TW201228238A - Boost circuit - Google Patents

Boost circuit Download PDF

Info

Publication number
TW201228238A
TW201228238A TW99146673A TW99146673A TW201228238A TW 201228238 A TW201228238 A TW 201228238A TW 99146673 A TW99146673 A TW 99146673A TW 99146673 A TW99146673 A TW 99146673A TW 201228238 A TW201228238 A TW 201228238A
Authority
TW
Taiwan
Prior art keywords
potential
resistor
reference potential
output
module
Prior art date
Application number
TW99146673A
Other languages
Chinese (zh)
Other versions
TWI441453B (en
Inventor
Meng-Sheng Chang
Kang-Yi Liu
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW99146673A priority Critical patent/TWI441453B/en
Priority to CN2011101112142A priority patent/CN102184702A/en
Publication of TW201228238A publication Critical patent/TW201228238A/en
Application granted granted Critical
Publication of TWI441453B publication Critical patent/TWI441453B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)

Abstract

A boost circuit includes a boost module, a feedback circuit and a PWM module. The boost module includes an input terminal and an output terminal, and the input terminal is configured for receiving an input voltage and the output terminal is configured for providing an output voltage. The feedback circuit is electrically coupled to the output terminal for providing a corresponding feedback voltage according to the output voltage. The PWM module is configured for controlling when turning on an electrical route between the boost module and the ground through the PWM module, such that the output voltage is linearly altered during a specific temperature-altering period.

Description

201228238 六、發明說明: 【發明所屬之技術領域】 本發明是有關於驅動顯示面板的升壓電路?且特別是有關 於一種隨溫度變化而調整輪出電位之驅動顯示面板的升壓電 路。 【先前技術】 為了降低產品成本,平面顯示器的驅動電路逐漸以陣列上 閘極技術(Gate-On-Array,G0A)取代了原先的玻璃覆晶封裝 (ChiP-〇n-Glass ’ COG)的驅動技術,從而可節省閘極驅動 IC(GatelC)的使用量。GOA架構與COG架構都需要使用移位 暫存器(shift register)與電位移位器(level shift)。但是,G〇A架 構疋利用薄膜電晶體η型金屬氧半導體處理技術(TFT n_M〇s process)來合成移位暫存器,並將電位移位器製作在玻璃基板 上。而COG架構是藉由互補金屬氧半導體處理技術(CM〇s201228238 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a booster circuit for driving a display panel? In particular, it relates to a booster circuit for driving a display panel that adjusts the wheel-out potential as a function of temperature. [Prior Art] In order to reduce the cost of the product, the driving circuit of the flat panel display has gradually replaced the original glass flip chip package (ChiP-〇n-Glass 'COG) with the Gate-On-Array (G0A) technology. Technology, which saves the use of gate drive ICs (GatelC). Both the GOA architecture and the COG architecture require the use of shift registers and level shifts. However, the G〇A structure uses a TFT n_M〇s process to synthesize a shift register and fabricates a potential shifter on a glass substrate. The COG architecture is complemented by metal oxide semiconductor processing technology (CM〇s

process)將移位暫存器與電位移位器整合於單一晶片並將晶片 設置在玻璃基板上。因此,G〇A架構的製造成本遠遠低於c〇G 架構。 圖1緣示為GOA架構中一級移位暫存器的電路示意圖, 圖2繪示為圖1所示的移位暫存器中各種訊號的時脈示意圖。 如圖1-2所示,移位暫存器由電晶體M卜電晶體M2、電晶體 M3以及電晶體M4而構成。當處於室溫時,啟動脈衝訊號 ST(Start Pulse)會先送一個脈衝導通電晶體M1從而將節點cp 提升至接近啟動脈衝訊號ST的高電壓位準。而當時脈訊號 CLK送出一個脈衝時,因受到電晶體M2的電容耦合效應的影 響’節點CP所儲存的啟動脈衝訊號st的高電壓位準會進一 步與時脈訊號CLK的高電壓位準相疊加,從而再次提升節點 201228238 CP的電位。此時電晶體M2導通以將時脈訊號CLK的高電壓 位準輸出至節,點Out而產生輸出訊號〇ut⑻以驅動相關的電 路。虽處於低溫時,電晶體M2導通程度減弱,其電流量會降 低’再加上源極電壓與元件尺寸固定時電晶體M4的漏電情 況,則節點Out上的電位無法拉升,導致輸出訊號⑽⑻會出 現異常而無法軸相_電路,朗此造成路的驅動能 力不足而出現顯示異常的現象。 【發明内容】 ^發明的目的之—就是在提供—種升壓電路,其可依據溫 度的變化而線性地改變其輸出電位。 f發明的再—目的是提供—麵溫度調錄出電位的升 電路,其對平面顯示器的顯示效果影響較小。 本發明提出一種升壓電路,包括升壓模組、回授電路、參 立產生模組、第-比較器以及脈衝寬度調變模組。升壓模 === 出端,其輸入端接收輸入電位,而輸出端提 ^出電位。回㈣路電_接至升壓模組的輸出端以根據輸 而提供相對應的回授電位。參考電位產生模組 疋,度區間⑽著溫度變化的參考電位ϋ㈣ : 輸出ί二第一比較器的兩輸入端分別接收回授電位: ηί編t第—比較^的輸出端提供第—比較結果。脈衝寬 接至第—比較器與升壓模組,脈衝寬 根:====的果Τ電流偵測:果,並 模組._衝寬度〗;變果模組= 在本發明的一個實施例中,上述之升壓模組包括第一電 201228238 ί: Π 件第一電容。第一電感具有第-端與 ί 一= 感的第一端繼接至升壓模組的輸入端。 第一早向導通元件具有第一端與第二端,其中第一 第一單向導通元件的第一端流往單向導通元: =-‘且第-I向導通元件的第—端電性輕接至第一 =一端。第一電容具有第一端與第二端,其中第-電容的i 一端電性耦接至第一單向導通元件的第二端。 明的一個實施例中’上述之參考電位產生模組包括 夕電位產生7G件、第二比較器以及電位選擇元件。多電位 ===位與第,位’其中第二參考電位大 、♦考電&lt; 第一比較器的兩輸入端分別接收第一參者雷 ^與參考電位’其輸出端提供致能職。電位轉元件包 電阻'第二電阻、溫感電阻、第—開關以 _ =1第-端與第二端,其中第一電阻的第一端電』』至 ;電=元件以接收第二參考電位。第二電阻具有第一端盘 第:二第中4二ΪΓΓ端電_接至地。溫感電阻具有 接於第一電阻與第二電阻之間並受致能訊上 二^ ϋ 1關電性雛於第—電阻與溫感電阻之間並受 =域控制是否導通。其中,溫感電阻的電阻值隨溫度而; -開關與第二開關受致能訊號之控制而不同時導= 第電阻與第一開關的電性轉接點提供參考電位。 戶下固實施例中,上述之溫感電阻的電阻值隨溫 升且显感電阻的電阻值在特定 導通而使第二開通疋溫度時,致能訊號使第一開關 201228238 在本發明的一個實施例中,上述之第二比較器在參考電位 大於第一參考電位時使致能訊號導通第二開關,並在參考電位 小於第一參考電位時使致能訊號導通第一開關。 、在本發明的一個實施例中,上述之升壓模組包括第一電 感、第—單向導通元件、第一電容、第二電感、第二單向導通 元件以及第二電容。第一電感具有第一端與第二端。第一單向 ,通^件具有第—端與第二端,第—單向導通元件容許電流從 =一單向導通元件的第一端流往第一單向導通元件的第二 端’第—單向導通元件的第-端電性輕接至第—電减的第二 端。第一電容具有第-端與第二端,第—電容的第—端電性: ,至第:單向導通元件的第二端。第二電感具有第—端與第二 端第-電感的第-端電性搞接至輸入端。第二單向導通元 2第1與第二端,第二單向導通元件容許電流從第二 ^兀件的第—端流往第二單向導通元件的第二端,第二單向 導通7C件的第—端電性_至第二電感的第二端。第二 J第二端與第二端’第二電容的第—端電性编接至第二單向。 通70件的第二端及第一電感的第一端。 f雷ί本?明的f個實施例中,上述之升壓電路更包括前級回 ,電_接至第二單向導通元件的第二端以取得相對^ 前級,的兩輸入端分別接收前級回心 固疋參考電位’且前級比較H的輸出端輸二 t衝寬度輕觀雛 杈電位,且前級脈衝寬度調變模組偵測提供 =電流以得前級電流_結果,並根據前級電 別級比較結果來㈣㈣導通電錢料壓模⑽過前級脈 201228238 衝寬度調變模組至地的電性通路。 在本發明的一個實施例中,上述之參考電位產生模組包括 =電,產生元件、第二比較ϋ以及電位選擇元件。多電位產生 兀件提供第-參考電位與第三參考電位,第二參考電位大於第 多考電位。第二比較器的兩輸入端分別接收第一參考電位與 參考電位,第二比較器的輸出端提供致能訊號。電位選擇元件 包括第-電阻、第二電阻、溫感電阻、第—開關以及第二開關。 第-電阻具有第一端與第二端’第一電阻的第一端電性輛接至 多電=產生元件以接收第二參考電位。第二電阻具有第一端與 =一舳第一電阻的第一端電性耦接至地。溫感電阻具有第一 知/、第一知,/^感電阻的第一端電性耗接至地。第一開關電性 搞接於第-電阻與第二電阻之間並受致能訊號控制是否導 通。第二開關電性鵪接於第-電阻與溫感電阻之間並受致能訊 號控制疋科通。其_,溫感電阻的電阻值隨溫度而變化,第 一開關與第二開關受致能訊號之控制而不同時導通,且第一電 阻與第二開關的電性耦接點提供參考電位。 本發明還長:供一種隨溫度調整輸出電位的升壓電路,其包 括電感電容升壓模組、賴電路以及脈職度調魏組。電感 電容升塵模組包括輸人端與輸出端,其中輸人端接收輸入電 位’輸出端提供輸出電位。回授電路電性祕至輸出端以根據 輸出電位而k供相對應的回授電位。脈衝寬度調變模組控制何 時導通電感電容升壓模組經過脈衝寬度調變模組至地的電性 通路,以使輸出電位在特定溫度區間内為線性變化。 在本發明的一個實施例中’上述之升壓電路更包括參考電 位產生模組威第-比較ϋ。參考雜產生赵在特定溫 度區間内為線性變化的參考電位。第一比較器的兩輸入端分別 201228238 接收回授電位與參考電位,且第—比較器的輸出端提供第一比 較結果。其中,脈衝寬度調變模組根據輸出電流制結果與 -比較結果而控制何時導通電感電容升壓模組經過 ^ 調變模組至地的電性通路。 又 本發明實齡丨所揭*的升壓電路在處於低溫環境時會再 次拉升其輸出電位,從而提高平面顯示器驅動電路的驅^能 力,且其疋依據溫度的變化而逐漸地拉升其輪出電位,因此 會影響平面顯示器的顯示效果。 ^為讓本發明之上述和其他目的、特徵和優點能更明顯易 懂’下文特舉較佳實施例’並配合所附圖式,作詳細說明如下。 【實施方式】 δ月參閱圖3,其繪示為本發明一實施例所揭示的升壓電路 的示意圖。如圖3所示,升壓電路100包括升壓模組u〇、回 授電路120、參考電位產生模組13〇、比較器14〇、脈衝寬度 调變模組150、前級回授電路16〇、前級比較器17〇以及前級 脈衝寬度調變模組180。 ' 在本實施例中,升壓模組110的一部分、前級回授電路 160、前級比較器no以及前級脈衝寬度調變模組18〇所組成 的電路用以將輸入電位VIN拉升至一定的電位avDD。而升 壓模組110的另一部分、回授電路120、參考電位產生模組 130、比較器140以及脈衝寬度調變模組15〇所組成的電路用 以依據環境溫度的變化而將已經拉升的輸入電位再次拉升至 對應的輸出電位VGH。 實際上’也可以省略電感114之前的電路而使輸入電位 VIN被直接供應至電感114 ’再藉由升壓模組ιι〇(此時僅包含 201228238 電感114、早向導通元件(此實施例中為二極體)ιΐ5與電容 116)、回授電路m、參考電位產生模乡且ls〇、比較器⑽以 及脈衝寬度調變模組150所組成的電路來進行電位拉升。如此 的作法同樣也可以達到依據環境溫度的變化而改變輸出電位 VGH大小的目的H若要從輸人電位Vin直接提升至輪 出電位VGH ’則其電路凡件的規格設計會與圖3所示的實施 例不同。 請繼續參照圖3。具體地,升壓模組u 二極體m、電容113、電感114、二極體115以及:丄 電感1U的-端作為升壓模組11G的輸人端以接收輸入電位 丽,其另-端電性搞接至二滅112的正端,二極體u 負端電性耦接電容⑴的一端,而電容113的另—端接地。電 感114的一端電性搞接二極體112的負端與電容113的電性輕 接處,而電感114的另一端電性耦接二極體115的正端,二 體115的負端電性麵接電容116的一端,而電容ιΐ6的另: 接地。且二極體115的負端與電容116的電性耗接處作為升壓 模組no的輸出端以提供輸出電位VGH。此外,二極體 作為單向導通元件,其只容許電流從二極體的正 端流向其負。 前級回授電路包括修R1以及電阻R2, R1與電阻R2串聯在二極體i 12的負端與電容i】3叫 處以及地之間。電阻R1與電阻R2的電_接處作為前級回 授電路160的輸出端以提供前級回授電位VFB1。 則級比較器170的負輸入端電性耦接電阻R1鱼 2 的電性_處以減前級喊電路⑽所提供的前級回 位VFB卜其正輸人端電性祕—固定參考電位。在本實^例 201228238 中,固疋參考電位為第一參考電位VREF1。此外,前級比較 器170的輸出端用以輸出前級比較結果。 前級脈衝寬度調變模組180電性耦接至前級比較器17〇的 輸出端以取得前級比較結果,且前級脈衝寬度調變模組18〇亦 電性耦接至升壓模組110中電感U1與二極體112的電性耦接 處’從而偵測提供至二極體112的電流以獲得前級電流偵測結 果。前級脈衝寬度調變模組180可根據其所獲得的前級電流偵 測結果以及前級比較結果來控制何時導通升壓模組11〇經過 前級脈衝寬度調變模組至地的電性通路。 鲁 具體地,前級脈衝寬度調變模組18〇包括電流偵測器 181、比較器182、控制電路183以及電晶體184。電流偵測器 181電性耦接至升壓模組11〇中電感1U與二極體112的電性 耦,處,從而偵測提供至二極體112的電流以產生相應的前級 電流偵測結果。比較器183的正輸入端電性耦接至電流偵測器 181以獲得别級電流偵測結果,而負輸入端電性耦接至前級比 車乂器170的輸出端以獲得前級比較結果,而其輸出端電性麵接 以控制電路183。電晶體184的閘極電性耦接至控制電路183, φ 其源極電性耦接至升壓模組110中電感111與二極體112的電 '性耦接處,而其汲極接地。控制電1路183根據比較器182的輪 出結果而產生對應的控制訊號,從而控制電晶體184是否導 通’即升壓模組11〇經過前級脈衝寬度模組18〇至地的電性通 路是否導通。 升壓模組110的電感111、二極體112以及電容113、前 級回授電路160、前級比較器17〇以及前級脈衝寬度調變模組 18〇所組成的電路可一定程度地拉升輸入電位VIN。 回授電路120包括電阻R3與電阻R4。其中電阻R3與電 201228238 « 串聯在升壓模組U〇的輸出端與地之間,且電阻R3與 沾=1的紐純處作為回授電路12G的輸出軌提供對應 的回杈電位VFB2。 、田声ϋ電^生模組13G用以產生在特定溫度區間内隨著 ^30 的參考電位WEF。具體地,參考電位產生模 ^夕電位產生元件13卜比較器132以及電位選擇元 盘楚-^電位產生元件131用以提供第—參考電位VREF1 一多考電位VREF2 ’且第二參考電位VREF2大於第-參Process) Integrating the shift register and the potential shifter into a single wafer and placing the wafer on a glass substrate. Therefore, the manufacturing cost of the G〇A architecture is much lower than that of the c〇G architecture. FIG. 1 is a schematic circuit diagram of a first-stage shift register in the GOA architecture, and FIG. 2 is a timing diagram of various signals in the shift register shown in FIG. As shown in Fig. 1-2, the shift register is composed of a transistor M, a transistor M3, and a transistor M4. When at room temperature, the start pulse signal ST (Start Pulse) will first send a pulse to conduct the crystal M1 to raise the node cp to a high voltage level close to the start pulse signal ST. When the pulse signal CLK sends a pulse, due to the capacitive coupling effect of the transistor M2, the high voltage level of the start pulse signal st stored by the node CP is further superimposed with the high voltage level of the clock signal CLK. , thereby raising the potential of the node 201228238 CP again. At this time, the transistor M2 is turned on to output the high voltage level of the clock signal CLK to the node, and the point Out generates the output signal 〇ut(8) to drive the associated circuit. Although the transistor M2 is weaker when it is at a low temperature, its current amount is reduced. 'With the source voltage and the leakage of the transistor M4 when the component size is fixed, the potential on the node Out cannot be pulled up, resulting in the output signal (10) (8). An abnormality will occur and the axis phase _ circuit will not be generated. This causes the driving ability of the road to be insufficient and the display abnormality occurs. SUMMARY OF THE INVENTION It is an object of the invention to provide a booster circuit that linearly changes its output potential in response to changes in temperature. The re-invention of the invention is to provide a rising circuit for the surface temperature to record the potential, which has less influence on the display effect of the flat panel display. The invention provides a boosting circuit comprising a boosting module, a feedback circuit, a standing generating module, a first comparator and a pulse width modulation module. The boost mode === the output, the input receives the input potential, and the output raises the potential. Back (4) Power _ is connected to the output of the boost module to provide the corresponding feedback potential according to the input. Reference potential generation module 疋, degree interval (10) reference potential of temperature change ϋ (4): Output ί 2 The first input of the first comparator receives the feedback potential: ηί编 t - the output of the comparison ^ provides the first comparison result . Pulse widening to the first - comparator and boost module, pulse wide root: ==== of the fruit current detection: fruit, and module._rush width〗; variable fruit module = in the present invention In an embodiment, the boosting module includes a first capacitor of 201228238 ί: Π. The first inductor has a first end coupled to the input end of the boost module. The first early guiding element has a first end and a second end, wherein the first end of the first first unidirectional element flows to the single-conductor pass: =-' and the first end of the first-th guiding element Lightly connected to the first = one end. The first capacitor has a first end and a second end, wherein the first end of the first capacitor is electrically coupled to the second end of the first one-way conducting component. In one embodiment of the invention, the reference potential generation module described above includes a solar potential generating 7G device, a second comparator, and a potential selecting element. Multipotential === bit and the first bit, where the second reference potential is large, ♦ test power &lt; the two comparators of the first comparator receive the first participant Th and the reference potential respectively, and the output terminal provides the enabling position . The potential-converting element package resistor 'the second resistor, the temperature-sensing resistor, the first switch _ =1 the first end and the second end, wherein the first end of the first resistor is electrically connected; the electric = component to receive the second reference Potential. The second resistor has a first end plate: the second middle 4th terminal is electrically connected to the ground. The temperature-sensing resistor is connected between the first resistor and the second resistor and is energized by the second resistor. The power-off property is between the first resistor and the temperature sense resistor and is controlled by the = domain. Wherein, the resistance value of the temperature sensitive resistor is dependent on the temperature; - the switch and the second switch are controlled by the enable signal without simultaneous conduction = the electrical resistance of the first resistor and the first switch provides a reference potential. In the embodiment of the household, the resistance value of the temperature sensing resistor is increased according to the temperature rise and the resistance value of the sensing resistor is specifically turned on to make the second opening temperature, the enabling signal makes the first switch 201228238 in the present invention In an embodiment, the second comparator turns on the enable signal to turn on the second switch when the reference potential is greater than the first reference potential, and turns the enable signal on the first switch when the reference potential is less than the first reference potential. In one embodiment of the invention, the boosting module includes a first inductor, a first one-way conducting component, a first capacitor, a second inductor, a second one-way conducting component, and a second capacitor. The first inductor has a first end and a second end. The first one-way, the through-piece has a first end and a second end, and the first one-way conducting element allows current to flow from the first end of the one-way conducting element to the second end of the first one-way conducting element - The first end of the unidirectional conduction element is electrically connected to the second end of the first-electrode reduction. The first capacitor has a first end and a second end, and the first end of the first capacitor is: to the second end of the single conducting element. The second inductor has a first end and a second end of the first-inductor electrically connected to the input end. The first and second terminals of the second single-conductor cell 2, the second one-way conducting component allows current to flow from the first end of the second component to the second end of the second one-way conducting component, the second one-way conduction The first end of the 7C piece is _ to the second end of the second inductor. The second end of the second J and the second end of the second capacitor are electrically coupled to the second one. Passing through the second end of the 70 pieces and the first end of the first inductor. In the f embodiment of the present invention, the boosting circuit further includes a pre-stage, and is electrically connected to the second end of the second unidirectional conduction component to obtain a relative pre-stage, and the two input ends respectively Receiving the front-end back-centered solid reference potential' and the output of the front-stage comparison H is two-tect width and the light-thinking potential, and the pre-pulse width modulation module detects the supply of current to obtain the previous current _ result And according to the comparison results of the pre-stage power level (4) (4) Conducting the power material compression mold (10) before the pre-stage pulse 201228238 rushing the width modulation module to the ground electrical path. In one embodiment of the invention, the reference potential generation module includes a = electrical, generating component, a second comparator, and a potential selecting component. The multipotential generation element provides a first reference potential and a third reference potential, and the second reference potential is greater than the first reference potential. The two input terminals of the second comparator respectively receive the first reference potential and the reference potential, and the output of the second comparator provides an enable signal. The potential selection element includes a first-resistor, a second resistor, a temperature-sensitive resistor, a first switch, and a second switch. The first-resistive has a first end and a second end. The first end of the first resistor is electrically coupled to the plurality of electrical components to generate a second reference potential. The second resistor has a first end electrically coupled to the first end of the first resistor to ground. The temperature-sensing resistor has a first known/first sense, and the first end of the sense resistor is electrically connected to the ground. The first switch is electrically connected between the first resistor and the second resistor and is controlled by the enable signal to be turned on. The second switch is electrically connected between the first resistor and the temperature sensitive resistor and is controlled by the enable signal. The resistance value of the temperature sense resistor changes with temperature, and the first switch and the second switch are controlled by the enable signal without being simultaneously turned on, and the electrical connection point of the first resistor and the second switch provides a reference potential. The invention is also long: a booster circuit for adjusting the output potential with temperature, which comprises an inductor-capacitor boosting module, a circuit, and a pulse duty adjustment group. The inductor-capacitor dust-collecting module includes an input terminal and an output terminal, wherein the input terminal receives the input potential and the output terminal provides an output potential. The feedback circuit is electrically connected to the output terminal to supply a corresponding feedback potential according to the output potential. The pulse width modulation module controls when the on-state inductor-capacitor boost module passes through the electrical path of the pulse width modulation module to ground so that the output potential changes linearly within a specific temperature range. In one embodiment of the present invention, the boosting circuit described above further includes a reference potential generating module Weidi-Compare. The reference impurity produces a reference potential that varies linearly within a certain temperature interval. The two inputs of the first comparator receive the feedback potential and the reference potential, respectively, and the output of the first comparator provides a first comparison result. The pulse width modulation module controls when the conduction capacitor boost module passes through the electrical path of the modulation module to the ground according to the output current result and the comparison result. Moreover, the booster circuit disclosed in the present invention is capable of pulling up its output potential again when it is in a low temperature environment, thereby improving the driving capability of the flat panel display driving circuit, and the 疋 gradually pulling up according to the temperature change. The potential is turned on, which affects the display of the flat panel display. The above and other objects, features, and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Embodiment] FIG. 3 is a schematic diagram of a booster circuit according to an embodiment of the present invention. As shown in FIG. 3, the boosting circuit 100 includes a boosting module u, a feedback circuit 120, a reference potential generating module 13A, a comparator 14A, a pulse width modulation module 150, and a pre-stage feedback circuit 16. The 〇, the pre-stage comparator 17 〇 and the pre-stage pulse width modulation module 180. In the present embodiment, a part of the boosting module 110, the pre-stage feedback circuit 160, the pre-stage comparator no, and the pre-stage pulse width modulation module 18〇 are used to pull the input potential VIN up. To a certain potential avDD. The other part of the boosting module 110, the feedback circuit 120, the reference potential generating module 130, the comparator 140, and the pulse width modulation module 15〇 are configured to be pulled up according to changes in ambient temperature. The input potential is pulled up again to the corresponding output potential VGH. In fact, it is also possible to omit the circuit before the inductor 114 so that the input potential VIN is directly supplied to the inductor 114' and then by the booster module ιι〇 (in this case only the 201228238 inductor 114, early conduction component (in this embodiment) The diode is composed of a diode )5 and a capacitor 116), a feedback circuit m, a reference potential generating mode, and a circuit composed of a comparator (10) and a pulse width modulation module 150 for potential pull-up. In this way, the purpose of changing the output potential VGH according to the change of the ambient temperature can also be achieved. If the input potential Vin is directly raised from the input potential Vin to the turn-over potential VGH', the specification of the circuit component will be as shown in FIG. The embodiments are different. Please continue to refer to Figure 3. Specifically, the booster module u diode m, the capacitor 113, the inductor 114, the diode 115, and the - terminal of the 丄 inductor 1U serve as the input end of the boost module 11G to receive the input potential, and the other - The terminal is electrically connected to the positive terminal of the diode 112. The negative terminal of the diode u is electrically coupled to one end of the capacitor (1), and the other end of the capacitor 113 is grounded. One end of the inductor 114 electrically connects the negative end of the diode 112 to the electrical connection of the capacitor 113, and the other end of the inductor 114 is electrically coupled to the positive end of the diode 115. The capacitive surface is connected to one end of the capacitor 116, and the capacitor ιΐ6 is additionally: grounded. The electrical output of the negative terminal of the diode 115 and the capacitor 116 serves as the output of the boosting module no to provide the output potential VGH. In addition, the diode acts as a unidirectional conduction element that only allows current to flow from the positive terminal of the diode to its negative. The pre-stage feedback circuit includes a repair R1 and a resistor R2, and R1 and the resistor R2 are connected in series between the negative terminal of the diode i12 and the capacitor i]3 and the ground. The electric junction of the resistor R1 and the resistor R2 serves as the output of the pre-stage feedback circuit 160 to provide the pre-stage feedback potential VFB1. Then, the negative input terminal of the comparator 170 is electrically coupled to the electrical property of the resistor R1. The lower limit VFB provided by the circuit (10) is reduced by the positive terminal-fixed reference potential. In the example 201228238, the solid reference potential is the first reference potential VREF1. Further, the output of the pre-stage comparator 170 is used to output a pre-stage comparison result. The pre-pulse width modulation module 180 is electrically coupled to the output of the pre-stage comparator 17A to obtain the pre-stage comparison result, and the pre-stage pulse width modulation module 18〇 is also electrically coupled to the boost mode. The electrical coupling between the inductor U1 and the diode 112 in the group 110 is such that the current supplied to the diode 112 is detected to obtain the front current detection result. The pre-stage pulse width modulation module 180 can control when to turn on the power of the boost module 11 to the ground through the pre-stage pulse width modulation module according to the obtained front-end current detection result and the previous-stage comparison result. path. Specifically, the pre-stage pulse width modulation module 18A includes a current detector 181, a comparator 182, a control circuit 183, and a transistor 184. The current detector 181 is electrically coupled to the electrical coupling of the inductor 1U and the diode 112 in the boosting module 11 to detect the current supplied to the diode 112 to generate a corresponding front-level current detector. Test results. The positive input terminal of the comparator 183 is electrically coupled to the current detector 181 to obtain a different current detection result, and the negative input terminal is electrically coupled to the output of the front stage than the brake 170 to obtain a comparison between the front stages. As a result, its output is electrically connected to the control circuit 183. The gate of the transistor 184 is electrically coupled to the control circuit 183. The source of the transistor 184 is electrically coupled to the electrical coupling of the inductor 111 and the diode 112 in the boosting module 110, and the drain is grounded. . The control circuit 1 183 generates a corresponding control signal according to the rotation result of the comparator 182, thereby controlling whether the transistor 184 is turned on, that is, the boosting module 11 is electrically connected to the ground through the pre-pulse width module 18 Whether it is conductive. The circuit formed by the inductor 111, the diode 112, the capacitor 113, the front feedback circuit 160, the front comparator 17〇, and the pre-stage pulse width modulation module 18〇 of the boost module 110 can be pulled to some extent. Increase the input potential VIN. The feedback circuit 120 includes a resistor R3 and a resistor R4. The resistor R3 and the electric 201228238 « are connected in series between the output terminal of the boosting module U〇 and the ground, and the neon of the resistor R3 and the dip = 1 is provided as the corresponding return potential VFB2 as the output rail of the feedback circuit 12G. The Tiansheng ϋ electric power module 13G is used to generate a reference potential WEF with a range of ^30 in a specific temperature range. Specifically, the reference potential generating mode generating element 13 and the comparator 132 and the potential selecting element are used to provide the first reference potential VREF1 - the multi-test potential VREF2 ' and the second reference potential VREF2 is greater than First-parameter

VRF^ ViEF1。比較11 132的負輸入端接收第一參考電位 笛一失上讀人端接收參考電MREF,而其輸出端則依據 L艰位抑证1與參考電位VREF而提供致能訊號EN。 電立選擇元件133職據致能訊號*決定參考電位產生 Z no輪出的參考電位VREF。電㈣擇 J S 電阻灯2、電_3、„1331以及_33電2。 電阻 開關1331以及溫控電阻RT2依次串聯在一起,且 電_接於第二參考電位VREF2與地之間。開關1331受致能 Γί Γ =難是否導通。電阻RT卜關1332以及電阻聊 :人馬 起’且電性耦接於第二參考電位VREF2與地之 严曰。開關1332受致能訊號_的反訊號腹控制其是否 ί㈣阻RT2以及電阻RT3之㈣電雜接處作 為參考電位產生模組13G的輸出端以輸出參考電位觀F。 此=’在本實施射,溫控電阻RT2的電阻值隨溫度下 ,而上升,且電阻RT3的電阻值與溫控電阻rt2的電阻值在 定溫度(例如室溫25攝氏度)時相同。當溫度大於特定 致能訊號EN處於非致能狀態,而其反訊號腹處於 致此狀也,則開關1331不導通而開關1332導通,則電阻咖、 201228238 開關1332與電阻RT3所串聯的電路導通’此時的參考電位 VREF由導通的電阻RT1、開關1332與電阻RT3所串聯的電 路所決定’則參考電位VREF=VREF2XRT3/(RT1+RT3)。由於 電阻RT1與電阻RT3的電阻值是固定的,因此此時的參考電 位VREF是不會發生變化的。在本實施例中,可將第一參考電 位VREF1設定為等於此時的參考電位VREF。也就是說,當 溫度大於特定溫度時,電位選擇元件133所輸出的參考電位 VREF就是第一參考電位VREF1。 虽/孤度小於特定溫度時,致能訊號EN處於致能狀態,而 其反訊號趾處於非致能狀態,則開關1331導通而開關1332 非導通。因此電阻rTi、開關1331與溫控電阻RT2所串聯的 電路導通’此時的參考電位VREF㈣通的電阻RT卜開關 1331與溫控電阻RT2所串聯的電路所決定,則參考電位 = VREF2XRT2/(RT1+RT2) = VREF2/(1+RT1/RT2)。由於溫控 電阻=T2的電阻值隨溫度的下降而上升,因此參考電位VRE^ 會隨著溫控電阻RT2的電阻值的變化而產生線性變化。此 於特定溫度,因此溫控電阻RT2的電阻值大於電 =3 =阻值,則參考電位VREF大於第一參考電位_ ^達到第—參考電位VREF2。在本實 位VREF2^變’藉此避免對應的輸出電位VGH不斷的攀升。 較器140的負輸入端電性耦接回授電路120的輸出端以 ^的回WB2,^輸人端電_齡考產生模组 考電位—,而其輪出端根據二電 考電位VREF而提供對應的比較結果。 13 201228238 脈衝寬度輕顧15G與前級脈衝寬度調賊組18〇相 似,其包括電流偵測1 151、比較器152、控制電路153以及 電晶體154。電流偵測器151電性搞接至升壓模組ιι〇中電感 114與二極體115的電性输處,從而侧提供至二極體⑴ 的電流以產生相應的電流_結果。比較器153的正輸入端電 性耦接至電流偵測器151以獲得電流偵測結果,而負輸入端電 性耦接至比較器130的輸出端以獲得比較結果,而其輸出端電 性耗接以控制電路153。電晶體154 @閘極電性#接至控制電 路153,其源極電性耦接至升壓模組11〇中電感114與二極體 115的電性耦接處,而其汲極接地,控制電路153根據比較器 152的輸出結果而產生對應的控制訊號,從而控制電晶體154 是否導通,即升壓模組110經過脈衝寬度模組15〇至地的電性 通路是否導通,從而決定升壓模組110的輸出電位VGH。依 據等效電路,升壓模組110的輸出電位VGH=VREF(1+R3/R4&gt;。 凊參閱圖4A以及圖4B,其中圖4A繪示為參考電位vref 與溫控電阻RT2的關係示意圖’而圖4B繪示為輸出電位VGH 與溫度的關係示意圖。如圖4A及4B所示,當溫度大於特定 溫度(室溫25攝氏度)時,無論是依據電阻RT1、開關1331以 及溫控電阻RT2串聯的電路還是依據電阻RT1、開關1332與 電阻RT3所串聯的電路,參考電位VREF都不會大於第一參 考電位VREF1,因此比較器132依據第一參考電位VREF1以 及參考電位VREF而輸出的致能訊號EN是非致能的,而其反 訊號是致能的,則開關1331不導通而開關1332導通,參 考電位VREF會依據導通的RT1、開關1332與電阻RT3所串 聯的電路而固定在第一參考電位VREF1。此時,輸出電位 VGH=VREF(1+R3/R4) = VREF1(1+R3/R4)。也就是說,當升壓 201228238 電路100工作在非低溫狀態下時升壓電路觸 VGH固定在對應於第—參考電位vr£fi t VGH1上。 』山电仅 當溫度低於特定溫度時,此時溫控電阻RT2的電阻值上 升’則參考電位VREF由於溫控電阻RT2的電阻值的上升而 增大’從而大於第一參考電位VREF卜則比較n 132所輸出 的致能訊號EN致能,其反訊號趾非致能。開關1331導通而 開關1332不導通,參考電位VREF會依據導通的RT1、開關 1331與/JBL控電阻RT2所串聯的電路而決定,且參考電位vref 會隨著溫控電阻RT2的電阻值的變化而線性變化,直至參考 電位VREF達到第二參考電位VREF2。因此,當升廢電路觸 工作在低溫狀態時’升壓電路1〇〇的輸出電位 vgh-vref(i+r3/r4)會依據亦依據參考電位VREF的線性變 化而線性變化,直至達到對應於第二參考電位VREF2的第二 輸出電位VGH2=VREF2(1+R3/R4)。也就是說,當升麼電路1〇〇 工作在低溫狀態時,其輸出電位VGH會得到再次的拉升且 其在所設定好的溫度範圍内是依據溫度的變化而進行線性的 φ 變化。 表 τ'上所述,本發明實施例所揭示的升壓電路在處於低溫環 境時會再次拉升其輸出電位’從而提高平面顯示器驅動電路的 驅動月b力,且其疋依據溫度的變化而逐漸地拉升其輸出電位, 因此不會影響平面顯示器的顯示效果。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍 内,當可作些許之更動與潤飾,因此本發明之保護範圍當視後 附之申請專利範圍所界定者為準。 15 201228238 【圖式簡單說明】VRF^ ViEF1. Comparing the negative input terminal of 11 132 to receive the first reference potential, the flute misses the reading terminal to receive the reference power MREF, and the output terminal provides the enable signal EN according to the L-hardness suppression 1 and the reference potential VREF. The electric stand-up element 133 serves the enable signal* to determine the reference potential to generate the reference potential VREF that Z no turns. Electric (4) select JS resistance lamp 2, electric_3, „1331 and _33 electric 2. The resistance switch 1331 and the temperature control resistor RT2 are connected in series, and the electric_ is connected between the second reference potential VREF2 and the ground. Accepted Γί Γ = difficult to conduct. Resistor RT Buguan 1332 and resistance chat: people from the 'and electrically coupled to the second reference potential VREF2 and the ground is severe. Switch 1332 is enabled signal _ of the signal Control whether it is ί(4) resistor RT2 and (4) electrical junction of resistor RT3 as the output of reference potential generation module 13G to output reference potential view F. This = 'in this implementation, the resistance value of temperature control resistor RT2 with temperature And rise, and the resistance value of the resistor RT3 is the same as the resistance value of the temperature control resistor rt2 at a constant temperature (for example, room temperature 25 degrees Celsius). When the temperature is greater than the specific enable signal EN is in a non-enabled state, and its signal is abdomen In the case of this, the switch 1331 is not turned on and the switch 1332 is turned on, and the resistor, the circuit of the 201228238 switch 1332 and the resistor RT3 are turned on. The reference potential VREF at this time is turned on by the resistor RT1, the switch 1332 and the resistor RT3. Series circuit The decision is based on the potential VREF=VREF2XRT3/(RT1+RT3). Since the resistance values of the resistor RT1 and the resistor RT3 are fixed, the reference potential VREF at this time does not change. In this embodiment, The first reference potential VREF1 is set equal to the reference potential VREF at this time. That is, when the temperature is greater than the specific temperature, the reference potential VREF output by the potential selecting element 133 is the first reference potential VREF1. When the enable signal EN is enabled and the echo toe is inactive, the switch 1331 is turned on and the switch 1332 is not turned on. Therefore, the resistor rTi, the switch 1331 and the circuit connected in series with the temperature control resistor RT2 are turned on. When the reference potential VREF (four) is connected to the resistor RT switch 1331 and the temperature control resistor RT2 in series, the reference potential = VREF2XRT2 / (RT1 + RT2) = VREF2 / (1 + RT / RT2). Because of the temperature control resistor The resistance value of =T2 rises with the decrease of temperature, so the reference potential VRE^ will change linearly with the change of the resistance value of the temperature control resistor RT2. This is the specific temperature, so the resistance value of the temperature control resistor RT2 When the electric power = 3 = resistance value, the reference potential VREF is greater than the first reference potential _ ^ reaches the first reference potential VREF2. In this real position VREF2^', thereby avoiding the corresponding output potential VGH from rising continuously. The negative input terminal is electrically coupled to the output end of the feedback circuit 120 to return to WB2, the input terminal is generated by the tester, and the turn-out terminal is provided according to the second test potential VREF. Comparing results. 13 201228238 The pulse width of 15G is similar to that of the pre-pulse width tuning group 18, which includes current detection 1 151, comparator 152, control circuit 153, and transistor 154. The current detector 151 is electrically connected to the electrical input of the inductor 114 and the diode 115 in the boosting module, so that the side supplies the current to the diode (1) to generate a corresponding current_result. The positive input terminal of the comparator 153 is electrically coupled to the current detector 151 to obtain a current detection result, and the negative input terminal is electrically coupled to the output terminal of the comparator 130 to obtain a comparison result, and the output of the output terminal is electrically connected. It is consumed by the control circuit 153. The transistor 154 is connected to the control circuit 153, and the source thereof is electrically coupled to the electrical coupling of the inductor 114 and the diode 115 in the boosting module 11 , and the drain is grounded. The control circuit 153 generates a corresponding control signal according to the output result of the comparator 152, thereby controlling whether the transistor 154 is turned on, that is, whether the electrical path of the boosting module 110 to the ground through the pulse width module 15 is turned on, thereby determining the rise. The output potential VGH of the voltage module 110. According to the equivalent circuit, the output potential of the boosting module 110 is VGH=VREF(1+R3/R4&gt;. Referring to FIG. 4A and FIG. 4B, FIG. 4A is a schematic diagram showing the relationship between the reference potential vref and the temperature-controlled resistor RT2. 4B is a schematic diagram showing the relationship between the output potential VGH and the temperature. As shown in FIGS. 4A and 4B, when the temperature is greater than a specific temperature (room temperature 25 degrees Celsius), it is connected in series according to the resistor RT1, the switch 1331, and the temperature control resistor RT2. The circuit is still based on the circuit in which the resistor RT1, the switch 1332 and the resistor RT3 are connected in series, and the reference potential VREF is not greater than the first reference potential VREF1, so the comparator 132 outputs the enable signal according to the first reference potential VREF1 and the reference potential VREF. EN is non-energized, and its inverse signal is enabled. Switch 1331 is not conducting and switch 1332 is turned on. Reference potential VREF is fixed at the first reference potential according to the circuit in which RT1, switch 1332 and resistor RT3 are connected in series. VREF1. At this time, the output potential VGH=VREF(1+R3/R4) = VREF1(1+R3/R4). That is, when the boost 201228238 circuit 100 operates in a non-low temperature state, the boost circuit touches the VGH fixed. Corresponding to - Reference potential vr£fi t VGH1. 』Shan electric only when the temperature is lower than the specific temperature, the resistance value of the temperature control resistor RT2 rises at this time', the reference potential VREF increases due to the increase of the resistance value of the temperature control resistor RT2 Therefore, it is greater than the first reference potential VREF, and the enable signal EN outputted by n 132 is compared, and the anti-signal toe is disabled. The switch 1331 is turned on and the switch 1332 is not turned on, and the reference potential VREF is based on the turned-on RT1. 1331 is determined by the circuit connected in series with /JBL control resistor RT2, and the reference potential vref changes linearly with the change of the resistance value of the temperature control resistor RT2 until the reference potential VREF reaches the second reference potential VREF2. When the circuit touches the low temperature state, the output potential vgh-vref (i+r3/r4) of the boosting circuit 1 线性 varies linearly according to the linear change of the reference potential VREF until reaching the second reference potential VREF2 The second output potential VGH2 = VREF2 (1 + R3 / R4). That is to say, when the circuit 1 〇〇 operates in a low temperature state, its output potential VGH will be pulled up again and it is set. Temperature range The linear change of φ is performed according to the change of temperature. As described in Table τ', the booster circuit disclosed in the embodiment of the present invention pulls up its output potential again when it is in a low temperature environment, thereby improving the driving circuit of the flat panel display. The monthly b force is driven, and the 逐渐 gradually pulls up its output potential according to the change of the temperature, so the display effect of the flat display is not affected. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. 15 201228238 [Simplified illustration]

圖4B繪示為輸出電位與溫度的關係示意圖。 圖1繪示為GOA 圖2繪示為圖1所 【主要元件符號說明】FIG. 4B is a schematic diagram showing the relationship between the output potential and the temperature. Figure 1 is a diagram showing the GOA. Figure 2 is a diagram of Figure 1.

Ml〜M4、154、184 :電晶體 ST ·啟動脈衝訊號 CLK ·時脈訊號 CP、OUT :節點Ml~M4, 154, 184: transistor ST · start pulse signal CLK · clock signal CP, OUT : node

Out(n):輸出訊號 10、100 :升壓電路 11 :電荷泵 110 :升壓模組 111、 114 :電感 112、 115 :二極體 113、 116 :電容 120 :回授電路 130 .參考電位產生模組 131 :多電位產生元件 132、140、152、182 :比較器 133 :電位選擇元件 201228238 1331、1332 :致能開關 150 :脈衝寬度調變模組 151:電流偵測器 153、183 :控制電路 160 :前級回授電路 170 :前級比較器 180 :前級脈衝寬度調變模組 181 :電流偵測器 R1〜R4、RT1〜RT3 :電阻 • VIN :輸入電位 AVDD :輸入電位被拉升至一定的電位 VGH :輸出電位 VFB1 :前級回授電位 VFB2 :回授電位 VREF :參考電位 VREF1 :第一參考電位 VREF2 :第二參考電位 φ VGH1:第一輸出電位 VGH2i:第二輸出電位 17Out(n): output signal 10, 100: boost circuit 11: charge pump 110: boost module 111, 114: inductor 112, 115: diode 113, 116: capacitor 120: feedback circuit 130. reference potential The generating module 131: the multipotential generating element 132, 140, 152, 182: the comparator 133: the potential selecting element 201228238 1331, 1332: the enabling switch 150: the pulse width modulation module 151: the current detector 153, 183: Control circuit 160: pre-stage feedback circuit 170: pre-stage comparator 180: pre-stage pulse width modulation module 181: current detectors R1 to R4, RT1 to RT3: resistance • VIN: input potential AVDD: input potential is Pull-up to a certain potential VGH : Output potential VFB1 : Pre-stage feedback potential VFB2 : Feedback potential VREF : Reference potential VREF1 : First reference potential VREF2 : Second reference potential φ VGH1: First output potential VGH2i: Second output Potential 17

Claims (1)

201228238 七、申請專利範圍: 1.一種升壓電路,包括: 二升壓模組,包括-輸人端與—輪出端,該輸人端接收一 輸入電位,該輸出端提供一輸出電位; 供相:^^^接至該輸出端3&quot;根據該_位而提 變㈣生模組’產生在―特定溫度區_隨著溫度 的兩浐:减具有兩輸入端與-輸出端,該第-比較器 器的輸出端提供-第-比較:果=考 第一比較 一脈衝寬度調變槿 模組,該脈衝寬度調變榲 ^至該第—比較器與該升壓 以得-輸出電流偵測結果二康=組:該輸出端的電流 -比較結果來蝴何時@ ^力&amp;電》域騎果與該第 模組至地的電性通路。、趙模組經過該脈衝寬度調變 組包括 i如申請專利範園第1項所述的升 壓電路,其中該升壓模 電感的第一端 電性耦接至該i入端有第-端與第二端’該第- 導通元件容許i流從η具5第;端與第二端,該第一單向 向導通元件的第二端^早^導通元件的第-端流往該單 至該第-電感的第二錢早向導通元件的第—端電性搞接 一第一電容,具有第 電性祕至該第—%導通元第―電容的第一端 18 201228238 3·如中請專利範圍第1項所述 位產生模組包括: ㈣’其㈣參考電 位,^電位產生元件,提供—第―參考電位與-第二參考電 μ第—參考電位大於該第一參考電位; &amp;^&amp;第一比較器,具有兩輸入端與—輸出端,該第二比較器 的兩輸入端分別接收該第一參考電位° 一 ° 較器的輸出端提供-致能訊號;以及、^考電位,該第二比 一電位選擇元件,包括: 第-㈣^第―電阻,具有第—端與第二端,該第一電阻的 電性耗接至該多電位產生元件以接收該第二參考電位; 一第二電阻,具有第一端與第二端,哕Μ -雷阻的 第一端電_接至地; 〜衫-電阻的 她,具有第—端與第m感電阻的 第一鳊電性耦接至地; -第-開關’電性耦接於該第一電阻 二電阻 之間並受該致能訊號控制是否導通;以及 第-開關’電性輕接於該第_電阻盘 之間並受紐能訊餘鼓科通, ,第其二=電阻的電阻值隨溫度而變化,該第-開關與 5亥第n顧能訊號之控制而*㈣導通,且 與該第一開關的電性耦接點提供該參考電位。 4.如申請專利範圍第3項所述的升壓電路, 阻的電阻值隨溫度下降而上升,該第二電阻的電阻與 Γ的電阻值在—歡溫度時相同,且當溫度大於該特定^ 時,該致能訊舰該第-_導通蚊該第二明不導通。 19 201228238 專利範圍第3項所述的升壓電路,其中該第二比 位大於該第—參考電位時使該致能訊號導通 第並二 1 參考電位小於該第-參考電位時使該致能 組包第1項所義聽料,其巾該升麵 一第一Ϊ感,具有第—端與第二端; 一第一單向導通元件,具有第一盥 導通元件容許電流從00 一 ,〜第一單向 一單向導通元流往該第 驗該第-電感=端第一早向導通元件的第1電性 電性第-電容的第-端 電二有第一端與第二端,該第二電感的第-端 -第二單向導通元件,具有第一端 導通元件容許電流從該第二單向導通元件的^總亥^一早向 -早向導通元件的第二端,該第二單向導通元件的 耦接至該第二電感的第二端 :以及° 知電挫 電性上第導:端:第:,Γ第二電容的第-端 -端。卓-早向導通兀件的第二端及該第一電感的第 7.如申4專利範圍第6項所述的升壓電路,更勹 一前級回授電路,電⑽接錢第二單向導通^件的第 20 201228238 端以取得相對應的一前級回授電位; 二前級比較器,具有兩輸人端與—輸出端,該前級比較琴 收該前級回授電位與一固定參考電位,且該 刖級比幸又器的輸出端輸出一前級比較結果;以及 -前級脈域度_模組,電_接至該前級 第一早向導通几件的電流以得一前級電士 流偵測結果與該前級比較結果來控制何:寺導通:電: _電谷升壓模組經過該前級脈衝寬度調變模組至地的電性通路。 位產==利範圍第7項所述的升壓電路,其中該參考電 一多電位產生s件,提供-第—參考電位與 位,該第二參考電位大於該第一參考電位; 一第二比較器,具有兩輸入端與—輸出端, =輸入端分別接收該第—參考電位與該參考電位第== 較器的輸出端提供一致能訊號;以及 Λ • 一電位選擇元件,包括: 一第一電阻,具有第一端與第二端,該第一雷阻的 端電性輕接至該多電位產生元件以接收該第二參考電位; 第一端電具有第—端與第二端,該第二電阻的 第一端電具有第—端與第二端,該溫感電阻的 之門開關,電性_於該第—電阻與該第二電阻 之間並又遠致能訊號控制是否導通;以及 一第二開關’電性_於該第—電阻與該溫感電阻 21 201228238 之間並受該致能訊號控制是否導通, 且該第一電阻 其中’該溫感電阻的電阻值隨溫度而變化 該第二開關受該致能訊號之控制㈣㈣導通—開關與 與該第一開關的電性耦接點提供該參考電位。 9·一種隨溫度調整輸出電位的升壓電路,包括·· -電感電容升壓模組,包括一輸入端與 端接收一輸入電位,該輸出端提供一輸出電位’錢入 -回授電路,電_接至該輸“吨_ 供相對應的一回授電位;以及 阳1:位而k -脈衝寬度調變模組,控制何時導通該電感電 經過該脈衝寬度調變模組至地的電性通路,以 一特定溫度區間内為線性變化。 電位在 10.如申請專利範圍第9項所述的升壓電路,更包括. -參考電位產生模組,產生在該特定溫度區^性 化的-參考電位;以及 Μ㈣ 一第一比較器,具有兩輸入端與一輸出端,該第一比較器 的兩輸入端分別接收該回授電位與該參考電位,且該第一 交 器的輸出端提供一第一比較結果, 、 其中’該脈衝寬度調變模組根據該輸出電流偵蜊鈇果與嗲 第一比較結果而控制何時導通該電感電容升壓模纽^過 衝寬度調變模組至地的電性通路。 ^( 八、圖式: 22201228238 VII. Patent application scope: 1. A booster circuit comprising: a second boosting module comprising: an input terminal and a wheel output terminal, the input terminal receiving an input potential, the output terminal providing an output potential; Supply phase: ^^^ is connected to the output terminal 3&quot; According to the _ bit, the (4) raw module 'generates in the specific temperature zone _ with two temperatures: minus two inputs and - outputs, The output of the first-comparator provides a -first-comparison: fruit = test first comparison of a pulse width modulation 槿 module, the pulse width modulation 榲 ^ to the first comparator and the boost to obtain - output Current detection result II Kang = group: The current of the output - the comparison result to butterfly when the @ ^力 &amp; electric field rides the fruit and the module to ground electrical path. The Zhao module passes through the pulse width modulation group, and includes a booster circuit as described in claim 1, wherein the first end of the boost mode inductor is electrically coupled to the i-input terminal to have a first- And the second end 'the first-via element allows i to flow from the n-th; the second end; the second end of the first one-way conducting element to the first end of the conducting element The second end of the first-inductance of the first-inductance element is electrically connected to a first capacitor, and has a first electrical property to the first end of the first-% conductive element-capacitor 18 201228238 3· The bit generation module described in the first item of the patent scope includes: (4) 'the (four) reference potential, the potential generating element, providing - the first reference potential and the - second reference electrical μ - the reference potential is greater than the first reference a first comparator having two input terminals and an output terminal, wherein the two input terminals of the second comparator respectively receive the first reference potential, and the output terminal of the comparator provides an enable signal. ; and ^ test potential, the second ratio to a potential selection component, including: - (four) ^ first - And having a first end and a second end, wherein the first resistor is electrically connected to the multi-potential generating element to receive the second reference potential; and a second resistor has a first end and a second end, - the first end of the lightning resistance is connected to the ground; the first of the first-side and the first sense resistor is electrically coupled to the ground; the first switch is electrically coupled to the ground The first resistor and the second resistor are controlled by the enable signal to be turned on; and the first switch is electrically connected between the first resistor and the resistor, and is controlled by the button. The resistance value of the resistor changes with temperature, and the first switch is controlled by the control of the fifth switch and the fourth switch, and the reference potential is provided by an electrical coupling point with the first switch. 4. The booster circuit of claim 3, wherein the resistance value of the resistor rises as the temperature decreases, and the resistance of the second resistor is the same as the resistance value of the crucible, and when the temperature is greater than the specific temperature ^ When the commander of the commander, the first-to-pass mosquito, the second is not conductive. The voltage boosting circuit of claim 3, wherein the second ratio bit is greater than the first reference potential, the enable signal is turned on, and the second reference potential is less than the first reference potential to enable the enablement. The hearing material of the first item of the package has a first sensation of the rising surface of the towel, having a first end and a second end; a first one-way conducting element having a first 盥 conducting element allowing a current from 00, The first one-way one-way one-way current flows to the first-inductance=the first-phase first-phase second-on-first-phase first-stage electrical-electrical-first-phase first-phase second a first end-second unidirectional conduction element of the second inductor having a first end conduction element allowing current from the second end of the second unidirectional conduction element to the second end of the early conduction element The second unidirectional conduction component is coupled to the second end of the second inductor: and the first terminal end of the second capacitor. The second end of the lead-through guide and the seventh inductor of the first inductor, such as the boost circuit described in claim 6 of the patent scope, is further a pre-stage feedback circuit, and the electric (10) receives the second The 20th 201228238 end of the single-guide pass device obtains a corresponding pre-stage feedback potential; the second pre-stage comparator has two input ends and an output end, and the pre-stage compares the pre-stage feedback potential And a fixed reference potential, and the output of the 刖 stage is outputted by a pre-stage comparison result; and the pre-stage pulsation degree _ module is electrically connected to the first stage of the pre-stage The current is controlled by the result of a pre-existing electrician's flow detection and the comparison of the previous stage. He: Temple conduction: electricity: _ electric valley boost module passes the pre-stage pulse width modulation module to the ground electrical path . The boosting circuit of the seventh aspect, wherein the reference electric power generates a plurality of potentials, providing a -first reference potential and a bit, the second reference potential being greater than the first reference potential; a comparator having two input terminals and an output terminal, wherein the = input terminal respectively receives the first reference potential and the reference potential of the == comparator output signal, and a potential selection component, including: a first resistor having a first end and a second end, the end of the first lightning resistor being electrically connected to the multipotential generating component to receive the second reference potential; the first end electrically having a first end and a second end The first end of the second resistor has a first end and a second end, and the gate switch of the temperature sensitive resistor is electrically connected between the first resistor and the second resistor Controlling whether to conduct; and a second switch 'electricality' between the first resistance and the temperature sensing resistor 21 201228238 and controlled by the enable signal, and the first resistance of the resistor of the temperature resistance The value changes with temperature of the second switch The actuator control signal can be turned ㈣㈣ - The switch contacts electrically coupled with the first switch supplies the reference potential. 9. A booster circuit for adjusting an output potential with temperature, comprising: an inductor-capacitor boosting module comprising: an input terminal and an end receiving an input potential, the output terminal providing an output potential 'money-in-return circuit, Electrical_connected to the input "T" for a corresponding feedback potential; and a positive 1: bit and k-pulse width modulation module to control when the inductor is turned on through the pulse width modulation module to the ground The electrical path is linearly changed within a specific temperature range. The potential is 10. The booster circuit according to claim 9 of the patent application, further comprising: a reference potential generating module, generated in the specific temperature region a reference voltage; and a first comparator having two inputs and an output, the two inputs of the first comparator respectively receiving the feedback potential and the reference potential, and the first transmitter The output end provides a first comparison result, wherein the pulse width modulation module controls when to turn on the inductor-capacitor boost mode ^ overshoot width modulation according to the output current detection result and the first comparison result Module to Electrical path of the ground. ^( Eight, schema: 22
TW99146673A 2010-12-29 2010-12-29 Boost circuit TWI441453B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99146673A TWI441453B (en) 2010-12-29 2010-12-29 Boost circuit
CN2011101112142A CN102184702A (en) 2010-12-29 2011-04-19 Voltage booster circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99146673A TWI441453B (en) 2010-12-29 2010-12-29 Boost circuit

Publications (2)

Publication Number Publication Date
TW201228238A true TW201228238A (en) 2012-07-01
TWI441453B TWI441453B (en) 2014-06-11

Family

ID=44570868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99146673A TWI441453B (en) 2010-12-29 2010-12-29 Boost circuit

Country Status (2)

Country Link
CN (1) CN102184702A (en)
TW (1) TWI441453B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482141B (en) * 2013-01-18 2015-04-21 Power Forest Technology Driving circuit with an over voltage protection device for modulating an electrical parameter of a device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI444965B (en) * 2011-12-30 2014-07-11 Au Optronics Corp High gate voltage generator and display module of same
CN112331248B (en) * 2019-08-05 2024-05-14 上海复旦微电子集团股份有限公司 Charge pump circuit for establishing NOR memory read voltage and NOR memory

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873677B2 (en) * 2001-09-06 2012-02-08 東北パイオニア株式会社 Driving device for light emitting display panel
CN1794894B (en) * 2004-12-25 2011-03-30 鸿富锦精密工业(深圳)有限公司 Driving device of cold-cathode fluorescent lamp
JP2006343531A (en) * 2005-06-09 2006-12-21 Tohoku Pioneer Corp Driving device and driving method of light emitting panel
CN101078940A (en) * 2006-05-26 2007-11-28 硕颉科技股份有限公司 Reference voltage generator, frequency generator and controller
KR101294321B1 (en) * 2006-11-28 2013-08-08 삼성디스플레이 주식회사 Liquid crystal display
JP5174390B2 (en) * 2007-08-06 2013-04-03 ローム株式会社 Power supply device and electronic apparatus equipped with the same
CN101436386B (en) * 2007-11-15 2011-06-08 中华映管股份有限公司 Drive device for backlight module unit
KR101472076B1 (en) * 2008-08-12 2014-12-15 삼성디스플레이 주식회사 Liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482141B (en) * 2013-01-18 2015-04-21 Power Forest Technology Driving circuit with an over voltage protection device for modulating an electrical parameter of a device

Also Published As

Publication number Publication date
CN102184702A (en) 2011-09-14
TWI441453B (en) 2014-06-11

Similar Documents

Publication Publication Date Title
CN101330252B (en) DC-DC converter with temperature compensating circuit
TWI334684B (en)
TWI345867B (en)
TWI294215B (en)
TWI375935B (en) Constant curent driving circuit
RU2651145C1 (en) Led light control scheme and liquid crystal display device
KR102222198B1 (en) DC voltage conversion circuit and DC voltage conversion method and liquid crystal display
US20140285173A1 (en) System and Method for Providing Adaptive Dead Times
TWI406502B (en) Gate driver which has an automatic linear temperature adjustment function
TW201136119A (en) Current mode buck converter with fixed PWM/PFM boundary
TW200945942A (en) Light emitting diode module
TWI479780B (en) Synchronous buck converter
KR102107069B1 (en) Signal processing circuit, signal processing method, position detecting device, and electronic apparatus
CN109410880B (en) Display panel driving circuit
CN111462708B (en) Voltage conversion circuit, voltage conversion method and display device
CN112737335B (en) Zero-crossing detection device of boost conversion circuit
TW201228238A (en) Boost circuit
US10473531B2 (en) Temperature sensor and method of detecting temperature
US11114942B2 (en) Boost converter
CN112994436B (en) Grid opening voltage generation circuit, display panel driving device and display device
JP4365875B2 (en) DC-DC converter having temperature compensation circuit
US20140240884A1 (en) Over current protection circuit
TWI493875B (en) Driving signal generating system
CN112951173B (en) Grid opening voltage generation circuit, display panel driving device and display device
US20070200612A1 (en) Power supply apparatus and method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees