-scale polyimine. In a further embodiment, the wholly aromatic polyimine is a PMDA/ODA. In one embodiment of the electrochemical cell herein, the first layer of the multilayer article is a copper foil and the second layer thereof is carbon, preferably graphite. In a further embodiment of the electrochemical cell herein, the third layer of the aromatic polyamidene mesh separator comprises a reinforced all aromatic polyamidene nanoweb. In a further embodiment, the third layer of the aromatic polyamidene mesh separator comprises a wholly aromatic polyamidite network. In a further embodiment 28 201232893, the third layer of the wholly aromatic polyamidene mesh separator comprises an enhanced wholly aromatic polyamidene network. In a further embodiment, the third layer of fully aromatic polyamidene nanoweb comprises PMDA/ODA. In a further embodiment, the third layer of the PMDA/ODA nanomesh separator comprises a reluctant PMDA/ODA nanoweb. In another embodiment, the four layers are lithium cobalt oxide and the fifth layer is an aluminum foil. In one embodiment, the first layer is a copper foil; the second layer is carbon, preferably graphite, and the third layer is a nano mesh mainly composed of PMDA/ODA nanofibers, the fourth The layer is a lithium cobalt oxide; and the fifth layer is an inscription, and wherein the nanoweb has a free surface region, at least a portion of the free surface region comprising a primary guanamine, the secondary guanamine comprising a a functional group of a hydrocarbon radical. The hydrocarbyl radical may be saturated or olefinically unsaturated and may include a diaromatic substituent. In one embodiment, the hydrocarbyl radical is a saturated hydrocarbon. In a further embodiment, the hydrocarbon is a monoalkyl radical. In a further embodiment, the alkyl radical is in the form of a n-alkyl radical. In a further embodiment, the length of the n-alkyl radical is in the range of 30 carbons. In a further embodiment, the length of the normal radical is from 15 to 20 carbons. The step comprises an oxygen, nitrogen or oxygen containing oxygen, nitrogen or sulfur. In one embodiment, the functional group is a sulfur functional group. In a further embodiment the functional group is an amine group. In an embodiment of the first 7", in the first-and-earth-and-different embodiment, the first electrode of the electrochemical cell is the same as the first electrode material, 29 201232893 The battery unit is a capacitor, preferably a capacitor. The sublayer bipolar material contains the same chemical composition when it is mentioned herein that the electrode material is (iv). However, 1 table shouts that the isoelectric particle size may be different. For some structural components, please refer to FIG. 3. When the stacked stack (as shown in FIG. 3, the liquid-tight casing 31 is formed, the casing of the present invention can be formed as a metal "can". And containing a liquid = single 32. In a further embodiment, the liquid electrolyte is soluble in (4). In the - step implementation of the wealth = dissolved salt for Lim, LiBF4 or Lie · in - Further examples = S-organic solvent comprises one or more alkyl carbonates. In a further practice, the - or more carbonic acid-containing - carbonic acid mixture is a mixture of esters and esters. The preferred range may vary depending on the material used and the intended use conditions; for example, depending on the intended operating temperature. In one embodiment, the solvent is 70 parts by volume of ethyl carbonate and 30 parts by volume of dimethyl carbonate. An ester which is LipF6. Alternatively, the electrolyte salt may comprise lithium hexafluoroarsenate, bistrifluoromethylsulfonamide clock, lithium bis(oxalate) boronate, difluorooxalic acid a Li+ salt of a bell or polyfluorinated cluster anion (clusterani〇n) or a group of these substances Or 'the electrolyte solvent may include an ester of propylene carbonate, ethylene glycol or poly(ethylene glycol), an ether or a trimethyl sulfonium derivative or a combination of these substances. Further, the electrolyte may contain a known Various additives for improving the stomach b or stability of Li ion batteries, for example, reviewing k. Xu in

Chem· Rev·,104, 4303 (2004),以及 S.S. Zhang in J. Power Sources,162, 1379 (2006)中者。 30 201232893 關於該層疊堆疊,圖3所繪示之堆疊可由圖2所繪 示之多層物品所取代。亦出現但未顯示者為—用於連接 該電池單元至一外部電負载或充電裝置之裝置。合適的 裝置包括導線、極柄、連接器、插頭、夾子與任 用於產生電連接之此類裝置。 若該堆疊中的個別電池單元係以串聯方式彼此電 性連接,由正到負,則該堆疊之輸出電壓等於各電池單 元之合併電壓。若組成堆疊的個別電池單元係以並聯方 式彼此電性連接,則該堆疊之輸出電壓等於單一電池單 元之電壓。電機領域之一般技藝人士可知何時串聯排列 才適當’而何時並聯排列才適當。 鋰離子電池有許多種形式,包括圓柱型、稜柱型、 袋型、捲繞型和層合型。發現鋰離子電池可用於各式不 同應用(例如消費性電?、電力工具與油電混合車^)。 鋰離子電池之製造方法與其他電池如NiCd及NiMH相 似但更為敏感,因為Li離子電池中所使用材料的反應 性。 適用於本發明一實施例之鋰離子電池單元中的正 及負電極彼此形式相似,且係以類似製程於類似或相同 的設備上製造。在一實施例中,活性材料係塗布於一金 屬箔之兩側,較佳為A1箔或C u箔,其作為電流收集器, 藉此傳導進出電池單元之電流。在一實施例中,係將石 墨碳塗布於銅箔上以製備負電極。在一實施例中,係將 鋰金屬氧化物(例如LiCo02)塗布於Ai箔上以製備正 電極。在一進一步實施例中,將如上塗布之箔捲繞於大 31 201232893 型捲軸上’並將其於跡15叱範圍之 後再送入-乾燥室中進行電池單元製造。心之 請參照圖5,針對各電極,該活性材料 黏結劑溶液52以及導電填充劑53 (如 且义一 f1上形成的組合物透過—精確調節器54進^至I混 口槽55 ’並於其中進行混合直到產生—均句外觀 ”劑包括但不限於聚(二氟亞乙烯)均聚物和丘 聚^、本乙稀丁二稀橡膠、聚四氟乙稀以及聚酿亞胺二 而後將該如上形成之漿體重力進料或壓力進料至 %’其將此聚體壓送通過57,並再送至一塗布 頭58。該塗布頭沉積一受控量的聚體於一移動金屬落 %之表面,5玄金屬箔係由一進料報510進料。將如上 塗布之镇藉由-系列的輥511輸送通過一烘箱512,其 設定在1〇〇至150ΐ。一設置在該洪箱入口之刀口 513 係位於該羯上方之一可調整距離;藉此形成之電極厚度 係藉由調整該刀口與該箔之間隙而調整。在該烘箱中, 該溶劑一般係透過一溶劑回收單元514而揮發。之後將 如上乾燥之電極輸送至一捲繞親515。 乾燥後的電極厚度一般在5〇至15〇微米之範圍。 若所亟需者為在該箔兩側皆產生一塗布,則將如上形成 之單側塗布箔進料至該塗布機中,但但將未塗布側則設 置用於接收該漿體沉積。在塗布後,接著將如上形成之 電極壓延,並選擇性地將其切成用於不同尺寸電池之窄 帶。箔帶邊緣的任何毛邊均可能在電池單元中造成内部 紐路,因此裁切機必須非常精密地製造並維護。 32 201232893 在本發明電化學電池單元— 極組合件為-用於圓柱型電池單_ ?=.,,本文之電 適用於螺Λ Λ 70之螺旋捲繞結構。— 實施例構絲㈣h在1 叠結構,其適用於稜柱類似於圖3中者之堆 可製成為捲繞形式。在==單^單元亦 單罐製成,:=推= 為形成本發明之一 Li離子雷从时- 例,該電極组合件係先捲蟢A 1 的固柱型實施 嫌」 先捲繞為一如圖6所繪示之螺旋姓 二、'後將一極柄施加在該電極邊緣以連接該電極與i ^之端子。在高功率電池單位之情形中,職需者為 使用複數沿著電極帶邊緣焊接之極柄來運载高電流^ 後將該極柄焊接至該罐體,並將朗旋捲繞之電極植人 件插入-圓柱型殼财。然後將該殼體密封,但留下: 個開:用於將電解質注人殼體中。之後將電解f填充至 電池單兀,並將電池單元密封。該電解質通常為鹽 (LiPF6)與碳酸酯基溶劑之混合物。 氣 電池單元之組裝較佳為在一「乾燥室」内進行,因 為該電解質會與水反應。濕氣會導致LipF6水解而形成 HF,其可劣化電極並對電池單元之性能產生不良影響。 在該電池單元組裝完畢後,使其進行至少一次精確 控制的充電/放電循環來活化工作材料,進而使其成形 (活化)。對大部分鋰離子化學而言,此涉及在負(碳) 電極上產生SEI (固體電解質界面(s〇iid eieetr〇iyte 33 201232893 interface))層。此為—鈍化層,且對 電解質進-步反應而言非#重要。( 化石反與该 在另-態樣巾,本發明提供一種電化學雙 〇 Γ的Dic容)。。^2能量儲存裝置,其具有^達= 在雙層電化學電容器中之電荷儲存 t象二ί發生在該電極(―般碳)與該電解質間之界面 i二層電容器中’本文之芳族聚醜亞胺奈米 、…、乍為—隔板,其藉由維持該電解質與該電極間的緊 密接觸而吸收並保留該電解質。作為該隔板之本文芳族 聚醯亞胺奈米網的角色為用以電性隔_正電極_ 負電極,以利於在充放電期間傳送該電解質中之離^ 電化學雙層電容器-般製成一圓柱型捲繞設計,在其中 兩個碳電極與隔板係捲繞在—起,該芳族聚酿亞胺奈米 網隔板具有高強度以防止兩個電極間之短路。 以下進一步透過特定實施例說明本發明,唯本 並不受其所限定。 實例1至8及比較例A 聚合物製備 [HMT E115199_39PI =聚合物 2u〇9,旋紡 SF44P1DBX001D15IR20IM501] 將在DMF溶劑中之PMDA與〇DA聚酿胺酸依照 工業標料法以及過4〇da製備,以相97%的化學 計量與以重量計23%的固體。將該聚醯胺醆利用以重量 計0.04%的鄰苯二甲酐進行終端封阻(需要確認終端封 阻劑之wt%)。 34 201232893 奈米網製備 將如上製備之PAA溶液倒入至圖7所繪示之裝置 中。圖7繪示一合適電吹裝置之實施例。將該聚醯胺酸 溶液旋紡為-奈米纖賴(依吾人之臨時申請案所述之 電吹程f ),其係在5.5bar之溶液壓力下在34。。之溫度 下與55 C之程序氣體溫度下及以5833公尺/分鐘之速度 進行。所得奈米網厚度為21_26微米且孔隙率為63%。 再參照圖7’使該奈米網1〇5通過一熱風乾燥機1〇7 在180 C下歷時1.13分鐘。而後將如上乾燥之奈米網捲 繞為一卷。然後將如上製備之聚醯胺酸奈米網解繞,接 著藉由在Glenro中波段紅外線烘箱中加熱至約325它之 溫度歷時0.87分鐘以醯亞胺化,並且再次捲繞。而後 將該網解繞並在BF Perkins壓延機上壓延,此壓延係在 每線性英吋2700磅之壓力下在一不鏽鋼壓延輥與一棉 布覆蓋壓延輥間進行,然後再次捲繞。然後將該經壓延 網解繞、在約450°C下進行第二次熱處理2 6分鐘,並 且再次捲繞。 醯胺化與測試結果 將如上製備之八個聚醯亞胺奈米纖維網的樣品(各. 秤重為約略35 mg)加入至5.0 gm十八胺(Aidrich 305391)在100 mL的無水N,N二甲基甲醯胺(DMf) (Aldrich 227056)中之預熱溶液中,其加入係在氮中 於配備有加熱包之Pyrex器皿中進行。在表1中所指出 的各期間後,在所指出之溶液溫度下,將一個樣品移出 35 201232893 並在甲苯中潤洗四次,並於真空烘箱中在% =燥1小時。保留一個未經處理之起始材料樣品以 針對各樣品’其衰减反射紅外線光譜(継服)顯 =八基基團併人在樣品表面上,如在292Gem-i的吸 收峰所指示者(由於脂族CH伸縮模式),相對於在遞 吸收峰(由於芳族CH伸縮模式)。該脂族基團 =、、° S亦伴隨在3360 cm·1形成寬廣吸收,此與一二級 ,之形成-⑨。如該表中所歸納I’這些量測值顯示 在則60分鐘後反應速率顯著降低。 如表1中所示,隨著十八胺的結合增加,在該奈米 八上之去離子水靜態接觸角由104.7。增加至146.8。,顯 :间度疏水性表面,而其質量僅增加2 5%,此對應 ^ 0.〇39當量的十八醯胺基團/聚醯亞胺莫耳。雖然未對 ^發明之範4產生限制,但據信此數據係與—模式結果 致,在該模式中反應主要發生在該奈米纖維之表面並 且5亥聚醯亞胺纖維之核心相對未受改變。Chem. Rev., 104, 4303 (2004), and S.S. Zhang in J. Power Sources, 162, 1379 (2006). 30 201232893 With respect to the stacked stack, the stack illustrated in Figure 3 can be replaced by the multilayer article depicted in Figure 2. Also appearing but not shown is the means for connecting the battery unit to an external electrical load or charging device. Suitable devices include wires, pole tips, connectors, plugs, clips, and the like that are used to create electrical connections. If individual cells in the stack are electrically connected to each other in series, from positive to negative, the output voltage of the stack is equal to the combined voltage of each battery cell. If the individual battery cells that make up the stack are electrically connected to each other in parallel, the output voltage of the stack is equal to the voltage of a single battery cell. One of ordinary skill in the art of electric motors will know when it is appropriate to arrange in series, and when it is arranged in parallel. Lithium-ion batteries come in many forms, including cylindrical, prismatic, pouch, coiled, and laminated. Lithium-ion batteries have been found to be used in a variety of different applications (eg, consumer electronics, power tools, and hybrid vehicles). Lithium-ion batteries are manufactured in a similar manner to other batteries such as NiCd and NiMH but are more sensitive because of the reactivity of the materials used in Li-ion batteries. The positive and negative electrodes in a lithium ion battery cell suitable for use in an embodiment of the present invention are similar in form to one another and are fabricated on similar or identical equipment in a similar process. In one embodiment, the active material is applied to both sides of a metal foil, preferably an A1 foil or a Cu foil, which acts as a current collector to conduct current into and out of the battery cells. In one embodiment, graphite carbon is applied to a copper foil to prepare a negative electrode. In one embodiment, a lithium metal oxide (e.g., LiCoO 2 ) is coated on an Ai foil to prepare a positive electrode. In a further embodiment, the foil coated as described above is wound onto a large reel 31 201232893 and placed in a drying chamber for cell fabrication. Referring to FIG. 5, for each electrode, the active material binder solution 52 and the conductive filler 53 (if the composition formed on the F1 is transmitted through the precision adjuster 54 into the I mix tank 55') Mixing therein to produce a "sequential appearance" agent including, but not limited to, poly(difluoroethylene) homopolymer and mound, styrene butadiene rubber, polytetrafluoroethylene, and polyaniline II The slurry formed as above is then fed or pressure fed to %' which is passed through 57 and sent to a coating head 58. The coating head deposits a controlled amount of polymer on a movement The surface of the metal is dropped, and the 5th metal foil is fed from a feed 510. The town coated as above is conveyed through a series of rolls 511 through an oven 512, which is set at 1 to 150 Torr. The edge 513 of the inlet of the flood box is located at an adjustable distance above the crucible; the thickness of the electrode formed thereby is adjusted by adjusting the gap between the edge and the foil. In the oven, the solvent is generally passed through a solvent. The unit 514 is volatilized and then evaporated. It is sent to a winding pro 515. The thickness of the electrode after drying is generally in the range of 5 〇 to 15 〇 micrometer. If a coating is produced on both sides of the foil, the one-side coated foil formed as above is Feed into the coater, but the uncoated side is configured to receive the slurry deposit. After coating, the electrode formed as above is then calendered and selectively cut into narrow strips for batteries of different sizes. Any burrs on the edge of the foil strip may cause internal breaks in the battery unit, so the cutter must be manufactured and maintained very precisely. 32 201232893 In the electrochemical cell of the present invention - the pole assembly is - for a cylindrical battery Single_?=., the electric power of this paper is applicable to the spiral winding structure of the screw Λ 70. - The embodiment wire (4) h is in a stack structure, which is suitable for the prism. The pile similar to the one in Fig. 3 can be made into a coil. Form: in the == single unit is also made in a single can,: = push = in order to form one of the invention Li ion Ray from the time - for example, the electrode assembly is firstly rolled A 1 solid column type is suspected first Winding into a spiral surnamed two as shown in Figure 6, 'after a pole A handle is applied to the edge of the electrode to connect the electrode to the terminal of the i ^. In the case of a high power battery unit, the user needs to carry a high current using a plurality of poles welded along the edge of the electrode strip. The handle is welded to the can body, and the electrode-rolling member of the slewing coil is inserted into the cylindrical-shaped shell. Then the casing is sealed, but left: one open: for injecting the electrolyte into the casing. Electrolysis f is filled into the battery unit and the battery unit is sealed. The electrolyte is usually a mixture of a salt (LiPF6) and a carbonate-based solvent. The assembly of the gas battery unit is preferably carried out in a "drying chamber" because of the electrolyte It reacts with water. Moisture can cause LipF6 to hydrolyze to form HF, which can degrade the electrode and adversely affect the performance of the battery unit. After the battery unit is assembled, it is subjected to at least one precisely controlled charge/discharge cycle to activate the working material to form (activate) it. For most lithium ion chemistries, this involves the creation of a SEI (solid electrolyte interface (s〇iid eieetr〇iyte 33 201232893 interface)) layer on the negative (carbon) electrode. This is a passivation layer and is not important for the electrolyte step-by-step reaction. (The fossil is in contrast to the other, and the present invention provides a Dic volume of an electrochemical double enthalpy). . ^2 energy storage device, which has ^ 达 = charge storage in a double-layer electrochemical capacitor, such as the occurrence of the interface between the electrode ("carbon") and the electrolyte in the two-layer capacitor The ugly imine nano, ..., is a separator that absorbs and retains the electrolyte by maintaining intimate contact between the electrolyte and the electrode. The role of the aromatic polyamidene nanowire as the separator is to electrically isolate the positive electrode from the negative electrode to facilitate the transfer of the electrochemical double layer capacitor in the electrolyte during charge and discharge. A cylindrical winding design was fabricated in which two carbon electrodes and a separator were wound up, and the aromatic polyamidene mesh separator had high strength to prevent short-circuiting between the two electrodes. The invention is further illustrated by the following specific examples, which are not limited thereto. Examples 1 to 8 and Comparative Example A Polymer preparation [HMT E115199_39PI = polymer 2u〇9, spin-spun SF44P1DBX001D15IR20IM501] PMDA and 〇DA poly-aracine in DMF solvent were prepared according to industrial standard method and over 4〇da , with 97% stoichiometry and 23% solids by weight. The polyamidoxime was blocked with 0.04% by weight of phthalic anhydride (required to confirm the wt% of the terminal blocking agent). 34 201232893 Nanoweb Preparation The PAA solution prepared above was poured into the apparatus shown in Fig. 7. Figure 7 illustrates an embodiment of a suitable electroblowing device. The polylysine solution was spun into a nanofiber (electric blown f as described in our provisional application) at 34 at a solution pressure of 5.5 bar. . The temperature is at a temperature of 55 C and at a speed of 5833 m/min. The resulting nanoweb had a thickness of 21 to 26 microns and a porosity of 63%. Referring again to Figure 7', the nanoweb 1〇5 was passed through a hot air dryer 1〇7 at 180 C for 1.13 minutes. The dried nanoweb as above is then wound into a roll. The polyamidite mesh prepared as above was then unwound and subsequently imidized by heating to a temperature of about 325 in a Glenro mid-band infrared oven for 0.87 minutes and coiled again. The web was then unwound and calendered on a BF Perkins calender, which was carried out between a stainless steel calender roll and a cotton covered calender roll at a pressure of 2,700 pounds per linear inch and then wound again. The calendered web was then unwound, subjected to a second heat treatment at about 450 ° C for 6 minutes, and wound again. Amidation and test results A sample of the eight polyamidene nanofiber webs prepared as above (each weighing approximately 35 mg) was added to 5.0 gm octadecylamine (Aidrich 305391) in 100 mL of anhydrous N. In the preheated solution of N-dimethylformamide (DMf) (Aldrich 227056), the addition was carried out in nitrogen in a Pyrex vessel equipped with a heating pack. After each period indicated in Table 1, a sample was removed from 35 201232893 at the indicated solution temperature and rinsed four times in toluene at % = dry for 1 hour in a vacuum oven. Keep an untreated starting material sample for each sample's attenuation of the infrared spectrum (継服) = octa group and human on the sample surface, as indicated by the absorption peak at 292Gem-i (due to Aliphatic CH stretching mode), relative to the intrinsic absorption peak (due to the aromatic CH stretching mode). The aliphatic group =, ° S is also accompanied by a broad absorption at 3360 cm·1, which forms a -9 with the first and second grades. These measurements, as summarized in the table, show that the reaction rate is significantly reduced after 60 minutes. As shown in Table 1, as the binding of octadecylamine increased, the static contact angle of the deionized water on the nanometer was 104.7. Increase to 146.8. , showing: an intermittent hydrophobic surface, and its mass is only increased by 2 5%, which corresponds to ^ 0. 〇 39 equivalents of octadecylamine group / polyimidazolium. Although there is no restriction on the invention 4, it is believed that this data is related to the -mode result, in which the reaction mainly occurs on the surface of the nanofiber and the core of the 5 meronimide fiber is relatively unaffected. change.

36 201232893 8 η μ 180 153E-02 137 9 9 υ ιι .1 . 240 2.13E-02 146.8 * 在 2920 c 的吸收(正規化為在3092 cm-1关蛀γη)---1 -,-III:i--j 將比較例A與實例9之多份試樣以掃瞄式電子顯微 鏡檢驗’如分別示於圖8a與8b中者。在纖維形態或組 織間隙中並未發現到可歸因於以十八胺處理的差異。 實例10與11 :以正烷胺加以部分醯胺化之聚醯亞 胺奈米網。 將5 g的正十二胺溶於1〇〇 mL的DMF溶劑中。將 實例1之聚醯亞胺奈米網樣品在50°C下浸入於該溶液 中分別歷時1小時與20小時的期間。將樣品同時浸入、 在不同時間間隔後移出,之後以異丙醇潤洗三次。掃瞄 式電子顯微鏡揭示其纖維形態相較於未經反應之對照 組未有改變。 漫射反射率紅外線光譜顯示在2852與2919 cm-1 的吸收峰,此確認有脂族基團。在1545、1650與3267 cm-1的吸收峰確認有二級醯胺基團。該反應產物之紅 外線光譜在1700與1500 cm-1保有原有聚醯亞胺之強 吸收峰,意味著該醯胺化反應主要限制在該奈米纖維表 面之—薄層聚合物。 實例12與13 :以正烷胺加以部分醯胺化之聚醯亞 知奈米網。 37 201232893 製備以重量計5%的正十六胺在DMF中之溶液。將 實例1之聚醯亞胺奈米網樣品在⑽它下浸入於該溶液 分別歷時1小時與20小時的期間,而後以異丙醇潤洗 二次。掃瞄式電子顯微鏡揭示其纖維形態相較於未經反 應之控制組未有改變。漫射反射率紅外線光譜顯示在 2852與2919 cm-1的吸收峰,此確認有脂族基團。在 1545、1650與3267 em-1的吸收峰確認有二級醯胺基 團。該反應產物之紅外線光譜在17〇〇與15〇〇 cm_i保 有原有聚醯亞胺之強吸收峰,意味著該醯胺化反應主要 限制在該奈米纖維表面之一薄層聚合物。36 201232893 8 η μ 180 153E-02 137 9 9 υ ιι .1 . 240 2.13E-02 146.8 * Absorption at 2920 c (normalized to 309 η at 3092 cm-1) -1 -, -III :i--j Multiple samples of Comparative Example A and Example 9 were examined by scanning electron microscopy 'as shown in Figures 8a and 8b, respectively. No differences attributable to treatment with octadecylamine were found in the fiber morphology or tissue gap. Examples 10 and 11: Polyamidene meshes partially amidated with n-alkylamine. 5 g of n-dodecylamine was dissolved in 1 mL of DMF solvent. A sample of the polyimine mesh of Example 1 was immersed in the solution at 50 ° C for a period of 1 hour and 20 hours, respectively. The samples were simultaneously immersed, removed after different time intervals, and then rinsed three times with isopropanol. Scanning electron microscopy revealed that the fiber morphology was unchanged compared to the unreacted control group. The diffuse reflectance infrared spectrum showed an absorption peak at 2852 and 2919 cm-1, which confirmed an aliphatic group. A secondary guanamine group was confirmed at the absorption peaks of 1545, 1650 and 3267 cm-1. The infrared spectrum of the reaction product retains a strong absorption peak of the original polyimine at 1700 and 1500 cm-1, meaning that the oximation reaction is mainly limited to the thin layer polymer on the surface of the nanofiber. Examples 12 and 13: Polyamidylene nets partially amidated with n-alkylamine. 37 201232893 A solution of 5% by weight of n-hexadecane in DMF was prepared. The polyimine mesh sample of Example 1 was immersed in the solution under (10) for a period of 1 hour and 20 hours, respectively, and then rinsed twice with isopropanol. Scanning electron microscopy revealed that the fiber morphology was unchanged compared to the unreacted control group. The diffuse reflectance infrared spectrum showed an absorption peak at 2852 and 2919 cm-1, which confirmed the presence of an aliphatic group. A secondary guanamine group was confirmed at the absorption peaks of 1545, 1650 and 3267 em-1. The infrared spectrum of the reaction product retains a strong absorption peak of the original polyimine at 17 Å and 15 Å cm_i, meaning that the amide amination reaction is mainly limited to a thin layer polymer on the surface of the nanofiber.

實例14-17與比較例B-D 從實例10-13之醯胺化奈米網切出兩個1” x 3"寬之 條帶,並且在9(TC下於真空烘箱中乾燥整夜。將如上 乾燥之試樣結合至電化學鈕扣型電池。 使用組件組裝Li離子紐扣型電池(CR232 )如下, 該些組件係在9(TC下於真空室中乾燥整夜。電極係得 自 Pred Materials International,NY,NY 10165。該陽極 與陰極分別包含塗布在Cu箔上之天然石墨以及塗布在 A1箔上之一層LiCo02。該電解質包含在碳酸曱基乙酯 與碳酸伸乙酯之70:30混合物中之1莫耳濃度LiPF6 (Ferro Corp.,Independence,OH 44131) 〇Examples 14-17 and Comparative Example BD Two 1" x 3" wide strips were cut from the decylamine mesh of Examples 10-13 and dried overnight in a vacuum oven at 9 (TC). The dried sample was bonded to an electrochemical button type battery. The Li ion button type battery (CR232) was assembled using the following components, which were dried overnight in a vacuum chamber at 9 (TC) obtained from Pred Materials International. NY, NY 10165. The anode and cathode respectively comprise natural graphite coated on a Cu foil and a layer of LiCoO 2 coated on the A1 foil. The electrolyte is contained in a 70:30 mixture of decyl carbonate and ethyl carbonate. 1 molar concentration LiPF6 (Ferro Corp., Independence, OH 44131) 〇

陽極與陰極係以單一層之實例10-13醯胺化聚醯亞 胺奈米網其中一者分隔,此層厚度為15_25微米。將如 上組裝之Li離子紐扣型電池連接至一電池測試機 C Series 4000, Maccor Inc., 2805 W. 40 th St., Tulsa, OK 38 201232893 74107)並藉由在〇25 而知以、、去儿 A下從2.75至4·2 V循環三次 而加以活化。接著在2 容量保持率。在1〇C景、下進行250次循環以量測 定速率能力,其中至2.75之放電容量以測 -^ ^ ^ 、 八衣在剛好1小時中回復總電池單 輩—穩—=的電飢。將第250次循環時的容量視為電池 早兀穩定性之指標。 結果係歸納於表2。The anode and cathode were separated by a single layer of Example 10-13 amide aminated polyimide mesh having a thickness of 15-25 microns. Connect the Li ion button type battery assembled as above to a battery tester C Series 4000, Maccor Inc., 2805 W. 40 th St., Tulsa, OK 38 201232893 74107) and know by 〇25 It was activated by cycling three times from 2.75 to 4.2 V. Then at 2 capacity retention rate. In the 1 〇C scene, 250 cycles were performed to measure the rate capability, wherein the discharge capacity to 2.75 was measured by -^ ^ ^, and the eight clothes returned to the total battery-single-steady-= electric hunger in just one hour. The capacity at the 250th cycle is considered as an indicator of the stability of the battery. The results are summarized in Table 2.

在23°C下之放電容量 實例 Mazur Notebook (mAh ) 在 1C Rate 在 10C 時的第250 Rate時的 表面官能性 或塗布 溶液浸泡時 間(分鐘)Discharge capacity at 23 ° C Example Mazur Notebook (mAh ) Surface functionality at 1C Rate at 250 °C or coating solution soaking time (minutes)

次循環 2.08 1.94 2.07 1.97 2.02 1 - HMT-061009-25-1 ( 26 μιη,孔隙率 63% ) 2-P1.DBX-001-D15-IR20-02-IM5-01 (21 μηι,孔隙率 60%) 丨3 - SF-4-DCQ-001-IR550-N60 一 I 損失 30-35% 38*40% 38% 64% 28% 43% 實例18-21 聚(醯胺酸)溶液2 (ΡΑΑ2) 製備一在DMF中之PMDA/0DA聚醯胺酸並達到 97%的化學計量與以重量計23.5〇/〇的固體 利用以重量計 確認)。 0.04%的鄰苯二甲酐進行終 。將該醯胺酸 端封阻(需要 39 201232893 奈米網# 2 (KW- 2) 將如上製備之PAA溶液倒入至圖7所繪示之裝置 7繪不一合適電吹裝置之實施例。將該聚醯胺酸 /合液旋紡(spun)為一奈米纖維網(依吾人之臨時申請 。案所j之電吹程序),其係在5.5bar之溶液壓力下在37 C之概度下與72°C之程序氣體溫度下及以5833公尺/ 分鐘之速度進行。 、之後手動解繞奈米網,並利用手動式滾刀切斷器將 其,刀成約12長且10”寬的手抄片(hand sheet)。所得 奈米網的特徵在於孔隙率為85±5〇/〇,且基重為18±2 g/m2。 、 實例18與比較例E „以組織胺加以部分醢胺化之聚酿 亞胺奈米網 將如上形成之奈米網的2 x 2,,樣品加以醯亞胺化並 在空氣對流烘箱巾在35()ΐ:下退火^分鐘,並在45〇t:Sub-cycle 2.08 1.94 2.07 1.97 2.02 1 - HMT-061009-25-1 ( 26 μηη, porosity 63%) 2-P1.DBX-001-D15-IR20-02-IM5-01 (21 μηι, porosity 60%)丨3 - SF-4-DCQ-001-IR550-N60 I Loss 30-35% 38*40% 38% 64% 28% 43% Example 18-21 Poly(proline) solution 2 (ΡΑΑ2) Preparation A PMDA/0DA polyglycolic acid in DMF and a stoichiometric amount of 97% and a solids weight of 23.5 Å/〇 by weight are confirmed by weight). 0.04% of phthalic anhydride was finalized. The proline seal was blocked (required 39 201232893 Nanonet # 2 (KW-2). The PAA solution prepared above was poured into the apparatus shown in Figure 7 to depict an embodiment of a suitable electroblowing apparatus. Spinning the polylysine/liquid into a nanofiber web (provisional application by ours. The electric blowing procedure of the case) is based on a solution pressure of 5.5 bar at 37 C. Under the program gas temperature of 72 ° C and at a speed of 5833 meters / minute. After that, manually unwind the nano net and use a manual hob cutter to make it about 12 long and 10" A wide hand sheet. The resulting nanoweb is characterized by a porosity of 85 ± 5 〇 / 〇 and a basis weight of 18 ± 2 g / m 2 . Example 18 and Comparative Example E „ with histamine The partially amided polyamidene network will be 2 x 2 of the nanoweb formed as above, and the sample will be imidized and annealed in an air convection oven under 35(): for a minute, and 45〇t:

下退,兩分鐘。將如上醯亞胺化與退火之樣品與1〇mL 的二氣曱院放置於20mL玻璃閃爍瓶中,並在Brans〇n 聲波處理浴(sonication bath )中進行聲波處理15分鐘。 將如上聲波處理之樣品移出並在氮中於真空烘箱中在 100°C下乾燥10分鐘。 將組織胺(Aldrich公司)溶液製備於1〇〇 mL玻璃 燒杯中,其濃度為〇 〇6 Μ (在乙醇中)。將固體組織胺 加入至該玻璃燒杯中並伴隨攪拌將乙醇加入以達到最 終濃度為0_06 Μ。將如上乾燥之奈米網在5〇〇c下浸泡 40 201232893 於該組織胺溶液i小時。將如上浸泡之奈米網樣品移 出、在氮中於真空烘箱中在100它下乾燥1Q分鐘,隨 後放置於填充有1〇 mL乙醇之閃蝶瓶中,並在Brans〇n 聲波處理浴(sonicati〇nbath)中進行聲波處理15分鐘。 將如上聲波處理之樣品移出並在氮中於真空烘箱中在 100°C下乾燥10分鐘。藉由FTIR分析以及衰減全反射 (attenuated total reflectance,ATR)附件確認醯胺化表 面產物存在,此係藉由在2920 cm-1與2850 cm-1之特 徵吸收出現而確認。並進行接觸角分析。該未經醯胺化 奈米網控制組(比較例E)顯示其靜態水接觸角為15〇〇 ±4,而經組織胺處理之樣品則顯示其靜態水接觸角為 〇。觀察到水滴會徹底滲入該結構中。各數據點係至少 三次試驗之平均。 實例19 ·以N,N二乙基乙二胺加以部分醯胺化之聚醯 亞胺奈米網。 在更多實例18奈米網之2 X 2”樣品上重複實例18 之程序,除了實例18之〇 06M之組織胺溶液係由〇 〇86 Μ的N,N-二乙基乙二胺(Aidrich公司)在乙醇中之溶 液所取代。藉由FTIR分析以及衰減全反射附件確認醯 胺化表面產物存在,此係藉由在2920 cm-丨與285〇 cm—i 之特徵吸收出現而確認。經N,N_二乙基乙二胺處理之 樣品顯示其靜態水接觸角為〇。。 實例20:以己二胺加以部分醯胺化之聚醯亞胺奈米網。 201232893 在更多實例18奈米網之2 χ 2"樣品上重複實例18 之程序,除了實例18之〇.06 M之組織胺溶液係由〇.〇5 Μ的己二胺(Aldrich公司)在乙醇中之溶液所取代, 並且其浸泡時間為20小時而非實例18的1小時。藉由 FTIR分析而確認醢胺化表面產物存在,如實例18中 者。並進行接觸角分析。經己二胺處理之樣品顯示其靜 態水接觸角為0°。 實例21 : 將分別依實例18、19與20製備之各醯胺化奈米網 樣品的一份6 mg (約2 cm χ 2 cm)等分試樣,以及未 經醯胺化控制組的一份6 mg等分試樣個別填充至2 巴斯德滴管(pasteur pipette)中。將0 20niL的去離子 水等分試樣加人至各辭巾,並且記錄水流過該奈米網 ,充管柱所需的時m4小時後,已經沒有水流遥 穿:= 制組樣品之滴管。水在10分鐘内即徹底流遇 以實例18、19與2G中所製備之材料填充的滴管。 【圖式簡單說明】 圖1摇繪本發明過濾裝置之-個實施例。 圖2描繪本發明多層物品之-個實施例。 例。圖3描緣本發明多層物品之—個稜柱型複室實施 意圖圖如與4b為本發明多層物品之進—步實施例的示 42 201232893 圖5為一種適用於製備本發明多層物品之裝置的 示意圖。 圖6為本發明多層物品之一個螺旋型實施例。 圖7為一種用於製備該聚醯亞胺奈米網之電吹裝 置的示意圖,該奈米網適用於實施本發明。 圖8a顯示一未經醯胺化之聚醯亞胺奈米網的掃瞄 式電子顯微圖。 圖8b顯示一已經醢胺化之圖8a聚醯亞胺奈米網的 掃瞄式電子顯微圖。 43 201232893 【主要元件符號說明】 11.. .殼體 12.. .内部空間 13.. .輸入通口 14.. .輸出通口 15.. .奈米網 16.. .支撐構件 17.. .濾器構件 18.. .密封件 21.. .隔板 22.. .負電極 23.. .正電極 24a...金屬箔 24b...金屬 24.. .金屬箔 31.. .殼體 32.. .電解質溶液 51.. .活性材料 510.. .進料輥 511.··輥 512.. .烘箱 513.. .刀口 514.. .溶劑回收單元 515.. .捲繞輥 52.. .黏結劑溶液 53.. .導電填充劑 54.. .精確調節器 55.. .混合槽 56.. .泵 57.. .滤器 58.. .塗布頭 201232893 59.. .金屬箔 105.. .奈米網 107.. .熱風乾燥機Go back, two minutes. A sample of the above ruthenium imidized and annealed was placed in a 20 mL glass scintillation vial with 1 mL of a dioxic broth and sonicated for 15 minutes in a Brans〇n sonication bath. The sonicated sample as above was removed and dried in nitrogen in a vacuum oven at 100 ° C for 10 minutes. A solution of histamine (Aldrich) was prepared in a 1 〇〇 mL glass beaker at a concentration of 〇 6 Μ (in ethanol). Solid histamine was added to the glass beaker and ethanol was added with stirring to reach a final concentration of 0_06 Torr. The dried nanoweb as above was immersed at 5 〇〇c for 40 201232893 in the histamine solution for 1 hour. The soaked nanoweb sample as above was removed, dried in nitrogen in a vacuum oven at 100 for 1Q minutes, then placed in a butterfly bottle filled with 1 mL of ethanol, and in a Brans〇n sonication bath (sonicati) Sonication in 〇nbath) for 15 minutes. The sonicated sample as above was removed and dried in nitrogen in a vacuum oven at 100 ° C for 10 minutes. The presence of the amidated surface product was confirmed by FTIR analysis and the attenuated total reflectance (ATR) annex, which was confirmed by the appearance of the characteristic absorption at 2920 cm-1 and 2850 cm-1. And contact angle analysis was performed. The non-melamined nanoweb control group (Comparative Example E) showed a static water contact angle of 15 〇〇 ± 4, while the histamine treated sample showed a static water contact angle of 〇. It was observed that water droplets would penetrate completely into the structure. Each data point is the average of at least three trials. Example 19 - Polyamidinonet net partially partially aminated with N,N diethylethylenediamine. The procedure of Example 18 was repeated on a 2 X 2" sample of a more Example 18 nanoweb, except that the histamine solution of Example 18 at 06M was from 〇〇86 Μ of N,N-diethylethylenediamine (Aidrich). The company was replaced by a solution in ethanol. The presence of the amidated surface product was confirmed by FTIR analysis and attenuated total reflection attachment, which was confirmed by the characteristic absorption at 2920 cm-丨 and 285〇cm-i. The N,N-diethylethylenediamine treated sample showed a static water contact angle of 〇. Example 20: Polyamidene nanonet net partially amided with hexamethylenediamine 201232893 In more Examples 18 2 quot 2" The procedure of Example 18 was repeated on the sample, except that the histamine solution of Example 〇.06 M was replaced by a solution of hexamethylenediamine (Aldrich) in ethanol. And the soaking time was 20 hours instead of 1 hour of Example 18. The presence of the amide surface product was confirmed by FTIR analysis, as in Example 18. The contact angle analysis was performed. The sample treated with hexamethylenediamine showed The static water contact angle is 0°. Example 21: will be based on examples 18, 19 A 6 mg (about 2 cm χ 2 cm) aliquot of each of the prepared lysine nanoweb samples and a 6 mg aliquot of the non-melamine control group were individually filled to 2 In a pasteur pipette, an aliquot of 0 20 niL of deionized water is added to each kerchief, and the recorded water flows through the nanoweb, and the time required to fill the column is 4 hours later. No water flow through: = Dropper for the sample preparation. The water completely flows through the dropper filled with the materials prepared in Examples 18, 19 and 2G within 10 minutes. [Simplified illustration] Figure 1 An embodiment of a multi-layered article of the present invention is illustrated in Figure 2. Figure 3 is a perspective view of a multi-layered article of the present invention. Illustrative of the further embodiment 42 201232893 Figure 5 is a schematic view of an apparatus suitable for use in preparing a multilayer article of the present invention. Figure 6 is a spiral embodiment of a multilayer article of the present invention. Figure 7 is a diagram for preparing the polyaluminum. Schematic diagram of an electric blowing device of the amine nanonet, which is suitable for implementing the hair Figure 8a shows a scanning electron micrograph of a non-melamined polyamidene network. Figure 8b shows a scan of the lysine of Figure 8a. Electron micrograph. 43 201232893 [Explanation of main component symbols] 11.. Housing 12.. Internal space 13. Input port 14.. Output port 15.. Nano network 16.. Support member 17 . . . filter member 18 . . . seal 21.. . separator 22 .. negative electrode 23 .. positive electrode 24 a ... metal foil 24 b ... metal 24 .. metal foil 31 .. . housing 32.. electrolyte solution 51.. active material 510.. feed roller 511.··roller 512.. oven 513.. knife edge 514.. solvent recovery unit 515.. Winding roller 52.. Adhesive solution 53.. Conductive filler 54.. Precision adjuster 55.. Mixing tank 56.. Pump 57.. Filter 58.. . Coating head 201232893 59.. . Metal foil 105.. nano network 107.. . hot air dryer

Claims (1)

201232893 七、申請專利範圍: 1. 一種多層物品,該多層物品包含一第一電極材料、一第二 電極材料與設置於該第一與第二電極材料間且與其接觸 之一多孔性隔板,其中該多孔性隔板包含一含芳族聚醯亞 胺奈米纖維之奈米網,該奈米網具有一自由表面區域,該 自由表面區域之至少一部分包含一二級醯胺,該二級醢胺 包含一含一烴基自由基之官能基。 2. 如請求項1所述之物品,其中該官能基進一步包含一含 氧、硫或氮之官能基。 3. 如請求項2所述之物品,其中該官能基為一胺。 4. 如請求項1所述之多層物品,其中該奈米纖維的特徵在於 數量平均直徑在50至500奈米之範圍。 5. 如請求項1所述之多層物品,其中該烴基自由基為一飽和 烴基。 6. 如請求項1所述之多層物品,其中該烴基自由基包含一具 有15至20個碳原子之正烷基自由基。 7. 如請求項1所述之多層物品,其中該芳族聚醯亞胺為一全 芳族聚醯亞胺。 46 201232893 8.如請求項1所述之多層物品,其中該第一及第二電極材料 為不同者"。 9.如請求項1所述之多層物品,其中該第一及第二電極材料 為相同者。 10·如請求項1所述之多層物品,其中該第一電極材料為一 負電極材料,該負電極材料係選自由碳、石墨、煤焦、 鈦酸鋰、Li-Sn合金、Si、C-Si複合材料與其混合物所組 成之群乡且。 11·如請求項1所述之多層物品,其中該第二電極材料為一 正電極材料’該正電極材料係選自由鋰鈷氧化物、磷酸 鐵鐘、鍾鎳氧化物、磷酸錳鋰、磷酸鈷鋰、MNC (LiMn(l/3) C〇(l/3) Ni(l/3) 02)、鋰锰 氧化物與其混合物所組成之群組。 姑二^ 1所述之多層物品,其進―步包含與各該電極 ’占著性接觸之一金屬電流收集器。 13.如凊求項12所述之多層物品,其包含 :第一層,其包含一銅箔; 二層,其包含與該銅箔黏著性接觸之石墨. 包含含PMDA/〇DA奈米纖維且與該石 生接觸之一奈米網,其中該奈米網具有一自 47 201232893 由表面區域,該自由表面區域之至少一部分包^/|— 二級醯胺,該二級醯胺包含一含一正十八烷基; 一第四層,其包含黏著性接觸該芳族聚醯亞胺奈米 網之一鋰鈷氧化物; 以及, 一第五層,其包含一黏著性接觸該第二電極材料之 銘备。 14. 如請求項1所述之多層物品,其為一稜柱型堆疊之形式。 15. 如請求項1所述之多層物品,其為一螺旋型堆疊之形式。 48201232893 VII. Patent Application Range: 1. A multi-layer article comprising a first electrode material, a second electrode material and a porous separator disposed between and in contact with the first and second electrode materials Wherein the porous separator comprises a nanoweb comprising aromatic polyamidene nanofibers, the nanoweb having a free surface region, at least a portion of the free surface region comprising a primary guanamine, the second The guanamine contains a functional group containing a hydrocarbon radical. 2. The article of claim 1 wherein the functional group further comprises a functional group comprising oxygen, sulfur or nitrogen. 3. The article of claim 2, wherein the functional group is an amine. 4. The multilayer article of claim 1, wherein the nanofibers are characterized by a number average diameter ranging from 50 to 500 nanometers. 5. The multilayer article of claim 1 wherein the hydrocarbyl radical is a saturated hydrocarbyl group. 6. The multilayer article of claim 1 wherein the hydrocarbyl radical comprises an n-alkyl radical having from 15 to 20 carbon atoms. 7. The multilayer article of claim 1 wherein the aromatic polyimine is a wholly aromatic polyimine. The multi-layer article of claim 1, wherein the first and second electrode materials are different ". 9. The multilayer article of claim 1 wherein the first and second electrode materials are the same. The multi-layer article of claim 1, wherein the first electrode material is a negative electrode material selected from the group consisting of carbon, graphite, coal char, lithium titanate, Li-Sn alloy, Si, C -Si composite materials and their mixtures are composed of a group. The multi-layer article according to claim 1, wherein the second electrode material is a positive electrode material. The positive electrode material is selected from the group consisting of lithium cobalt oxide, iron phosphate clock, nickel oxide, lithium manganese phosphate, and phosphoric acid. A group consisting of cobalt lithium, MNC (LiMn(l/3) C〇(l/3) Ni(l/3) 02), lithium manganese oxide and a mixture thereof. The multi-layer article described in the above paragraph 1 further comprises a metal current collector in occupant contact with each of the electrodes. 13. The multilayer article of claim 12, comprising: a first layer comprising a copper foil; and a second layer comprising graphite in adhesive contact with the copper foil. comprising PMDA/〇DA nanofibers And contacting the stone with one of the nanowebs, wherein the nanoweb has a surface region from 47 201232893, and at least a portion of the free surface region comprises a second amine, the secondary amine containing one a n-octadecyl group; a fourth layer comprising a lithium cobalt oxide adhesively contacting the aromatic polyamidene nanonet; and a fifth layer comprising an adhesive contact The name of the electrode material. 14. The multilayer article of claim 1 which is in the form of a prismatic stack. 15. The multilayer article of claim 1 which is in the form of a spiral stack. 48
TW100145522A 2010-12-09 2011-12-09 Multi-layer article of polyimide nanoweb with amidized surface TW201232893A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/963,982 US8428255B2 (en) 2009-12-17 2010-12-09 Selective switching between data sources

Publications (1)

Publication Number Publication Date
TW201232893A true TW201232893A (en) 2012-08-01

Family

ID=47073557

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100145522A TW201232893A (en) 2010-12-09 2011-12-09 Multi-layer article of polyimide nanoweb with amidized surface

Country Status (1)

Country Link
TW (1) TW201232893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234085B2 (en) 2013-01-23 2016-01-12 Mortech Corporation Polyimide film and polyimide laminate thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234085B2 (en) 2013-01-23 2016-01-12 Mortech Corporation Polyimide film and polyimide laminate thereof

Similar Documents

Publication Publication Date Title
JP6185842B2 (en) Polyimide nanoweb with amidated surface and method for making
US8557444B2 (en) Multi-layer article comprising polyimide nanoweb
TW201145645A (en) Electrochemical cell comprising a separator comprising a nanoweb consisting essentially of nanofibers of fully aromatic polyimide
JP2021184396A (en) Laminated separator for nonaqueous electrolyte secondary battery
US20120148896A1 (en) Multi-layer article of polyimide nanoweb with amidized surface
TW200902610A (en) Porous film
TW200905952A (en) Separator
EP2513366B1 (en) Method for increasing the strength and solvent resistance of polyimide nanowebs
US9475009B2 (en) Filtration method using polyimide nanoweb with amidized surface and apparatus therefor
TW201636412A (en) Binder resin for electrodes of lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery
TW201223759A (en) Separator
TW201230455A (en) Electrochemical cell comprising a multi-layer article of polyimide nanoweb with amidized surface
JP6962548B2 (en) Polyamide-imide solution for power storage element electrodes, manufacturing method of power storage element electrodes, and power storage element electrodes
JP2017162840A (en) High temperature melt integrity separator
JP2011068883A (en) Aromatic polyamide porous membrane, porous film, and battery separator
TW201232893A (en) Multi-layer article of polyimide nanoweb with amidized surface
KR20210117785A (en) Composition for coating layer, separator for rechargeable lithium battery including coating layer formed therefrom and rechargeable lithium battery including the same
KR20210117784A (en) Composition for coating layer, separator for rechargeable lithium battery including coating layer formed therefrom and rechargeable lithium battery including the same
TWI755882B (en) Active material layer for negative electrode and method for producing the same, electrode mixture paste for negative electrode of electrical storage device, negative electrode for electrical storage device, and electrical storage device
JP2023098268A (en) Separator for non-aqueous electrolyte secondary battery, member for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery