CN102184702A - Voltage booster circuit - Google Patents
Voltage booster circuit Download PDFInfo
- Publication number
- CN102184702A CN102184702A CN2011101112142A CN201110111214A CN102184702A CN 102184702 A CN102184702 A CN 102184702A CN 2011101112142 A CN2011101112142 A CN 2011101112142A CN 201110111214 A CN201110111214 A CN 201110111214A CN 102184702 A CN102184702 A CN 102184702A
- Authority
- CN
- China
- Prior art keywords
- reference potential
- potential
- electrically coupled
- resistance
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008878 coupling Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 15
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 14
- 230000000052 comparative effect Effects 0.000 claims 6
- 230000004913 activation Effects 0.000 claims 2
- 239000003990 capacitor Substances 0.000 description 23
- 238000001514 detection method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000013256 coordination polymer Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
- Electronic Switches (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明是有关于驱动显示面板的升压电路,且特别是有关于一种随温度变化而调整输出电位的驱动显示面板的升压电路。The present invention relates to a voltage boosting circuit for driving a display panel, and in particular to a voltage boosting circuit for driving a display panel that adjusts output potential with temperature changes.
【背景技术】【Background technique】
为了降低产品成本,平面显示器的驱动电路逐渐以数组上栅极技术(Gate-On-Array,GOA)取代了原先的玻璃覆晶封装(Chip-On-Glass,COG)的驱动技术,从而可节省栅极驱动IC(Gate IC)的使用量。GOA架构与COG架构都需要使用移位缓存器(shift register)与电位移位器(level shift)。但是,GOA架构是利用薄膜晶体管n型金属氧半导体处理技术(TFT n-MOSprocess)来合成移位缓存器,并将电位移位器制作在玻璃基板上。而COG架构是通过互补金属氧半导体处理技术(CMOS process)将移位缓存器与电位移位器整合于单一芯片并将芯片设置在玻璃基板上。因此,GOA架构的制造成本远远低于COG架构。In order to reduce the product cost, the drive circuit of the flat panel display has gradually replaced the original chip-on-glass package (Chip-On-Glass, COG) drive technology with the gate-on-array technology (Gate-On-Array, GOA), which can save The amount of gate driver IC (Gate IC) used. Both the GOA architecture and the COG architecture require the use of shift registers and level shifters. However, the GOA architecture uses thin-film transistor n-type metal-oxygen-semiconductor processing technology (TFT n-MOSprocess) to synthesize a shift register, and the potentiometer is fabricated on a glass substrate. The COG architecture integrates the shift register and the level shifter into a single chip through complementary metal-oxygen-semiconductor processing technology (CMOS process), and the chip is placed on a glass substrate. Therefore, the manufacturing cost of the GOA architecture is much lower than that of the COG architecture.
图1绘示为GOA架构中一级移位缓存器的电路示意图,图2绘示为图1所示的移位缓存器中各种信号的频率示意图。如图1-2所示,移位缓存器由晶体管M1、晶体管M2、晶体管M3以及晶体管M4而构成。当处于室温时,启动脉冲信号ST(Start Pulse)会先送一个脉冲导通晶体管M1从而将节点CP提升至接近启动脉冲信号ST的高电压位准。而当频率信号CLK送出一个脉冲时,因受到晶体管M2的电容耦合效应的影响,节点CP所储存的启动脉冲信号ST的高电压位准会进一步与频率信号CLK的高电压位准相迭加,从而再次提升节点CP的电位。此时晶体管M2导通以将频率信号CLK的高电压位准输出至节点Out而产生输出信号Out(n)以驱动相关的电路。当处于低温时,晶体管M2导通程度减弱,其电流量会降低,再加上源极电压与组件尺寸固定时晶体管M4的漏电情况,则节点Out上的电位无法拉升,导致输出信号Out(n)会出现异常而无法驱动相关的电路,并因此造成驱动电路的驱动能力不足而出现显示异常的现象。FIG. 1 is a schematic circuit diagram of a first-level shift register in the GOA architecture, and FIG. 2 is a schematic diagram of frequencies of various signals in the shift register shown in FIG. 1 . As shown in FIG. 1-2, the shift register is composed of a transistor M1, a transistor M2, a transistor M3, and a transistor M4. When it is at room temperature, the start pulse signal ST (Start Pulse) will first send a pulse to turn on the transistor M1 so as to raise the node CP to a high voltage level close to the start pulse signal ST. When the frequency signal CLK sends out a pulse, due to the influence of the capacitive coupling effect of the transistor M2, the high voltage level of the start pulse signal ST stored in the node CP will be further superimposed on the high voltage level of the frequency signal CLK, Thereby, the potential of the node CP is raised again. At this time, the transistor M2 is turned on to output the high voltage level of the clock signal CLK to the node Out to generate an output signal Out(n) to drive related circuits. When the temperature is low, the conduction degree of transistor M2 is weakened, and its current flow will be reduced. In addition, when the source voltage and component size are fixed, the leakage of transistor M4, the potential on the node Out cannot be pulled up, resulting in the output signal Out( n) Abnormalities may occur and related circuits cannot be driven, and thus the driving capability of the driving circuit is insufficient, resulting in abnormal display.
【发明内容】【Content of invention】
本发明的目的的一就是在提供一种升压电路,其可依据温度的变化而线性地改变其输出电位。One object of the present invention is to provide a boost circuit that can linearly change its output potential according to temperature changes.
本发明的再一目的是提供一种随温度调整输出电位的升压电路,其对平面显示器的显示效果影响较小。Another object of the present invention is to provide a boost circuit that adjusts the output potential with temperature, which has little influence on the display effect of the flat panel display.
本发明提出一种升压电路,包括升压模块、反馈电路、参考电位产生模块、第一比较器以及脉冲宽度调变模块。升压模块包括输入端与输出端,其输入端接收输入电位,而输出端提供输出电位。反馈电路电性耦接至升压模块的输出端以根据输出电位而提供相对应的反馈电位。参考电位产生模块产生在特定温度区间内随着温度变化的参考电位。第一比较器具有两输入端与一输出端,第一比较器的两输入端分别接收反馈电位与参考电位,且第一比较器的输出端提供第一比较结果。脉冲宽度调变模块电性耦接至第一比较器与升压模块,脉冲宽度调变模块检测升压模块的输出端的电流以得输出电流检测结果,并根据输出电流检测结果与第一比较结果来控制何时导通升压模块经过脉冲宽度调变模块至地的电性通路。The present invention provides a boost circuit, which includes a boost module, a feedback circuit, a reference potential generation module, a first comparator and a pulse width modulation module. The boost module includes an input terminal and an output terminal, the input terminal receives the input potential, and the output terminal provides the output potential. The feedback circuit is electrically coupled to the output terminal of the boost module to provide a corresponding feedback potential according to the output potential. The reference potential generation module generates a reference potential that varies with temperature within a specific temperature range. The first comparator has two input terminals and an output terminal. The two input terminals of the first comparator respectively receive the feedback potential and the reference potential, and the output terminal of the first comparator provides a first comparison result. The pulse width modulation module is electrically coupled to the first comparator and the boost module. The pulse width modulation module detects the current at the output terminal of the boost module to obtain an output current detection result, and compares the output current detection result with the first comparison result. To control when to turn on the electrical path from the boost module to the ground through the pulse width modulation module.
在本发明的一个实施例中,上述的升压模块包括第一电感、第一单向导通组件以及第一电容。第一电感具有第一端与第二端,且第一电感的第一端电性耦接至升压模块的输入端。第一单向导通组件具有第一端与第二端,其中第一单向导通组件容许电流从第一单向导通组件的第一端流往单向导通组件的第二端,且第一单向导通组件的第一端电性耦接至第一电感的第二端。第一电容具有第一端与第二端,其中第一电容的第一端电性耦接至第一单向导通组件的第二端。In an embodiment of the present invention, the above boost module includes a first inductor, a first unidirectional conduction component, and a first capacitor. The first inductor has a first end and a second end, and the first end of the first inductor is electrically coupled to the input end of the boost module. The first unidirectional conduction component has a first end and a second end, wherein the first unidirectional conduction component allows current to flow from the first end of the first unidirectional conduction component to the second end of the unidirectional conduction component, and the first unidirectional conduction component The first end of the conduction component is electrically coupled to the second end of the first inductor. The first capacitor has a first end and a second end, wherein the first end of the first capacitor is electrically coupled to the second end of the first one-way conducting element.
在本发明的一个实施例中,上述的参考电位产生模块包括多电位产生组件、第二比较器以及电位选择组件。多电位产生组件提供第一参考电位与第二参考电位,其中第二参考电位大于第一参考电位。第二比较器的两输入端分别接收第一参考电位与参考电位,其输出端提供致能信号。电位选择组件包括第一电阻、第二电阻、温感电阻、第一开关以及第二开关。第一电阻具有第一端与第二端,其中第一电阻的第一端电性耦接至多电位产生组件以接收第二参考电位。第二电阻具有第一端与第二端,其中第二电阻的第一端电性耦接至地。温感电阻具有第一端与第二端,其中温感电阻的第一端电性耦接至地。第一开关电性耦接于第一电阻与第二电阻之间并受致能信号控制是否导通。第二开关电性耦接于第一电阻与温感电阻之间并受致能信号控制是否导通。其中,温感电阻的电阻值随温度而变化,第一开关与第二开关受致能信号的控制而不同时导通,且第一电阻与第二开关的电性耦接点提供参考电位。In one embodiment of the present invention, the above-mentioned reference potential generating module includes a multi-potential generating component, a second comparator, and a potential selecting component. The multi-potential generating component provides a first reference potential and a second reference potential, wherein the second reference potential is greater than the first reference potential. The two input terminals of the second comparator respectively receive the first reference potential and the reference potential, and the output terminal of the second comparator provides an enabling signal. The potential selection component includes a first resistor, a second resistor, a temperature sensing resistor, a first switch and a second switch. The first resistor has a first end and a second end, wherein the first end of the first resistor is electrically coupled to the multi-potential generating component for receiving the second reference potential. The second resistor has a first end and a second end, wherein the first end of the second resistor is electrically coupled to the ground. The temperature sensing resistor has a first end and a second end, wherein the first end of the temperature sensing resistor is electrically coupled to the ground. The first switch is electrically coupled between the first resistor and the second resistor and is controlled by the enabling signal to be turned on or not. The second switch is electrically coupled between the first resistor and the temperature-sensing resistor, and is controlled by the enable signal to be turned on or not. Wherein, the resistance value of the temperature-sensing resistor changes with temperature, the first switch and the second switch are controlled by the enabling signal and are not turned on at the same time, and the electrical coupling point of the first resistor and the second switch provides a reference potential.
在本发明的一个实施例中,上述的温感电阻的电阻值随温度下降而上升,第二电阻的电阻值与温感电阻的电阻值在特定温度时相同。且当温度大于特定温度时,致能信号使第一开关导通而使第二开关不导通。In an embodiment of the present invention, the resistance value of the above-mentioned temperature-sensing resistor increases as the temperature drops, and the resistance value of the second resistor is the same as the resistance value of the temperature-sensing resistor at a specific temperature. And when the temperature is greater than a specific temperature, the enabling signal turns on the first switch and turns off the second switch.
在本发明的一个实施例中,上述的第二比较器在参考电位大于第一参考电位时使致能信号导通第二开关,并在参考电位小于第一参考电位时使致能信号导通第一开关。In one embodiment of the present invention, the above-mentioned second comparator enables the enable signal to turn on the second switch when the reference potential is greater than the first reference potential, and turns on the enable signal when the reference potential is lower than the first reference potential first switch.
在本发明的一个实施例中,上述的升压模块包括第一电感、第一单向导通组件、第一电容、第二电感、第二单向导通组件以及第二电容。第一电感具有第一端与第二端。第一单向导通组件具有第一端与第二端,第一单向导通组件容许电流从第一单向导通组件的第一端流往第一单向导通组件的第二端,第一单向导通组件的第一端电性耦接至第一电感的第二端。第一电容具有第一端与第二端,第一电容的第一端电性耦接至第一单向导通组件的第二端。第二电感具有第一端与第二端,第二电感的第一端电性耦接至输入端。第二单向导通组件具有第一端与第二端,第二单向导通组件容许电流从第二单向导通组件的第一端流往第二单向导通组件的第二端,第二单向导通组件的第一端电性耦接至第二电感的第二端。第二电容具有第一端与第二端,第二电容的第一端电性耦接至第二单向导通组件的第二端及第一电感的第一端。In one embodiment of the present invention, the above boost module includes a first inductor, a first unidirectional conduction component, a first capacitor, a second inductor, a second unidirectional conduction component and a second capacitor. The first inductor has a first end and a second end. The first unidirectional conduction component has a first end and a second end, the first unidirectional conduction component allows current to flow from the first end of the first unidirectional conduction component to the second end of the first unidirectional conduction component, the first unidirectional conduction component The first end of the conduction component is electrically coupled to the second end of the first inductor. The first capacitor has a first end and a second end, and the first end of the first capacitor is electrically coupled to the second end of the first one-way conducting element. The second inductor has a first end and a second end, and the first end of the second inductor is electrically coupled to the input end. The second unidirectional conduction component has a first end and a second end, the second unidirectional conduction component allows current to flow from the first end of the second unidirectional conduction component to the second end of the second unidirectional conduction component, and the second unidirectional conduction component The first end of the conduction component is electrically coupled to the second end of the second inductor. The second capacitor has a first end and a second end, and the first end of the second capacitor is electrically coupled to the second end of the second unidirectional conducting element and the first end of the first inductor.
在本发明的一个实施例中,上述的升压电路更包括前级反馈电路、前级比较器以及前级脉冲宽度调变模块。前级反馈电路电性耦接至第二单向导通组件的第二端以取得相对应的前级反馈电位。前级比较器的两输入端分别接收前级反馈电位与固定参考电位,且前级比较器的输出端输出前级比较结果。前级脉冲宽度调变模块电性耦接至前级反馈电路以取得前级反馈电位,且前级脉冲宽度调变模块检测提供至第二单向导通组件的电流以得前级电流检测结果,并根据前级电流检测结果与前级比较结果来控制何时导通电感电容升压模块经过前级脉冲宽度调变模块至地的电性通路。In an embodiment of the present invention, the above boost circuit further includes a front-stage feedback circuit, a front-stage comparator, and a front-stage pulse width modulation module. The pre-stage feedback circuit is electrically coupled to the second end of the second unidirectional conduction element to obtain a corresponding pre-stage feedback potential. The two input terminals of the pre-stage comparator respectively receive the pre-stage feedback potential and the fixed reference potential, and the output terminal of the pre-stage comparator outputs the pre-stage comparison result. The pre-stage pulse width modulation module is electrically coupled to the pre-stage feedback circuit to obtain the pre-stage feedback potential, and the pre-stage pulse width modulation module detects the current provided to the second unidirectional conduction element to obtain the pre-stage current detection result, And according to the current detection result of the previous stage and the comparison result of the previous stage, it is controlled when to turn on the electrical path from the inductor-capacitor boost module to the ground via the previous-stage pulse width modulation module.
在本发明的一个实施例中,上述的参考电位产生模块包括多电位产生组件、第二比较器以及电位选择组件。多电位产生组件提供第一参考电位与第二参考电位,第二参考电位大于第一参考电位。第二比较器的两输入端分别接收第一参考电位与参考电位,第二比较器的输出端提供致能信号。电位选择组件包括第一电阻、第二电阻、温感电阻、第一开关以及第二开关。第一电阻具有第一端与第二端,第一电阻的第一端电性耦接至多电位产生组件以接收第二参考电位。第二电阻具有第一端与第二端,第二电阻的第一端电性耦接至地。温感电阻具有第一端与第二端,温感电阻的第一端电性耦接至地。第一开关电性耦接于第一电阻与第二电阻之间并受致能信号控制是否导通。第二开关电性耦接于第一电阻与温感电阻之间并受致能信号控制是否导通。其中,温感电阻的电阻值随温度而变化,第一开关与第二开关受致能信号的控制而不同时导通,且第一电阻与第二开关的电性耦接点提供参考电位。In one embodiment of the present invention, the above-mentioned reference potential generating module includes a multi-potential generating component, a second comparator, and a potential selecting component. The multi-potential generating component provides a first reference potential and a second reference potential, and the second reference potential is greater than the first reference potential. The two input terminals of the second comparator respectively receive the first reference potential and the reference potential, and the output terminal of the second comparator provides an enabling signal. The potential selection component includes a first resistor, a second resistor, a temperature sensing resistor, a first switch and a second switch. The first resistor has a first end and a second end, and the first end of the first resistor is electrically coupled to the multi-potential generating component for receiving the second reference potential. The second resistor has a first end and a second end, and the first end of the second resistor is electrically coupled to the ground. The temperature sensing resistor has a first end and a second end, and the first end of the temperature sensing resistor is electrically coupled to the ground. The first switch is electrically coupled between the first resistor and the second resistor and is controlled by the enabling signal to be turned on or not. The second switch is electrically coupled between the first resistor and the temperature-sensing resistor, and is controlled by the enable signal to be turned on or not. Wherein, the resistance value of the temperature-sensing resistor changes with temperature, the first switch and the second switch are controlled by the enabling signal and are not turned on at the same time, and the electrical coupling point of the first resistor and the second switch provides a reference potential.
本发明还提供一种随温度调整输出电位的升压电路,其包括电感电容升压模块、反馈电路以及脉冲宽度调变模块。电感电容升压模块包括输入端与输出端,其中输入端接收输入电位,输出端提供输出电位。反馈电路电性耦接至输出端以根据输出电位而提供相对应的反馈电位。脉冲宽度调变模块控制何时导通电感电容升压模块经过脉冲宽度调变模块至地的电性通路,以使输出电位在特定温度区间内为线性变化。The present invention also provides a voltage boosting circuit for adjusting output potential with temperature, which includes an inductance capacitor voltage boosting module, a feedback circuit and a pulse width modulation module. The LC step-up module includes an input terminal and an output terminal, wherein the input terminal receives the input potential, and the output terminal provides the output potential. The feedback circuit is electrically coupled to the output terminal to provide a corresponding feedback potential according to the output potential. The pulse width modulation module controls when to turn on the electrical path from the LC boost module to the ground through the pulse width modulation module, so that the output potential changes linearly within a specific temperature range.
在本发明的一个实施例中,上述的升压电路更包括参考电位产生模块以及第一比较器。参考电位产生模块产生在特定温度区间内为线性变化的参考电位。第一比较器的两输入端分别接收反馈电位与参考电位,且第一比较器的输出端提供第一比较结果。其中,脉冲宽度调变模块根据输出电流检测结果与第一比较结果而控制何时导通电感电容升压模块经过脉冲宽度调变模块至地的电性通路。In an embodiment of the present invention, the above boost circuit further includes a reference potential generating module and a first comparator. The reference potential generating module generates a reference potential that changes linearly within a specific temperature range. The two input terminals of the first comparator respectively receive the feedback potential and the reference potential, and the output terminal of the first comparator provides a first comparison result. Wherein, the pulse width modulation module controls when to turn on the electrical path from the LC boost module through the pulse width modulation module to the ground according to the output current detection result and the first comparison result.
本发明实施例所揭示的升压电路在处于低温环境时会再次拉升其输出电位,从而提高平面显示器驱动电路的驱动能力,且其是依据温度的变化而逐渐地拉升其输出电位,因此不会影响平面显示器的显示效果。The boost circuit disclosed in the embodiment of the present invention will increase its output potential again when it is in a low temperature environment, thereby improving the driving capability of the flat panel display driving circuit, and it gradually increases its output potential according to the change of temperature, so It will not affect the display effect of flat-panel monitors.
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.
【附图说明】【Description of drawings】
图1绘示为GOA架构中移位缓存器的电路示意图。FIG. 1 is a schematic circuit diagram of a shift register in a GOA architecture.
图2绘示为图1所示的移位缓存器中各种信号的频率示意图。FIG. 2 is a schematic diagram of frequencies of various signals in the shift register shown in FIG. 1 .
图3绘示为本发明一实施例所揭示的升压电路的示意图。FIG. 3 is a schematic diagram of a boost circuit disclosed by an embodiment of the present invention.
图4A绘示为参考电位与温控电阻的关系示意图。FIG. 4A is a schematic diagram showing the relationship between the reference potential and the temperature control resistance.
图4B绘示为输出电位与温度的关系示意图。FIG. 4B is a schematic diagram showing the relationship between output potential and temperature.
【主要组件符号说明】[Description of main component symbols]
M1~M4、154、184:晶体管M1~M4, 154, 184: transistors
ST:启动脉冲信号ST: start pulse signal
CLK:频率信号CLK: frequency signal
CP、OUT:节点CP, OUT: Node
Out(n):输出信号Out(n): output signal
10、100:升压电路10, 100: boost circuit
11:电荷泵11: Charge pump
110:升压模块110: Boost module
111、114:电感111, 114: Inductance
112、115:二极管112, 115: Diodes
113、116:电容113, 116: capacitance
120:反馈电路120: Feedback circuit
130:参考电位产生模块130: Reference potential generation module
131:多电位产生组件131: Multi-potential generation components
132、140、152、182:比较器132, 140, 152, 182: Comparators
133:电位选择组件133: Potential selection component
1331、1332:致能开关1331, 1332: enable switch
150:脉冲宽度调变模块150: Pulse width modulation module
151:电流检测器151: Current detector
153、183:控制电路153, 183: control circuit
160:前级反馈电路160: Pre-stage feedback circuit
170:前级比较器170: Pre-stage comparator
180:前级脉冲宽度调变模块180: Pre-stage pulse width modulation module
181:电流检测器181: Current detector
R1R4、RT1RT3:电阻R1 R4, RT1 RT3: resistance
VIN:输入电位VIN: input potential
AVDD:输入电位被拉升至一定的电位AVDD: The input potential is pulled up to a certain potential
VGH:输出电位VGH: output potential
VFB1:前级反馈电位VFB1: Front stage feedback potential
VFB2:反馈电位VFB2: feedback potential
VREF:参考电位VREF: reference potential
VREF1:第一参考电位VREF1: first reference potential
VREF2:第二参考电位VREF2: Second reference potential
VGH1:第一输出电位VGH1: the first output potential
VGH2:第二输出电位VGH2: second output potential
【具体实施方式】【Detailed ways】
请参阅图3,其绘示为本发明一实施例所揭示的升压电路的示意图。如图3所示,升压电路100包括升压模块110、反馈电路120、参考电位产生模块130、比较器140、脉冲宽度调变模块150、前级反馈电路160、前级比较器170以及前级脉冲宽度调变模块180。Please refer to FIG. 3 , which is a schematic diagram of a boost circuit disclosed by an embodiment of the present invention. As shown in FIG. 3 , the
在本实施例中,升压模块110的一部分、前级反馈电路160、前级比较器170以及前级脉冲宽度调变模块180所组成的电路用以将输入电位VIN拉升至一定的电位AVDD。而升压模块110的另一部分、反馈电路120、参考电位产生模块130、比较器140以及脉冲宽度调变模块150所组成的电路用以依据环境温度的变化而将已经拉升的输入电位再次拉升至对应的输出电位VGH。In this embodiment, a circuit composed of a part of the
实际上,也可以省略电感114的前的电路而使输入电位VIN被直接供应至电感114,再通过升压模块110(此时仅包含电感114、单向导通组件(此实施例中为二极管)115与电容116)、反馈电路120、参考电位产生模块130、比较器140以及脉冲宽度调变模块150所组成的电路来进行电位拉升。如此的作法同样也可以达到依据环境温度的变化而改变输出电位VGH大小的目的。当然,若要从输入电位VIN直接提升至输出电位VGH,则其电路组件的规格设计会与图3所示的实施例不同。In fact, the circuit before the
请继续参照图3。具体地,升压模块110包括电感111、二极管112、电容113、电感114、二极管115以及电容116。电感111的一端作为升压模块110的输入端以接收输入电位VIN,其另一端电性耦接至二极管112的正端,二极管112的负端电性耦接电容113的一端,而电容113的另一端接地。电感114的一端电性耦接二极管112的负端与电容113的电性耦接处,而电感114的另一端电性耦接二极管115的正端,二极管115的负端电性耦接电容116的一端,而电容116的另一端接地。且二极管115的负端与电容116的电性耦接处作为升压模块110的输出端以提供输出电位VGH。此外,二极管112与二极管115作为单向导通组件,其只容许电流从二极管的正端流向其负端。Please continue to refer to Figure 3. Specifically, the
前级反馈电路160包括电阻R1以及电阻R2,其中电阻R1与电阻R2串联在二极管112的负端与电容113的电性耦接处以及地之间。电阻R1与电阻R2的电性耦接处作为前级反馈电路160的输出端以提供前级反馈电位VFB1。The
前级比较器170的负输入端电性耦接电阻R1与电阻R2的电性耦接处以接收前级反馈电路160所提供的前级反馈电位VFB1,其正输入端电性耦接一固定参考电位。在本实施例中,固定参考电位为第一参考电位VREF1。此外,前级比较器170的输出端用以输出前级比较结果。The negative input terminal of the
前级脉冲宽度调变模块180电性耦接至前级比较器170的输出端以取得前级比较结果,且前级脉冲宽度调变模块180亦电性耦接至升压模块110中电感111与二极管112的电性耦接处,从而检测提供至二极管112的电流以获得前级电流检测结果。前级脉冲宽度调变模块180可根据其所获得的前级电流检测结果以及前级比较结果来控制何时导通升压模块110经过前级脉冲宽度调变模块至地的电性通路。The pre-stage pulse width modulation module 180 is electrically coupled to the output terminal of the
具体地,前级脉冲宽度调变模块180包括电流检测器181、比较器182、控制电路183以及晶体管184。电流检测器181电性耦接至升压模块110中电感111与二极管112的电性耦接处,从而检测提供至二极管112的电流以产生相应的前级电流检测结果。比较器183的正输入端电性耦接至电流检测器181以获得前级电流检测结果,而负输入端电性耦接至前级比较器170的输出端以获得前级比较结果,而其输出端电性耦接以控制电路183。晶体管184的栅极电性耦接至控制电路183,其源极电性耦接至升压模块110中电感111与二极管112的电性耦接处,而其汲极接地。控制电路183根据比较器182的输出结果而产生对应的控制信号,从而控制晶体管184是否导通,即升压模块110经过前级脉冲宽度模块180至地的电性通路是否导通。Specifically, the preceding pulse width modulation module 180 includes a
升压模块110的电感111、二极管112以及电容113、前级反馈电路160、前级比较器170以及前级脉冲宽度调变模块180所组成的电路可一定程度地拉升输入电位VIN。The circuit composed of the
反馈电路120包括电阻R3与电阻R4。其中电阻R3与电阻R4串联在升压模块110的输出端与地之间,且电阻R3与电阻R4的电性耦接处作为反馈电路120的输出端以提供对应的反馈电位VFB2。The
参考电位产生模块130用以产生在特定温度区间内随着温度而进行变化的参考电位VREF。具体地,参考电位产生模块130包括多电位产生组件131、比较器132以及电位选择组件133。多电位产生组件131用以提供第一参考电位VREF1与第二参考电位VREF2,且第二参考电位VREF2大于第一参考电位VREF1。比较器132的负输入端接收第一参考电位VREF1,其正输入端接收参考电位VREF,而其输出端则依据第一参考电位VREF1与参考电位VREF而提供致能信号EN。The reference
电位选择组件133则依据致能信号而决定参考电位产生模块130输出的参考电位VREF。电位选择组件133包括电阻RT1、温控电阻RT2、电阻RT3、开关1331以及开关1332。电阻RT1、开关1331以及温控电阻RT2依次串联在一起,且电性耦接于第二参考电位VREF2与地之间。开关1331受致能信号EN控制其是否导通。电阻RT1、开关1332以及电阻RT3依次串联在一起,且电性耦接于第二参考电位VREF2与地之间。开关1332受致能信号EN的反信号EN控制其是否导通。电阻RT1与温控电阻RT2以及电阻RT3之间的电性耦接处作为参考电位产生模块130的输出端以输出参考电位VREF。The
此外,在本实施例中,温控电阻RT2的电阻值随温度下降而上升,且电阻RT3的电阻值与温控电阻RT2的电阻值在某一特定温度(例如室温25摄氏度)时相同。当温度大于特定温度时,致能信号EN处于非致能状态,而其反信号EN处于致能状态,则开关1331不导通而开关1332导通,则电阻RT1、开关1332与电阻RT3所串联的电路导通,此时的参考电位VREF由导通的电阻RT1、开关1332与电阻RT3所串联的电路所决定,则参考电位VREF=VREF2XRT3/(RT 1+RT3)。由于电阻RT1与电阻RT3的电阻值是固定的,因此此时的参考电位VREF是不会发生变化的。在本实施例中,可将第一参考电位VREF1设定为等于此时的参考电位VREF。也就是说,当温度大于特定温度时,电位选择组件133所输出的参考电位VREF就是第一参考电位VREF1。In addition, in this embodiment, the resistance of the temperature control resistor RT2 increases as the temperature decreases, and the resistance of the temperature control resistor RT3 is the same as that of the temperature control resistor RT2 at a certain temperature (
当温度小于特定温度时,致能信号EN处于致能状态,而其反信号EN处于非致能状态,则开关1331导通而开关1332非导通。因此电阻RT1、开关1331与温控电阻RT2所串联的电路导通,此时的参考电位VREF由导通的电阻RT1、开关1331与温控电阻RT2所串联的电路所决定,则参考电位VREF=VREF2XRT2/(RT1+RT2)=VREF2/(1+RT1/RT2)。由于温控电阻RT2的电阻值随温度的下降而上升,因此参考电位VREF会随着温控电阻RT2的电阻值的变化而产生线性变化。此外,由于温度低于特定温度,因此温控电阻RT2的电阻值大于电阻RT3的电阻值,则参考电位VREF大于第一参考电位VREF1直至达到第二参考电位VREF2。在本实施例中,可设定温度达到0摄氏度时,参考电位VREF达到第二参考电位VREF2,且温度低于0摄氏度时,参考电位VREF一直保持第二参考电位VREF2不变,藉此避免对应的输出电位VGH不断的攀升。When the temperature is lower than the specified temperature, the enable signal EN is in an enabled state, and the inverse signal EN is in an inactive state, so the
比较器140的负输入端电性耦接反馈电路120的输出端以接收反馈电位VFB2,其正输入端电性耦接参考电位产生模块130的输出端以接收参考电位VREF,而其输出端根据反馈电位VFB2以及参考电位VREF而提供对应的比较结果。The negative input terminal of the
脉冲宽度调变模块150与前级脉冲宽度调变模块180相似,其包括电流检测器151、比较器152、控制电路153以及晶体管154。电流检测器151电性耦接至升压模块110中电感114与二极管115的电性耦接处,从而检测提供至二极管115的电流以产生相应的电流检测结果。比较器153的正输入端电性耦接至电流检测器151以获得电流检测结果,而负输入端电性耦接至比较器130的输出端以获得比较结果,而其输出端电性耦接以控制电路153。晶体管154的栅极电性耦接至控制电路153,其源极电性耦接至升压模块110中电感114与二极管115的电性耦接处,而其汲极接地。控制电路153根据比较器152的输出结果而产生对应的控制信号,从而控制晶体管154是否导通,即升压模块110经过脉冲宽度模块150至地的电性通路是否导通,从而决定升压模块110的输出电位VGH。依据等效电路,升压模块110的输出电位VGH=VREF(1+R3/R4)。The
请参阅图4A以及图4B,其中图4A绘示为参考电位VREF与温控电阻RT2的关系示意图,而图4B绘示为输出电位VGH与温度的关系示意图。如图4A及4B所示,当温度大于特定温度(室温25摄氏度)时,无论是依据电阻RT1、开关1331以及温控电阻RT2串联的电路还是依据电阻RT1、开关1332与电阻RT3所串联的电路,参考电位VREF都不会大于第一参考电位VREF1,因此比较器132依据第一参考电位VREF1以及参考电位VREF而输出的致能信号EN是非致能的,而其反信号EN是致能的,则开关1331不导通而开关1332导通,参考电位VREF会依据导通的RT1、开关1332与电阻RT3所串联的电路而固定在第一参考电位VREF1。此时,输出电位VGH=VREF(1+R3/R4)=VREF1(1+R3/R4)。也就是说,当升压电路100工作在非低温状态下时,升压电路100的输出电位VGH固定在对应于第一参考电位VREF1的第一输出电位VGH1上。Please refer to FIG. 4A and FIG. 4B , wherein FIG. 4A is a schematic diagram of the relationship between the reference potential VREF and the temperature control resistor RT2 , and FIG. 4B is a schematic diagram of the relationship between the output potential VGH and the temperature. As shown in Figures 4A and 4B, when the temperature is greater than a certain temperature (
当温度低于特定温度时,此时温控电阻RT2的电阻值上升,则参考电位VREF由于温控电阻RT2的电阻值的上升而增大,从而大于第一参考电位VREF1,则比较器132所输出的致能信号EN致能,其反信号EN非致能。开关1331导通而开关1332不导通,参考电位VREF会依据导通的RT1、开关1331与温控电阻RT2所串联的电路而决定,且参考电位VREF会随着温控电阻RT2的电阻值的变化而线性变化,直至参考电位VREF达到第二参考电位VREF2。因此,当升压电路100工作在低温状态时,升压电路100的输出电位VGH=VREF(1+R3/R4)会依据亦依据参考电位VREF的线性变化而线性变化,直至达到对应于第二参考电位VREF2的第二输出电位VGH2=VREF2(1+R3/R4)。也就是说,当升压电路100工作在低温状态时,其输出电位VGH会得到再次的拉升,且其在所设定好的温度范围内是依据温度的变化而进行线性的变化。When the temperature is lower than a specific temperature, the resistance value of the temperature control resistor RT2 increases at this time, and the reference potential VREF increases due to the increase of the resistance value of the temperature control resistance RT2, thereby being greater than the first reference potential VREF1, then the
综上所述,本发明实施例所揭示的升压电路在处于低温环境时会再次拉升其输出电位,从而提高平面显示器驱动电路的驱动能力,且其是依据温度的变化而逐渐地拉升其输出电位,因此不会影响平面显示器的显示效果。To sum up, the voltage boosting circuit disclosed in the embodiments of the present invention will increase its output potential again when it is in a low temperature environment, thereby improving the driving capability of the flat panel display driving circuit, and it will gradually increase the output potential according to the temperature change. Its output potential will not affect the display effect of the flat panel display.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视后附的申请专利范围所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention shall be defined by the scope of the appended patent application.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099146673 | 2010-12-29 | ||
TW99146673A TWI441453B (en) | 2010-12-29 | 2010-12-29 | Boost circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102184702A true CN102184702A (en) | 2011-09-14 |
Family
ID=44570868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101112142A Pending CN102184702A (en) | 2010-12-29 | 2011-04-19 | Voltage booster circuit |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102184702A (en) |
TW (1) | TWI441453B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102647170A (en) * | 2011-12-30 | 2012-08-22 | 友达光电股份有限公司 | Grid high voltage generator and display module |
CN112331248A (en) * | 2019-08-05 | 2021-02-05 | 上海复旦微电子集团股份有限公司 | Charge pump circuit for establishing NOR memory read voltage and NOR memory |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI482141B (en) * | 2013-01-18 | 2015-04-21 | Power Forest Technology | Driving circuit with modulated electrical parameters of the driven component and overvoltage protection component |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030043090A1 (en) * | 2001-09-06 | 2003-03-06 | Tohoku Pioneer Corporation | Apparatus and method for driving luminescent display panel |
CN1794894A (en) * | 2004-12-25 | 2006-06-28 | 鸿富锦精密工业(深圳)有限公司 | Driving device of cold-cathode fluorescent lamp |
US20060279488A1 (en) * | 2005-06-09 | 2006-12-14 | Tohoku Pioneer Corporation | Drive apparatus and drive method for light emitting panel |
CN101078940A (en) * | 2006-05-26 | 2007-11-28 | 硕颉科技股份有限公司 | Reference voltage generator, frequency generator and controller |
US20080122829A1 (en) * | 2006-11-28 | 2008-05-29 | Jong-Kook Park | Liquid crystal display |
CN101364768A (en) * | 2007-08-06 | 2009-02-11 | 罗姆股份有限公司 | Power supply device and electronic appliance provided therewith |
CN101436386A (en) * | 2007-11-15 | 2009-05-20 | 中华映管股份有限公司 | Driving device of backlight module |
CN101650924A (en) * | 2008-08-12 | 2010-02-17 | 三星电子株式会社 | Driving voltage generating circuit |
-
2010
- 2010-12-29 TW TW99146673A patent/TWI441453B/en not_active IP Right Cessation
-
2011
- 2011-04-19 CN CN2011101112142A patent/CN102184702A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030043090A1 (en) * | 2001-09-06 | 2003-03-06 | Tohoku Pioneer Corporation | Apparatus and method for driving luminescent display panel |
CN1794894A (en) * | 2004-12-25 | 2006-06-28 | 鸿富锦精密工业(深圳)有限公司 | Driving device of cold-cathode fluorescent lamp |
US20060279488A1 (en) * | 2005-06-09 | 2006-12-14 | Tohoku Pioneer Corporation | Drive apparatus and drive method for light emitting panel |
CN101078940A (en) * | 2006-05-26 | 2007-11-28 | 硕颉科技股份有限公司 | Reference voltage generator, frequency generator and controller |
US20080122829A1 (en) * | 2006-11-28 | 2008-05-29 | Jong-Kook Park | Liquid crystal display |
CN101364768A (en) * | 2007-08-06 | 2009-02-11 | 罗姆股份有限公司 | Power supply device and electronic appliance provided therewith |
CN101436386A (en) * | 2007-11-15 | 2009-05-20 | 中华映管股份有限公司 | Driving device of backlight module |
CN101650924A (en) * | 2008-08-12 | 2010-02-17 | 三星电子株式会社 | Driving voltage generating circuit |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102647170A (en) * | 2011-12-30 | 2012-08-22 | 友达光电股份有限公司 | Grid high voltage generator and display module |
CN102647170B (en) * | 2011-12-30 | 2015-03-04 | 友达光电股份有限公司 | Grid high voltage generator and display module |
CN112331248A (en) * | 2019-08-05 | 2021-02-05 | 上海复旦微电子集团股份有限公司 | Charge pump circuit for establishing NOR memory read voltage and NOR memory |
CN112331248B (en) * | 2019-08-05 | 2024-05-14 | 上海复旦微电子集团股份有限公司 | Charge pump circuit for establishing NOR memory read voltage and NOR memory |
Also Published As
Publication number | Publication date |
---|---|
TWI441453B (en) | 2014-06-11 |
TW201228238A (en) | 2012-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210383769A1 (en) | Display panel | |
CN101330252B (en) | DC-DC converter with temperature compensation circuit | |
CN107424577B (en) | Display driving circuit, display device and driving method thereof | |
US10510316B2 (en) | Control circuit, control method and display apparatus | |
CN101105923B (en) | Voltage generator for the gate driver, driving device and display apparatus comprising the same | |
US9361845B2 (en) | Display device compensating clock signal with temperature | |
KR102222198B1 (en) | DC voltage conversion circuit and DC voltage conversion method and liquid crystal display | |
TWI424423B (en) | Liquid crystal display device and method for driving the same | |
CN102054455B (en) | Grid driving circuit with automatic linear temperature adjusting function | |
CN105741811A (en) | Temperature compensating circuit, display panel and temperature compensating method | |
US8911111B2 (en) | LED backlight system and display device | |
CN109410880B (en) | Display panel driving circuit | |
CN101071311A (en) | Power supply apparatus capable of decreasing ripple component and display apparatus using the same | |
CN110192240A (en) | Signal protection circuit, its driving method and equipment | |
CN101262173B (en) | Voltage boosting power supply circuit for monitoring charging voltage with predetermined voltage to detect boosted voltage, and boosted voltage control method | |
WO2023097751A1 (en) | Backlight driving circuit and display device | |
CN102184702A (en) | Voltage booster circuit | |
CN105788559A (en) | Voltage stabilizing device | |
US11410629B2 (en) | Output voltage regulating circuit and liquid crystal display device | |
CN203573622U (en) | Voltage comparison circuit and liquid crystal display comprising same | |
JP4365875B2 (en) | DC-DC converter having temperature compensation circuit | |
CN112951173B (en) | Grid opening voltage generation circuit, display panel driving device and display device | |
KR20070075828A (en) | Liquid crystal display | |
CN104253594B (en) | Charging module, driving circuit and operation method of driving circuit | |
US8339119B2 (en) | Output voltage adjustment circuit for buck circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110914 |