TW201232844A - White light emitting diode with fluorescent layer - Google Patents

White light emitting diode with fluorescent layer Download PDF

Info

Publication number
TW201232844A
TW201232844A TW100102361A TW100102361A TW201232844A TW 201232844 A TW201232844 A TW 201232844A TW 100102361 A TW100102361 A TW 100102361A TW 100102361 A TW100102361 A TW 100102361A TW 201232844 A TW201232844 A TW 201232844A
Authority
TW
Taiwan
Prior art keywords
layer
gallium nitride
white light
emitting diode
light emitting
Prior art date
Application number
TW100102361A
Other languages
Chinese (zh)
Inventor
qing-hua Wang
Long-Jian Chen
Zong-Yu Xie
qing-he Tian
Original Assignee
qing-hua Wang
Long-Jian Chen
Zong-Yu Xie
qing-he Tian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by qing-hua Wang, Long-Jian Chen, Zong-Yu Xie, qing-he Tian filed Critical qing-hua Wang
Priority to TW100102361A priority Critical patent/TW201232844A/en
Publication of TW201232844A publication Critical patent/TW201232844A/en

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

The present invention provides a white light emitting diode with fluorescent layer, which comprises a gallium nitride buffer layer, a N-type gallium nitride layer, multi-quantum well aluminum gallium nitride layer, a P-type gallium nitride layer, a transparent conductive layer and an indium terbium oxide fluorescent layer sequentially stacked on a sapphire substrate, and further comprises an anode metal connection layer connected with the P-type gallium nitride layer and a cathode metal connection layer connected with the N-type gallium nitride layer; wherein, when the anode metal connection layer and the cathode metal connection layer are respectively connected with the external positive power terminal and negative power terminal, the multi-quantum well aluminum gallium nitride layer may emit light due to combination of electrons and electron holes, which penetrates the P-type gallium nitride layer, the transparent conductive layer and the indium terbium oxide fluorescent layer to generate the exit light emitting toward outside. The indium terbium oxide fluorescent layer has the fluorescence for converting the light emitted from the multi-quantum well aluminum gallium layer into white exit light.

Description

201232844 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種白光發光二極體,尤其是具有螢光特性之氧化 銦铽透明導電層的氮化鎵白光發光二極體。 【先前技術】 發光二極體因具有高效率的發光特性,因此已廣泛應用於發 光源及顯示器中。發光二極體的發光原理係利用順向偏壓時P型 半導體層與N型半導體之間的PN接面發生電子電洞復合而將電能 轉換成相對應的光能,因而產生出射光。出射光的波長係依據能 • 隙大小,所以可藉調配適當組成的P型半導體層與N型半導體, 以實現所需的能隙大小,進而產生所需的可見光。 一般的發光二極體所產生出射光具有紫外線成分,因此常利 用添加在透明螢光膠體層中螢光粉的螢光作用將高能量的紫外光 轉換成較低能量的可見光以供使用。然而,上述習用技術的缺點 在於,透明螢光勝體層會有膠體老化的問題,影響發光二極體的 出射光品質’因此’需要-種以半導體製程製造出具有螢光作用 _ 之半導體螢光層的白光發光二極體,以解決上述制技術的問題。 【發明内容】 本發明之主要目的在提供—種具螢光層之白光發光二極體, 包括藍寶石基板、氮化鎵緩衝層、N型氮化録層、多量子位牌氮 化紹鎵層、p型氮化鎵層、透明導電層、氧化峨螢光層、負極金 屬触層及正極金屬連接層,其中氮化録緩衝層、N型氮化騎、 多量子錯氮化紹鎵層、p型氮化鎵層、透明導電層、氧化姻錢營 光層係依序堆疊在藍寶石基板上,而負極金屬連接層連接至N型 氮糊’ 卩輪$,麟輪綠於氧化銦 201232844 铽螢光層上並貫穿氧化銦铽螢光層而連接至透明導電層,用以連 接外。卩正電源端,以使得電流由正極金屬連接層經過透明導電 層、P型氮化鎵層、氮化鋁鎵多量子位阱層、N型氮化鎵層而至負 極金屬連接層,並由多量子位拼氮化紹鎵層發射光線,穿透p型 氮化紅層、透明導電層及氧化銦铽螢光層,且經具有螢光性的氧 化鋼試螢光層轉變成白光的出射光而射向外部。 因此,本發明的發光二極體不需外加螢光粉至透明膠體中形 成朦體螢光層績將紫外線賴成可見光,而是可藉射頻反應式 磁控濺鍍法的半導體製程直接在透明導電層上沉積以形成具螢光 作用的氧化銦铽螢光層,藉以產生具白光光譜的出射光。 【實施方式】 以下配合圖式及元件符號對本發明之實施方式做更詳細的說 明’俾使熟習該項技藝者在研讀本說明書後能據以實施。 參閱第一圖’本發明具螢光層之白光發光二極體的示意圖。 如第一圖所示,本發明具螢光層之白光發光二極體包括藍寶石基 板10、氮化鎵緩衝層20、N型氮化鎵層30、多量子位阱(Multiple201232844 VI. Description of the Invention: [Technical Field] The present invention relates to a white light emitting diode, in particular, a gallium nitride white light emitting diode having a fluorescent indium oxide transparent conductive layer. [Prior Art] Since the light-emitting diode has high-efficiency light-emitting characteristics, it has been widely used in light sources and displays. The principle of light emission of the light-emitting diode is to use electron beam recombination at the PN junction between the P-type semiconductor layer and the N-type semiconductor to convert the electric energy into corresponding light energy by the forward bias, thereby generating the emitted light. The wavelength of the emitted light is based on the size of the energy gap, so that a suitable P-type semiconductor layer and an N-type semiconductor can be allocated to achieve the required energy gap size, thereby generating the desired visible light. The light emitted by a general light-emitting diode has an ultraviolet component, so that high-energy ultraviolet light is converted into lower-energy visible light by the fluorescent action of the fluorescent powder added to the transparent fluorescent colloid layer. However, the above-mentioned conventional technology has a disadvantage in that the transparent fluorescent layer has a problem of colloid aging, which affects the quality of the emitted light of the light-emitting diode. Therefore, it is necessary to manufacture a semiconductor fluorescent film having a fluorescent effect in a semiconductor process. A layer of white light emitting diodes to solve the problems of the above-mentioned technology. SUMMARY OF THE INVENTION The main object of the present invention is to provide a white light emitting diode with a fluorescent layer, including a sapphire substrate, a gallium nitride buffer layer, an N-type nitride recording layer, a multi-quantum card nitride gallium layer, a p-type gallium nitride layer, a transparent conductive layer, a ruthenium oxide fluorescent layer, a negative metal contact layer, and a positive metal connection layer, wherein the nitride buffer layer, the N-type nitride rider, the multi-quantitor nitrided gallium layer, p The gallium nitride layer, the transparent conductive layer, the oxidized singapore camping layer are sequentially stacked on the sapphire substrate, and the negative metal connecting layer is connected to the N-type nitrogen paste ' 卩 wheel $, the lining green is indium oxide 201232844 铽 铽The light layer is connected to the transparent conductive layer through the indium oxide germanium phosphor layer for connection.卩 positive power terminal, so that the current from the positive metal connection layer through the transparent conductive layer, P-type gallium nitride layer, aluminum gallium nitride multi-quantum well layer, N-type gallium nitride layer to the negative metal connection layer, and The multi-quantum nitriding gallium layer emits light, penetrates the p-type nitride red layer, the transparent conductive layer and the indium oxide ytterbium fluorescent layer, and is converted into white light by the fluorescent oxide test layer having fluorescence Shooting light and shooting to the outside. Therefore, the light-emitting diode of the present invention does not need to add a fluorescent powder to form a fluorene layer in the transparent colloid, and the ultraviolet light is converted into visible light, but can be directly transparent in a semiconductor process by radio frequency reactive magnetron sputtering. A conductive layer is deposited to form a phosphorescent indium oxide phosphor layer to generate an exiting light having a white light spectrum. [Embodiment] The embodiments of the present invention will be described in more detail below with reference to the drawings and the reference numerals. Referring to the first figure, a schematic view of a white light emitting diode having a phosphor layer of the present invention. As shown in the first figure, the white light emitting diode of the present invention having a fluorescent layer comprises a sapphire substrate 10, a gallium nitride buffer layer 20, an N-type gallium nitride layer 30, and a multiple qubit well (Multiple).

Quantum Well ’ MQW)氮化鋁鎵層40、P型氮化鎵層50、透明導 電層60、氧化銦铽螢光層70、負極金屬連接層8〇及正極金屬連 接層90,用以產生白光。 氮化鎵緩衝層20、N型氮化鎵層30、多量子位阱氮化鋁鎵層 40、P型氮化鎵層50、透明導電層60及氧化銦铽螢光層70係依 序堆疊在藍寶石基板1〇上,且曝露出一部分的N型氮化鎵層3〇, 用以電氣連接負極金屬連接層80,而負極金屬連接層80係連接外 部電源的負端V-。正極金屬連接層90係用以連接外部電源的正端 V+,且位於氧化銦铽螢光層70上,氧化銦铽螢光層70具有貫穿 201232844 孔’因而正極金屬連接層9G可經該貫穿孔而電氣連接至透明導電 層 60,。 多量子位贱化贿層4G具有多個交轉疊且不同能階的 薄狀氮化鋁鎵,可利用其中低能階層所形成的量子位阱,使電子 及電洞更容易侷限在一起,因而可增加發光強度。 當電流由正極金屬連接層9G經過透明導電層⑼、p型氮化嫁 層50、多量子位牌氮化紹鎵層4〇 ' n型氮化鎵層3〇而至負極金 屬連接層80時,多量子位讲氮化紹鎵層4〇會因電子電洞復合作 φ 用而發射光線,且該光線穿透P型氮化鎵層50 '透明導電層6〇及 氧化賴螢光層70’並經具有螢光性的氧化銦錢螢光層7〇轉變成 白光的出射光而射向外部。 本發明的氧化銦錢螢光層7〇為透明的薄膜,其主要成分係包 括氧化銦铽(Terbium Indium Oxide),化學式為in2〇3:Tb,一般簡 稱τιο,其中氧化銦與铽的最佳比例範圍為In2〇3:Tb = 95:5至 5:95。氧化銦铽螢光層70可利用射頻反應式磁控濺鍍法的半導體 製程而沉積在透明導電層60上。 _ 參閱第二圖及第三圖,以清楚了解本發明的特點,其中第二 圖為本發明實施例白光發光二極體的光激發光譜 (photoluminescence,PL) ’且其氧化銦與铽的比例為9〇:ι〇,而第三 圖為本發明另一實施例白光發光二極體的光激發光譜,且其氧化 銦與軾的比例為80:20。第二圖及第三圖顯示10K至3〇〇κ溫度範 圍内的光激發螢光光譜變化,且第二圖及第三圖分別顯示在 575nm及565nm附近具寬廣的吸收特性。 參閱第四圖及第五圖,分別為本發明實施例白光發光二極體 及其瑩光層的電激發光(electroluminescence, EL)之光譜,且氧化 鋼與軾的比例為90:10 ’電流為100mA。由第四圖中可知,該實Quantum Well ' MQW) aluminum gallium nitride layer 40, P-type gallium nitride layer 50, transparent conductive layer 60, indium oxide germanium phosphor layer 70, negative electrode metal connecting layer 8 and positive metal connecting layer 90 for generating white light . The gallium nitride buffer layer 20, the N-type gallium nitride layer 30, the multi-quantum well aluminum nitride gallium layer 40, the P-type gallium nitride layer 50, the transparent conductive layer 60, and the indium oxide germanium phosphor layer 70 are sequentially stacked. A portion of the N-type gallium nitride layer 3 is exposed on the sapphire substrate 1 to electrically connect the negative electrode metal connection layer 80, and the negative electrode metal connection layer 80 is connected to the negative terminal V- of the external power source. The positive electrode metal connecting layer 90 is connected to the positive terminal V+ of the external power source, and is located on the indium oxide germanium phosphor layer 70. The indium oxide germanium phosphor layer 70 has a hole penetrating through 201232844', so that the positive electrode metal connecting layer 9G can pass through the through hole. It is electrically connected to the transparent conductive layer 60. The multi-quantum metamorphic layer 4G has a plurality of thin aluminum gallium nitrides which are alternately stacked and have different energy levels, and the quantum wells formed by the low energy layers can be utilized to make electrons and holes more easily confined together. Can increase the luminous intensity. When the current is passed from the positive electrode metal connecting layer 9G through the transparent conductive layer (9), the p-type nitrided layer 50, the multi-quantum card nitride layer, and the negative electrode metal connecting layer 80, The multiple qubits of the gallium nitride layer 4 〇 will emit light due to the electron hole complex φ, and the light penetrates the P-type gallium nitride layer 50 'transparent conductive layer 6 〇 and the oxidized fluorite layer 70 ′ and The fluorescent indium oxide light phosphor layer 7 is converted into white light and emitted to the outside. The indium oxide light fluorescent layer 7 of the present invention is a transparent film, and its main component includes Terbium Indium Oxide, and the chemical formula is in2〇3:Tb, generally referred to as τιο, wherein indium oxide and bismuth are optimal. The scale range is In2〇3: Tb = 95:5 to 5:95. The indium oxide germanium phosphor layer 70 can be deposited on the transparent conductive layer 60 by a semiconductor process of radio frequency reactive magnetron sputtering. _ Refer to the second and third figures for a clear understanding of the features of the present invention, wherein the second figure is the photoluminescence (PL) of the white light emitting diode of the embodiment of the invention and the ratio of indium oxide to antimony 9: 〇, and the third figure is a photoexcitation spectrum of a white light-emitting diode according to another embodiment of the present invention, and the ratio of indium oxide to antimony is 80:20. The second and third figures show the spectral changes of the photoexcited fluorescence in the temperature range of 10K to 3〇〇κ, and the second and third figures show broad absorption characteristics around 575 nm and 565 nm, respectively. Referring to the fourth and fifth figures, respectively, the spectrum of the electroluminescence (EL) of the white light emitting diode and the fluorescent layer thereof according to the embodiment of the present invention, and the ratio of the oxidized steel to the bismuth is 90:10 ′. It is 100mA. As can be seen from the fourth figure, the real

201232844 施例的白繊二峨㈣nm峨,㈣增可知,里 勞光層具有鶴至·nm的執域躍遷,亦即 戈、 的躍遷,财並標示出相對應躍遷的波長。 战轨域 接者’參閱第六圖及第七圖,分別為本㈣另_實施例白光 發光-極體及其螢光層的EL光譜,且氧化细與贫的比例為 咖,電流為_mA。在第六圖中,白光發光二極體同樣且有 385则紫外光’而第七财,料光層《麵轉五圖所示 ⑽至·nm _域躍遷,辭並標示出相對卿遷的波長。 因此’可由第二圖至第七圖的光譜而清楚了解到,本發明的 白光發光二極體確實可產生白光,用以提供高品質的光源,可適 用於顯不讀背絲源或—般的照明絲。為進_步顯示上述本 發明具螢光層之白光發光二極體的具體表現可參考附件一及附 ,二所示的照片’其中附件—為包含贏氧化_螢光層(亦即 乳化銦與試之比例為90:10)之⑽白光發光二極體發射白光的照 附件為包含20°/。氧化錮铽螢光層(亦即氧化銦與錢之比例 為80.20)之GaN白光發光二極體發射白光的照片,且導通電流為 20mA。 以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據 以對本發明做任何形紅之關,是以,凡有在糊之發明精神 下所作有關本發明之任何修飾或變更,皆仍應包括在本發明意圖 保護之範疇。 201232844 【圖式簡單說明】 第一圖為本發明具螢光層之白光發光二極體的示意圖。 第二圖為本發明實施例白光發光二極體的光激發光譜。 第三圖為本發明另一實施例白光發光二極體的光激發光譜。 第四圖為本發明實施例白光發光二極體的電激發光譜。 第五圖為本發明實施例白光發光二極體之螢光層的電激發光譜。 第六圖為本發明另一實施例白光發光二極體的電激發光譜。 第七圖為本發明另一實施例白光發光二極體之螢光層的電激發光譜。 附件一為本發明1 〇%T10/GaN-based LED之發光照片@20mA 附件二為本發明2〇%TIO/GaN-basedLED之發光照片@20mA 【主要元件符號說明】 10藍寶石基板 20氮化鎵緩衝層 30 N型氮化鎵層 40多量子位阱氮化鋁鎵層 5〇 P型氮化鎵層 60透明導電層 7〇氧化姻試螢光層 80負極 90正極 V+正端 V-負端 7201232844 The white 繊 峨 峨 四 四 四 四 四 四 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 The track domain receiver' refers to the sixth and seventh figures, respectively. (4) The EL spectrum of the white light-emitting body and its fluorescent layer, and the ratio of oxidation to lean is coffee, the current is _ mA. In the sixth picture, the white light-emitting diodes have the same 385 ultraviolet light's, and the seventh layer of material, the light layer, is turned into a five-figure (10) to · nm _ domain transition, and the words are marked with relative resignation. wavelength. Therefore, it can be clearly understood from the spectra of the second to seventh figures that the white light emitting diode of the present invention can produce white light to provide a high quality light source, which can be applied to the display of the back wire source or the like. Lighting wire. For the specific performance of the above-mentioned white light emitting diode with the fluorescent layer of the present invention, reference may be made to the attached photo and the attached photo of the second embodiment, wherein the accessory includes an oxide-fluorescent layer (ie, an emulsified indium). The ratio of the test to the test is 90:10) (10) The white light emitting diode emits white light with an attachment of 20°/. A photo of a GaN white light emitting diode emitting a white light of a yttrium oxide phosphor layer (i.e., a ratio of indium oxide to money of 80.20), and an on current of 20 mA. The above description is only for the purpose of explaining the preferred embodiments of the present invention, and is not intended to be used in any way to make any modifications or changes to the present invention in the spirit of the invention. All should still be included in the scope of the intention of the present invention. 201232844 [Simple description of the drawings] The first figure is a schematic diagram of a white light emitting diode with a fluorescent layer of the present invention. The second figure is a photoexcitation spectrum of a white light emitting diode according to an embodiment of the present invention. The third figure is a photoexcitation spectrum of a white light emitting diode according to another embodiment of the present invention. The fourth figure is an electrical excitation spectrum of a white light emitting diode according to an embodiment of the present invention. The fifth figure is an electrical excitation spectrum of a phosphor layer of a white light emitting diode according to an embodiment of the present invention. Figure 6 is a graph showing the electrical excitation spectrum of a white light emitting diode according to another embodiment of the present invention. Figure 7 is an electrical excitation spectrum of a phosphor layer of a white light emitting diode according to another embodiment of the present invention. Attachment 1 is the illuminating photo of the 〇%T10/GaN-based LED of the present invention@20mA. Attachment 2 is the illuminating photo of the 2〇% TIO/GaN-based LED of the present invention@20mA [Major component symbol description] 10 sapphire substrate 20 gallium nitride Buffer layer 30 N-type gallium nitride layer 40 multi-quantum well aluminum nitride layer 5 〇P-type gallium nitride layer 60 transparent conductive layer 7 〇 oxidized test phosphor layer 80 negative 90 positive V + positive V-negative 7

Claims (1)

201232844 七、申請專利範圍: ,該白光發光二 1.一種具螢光層之白光發光二極體,用以產生白光的出射光 極體包括; 一藍寶石基板; 一氮化鎵緩衝層,係堆疊在該藍寶石基板上; 一N型氮化鎵層,係堆疊在該氮化鎵緩衝層上; 多量子位_氮化轉層’係堆疊在該N型氮化鎵層上,並曝露出該N型氣 化鎵層的一部份; 一 P型氮化鎵層,係堆疊在該多量子位阱氮化鋁鎵層上; 一透明導電層’係堆疊在該P型氮化鎵層上; -氧化銦崎光層,係堆疊在該透贿電層上,且具有貫穿孔; -負極金屬連接層,麟疊在該氧化銦靖絲上,趣該貫穿孔而電氣 連接至該翻導電層’且該貞極金屬連接層氣連接至外部電源的一負端; 以及 ' -正極金屬連接層,係堆疊在該P型氮化鎵層上,且該正極金屬連接層氣 連接至外部電源的一正端。 2.依據申請專利範圍第丨項所述之白光發光二極體,其中 該氧化銦崎光層包括氧化銦與__範圍為In你Tb = 95 5至7〇:3〇。 3·依據申請專利範圍第1項所述之白光發光二極體,其中 該氧化銦機光層細賴反赋雜雜法而沉積。 4‘依據申明專利範圍第1項所述之白光發光二極體,其中 ”亥夕里子位阱氮化鋁鎵層具有多個交替堆疊且不同能階的薄狀氮化鋁鎵, 且低能階層所形成的量子位拼。201232844 VII. Patent application scope: The white light emitting diode 1. A white light emitting diode with a fluorescent layer, an exiting photo body for generating white light includes: a sapphire substrate; a gallium nitride buffer layer, which is stacked On the sapphire substrate; an N-type gallium nitride layer is stacked on the gallium nitride buffer layer; a multi-qubit-nitriding layer is stacked on the N-type gallium nitride layer and exposed a portion of the N-type gallium hydride layer; a P-type gallium nitride layer stacked on the multi-quantum well aluminum nitride gallium layer; a transparent conductive layer' stacked on the P-type gallium nitride layer - an indium oxide sacrificial layer stacked on the brittle electric layer and having a through hole; - a negative metal connection layer, which is stacked on the indium oxide jade wire, electrically connected to the through hole and electrically connected to the turned conductive a layer 'and the drain metal connection layer is connected to a negative end of the external power source; and '- a positive metal connection layer stacked on the P-type gallium nitride layer, and the positive metal connection layer is gas-connected to the external power supply One positive end. 2. The white light emitting diode according to the scope of the patent application, wherein the indium oxide layer comprises indium oxide and the __ ranges from In to Tb = 95 5 to 7 〇: 3 〇. 3. The white light emitting diode according to claim 1, wherein the indium oxide machine layer is deposited by an anti-doping method. 4' According to the white light emitting diode of claim 1, wherein the "aluminum sub-well aluminum nitride gallium layer has a plurality of thin aluminum gallium nitrides which are alternately stacked and have different energy levels, and the low energy layer The formed qubits are spelled.
TW100102361A 2011-01-21 2011-01-21 White light emitting diode with fluorescent layer TW201232844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100102361A TW201232844A (en) 2011-01-21 2011-01-21 White light emitting diode with fluorescent layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100102361A TW201232844A (en) 2011-01-21 2011-01-21 White light emitting diode with fluorescent layer

Publications (1)

Publication Number Publication Date
TW201232844A true TW201232844A (en) 2012-08-01

Family

ID=47069715

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102361A TW201232844A (en) 2011-01-21 2011-01-21 White light emitting diode with fluorescent layer

Country Status (1)

Country Link
TW (1) TW201232844A (en)

Similar Documents

Publication Publication Date Title
TWI255569B (en) White-light emitting device and method for manufacturing the same
JP5224575B2 (en) Efficient light source using phosphor-converted LED
JP2009530803A (en) Monolithic white light emitting diode
US20050199892A1 (en) Monolithic white light emitting device
WO2007136097A1 (en) Semiconductor light emitting element
JP2007142426A (en) Nitride semiconductor light-emitting device
CN102130143A (en) White LED chip and forming method thereof
JP2005268803A (en) Monolithic white color light emitting device
JP2010056423A (en) Electrode for semiconductor light-emitting element, and semiconductor light emitting element
JP2009212308A (en) Light emitting diode
KR102604432B1 (en) Uv-led and display
JP5774900B2 (en) Light emitting diode element and method for manufacturing the same
JP5330880B2 (en) Light emitting diode element and method for manufacturing the same
JP2002289927A (en) Light-emitting element
Wang et al. Phosphor-converted light-emitting diode based on ZnO-based heterojunction
JP5060823B2 (en) Semiconductor light emitting device
TW201232844A (en) White light emitting diode with fluorescent layer
TWI575795B (en) Blue light emitting element and light emitting element
Wang Electrically injected hybrid III-nitride/organic white LEDs with non-radiative energy
CN102683556A (en) White-light-emitting diode with fluorescent layer
TW201214767A (en) White light emitting diode
JP5372041B2 (en) White light-emitting diode with a phosphor layer
JP2001291900A (en) Semiconductor light-emitting device and manufacturing method thereof
US20220158024A1 (en) N-zno/n-gan/n-zno heterojunction-based bidirectional ultraviolet light-emitting diode and preparation method therefor
KR100552333B1 (en) White light emitting device