TW201230792A - Method of detecting a bad pixel of a sensed image - Google Patents
Method of detecting a bad pixel of a sensed image Download PDFInfo
- Publication number
- TW201230792A TW201230792A TW100100060A TW100100060A TW201230792A TW 201230792 A TW201230792 A TW 201230792A TW 100100060 A TW100100060 A TW 100100060A TW 100100060 A TW100100060 A TW 100100060A TW 201230792 A TW201230792 A TW 201230792A
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- pixel
- detected
- bad
- metric
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000001514 detection method Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000007689 inspection Methods 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 2
- 241001677188 Coccus viridis Species 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- WPPDXAHGCGPUPK-UHFFFAOYSA-N red 2 Chemical compound C1=CC=CC=C1C(C1=CC=CC=C11)=C(C=2C=3C4=CC=C5C6=CC=C7C8=C(C=9C=CC=CC=9)C9=CC=CC=C9C(C=9C=CC=CC=9)=C8C8=CC=C(C6=C87)C(C=35)=CC=2)C4=C1C1=CC=CC=C1 WPPDXAHGCGPUPK-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Landscapes
- Image Processing (AREA)
- Color Television Image Signal Generators (AREA)
Abstract
Description
201230792 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係有關一種影像處理,特別是關於一種影像感 測壞像素點(bad pixel)的檢測方法。 [0002] 〇 【先前技術】 彩色影像的每一個像素可以使用含三顏色成分的向量 來表示,例如使用可見光譜中的紅、綠、藍波段之光強 度。為了降低尺寸大小及成本,在一般影像感測器中, 針對每一個像素僅使用一個光濾波單元以擷取單一的色 彩(chromatic)值。接著’再根據鄰近相同顏色的像 素值以内插方法來得到其他的色彩值^ [0003] 〇 第圖顯示一影像感測器的先感元件(photosensor )陣列10,其上覆蓋有彩色濾波陣列12。彩色濾 波陣列12的每一彩色濾波器(CF)僅能讓一種顏色光受 到相應光感元件的感測。由於彩色濾波陣到12的特殊嵌 合(mosaic)圖樣(pattern)排列並非人眼一般所觀 看之完整圖像,所以必須藉由色彩内插以重建出人眼可 V· 觀看之圖像。因此,色彩内插一般又稱為CFA内插、色彩 重建或去嵌合(demosaicking)。 [0004] 第一圖所例示之彩色濾波陣列12為拜耳(Bayer)濾 波器之一種,其普遍使用於數位相機或攝影機。拜耳( Bayer)濾波器之圖樣係由紅(R)、綠(G)、藍(B) 慮波器依圖示規則排列,其含有5 〇 %綠(◦ )、2 5 %紅(R )、25%藍(B);慮波器。每一像素點位置的其他顏色可 由其四周像素點來得到。即使拜耳圖案内插法在影像處 100100060 表單編號A0101 第3頁/共26頁 1002000107-0 201230792 理領域被普遍使用,鈇而曰上 …、'而其具有一些缺點,〜 混疊(a i i asing )現卖、A a 色衫 現象造成高頻細節的消失 新頻率而嚴重破壞影像。 吾屋生 [0005] 此外 ,影賴⑽《會具有减的料 bad pixel )。係絲由你、_>_ 农”£、201230792 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to an image processing, and more particularly to a method for detecting a bad pixel of an image. [0002] 先前 [Prior Art] Each pixel of a color image can be represented by a vector containing three color components, for example, using the light intensities of the red, green, and blue bands in the visible spectrum. In order to reduce size and cost, in a typical image sensor, only one optical filtering unit is used for each pixel to capture a single chromatic value. Then, another color value is obtained by interpolation according to pixel values adjacent to the same color. [0003] The figure shows an image sensor array 10 of image sensors covered with a color filter array 12 . Each color filter (CF) of the color filter array 12 allows only one color of light to be sensed by the corresponding light sensing element. Since the special mosaic pattern of the color filter array to 12 is not a complete image viewed by the human eye, it is necessary to reconstruct the image that can be viewed by the human eye by color interpolation. Therefore, color interpolation is also commonly referred to as CFA interpolation, color reconstruction, or demosaicking. The color filter array 12 illustrated in the first figure is a Bayer filter which is commonly used in digital cameras or cameras. The Bayer filter pattern is arranged by the red (R), green (G), and blue (B) filters as shown in the figure, which contains 5 〇% green (◦), 2 5 % red (R) , 25% blue (B); wave filter. The other color at each pixel location can be obtained from the surrounding pixels. Even Bayer pattern interpolation is commonly used in the field of image 100100060 Form No. A0101 Page 3 / Total 26 Page 1002000107-0 201230792, and it has some shortcomings, ~ aii asing Now selling, A a color shirt phenomenon caused high frequency details to disappear the new frequency and seriously damage the image.吾屋生 [0005] In addition, the film (10) "will have a bad material bad pixel." The silk is made by you, _>_ 农" £,
無法有效分辨壞點盥邊緣( edge )影像,因此衮县趑 透塚I 壞點誤認為邊緣影^ 料誤料壞點,或者將 [_] S魅需«效分_點與邊_像的方法, 於補償壞點時也能保留影像細節。 象的方法 【發明内容】 [0007] 鑑於上述,本發明實施例的目的之一在於 像==Γ法,有效分辨壞點與邊緣影二 仔以正確地進行壞點校正或補償。 [0008] ::本發明實施例,檢視待檢測像素值與複數鄰近位 • ”值的差異性。接著,檢視待檢测像素值與複數鄰 近同色像素值於特定方向的連黷性i轉到—特定方向。 =後,根據得狀特定方向,她像素值於該特 定方向之平滑性。當該待檢測像素值被判定為壞點時, 更可根據壞點的複數鄰近同色像素值以進行壞點的補償 〇 【實施方式】 第二圖顯示本發明實施例之影像感測壞像素點(“4 Pixel)檢測方法的流程圖。本實施例可適用於各種影像 感測器,例如互補式金屬氧化物半導體(CM〇s)影像感 100100060 表單編號A0101 第4頁/共26頁 1〇〇2〇〇〇ι〇γ^ 201230792 測器。在本實施例中,各像素點的感測影像值係經由拜 耳(Bayer) Η案彩色遽波陣列所得到。若檢測有壞像素 點(簡稱“壞點”)’可進一步對壞點進行校正或補償 '經校正後的壞點像素值於輸出後,可儲存、顯示或作 進一步影像處理。 [0010] 於步驟21,檢視待檢測像素值與鄰近位置像素值的差 異性,其中,鄰近位置像素料與待㈣像素點分屬不 同顏色。在本實施例中,若以待檢測像素點作為中心, ο 則其與鄰近位置像素點將形成3χ3陣列,如第三4圖所示 之藍色⑻待檢測像素碰與綠色(g)、紅色⑴鄰 近位置像素值N0-N7。 [0011] 第四圖顯示步驟21的細部流程圓。首先,於步驟川, 取得待㈣㈣條與《料位置料細、N6平均 值的差值’作為垂直鄰近度量值βΜ卜其卜若該差值小 於〇,則令垂直鄰近度量值咖為^杨驟⑴可表示如 .卜· *It is impossible to effectively distinguish the edge image of the bad point, so the 坏I 坏 误 误 误 误 误 误 误 误 误 误 误 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘 边缘In this way, image details can be preserved when compensating for dead pixels. [Invention] [0007] In view of the above, one of the objects of the embodiments of the present invention is to effectively distinguish between a dead point and an edge shadow to correctly perform a bad point correction or compensation like the == method. [0008] In the embodiment of the present invention, the difference between the value of the pixel to be detected and the value of the complex adjacent bit is determined. Then, the connectivity of the pixel value to be detected and the pixel value of the plurality of adjacent color pixels in a specific direction are detected. - After a specific direction, the smoothness of the pixel value in the specific direction according to the specific direction of the shape. When the pixel value to be detected is determined to be a dead point, the pixel value of the same color pixel may be further used according to the complex point of the dead point. Compensation for Bad Points 实施 [Embodiment] The second figure shows a flowchart of a method for detecting a bad pixel ("4 Pixel") of an image according to an embodiment of the present invention. This embodiment can be applied to various image sensors, such as complementary metal oxide semiconductor (CM〇s) image sense 100100060 Form No. A0101 Page 4 / Total 26 Pages 1〇〇2〇〇〇ι〇γ^ 201230792 Device. In this embodiment, the sensed image values for each pixel are obtained via a Bayer color chopping array. If a bad pixel (abbreviated as "bad point") is detected, the dead pixel can be further corrected or compensated. After the corrected dead pixel value is output, it can be stored, displayed or further processed. [0010] In step 21, the difference between the pixel value to be detected and the pixel value of the adjacent position is examined, wherein the neighboring pixel material and the pixel to be (four) are different colors. In this embodiment, if the pixel to be detected is centered, ο will form a 3χ3 array with the adjacent pixel, as shown in the third figure (8) the pixel to be detected touches the green (g), red (1) The neighboring pixel values are N0-N7. [0011] The fourth figure shows the detailed flow circle of step 21. First, in step Sichuan, obtain the difference between the (4) and (4) and the "material position and the N6 average value" as the vertical neighboring metric value. If the difference is less than 〇, then the vertical neighboring metric value is ^Yang Step (1) can be expressed as
BMl=Nc-(Nl+N6)/2 if BMl<〇 then BM1=0.BMl=Nc-(Nl+N6)/2 if BMl<〇 then BM1=0.
[0012] 於/驟212,取得待檢測像素值Nc與水 值N3、料平垧估从纪,▲ 豕素 w =的差值,作為水平鄰近度量值ΒΜ2❶其中 值小於G,則令水平鄰近度量值Μ2為G。本步驟 Z 1 Z 1表示如下: BM2=Nc-(N3+N4)/2 if )n if BM2<〇 then BM2 = 0.[0012] At / step 212, obtain the difference between the pixel value to be detected Nc and the water value N3, the level of the data, and the 豕 w w = as the horizontal neighboring metric ΒΜ 2 ❶ where the value is less than G, then the horizontal proximity The metric value Μ2 is G. This step Z 1 Z 1 is expressed as follows: BM2=Nc-(N3+N4)/2 if )n if BM2<〇 then BM2 = 0.
[0013] 」步驟213,取得待檢測像素值與四個角轉近位置 像素值 M〇、N2、\IG XT*7*r N5、N7平均值的差值,作為角落鄰近度 100100060 表單編號A0101 第5頁/共26 頁 1002000107-0 201230792 量值BM3。其中,若該差值小於〇,則令角落鄰近度量值 BM3為0。本步驟213可表示如下: BM3=Nc-(N0+N2+N5+N7)/4 if BM3<0 then BM3=〇 [0014] [0015] [0016] [0017] 接著,於步驟214,根據垂直鄰近度量值BM1、水平鄰 近度量值BM2及角落鄰近度量值BM3,以得到綜合鄰近声 量值BM4。其中,若該值大於待檢測像素值Nc,則令综人 鄰近度量值BM4等於待檢測像素值Nc。本步驟214可夺 如下: ' BM4=(BMl+BM2)/2+BM3 if BM4>Nc then BM4,Nc 最後,於步驟215,判定综合鄰近度量值βΜ4 像素值Nc之絕對差值是否小鄰近度量臨界值β、Τη = 判定為S ’料檢測像素料能為_。本步驟2右 示如下: 表 if ABS⑽4-Nc)<BjrH _ &可能為壞點. 上述步驟211-215雖以待檢測像素值_為藍色士 作為說明,“,該些步驟同樣適用於待檢 時 為紅色⑴之情形,如第三嶋示之紅色二 ,素驗與綠色(G)、藍色⑻鄰近位置像素值檢剛 〇-N7。不_地方僅在於__謝置換細卜_, 1B_TH置換為R_TH。 當待:象素值Nc為綠色(G)時,如第三C圖或第三。 水平圖中的綠色待檢測像素值Nc與藍色 水=目鄰’而第三阳中的綠色待檢測像素條則與紅色 、’鄰對於第二€圖所示情形需將㈣—刪置換為 100100060 表單編號A0IO1 第6頁/共26頁 1002000107-0 201230792 GM卜GM4,Β_ΤΗ置換為GBjh,且步驟214可表示如下· GM4=GM1+GM2+GM3 if GM4>Nc then GM4=Nc.[0013] Step 213, obtaining the difference between the pixel value to be detected and the average value of the four corner-to-close position pixel values M〇, N2, \IG XT*7*r N5, N7 as the corner proximity 100100060 Form No. A0101 Page 5 of 26 1002000107-0 201230792 BM3. Wherein, if the difference is less than 〇, the corner neighboring metric value BM3 is 0. This step 213 can be expressed as follows: BM3 = Nc - (N0 + N2 + N5 + N7) / 4 if BM3 < 0 then BM3 = 〇 [0014] [0016] [0017] Next, in step 214, according to the vertical The neighboring metric value BM1, the horizontal neighboring metric value BM2, and the corner neighboring metric value BM3 are obtained to obtain a comprehensive adjacent sound volume value BM4. Wherein, if the value is greater than the pixel value to be detected Nc, the syndrome neighboring metric value BM4 is equal to the pixel value to be detected Nc. This step 214 can be as follows: 'BM4=(BMl+BM2)/2+BM3 if BM4> Nc then BM4, Nc Finally, in step 215, it is determined whether the absolute difference of the integrated neighboring metric value βΜ4 pixel value Nc is a small neighboring metric. The critical value β, Τη = is determined as S 'the material detection pixel material can be _. The right part of this step 2 is as follows: Table if ABS(10)4-Nc)<BjrH_& may be a bad point. The above steps 211-215 are described with the pixel value to be detected as blue, ", these steps are also applicable. In the case of red (1) when it is to be checked, such as the red 2 in the third ,, the pixel value of the adjacent position in the green (G) and blue (8) check is just 〇-N7. No _ place is only __ Xie replacement Bu_, 1B_TH is replaced by R_TH. When the pixel value Nc is green (G), such as the third C map or the third. The green pixel to be detected Nc and the blue water = neighbor 'in the horizontal graph The green pixel to be detected in the third yang is red and the neighbor is replaced by the (4)-deletion to 100100060. The form number A0IO1 page 6/26 pages 1002000107-0 201230792 GM GM4, Β_ΤΗ is replaced by GBjh, and step 214 can be expressed as follows: GM4=GM1+GM2+GM3 if GM4>Nc then GM4=Nc.
[0018] 對於第三D圖所示情形,需將BM卜M4置換為GM卜GM4 ,β_ΤΗ置換為GR一Τίί,且步驟214可表示如下: GM4=GMHGM2 + GM3 if GM4>Nc then GM4 = Nc.[0018] For the case shown in the third D diagram, BM Bu M4 is replaced with GM GM4, β_ΤΗ is replaced by GR Τ ίί, and step 214 can be expressed as follows: GM4=GMHGM2 + GM3 if GM4>Nc then GM4 = Nc .
[0019] Ο 接下來’回到第二圖所示流程,於步驟22,檢視待檢 測像素值與鄰近同色像素值於特定方向的連續性(c〇n — tinuity)。本步驟22可減少或避免前__步驟21所造成 的誤判ItP舉例來說,如果通過待檢測像素值^存在 7斜⑽亮線條’其經前-步驟21檢視後,可能誤判該 待檢測像素值Ne為壞點。n由執行本步驟微,如果待 檢測像素綠鱗連輕,料能為壞點,㈣就不是 壞點。在本實施例中’若以待檢測像素麟為中心,則 其”鄰近同色像素點將形成3χ3陣列,如第五A圖所示之 藍色(B)待檢測像素值1^卿近同色像素值D0-N7。[0019] Ο Next, returning to the flow shown in the second figure, in step 22, the continuity of the pixel value to be detected and the adjacent color pixel value in a specific direction (c〇n — tinuity) is examined. This step 22 can reduce or avoid the misjudgment caused by the pre-step 21. For example, if there is a 7-streaked (10) bright line through the pixel to be detected, the pre-detected pixel may be misjudged. The value Ne is a bad point. n By performing this step, if the green scale of the pixel to be detected is light, the material can be a bad point, and (4) is not a bad point. In the present embodiment, 'if the pixel to be detected is centered, then the adjacent pixel of the same color will form a 3χ3 array, as shown in FIG. 5A. The blue (B) pixel value to be detected is 1^. D0-N7.
[0020]G 本實施例中,料方向義永平方向(H)、垂直方 心)右上方向(NE)及左上方向(NW)。為了檢視 △疋方向的特性’本實施例使用增強權重對所欲檢視方 。強其像素值。第六A@分別顯林平方向增強權重( -、垂直方向增強權重(B_V)、右上方向增強權重 -E)及左上方向增強權重(B—胛)。 [0021] 第七囷顯示步驟22的細部流程圖 用B—Η對每—行像純進行加權後 驟221可表示如下: 。首先,於步驟221使 ’取其絕對和值。本步 100100060 表單編號Α0101 第7頁/共26頁 1002000107-0 201230792 BH_1=ABS[(-1)*d〇+2*D3+(-1)*D5]; BH—2=ABS[(-l)*Dl+2*Nc+(-l)*D6]; BH_3=ABS[(-l)*D2+2*D4+(-l)*D7].[0020] In the present embodiment, the material direction is the Yongping direction (H), the vertical center, the upper right direction (NE), and the upper left direction (NW). In order to examine the characteristics of the Δ疋 direction, this embodiment uses the enhanced weight pair to view the desired side. Strong its pixel value. The sixth A@ respectively shows the Liningping direction enhancement weight (-, the vertical direction enhancement weight (B_V), the upper right direction enhancement weight -E) and the upper left direction enhancement weight (B-胛). [0021] The seventh step of the detailed step of displaying step 22 is performed by B-Η, and the weighting of each line image is performed as follows: . First, in step 221, 'the absolute sum value is taken. This step 100100060 Form No. 1010101 Page 7 / Total 26 Page 1002000107-0 201230792 BH_1=ABS[(-1)*d〇+2*D3+(-1)*D5]; BH—2=ABS[(-l) *Dl+2*Nc+(-l)*D6]; BH_3=ABS[(-l)*D2+2*D4+(-l)*D7].
[0022] [0023] [0024] [0025] 接著,於步驟222,使用B_V對每一行之絕對和值進行 加權後,取其絕對和值,作為水平方向的連續度量值^—Η 。至於垂直方向的連續度量值Β—ν、右上方向的連續度量 值Β_ΝΕ及左上方向的連續度量值Β_·,可依類似原則獲 得。本步驟222可表示如下: B_H=ABS[(-1)*BH_l+2*BH_2+(-l)*BH一3] 接著,於步驟223,取得水平方向的連續度量值β—Η、 垂直方向的連續度量值Β—ν、右上方向的連讀度量值Β—ΝΕ 及左上方向的連續度量值BJf:f當申的最大值或最小值, 作為紅合連續度量值B ( X,γ )。 最後,於步驟224,判定綜合連續度量值Β(χ,γ)是否 大於連續度量臨界值B_Line_TH。若判定為是,則待檢 測像素點具有非連續性。步驟223和224可表示如下: B(X,Y)_max=max(B_H, B_V, B_NE, B_NW); B(X, Y)_min=min(B_H, B_V, B_NE, B_NW); B(X,Y)=select_max_min?B(X,Y)_max:B(X,Y)_min; If B(X’Y)>B_Line—TH then Nc具非連續性; 其中,變數select_max_min係用以選擇B(X,Y)_maxi B(X’O_min。若選擇B(x,Y)_min,一般可保留較多的 影像細節,但較易誤判。 上述步驟22卜224雖以待檢測像素值Nc為藍色(B)時 100100060 表單編號A0101 第8頁/共26頁 1002000107-0 201230792 [0026] Ο [0027] ❹ [0028] 100100060 2為說明’ _ ’該些步驟同樣適用於待檢測像素值k ’’’、紅色⑴之情形’如第五B圖所示之紅色⑴待檢測 像素值Nc與鄰近同色像辛 各變數中的b置換為地方僅在於將 雖然第五A圖也可適用於待檢測像素值Nc為綠色 =,然而,由於綠色像素點的數量為藍色或紅色像 … 倍,因此,可使用第五C圖所示的綠色⑻待 像素值Nc與鄰近同色像素值训,。第六a圖所示的 水平方向增強權重(U)、垂直方向增強«(Β_ν)、 右上方向增強權重(β—NE)及左上方向增強權重( B—NW)也可適用於待檢測像素綠為綠色⑻的情形。 匕卜也可使用第圖所示的水平方向增強權重(G〜h )、垂直方向增強權重(G_v)、右上方向増強權重(〜 G—NE)及左上方向増強權重(G_NW)。 接下來’回到第二圖所示流,,於身_3,根據前— 步驟22所传到之特定方向,檢視待檢測像素值於該特定 方向之平π H藉由執行本步驟23後’如果待檢測像素 值Nc具非平滑性,射確定為壞點,㈣財是壞點。、 第八圖顯示步驟23的細部流程圖。首先,於步驟231運 算得到各特定方向的邊緣(edge)值。如前所述,本實 施例之特定方向係指水平方向⑻、垂直方向⑺、 右上方向(NE)及左上方向(Nff)。當待檢測像m 為藍色(B)時’如第五A圖所示’各方向的邊緣值可由 以下各式得到: v=[abs(Nc-dd+ABS(Nc_D6)]/2; 表單編號A0101 帛9頁/共26頁 1002000107-0 201230792 H=[ABS(Nc-D3)+ABS(Nc~D4)]/2; NE=[ABS(Nc-D2)+ABS(Nc-D5)]/2; NW=[ABS(Nc-D0)+ABS(Nc-D7)]/2.[0025] Next, in step 222, the absolute sum value of each row is weighted using B_V, and the absolute sum value is taken as a continuous metric value in the horizontal direction ^-Η. As for the continuous measure Β-ν in the vertical direction, the continuous measure Β_ΝΕ in the upper right direction, and the continuous measure Β_· in the upper left direction, it can be obtained according to a similar principle. This step 222 can be expressed as follows: B_H=ABS[(-1)*BH_l+2*BH_2+(-l)*BH-3] Next, in step 223, a continuous metric value in the horizontal direction β-Η, vertical direction is obtained. The continuous metric Β—ν, the continuous metric Β—ΝΕ in the upper right direction and the continuous metric BJf in the upper left direction: f is the maximum or minimum value of the application as the continuous metric B ( X, γ ). Finally, in step 224, it is determined whether the integrated continuous metric Β(χ, γ) is greater than the continuous metric threshold B_Line_TH. If the determination is YES, the pixel to be detected has a discontinuity. Steps 223 and 224 can be expressed as follows: B(X, Y)_max=max(B_H, B_V, B_NE, B_NW); B(X, Y)_min=min(B_H, B_V, B_NE, B_NW); B(X, Y)=select_max_min?B(X,Y)_max:B(X,Y)_min; If B(X'Y)>B_Line_TH then Nc has discontinuity; wherein the variable select_max_min is used to select B ( X, Y) _maxi B (X'O_min. If B(x, Y)_min is selected, more image details are generally retained, but it is easier to misjudge. The above step 22 224 is blue with the pixel value to be detected Nc. (B) Time 100100060 Form No. A0101 Page 8 / Total 26 Page 1002000107-0 201230792 [0026] [0028] 1000 [0028] 100100060 2 For the description ' _ ' These steps are equally applicable to the pixel value to be detected k '' ', the case of red (1)' as shown in the fifth B diagram, the red (1) pixel value to be detected Nc and b in the adjacent homochromatic image symplectic variables are replaced only by the fact that although the fifth A picture is also applicable to the pixel to be detected The value Nc is green=, however, since the number of green pixel points is blue or red like ..., the green (8) pixel value Nc and the adjacent color pixel value shown in the fifth C-picture can be used. a map The horizontal direction enhancement weight (U), the vertical direction enhancement «(Β_ν), the upper right direction enhancement weight (β-NE), and the upper left direction enhancement weight (B-NW) are also applicable to the case where the pixel to be detected is green (8). You can also use the horizontal direction enhancement weight (G~h), the vertical direction enhancement weight (G_v), the upper right direction reluctance weight (~G-NE), and the upper left direction reluctance weight (G_NW) as shown in the figure. 'Back to the flow shown in the second figure, in the body _3, according to the specific direction passed to the previous step 22, the pixel value to be detected is detected in the specific direction π H by performing this step 23 'if The pixel value to be detected Nc is non-smooth, the shot is determined to be a dead point, and (4) is a bad point. The eighth figure shows a detailed flowchart of step 23. First, the edge value of each specific direction is calculated in step 231. As described above, the specific direction of the present embodiment refers to the horizontal direction (8), the vertical direction (7), the upper right direction (NE), and the upper left direction (Nff). When the image to be detected is blue (B), 'as in the fifth. In the figure A, the edge values in each direction can be obtained from the following formulas. To: v=[abs(Nc-dd+ABS(Nc_D6)]/2; Form No. A0101 帛9 pages/Total 26 pages 1002000107-0 201230792 H=[ABS(Nc-D3)+ABS(Nc~D4)] /2; NE=[ABS(Nc-D2)+ABS(Nc-D5)]/2; NW=[ABS(Nc-D0)+ABS(Nc-D7)]/2.
[0029] [0030] [0031] 接著,根據步驟22所得到之特定方向,於步驟232,判 定該方向之邊緣值是否大於一臨界值。在本實施例中, 係判定邊緣值edge_value的一半是否大於邊緣臨界值 B_edge_value_th。若判定為是,則待檢測像素點具有 非平滑性。步驟231 -232可表示如下: if B(X,Y)=B_H then edge_value=H; else if B(X,Y)=B_V then edge_value=V; else if B(X,Y) = B_NE theri edge^value^NE; .....5 '..... else edge—value=NW; if edge_value/2>B-edge—value一th then Nc具非平 滑性. 上述步驟23卜232雖以待檢測像素值Nc為藍色(B)時 作為說明,然而,該些步驟同樣適用於待檢測像素值以 為紅色(R)之情形,如第五B圖所示。不同的地方僅在 於將各變數中的B置換為R。上述步驟231_232也可適用 於待檢測像素值Nc為綠色(G)之情形,如第圖所示 。不同的地方僅在於將各變數中的B置換為g。 根據上述第一圖所示流程,若能符合步驟21至23的各 種判定,即能判定待檢測像素值Nc為壞點。當其被判定 為壞點時,接下來可以對壞點像素值進行校正或補償( 簡稱“補點”)。在本實施例中,係根據壞點的鄰近同 色像素值以進行壞點的補償。 100100060 表單編號A0101 第10頁/共26頁 1002000107-0 201230792 - [0032] Ο [0033][0030] Next, according to the specific direction obtained in step 22, in step 232, it is determined whether the edge value of the direction is greater than a critical value. In this embodiment, it is determined whether half of the edge value edge_value is greater than the edge threshold B_edge_value_th. If the determination is YES, the pixel to be detected has non-smoothness. Steps 231-232 can be expressed as follows: if B(X,Y)=B_H then edge_value=H; else if B(X,Y)=B_V then edge_value=V; else if B(X,Y) = B_NE theri edge^ Value^NE; .....5 '..... else edge—value=NW; if edge_value/2>B-edge—value a th then Nc is non-smooth. The above step 23 232 is waiting The description is made when the detection pixel value Nc is blue (B), however, the same steps are equally applicable to the case where the pixel value to be detected is red (R), as shown in FIG. The difference is only in the replacement of B in each variable with R. The above step 231_232 can also be applied to the case where the pixel value Nc to be detected is green (G), as shown in the figure. The only difference is that the B in each variable is replaced by g. According to the flow shown in the first figure above, if the various decisions of steps 21 to 23 can be met, it can be determined that the pixel value Nc to be detected is a bad point. When it is judged to be a dead pixel, the pixel value of the dead pixel can be corrected or compensated (referred to as "complement point"). In this embodiment, the compensation of the dead pixels is performed based on the adjacent color pixel values of the dead pixels. 100100060 Form No. A0101 Page 10 of 26 1002000107-0 201230792 - [0032] Ο [0033]
[0034] [0035] 第九圖顯示當壞點Nc為藍色(如第五Α圖所示)或者為 紅色(如第五B圖所示)時的補點流程。首先,於步驟91 ,將八個鄰近同色像素值D0-D7進行排序,以得到最大值 。接著,於步驟9 2,根據該最大值,將距離該最大值較 遠的五個鄰近同色像素值,連同壞點的像素值Nc進行加 權平均,以得到壞點的補償值。例如,當D0為最大值時 ,則五個鄰近同色像素值即為D2、D5、D4、D6、D7 ;當 D1為最大值時,則五個鄰近同色像素值即為D3、D4、D5 、D6、D7。在一實施例中,壞點的權重為3/8,而五個鄰 近同色像素點的權重皆為1/8。在另一實施例中,壞點的 權重為1/16,而五個鄰近同色像素點的權重皆為3/16。 第十圖顯示當壞點Nc為綠色時的補點流程。第十一圖 顯示綠色(G)壞點像素值Nc與鄰近同色像素值N0-N7。 首先,於步驟101,將四個距壞點Nc最近的同色像素值 D0-D3進行排序,以得到排序最小值minl_g,可表示如 下: minl_g=sorting(D0-D3). 於步驟102,對前述四個距壞點Nc最近的同色像素值 D0-D3進行運算,以得到最近像素平均值avg_g,可表示 如下: avg_g=avg(D0-D3). 於步驟103,得到四個距壞點Nc最近的同色像素值 D0-D3連同壞點Nc的平均中值(median),且得到四個 距壞點Nc次近的同色像素值D4-D7連同壞點Nc的平均中 值。接著,取得此二平均中值之平均值median_g。 100100060 表單編號A0101 第11頁/共26頁 1002000107-0 201230792 [0036] 最後,於步驟104,根據上述步驟10卜1〇3所得到的部 分統計值,以得到該壞點的補償值。在—實施例中,壞 點的補償值等於平均中值之平均值median—g以及排序最 小值minl_g兩者的平均值,亦即avg(media_g, minl—g)。在另一實施例中,壞點的補償值等於最近像素 平均值aVg_g以及排序最小值minl—g兩者的平均值,亦 即avg(avg_g,minl_g)。在又一實施例中,壞點的補 償值等於排序最小值心!』;或等於平均中值之平均值 median_g ;或等於最近像素平均值3^^。 闕 卩上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之巾請專利;凡其它未賴發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申 請專利範圍内。 【圖式簡單說明】 酬第-圖顯示-影像感測H的光感元件陣列及彩色遽波陣 列。 第二圖顯示本發明實施例之影像感測壞像素點(_ P i X e 1 )檢測方法的流程圖。 第二A圖至第二D圖顯示待檢測像素值與鄰近位置像素值 第四圖顯示第一圖之步驟2 1的細部流程圖。 第五A圖至第五C圖顯示待檢測像素值與鄰近同色像素值 第六A圖及第六B圖顯示水平方向增強權重、垂直方向增 強權重、右上方向增強權重及左上方向增強權重。 100100060 表單編號A0101 第12頁/共26頁 1002000107-0 201230792 第七圖顯示第二圖之步驟2 2的細部流程圖。 第八圖顯示第二圖之步驟2 3的細部流程圖。 第九圖顯示當壞點為藍色或紅色時的補點流程。 第十圖顯示當壞點為綠色時的補點流程。 第十一圖顯示綠色壞點像素值與鄰近同色像素值。 【主要元件符號說明】 [0039] Ο[0035] The ninth diagram shows the fill point flow when the dead point Nc is blue (as shown in the fifth diagram) or red (as shown in FIG. 5B). First, in step 91, eight adjacent color-matching pixel values D0-D7 are sorted to obtain a maximum value. Next, in step 92, according to the maximum value, five adjacent color-matching pixel values far from the maximum value are weighted and averaged together with the pixel value Nc of the dead pixels to obtain a compensation value of the dead pixels. For example, when D0 is the maximum value, the values of five adjacent color pixels are D2, D5, D4, D6, and D7; when D1 is the maximum value, the values of five adjacent color pixels are D3, D4, and D5. D6, D7. In one embodiment, the weight of the dead pixels is 3/8, and the weights of the five adjacent color pixels are all 1/8. In another embodiment, the dead pixels have a weight of 1/16, and the five adjacent color-coded pixels have a weight of 3/16. The tenth graph shows the fill point flow when the dead point Nc is green. The eleventh figure shows the green (G) dead pixel value Nc and the adjacent color pixel values N0-N7. First, in step 101, the same color pixel values D0-D3 closest to the dead pixels Nc are sorted to obtain a sorting minimum value minl_g, which can be expressed as follows: minl_g=sorting(D0-D3). In step 102, the foregoing The same color pixel values D0-D3 closest to the dead point Nc are calculated to obtain the nearest pixel average value avg_g, which can be expressed as follows: avg_g=avg(D0-D3). In step 103, four nearest dead pixels Nc are obtained. The homochromatic pixel values D0-D3 together with the median of the dead pixels Nc, and the four average color pixel values D4-D7 closest to the bad point Nc, together with the mean median of the dead pixels Nc, are obtained. Next, the average median_g of the two average medians is obtained. 100100060 Form No. A0101 Page 11 of 26 1002000107-0 201230792 [0036] Finally, in step 104, the partial statistical value obtained according to the above step 10, 1〇3, is obtained to obtain the compensation value of the dead point. In the embodiment, the compensation value of the dead point is equal to the average value of the mean median_g of the average median and the minimum value minl_g of the order, that is, avg (media_g, minl_g). In another embodiment, the offset value of the dead pixel is equal to the average of both the nearest pixel average aVg_g and the sort minimum minl-g, i.e., avg(avg_g, minl_g). In yet another embodiment, the penalty value of the dead point is equal to the sorted minimum heart! Or equal to the average median value of median_g; or equal to the nearest pixel average of 3^^. The above description is only for the preferred embodiment of the present invention, and is not intended to limit the invention of the invention. Any equivalent changes or modifications made in the spirit of the invention disclosed herein should be included. Within the scope of the patent application. [Simple description of the diagram] Reward-picture display-image sensing H array of light-sensitive elements and color chopping array. The second figure shows a flow chart of a method for detecting an image sensing bad pixel point (_P i X e 1 ) according to an embodiment of the present invention. The second to second figures D show the pixel value to be detected and the pixel value of the adjacent position. The fourth figure shows a detailed flowchart of the step 2 1 of the first figure. The fifth to fifth C pictures show the pixel values to be detected and the adjacent color pixel values. The sixth and sixth panels show the horizontal direction enhancement weight, the vertical direction enhancement weight, the upper right direction enhancement weight, and the upper left direction enhancement weight. 100100060 Form No. A0101 Page 12 of 26 1002000107-0 201230792 The seventh diagram shows the detailed flow chart of step 2 2 of the second figure. The eighth figure shows a detailed flow chart of step 2 3 of the second figure. The ninth figure shows the fill point flow when the dead point is blue or red. The tenth figure shows the fill point flow when the dead point is green. The eleventh figure shows the green dead pixel value and the adjacent color pixel value. [Main component symbol description] [0039] Ο
10 光感元件陣列 12 彩色濾波陣列 21-23 步驟 211-215 步驟 221-224 步驟 231-232 步驟 91-92 步驟 101-104 步驟 Nc 待檢測像素/壞點 N0-N7 像素 R 紅色 G 綠色 B 藍色 100100060 表單編號Α0101 第13頁/共26頁 1002000107-010 Photosensor array 12 Color filter array 21-23 Steps 211-215 Steps 221-224 Steps 231-232 Steps 91-92 Steps 101-104 Step Nc Pending pixels/Bad points N0-N7 Pixels R Red G Green B Blue Color 100100060 Form number Α 0101 Page 13 / Total 26 pages 1002000107-0
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100100060A TWI448154B (en) | 2011-01-03 | 2011-01-03 | Method of detecting a bad pixel of a sensed image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100100060A TWI448154B (en) | 2011-01-03 | 2011-01-03 | Method of detecting a bad pixel of a sensed image |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201230792A true TW201230792A (en) | 2012-07-16 |
TWI448154B TWI448154B (en) | 2014-08-01 |
Family
ID=46934240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100100060A TWI448154B (en) | 2011-01-03 | 2011-01-03 | Method of detecting a bad pixel of a sensed image |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI448154B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7460688B2 (en) * | 2004-12-09 | 2008-12-02 | Aptina Imaging Corporation | System and method for detecting and correcting defective pixels in a digital image sensor |
TWI277792B (en) * | 2005-03-22 | 2007-04-01 | Dynacolor Icn | Defective pixel tester for flat panel display and the measuring method thereof |
TW200828982A (en) * | 2006-12-22 | 2008-07-01 | Altek Corp | Real-time detection method for bad pixel of image |
TW200951537A (en) * | 2008-06-13 | 2009-12-16 | Chroma Ate Inc | Method and apparatus for detecting dead pixels of a flat panel display |
-
2011
- 2011-01-03 TW TW100100060A patent/TWI448154B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI448154B (en) | 2014-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI516132B (en) | An image processing apparatus, an image processing method, and a program | |
JP5454075B2 (en) | Image processing apparatus, image processing method, and program | |
EP2130176B1 (en) | Edge mapping using panchromatic pixels | |
JP5918915B2 (en) | Method and device for creating an improved color image using a sensor having a color filter | |
JP4395789B2 (en) | Image processing apparatus, imaging apparatus, image processing method, and program | |
KR101980931B1 (en) | Image processing device, image processing method, and recording medium | |
US8358835B2 (en) | Method for detecting and correcting chromatic aberration, and apparatus and method for processing image using the same | |
TWI542217B (en) | Pixel value calibration device and method | |
TWI547169B (en) | Image processing method and module | |
TWI449027B (en) | Adaptive pixel compensation method | |
CN110458826B (en) | Ambient brightness detection method and device | |
US20110158515A1 (en) | Method for removing color fringe in digital image | |
JP2013066157A (en) | Image processing apparatus, image processing method, and program | |
JPWO2018230119A1 (en) | Imaging device, imaging device, and image processing method | |
TWI528815B (en) | Image processing method capable of reducing image noise | |
CN116503259B (en) | Mosaic interpolation method and system | |
KR100915970B1 (en) | Method and apparatus for compensating color of image obtained from image sensor | |
TW201230792A (en) | Method of detecting a bad pixel of a sensed image | |
TW201445506A (en) | Method and apparatus for determining interpolating direction for color demosaicking and non-transitory machine-readable storage medium | |
CN103650473B (en) | Automatic focusedimage method | |
CN103002230B (en) | Adaptability pixel compensation method | |
CN109523469A (en) | Image-scaling method and device | |
CN107517367B (en) | Baeyer area image interpolation method, device, picture processing chip and storage device | |
CN108111785A (en) | Image processing method and device, computer readable storage medium and computer equipment | |
KR20190036253A (en) | Gradient-Based RGBW CFA Demosaicking Technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |