TW201230126A - Field emission device and field emission display - Google Patents

Field emission device and field emission display Download PDF

Info

Publication number
TW201230126A
TW201230126A TW100100117A TW100100117A TW201230126A TW 201230126 A TW201230126 A TW 201230126A TW 100100117 A TW100100117 A TW 100100117A TW 100100117 A TW100100117 A TW 100100117A TW 201230126 A TW201230126 A TW 201230126A
Authority
TW
Taiwan
Prior art keywords
electrode
disposed
field emission
insulating substrate
leads
Prior art date
Application number
TW100100117A
Other languages
Chinese (zh)
Other versions
TWI421896B (en
Inventor
Peng Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW100100117A priority Critical patent/TWI421896B/en
Publication of TW201230126A publication Critical patent/TW201230126A/en
Application granted granted Critical
Publication of TWI421896B publication Critical patent/TWI421896B/en

Links

Abstract

The present invention relates to a field emission device. The field emission device includes an insulating substrate, a plurality of row electrode down-leads, a plurality of column electrode down-leads, and a plurality of electron emission units. The plurality of row electrode down-leads are located on the insulating substrate and substantially parallel. The plurality of column electrode down-leads are located on the insulating substrate and substantially parallel. The plurality of row electrode down-leads set an angle relative to the plurality of column electrode down-leads to define a plurality of crosses. Each electron emission unit is located on one of the plurality of crosses. The electron emission unit includes a second electrode electrically connected to the row electrode down-lead, a first electrode electrically connected to the column electrode down-lead and surrounding the at least part of the second electrode, and a plurality of electron emitters located on a surface of at least one of the first electrode and second electrode. A field emission display using the field emission device is also related.

Description

201230126 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種場發射電子器件及場發射顯示裝置,尤 其涉及一種平面型場發射電子器件及場發射顯示裝置。 【先前技術】 [0002] 場發射電子器件在低溫或者室溫下工作,與熱電子發射 器件相比具有功耗低、回應速度快以及低放氣等優點。 場發射電子器件在場發射顯示裝置中具有廣泛的應用。 [0003] 先前技術中的場發射顯示裝置包括一絕緣基底、複數個 畫素單元、以及複數個行電極引線與複數個列電極引線 °其中,所述複數個行電極引線與複數個列電極引線分 別平行且等間隔設置於絕緣基底表面。所述複數個行電 極引線與複數個列電極引線相互交叉設置,且每兩個相 鄰的行電極引線與兩個相鄰的列電極引線形成—網格。 所述複數個畫素單元按照預定規律排列,間隔設置於上 述網格中’且每個網格中設置一個畫素單元。所述畫素 單元包括一陰極電極,一設置於該陰極電極表面的電子 發射體,一與該陰極電極間隔設置的陽極電極,以及一 設置於該陽極電極表面的螢光粉層。當在該陰極電極與 陽極電極之間施加—電壓,電子發射體發射電子,以轟 擊螢光粉層發光。 _]然、而,上述場發射顯示裝置中,由於每個象素單元僅包 括-個陰極電極和—個陽極電極間隔設置,&,該場發 射顯示裝置的電子發射效率較低,從而使得場發射顯示 裝置亮度較差。 100100117 表單編號A0101 第4頁/共33頁 1002000200-0 201230126 [發明内容】 [0005] 有鑒於此,提供一種電子發射效率較高的場發射電子器 件和具有較高亮度的場發射顯示裝置實為必要。 [0006] 一種場發射電子器件,包括:一絕緣基底具有一表面; 複數個行電極引線與複數個列電極引線分別平行且間隔 设置於所述絕緣基底的表面,該複數個行電極引線與複 數個列電極引線相互交叉設置定義複數個交叉處,所述 行電極引線與列電極引線在交叉處電絕緣設置;以及複 數個電子發射單元設置於絕緣基底表面,且每個電子發 〇 射單元對應設置於一傭交叉處,其中,所述每個電子發 射單元進一步包括:一第二電極與所述列電極引線電連 接;一第一電極與該第二電極間隔設置且至少部分環繞 所述第二電極設置,該第一電極與所述#電極引線電連 接;以及複數個電子發射體設置於所述第一電極和所述 第二電極中的至少一個電極的表面。 [0007] —種場發射顯示裝置,其包括:一絕緣基底具有一表面 0 ;複數個行電極引線與複數個列電極引線分別平行且間 隔設置於所述絕緣基底的表面,該複數個行電極引線與 複數個列電極引線相互交又設置定義複數個交叉處,所 述行電極引線與列電極引線在交叉處電絕緣設置;以及 複數個畫素單元設置於絕緣基底表面,每個電子發射單 元對應設置於一個交叉處,其中,每個畫素單元包括: 一陽極電極與所述列電極引線電連接;一陰極電極與該 陽極電極間隔設置且至少部分環繞所述陽極電極設置, 且該陰極電極與行電極引線電連接;複數個電子發射體 100100117 表單編號A0101 第5頁/共33頁 1002000200-0 201230126 設置於所述陰極電極表面且至少部分環繞所述陽極電極 設置;以及一螢光粉層設置於該陽極電極表面。 [0008] 一種場發射顯示裝置,其包括:一絕緣基底具有一表面 :複數個行電極引線與複數個列電極引線分別平行且間 隔設置於所述絕緣基底的表面,該複數個行電極引線與 複數個列電極引線相互交叉設置定義複數個交叉處,所 述行電極引線與列電極引線在交叉處電絕緣設置;以及 複數個畫素單元設置於絕緣基底表面,每個電子發射單 元對應設置於一個交叉處,其中,每個畫素單元包括: 一陰極電極與所述列電極引線電連接;一陽極電極與該 陰極電極間隔設置且至少部分環繞所述陰極電極設置, 且該陽極電極與行電極引線電連接;一螢光粉層設置於 該陽極電極表面且至少部分環繞所述陰極電極設置;以 及複數個電子發射體設置於所述陰極電極表面。 [0009] 相較於先前技術,所述場發射電子器件的一電極至少部 分環繞另一電極設置,且複數個電子發射體設置於至少 一個電極的表面,從而使得場發射顯示裝置具有較高場 發射電流,且採用該場發射電子器件的場發射顯示裝置 具有較高的亮度。 【實施方式】 [0010] 以下將結合附圖對本發明的場發射電子器件及場發射顯 示裝置作進一步的詳細說明。可以理解,所述場發射電 子器件及場發射顯示裝置可以包括複數個畫素單元,本 發明實施例附圖僅給出部分畫素單元為例進行說明。 請參閱圖1、圖2,本發明第一實施例提供一種場發射顯 表單編號A0101 第6頁/共33頁 [0011] 100100117 201230126 [0012] Ο [0013]Ο [0014] 100100117 示裝置200,其包括—絕緣基底2〇2,複數個畫素單元 220、以及複數個行電極引線204與複數個列電極引線 206。 所述複數個行電極引線204與複數個列電極引線2〇6分別 平行、間隔設置於所述絕緣基底2〇2的表面。優選地,所 述複數個行電極引線204與複數個列電極引線2〇6分別平 行、等間隔設置。所述複數個行電極引線2〇4與複數個列 電極引線206相互交又設置以定義複數個交叉處2丨4和複 數個網格(圖未標)。所述複數個行電.極引線2〇4與複數 個列電極引線2 0 6在交叉處214電絕緣,優選地,每個行 電極引線204在交叉處214斷開。七·述每個'交又處214定 位一個畫素單元220 »所述複數個畫素單元220對應交又 處214— 一設置’從而形成一矩陣。可以理解,所述場發 射顯示裝置200工作時需要封裝在一真空環境中。 所述絕緣基底202為一絕緣基板,如陶瓷基板、玻璃基板 、樹脂基板、石英基板等。所述絕緣基底202的大小與厚 度不限,本領域技術人員可以根據實際需要選擇。本實 施例中,所述絕緣基底202優選為一玻璃基板,其厚度大 於1毫米,邊長大於1厘米。 所述行電極引線204與列電極引線206為導電體’如金屬 層等。本實施例中,該複數個行電極引線204與複數個列 電極引線206優選為採用導電漿料列印的橫截面為矩形的 平面導電體,且該複數個行電極引線204的行間在巨為50微 米~2厘米,複數個列電極引線206的列間距為50微米〜2 厘米。該行電極引線204與列電極引線206的寬度為30微 表單編號A0101 第7頁/共33頁 1002000200-0 201230126 米〜100微米,厚度為10微米~5〇微米。本實施例中,該 行電極引線204與列電極引線206的交又角度為1()度到9〇 度,優選地,該㈣極引線2〇4與列電極引線2〇6相互垂 直。本實施例中’通過絲網列印法將導電漿料列印於絕 緣基底202表面製備行電極引線204與列電極引線2〇6。 該導《料的成分包括金屬粉、低㈣玻璃粉和黏結劑 ,其中,該金屬粉優選為銀粉,該減劑優選為松油醇 或乙基纖維素。其中,金屬粉的重量比為5〇〜9〇%,低熔 點玻璃粉的重量比為2〜ι〇%,黏結劑的重量比為8 4〇%。 本實施例中,將所述行電極引線2〇4的延伸方向定義為X 方向,所述列電極引線2〇6的延伸方向定義為γ方向。 [0015] 所述每個晝素單元220設置於交又處214相鄰的至少兩個 網格中。所述每個畫素單元220包括一第一電極212、一 第二電極210、複數個電子發射體2〇8、以及一螢光粉層 218。所述第一電極212與第二電極210間隔設置於絕緣 基底202表面,且該第一電極212至少部分環繞所述第二 電極210設置。所謂“至少部分環绛所述第二電極21()設 置”指所述第一電極212至少部分圍繞所述第二電極21〇 延伸,從而形成“L”形、“U” 形、“C”形、半環形 或環形等。優選地,所述第二電極210設置於行電極引線 204與列電極引線206的交叉處214,且設置於交又處214 相鄰的四個網格中。所述第一電極21 2環繞第二電極21〇 設置,也設置於交叉處214相鄰的四個網格中。所述第_ 電極212與列電極引線206交疊處設置有一介質絕緣層 216。所述第二電極210與行電極引線204間隔設置。 100100117 表單編號A0101 第8頁/共33頁 1002000200-0 201230126 [0016]所述第一電極212作為陰極電極,且分別與交叉處214兩 側斷開的行電極引線204電連接,從而使得斷開的行電極 引線204電連接。所述第二電極210作為陽極電極,炅與 所述列電極引線206電連接。所述複數個電子發射體208 設置於所述第一電極212表面,且至少部分環繞所述第二 電極210設置。所述螢光粉層218設置於所述第二電極 , 210的一表面。所述電子發射體208發射的電子tT以打到 螢光粉層218而使之發光。 ^ 〔°017] 所述第二電極210為導電體,如金屬層、ιτο層、導電漿 料等。所述第二電極210直接與所述列電極引線2 0 6接觸 ,從而實現電連接。所述第二電極210為一平面導電體, 其形狀和尺寸依據實際需要決定。本f施例中,所述第 二電極210為一正方形平面導電體。所述第二電極21〇的 邊長為30微米~1. 5厘米,厚度為10微米〜500微米。優選 地,所述第二電極210的邊長為100微米〜100微米,厚度 為20微米〜100微米。 Ο [_] 所述第一電極212為導電體’如金屬層、ITO層、導電聚 料等。所述第一電極212為一橫載面為矩形的平面導電體 ,其形狀和尺寸依據實際需要決定。優選地,所述第一 電極212的厚度大於所述第二電極210的厚度,以防止相 鄰畫素單元220之間的電場干擾。本實施例中,所述第一 電極212的厚度大於所述第二電極210的厚度可以防止第 二電極210的電場覆蓋刻相鄰畫素單元220的第,電極 212表面。本實施例中,所述第一電極212為方框形,且 將所述第二電極210全部環繞。所述第一電極21 2的寬度 100100117 表單編號A0101 1〇〇2〇〇〇2〇〇,〇 201230126 為30微米〜1 000微米,厚度為1〇微米〜5〇〇微米。所述第 -電極212與第二電節〇的材料均為導電漿料。所述第 -電節2與第二電極可通過絲網列印法列印於所述 絕緣基底2G2表面。可以埋解,所述第二電極㈣可以邀 所述列電極引線206-體歹“⑽。所述第一電極212可 以與所述行電極引線204〜體列印形成。 [0019] [0020] 所述營光粉層218設置於所述第二電極2H)遠離絕緣基底 202的表面。所述瑩光粉層川的材料可為白色螢光粉― 也可以為單色螢光粉,例如紅m藍色螢光粉等 ’當電子A擊螢光粉層218時可發出自光或其他顏色可見 光。該蝥光粉層218可以採用沈積法、列印法、光刻法或 塗敷法设置於第-電極21G的表面6該營光粉層218的^ 度可為5微米至50微米。 所述複數個電子發射體208設置於所述第一電極212表面 ,且至少部分環繞所述第二電極2〗〇設置。所述每個電子 發射體208具有一電子發射端222與雜述第二電極21 〇間 隔設置。優選地,所述複數個電子發射體2〇8為設置於所 述第一電極212與第二電極21〇之間的線狀體。所述電子 發射體208的一端與所述第一電極212電連接,另—端指 向所述第二電極210,並向第二電極210延伸作為電子發 射端222。所述複數個電子發射體208與所述絕緣基底 202間隔設置’且沿著平行於絕緣基底2〇2表面的方向延 伸。所述電子發射體2〇8可選自矽線、奈米碳管、碳纖維 及奈米碳管線等中的一種或複數種。本實施例中,所述 複數個電子發射體2 0 8為複數個平行排列的奈米碳管線, 100100117 表單編號A0101 第10頁/共33頁 1002000200-0 201230126 母個奈米碳管線的一端與第一電極212電連接,另一端指 向第二電極210表面的螢光粉層218,作為電子發射體 208的電子發射端222。該電子發射端222與第二電極210 之間的距離為10微米〜500微米。優選地,該電子發射端 222與第二電極210之間的距離為5〇微米〜3〇〇微米。所述 電子發射體208的延伸方向基本平行於所述螢光粉層gig 的表面。可以理解,所述電子發射體2〇8的電子發射端 222也可以懸空設置於螢光粉層218的上方。 [0021] Ο ❹ 所述電子發射體208 —端與第一電極212的電連接方式可 以為直接電連接或通過一導電膠電連接,也可以通過分 子間力或者其他方式實現。該奈米碳管線的長度為1〇微 米~1厘米,且相鄰的奈米碳管線之間的間距為丨微米~5〇〇 微米。該奈米碳管線包括複數個沿奈米碳管線長度方向 排列的奈米碳管。該奈米碳管線可為複數個奈米碳管組 成的純結構,所述“純結構”指該奈米碳管線中奈米碳 管未經過任何化學修飾或功能化處理。優選地,所述奈 米碳管線為自夫撐結構。所謂“自支撐結構,,即該奈米 碳管線無需通過一支撐體支撐,也能保持自身特定的形 狀。所述奈米碳管線中的奈米碳管通過凡得瓦(Van Waals)力相連,奈米碳管的軸向均基本沿奈米碳管線的 長度方向延伸’其中’每—奈米碳管與在該延伸方向上 相鄰的奈米碳管通過凡得瓦力首尾相連^所述奈米碳管 線中的奈米碳管包括單壁、雙壁及多壁奈米碳管中的一 種或複數種。所述奈米碳管的長度額為1Q微米〜1〇〇微 米,且奈米碳管的直徑小於15奈米。 100100117 表單編號A0101 第U頁/共33頁 1002000200-0 201230126 [0022] 所述複數個電子發射體2 0 8可以通過列印奈米碳管漿料層 或鋪設奈米碳管膜的方法製備。所述奈米碳管漿料包括 奈米碳管、低熔點玻璃粉以及有機載體。其中,有機載 體在烘烤過程中蒸發,低熔點玻璃粉在烘烤過程中熔化 並將奈米碳管固定於電極表面。 [0023] 具體地,本實施例中的電子發射體208的製備方法包括以 下步驟: [0024] 步驟一,提供至少兩個奈米碳管膜。 [0025] 所述奈米碳管膜從一奈米碳管陣列拉取獲得。該奈米碳 管膜中包括複數個首尾相連且定向排列的奈米碳管。所 述奈米碳管膜的結構及其製備方法請參見范守善等人於 2007年2月12日申請的,於2010年7月11公告的第 13271 77號台灣公告專利申請“奈米碳管薄膜結構及其製 備方法”,申請人:鴻海精密工業股份有限公司。 [0026] 步驟二,將該至少兩個奈米碳管膜交又鋪設覆蓋於第一 電極212和第二電極210表面。 [0027] 本實施例中,所述兩個奈米碳管膜中的奈米碳管的延伸 方向分別沿著行電極引線2 0 4與列電極引線2 0 6的長度方 向,即兩個奈米碳管膜中的奈米碳管的延伸方向基本垂 直。可以理解第一電極212為其他形狀,如圓環形時,可 以將複數個奈米碳管薄膜沿不同的交叉角度重疊鋪設於 第一電極212和第二電極210表面,以確保奈米碳管膜中 的奈米碳管的延伸方向均基本為從第一電極212向第二電 極210延伸。進一步的,可用有機溶劑對所述奈米碳管膜 100100117 表單編號A0101 第12頁/共33頁 1002000200-0 201230126 [0028] [0029]Ο ❹ [0030] [0031] 進行處理,該有機溶劑為揮發性有機溶劑,如乙醇、甲 醇、丙酮、二氯乙烷或氯仿,本實施例中優選採用乙醇 。該有機溶劑揮發後,在揮發性有機溶劑的表面張力的 作用下所述奈米碳管膜會部分聚集形成奈米碳管線。 步驟三,切割奈米碳管膜,使第一電極21 2與第二電極 210之間的奈米碳管膜斷開,形成複數個平行排列的奈米 碳管線固定於第一電極212表面作為電子發射體208。 所述切割奈米碳管薄膜結構的方法為鐳射燒蝕法、電子 束掃描法或加熱熔斷法。本實施例中,優選採用鐳射燒 蝕法切割奈米碳管膜。在雷射光束掃描時,空氣中的氧 氣會氧化鐳射照射到的奈米碳管,使得奈米碳管蒸發, 從而使奈米碳管膜產生斷裂,在奈米碳管膜的斷裂處會 形成一電子發射端222,且電子發射端222與第二電極 210之間形成一間隔。本實施例中,所用的雷射光束的功 率為10〜50瓦,掃描速度為0. 1〜1 0000毫米/秒。所述雷 射光束的寬度為1微米〜400微米。該步驟中,同時將行電 極引線204與列電極引線206表面以及網格中多餘的奈米 碳管膜去除。 進一步,該場發射顯示裝置200的每個畫素單元220可以 進一步包括一固定元件224設置於第一電極212表面,以 將複數個電子發射體208固定於第一電極212表面。所述 固定元件224可由絕緣材質或導電材質構成。本實施例中 ,該固定元件224為導電漿料層。 請參閱圖3,本發明第二實施例提供一種場發射顯示裝置 100100117 表單編號Α0101 第13頁/共33頁 1002000200-0 201230126 300 ’其包括-絕緣基底3〇2,複數個畫素單元32〇、以 及複數個仃電極引線3G4與複數個列電極引線。所述場發 射顯示裝置3GG與本發明第—實施例提供的場發射顯示裝 置20 0的結構基本相同,其區別在於:所述第二電極 具有至少一個與第一電極312相對設置且背向所述絕緣基 底302設置的承載面3102。 [0032] [0033] 所謂“相對第一電極312設置”指所述承載面31〇2面對所 述第一電極312設置,從而使得所述第一電極31 2和第二 電極31 0分別位於承載面31 〇 2的兩側。所謂“背向所述絕 緣基底3 0 2设置指.所述承載面31:0_2至少部分面向遠離所 述絕緣基底302的方向。所述承載面3102可以為平面或曲 面。當所述承載面31 02為平面時,所述承載面3102與絕 緣基底302的表面形成一大於零度且小於.90度的夾角。優 選地,該夾角的角度大於等於30度且小於等於60度。當 所述承載面3102為曲面時,該承載面3102可以為凸面或 凹面。所述承載面3102可以輿絕緣基底302的表面直接相 交或間隔設置。 具體地,本實施例中,所述第二電極310為四棱錐體,其 邊長沿著遠離絕緣基底302的方向逐漸減小,從而使該第 二電極310具有四個分別與四周的第一電極312相對設置 的斜面作為承載面3102。所述螢光粉層318分別設置於所 述第二電極310的四個承載面3102。所述每個承載面 3102與絕緣基底302表面的夾角大於等於30度且小於等 於60度。所述第二電極310可通過複數次列印導電衆料, 且逐漸減小列印的導電漿料層的邊長的方法形成。由於 100100117 表單編號A0101 第14頁/共33頁 1002000200-0 201230126 [0034] ❹ [0035] Ο [0036] 100100117 ‘電製料本身具有一疋的流鴻性,從而形成承載面3 1 〇 2 〇 本實施例中,由於所述第二電極31〇具有四個分別與四周 的電子發射端322相對設置且背向所述絕緣基底3〇2設置 的承載面3102,且所述螢光粉層318分別設置於四個承栽 面3102,使得螢光粉層318不但具有較大的面積,而且容 易被電子發射端322發射的電子轟擊到,從而使得場發射 顯示裝置300具有較高的亮度。 清參閱圖4和圖5 ’本發明第三實施例提供一種場發射顯 示裝置400,其包括一絕緣基底402,複政個畫素單元 420、以及複數個行電極引線4〇4與複數個列電極引線 406。所述場發射顯示裝置400與本發明第一實施例提供 的場發射顯示裝置200的結構基本相同’矣區別在於:所 述第二電極410為圓形平面導電體,所述第一電極412為 圓環形,所述第一電極412用作陽極電極,所述第二電極 41〇用作陰極電極,所述複數個電身發_體4〇8設置於所 述第二電極410表面’所述螢_背屬418設置於第一電極 412表面。 具體地,本實施例中,所述第一電極412為橫截面為矩形 的圓環形平面導電體。進一步,本實施例中,所述第一 電極412的厚度大於所述第二電極410的厚度可以防止相 鄰畫素單元420的第一電極412的陽極電場覆蓋到該第二 電極410表面。所述螢光粉層418設置於所述第一電極 412遠離絕緣基底402的表面。所述複數個電子發射體 408設置於第二電極410表面,且電子發射體408的電子 表單編號Α0101 第15頁/共33頁 1002000200-0 201230126 發射端422分別向周 γ 闺的弟一電極412方向延伸。本實施 Η中,所述複數個 41〇 子發射體4〇8為複數個橫穿第二電極 交又設置的奈米碳管線。 [0037] [0038] [0039] 她例中,所述坌_ 一电極410表面設置有複數個電子養 射體408,且複數個 回電子發射體408的電子發射端422分 別指向周圍的第一曾 故,提高每個畫素單元42〇 A發射電流°而且,所述螢光粉層418設置於環繞所劫 '%極41〇的㈣第—電極412表面,具有較大的發光 面積。故,所述場發射顯示裝置綱具有較高的亮度。201230126 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a field emission electronic device and a field emission display device, and more particularly to a planar field emission electronic device and a field emission display device. [Prior Art] [0002] Field emission electronic devices operate at low temperatures or at room temperature, and have advantages of low power consumption, fast response, and low venting compared with thermal electron-emitting devices. Field emission electronics have a wide range of applications in field emission display devices. [0003] A field emission display device of the prior art includes an insulating substrate, a plurality of pixel units, and a plurality of row electrode leads and a plurality of column electrode leads, wherein the plurality of row electrode leads and the plurality of column electrode leads They are respectively disposed in parallel and at equal intervals on the surface of the insulating substrate. The plurality of row electrode leads and the plurality of column electrode leads are disposed to intersect each other, and each of the two adjacent row electrode leads forms a grid with two adjacent column electrode leads. The plurality of pixel units are arranged in a predetermined pattern, spaced apart in the grid ‘ and one pixel unit is arranged in each grid. The pixel unit includes a cathode electrode, an electron emitter disposed on the surface of the cathode electrode, an anode electrode spaced apart from the cathode electrode, and a phosphor layer disposed on the surface of the anode electrode. When a voltage is applied between the cathode electrode and the anode electrode, the electron emitter emits electrons to illuminate the phosphor layer. _] However, in the field emission display device described above, since each pixel unit includes only one cathode electrode and one anode electrode are spaced apart, &, the electron emission efficiency of the field emission display device is low, thereby making The field emission display device is inferior in brightness. 100100117 Form No. A0101 Page 4 of 33 1002000200-0 201230126 [Invention] [0005] In view of the above, a field emission electronic device with high electron emission efficiency and a field emission display device with higher brightness are provided. necessary. [0006] A field emission electronic device comprising: an insulating substrate having a surface; a plurality of row electrode leads and a plurality of column electrode leads respectively disposed parallel to and spaced apart from a surface of the insulating substrate, the plurality of row electrode leads and a plurality of The column electrode leads are arranged to cross each other to define a plurality of intersections, the row electrode leads and the column electrode leads are electrically insulated at the intersection; and the plurality of electron emission units are disposed on the surface of the insulating substrate, and each electron emitting unit corresponds to And each of the electron-emitting units further includes: a second electrode electrically connected to the column electrode lead; a first electrode spaced apart from the second electrode and at least partially surrounding the first a second electrode is disposed, the first electrode is electrically connected to the #electrode lead; and a plurality of electron emitters are disposed on a surface of at least one of the first electrode and the second electrode. [0007] A field emission display device comprising: an insulating substrate having a surface 0; a plurality of row electrode leads and a plurality of column electrode leads respectively disposed parallel to and spaced apart from a surface of the insulating substrate, the plurality of row electrodes The lead wire and the plurality of column electrode leads are arranged to intersect each other to define a plurality of intersections, the row electrode lead and the column electrode lead are electrically insulated at the intersection; and the plurality of pixel units are disposed on the surface of the insulating substrate, each electron-emitting unit Correspondingly disposed at an intersection, wherein each pixel unit comprises: an anode electrode electrically connected to the column electrode lead; a cathode electrode spaced apart from the anode electrode and at least partially surrounding the anode electrode, and the cathode The electrode is electrically connected to the row electrode lead; a plurality of electron emitters 100100117 Form No. A0101 Page 5 / Total 33 pages 1002000200-0 201230126 are disposed on the surface of the cathode electrode and disposed at least partially around the anode electrode; and a phosphor powder A layer is disposed on the surface of the anode electrode. [0008] A field emission display device comprising: an insulating substrate having a surface: a plurality of row electrode leads and a plurality of column electrode leads are respectively parallel and spaced apart from a surface of the insulating substrate, the plurality of row electrode leads and a plurality of column electrode leads are disposed to cross each other to define a plurality of intersections, the row electrode leads and the column electrode leads are electrically insulated at an intersection; and a plurality of pixel units are disposed on the surface of the insulating substrate, and each of the electron emitting units is correspondingly disposed on An intersection, wherein each pixel unit comprises: a cathode electrode electrically connected to the column electrode lead; an anode electrode spaced apart from the cathode electrode and at least partially disposed around the cathode electrode, and the anode electrode and the row The electrode lead is electrically connected; a phosphor layer is disposed on the surface of the anode electrode and at least partially disposed around the cathode electrode; and a plurality of electron emitters are disposed on the surface of the cathode electrode. [0009] Compared to the prior art, one electrode of the field emission electronic device is disposed at least partially around another electrode, and a plurality of electron emitters are disposed on a surface of at least one electrode, so that the field emission display device has a higher field The current is emitted, and the field emission display device using the field emission electronic device has a higher brightness. [Embodiment] The field emission electronic device and the field emission display device of the present invention will be further described in detail below with reference to the accompanying drawings. It can be understood that the field emission electronic device and the field emission display device may include a plurality of pixel units. The drawings of the embodiments of the present invention only give a partial pixel unit as an example for description. Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a field emission display form number A0101. Page 6 of 33 [0011] 100100117 201230126 [0013] Ο [0014] 100100117 Apparatus 200, It includes an insulating substrate 2〇2, a plurality of pixel units 220, and a plurality of row electrode leads 204 and a plurality of column electrode leads 206. The plurality of row electrode leads 204 and the plurality of column electrode leads 2〇6 are respectively disposed in parallel and spaced apart from the surface of the insulating substrate 2〇2. Preferably, the plurality of row electrode leads 204 and the plurality of column electrode leads 2〇6 are respectively disposed at equal intervals and at equal intervals. The plurality of row electrode leads 2〇4 and the plurality of column electrode leads 206 are disposed to intersect each other to define a plurality of intersections 2丨4 and a plurality of grids (not shown). The plurality of row leads. The pole leads 2〇4 and the plurality of column electrode leads 206 are electrically insulated at the intersection 214. Preferably, each row electrode lead 204 is broken at the intersection 214. 7. Each of the intersections 214 positions a pixel unit 220. The plurality of pixel units 220 correspond to intersections 214 - a setting ' to form a matrix. It will be appreciated that the field emission display device 200 needs to be packaged in a vacuum environment during operation. The insulating substrate 202 is an insulating substrate such as a ceramic substrate, a glass substrate, a resin substrate, a quartz substrate or the like. The size and thickness of the insulating substrate 202 are not limited, and those skilled in the art can select according to actual needs. In this embodiment, the insulating substrate 202 is preferably a glass substrate having a thickness of more than 1 mm and a side length of more than 1 cm. The row electrode lead 204 and the column electrode lead 206 are conductors such as a metal layer or the like. In this embodiment, the plurality of row electrode leads 204 and the plurality of column electrode leads 206 are preferably planar conductors having a rectangular cross section printed by using a conductive paste, and the rows of the plurality of row electrode leads 204 are at a large 50 micrometers to 2 centimeters, the columnar spacing of the plurality of column electrode leads 206 is 50 micrometers to 2 centimeters. The width of the row of electrode leads 204 and the column electrode leads 206 is 30 micro. Form No. A0101 Page 7 / Total 33 pages 1002000200-0 201230126 meters ~ 100 microns, thickness 10 microns ~ 5 microns. In this embodiment, the intersection of the row electrode lead 204 and the column electrode lead 206 is from 1 (degrees) to 9 degrees. Preferably, the (four)-pole lead 2?4 and the column electrode lead 2?6 are perpendicular to each other. In the present embodiment, the row electrode lead 204 and the column electrode lead 2〇6 are prepared by printing a conductive paste on the surface of the insulating substrate 202 by a screen printing method. The components of the material include metal powder, low (tetra) glass frit and a binder, wherein the metal powder is preferably silver powder, and the reducing agent is preferably terpineol or ethyl cellulose. The weight ratio of the metal powder is 5 〇 to 9 〇%, the weight ratio of the low-melting point glass powder is 2 to 〇%, and the weight ratio of the binder is 84% by weight. In the present embodiment, the extending direction of the row electrode lead 2〇4 is defined as the X direction, and the extending direction of the column electrode lead 2〇6 is defined as the γ direction. [0015] Each of the pixel units 220 is disposed in at least two grids adjacent to the intersection 214. Each of the pixel units 220 includes a first electrode 212, a second electrode 210, a plurality of electron emitters 2〇8, and a phosphor layer 218. The first electrode 212 and the second electrode 210 are spaced apart from each other on the surface of the insulating substrate 202, and the first electrode 212 is disposed at least partially around the second electrode 210. By "at least partially looping the second electrode 21 () disposed", the first electrode 212 extends at least partially around the second electrode 21 , to form an "L" shape, a "U" shape, a "C" Shape, semi-annular or ring shape. Preferably, the second electrode 210 is disposed at the intersection 214 of the row electrode lead 204 and the column electrode lead 206, and is disposed in four grids adjacent to the intersection 214. The first electrode 21 2 is disposed around the second electrode 21 , and is also disposed in four grids adjacent to the intersection 214. A dielectric insulating layer 216 is disposed at the intersection of the _ electrode 212 and the column electrode lead 206. The second electrode 210 is spaced apart from the row electrode lead 204. 100100117 Form No. A0101 Page 8 of 33 1002000200-0 201230126 [0016] The first electrode 212 acts as a cathode electrode and is electrically connected to the row electrode lead 204 that is disconnected on both sides of the intersection 214, respectively, thereby causing disconnection. The row electrode leads 204 are electrically connected. The second electrode 210 serves as an anode electrode, and is electrically connected to the column electrode lead 206. The plurality of electron emitters 208 are disposed on the surface of the first electrode 212 and at least partially disposed around the second electrode 210. The phosphor layer 218 is disposed on a surface of the second electrode 210. The electrons tT emitted by the electron emitter 208 are caused to hit the phosphor layer 218 to emit light. [0171] The second electrode 210 is an electrical conductor such as a metal layer, a layer of ITO, a conductive paste, or the like. The second electrode 210 is in direct contact with the column electrode lead 206, thereby achieving electrical connection. The second electrode 210 is a planar electrical conductor, and its shape and size are determined according to actual needs. In the embodiment of the present invention, the second electrode 210 is a square planar electrical conductor. The second electrode 21 has a side length of 30 μm to 1.5 cm and a thickness of 10 μm to 500 μm. Preferably, the second electrode 210 has a side length of 100 μm to 100 μm and a thickness of 20 μm to 100 μm. Ο [_] The first electrode 212 is an electrical conductor such as a metal layer, an ITO layer, a conductive polymer or the like. The first electrode 212 is a planar electric conductor with a rectangular cross-sectional surface, and its shape and size are determined according to actual needs. Preferably, the thickness of the first electrode 212 is greater than the thickness of the second electrode 210 to prevent electric field interference between adjacent pixel units 220. In this embodiment, the thickness of the first electrode 212 is greater than the thickness of the second electrode 210 to prevent the electric field of the second electrode 210 from covering the surface of the electrode 212 adjacent to the adjacent pixel unit 220. In this embodiment, the first electrode 212 has a square shape, and the second electrode 210 is completely surrounded. The width of the first electrode 21 2 is 100100117. The form number A0101 1〇〇2〇〇〇2〇〇, 〇 201230126 is 30 μm to 1 000 μm, and the thickness is 1 μm to 5 μm. The materials of the first electrode 212 and the second electric node are both conductive pastes. The first electric node 2 and the second electrode may be printed on the surface of the insulating substrate 2G2 by screen printing. The second electrode (4) may invite the column electrode lead 206-body "(10). The first electrode 212 may be formed with the row electrode lead 204~ body print. [0020] The camping powder layer 218 is disposed on the surface of the second electrode 2H) away from the insulating substrate 202. The material of the phosphor powder layer may be white phosphor powder - or may be a monochromatic phosphor powder, such as red m blue phosphor powder, etc. 'When the electron A strikes the phosphor layer 218, it can emit self-light or other color visible light. The phosphor layer 218 can be set by deposition, printing, photolithography or coating. The thickness of the camping powder layer 218 may be 5 micrometers to 50 micrometers on the surface 6 of the first electrode 21G. The plurality of electron emitters 208 are disposed on the surface of the first electrode 212, and at least partially surround the first The second electrode 2 is disposed. The electron emitter 208 has an electron emitting end 222 spaced apart from the second electrode 21 。. Preferably, the plurality of electron emitters 2 〇 8 are disposed in the a linear body between the first electrode 212 and the second electrode 21A. One end of the electron emitter 208 Electrically connected to the first electrode 212, the other end is directed to the second electrode 210, and extends toward the second electrode 210 as an electron emission end 222. The plurality of electron emitters 208 are spaced apart from the insulating substrate 202. 'and extending in a direction parallel to the surface of the insulating substrate 2 2 . The electron emitter 2 8 may be selected from one or more of a twisted wire, a carbon nanotube, a carbon fiber, and a carbon carbon line. In an embodiment, the plurality of electron emitters 2 0 8 are a plurality of parallel carbon nanotubes, 100100117 Form No. A0101 Page 10 / Total 33 Page 1002000200-0 201230126 One end of the mother carbon carbon pipeline and the first One electrode 212 is electrically connected, and the other end is directed to the phosphor layer 218 on the surface of the second electrode 210 as the electron emission end 222 of the electron emitter 208. The distance between the electron emission end 222 and the second electrode 210 is 10 μm. Preferably, the distance between the electron-emitting end 222 and the second electrode 210 is 5 〇 micrometers to 3 〇〇 micrometers. The electron emitter 208 extends in a direction substantially parallel to the phosphor powder layer gig. Surface. understandable The electron emitting end 222 of the electron emitter 2 8 may also be suspended above the phosphor layer 218. [0021] The electrical connection between the end of the electron emitter 208 and the first electrode 212 may be Direct electrical connection or electrical connection through a conductive adhesive can also be achieved by intermolecular force or other means. The length of the nano carbon pipeline is 1 〇 micrometer to 1 centimeter, and the spacing between adjacent nano carbon pipelines is丨 micron ~ 5 〇〇 micron. The nano carbon pipeline includes a plurality of carbon nanotubes arranged along the length of the nano carbon pipeline. The nanocarbon line may be a pure structure composed of a plurality of carbon nanotubes, and the "pure structure" means that the carbon nanotubes in the nanocarbon line are not subjected to any chemical modification or functional treatment. Preferably, the carbon carbon pipeline is a self-supporting structure. The so-called "self-supporting structure, that is, the nanocarbon pipeline can maintain its own specific shape without supporting through a support. The carbon nanotubes in the nanocarbon pipeline are connected by Van Waals force. The axial direction of the carbon nanotubes extends substantially along the length of the nanocarbon pipeline. 'Where' each carbon nanotube is connected to the carbon nanotubes adjacent to the extension direction through the end of the van der Waals The carbon nanotubes in the nanocarbon pipeline include one or more of single-walled, double-walled, and multi-walled carbon nanotubes, and the length of the carbon nanotubes is 1Q micrometers to 1 micrometer, and The diameter of the carbon nanotubes is less than 15 nm. 100100117 Form No. A0101 Page U / Page 33 1002000200-0 201230126 [0022] The plurality of electron emitters 20 8 can pass through the printed carbon nanotube slurry layer Or preparing a method for laying a carbon nanotube film, wherein the carbon nanotube slurry comprises a carbon nanotube, a low-melting glass powder, and an organic carrier, wherein the organic carrier evaporates during the baking process, and the low-melting glass powder is baked. Melting during baking and fixing the carbon nanotubes on the electrode surface [0023] Specifically, the method for preparing the electron emitter 208 in this embodiment includes the following steps: [0024] Step 1: providing at least two carbon nanotube films. [0025] The carbon nanotube film is from The carbon nanotube array is obtained by a plurality of carbon nanotube membranes including a plurality of end-to-end aligned carbon nanotubes. The structure of the carbon nanotube membrane and the preparation method thereof are described in Fan Shoushan et al. Taiwan Patent Application No. 13271 77, which was filed on February 12, 2010, announced the patent application "Nano Carbon Tube Film Structure and Preparation Method", Applicant: Hon Hai Precision Industry Co., Ltd. [0026] In the second step, the at least two carbon nanotube films are laid over the surface of the first electrode 212 and the second electrode 210. [0027] In this embodiment, the nanometer in the two carbon nanotube films The extending direction of the carbon tube is substantially perpendicular to the length direction of the row electrode lead 206 and the column electrode lead 206, that is, the extending direction of the carbon nanotubes in the two carbon nanotube films. The first electrode can be understood. 212 is other shapes, such as a circular ring, you can A plurality of carbon nanotube films are stacked on the surfaces of the first electrode 212 and the second electrode 210 at different crossing angles to ensure that the carbon nanotubes in the carbon nanotube film extend substantially from the first electrode 212. Further extending to the second electrode 210. Further, the carbon nanotube film 100100117 can be used with an organic solvent. Form No. A0101 Page 12 of 33 1002000200-0 201230126 [0028] [0029] 00 ❹ [0030] The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is preferably used in this embodiment. After the organic solvent is volatilized, the carbon nanotube film partially aggregates to form a nanocarbon line under the surface tension of the volatile organic solvent. Step 3, cutting the carbon nanotube film, disconnecting the carbon nanotube film between the first electrode 21 2 and the second electrode 210, forming a plurality of parallel arranged nano carbon pipelines fixed on the surface of the first electrode 212 Electron emitter 208. The method of cutting the structure of the carbon nanotube film is a laser ablation method, an electron beam scanning method or a heat blowing method. In this embodiment, the carbon nanotube film is preferably cut by laser ablation. When the laser beam is scanned, the oxygen in the air oxidizes the carbon nanotubes irradiated by the laser, causing the carbon nanotubes to evaporate, thereby causing the carbon nanotube film to break and forming at the break of the carbon nanotube film. An electron emitting end 222 is formed, and a gap is formed between the electron emitting end 222 and the second electrode 210. 1〜1 0000毫米/秒。 In this embodiment, the power of the laser beam is 10~50 watts, the scanning speed is 0. 1~1 0000 mm / sec. The laser beam has a width of from 1 micron to 400 microns. In this step, the surface of the row electrode lead 204 and the column electrode lead 206 and the excess carbon nanotube film in the grid are simultaneously removed. Further, each of the pixel units 220 of the field emission display device 200 may further include a fixing member 224 disposed on the surface of the first electrode 212 to fix the plurality of electron emitters 208 to the surface of the first electrode 212. The fixing member 224 may be made of an insulating material or a conductive material. In this embodiment, the fixing member 224 is a conductive paste layer. Referring to FIG. 3, a second embodiment of the present invention provides a field emission display device 100100117. Form number Α0101 Page 13/33 page 1002000200-0 201230126 300 'It includes an insulating substrate 3〇2, a plurality of pixel units 32〇 And a plurality of tantalum electrode leads 3G4 and a plurality of column electrode leads. The field emission display device 3GG has substantially the same structure as the field emission display device 20 provided by the first embodiment of the present invention, and the difference is that the second electrode has at least one opposite to the first electrode 312 and faces away from the A bearing surface 3102 provided by the insulating substrate 302 is described. [0033] The phrase “disposed relative to the first electrode 312” means that the bearing surface 31〇2 is disposed facing the first electrode 312 such that the first electrode 31 2 and the second electrode 31 0 are respectively located. Both sides of the bearing surface 31 〇2. The so-called "backward facing of the insulating substrate 3 0 2 means that the bearing surface 31: 0_2 at least partially faces away from the insulating substrate 302. The bearing surface 3102 may be a flat surface or a curved surface. When the bearing surface 31 02 is a plane, the bearing surface 3102 and the surface of the insulating substrate 302 form an angle greater than zero degrees and less than .90 degrees. Preferably, the angle of the angle is greater than or equal to 30 degrees and less than or equal to 60 degrees. When the surface is 3102, the bearing surface 3102 can be a convex surface or a concave surface. The bearing surface 3102 can be directly intersected or spaced apart from the surface of the insulating substrate 302. Specifically, in this embodiment, the second electrode 310 is a quadrangular pyramid. The side of the body is gradually reduced in a direction away from the insulating substrate 302, so that the second electrode 310 has four inclined faces respectively disposed opposite to the surrounding first electrodes 312 as a bearing surface 3102. The phosphor layer The 318 is disposed on the four bearing surfaces 3102 of the second electrode 310. The angle between each of the bearing surfaces 3102 and the surface of the insulating substrate 302 is greater than or equal to 30 degrees and less than or equal to 60 degrees. The method of printing the conductive material over a plurality of times and gradually reducing the side length of the printed conductive paste layer is formed. Since 100100117 Form No. A0101 Page 14 of 33 1002000200-0 201230126 [0034] ❹ [0035] 100 [10036] 100100117 'The electrical material itself has a one-by-one fluency to form the bearing surface 3 1 〇 2 〇 In this embodiment, since the second electrode 31 〇 has four electron emitting ends 322 respectively and around The bearing surface 3102 disposed opposite to the insulating substrate 3〇2, and the phosphor powder layer 318 are respectively disposed on the four bearing surfaces 3102, so that the phosphor powder layer 318 not only has a large area, but also The electrons emitted by the electron emission end 322 are bombarded so that the field emission display device 300 has a higher brightness. Referring to FIG. 4 and FIG. 5, a third embodiment of the present invention provides a field emission display device 400, which includes a An insulating substrate 402, a repetitive pixel unit 420, and a plurality of row electrode leads 4〇4 and a plurality of column electrode leads 406. The field emission display device 400 and the field emission display device provided by the first embodiment of the present invention The structure of 200 is substantially the same ''the difference is that the second electrode 410 is a circular planar conductor, the first electrode 412 is circular, the first electrode 412 is used as an anode electrode, and the second electrode 41〇 is used as a cathode electrode, and the plurality of body parts 体4〇8 are disposed on the surface of the second electrode 410. The fluorescent/back genus 418 is disposed on the surface of the first electrode 412. Specifically, the embodiment The first electrode 412 is a circular planar electrical conductor having a rectangular cross section. Further, in this embodiment, the thickness of the first electrode 412 is greater than the thickness of the second electrode 410 to prevent the anode electric field of the first electrode 412 of the adjacent pixel unit 420 from covering the surface of the second electrode 410. The phosphor layer 418 is disposed on a surface of the first electrode 412 away from the insulating substrate 402. The plurality of electron emitters 408 are disposed on the surface of the second electrode 410, and the electronic form number of the electron emitter 408 is Α0101. Page 15/33 pages 1002000200-0 201230126 The transmitting end 422 is respectively directed to the Δ 闺The direction extends. In the embodiment, the plurality of 41 发射 emitters 4 〇 8 are a plurality of nano carbon pipelines disposed across the second electrode. [0039] In the example, the surface of the 坌_one electrode 410 is provided with a plurality of electron emitters 408, and the electron emission ends 422 of the plurality of electron-emitting emitters 408 are respectively directed to the surrounding For a reason, the emission current of each pixel unit 42A is increased. Moreover, the phosphor layer 418 is disposed on the surface of the (fourth) first electrode 412 surrounding the '% pole 41', and has a large light-emitting area. Therefore, the field emission display device has a high brightness.

月 > 閱圖6,本發明第四實施例提供_種場發射顯示裝置 5〇〇 ’其包括-絕緣基底5〇2,複數個畫素單元52〇、以 及複數個行電極引線5〇4與複數個列電極引線。所述場發 射顯示裝置5GG與本發明第三實施例提供的場發射顯示裝 置400的結構基本相同,其區別在於:所述第—電極 具有一與第二電極510相對1設置且背向所述絕緣基底5〇2 設置的承載面5122。 具體地,本實施例中,所述第一電椏512的寬度均沿著遠 離絕緣基底5 0 2的方向逐漸滅小,從而使該第一電極$ 12 具有一與電子發射端522相對設置的環形斜面作為承載面 5122。所述螢光粉層518設置於所述第一電極512的承載 面5122。所述複數個電子發射體508的電子發射端522分 別指向周圍承載面5122的螢光粉層518。 本實施例中’所述第一電極512具有一與電子發射體5〇8 相對設置且背向所述絕緣基底502設置的環形承載面5122 100100117 表單編號A0101 第16頁/共33頁 1002000200-0 [0040] 201230126 ,且所述螢光粉層518設置於所述環形承載面5122,具有 較大的面積,且容易被電子發射體5〇8轟擊到,故,提高 所述場發射顯示裝置500的亮度和顯示均勻度。 [0041] Ο [0042] 請參閲圖7和圖8 ’本發明第五實施例提供一種場發射顯 示裝置600,其包括一絕緣基底602,複數個畫素單元 6 2 0、以及複數個行電極引線6 0 4與複數個列電極引線 606。所述場發射顯示裝置600與本發明第一實施例提供 的場發射顯示裝置200的結構基本相同,其區別在於:所 述第一電極612和第二電:極6.10表面均設置有複數個電子 發射體608和螢光粉層618。 Ο 具體地,所述複數個電子發'射;體6Q8分別設置於所述第一 電極612和第二電極610遠離絕緣基底602的表面,且第 一電極612和第二電極610表面的電子發射體608相對且 間隔設置。所述螢光粉層618分別設置於所述第一電極 612和第二電極610遠離絕緣基底602的表面,且將複數 個電子發射體608部分覆蓋。所述第一電極812表面的電 子發射體608分別向第二電極610方向延伸,且其電子發 射端622指向第二電極610表面的螢光粉層618。所述第 二電極610表面的電子發射體608分別向第一電極612方 向延伸,且其電子發射端622指向第一電極612表面的螢 光粉層618。 [0043] 本實施例中,所述第一電極612和第二電極610可以交替 用作陰極電極和陽極電極,從而提高場發射顯示裝置6〇〇 的使用壽命。優選地,所述第一電極612和第二電極61〇 之間可以施加一交流電壓,從而使所述第一電極612和第 100100117 表單編號Α0101 第17頁/共33頁 1002000200-0 201230126 -電極610可以交替用作陰極電極和陽極電極。 [0044] [0045] 參1圖9 ’本發明第六實施例提供—種場發射顯示裝置 ”包括一絕緣基底7〇2,複數個畫素單元72〇、以 及複數個行電極引㈣4與餘個列電㈣線。所述場發 射顯不與本發明第—實施例提供的場發射顯示裝 置200的結構基本相同’其區別在於 :進一步包括一第三 電極726與所述絕緣基底7Q2平行且間隔設置,所述榮光 層718叹置於,亥第三電極726相對所述絕緣基底的 表面且每個勞光粉層718與一畫素單元7 2 Q相對設置。 具體地’所述第二電極726與絕緣基底平行且間隔設 置所述複數個畫素單元72〇 ,行電極引線和複數個 列電極引線設置於第三電極726與絕緣基底7Q2之間。所 述場發射顯示裝置71作時,第—電極712用作陰極電 極,第二電極710用作柵板電極,第三電極㈣用作陽極 電極。所述電子發射體6〇8在第二電極71〇作用下發射電 子,且發射的電子在第三電極726作用下向第三電極726 方向加速運動’以轟擊螢龙粉層;718。 [0046] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單説明】 [0047] 圖1為本發明第一實施例提供的場發射顯示裝置的俯視示 100100117 意圖。 表單編號A0101 第18頁/共33頁 1002000200-0 201230126 [0048] 圖2為圖1所示的場發射顯示裝置沿線11 -11的剖面示意圖 ο [0049] 圖3為本發明第二實施例提供的場發射顯示裝置的結構示 意圖。 [0050] 圖4為本發明第三實施例提供的場發射顯示裝置的俯視示 意圖。 [0051] [0052] 圖5為圖4所示的場發射顯示裝置沿線V-V的剖面示意圖。 〇 圖6為本發明第四實施例提供的場#射顯示裝置的結構示 意圖。 [0053] 圖7為本發明第五實施例提供的發射顧示裝置的俯視示 ::ϋ . 4.,- S·、ίΓΓ 榮 . 意圖。 ,Ί .:丨3:矣…:¾ [0054] 圖8為圖7所示的場發射顯示裝置沿線V111 - V111的剖面 示意圖。 [0055] 圖9為本發明第六實施例提供的塲發射顯示裝置的刮面示 意圖。 【主要元件符號說明】 [0056] 場發射顯示裝置:200,300,400,500,600,700 [0057] 絕緣基底:202,302,402,502,602,702 [0058] 行電極引線:204,304,404,504,604,704 [0059] 列電極引線:206,406,606 [0060] 電子發射體:208,308,408, 508,608,708 [0061] 第二電極:210,310,410,510,610,710 100100117 表單編號 A0101 第 19 頁/共 33 頁 1002000200-0 201230126 [0062]承載面:3102,5122 [0063] 第一電極: 212, 312, 412, 512, 612, 712 [0064] 交叉處:214 [0065] 介質絕緣層 :216 [0066] 螢光粉層: 218, 318, 418, 518, 618, 718 [0067] 畫素單元: 220, 320, 420, 520, 620, 720 [0068] 電子發射端:222,322,422,522,622 [0069] 固定元件:224 [0070] 第三電極:726 1002000200-0 100100117 表單編號A0101 第20頁/共33頁Month> Referring to Figure 6, a fourth embodiment of the present invention provides a field emission display device 5' including an insulating substrate 5〇2, a plurality of pixel units 52〇, and a plurality of row electrode leads 5〇4 With a plurality of column electrode leads. The field emission display device 5GG has substantially the same structure as the field emission display device 400 provided by the third embodiment of the present invention, and the difference is that the first electrode has a surface opposite to the second electrode 510 and faces away from the A bearing surface 5122 provided by the insulating substrate 5〇2. Specifically, in the embodiment, the width of the first electrode 512 is gradually reduced in a direction away from the insulating substrate 502, so that the first electrode $12 has a opposite side of the electron emitting end 522. The annular bevel serves as a bearing surface 5122. The phosphor layer 518 is disposed on the bearing surface 5122 of the first electrode 512. The electron emitting ends 522 of the plurality of electron emitters 508 are directed to the phosphor layer 518 of the surrounding carrying surface 5122, respectively. In the present embodiment, the first electrode 512 has an annular bearing surface 5122 100100117 disposed opposite to the electron emitter 5〇8 and facing away from the insulating substrate 502. Form No. A0101 Page 16 / Total 33 Page 1002000200-0 [0040] 201230126, and the phosphor layer 518 is disposed on the annular bearing surface 5122, has a large area, and is easily bombarded by the electron emitters 5〇8, thereby improving the field emission display device 500. Brightness and display uniformity. [0042] Please refer to FIG. 7 and FIG. 8 'A fifth embodiment of the present invention provides a field emission display device 600 including an insulating substrate 602, a plurality of pixel units 620, and a plurality of rows. Electrode lead 604 and a plurality of column electrode leads 606. The field emission display device 600 has substantially the same structure as the field emission display device 200 provided by the first embodiment of the present invention, and the difference is that the first electrode 612 and the second electrode: the surface of the pole 6.10 are provided with a plurality of electrons. Emitter 608 and phosphor layer 618. Specifically, the plurality of electrons are emitted; the body 6Q8 is respectively disposed on the surface of the first electrode 612 and the second electrode 610 away from the insulating substrate 602, and the electron emission on the surfaces of the first electrode 612 and the second electrode 610 The bodies 608 are opposite and spaced apart. The phosphor layer 618 is disposed on the surface of the first electrode 612 and the second electrode 610 away from the insulating substrate 602, respectively, and partially covers the plurality of electron emitters 608. The electron emitters 608 on the surface of the first electrode 812 extend toward the second electrode 610, respectively, and the electron emission end 622 thereof is directed to the phosphor layer 618 on the surface of the second electrode 610. The electron emitters 608 on the surface of the second electrode 610 extend toward the first electrode 612, respectively, and the electron emission end 622 thereof is directed to the phosphor layer 618 on the surface of the first electrode 612. In the present embodiment, the first electrode 612 and the second electrode 610 can be alternately used as a cathode electrode and an anode electrode, thereby increasing the service life of the field emission display device 6〇〇. Preferably, an alternating voltage may be applied between the first electrode 612 and the second electrode 61 , such that the first electrode 612 and the 100100117 form number Α 0101 page 17 / page 33 1002000200-0 201230126 - electrode 610 can be used alternately as a cathode electrode and an anode electrode. [0045] Referring to FIG. 9 'the sixth embodiment of the present invention provides a field emission display device" comprising an insulating substrate 7〇2, a plurality of pixel units 72〇, and a plurality of row electrode leads (four) 4 and The field emission is not substantially the same as that of the field emission display device 200 provided by the first embodiment of the present invention. The difference is that the third electrode 726 is further parallel to the insulating substrate 7Q2. The glory layer 718 is slanted, the third electrode 726 is opposite to the surface of the insulating substrate, and each of the glazing layer 718 is disposed opposite to a pixel unit 7 2 Q. Specifically, the second The electrode 726 is parallel to the insulating substrate and spaced apart from the plurality of pixel units 72, and the row electrode lead and the plurality of column electrode leads are disposed between the third electrode 726 and the insulating substrate 7Q2. The first electrode 712 functions as a cathode electrode, the second electrode 710 functions as a grid electrode, and the third electrode (four) functions as an anode electrode. The electron emitter 6〇8 emits electrons under the action of the second electrode 71〇, and emits Electronics in the third The action of 726 is accelerated to the direction of the third electrode 726 to bombard the layer of the dragonfly powder; 718. [0046] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. The invention is not limited to the preferred embodiment of the present invention, and the scope of the patent application is not limited thereto. Any equivalent modifications or variations made by those skilled in the art to the spirit of the present invention should be covered by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0047] FIG. 1 is a plan view 100100117 of a field emission display device according to a first embodiment of the present invention. Form No. A0101 Page 18 of 33 1002000200-0 201230126 [0048] 2 is a schematic cross-sectional view of the field emission display device shown in FIG. 1 along line 11-11. [0049] FIG. 3 is a schematic structural view of a field emission display device according to a second embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of the field emission display device shown in FIG. 4 along line VV. FIG. 6 is a cross-sectional view of the field emission display device shown in FIG. FIG. 7 is a schematic plan view of a launching display device according to a fifth embodiment of the present invention: 4., - S·, ΓΓ 荣 荣. Intent. , Ί Fig. 8 is a cross-sectional view of the field emission display device shown in Fig. 7 along the line V111 - V111. [0055] FIG. 9 is a 塲 emission display device according to a sixth embodiment of the present invention. Schematic diagram of the scraping surface. [Main component symbol description] [0056] Field emission display device: 200, 300, 400, 500, 600, 700 [0057] Insulating substrate: 202, 302, 402, 502, 602, 702 [0058] Row electrode lead: 204, 304, 404, 504, 604, 704 [0059] Column electrode lead: 206, 406, 606 [0060] Electron emitter: 208, 308, 408, 508, 608, 708 [0061] Electrode: 210, 310, 410, 510, 610, 710 100100117 Form No. A0101 Page 19 of 33 1002000200-0 201230126 [0062] Bearing surface: 3102, 5122 [0063] First electrode: 212, 312, 412, 512, 612, 712 [0064] intersection: 214 [0065] dielectric insulation: 216 [0066] phosphor layer: 218, 318, 418 , 518, 618, 718 [0067] pixel units: 220, 320, 420, 520, 620, 720 [0068] electronic transmitting end: 222, 322, 422, 522, 622 [0069] fixing element: 224 [0070] Third electrode: 726 1002000200-0 100100117 Form number A0101 Page 20 of 33

Claims (1)

201230126 七、申請專利範圍: 1 . 一種場發射電子器件,包括: 一絕緣基底具有一表面; 複數個行電極引線與複數個列電極引線分別平行且間隔設 置於所述絕緣基底的表面,該複數個行電極引線與複數個 列電極引線相互交又設置定義複數個交叉處,所述行電極 引線與列電極引線在交叉處電絕緣設置;以及 複數個電子發射單元設置於絕緣基底表面,且每個電子發 射單元對應設置於一個交叉處, 〇 I 其中,所述每個電子發射單元進一步包括: 一第二電極與所述列電極引線電連接; 一第一電極與該第二電極間隔設置且至少部分環繞所述第 二電極設置,該第一電極與所述行電極引線電連接;以及 複數個電子發射體設置於所述第一電極和所述第二電極中 的至少一個電極的表面。 2 .如申請專利範圍第1項所述的場發射電子器件,其中,所 述複數個電子發射體的一端與第一電極電連接,另一端與 ❹ 第二電極間隔設置且向第二電極延伸,所述電子發射體環 繞所述第二電極設置。 3 .如申請專利範圍第1項所述的場發射電子器件,其中,所 述第一電極環繞所述第二電極設置,所述複數個電子發射 體的一端與第二電極電連接,另一端與第一電極間隔設置 且向第一電極延伸。 4.如申請專利範圍第1項所述的場發射電子器件,其中,所 述複數個電子發射體分別設置於所述第一電極和所述第二 100100117 表單編號A0101 第21頁/共33頁 1002000200-0 201230126 電極的表面且相對設置,相對的電子發射體之間存在間隙 〇 5 .如申請專利範圍第4項所述的場發射電子器件,其中,所 述場發射電子器件工作時,向複數個行電極引線和複數個 列電極引線接入交流電壓。 6 .如申請專利範圍第1項所述的場發射電子器件,其中,所 述第一電極與所述列電極引線電絕緣,所述第二電極與所 述行電極引線電絕緣。 7 .如申請專利範圍第1項所述的場發射電子器件,其中,所 述第一電極與所述行電極引線為一體成型結構,所述第二 電極與所述列電極引線為一體成型結構。 8 .如申請專利範圍第1項所述的場發射電子器件,其中,所 述第一電極為“L”形、“U” 形、“C”形、半環形或 環形環繞所述第二電極延伸。 9 .如申請專利範圍第1項所述的場發射電子器件,其中,所 述複數個電子發射體與所述絕緣基底間隔設置,且沿著平 行於絕緣基底表面的方向延伸。 10 .如申請專利範圍第1項所述的場發射電子器件,其中,所 述電子發射體選自矽線、奈米碳管、碳纖維及奈米碳管線 中的一種或複數種。 11 .如申請專利範圍第1項所述的場發射電子器件,其中,進 一步包括一第三電極與所述絕緣基底平行且間隔設置。 12 . —種場發射顯示裝置,其包括: 一絕緣基底具有一表面; 複數個行電極引線與複數個列電極引線分別平行且間隔設 置於所述絕緣基底的表面,該複數個行電極引線與複數個 100100117 表單編號A0101 第22頁/共33頁 1002000200-0 201230126 列電極引線相互交又設置定義 钱複數個父又處,所述行電極 ㈣與列電則線在交又麵⑽設置;以及 複數個晝素單元設置於絕緣基底表面,每個電子發射單元 對應設置於一個交叉處, 其十’每個畫素單元包括: 一陽極電極與所述列電極引線電連接; -陰極電極與該陽極電極間隔設置且至少部分環繞所述陽 極電極設置,且該陰極電極與行電極引線電連接; 複數個電子發射體設置於所述陰極電極表面且至少部分環 繞所述陽極電極設置;以及 一螢光粉層設置於該陽極電極表面。 13 .如申請專利範圍第12項所述的場發射顯示裝置,其中,所 述陽極電極具有至少一個與陰極電極相對設置且背向所述 絕緣基底設置的承載面,所述螢光粉層設置於該承載面。 14 . 一種場發射顯示裝置,其包括: 一絕緣基底具有一表面; 複數個行電極引線與複數個列電極引線分別平行且間隔設 置於所述絕緣基底的表面,_該複數個行電極引線與複數個 列電極引線相互交叉設置定義複數個交叉處,所述行電極 引線與列電極引線在交又處電絕緣設置;以及 複數個畫素單元設置於絕緣恭底表面’每個電子發射單元 對應設置於一個交叉處, 其中,每個畫素單元包括: 一陰極電極與所述列電極引線電連接; 一陽極電極與該陰極電極間隔設置且至少部分環繞所述陰 極電極設置’且該陽極電極與行電極引線電連接; 100100117 表單編號A0101 第23頁/共33頁 1002 201230126 一螢光粉層設置於該陽極電極表面且至少部分環繞所述陰 極電極設置,以及 複數個電子發射體設置於所述陰極電極表面。 15 .如申請專利範圍第14項所述的場發射顯示裝置,其中,所 述陽極電極具有至少一個與陰極電極相對設置且背向所述 絕緣基底設置的承載面,所述螢光粉層設置於該承載面。 100100117 表單編號A0101 第24頁/共33頁 1002000200-0201230126 VII. Patent application scope: 1. A field emission electronic device comprising: an insulating substrate having a surface; a plurality of row electrode leads and a plurality of column electrode leads respectively disposed parallel to and spaced apart from a surface of the insulating substrate, the plural The row electrode leads and the plurality of column electrode leads are mutually disposed to define a plurality of intersections, the row electrode leads and the column electrode leads are electrically insulated at the intersection; and the plurality of electron emission units are disposed on the surface of the insulating substrate, and each Correspondingly, the electron-emitting units are disposed at an intersection, where each of the electron-emitting units further includes: a second electrode electrically connected to the column electrode lead; a first electrode and the second electrode are spaced apart from each other At least partially disposed around the second electrode, the first electrode is electrically connected to the row electrode lead; and a plurality of electron emitters are disposed on a surface of at least one of the first electrode and the second electrode. 2. The field emission electronic device of claim 1, wherein one end of the plurality of electron emitters is electrically connected to the first electrode, and the other end is spaced apart from the second electrode and extends toward the second electrode. The electron emitter is disposed around the second electrode. 3. The field emission electronic device of claim 1, wherein the first electrode is disposed around the second electrode, and one end of the plurality of electron emitters is electrically connected to the second electrode, and the other end is It is spaced apart from the first electrode and extends toward the first electrode. 4. The field emission electronic device of claim 1, wherein the plurality of electron emitters are respectively disposed on the first electrode and the second 100100117 Form No. A0101 Page 21 of 33 1002000200-0 201230126 The surface of the electrode is oppositely disposed, and there is a gap 〇5 between the opposing electron emitters. The field emission electronic device of claim 4, wherein the field emission electronic device is in operation A plurality of row electrode leads and a plurality of column electrode leads are connected to an alternating voltage. 6. The field emission electronic device of claim 1, wherein the first electrode is electrically insulated from the column electrode lead, and the second electrode is electrically insulated from the row electrode lead. The field emission electronic device of claim 1, wherein the first electrode and the row electrode lead are integrally formed, and the second electrode and the column electrode lead are integrally formed. . 8. The field emission electronic device of claim 1, wherein the first electrode is an "L" shape, a "U" shape, a "C" shape, a semi-annular shape, or a ring shape surrounding the second electrode. extend. 9. The field emission electronic device of claim 1, wherein the plurality of electron emitters are spaced apart from the insulating substrate and extend in a direction parallel to the surface of the insulating substrate. 10. The field emission electronic device of claim 1, wherein the electron emitter is one or more selected from the group consisting of a twisted wire, a carbon nanotube, a carbon fiber, and a carbon nanotube. 11. The field emission electronic device of claim 1, wherein a third electrode is further disposed in parallel with and spaced apart from the insulating substrate. 12. A field emission display device, comprising: an insulating substrate having a surface; a plurality of row electrode leads and a plurality of column electrode leads respectively disposed parallel to and spaced apart from a surface of the insulating substrate, the plurality of row electrode leads and Multiple 100100117 Form No. A0101 Page 22 / Total 33 Page 1002000200-0 201230126 The column electrode leads are mutually arranged and defined to define the plural of the parent, the row electrode (4) and the column electric line are set in the intersection (10); a plurality of pixel units are disposed on the surface of the insulating substrate, and each of the electron-emitting units is disposed at an intersection, and each of the pixel units includes: an anode electrode electrically connected to the column electrode lead; - a cathode electrode and the The anode electrode is spaced apart and at least partially disposed around the anode electrode, and the cathode electrode is electrically connected to the row electrode lead; a plurality of electron emitters are disposed on the surface of the cathode electrode and at least partially disposed around the anode electrode; A layer of light powder is disposed on the surface of the anode electrode. The field emission display device of claim 12, wherein the anode electrode has at least one bearing surface disposed opposite to the cathode electrode and disposed away from the insulating substrate, the phosphor layer setting On the bearing surface. 14. A field emission display device, comprising: an insulating substrate having a surface; a plurality of row electrode leads and a plurality of column electrode leads respectively disposed in parallel and spaced apart from a surface of the insulating substrate, the plurality of row electrode leads and A plurality of column electrode leads are disposed to cross each other to define a plurality of intersections, the row electrode leads and the column electrode leads are electrically insulated at the intersection; and a plurality of pixel units are disposed on the insulating bottom surface of each of the electron emitting units Provided at an intersection, wherein each pixel unit comprises: a cathode electrode electrically connected to the column electrode lead; an anode electrode spaced apart from the cathode electrode and at least partially surrounding the cathode electrode disposed 'and the anode electrode Electrically connected to the row electrode lead; 100100117 Form No. A0101 Page 23 of 33 1002 201230126 A phosphor layer is disposed on the surface of the anode electrode and at least partially disposed around the cathode electrode, and a plurality of electron emitters are disposed in the chamber The surface of the cathode electrode. The field emission display device of claim 14, wherein the anode electrode has at least one bearing surface disposed opposite to the cathode electrode and disposed facing away from the insulating substrate, the phosphor powder layer being disposed On the bearing surface. 100100117 Form No. A0101 Page 24 of 33 1002000200-0
TW100100117A 2011-01-04 2011-01-04 Field emission device and field emission display TWI421896B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100100117A TWI421896B (en) 2011-01-04 2011-01-04 Field emission device and field emission display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100117A TWI421896B (en) 2011-01-04 2011-01-04 Field emission device and field emission display

Publications (2)

Publication Number Publication Date
TW201230126A true TW201230126A (en) 2012-07-16
TWI421896B TWI421896B (en) 2014-01-01

Family

ID=46934119

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100117A TWI421896B (en) 2011-01-04 2011-01-04 Field emission device and field emission display

Country Status (1)

Country Link
TW (1) TWI421896B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672722B (en) * 2016-08-08 2019-09-21 荷蘭商Asml荷蘭公司 Electron emitter and method of fabricating same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173007A (en) * 2004-12-17 2006-06-29 Toshiba Corp Electron emission element, electron emission device, and display device
CN101540260B (en) * 2008-03-19 2011-12-14 清华大学 Field emission display
TWI368248B (en) * 2008-07-25 2012-07-11 Hon Hai Prec Ind Co Ltd Electron emission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672722B (en) * 2016-08-08 2019-09-21 荷蘭商Asml荷蘭公司 Electron emitter and method of fabricating same
US10784071B2 (en) 2016-08-08 2020-09-22 Asml Netherlands B.V. Electron emitter and method of fabricating same
US11688579B2 (en) 2016-08-08 2023-06-27 Asml Netherlands B.V. Electron emitter and method of fabricating same

Also Published As

Publication number Publication date
TWI421896B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP4908537B2 (en) Field emission display
JP5038109B2 (en) Method for manufacturing surface conduction electron-emitting device, surface conduction electron-emitting device, and electron source using the electron-emitting device
CN102768929B (en) Field emission display device
CN102082061B (en) Field emission display device
CN102768930B (en) Field emission electron device
CN102082062A (en) Field emission display device
US8013510B2 (en) Electron emission device and display device using the same
US8053967B2 (en) Electron emission device and display device using the same
TWI421896B (en) Field emission device and field emission display
JP5504246B2 (en) Field emission cathode device and field emission display device using the same
TWI386966B (en) Field emission display
TWI489507B (en) Field emission device and field emission display
TWI421895B (en) Field emission device and field emission display
TWI393160B (en) Field emission cathode structure and display using the same
CN102064071B (en) Field emission display device
KR20100012573A (en) Field emission device using carbon nanotubes of and method of the same
TWI421897B (en) Field emission display
TWI330858B (en) Thermionic emission device
KR101121639B1 (en) Cathode structure of electron emitting device
US7986083B2 (en) Electron emitting device with a gate electrode having a carbon nanotube film and a carbon nanotube reinforcement structure
TWI352369B (en) Thermionic emission device and method for making t
TWI427662B (en) Field emission cathod device and field emission display
TWI417925B (en) Field emission display device
TWI360831B (en) Field emission electron device
TWI398895B (en) Method for making field emission device