TW201226997A - Light diffusing plate, organic electroluminescence display device, and electronic apparatus - Google Patents

Light diffusing plate, organic electroluminescence display device, and electronic apparatus Download PDF

Info

Publication number
TW201226997A
TW201226997A TW100140971A TW100140971A TW201226997A TW 201226997 A TW201226997 A TW 201226997A TW 100140971 A TW100140971 A TW 100140971A TW 100140971 A TW100140971 A TW 100140971A TW 201226997 A TW201226997 A TW 201226997A
Authority
TW
Taiwan
Prior art keywords
light
refractive index
display device
diffusing plate
layer
Prior art date
Application number
TW100140971A
Other languages
Chinese (zh)
Inventor
Akinori Itoh
Tokiyoshi Umeda
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW201226997A publication Critical patent/TW201226997A/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • G09F13/0409Arrangements for homogeneous illumination of the display surface, e.g. using a layer having a non-uniform transparency
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A light diffusing plate according to one aspect of the present invention is a light diffusing plate having first and second surfaces opposing each other. The light diffusing plate diffuses a light received from the first surface and outputs the diffused light from the second surface. The light diffusing plate includes: a low refractive index portion having a first refractive index; and a high refractive index portion having a second refractive index higher than the first refractive index. The area of a cross-section of the low refractive index portion, which is in parallel with the first surface, increases in the direction from the first surface to the second surface. The high refractive index portion is positioned adjacent to the low refractive index portion. One of the low refractive index portion and the high refractive index portion includes a moisture absorbent material.

Description

201226997 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光擴散板、有機電致發光顯示裝置及 電子機器。 本申請案基於2010年11月11曰於曰本申請之曰本專利特 願20 10-252968號及2010年11月18日於日本申請之日本專 利特願2010-257814號而主張優先權,並將其内容引用於 此。 【先前技術】 作為利用光之各種光學機器之一,已知有例如專利文獻 1中所5己載之具有光共振器構造之有機電致發光顯示裝置 (以下’簡§己作有機EL(electro luminescence,電致發光)顯 示裝置)。專利文獻1之有機EL顯示裝置具有夾持於反射層 與半透過反射層之間之發光層,將與反射層和半透過反射 層之間之光學距離對應之共振波長之光自半透過反射層射 出。具有光共振器構造之有機顯示裝置可進行色再現性 優越之圖像顯示,但存在由於光之指向性變高,故而視角 變窄之課題。 為了擴大視角,可考慮利用例如專利文獻2中所記載之 光擴政板專利文獻2之光擴散板包括由高折射率樹脂而 先成於透明基板上之尚折射率部、及形成於高折射率部之 表面上之剖面V字狀之凹部。凹部之内側作為低折射率部 (工氣層)而發揮功能。入射至光擴散板之光於凹部之表面 即高折射率部與低折射率部之界面上反射,並沿相對於光 159931.doc 201226997 擴散板之法線方向之廣角方向射出。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利第4174989號公報 [專利文獻2]日本專利特開2000-352608號公報 【發明内容】 [發明所欲解決之問題] 然而,各種光學機器有時會由於水分之浸入而造成性能 降低。例如,若有機EL顯示裝置中浸入水分,則存在由於 暗點等之產生而造成顯示性能降低之可能性。若為了抑制 水分對光學機器之浸入,於光學機器之内部除了光擴散板 以外亦配置吸濕劑,則導致光學機器會變得大型。例如, 若於具備光擴散板之有機EL顯示裝置中,於發光層與光擴 散板之間配置吸濕劑,則光擴散板與發光層之間之距離變 大。因此,存在易於產生二重像等所造成之圖像之模糊, 而辨識性降低之可能性。 又’有機EL顯示裝置除了形成有發光層之元件基板以外 尚包括密封基板或抗反射基板等各種構件。光擴散板接著 於該等構件之表面上,故而光擴散板與發光層之間之距離 變大。因此’會產生二重像等所造成之圖像之模糊,而辨 識性降低。 本發明係鑒於上述情況而完成者,其目的之一在於提供 種可不導致光學機器之大型化地提高光學機器之耐濕性 之光擴散板。又,本發明之目的之一在於提供一種既可兼 159931.doc 201226997 顧視角之廣角化與辨識性之降低之抑制,且可抑制水分之 浸入所造成之顯示性能之降低的有機EL顯示裝置及電子機 器9又,本發明之目的之一在於提供一種圖像之模糊較少 之有機EL顯示裝置及電子機器。 [解決問題之技術手段] 本發明之第1態樣之光擴散板係具有相互對向之第1面及 第2面,使自上述第丨面入射之光擴散並自上述第2面射出 者,且包括:低折射率部,其為具有第丨折射率者平行 於上述第1面之剖面之面積隨著自上述第丨面朝向上述第2 面而增大;及高折射率部,其與上述低折射率部接觸,且 具有高於上述第!折射率之第2折射率;上述低折射率部與 上述高折射率部之至少一者含有吸濕劑。 於第1態樣之光擴散板中,亦可為上述高折射率部含有 上述吸濕劑,且上述吸濕劑係由平均粒徑小於可見光之波 長之粒子所構成。 / 於第1態樣之光擴散板中,上述平均粒徑亦可設定灰 nm以上5〇〇ηιη以下之範圍内。 於第1態樣之光擴散板中,亦可為上述高折射率部具 相互對向之第3面及第4面,上述第3面為上述第W之;; 分’上述第4面為上述第2面之—部>,且上述第3面之 積為上述第4面之面積之1 〇%以上9〇%以下。 於第⑽之光擴散板中’上述低折射率部亦可含有 收可見光之光吸收體。 於第】態樣之光擴散板中 上述低折射率部之内部亦可 159931.doc 201226997 為空隙。 於第1態樣之光擴散板中,亦可為上述光擴散板具備複 數個上述低折射率部,且上述複數個低折射率部俯視時為 散在各處。 本發明之第2態樣之有機EL顯示裝置包括元件基板、位 於上述元件基板上且具有光共振器構造之發光元件、覆蓋 上述發光元件與上述元件基板之密封層、及位於上述密封 層上且使自上述發光元件入射之光擴散並射出之光擴散 板’且上述光擴散板係上述之光擴散板。 第2態樣之有機EL顯示裝置亦可於上述光擴散板與上述 密封層之間,進而包括將上述光擴散板與上述密封層連接 之接著層或惰性氣體層。 第2態樣之有機EL顯示裝置亦可為於上述元件基板上具 備複數個上述發光元件,上述光擴散板具備複數個上述低 折射率部,上述複數個發光元件以第丨間隔而配置,上述 複數個低折射率板以小於上述第丨間隔之第2間隔而配置。 於第2態樣之有機EL顯示裝置中,亦可為上述光擴散板 具備複數個上述低折射率部,上述複數個發光元件相互隔 開,上述複數個低折射率板俯視時為隨機地配置。 於第2態樣之有機EL顯示裝置中,亦可於上述光擴散板 上,或上述光擴散板與上述元件基板之間進而包括至少! 片彩色滤光片。 第2態樣之有機EL顯示裝置亦可進而包括:複數片彩色 濾光片,其位於上述光擴散板上,或上述光擴散板與上述 159931.doc 201226997 基板之間,遮光膜,其位於上述複數片彩色遽光片中 相互鄰接之2片彩色濾光片之間。 第2態樣之有機EL顯示裝置亦可進而包括位於上述光擴 散板上之密封基板。 本發明之第3態樣之電子機器具備第2態樣之有機此顯示 裝置。 [發明之效果] 根據本發明之第1態樣,可提供一種能不導致光學機器 之大型化地提高光學機器之耐濕性之光擴散板。又,根據 本發明之第2、帛3態樣,可提供一種既能兼顧視角之廣角 化與辨識性之降低之抑制’亦能抑制水分之浸入所造成之 顯不性能之降低的有機EL顯示裝置或電子機器。又,根據 本發明之第1至第3態樣,可提供一種圖像之模糊較少之有 機EL顯示裝置及電子機器。 【實施方式】 以下’一面參照圖式一面對本發明之實施形態進行說 明,但本發明並不限定於此。又,對於相同之構成要素, 有時會標註相同之符號並省略重複之說明。下述實施形態 或變形例中所說明之要件可適當組合。 (第1實施形態) 圖1係表示第1實施形態之有機EL顯示裝置之概略構成之 剖面圖。 圖1所示之有機EL顯示裝置1包括元件基板丨1〇、複數個 發光元件130R、130G、130B、光擴散板117、及密封基板 15993l.doc 201226997 119。複數個發光元件13〇R、13〇G、13〇B形成於元件基板 110之單面上。光擴散板117係與元件基板110上形成有複 數個發光元件130R、130G、130B之面對向而配置。密封 基板119係相對於光擴散板117而配置於與元件基板11〇相 反之側。 有機EL顯示裝置1為頂部發光型之有機el顯示裝置。於 有機EL顯示裝置1中’自複數個發光元件丨3〇R、13〇G、 130B射出之光通過密封基板119向有機eL顯示裝置!之外 部取出。 元件基板110例如為主動矩陣基板。元件基板n〇含有基 板101及電路層102。基板1〇1例如為玻璃基板或塑膠膜 等。電路層102形成於基板ιοί上。電路層! 〇2包括用以驅 動複數個發光元件130R、130G、130B之薄膜電晶體等驅 動元件102a、及閘極線、資料線、電源線(第1電源線丨〇2b 及第1電源線102c)等各種配線。 複數個發光元件130R、130G、130B形成於電路層1〇2 上。發光元件130R與紅色像素對應,射出紅色之光Lr。 發光元件130G與綠色像素對應,射出綠色之光lr。發光 元件13 0B與藍色像素對應,射出藍色之光lb。紅色像 素、綠色像素、及藍色像素分別為子像素,由1組構成全 彩之1個像素。 複數個發光元件130R、130G、130B各自包括一對電極 (像素電極103及對向電極109)、及夾持於一對電極間之發 光層107。於本實施形態中,像素電極W3為陽極,對向電 159931.doc 201226997 極109為陰極。可適當選擇配置於像素電極1〇3與發光層 107之間之層及配置於對向電極1〇9與發光層1〇7之間之 層。 於本貫施形態中’像素電極1〇3與發光層1〇7之間,設置 有向發光層107注入電洞之電洞注入層1〇5。於電洞注入層 1〇5與像素電極103之間,設置有輸送電洞之電洞輸送層 106。有時像素電極1〇3與發光層1〇7之間,會設置電洞注 入輸送層,以取代電洞注入層105及電洞輸送層1〇6。於對 向電極109與發光層107之間,設置有輸送電子之電子輸送 層1〇8。有時於發光層1〇7與電子輸送層1〇8之間,會設置 電子注入層。 各像素之發光層107含有放射與像素之顯示色對應之螢 光或磷光之發光材料。紅色像素(發光元件13〇R)之發光層 107含有放射紅色之螢光或磷光之發光材料。綠色像素(發 光7C件130G)之發光層1〇7含有放射綠色之螢光或磷光之發 光材料《藍色像素(發光元件13〇B)之發光層1〇7含有放射 藍色之螢光或磷光之發光材料。 像素電極103包含鋁(A1)或銀(Ag)等光反射性之導電膜。 像素電極103兼具使自發光層ι〇7朝向元件基板u〇射出之 光反射之反射層。像素電極103與設置於電路層1〇2上之驅 動το件102a電性地連接。驅動元件1〇2a與第1電源線1〇2b 電性地連接。像素電極1〇3藉由自第1電源線l〇2b經由驅動 70件1〇2a而供給之電力,經由電洞輸送層106及電洞注入 層105 ’向發光層1 07供給電洞。 I59931.doc 201226997 圖1中圖示有相當於全彩之丨個像素之部分,即包含3個 像素電極103之部分。於實際之有機EL顯示裝置中,像素 電極103與構成顯示圖像之子像素一對一對應地,例如僅 形成子像素之數量。複數個像素電極1〇3於電路層1〇2上以 固定之間隔沿二維方向週期性地形成。藉由沿二維方向週 期性地形成之複數個像素,而構成有可顯示圖像之圖像顯 不區域。 於像素電極103之周圍,形成有使相互相鄰之一對像素 電極103相互絕緣分離之絕緣層1 〇4。絕緣層1 於與像素 電極103之中央部對向之位置上,具有使像素電極丨〇3露出 之第1開口部104a。第1開口部104a之面積小於像素電極 103之面積。絕緣層1〇4形成為覆蓋像素電極1〇3間露出之 電路層102’且一部分蔓延至像素電極1〇3之外周部。 對向電極109包含鎂銀合金(Mg : Ag)等具有透光性之導 電膜。對向電極1 09係以與複數個像素電極1 〇3對向之方式 形成。對向電極109形成於圖像顯示區域之整個面上,由 複數個像素電極103而形成為共通之電極。對向電極〗〇9作 為使向對向電極1 09入射之光之一部分透過而剩餘之一部 刀朝向像素電極103反射之半透過反射層而發揮功能。對 向電極109經由設置於與像素電極103不重疊之部分之絕緣 層104上之第2開口部104b,與設置於電路層1〇2上之第!電 源線102c電性地連接。對向電極109藉由自第1電源線1〇2c 供給之電力,經由電子輸送層1〇8將電子向發光層ι〇7供 給0 159931.doc 201226997 再者’於複數個發光元件130R、13〇G、13〇b之各者 中’面對相鄰之發光元件之端面與朝向第2開口部祕延 伸之部分之對向電極1〇9之間,根據需要,可設置未圖示 之絕緣膜或絕緣性之隔離壁。該絕緣膜或隔離壁係以至少 電洞輸送層1〇6及電洞注入層1〇5不與對向電極⑽ 方式設置。 複數個發光元件職,、⑽分別具有以像素電 極103及對向電極1G9為—料振鏡之光絲輯造。藉由 發先層107而發出之光中,與像素電極叫對向電極109 =間之光學距離對應之共振波長之光於-對共振鏡之間增 中田’並自對向電極1〇9射出。 像素電極1〇3與對向電極1〇9之間之光學距離係針對每個 子像素之顯示色而設計。於太眘 纤於本實施形態令,上述光學距離 係藉由使電洞注入層105之厚度於顯示色不同之子像素上 相互不同而調整。像素電極1Q3與對向電極iQ9之間之光學 距離亦可藉由使配置在像素電極⑻和對向電極⑺9之間之 中間層之厚度與折射率之至少一者於顯示色不同之子像素 上不问而調整。上述甲間層既可為電洞注入層1〇5 '電洞 ;送層106發光層m、及電子輸送層⑽令之1層亦可 為2個以上之層。 於元件基板11 〇上將對 蓋,而形成有密封層u J μηι以下之薄膜之密封層。 等板材而言厚度更薄。密 向電極109所露出之部位整體覆 。#封層111例如為1 nm以上1 〇〇 密封層111較破璃基板或塑勝膜 封層1】】係以覆蓋圖像顯示區域 J5993 J.doc 201226997 極109之表面整體,並且以環狀包圍圖像顯示 ⑽域之外周之方式形成。密封層lu於圖像顯示區域之外 周之外側,與元件基板11 0連接。 密封層m包含例如氧切(Si〇2)、氮化邦叫'氣氧 化石夕⑻⑽)等透明之無機之密封膜(無機密封膜)。密封層 111亦可由形成材料不同之2層以上之膜構成。構成密 111之各膜之形成材料既可為有機材料,亦可為無機材 料。又,密封層”〗係由2層以上之膜所形成,2層以上之 膜中1層以上包含有機材料,亦可^層以上包含有機材 料。例如,密封層lu亦可為積層有包含氧化矽等之丨層以 上之密封膜、及包含丙烯酸樹脂等之丨層以上之密封膜之 構造。 本實施形態之光擴散板117具有透明基板113及光擴散層 (光擴散板本體)116。光擴散板117係將形成有光擴散層116 之側朝向元件基板110,與元件基板11〇對向而配置。透明 基板113係配置於與光擴散層丨16相對且與元件基板丨1〇相 反之側。 透明基板113係成為用以形成光擴散層U6之基底之基 材。透明基板113例如為三乙醯纖維素(TAC,Triacetyl cellulose)膜 '聚對苯二甲酸乙二醇酯(pet ’ polyethylene terephthalate)膜等具有可撓性之樹脂膜。透明基板113亦 可為較上述樹脂膜而言可撓性低之基板,例如玻璃基板 等。關於光擴散層116之詳細情況,將於下文會敍述。 密封基板119為玻璃基板等具有透明性之基板。密封基 159931.doc 201226997 板11 9係由無機材料所形成。密封基板丨〗9之至少一部分亦 可由有機材料形成。光擴散板Η 7係透明基板113藉由接著 層118接著於密封基板119上’而與密封基板119形成一體 化°於與密封基板119相對且光擴散板11 7之相反側,根據 需要’可附設未圖示之抗反射層、偏光過濾層、防帶電 層、防眩處理層、防污處理層等附帶層之1層或2層以上。 藉由上述附帶層與密封基板119及光擴散板117,而構成有 密封構件120。 疋件基板110與密封構件12〇藉由沿著元件基板11〇與密 封構件120相對向之對向區域之周緣部設置之框狀之接著 層121而接著。向由元件基板11〇與密封構件12〇及接著層 121所包圍之空間中,封入氮氣等惰性氣體,而形成有惰 性氣體層112。惰性氣體層112於光擴散板U7之厚度方向 上 側與松封層111接觸,另一側與光擴散板117接觸。 接著層121由透濕性較低之材料形成。接著層121抑制自 密封構件120及外部向惰性氣體層U2之水蒸氣或氧氣之浸 入。接著層121例如亦可為於環氧樹脂之内部添加有矽土 等吸水劑而製成者、或玻璃漿料等。接著層121將元件基 板no與光擴散板in接著。接著層121亦可於光擴散板117 之外周之外側,將元件基板11〇與密封基板119接著。 &圖2係自與光擴散板相對且與複數個發光元件相反之側 觀察光擴散板之平面圖。圖3係模式性地表示平行於光擴 散板之厚度方向之剖面之圖。圖3對應於圖2之八_八,線之剖 面。 、 〇 159931.doc 14 201226997 光擴散層116為薄片狀或薄板狀。光擴散層116係其厚度 方向(Z方向)之下表面(第1面)為光入射面141,上表面(第2 面)為光射出面142。光擴散層116使自光入射面141入射之 光擴散並自光射出面142射出。光擴散層116具有低折射率 部11 5及兩折射率部11 4。於本實施形態中,低折射率部 11 5及尚折射率部114分別含有粒子狀之吸濕劑140。 於本實施形態中’高折射率部114及低折射率部11 5係沿 與光擴散層116之厚度方向(z方向)正交之方向(γ方向),直 線地延伸。高折射率部丨丨4及低折射率部丨丨5沿與光擴散層 116之厚度方向正交之一維方向,交替地反覆配置。於本 實施形態中’上述一維方向係指與光擴散層116之厚度方 向(Z方向)正交、且與高折射率部n4及低折射率部115所 延伸之方向(Y方向)正交之方向(χ方向)。於本實施形態 中,低折射率部11 5係以固定之間隔週期性地配置。即, 與低折射率部11 5接觸而配置之高折射率部丨丨4亦以固定之 間隔週期性地配置。 本貫施形悲之低折射率部丨〖5係由丙烯酸胺基曱酸酯等 低折射率材料中分散有吸濕劑140之材料所形成。低折射 率部115自透明基板113朝向元件基板11〇突出。低折射率 邛115之與光擴散層116之厚度方向(z方向)正交之剖面(χγ 平面或平行於第1面之剖面)上之外形於厚度方向上隨著自 光射出面142側朝向光入射面141側而連續地縮小。換而言 之,平行於低折射率部115之下表面(第1面)之剖面(χγ平 面)之面積隨著自下表面(第1面)朝向上表面(第2面)而增 159931.doc 15 201226997 大。即,低折射率部U5為光擴散層116之厚度方向之㈣ 之側面隨著朝向元件基板11G而縮小之錐形形狀。低折射 率部115之與其延伸方向(γ方向)正交之剖面(χγ平面)之形 狀為等腰三角形。低折射率部115之上述剖面之形狀除三 角形以外既可為梯形等多角形’亦可為包含自光射出面 1 4 2朝向光入射面】4丨地以曲線狀延伸之部分在内之形狀。 本實施形態之高折射率部i丨4係由環氧丙烯酸酯等高折 射率材料中分散有吸濕劑14〇之材料所形成。高折射率部 114係沿與光擴散層i 16之厚度方向(z方向)正交之方向(X 方向)’與低折射率部115接觸而配置。低折射率部115與 高折射率部114之界面143沿相對於光入射面(第1面)141非 垂直之方向傾斜。高折射率部114之與其延伸方向(γ方向) 正交之剖面(XY平面)之形狀為等腰梯形。高折射率部"4 之上述剖面之形狀只要為與低折射率部U5接觸之形狀, 則既可為等腰梯形以外之形狀’例如三角形等多角形,亦 可為包含自光入射面(第1面)141朝向光射出面(第2面 地以曲線狀延伸之部分在内之形狀。 高折射率部114較低折射率部115而言折射率高。此處, 所謂「高折射率部」、「低折射率部」,並非指以折射率之 絕對値定義者,而係於光擴散層116上之折射率相互不同 之2個區域中,將相對地折射率較高者稱作「高折射率 部」,相對地折射率較低者稱作「低折射率部」。即,若設 低折射率部115之折射率為第丨折射率,則高折射率部丨^ 具有问於低折射率部115之第1折射率之第2折射率。 159931.doc -16 · 201226997 於自光入射面141入射至光擴散層H6之内部之光L1〜L3 中,一部分光L1並不向低折射率部115與高折射率部114之 界面143入射’而係自光射出面142射出。於光L1〜L3中, 光L2及光L3向低折射率部Π5與高折射率部114之界面143 入射’於界面143上藉由滿足全反射條件而反射。於界面 143上反射之光L2及光L3在光擴散層116之内部’沿相對於 光L1非平行之方向前行,通過光射出面142向光擴散層116 之外部射出。 如此,包含光L1、光L2及光L3之光線束自光擴散層116 射出後之擴散角大於向光擴散層116入射時之擴散角。上 述擴散角例如可藉由研究光線束之光點之光強度分佈而進 行評價。即’自光擴散層116射出後之包含光li、光L2及 光L3之光線束之光強度分佈之半峰全幅值大於向光擴散層 116入射時之包含光L1、光L2及光L3之光線束之光強度分 佈之半峰全幅值。 再者’入射至界面143之光L2之一部分亦可並不於界面 143上滿足全反射條件而以與相對於界面143之入射角對應 之反射率,於界面143上反射。又,入射至界面i 43之光L2 之一部分亦可並不於界面143上滿足全反射條件而透過界 面 143。 然而,向折射率部114之上表面(第4面)之面積相對於高 折射率部114之下表面(第3面)之面積所佔之比例(以下,稱 作佔有率)變得越高,X方向上之低折射率部115之尺寸變 得越小’向界面143入射之光之光量變得越少。換而言 159931.doc -17- 201226997 之’尚折射率部114之佔有率變得越小’自光射出面142射 出之光中所佔之廣角成分之比例越增加。高折射率部114 之佔有率例如設定為10%以上90°/◦以下。藉此,可擴大自 光射出面142射出之光之擴散角,以充分地滿足有機eL顯 示裝置1等顯示裝置所期待之視角特性。只要高折射率部 Η 4之佔有率設定為50%以下之範圍内’則可使有機el顯 示裝置1等顯示裝置之視角明顯地提高。 如圖1所示,低折射率部u 5之中心之間隔短於發光元件 之間隔(像素電極103之中心之間隔)。從而,變成針對每個 子像素而配置界面143,由此可針對每個子像素擴大視 角。 吸濕劑140藉由化學反應與物理性吸附之至少一者,吸 收水分》吸濕劑140例如可由天然沸石、合成沸石矽 膠石夕藻土、無水氣化鎮與氧化錢之混合物、活性氧化 鋁、氧化鈣或氧化鋰、氧化鋇、氧化鈀等鹼性土類金屬之 氧化物、氧化鈉或氧化鉀等鹼性金屬之氧化物、氧化鎂、 氫化鋇、氫化鋁、矽膠A形 '矽膠B形、海泡石、氧化鋁 石夕膠、膨土、水紹英石、活性白土、活性碳等之ι種或 以上之混合物所構成。 一 於本實施形態中,分散於高折射率部114中之吸濕劑 為與分散於低折射率部115中之吸濕劑14〇為相同之材質。 吸濕劑140之材質亦可於高折射率部114與低折射率部 令不同。本實施形態之吸濕劑14〇由合成沸石等平均粒徑 小於可見光之波長之粒子構成。 , 159931.doc •18- 201226997 吸濕劑140之平均粒徑例如設定為1 nm以上5〇〇 nm以下 之範圍内。藉此,通過光擴散層116之内部之可見光變得 難以向吸濕劑丨4〇散射。於本實施形態中,吸濕劑14〇之平 均粒徑設定為1 nm以上1〇〇 nm以下之範圍内(此處為3〇 nm 左右)。藉此,通過光擴散層116之内部之可見光變得明顯 地難以向吸濕劑丨40散射。再者,上述平均粒徑為可使用 光散射法獲得之球相當徑。 圖4係表示藉由吸濕劑之粒徑之不同而進行之光之穿透 率之比較的圖表。於圖4之圖表中,橫軸為向試樣入射之 光之波長,縱軸為試樣之穿透率。實驗例】係將24〇爪8平 均粒徑為1 μπι之沸石之粒子分散於3 mi乙醇中所得之試樣 之穿透率之測定結果。實驗例2係將240 mg平均粒徑為3〇 nm之沸石之粒予分散於3 ml乙醇中所得之試樣之穿透率之 測定結果。如圖4所示,於實驗例2(平均粒徑為3〇 nm) 中,較實驗例1(平均粒徑為1 μπι)而言藉由抑制後方散射 等,穿透率明顯地變高。 當如有機EL·顯示裝置1般將光擴散板應用於利用可見光 之光學機器中之情形時’吸濕劑140之平均粒徑亦可小於 可見光之波長。當吸濕劑140之平均粒徑小於可見光之波 長之上限値(780 nm)之情形時,通過高折射率部U4之可見 光之至少一部分之波段之光變得難以向吸濕劑M〇散射。 當吸濕劑140之平均粒徑小於可見光之波長之上限値(78〇 nm)之情形時’於可見光之波段之全域,通過高折射率部 114之可見光變得難以向吸濕劑140散射。 159931.doc •19- 201226997 於本實施形態中,高折射率部114中所佔之吸濕劑i4〇之 體積比與低折射率部115中所佔之吸濕劑uo之體積比大致 相同。藉m各折射率部中分散有吸濕劑14〇而造成 之折射率變化之影響於高折射率部114與低折射率部⑴中 再者,上述體積比為自吸濕劑140之平均粒徑及粒子數 求得之吸濕劑U0之總體積相對於内包有吸濕劑⑽之各折 射率部之體積之比率。亦可為分散於各折射率部中之吸濕 劑140之平均粒徑、及上述體積比之至少一者於高折射率 部114與低折射率部11 5中不同。 圖5係藉由光擴散板而形成之二重像之說明圖。 自毛光層107射出之光中一部分光u於光擴散層u 6之界 面143上反射,到達觀察者p。自發光層1〇7射出之光中, 沿與光Li不同之方向前行之—部分光Ld並不向光擴散層 Π6之界面143入射而通過光射出面142,到達觀察者ι^發 光層107與光擴散層116之間隔〇變得越大,則光u與光Ld 之間隔W變得越大。隨著間隔W變大,光Li與光Ld變得可 被觀察者P識別,從而可辨識二重像等之圖像之模糊。例 如,若間隔W為250 μιη以下,則無法識別顯示品質降低之 程度之二重像。若間隔…為15〇 μιη以下,則幾乎完全無法 識別二重像。 第1實施形態之有機EL顯示裝置i係複數個發光元件 130R、130G、130B之各者具有光共振器構造,故而可提 高每個子像素之色純度,可進行色再現性優越之圖像顯 I5993I.doc 20· 201226997 不。通常’藉由光共振器構造而增幅之光指向性會變高 (擴散角變小)。有機EL顯示裝置i係自複數個發光元件 130R' 130G、130B之各者射出之光藉由光擴散層116而擴 散’故而可擴大視角。 有機EL·顯示裝置1係於發光元件n〇R與光擴散層116之 間,僅夾有密封層111與惰性氣體層112。有機EL顯示裝置 1與例如於發光元件130R與光擴散層U6之間配置有具有吸 濕性之吸濕層之構成比較而言,發光層1〇7與光擴散層116 之間隔D僅減小吸濕層之厚度。如此,有機El顯示裝置i 可縮短間隔D,故而可縮短光Li與光Ld之間隔w,可抑制 —重像之產生。依照同樣之理由,有機El顯示裝置1亦可 抑制自發光元件13 0G或發光元件130B射出之光所造成之 一重像之產生。從而,抑制二重像所造成之圖像之模糊。 尤其’光擴散板117係使透明基板113之設置有光擴散層 U6之面與元件基板11〇對向而配置,故而於光擴散層116 與發光元件130R、130G、130B之間並不夾著透明基板 113,進而圖像之模糊變少。 有機EL顯示装置1係光擴散層116内包有吸濕劑140,故 而即便光擴散層116與發光元件13 0R之間不設置吸濕層, 亦可抑制向發光元件130R之水分之浸入。從而,有機el 顯示裝置1既可抑制二重像之產生,亦可抑制水分之浸入 所造成之發光元件130R之劣化。依照同樣之理由,有機 肛顯不裝置1可抑制發光元件130G及發光元件130B之劣 化°因此’有機EL顯示裝置1可抑制暗點之產生等所造成 15993l.doc 201226997 之顯示品質之降低、或抑制水分之浸人所引起之複數個發 光元件13〇R、BOG、13〇B之劣化造成之短壽命化。 光擴散層Π6係吸濕劑140之平均粒徑設定為i nm以上 500 run以下之範圍内,故而可抑制吸濕劑14〇所造成之高 折射率部H4之穿透率之降低。又,光#出面142之面積佔 據光射出面整體之面積之比例設定為1〇%以上9〇%以下, 故而可確保自光射出面142射出之光中所佔之廣角成分之 比例,以滿足顯示裝置所期待之視角特性。又,於本實施 形態中,吸濕劑14 0分散於高折射率部i丨4及低折射率部 115之各者中,故而可確保吸濕劑14〇之總量,以可長期地 抑制例如向複數個發光元件130R ' 130G、13〇B之水分之 浸入。 如上所述’本實施形態之光擴散板117可不導致光學機 器之大型化地提咼光學機器之耐濕性。又,本實施形態之 有機E L顯不裝置1既可擴大視角亦可抑制辨識性之降低, 並且可抑制水分之浸入所造成之短壽命化,且抑制顯示性 能之降低《又,本實施形態之有機EL顯示裝置丨可抑制二 重像所造成之圖像之模糊。 其次’對本實施形態之光擴散板之變形例進行說明。 圖6係模式性地表示第1變形例之平行於光擴散板之厚度 方向之剖面的圖。圖6所示之光擴散層1 5 1係高折射率部 114中所佔之吸濕劑14〇之體積比小於低折射率部丨15中所 佔之吸濕劑1 4〇之體積比。第1變形例之光擴散層1 5〖相較 於吸濕劑140之體積比於高折射率部114及低折射率部115 15993l.doc -22· 201226997 中為相等之構成而言,可提高高折射率部114中之光之穿 透率,並且可使高折射率部114中之吸濕性之降低部分由 低折射率部115負擔。從而’光擴散層151可不使光擴散層 151之整體之吸濕性降低地,可減少高折射率部中之光 之損耗,從而可提高光之利用效率。 再者,於光擴散層151中’分散在高折射率部114中之吸 濕劑140之平均粒徑亦可小於分散在高折射率部ιι4中之吸 濕劑140之平均粒徑。於該情形時,高折射率部ιΐ4中所佔 之吸濕劑14 0之體積比亦可與低折射率部丨〗5中所佔之吸濕 劑140之體積比相同。此種構成之光擴散層i5i可不使光擴 散層15!之整體之吸濕性降低地,可提高高折射率部ιι4中 之光之穿透率。 圖7係模式性地表示第2變形例之平行於光擴散板之厚度 方向之剖面的圖。於圖7所示之光擴散層152中吸濕劑 140在高折射率部114及低折射率部115中僅分散於高折射 率部114中❶就此種構成之光擴散層152而言,形成低折射 率部115之製程變得簡單,可降低光擴散層152之製造成 本。 圖8係模式性地表示第3變形例之平行於光擴散板之厚度 方向之剖面的圖。於圖8所示之光擴散層153中,吸濕劑 140在高才斤射率部114及低折身子率部115中僅分散於低折射 率部us中。就此種構成之光擴散層153而言,形成高折射 率。卩115之製程變得簡單,可降低光擴散層ι53之製造成 本又光擴散層153可提高高折射率部114中之光之穿透 15993I.doc •23· 201226997 率,從而可提高光之利用效率。 圖9係模式性地表示第4 ., 變^例之平行於光擴散板之厚产 方向之剖面的圖。圖9所_ ^ 士 辦散极之厚度 不光擴散層154係高折射率部 114之可見光之穿透率高 1町手邵11 5之可見来之Φ讀 率。本例之低折射率部 、k , 丨5内包有吸收可見光之光吸收體 144。光吸收體144為包含胃& A 、色顏7)4等之粒子,分散於低折 射率部11 5之内部。弁叨价脚 _、, 光及收體144吸收入射至光擴散層154 之光中透過界面143而侵入低拆^ 低折射率部1丨5之内部之光L4。 若將第4變形例之光擴散屉虚由μ , 几擴欺層1 54應用於例如第1實施形態之 有機EL顯示裝置1中,則吸收白禾π 2 * 』次收自不冋之子像素射出之光中 透過界面⑷之光’故而抑制不同之子像素間之混色。 圖10係模式性地表示第5變形例之平行於㈣散板之厚 度方向之剖面的圖。圖10所示之光擴散層155係低折射率 部115藉由空隙(氣體層)而構成。本例之低折射率部115為 不貫通高折射率部114地設置之凹部之内側之部分。本例 之低折射率部11 5於複數個光射出面142之間開口。 第5變形例之光擴散層155係低折射率部U5為空隙,故 而易於增大高折射率部114相對於低折射率部115之折射率 比’增加於界面143上滿足全反射條件而反射之光之光量 變得容易。又,光擴散層155可節省低折射率部115之材料 成本,故而可降低製造成本。 圖11係模式性地表示第6變形例之平行於光擴散板之厚 度方向之剖面的圖。於圖11所示之光擴散層156中,高折 射率部114及低折射率部115係沿與光擴散層156之厚度方 159931.doc -24- 201226997 向(z方向)正交之-維方向(γ方向)延伸之條紋狀。高折射 率部m及低折射率部115係沿與其延伸方向(γ方向)及光 擴敌層156之厚度方向(z方向)正交之方向方向),交替地 反覆配置。低折射率部115沿\方向以不規則之間隔排列。 若將第6變形例《光擴散層156應用於例如第】實施形態之 有機虹顯示裝置1中’料於低折射率部115之間隔不規 則,故而會抑制自規則地排列之複數個發光元件射出之光 之干擾所造成之雲紋之產生。 圖12係模式性地表示第7變形例之平行於光擴散板之厚 度方向之剖面的圖β於圖12所示之光擴散層157中,配置 有俯視時為光點狀(點狀)之複數個低折射率部丨〗5。於光擴 散層157中,複數個低折射率部U5係沿與光擴散層157之 厚度方向(Ζ方向)正交之二維方向(χ方向及γ方向),以固 定之間隔週期性地配置。低折射率部115之間隔(低折射率 邛115之中心之間隔)較圖丨所示之發光元件之間隔(像素電 極103之中心之間隔)更短β因此,針對每個子像素地形成 低折射率部11 5與咼折射率部i i 4之界面丨43,可獲得針對 每個子像素地視角較廣之圖像。 圖13係模式性地表示第8變形例之平行於光擴散板之厚 度方向之剖面的圖。圖13所示之光擴散層158具有俯視時 以光點狀(點狀)配置之複數個低折射率部115。於光擴散層 158中,複數個低折射率部丨15係沿與光擴散層158之厚度 方向(Z方向)正交之二維方向(χ方向及γ方向),打亂週期 性地配置。於光擴散層15 8中,低折射率部115之間隔不規 159931.doc •25· 201226997 則。因此,抑制規則地配置有發光元件之元件基板之間產 生雲紋。 於第7變形例及第8變形例中,將自光擴散層之厚度方向 觀察之低折射率部115之平面形狀設定為圓形但低折射 率部115之平面形狀並不限定於此。低折射率部ιΐ5之平面 形狀例如亦可為多角形。只要低折射率部115之平面形狀 為圓形或多角形’貝丨!自光擴散層射出之光之擴散角於以擴 散層之厚度方向為中心之所有方位上擴展。從而,具備光 擴散板之有機EL顯示裝置1於垂直方向及水平方向等複數 個方向上視角特性提高。 (第2實施形態) 圖14係表示第2實施形態之有機EL顯示裝置2之概略構成 之剖面圖。對於有機EL顯示裝置2中與第1實施形態之有機 EL顯示裝置!共通之構成要素,標註相同之符號,並省略 詳細之說明。圖14所示之有機EL顯示裝置2係自第丨實施形 態之有機EL顯示裝置丨之密封基板119省略後之構成。於與 光擴散板117相對且與元件基板11〇相反之側,根據需要, 可附設抗反射^、偏光過濾層、防帶電層、防眩處理層、 防污處理層等附帶層。藉由該等附帶性之層與光擴散板 117而構成密封構件。 光擴散板117藉由接著層丨21與元件基板u〇接著。本實 施形態之透明基板113由較樹脂膜而言透濕性更低之基 板,例如玻璃基板等包含無機材料之基板構成。藉此可 藉由透明基板113抑制由於密封基板119之省略所造成之透 159931.doc • 26 - 201226997 濕性之上升。 本實施形態之有機EL顯示裝置2因設置有光擴散板117 , 故而成為廣視角並且抑制二重像之產生,且抑制水分之浸 入所造成之短壽命化。 又’於有機EL顯示裝置2中,發光元件130R、n〇G、 130B與光擴散板117之間,僅存在密封層ui與惰性氣體層 112。因此,發光元件130R、130G、13〇B與光擴散層ιΐ6 之距離變小’二重像所造成之圖像之模糊受到抑制。 (第3實施形態) 圖15係表示第3實施形態之有機EL顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置3中與第丨實施形態之有機 EL顯不裝置丨共通之構成要素,標註相同之符號,並省略 詳細之說明。圖15所示之有機示裝置3係於密封層lu 上介隔接著層150積層有光擴散板117〇接著層15〇於光擴 散板117之厚度方向上,一側與光擴散板117接觸,另一側 與密封層1 Π接觸。 接著層150例如包含環氧樹脂、丙烯酸樹脂等透明樹 脂。接著層150形成為覆蓋密封層U1之元件基板11〇上所 露出之部位。接著層i 50遍及圖像顯示區域之整個面,以 較圖像顯示區域更大之面積形成。接著層15〇於圖像顯示 區域之外側’與密封層丨丨丨或元件基板丨1〇接觸。 密封構件120例如介隔元件基板η〇之表面上所塗佈之接 著層150之前驅體’與元件基板11〇貼合。而且,藉由紫外 線照射處理或加熱處理而使接著層15〇硬化,藉此元件基 159931.doc -27- 201226997 板110與密封構件120接著而形成一體化。 於第1施形態之有機EL顯示裝£1中,於元件基板Μ 與密封構件12〇之對向區域之周緣部設置有框狀之接著 層,但於有機肛顯示裝置3中,亦可不設置此種框狀之接 著層。元件基板m與密封構件120僅藉由接著層15〇而接 著0 本實施形態之有機EL顯示裝置3因設置有光擴散板Μ, 故而變成廣視角並且抑制二重像之產生,且抑制水分之浸 入所造成之短壽命化。 又,於有機EL顯示裝置3中,發光元件13〇r' 13〇α、 13〇B與光擴散板117之間,僅存在密封層iu與接著層 15〇。因此,發光元件130R、130G、13〇B與光擴散層ιΐ6 之距離變小,二重像所造成之圖像之模糊受到抑制。 (第4實施形態) 圖16係表示第4實施形態之有機EL顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置4中與第3實施形態之有機 EL顯示裝置3共通之構成要素,標註相同之符號,並省略 洋細之說明。圖16所示之有機EL顯示裝置4係自第3實施形 態之有機EL顯示裝置3之密封基板119省略後之構成。有機 EL顯示裝置4因設置有光擴散板117,故而成為廣視角並且 抑制二重像之產生,且抑制水分之浸入所造成之短壽命 化0 又’於有機EL顯示裝置4中,發光元件130R、130G、 13 0B與光擴散板117之間,僅存在密封層ηι與接著層 159931.doc • 28 - 201226997 15〇 °因此’發光元件HOR、130G、130B與光擴散層116 之距離變小,二重像所造成之圖像之模糊受到抑制。 (第5實施形態) 圖17係表示第5實施形態之有機E L顯示裝置5之概略構成 之剖面圖。對於有機EL顯示裝置5中與第3實施形態之有機 EL顯示裝置3共通之構成要素,標註相同之符號,並省略 詳細之說明。圖17所示之有機EL顯示裝置5係於第3實施形 態之有機EL顯示裝置3中設置有彩色濾光片i6〇R、i6〇G、 16〇B之構成。彩色濾光片160R、160G、160B設置於光擴 散板117中之與複數個發光元件130R、130G、130B對向之 面上·> 紅色用之彩色濾光片16〇R、綠色用之彩色濾光片 16〇G、藍色用之彩色濾光片160B分別與發光元件130R(紅 色像素)、發光元件130G(綠色像素)、發光元件ι3〇Β(藍色 像素)對向配置。於具有光共振器構造之複數個發光元件 13 0R 13GG、13GB中,有時會於沿傾斜方向射出之光上 產生色偏差(發光光譜之偏移),但藉由使此種光通過彩色 濾光片’可抑制色偏差。 本實施形態之有機E L顯示裝置5於彩色濾光片16 〇 r、 160G、16GB之間未設置黑矩陣等遮光膜。當自光擴散板 117之厚度方向觀察有機肛顯示裝置5時,發現於彩色濾光 片 160R、160G、160B 之間 酉己置有光擴散板117之低折射 率部11 5,該低折射率部丨丨5亦 含有光吸收體。於該構成中 可如第4變形例中所說明般 ’通過彩色濾光片160R、 159931.doc -29· 201226997 1 60G、1 60B之光被低折射率部1丨5之光吸收體吸收,而抑 制其成為洩漏光。因此’即便未設置遮光膜,鄰接之像素 間產生混色之虞亦較少。 本貫施形態之有機EL顯示裝置5因設置有光擴散板117, 故而成為廣視角並且抑制二重像之產生,且抑制水分之浸 入所造成之短壽命化。又,有機EL顯示裝置5係於複數個 發光元件1 3OR、1 3 0G、130B與光擴散板117之間,僅存在 密封層111、接著層15〇及彩色濾光片。硬化之前之接著層 1 5〇變形以填埋彩色濾光片與光擴散板11 7之階差,故而彩 色;慮光片之厚度實質上被接著層15〇之厚度吸收。因此, 複數個發光元件130R、130G、130B與光擴散層116之距離 兔小一重像所造成之圖像之模糊受到抑制。又,有機el 顯示裝置5因設置有光擴散板丨17,故而可抑制水分之浸入 所造成之短壽命化。 於本實施形態中,彩色濾光片設置於光擴散層116之與 元件基板110對向之面上,但彩色濾光片之配置之位置並 不限定於此。例如’亦可形成如下構成:#色渡光片設置 於密封基板119之與光擴散板117對向之面上,密封基板 119之設置有彩色濾光片之面與光擴散板117之透明基板 113藉由接著層jig而接著。 (第6實施形態) 圖18係表示第6實施形態之有機EL顯示裝置之概略構成 之。彳面圖。對於有機EL_示裝置6中與第5實施形態之有機 EL顯示|置5共通之構成要f,標帅同之㈣,並省略 159931.doc 201226997 =細之說明。圖18所示之有機EL顯示裝置6係自第5實施形 心之有機EL顯示裝置5之密封基板119省略後之構成。有機 L,,„貝不裝置6因設置有光擴散板丨17,故而變成廣視角並且 抑制—重像之產生,且抑制水分之浸入所造成之短壽命 化。 又’於有機EL顯示裝置6中,發光元件13〇R、i3〇g、 130B與光擴散板117之間,僅存在密封層丨"、接著層i5〇 及心色慮光片160R、160G、160B。因此,發光元件 130R、130G、130B與光擴散層116之距離變小,二重像所 造成之圖像之模糊受到抑制。 (第7實施形態) 圖19係表示第7實施形態之有機£1^顯示裝置之概略構成 之剖面圖。對於有機£1^顯示裝置7中與第5實施形態之有機 EL顯示裝置5共通之構成要素,標註相同之符號,並省略 詳細之說明。圖19所示之有機EL顯示裝置7係於第5實施形 態之有機EL顯示裝置5中,相互相鄰之彩色濾光片j 6〇R、 160G、160B之間設置有遮光膜! 6丨之構成。遮光膜i 6 j例 如為黑矩陣。 本實施形態之有機EL顯示裝置7因設置有光擴散板丨〗7, 故而變成廣視角並且抑制二重像之產生,且抑制水分之浸 入所造成之短壽命化。又,有機EL顯示裝置7係藉由遮光 膜161大體吸收自複數個發光元件i3〇r、13〇(3、13〇B傾斜 地射出之光,故而鄰接之像素間產生混色之虞較少。 再者,於本貫施形態中,彩色濾光片及遮光膜設置於光 159931.doc •31 · 201226997 擴散層116之與元件基板110對向之面上,但彩色減光片及 遮光膜之位置並不限定於此。例如,亦可為如下構成:彩 色遽光片及遮光膜设置於密封基板119之與光擴散板117對 向之面上,密封基板119上設置有彩色濾光片及遮光膜之 面與光擴散板117之透明基板U3藉由接著層118而接著。 又,於本實施形態中,亦可省略光擴散層116之低折射率 部11 5之光吸收構件’即便於此情形時亦可獲得相同之效 果。 (第8實施形態) 圖20係表不第8實施形態之有機EL顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置8中與第7實施形態之有機 EL顯示裝置7共通之構成要素,標註相同之符號,並省略 詳細之說明。圖20所示之有機EL顯示裝置8係第7實施形態 之有機EL顯示裝置7之密封基板119省略後之構成。有機 EL顯不裝置8因設置有光擴散板117,故而變成廣視角並且 抑制一重像之產生,且抑制水分之浸入所造成之短壽命 化。 於有機£乙顯示裝置8中,於發光元件130R、130G、130B 與光擴散層1 72之間,僅存在密封層丨丨i、接著層丨5〇、彩 色濾光片160R、i60G、16〇B及遮光膜161。因此,發光元 件130R、130G、130B與光擴散層U6之距離變小,二重像 所^成之圖像之模糊受到抑制。再者,於本實施形態中, 亦可省略光擴散層116之低折射率部U5之光吸收構件,即 便於此情形時亦可獲得相同之效果。 159931.doc •32· 201226997 (第9實施形態) 圖21係表示第9實施形態之有機肛顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置9中與第5實施形態之有機 EL顯示裝置5共通之構成要素,標註相同之符號,並省略 詳細之說明。圖21所示之有機EL顯示裝置9係第5實施形態 之有機EL顯示裝置5之像素電極1〇3之基底上形成有絕緣層 181之構成。絕緣層181以使其表面變得平坦之方式,積層 於元件基板183之電路層102上。像素電極1〇3係將平坦之 絕緣層181作為基底,覆蓋絕緣層丨8丨而形成。 本實施形態之有機EL顯示裝置9因設置有光擴散板丨丨7, 故而變成廣視角並且抑制二重像之產生,且抑制水分之浸 入所造成之短壽命化。又,像素電極1〇3係將平坦之絕緣 層181作為基底而形成,因此像素電極1〇3之表面變得平 坦。從而,像素電極103與對向電極109之間之光學距離於 各色之每個子像素上變得大致均一。由此,有機EL顯示裝 置9使得自複數個發光元件13011、n〇G、13〇B射出之光高 精度地窄帶化,色再現性變高。 又,於有機EL顯示裝置9中,於發光元件13〇R、13〇σ、 1308與光擴散層116之間,僅存在密封層111、接著層15〇 及彩色濾光片160R、160G、160B。因此,發光元件 130R、130G、130B與光擴散層116之距離變小,二重像所 造成之圖像之模糊受到抑制。 (第10實施形態) 圖22係表示第10實施形態之有機el顯示裝置之概略構成 159931.doc •33· 201226997 之剖面圖。對於有機£匕顯示裝置1〇中與第9實施形態之有 機EL 員示裝置9共通之構成要素,標註相同之符號,並省 略詳細之說明。圖22所示之有機EL顯示裝置1〇係第9實施 形態之有機EL顯示裝置9之密封基板丨丨9省略後之構成。有 機EL顯示裝置1〇因設置有光擴散板117,故而變成廣視角 並且抑制二重像之產生,且抑制水分之浸入所造成之短壽 命化。 又’於有機EL顯示裝置1〇中,於發光元件13〇R、 130G、130B與光擴散層116之間,僅存在密封層m、接著 層150及彩色濾光片160R、160G、160B。因此,發光元件 130R' 130G、130B與光擴散層116之距離變小,二重像所 造成之圖像之模糊受到抑制。 (第11實施形態) 圖23係表示第11實施形態之有機el顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置11中與第9實施形態之有 機EL顯示裝置9及第7實施形態之有機EL顯示裝置7共通之 構成要素,標註相同之符號,並省略詳細之說明。圖23所 示之有機EL顯示裝置11係於第9實施形態之有機el顯示裝 置9中’於相互鄰接之彩色濾光片160R、i6〇g、160B之間 設置有遮光膜161之構成。有機EL顯示裝置^因設置有光 擴散板117,故而變成廣視角並且抑制二重像之產生,且 抑制水分之浸入所造成之短壽命化。 又,於有機EL顯示裝置11中,於發光元件13〇r、 130G、130B與光擴散層172之間,僅存在密封層m、接 159931.doc .34- 201226997 著層150、彩色遽光片160R、16〇G、16卯及遮光膜⑹。 因此,發光元件130R、130G、130Β與光擴散層172之距離 變小,二重像所造成之圖像之模糊受到抑制。再者,於本 實施形態中,亦可省略光擴散層116之低折射率部115之光 吸收構件,即便於此情形時亦可獲得相同之效果。 • (第12實施形態) 圖24係表示第12實施形態之有機此顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置12中與第u實施形態之有 機EL顯示裝置u共通之構成要素,標註相@之符號,並省 略詳細之說明。圖24所示之有機EL顯示裝置12係第n實施 形態之有機EL顯示裝置11之密封基板119省略後之構成。 有機EL顯示裝置12因設置有光擴散板117,故而變成廣視 角並且抑制二重像之產生,且抑制水分之浸入所造成之短 壽命化。 又,於有機此顯示裝置12中,於發光元件13〇R、 130G 130B與光擴散層172之間,僅存在密封層m、接 著層150、彩色濾光片160R、16〇G、16〇B及遮光膜161。 因此’發光元件130R、130G、13〇B與光擴散層172之距離 • 變小,二重像所造成之圖像之模糊受到抑制。再者,於本 . 實施形態中,亦可省略光擴散層116之低折射率部115之光 吸收構件,即便於此情形時亦可獲得相同之效果。 (第13實施形態) 圖2 5係表示第13實施形態之有機E L顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置13中與第7實施形態之有 15993l.doc -35- 201226997 機EL顯示裝置7共通之構成要素,標註相同之符號,並省 略詳細之說明。圖25所示之有機El顯示裝置13係像素電極 193由複數個導電膜(第1導電膜ι91及第2導電膜192)構成。 像素電極193形成於元件基板195上之電路層190之絕緣層 194之上。 絕緣層1 94形成為覆蓋驅動元件丨〇2a等。絕緣層1 94係藉 由塗佈樹脂材料而形成。絕緣層! 94使驅動元件1 〇2a等造 成之凹凸平坦化,其表面平坦。 第1導電膜191係將平坦之絕緣層i94作為基底而形成, 其表面平坦。第1導電膜191例如由鋁(A1)或銀(Ag)等光反 射材料形成。第2導電膜192係將平坦之第}導電膜191作為 基底而形成’其厚度於每個子像素上大致均一。第2導電 膜192由銦錫氧化物(IT0,Indium Tin 〇xide)或銦鋅氧化物 (IZO,Indium Zinc Oxide :註冊商樣)等具有透光性之導電 材料形成。再者,像素電極193亦可由3層以上導電膜構 成。 本實施形態之有機EL顯示裝置13因設置有光擴散板 117,故而成為廣視角並且抑制二重像之產生,且抑制水 分之浸入所造成之短壽命化,又,複數個發光元件n〇R、 13〇G、130B分別具有以第1導電膜191及對向電極1〇9為一 對共振鏡之光共振器構造。第丨導電膜丨9丨係將平坦之絕緣 層194作為基底以表面變得平坦之方式形成,第2導電膜 192係將平坦之第}導電膜191作為基底以均一之厚度形 成。從而,第1導電膜191及對向電極1〇9之間之光學距離 159931.doc -36- 201226997 於各色之每個子像素上變得大致均—。因此,有機el顯示 裝置13使得自複數個發光元件13〇R、13〇〇、"OB射出之 光南精度地窄帶化,色再現性變高。 又,於有機EL顯示裝置13中,於發光元件〗3〇r、 13〇g、〗30B與光擴散層116之間,僅存在密封層m、接著 層〗50及彩色遽光片16〇R、i6〇g、i6〇B。因此,發光元件 130R、13〇G、130B與光擴散層116之距離變小,二重像所 造成之圖像之模糊受到抑制。 (第14實施形態) 圖26係表示第i 4實施形態之有機EL顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置14中與第13實施形態之有 機EL顯不裝置13共通之構成要素,標註相同之符號,並省 略詳細之說明。圖26所示之有機EL顯示裝置14係第13實施 形態之有機EL顯示裝置π之密封基板119省略後之構成。 有機EL顯示裝置14因設置有光擴散板117,故而變成廣視 角並且抑制二重像之產生,且抑制水分之浸入所造成之短 壽命化。 又’於有機EL顯示裝置中,於發光元件13〇R、 130〇、13(^與光擴散層116之間,僅存在密封層111、接著 層150及彩色濾光片i6〇R、16〇g、16〇B。因此,發光元件 130R、130G、130B與光擴散層116之距離變小,二重像所 造成之圖像之模糊受到抑制。 (第15實施形態) 圖27係表示第15實施形態之有機£1^顯示裝置之概略構成 159931.doc •37- 201226997 之剖面圖。對於有機EL顯示裝置15中與第13實施形態之有 機EL顯不裝置13及第7實施形態之有機£1^顯示裝置7共通 之構成要素,標註相同之符號,並省略詳細之說明。圖27 所不之有機EL顯示裝置15係第13實施形態之有機£1^顯示 裝置13中’於相互鄰接之彩色濾光片i6〇R、i6〇G、16〇B 之間設置有遮光膜161之構成。有機EL顯示裝置15因設置 有光擴散板117,故而變成廣視角並且抑制二重像之產 生,且抑制水分之浸入所造成之短壽命化。 又,於有機EL顯示裝置15中,於發光元件13〇R、 130G、130B與光擴散層172之間,僅存在密封層ιη、接 著層150彩色遽光片160R、160G、160B及遮光膜161。 因此,發光兀件130R、130G、130B與光擴散層172之距離 變小,二重像所造成之圖像之模糊受到抑制。 (第16實施形態) 圖28係表示第16實施形態之有機EL顯示裝置之概略構成 之剖面圖。對於有機EL顯示裝置16中與第15實施形態之有 機EL顯示裝置15共通之構成要素,標註相同之符號,並省 略》羊、,田之說明。圖28所示之有機EL顯示裝置丨6係第丨5實施 形態之有機EL顯示裝置15之密封基板119省略後之構成。 有機EL顯示裝置16因設置有光擴散板ιΐ7,故而變成廣視 ^ 抑制一重像之產生,且抑制水分之浸入所造成之短 壽命化。 於有機EL顯不裝置16中,於發光元件13〇R、 3 與光擴散層172之間,僅存在密封層11 i、接 159931.doc -38- 201226997 著層150、彩色濾、光片160R、160G、160B及遮光膜ι61。 因此,發光元件130R、130G、130B與光擴散層172之距離 變小’二重像所造成之圖像之模糊受到抑制。 (變形形態) 於第1實施形態至第16實施形態中,示出有本發明之有 機EL顯示裝置之構成之一例,但該等實施形態之構成可適 當組合而使用。有機EL顯示裝置之構成構件之材料或厚度 等僅為一例’並非限定於上述之例者。就上述之各實施形 態中之有機EL顯示裝置而言,特徵在於:並不介隔玻璃基 板或樹脂基板等厚度較厚之密封構件,而介隔厚度較薄之 接著層150或惰性氣體層112積層發光元件與光擴散板之方 面;及設置有光擴散板117之方面。只要具備此種特徵性 之構成,則可適當變更其他構成構件之配置。 (電子機器) 圖29 A〜圖29D係表示本實施形態之電子機器之圖。 圖29 A所示之薄型顯示裝置9100包括殼體9101、支持台 9102、顯示部9103、揚聲器部9104、及視訊輸入端子 9105。係含有上述實施形態之有機EL顯示裝置而構成。 圖29B所示之筆記型電腦9200包括本體9201、殼體 9202、顯示部9203、鍵盤9204、外部連接口 9205、及指標 滑鼠9206。顯示部9203係含有上述實施形態之有機EL顯示 裝置而構成。 圖29C所示之行動電話9400包括本體9401、殼體9402、 顯示部9403、音訊輸入部9404、音訊輸出部9405、操作鍵 159931.doc -39- 201226997 94〇6、外部連接口 9407、及天線9401顯示部93〇3係含有 上述實施形態之有機EL顯示裝置而構成。 圖29D所示之攝像機9500包括本體9501、顯示部%”、 殼體9503、外部連接口 9504、遙控接收部95〇5、受像部 9506、電池9507、音訊輸入部9508、操作鍵95〇9、及目: 部951(^顯示部9502係含有上述實施形態之有機el顯示= 置而構成。 、 圖29A〜圖29D所示之電子機器係各者之顯示部含有上述 實施形態之有機EL顯示裝置而構成。從而,上述電子機器 可兼顧視角之廣角化與辨識性之降低之抑制,且可抑制水 分之浸入所造成之顯示性能之降低。 [產業上之可利用性] 本發明之光擴散板可應用於利用光、要求耐濕性之各種 機器例如有機EL顯示裝置及電子機器中。 【圖式簡單說明】 圖1係表示第1實施形態之有機EL顯示裝置之概略構成之 剖面圖。 圖2係光擴散板之平面圖。 圖3係模式性地表示與光擴散板之第丨面正交之剖面之 圖。 圖4係表示藉由吸濕劑之粒徑之不同而進行之光之f透 率之比較的圖表。 圖5係藉由光擴散板而形成之二重像之說明圖。 圖6係表示光擴散板之第1變形例之剖面圖。 15993 丨.doc -40- 201226997 圖7係表示光擴散板之第2變形例之剖面圖。 圖8係表示光擴散板之第3變形例之剖面圖。 圖9係表示光擴散板之第4變形例之剖面圖。 圖1 〇係表示光擴散板之第5變形例之剖面圖。 圖11係表示光擴散板之第6變形例之平面圖。 圖丨2係表示光擴散板之第7變形例之平面圖。 圖13係表示光擴散板之第8變形例之平面圖。 圖14係表示第2實施形態之有機£[顯示裝置之概略構成 之剖面圖。 圖15係表示第3實施形態之有機EL顯示裝置之概略構成 之剖面圖。 圖1 6係表示第4實施形態之有機EL顯示裝置之概略構成 之剖面圖。 圖17係表示第5實施形態之有機EL顯示裝置之概略構成 之剖面圖。 圖1 8係表示第6實施形態之有機el顯示裝置之概略構成 之剖面圖。 圖19係表示第7實施形態之有機el顯示裝置之概略構成 之剖面圖。 圖20係表示第8實施形態之有機el顯示裝置之概略構成 之剖面圖。 圖21係表示第9實施形態之有機EL顯示裝置之概略構成 之剖面圖。 圖22係表示第丨〇實施形態之有機el顯示裝置之概略構成 159931.doc 201226997 之剖面圖。 圖23係表示第丨丨實施形態之有機el顯示裝置之概略構成 之剖面圖。 圖24係表示第12實施形態之有機EL顯示裝置之概略構成 之剖面圖。 圖25係表示第13實施形態之有機El顯示裝置之概略構成 之剖面圖。 圖26係表示第14實施形態之有機£[顯示裝置之概略構成 之剖面圖。 圖27係表示第15實施形態之有機EL顯示裝置之概略構成 之剖面圖。 圖28係表示第16實施形態之有機£1^顯示裝置之概略構成 之剖面圖。 圖29A係表示具備有機EL顯示裝置之電子機器之例之 圖。 圖2 9B係表示具備有機EL顯示裝置之電子機器之例之 圖。 圖29C係表示具備有機EL顯示裝置之電子機器之例之 圖。 圖29D係表示具備有機EL顯示裝置之電子機器之例之 圖。 【主要元件符號說明】 1〜16 101 有機EL顯示裝置 基板 159931.doc •42- 201226997 102 電路層 102a 驅動兀件 102b 第1電源線 102c 第1電源線 103 像素電極 104 絕緣層 104a 第1開口部 104b 第2開口部 105 電洞注入層 106 電洞輸送層 107 發光層 108 電子輸送層 109 對向電極 110 元件基板 111 密封層 112 惰性氣體層 113 透明基板 114 高折射率部 115 低折射率部 116 、 151〜158 光擴散層(光擴散板本體) 117 光擴散板 118 接著層 119 密封基板 120 密封構件 159931.doc -43- 201226997 121 接著層 130R、130G、130B 發光元件 140 吸濕劑 141 光入射面(第1面) 142 光射出面(第2面) 143 低折射率部與高折射率部之界面 144 光吸收體 150 接著層 160R、160G、160B 彩色濾光片 161 遮光膜 172 光擴散層 181 絕緣層 183 元件基板 190 電路層 191 第1導電膜 192 第2導電膜 193 像素電極 194 絕緣層 195 元件基板 9100 薄型顯示裝置(電子機器) 9101 殼體 9102 支持台 9103 顯示部 9104 揚聲器部 159931.doc -44- 201226997 9105 視訊輸入端子 9200 筆記型電腦(電子機器) 9201 本體 9202 殼體 9203 顯示部 9204 鍵盤 9205 外部連接口 9206 指標滑鼠 9400 行動(電子機器) 9401 本體 9402 殼體 9403 顯示部 9404 音訊輸入部 9405 音訊輸出部 9406 操作鍵 9407 外部連接口 9408 天線 9500 攝像機(電子機器) 9501 本體 9502 顯示部 9503 殼體 9504 外部連接口 9505 遙控接收部 9506 受像部 159931.doc -45- 201226997 9507 電池 9508 音訊輸入部 9509 操作鍵 9510 目鏡部 D 間隔 LI 、 L2 、 L3 光 Li、Ld 光 LR、LG、LB 光 P 觀察者 W 間隔 X、Y、z 方向 159931.doc • 46-201226997 VI. Description of the Invention: [Technical Field] The present invention relates to a light diffusing plate, an organic electroluminescence display device, and an electronic device. The present application claims priority based on Japanese Patent Application No. 2010-257814, filed on Jan. Quote its contents here. [Prior Art] As one of various optical devices using light, for example, an organic electroluminescence display device having an optical resonator structure, which is carried out in Patent Document 1, is known (hereinafter, simply "organic EL (electro) Luminescence (electroluminescence) display device). The organic EL display device of Patent Document 1 has a light-emitting layer sandwiched between a reflective layer and a semi-transmissive reflective layer, and a resonant wavelength light corresponding to an optical distance between the reflective layer and the semi-transmissive reflective layer is transmitted from the semi-transmissive reflective layer. Shoot out. An organic display device having an optical resonator structure is capable of performing image display excellent in color reproducibility, but has a problem that the directivity of light is increased and the viewing angle is narrowed. In order to expand the viewing angle, for example, the light diffusing plate of the optical expansion plate disclosed in Patent Document 2 includes a refractive index portion which is formed on the transparent substrate by a high refractive index resin, and a high refractive index. A concave portion having a V-shaped cross section on the surface of the rate portion. The inside of the concave portion functions as a low refractive index portion (work gas layer). The light incident on the light diffusing plate is reflected on the surface of the concave portion, that is, the interface between the high refractive index portion and the low refractive index portion, and is opposite to the light 159931. Doc 201226997 The wide angle direction of the normal direction of the diffuser plate is emitted. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. 2000-352608 (Patent Document 2). Optical machines sometimes experience reduced performance due to moisture ingress. For example, when the organic EL display device is immersed in moisture, there is a possibility that the display performance is lowered due to the occurrence of dark spots or the like. In order to suppress the infiltration of moisture into the optical device, a moisture absorbent is disposed inside the optical device in addition to the light diffusing plate, which causes the optical device to become large. For example, in an organic EL display device including a light diffusing plate, when a moisture absorbent is disposed between the light emitting layer and the light diffusing plate, the distance between the light diffusing plate and the light emitting layer is increased. Therefore, there is a possibility that blurring of an image caused by a double image or the like is apt to occur, and visibility is lowered. Further, the organic EL display device includes various members such as a sealing substrate or an anti-reflection substrate in addition to the element substrate on which the light-emitting layer is formed. The light diffusing plate is then on the surface of the members, so that the distance between the light diffusing plate and the light emitting layer becomes large. Therefore, the image caused by the double image or the like is blurred, and the discrimination is lowered. The present invention has been made in view of the above circumstances, and an object thereof is to provide a light diffusing plate which can improve the moisture resistance of an optical device without causing an increase in size of an optical device. Moreover, one of the objects of the present invention is to provide a 159931. Doc 201226997 Organic EL display device and electronic device 9 capable of suppressing reduction in visibility and reduction in visibility, and suppressing deterioration in display performance due to immersion of moisture. One of the objects of the present invention is to provide an image. An organic EL display device and an electronic device with less blurring. [Means for Solving the Problem] The light diffusing plate according to the first aspect of the present invention has the first surface and the second surface facing each other, and the light incident from the second surface is diffused and emitted from the second surface. And a low refractive index portion which increases in area of a cross section parallel to the first surface having a second refractive index and increases from the second surface toward the second surface; and a high refractive index portion And contacting the low refractive index portion and having a second refractive index higher than the first refractive index; and at least one of the low refractive index portion and the high refractive index portion contains a moisture absorbent. In the light diffusing plate of the first aspect, the high-refractive-index portion may include the moisture absorbent, and the moisture absorbent may be composed of particles having an average particle diameter smaller than a wavelength of visible light. In the light diffusing plate of the first aspect, the average particle diameter may be set within a range of not less than or equal to 5 nm. In the light diffusing plate of the first aspect, the third surface and the fourth surface of the high refractive index portion may be opposed to each other, and the third surface may be the Wth; and the fourth surface is The part of the second surface is a product of the third surface that is 1% or more and 9% or less of the area of the fourth surface. In the light diffusing plate of (10), the low refractive index portion may further contain a light absorber that collects visible light. In the light diffusing plate of the first aspect, the inside of the low refractive index portion may also be 159931. Doc 201226997 is the gap. In the light diffusing plate of the first aspect, the light diffusing plate may have a plurality of the low refractive index portions, and the plurality of low refractive index portions may be scattered throughout the plan view. An organic EL display device according to a second aspect of the present invention includes an element substrate, a light-emitting element having an optical resonator structure on the element substrate, a sealing layer covering the light-emitting element and the element substrate, and a sealing layer on the sealing layer The light diffusing plate which diffuses and emits light incident from the light emitting element, and the light diffusing plate is the light diffusing plate described above. The organic EL display device of the second aspect may be between the light diffusing plate and the sealing layer, and further includes an adhesive layer or an inert gas layer connecting the light diffusing plate and the sealing layer. In the organic EL display device of the second aspect, the plurality of light-emitting elements may be provided on the element substrate, and the light-diffusing sheet may include a plurality of the low refractive index portions, and the plurality of light-emitting elements may be arranged at a second interval. The plurality of low refractive index plates are disposed at a second interval smaller than the second interval. In the organic EL display device of the second aspect, the light diffusing plate may include a plurality of the low refractive index portions, and the plurality of light emitting elements may be spaced apart from each other, and the plurality of low refractive index plates may be randomly arranged in plan view. . In the organic EL display device according to the second aspect, the light diffusing plate or the light diffusing plate and the element substrate may be further included at least! Piece of color filter. The organic EL display device of the second aspect may further comprise: a plurality of color filters located on the light diffusing plate, or the light diffusing plate and the above-mentioned 159931. Doc 201226997 A light-shielding film between the substrates, which is located between two color filters adjacent to each other in the plurality of color light-emitting sheets. The organic EL display device of the second aspect may further include a sealing substrate on the optical diffusion plate. An electronic apparatus according to a third aspect of the present invention includes the organic display device of the second aspect. [Effects of the Invention] According to the first aspect of the present invention, it is possible to provide a light diffusing plate which can improve the moisture resistance of an optical device without causing an increase in the size of the optical device. Further, according to the second and third aspects of the present invention, it is possible to provide an organic EL display which is capable of suppressing both the widening of the viewing angle and the reduction of the visibility, and also suppressing the deterioration of the display performance caused by the immersion of moisture. Device or electronic machine. Further, according to the first to third aspects of the present invention, it is possible to provide an organic EL display device and an electronic apparatus which have less blurring of an image. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In addition, the same components are denoted by the same reference numerals, and the description thereof will not be repeated. The elements described in the following embodiments or modifications can be combined as appropriate. (First Embodiment) Fig. 1 is a cross-sectional view showing a schematic configuration of an organic EL display device according to a first embodiment. The organic EL display device 1 shown in FIG. 1 includes an element substrate 丨1〇, a plurality of light-emitting elements 130R, 130G, 130B, a light diffusing plate 117, and a sealing substrate 15993l. Doc 201226997 119. A plurality of light-emitting elements 13A, 13A, and 13B are formed on one surface of the element substrate 110. The light diffusing plate 117 is disposed to face the plurality of light emitting elements 130R, 130G, and 130B formed on the element substrate 110. The sealing substrate 119 is disposed on the opposite side of the element substrate 11 from the light diffusion plate 117. The organic EL display device 1 is a top emission type organic EL display device. In the organic EL display device 1, light emitted from a plurality of light-emitting elements 丨3〇R, 13〇G, and 130B passes through the sealing substrate 119 to the organic eL display device! Take out the outside. The element substrate 110 is, for example, an active matrix substrate. The element substrate n 〇 includes a substrate 101 and a circuit layer 102. The substrate 1〇1 is, for example, a glass substrate or a plastic film. The circuit layer 102 is formed on the substrate ιοί. Circuit layer! 〇2 includes a driving element 102a such as a thin film transistor for driving a plurality of light-emitting elements 130R, 130G, and 130B, and a gate line, a data line, and a power supply line (the first power supply line 丨〇2b and the first power supply line 102c). Various wiring. A plurality of light-emitting elements 130R, 130G, and 130B are formed on the circuit layer 1A2. The light-emitting element 130R corresponds to the red pixel and emits red light Lr. The light-emitting element 130G corresponds to the green pixel, and emits green light lr. The light-emitting element 13 0B corresponds to the blue pixel, and emits blue light lb. The red pixel, the green pixel, and the blue pixel are sub-pixels, respectively, and one group constitutes one pixel of the full color. Each of the plurality of light-emitting elements 130R, 130G, and 130B includes a pair of electrodes (pixel electrode 103 and counter electrode 109) and a light-emitting layer 107 sandwiched between the pair of electrodes. In this embodiment, the pixel electrode W3 is an anode and the opposite electrode is 159931. Doc 201226997 Pole 109 is the cathode. A layer disposed between the pixel electrode 1〇3 and the light-emitting layer 107 and a layer disposed between the counter electrode 1〇9 and the light-emitting layer 1〇7 can be appropriately selected. In the present embodiment, between the pixel electrode 1?3 and the light-emitting layer 1?7, a hole injection layer 1?5 for injecting a hole into the light-emitting layer 107 is provided. A hole transport layer 106 for transporting a hole is provided between the hole injection layer 1〇5 and the pixel electrode 103. In some cases, a hole injection transport layer is provided between the pixel electrode 1〇3 and the light-emitting layer 1〇7 in place of the hole injection layer 105 and the hole transport layer 1〇6. An electron transport layer 1 8 for transporting electrons is provided between the counter electrode 109 and the light-emitting layer 107. An electron injecting layer is sometimes disposed between the light-emitting layer 1〇7 and the electron transporting layer 1〇8. The light-emitting layer 107 of each pixel contains a fluorescent or phosphorescent luminescent material that emits a display color corresponding to the pixel. The light-emitting layer 107 of the red pixel (light-emitting element 13 〇 R) contains a luminescent material that emits red fluorescent or phosphorescent light. The light-emitting layer 1〇7 of the green pixel (light-emitting 7C piece 130G) contains a green-emitting fluorescent or phosphorescent light-emitting material. The light-emitting layer 1〇7 of the blue pixel (light-emitting element 13〇B) contains blue-emitting fluorescent light or Phosphorescent luminescent material. The pixel electrode 103 includes a light-reflective conductive film such as aluminum (A1) or silver (Ag). The pixel electrode 103 also has a reflective layer that reflects light emitted from the light-emitting layer ι 7 toward the element substrate u. The pixel electrode 103 is electrically connected to the driving member 102a provided on the circuit layer 1A2. The driving element 1〇2a is electrically connected to the first power source line 1〇2b. The pixel electrode 1A3 supplies a hole to the light-emitting layer 107 via the hole transport layer 106 and the hole injection layer 105' by the power supplied from the first power source line 102b via the 70-piece 1?2a. I59931. Doc 201226997 A portion corresponding to a full-color pixel, i.e., a portion including three pixel electrodes 103, is illustrated in FIG. In the actual organic EL display device, the pixel electrode 103 corresponds to the sub-pixels constituting the display image in one-to-one correspondence, for example, only the number of sub-pixels is formed. A plurality of pixel electrodes 1〇3 are periodically formed in the two-dimensional direction at regular intervals on the circuit layer 1〇2. An image display area in which an image can be displayed is formed by a plurality of pixels periodically formed in a two-dimensional direction. Around the pixel electrode 103, an insulating layer 1?4 which insulates the pixel electrodes 103 from each other adjacent to each other is formed. The insulating layer 1 has a first opening portion 104a that exposes the pixel electrode 丨〇3 at a position facing the central portion of the pixel electrode 103. The area of the first opening portion 104a is smaller than the area of the pixel electrode 103. The insulating layer 1?4 is formed so as to cover the circuit layer 102' exposed between the pixel electrodes 1?3 and partially spread to the outer peripheral portion of the pixel electrode 1?3. The counter electrode 109 contains a light-transmitting conductive film such as a magnesium-silver alloy (Mg: Ag). The counter electrode 109 is formed to face the plurality of pixel electrodes 1 〇3. The counter electrode 109 is formed on the entire surface of the image display region, and is formed as a common electrode by a plurality of pixel electrodes 103. The counter electrode 〇9 functions as a semi-transmissive reflective layer in which one of the light incident on the counter electrode 109 is partially transmitted and the remaining one of the blades is reflected toward the pixel electrode 103. The counter electrode 109 passes through the second opening portion 104b provided on the insulating layer 104 which is not overlapped with the pixel electrode 103, and the second opening portion 104b which is provided on the circuit layer 1A2! The power line 102c is electrically connected. The counter electrode 109 supplies electrons to the light-emitting layer ι7 via the electron transport layer 1〇8 by the electric power supplied from the first power source line 1〇2c. Doc 201226997 Further, in each of the plurality of light-emitting elements 130R, 13A, G, and 13b, the end surface facing the adjacent light-emitting element and the counter electrode 1〇9 extending toward the second opening portion An insulating film or an insulating partition wall (not shown) may be provided as needed. The insulating film or the partition wall is provided in such a manner that at least the hole transport layer 1〇6 and the hole injection layer 1〇5 are not opposed to the counter electrode (10). A plurality of light-emitting elements are provided, and (10) each has a light-wire assembly in which the pixel electrode 103 and the counter electrode 1G9 are used as a material galvanometer. In the light emitted by the first layer 107, the light of the resonance wavelength corresponding to the optical distance between the pixel electrode and the counter electrode 109 = is added to the mirror between the pair of mirrors and is emitted from the counter electrode 1〇9. . The optical distance between the pixel electrode 1〇3 and the counter electrode 1〇9 is designed for the display color of each sub-pixel. In the present embodiment, the optical distance is adjusted by making the thickness of the hole injection layer 105 different from each other in sub-pixels having different display colors. The optical distance between the pixel electrode 1Q3 and the counter electrode iQ9 may also be such that at least one of the thickness and the refractive index of the intermediate layer disposed between the pixel electrode (8) and the counter electrode (7) 9 is different from the display color. Ask and adjust. The inter-layer layer may be a hole in the hole injection layer 1〇5', the light-emitting layer m of the layer 106, and the electron-transport layer (10) may be one or more layers. A cover layer is formed on the element substrate 11A to form a sealing layer of a film having a sealing layer of less than U μηι. The thickness of the sheet is thinner. The portion where the dense electrode 109 is exposed is entirely covered. The sealing layer 111 is, for example, 1 nm or more and 1 〇〇. The sealing layer 111 is larger than the glass substrate or the plastic film. The sealing layer 1] is used to cover the image display area. J5993 J. Doc 201226997 The surface of the pole 109 is entirely formed, and is formed in a manner that surrounds the image display (10) outside the circle. The sealing layer lu is connected to the element substrate 110 in the outer side of the outer periphery of the image display area. The sealing layer m contains, for example, a transparent inorganic sealing film (inorganic sealing film) such as oxygen cut (Si〇2) or nitridium called 'gas oxysulfide eve (8) (10). The sealing layer 111 may be composed of a film of two or more layers having different forming materials. The material for forming each of the films constituting the dense film 111 may be either an organic material or an inorganic material. Further, the sealing layer is formed of two or more films, and one or more of the two or more films include an organic material, and the organic layer may be contained in the layer or more. For example, the sealing layer lu may be laminated to contain oxidation. The sealing film of the enamel layer or the like and the structure of the sealing film containing the ruthenium layer or the like of the acrylic resin or the like. The light diffusion plate 117 of the present embodiment has the transparent substrate 113 and the light diffusion layer (light diffusion plate body) 116. The diffusion plate 117 is disposed such that the side on which the light diffusion layer 116 is formed faces the element substrate 110 and is disposed opposite to the element substrate 11A. The transparent substrate 113 is disposed opposite to the light diffusion layer 且16 and opposite to the element substrate 丨1〇. The transparent substrate 113 is a substrate for forming a base of the light diffusion layer U6. The transparent substrate 113 is, for example, a triacetyl cellulose (TAC) film of polyethylene terephthalate (pet ' A polyethylene terephthalate film or the like having a flexible resin film, etc. The transparent substrate 113 may be a substrate having lower flexibility than the resin film, for example, a glass substrate, etc. Regarding the details of the light diffusion layer 116, Hereinafter will be described. The sealing substrate 119 is a glass substrate having a transparent substrate of the sealing group 159,931. Doc 201226997 Plate 11 9 is formed of inorganic materials. At least a portion of the sealing substrate 9 9 may also be formed of an organic material. The light diffusing plate Η 7-type transparent substrate 113 is integrated with the sealing substrate 119 by the subsequent layer 118 on the sealing substrate 119. On the opposite side to the sealing substrate 119 and the light diffusing plate 11 7 , as needed One layer or two or more layers of an auxiliary layer such as an antireflection layer, a polarizing filter layer, an antistatic layer, an antiglare treatment layer, and an antifouling treatment layer (not shown) are provided. The sealing member 120 is configured by the above-mentioned incidental layer, the sealing substrate 119, and the light diffusing plate 117. The element substrate 110 and the sealing member 12 are followed by a frame-shaped back layer 121 provided along the peripheral edge portion of the opposing portion of the element substrate 11 and the sealing member 120. An inert gas such as nitrogen gas is sealed in a space surrounded by the element substrate 11A and the sealing member 12A and the subsequent layer 121 to form an inert gas layer 112. The inert gas layer 112 is in contact with the loose seal layer 111 on the upper side in the thickness direction of the light diffusing plate U7, and the other side is in contact with the light diffusing plate 117. Layer 121 is then formed from a material that is less moisture permeable. Next, the layer 121 suppresses the intrusion of water vapor or oxygen from the sealing member 120 and the outside to the inert gas layer U2. The layer 121 may be formed by adding a water absorbing agent such as alumina to the inside of the epoxy resin, or a glass paste or the like. Next, layer 121 follows the element substrate no and the light diffusing plate in. Next, the layer 121 may be followed by the outer periphery of the light diffusion plate 117, and the element substrate 11A and the sealing substrate 119 are next. & Figure 2 is a plan view of the light diffusing plate viewed from the side opposite to the light diffusing plate and opposite to the plurality of light emitting elements. Fig. 3 is a view schematically showing a cross section parallel to the thickness direction of the light diffusion plate. Figure 3 corresponds to the eighth to eighth line of Figure 2, a section of the line. , 〇 159931. Doc 14 201226997 The light diffusion layer 116 is in the form of a sheet or a thin plate. The light diffusion layer 116 is a light incident surface 141 on the lower surface (first surface) in the thickness direction (Z direction), and the upper surface (second surface) is a light exit surface 142. The light diffusion layer 116 diffuses light incident from the light incident surface 141 and emits it from the light exit surface 142. The light diffusion layer 116 has a low refractive index portion 11 5 and a refractive index portion 11 4 . In the present embodiment, the low refractive index portion 175 and the refractive index portion 114 each contain a particulate moisture absorbent 140. In the present embodiment, the high refractive index portion 114 and the low refractive index portion 11 are linearly extended in a direction (γ direction) orthogonal to the thickness direction (z direction) of the light diffusion layer 116. The high refractive index portion 及4 and the low refractive index portion 丨丨5 are alternately arranged in a one-dimensional direction orthogonal to the thickness direction of the light diffusion layer 116. In the present embodiment, the one-dimensional direction is orthogonal to the thickness direction (Z direction) of the light diffusion layer 116, and is orthogonal to the direction (Y direction) in which the high refractive index portion n4 and the low refractive index portion 115 extend. The direction (χ direction). In the present embodiment, the low refractive index portions 11 are periodically arranged at regular intervals. That is, the high refractive index portion 配置4 disposed in contact with the low refractive index portion 115 is also periodically arranged at a fixed interval. The low refractive index portion of the present invention is formed of a material in which a moisture absorbent 140 is dispersed in a low refractive index material such as acrylamide phthalate. The low refractive index portion 115 protrudes from the transparent substrate 113 toward the element substrate 11A. The cross section of the low refractive index 邛 115 which is orthogonal to the thickness direction (z direction) of the light diffusion layer 116 (the χ γ plane or the cross section parallel to the first surface) is oriented in the thickness direction toward the side from the light exit surface 142 The light incident surface 141 side is continuously reduced. In other words, the area of the cross section (χγ plane) parallel to the lower surface (first surface) of the low refractive index portion 115 increases by 159,931 from the lower surface (first surface) toward the upper surface (second surface). Doc 15 201226997 Large. In other words, the low refractive index portion U5 is a tapered shape in which the side surface of the fourth direction in the thickness direction of the light diffusion layer 116 is reduced toward the element substrate 11G. The cross section (χγ plane) of the low refractive index portion 115 orthogonal to the extending direction (γ direction) thereof is an isosceles triangle. The shape of the cross section of the low refractive index portion 115 may be a polygonal shape such as a trapezoid shape other than a triangle, or may be a shape including a portion extending from the light exit surface 1 4 2 toward the light incident surface in a curved shape. . The high refractive index portion i丨4 of the present embodiment is formed of a material in which a moisture absorbent 14〇 is dispersed in a high refractive index material such as epoxy acrylate. The high refractive index portion 114 is disposed in contact with the low refractive index portion 115 in a direction (X direction) orthogonal to the thickness direction (z direction) of the light diffusion layer i16. The interface 143 between the low refractive index portion 115 and the high refractive index portion 114 is inclined in a direction that is not perpendicular to the light incident surface (first surface) 141. The shape of the cross section (XY plane) orthogonal to the extending direction (γ direction) of the high refractive index portion 114 is an isosceles trapezoid. The shape of the cross section of the high refractive index portion "4" may be a shape other than an isosceles trapezoid, such as a polygonal shape such as a triangle, or a self-light incident surface, as long as it is in contact with the low refractive index portion U5. The first surface) 141 has a shape in which the light exit surface (the portion extending in a curved shape on the second surface). The high refractive index portion 114 has a high refractive index in the lower refractive index portion 115. Here, the "high refractive index" The "lower refractive index portion" is not defined by the absolute value of the refractive index, but in the two regions where the refractive indices of the light diffusion layer 116 are different from each other, the relative refractive index is higher. The "high refractive index portion" is referred to as a "low refractive index portion" when the refractive index is relatively low. That is, when the refractive index of the low refractive index portion 115 is the first refractive index, the high refractive index portion has a problem. The second refractive index of the first refractive index of the low refractive index portion 115. 159931. Doc -16 · 201226997 A part of the light L1 does not enter the interface 143 of the low refractive index portion 115 and the high refractive index portion 114 in the light L1 to L3 which is incident on the light diffusion layer H6 from the light incident surface 141. The light exit surface 142 is emitted. In the light beams L1 to L3, the light L2 and the light L3 are incident on the interface 143 between the low refractive index portion Π5 and the high refractive index portion 114, and are reflected on the interface 143 by satisfying the total reflection condition. The light L2 and the light L3 reflected on the interface 143 are advanced in the non-parallel direction with respect to the light L1 inside the light diffusion layer 116, and are emitted to the outside of the light diffusion layer 116 through the light exit surface 142. Thus, the diffusion angle of the light beam including the light L1, the light L2, and the light L3 after being emitted from the light diffusion layer 116 is larger than the diffusion angle when the light diffusion layer 116 is incident. The above diffusion angle can be evaluated, for example, by investigating the light intensity distribution of the light spot of the light beam. That is, the full width at half maximum of the light intensity distribution of the light beam including the light li, the light L2, and the light L3 emitted from the light diffusion layer 116 is larger than the light L1, the light L2, and the light L3 when incident on the light diffusion layer 116. The half-peak full amplitude of the light intensity distribution of the beam of light. Further, a portion of the light L2 incident on the interface 143 may be reflected on the interface 143 at a reflectance corresponding to the incident angle with respect to the interface 143 without satisfying the total reflection condition on the interface 143. Further, a part of the light L2 incident on the interface i 43 may not pass through the interface 143 without satisfying the total reflection condition on the interface 143. However, the ratio of the area of the upper surface (fourth surface) of the refractive index portion 114 to the area of the lower surface (the third surface) of the high refractive index portion 114 (hereinafter referred to as the occupancy ratio) becomes higher. The smaller the size of the low refractive index portion 115 in the X direction is, the smaller the amount of light incident on the interface 143 becomes. In other words 159931. Doc -17- 201226997 The smaller the occupation ratio of the refractive index portion 114 is, the larger the ratio of the wide-angle component occupied by the light emitted from the light exit surface 142 is. The occupation ratio of the high refractive index portion 114 is set to, for example, 10% or more and 90°/◦ or less. Thereby, the diffusion angle of the light emitted from the light exit surface 142 can be increased to sufficiently satisfy the viewing angle characteristics expected of the display device such as the organic eL display device 1. When the occupation ratio of the high refractive index portion 设定 4 is set to be within 50% or less, the viewing angle of the display device such as the organic EL display device 1 can be remarkably improved. As shown in Fig. 1, the interval between the centers of the low refractive index portions u 5 is shorter than the interval between the light emitting elements (the interval between the centers of the pixel electrodes 103). Thereby, the interface 143 is configured for each sub-pixel, whereby the angle of view can be enlarged for each sub-pixel. The moisture absorbent 140 absorbs moisture by at least one of a chemical reaction and a physical adsorption. The moisture absorbent 140 can be, for example, a natural zeolite, a synthetic zeolite, a sulphate, a mixture of anhydrous gasification and an oxidized money, and an activated alumina. An oxide of an alkaline earth metal such as calcium oxide or lithium oxide, ruthenium oxide or palladium oxide, an oxide of an alkali metal such as sodium oxide or potassium oxide, magnesium oxide, cesium hydride, aluminum hydride, tantalum A-shaped silicone B It is composed of a mixture of yoghurt, sepiolite, alumina stellite, bentonite, water shale, activated clay, activated carbon, or the like. In the present embodiment, the moisture absorbent dispersed in the high refractive index portion 114 is made of the same material as the moisture absorbent 14〇 dispersed in the low refractive index portion 115. The material of the moisture absorbent 140 may be different from the high refractive index portion 114 and the low refractive index portion. The moisture absorbent 14 of the present embodiment is composed of particles such as synthetic zeolite having an average particle diameter smaller than the wavelength of visible light. , 159931. Doc •18- 201226997 The average particle diameter of the moisture absorbent 140 is set, for example, in the range of 1 nm or more and 5 〇〇 nm or less. Thereby, visible light passing through the inside of the light diffusion layer 116 becomes difficult to scatter to the moisture absorbent. In the present embodiment, the average particle diameter of the moisture absorbent 14 is set to be in the range of 1 nm or more and 1 〇〇 nm or less (here, about 3 〇 nm). Thereby, the visible light passing through the inside of the light diffusion layer 116 becomes significantly difficult to scatter to the moisture absorbent crucible 40. Further, the above average particle diameter is a sphere equivalent diameter which can be obtained by a light scattering method. Fig. 4 is a graph showing a comparison of the transmittance of light by the difference in particle diameter of the moisture absorbent. In the graph of Fig. 4, the horizontal axis represents the wavelength of light incident on the sample, and the vertical axis represents the transmittance of the sample. Experimental Example] The measurement results of the transmittance of a sample obtained by dispersing 24 particles of a zeolite having an average particle diameter of 1 μm in 3 mi of ethanol. Experimental Example 2 is a measurement result of the transmittance of a sample obtained by dispersing 240 mg of zeolite having an average particle diameter of 3 Å in 3 ml of ethanol. As shown in Fig. 4, in Experimental Example 2 (average particle diameter of 3 〇 nm), the transmittance was remarkably higher than that of Experimental Example 1 (average particle diameter of 1 μm) by suppressing backscattering or the like. When the light diffusing plate is applied to an optical device using visible light as in the case of the organic EL display device 1, the average particle diameter of the moisture absorbent 140 may be smaller than the wavelength of visible light. When the average particle diameter of the moisture absorbent 140 is smaller than the upper limit 値 (780 nm) of the wavelength of visible light, light of a wavelength band passing through at least a part of the visible light of the high refractive index portion U4 becomes difficult to scatter to the moisture absorbent M?. When the average particle diameter of the moisture absorbent 140 is smaller than the upper limit 値 (78 〇 nm) of the wavelength of visible light, the visible light passing through the high refractive index portion 114 becomes difficult to scatter to the moisture absorbent 140 in the entire range of the visible light band. 159931. Doc 19 - 201226997 In the present embodiment, the volume ratio of the moisture absorbent i4 中 occupied by the high refractive index portion 114 is substantially the same as the volume ratio of the moisture absorbent uo occupied by the low refractive index portion 115. The refractive index change caused by the dispersion of the moisture absorbent 14 in each refractive index portion affects the high refractive index portion 114 and the low refractive index portion (1), and the volume ratio is the average particle size from the moisture absorbent 140. The ratio of the total volume of the moisture absorbent U0 determined by the diameter and the number of particles to the volume of each refractive index portion containing the moisture absorbent (10). Further, at least one of the average particle diameter of the moisture absorbent 140 dispersed in each refractive index portion and the volume ratio may be different between the high refractive index portion 114 and the low refractive index portion 115. Fig. 5 is an explanatory view of a double image formed by a light diffusing plate. A part of the light u emitted from the light-emitting layer 107 is reflected on the interface 143 of the light-diffusing layer u 6 and reaches the observer p. Among the light emitted from the light-emitting layer 1〇7, the portion of the light Ld that travels in a direction different from the light Li does not enter the interface 143 of the light-diffusing layer Π6 and passes through the light-emitting surface 142 to reach the viewer ι^ luminescent layer. The interval 107 between the 107 and the light diffusion layer 116 becomes larger, and the interval W between the light u and the light Ld becomes larger. As the interval W becomes larger, the light Li and the light Ld become recognized by the observer P, so that the blur of the image of the double image or the like can be recognized. For example, if the interval W is 250 μm or less, the double image showing the degree of deterioration in quality cannot be recognized. If the interval is 15 〇 μηη or less, the double image is almost completely unrecognizable. In the organic EL display device i of the first embodiment, each of the plurality of light-emitting elements 130R, 130G, and 130B has an optical resonator structure, so that the color purity of each sub-pixel can be improved, and an image display excellent in color reproducibility can be obtained. . Doc 20· 201226997 No. Generally, the light directivity which is increased by the optical resonator structure becomes high (the diffusion angle becomes small). The organic EL display device i expands the light emitted from each of the plurality of light-emitting elements 130R' 130G and 130B by the light diffusion layer 116. The organic EL display device 1 is disposed between the light-emitting element n〇R and the light-diffusing layer 116, and has only the sealing layer 111 and the inert gas layer 112 interposed therebetween. In the organic EL display device 1 and the configuration in which the hygroscopic hygroscopic layer is disposed between the light-emitting element 130R and the light-diffusing layer U6, for example, the interval D between the light-emitting layer 1〇7 and the light-diffusing layer 116 is reduced. The thickness of the absorbent layer. As described above, the organic EL display device i can shorten the interval D, so that the interval w between the light Li and the light Ld can be shortened, and generation of ghost images can be suppressed. For the same reason, the organic EL display device 1 can also suppress the generation of a ghost image caused by the light emitted from the light-emitting element 130G or the light-emitting element 130B. Thereby, the blurring of the image caused by the double image is suppressed. In particular, the light diffusing plate 117 is disposed such that the surface of the transparent substrate 113 on which the light diffusing layer U6 is disposed is opposed to the element substrate 11A, so that the light diffusing layer 116 and the light emitting elements 130R, 130G, and 130B are not sandwiched. The transparent substrate 113 and the blur of the image are reduced. In the organic EL display device 1, the light-absorbing layer 140 is contained in the light-diffusing layer 116. Therefore, even if the moisture-absorbing layer is not provided between the light-diffusing layer 116 and the light-emitting element 130R, the intrusion of moisture into the light-emitting element 130R can be suppressed. Therefore, the organic EL display device 1 can suppress the generation of the double image and suppress the deterioration of the light-emitting element 130R caused by the intrusion of moisture. For the same reason, the organic anal display device 1 can suppress the deterioration of the light-emitting element 130G and the light-emitting element 130B. Therefore, the organic EL display device 1 can suppress the occurrence of dark spots, etc. 15993l. Doc 201226997 Reduces the display quality, or suppresses the deterioration of the plurality of light-emitting elements 13〇R, BOG, and 13〇B caused by the immersion of water. Since the average particle diameter of the light-diffusing layer 系6-based moisture absorbent 140 is set to be in the range of i hr or more and 500 rpm or less, the decrease in the transmittance of the high refractive index portion H4 by the moisture absorbing agent 14 可 can be suppressed. Further, the ratio of the area of the light-emitting surface 142 occupying the entire area of the light-emitting surface is set to 1% or more and 9% or less, so that the ratio of the wide-angle component occupied by the light emitted from the light-emitting surface 142 can be ensured. The viewing angle characteristics expected of the display device. Further, in the present embodiment, since the moisture absorbent 14 is dispersed in each of the high refractive index portion i4 and the low refractive index portion 115, the total amount of the moisture absorbent 14 is ensured, so that the long-term suppression can be suppressed. For example, the immersion of moisture into the plurality of light-emitting elements 130R '130G, 13〇B. As described above, the light diffusing plate 117 of the present embodiment can improve the moisture resistance of the optical device without causing an increase in the size of the optical device. In addition, the organic EL display device 1 of the present embodiment can reduce the viewing angle, suppress the decrease in the visibility, and can suppress the shortening of the life caused by the intrusion of moisture, and suppress the deterioration of the display performance. The organic EL display device suppresses blurring of an image caused by a double image. Next, a modification of the light diffusing plate of the present embodiment will be described. Fig. 6 is a view schematically showing a cross section parallel to the thickness direction of the light diffusing plate in the first modification. The volume ratio of the moisture absorbent 14 占 occupied by the light diffusion layer 151 shown in Fig. 6 to the high refractive index portion 114 is smaller than the volume ratio of the moisture absorbent 14 〇 occupied by the low refractive index portion 丨15. The light diffusion layer 1 of the first modification is compared with the volume ratio of the moisture absorbent 140 to the high refractive index portion 114 and the low refractive index portion 115 15993l. In the configuration of doc -22 201226997, the transmittance of light in the high refractive index portion 114 can be increased, and the decrease in hygroscopicity in the high refractive index portion 114 can be made possible by the low refractive index portion 115. burden. Therefore, the light diffusion layer 151 can reduce the loss of light in the high refractive index portion without lowering the hygroscopicity of the entire light diffusion layer 151, thereby improving the light use efficiency. Further, the average particle diameter of the moisture absorbent 140 dispersed in the high refractive index portion 114 in the light diffusion layer 151 may be smaller than the average particle diameter of the moisture absorbent 140 dispersed in the high refractive index portion 141. In this case, the volume ratio of the moisture absorbent 140 in the high refractive index portion ι4 may be the same as the volume ratio of the moisture absorbent 140 in the low refractive index portion 55. The light-diffusing layer i5i having such a configuration can improve the transmittance of light in the high-refractive-index portion ι4 without lowering the hygroscopicity of the entire light-diffusing layer 15!. Fig. 7 is a view schematically showing a cross section parallel to the thickness direction of the light diffusing plate in the second modification. In the light diffusion layer 152 shown in FIG. 7, the moisture absorbent 140 is dispersed only in the high refractive index portion 114 in the high refractive index portion 114 and the low refractive index portion 115, and is formed in the light diffusion layer 152 having such a configuration. The process of the low refractive index portion 115 becomes simple, and the manufacturing cost of the light diffusion layer 152 can be reduced. Fig. 8 is a view schematically showing a cross section parallel to the thickness direction of the light diffusing plate in the third modified example. In the light diffusion layer 153 shown in Fig. 8, the moisture absorbent 140 is dispersed only in the low refractive index portion us in the high-power rate portion 114 and the low-fold body portion 115. With the light diffusion layer 153 thus constituted, a high refractive index is formed. The process of 卩115 becomes simple, the manufacturing cost of the light diffusion layer ι53 can be reduced, and the light diffusion layer 153 can improve the penetration of light in the high refractive index portion 114. Doc •23· 201226997 rate, which can improve the efficiency of light utilization. Figure 9 is a schematic representation of the fourth. , a diagram of a cross section parallel to the thick direction of the light diffusing plate. Fig. 9 _ 士 士 士 士 士 士 士 士 士 士 士 士 士 士 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不In the low refractive index portion, k, and 丨5 of this example, an optical absorber 144 for absorbing visible light is contained. The light absorber 144 is a particle containing a stomach & A, a color 7) 4 or the like, and is dispersed inside the low refractive index portion 11 5 . The light source _, the light and the body 144 absorb the light incident on the light diffusion layer 154 through the interface 143 and intrude into the light L4 inside the low-refractive-index portion 1丨5. When the light diffusion drawer of the fourth modification is applied to μ, and the plurality of expansion layers 1 54 are applied to the organic EL display device 1 of the first embodiment, for example, the sub-pixels of the white π 2 * 』 are absorbed. The light that passes through the interface (4) in the emitted light 'suppresses the color mixture between the different sub-pixels. Fig. 10 is a view schematically showing a cross section parallel to the thickness direction of the (four) scattering plate in the fifth modification. The light diffusion layer 155 shown in Fig. 10 is composed of a low refractive index portion 115 by a void (gas layer). The low refractive index portion 115 of this example is a portion that does not penetrate the inner side of the concave portion provided by the high refractive index portion 114. The low refractive index portion 115 of this example is opened between the plurality of light exit surfaces 142. In the light diffusion layer 155 of the fifth modification, the low refractive index portion U5 is a void, so that it is easy to increase the refractive index ratio of the high refractive index portion 114 with respect to the low refractive index portion 115 and increase the reflection on the interface 143 to satisfy the total reflection condition. The amount of light of the light becomes easy. Further, the light diffusion layer 155 can save the material cost of the low refractive index portion 115, so that the manufacturing cost can be reduced. Fig. 11 is a view schematically showing a cross section parallel to the thickness direction of the light diffusing plate in the sixth modification. In the light diffusion layer 156 shown in Fig. 11, the high refractive index portion 114 and the low refractive index portion 115 are along the thickness of the light diffusion layer 156. Doc -24- 201226997 A stripe pattern extending in the (z direction) orthogonal-dimensional direction (γ direction). The high refractive index portion m and the low refractive index portion 115 are alternately arranged alternately in the direction orthogonal to the extending direction (γ direction) and the thickness direction (z direction) of the optical expansion layer 156. The low refractive index portions 115 are arranged at irregular intervals in the \ direction. When the light-diffusion layer 156 of the sixth modification is applied to the organic-red display device 1 of the first embodiment, for example, the interval between the low refractive index portions 115 is irregular, so that a plurality of light-emitting elements arranged in a regular manner are suppressed. The generation of moiré caused by the interference of the emitted light. FIG. 12 is a view schematically showing a cross section parallel to the thickness direction of the light diffusing plate in the seventh modification. The light diffusing layer 157 shown in FIG. 12 is arranged in a spot shape (dot) in a plan view. A plurality of low refractive index portions 丨 〖5. In the light diffusion layer 157, a plurality of low refractive index portions U5 are periodically arranged at regular intervals along a two-dimensional direction (χ direction and γ direction) orthogonal to the thickness direction (Ζ direction) of the light diffusion layer 157. . The interval between the low refractive index portions 115 (the interval between the centers of the low refractive index 邛115) is shorter than the interval of the light emitting elements (the interval between the centers of the pixel electrodes 103) shown in FIG. β Therefore, low refraction is formed for each sub-pixel. An interface 丨43 between the rate portion 11 5 and the 咼 refractive index portion ii 4 can obtain an image having a wide viewing angle for each sub-pixel. Fig. 13 is a view schematically showing a cross section parallel to the thickness direction of the light diffusing plate in the eighth modification. The light diffusion layer 158 shown in Fig. 13 has a plurality of low refractive index portions 115 arranged in a spot shape (dot) in plan view. In the light diffusion layer 158, a plurality of low refractive index portions 15 are arranged in a two-dimensional direction (χ direction and γ direction) orthogonal to the thickness direction (Z direction) of the light diffusion layer 158, and are arranged in a disorderly manner. In the light diffusion layer 15 8 , the interval of the low refractive index portion 115 is irregular 159931. Doc •25· 201226997 Then. Therefore, moiré is generated between the element substrates in which the light-emitting elements are regularly arranged. In the seventh modification and the eighth modification, the planar shape of the low refractive index portion 115 viewed from the thickness direction of the light diffusion layer is circular, but the planar shape of the low refractive index portion 115 is not limited thereto. The planar shape of the low refractive index portion ι 5 may be, for example, a polygonal shape. As long as the planar shape of the low refractive index portion 115 is circular or polygonal, the spread angle of light emitted from the light diffusion layer spreads in all directions centered on the thickness direction of the diffusion layer. Therefore, the organic EL display device 1 including the light diffusing plate has improved viewing angle characteristics in a plurality of directions such as the vertical direction and the horizontal direction. (Second Embodiment) Fig. 14 is a cross-sectional view showing a schematic configuration of an organic EL display device 2 according to a second embodiment. In the organic EL display device 2 and the organic EL display device of the first embodiment! Common components are denoted by the same reference numerals, and detailed descriptions are omitted. The organic EL display device 2 shown in Fig. 14 is omitted from the sealing substrate 119 of the organic EL display device of the second embodiment. On the side opposite to the light-diffusing sheet 117 and on the side opposite to the element substrate 11A, an auxiliary layer such as an anti-reflection layer, a polarizing filter layer, an antistatic layer, an anti-glare treatment layer, or an anti-fouling treatment layer may be attached as needed. The sealing member is constituted by the incidental layer and the light diffusing plate 117. The light diffusion plate 117 is followed by the layer stack 21 and the element substrate u. The transparent substrate 113 of the present embodiment is made of a substrate having a lower moisture permeability than a resin film, and is formed of a substrate containing an inorganic material such as a glass substrate. Thereby, the transparent substrate 113 can suppress the leakage caused by the omission of the sealing substrate 119. Doc • 26 - 201226997 The rise in wetness. Since the organic EL display device 2 of the present embodiment is provided with the light diffusing plate 117, it has a wide viewing angle, suppresses the occurrence of double images, and suppresses the short life of the water immersion. Further, in the organic EL display device 2, only the sealing layer ui and the inert gas layer 112 exist between the light-emitting elements 130R, n〇G, 130B and the light diffusing plate 117. Therefore, the distance between the light-emitting elements 130R, 130G, and 13B and the light-diffusing layer ι6 becomes small. The blurring of the image caused by the double image is suppressed. (Third Embodiment) Fig. 15 is a cross-sectional view showing a schematic configuration of an organic EL display device according to a third embodiment. In the organic EL display device 3, the same components as those of the organic EL display device of the second embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The organic display device 3 shown in FIG. 15 is formed on the sealing layer lu, and the light-diffusing plate 117 is laminated on the adhesive layer 150. The second layer 15 is disposed in the thickness direction of the light diffusing plate 117, and one side is in contact with the light diffusing plate 117. The other side is in contact with the sealing layer 1 . Next, the layer 150 contains, for example, a transparent resin such as an epoxy resin or an acrylic resin. Next, the layer 150 is formed to cover the exposed portion of the element substrate 11 of the sealing layer U1. Layer i 50 is then formed over the entire area of the image display area to a larger area than the image display area. Next, the layer 15 is placed on the outer side of the image display area to be in contact with the sealing layer 丨丨丨 or the element substrate 丨1〇. The sealing member 120 is bonded to the element substrate 11A, for example, before the bonding layer 150 coated on the surface of the element substrate η. Further, the adhesive layer 15 is hardened by ultraviolet irradiation treatment or heat treatment, whereby the element base is 159931. Doc -27- 201226997 The plate 110 and the sealing member 120 are then integrated. In the organic EL display device of the first embodiment, a frame-shaped adhesive layer is provided on the peripheral portion of the opposing region of the element substrate Μ and the sealing member 12A. However, the organic anal display device 3 may not be provided. This frame-like layer. In the organic EL display device 3 of the present embodiment, the organic EL display device 3 of the present embodiment is provided with a light diffusing plate 并且, thereby providing a wide viewing angle and suppressing generation of a double image, and suppressing moisture. Short life due to immersion. Further, in the organic EL display device 3, only the sealing layer iu and the adhesive layer 15 are present between the light-emitting elements 13〇r' 13α, 13〇B and the light diffusing plate 117. Therefore, the distance between the light-emitting elements 130R, 130G, and 13B and the light-diffusing layer ι6 becomes small, and the blur of the image caused by the double image is suppressed. (Fourth Embodiment) Fig. 16 is a cross-sectional view showing a schematic configuration of an organic EL display device according to a fourth embodiment. In the organic EL display device 4, the same components as those of the organic EL display device 3 of the third embodiment are denoted by the same reference numerals, and the description of the details is omitted. The organic EL display device 4 shown in Fig. 16 is omitted from the sealing substrate 119 of the organic EL display device 3 of the third embodiment. Since the organic EL display device 4 is provided with the light diffusing plate 117, it has a wide viewing angle, suppresses the occurrence of double images, and suppresses the short life of the water immersion. In the organic EL display device 4, the light-emitting element 130R Between 130G, 130B and the light diffusing plate 117, there is only a sealing layer ηι and an adhesive layer 159931. Doc • 28 - 201226997 15〇° Therefore, the distance between the light-emitting elements HOR, 130G, and 130B and the light-diffusing layer 116 becomes small, and the blurring of the image caused by the double image is suppressed. (Fifth Embodiment) Fig. 17 is a cross-sectional view showing a schematic configuration of an organic EL display device 5 according to a fifth embodiment. The constituent elements common to the organic EL display device 3 of the third embodiment in the organic EL display device 5 are denoted by the same reference numerals, and the detailed description thereof will be omitted. The organic EL display device 5 shown in Fig. 17 is configured such that the color filters i6〇R, i6〇G, and 16B are provided in the organic EL display device 3 of the third embodiment. The color filters 160R, 160G, and 160B are disposed on the surface of the light diffusing plate 117 opposite to the plurality of light emitting elements 130R, 130G, and 130B. > Color filters for color red 16 〇 R, colors for green color The filter 16〇G and the blue color filter 160B are disposed to face the light-emitting element 130R (red pixel), the light-emitting element 130G (green pixel), and the light-emitting element ι3〇Β (blue pixel), respectively. In a plurality of light-emitting elements 13 0R 13GG and 13GB having an optical resonator structure, color deviation (shift of the emission spectrum) may occur in light emitted in an oblique direction, but by passing such light through color filter The light sheet' can suppress color deviation. In the organic EL display device 5 of the present embodiment, a light shielding film such as a black matrix is not provided between the color filters 16 〇 r, 160 G, and 16 GB. When the organic anal display device 5 is viewed from the thickness direction of the light diffusing plate 117, it is found that the low refractive index portion 117 of the light diffusing plate 117 is disposed between the color filters 160R, 160G, and 160B. The portion 5 also contains a light absorber. In this configuration, it can be passed through the color filters 160R, 159931 as described in the fourth modification. Doc -29· 201226997 1 The light of 60G and 1 60B is absorbed by the light absorber of the low refractive index portion 1丨5, and is suppressed to be leaked light. Therefore, even if a light-shielding film is not provided, there is less entanglement between adjacent pixels. Since the organic EL display device 5 of the present embodiment is provided with the light diffusing plate 117, it has a wide viewing angle, suppresses the occurrence of double images, and suppresses the shortening of life due to the intrusion of moisture. Further, the organic EL display device 5 is interposed between a plurality of light-emitting elements 1 3OR, 1 30 G, 130B and the light diffusing plate 117, and only the sealing layer 111, the adhesive layer 15 and the color filter are present. The adhesive layer before the hardening is deformed to fill the step of the color filter and the light diffusing plate 11 7 , so that the thickness of the light-sensitive sheet is substantially absorbed by the thickness of the adhesive layer 15 . Therefore, the blur of the image caused by the small image of the small image of the light-emitting elements 130R, 130G, and 130B and the light-diffusing layer 116 is suppressed. Further, since the organic EL display device 5 is provided with the light diffusing plate 丨 17, it is possible to suppress the short life of the water immersion. In the present embodiment, the color filter is provided on the surface of the light diffusion layer 116 facing the element substrate 110, but the position of the color filter is not limited thereto. For example, a configuration may be adopted in which a #chromatic light guide sheet is disposed on a surface of the sealing substrate 119 opposite to the light diffusing plate 117, and a surface of the sealing substrate 119 on which the color filter is disposed and a transparent substrate of the light diffusing plate 117 are provided. 113 is followed by a layer of jig. (Embodiment 6) FIG. 18 is a view showing a schematic configuration of an organic EL display device according to a sixth embodiment. Picture. In the organic EL_display device 6, the composition of the organic EL display|setting 5 of the fifth embodiment is common, and the standard is the same as (4), and 159931 is omitted. Doc 201226997 = Detailed description. The organic EL display device 6 shown in Fig. 18 is omitted from the sealing substrate 119 of the organic EL display device 5 of the fifth embodiment. In the case of the organic L, the smear device 6 is provided with the light diffusing plate 丨17, so that it has a wide viewing angle and suppresses the generation of ghosting, and suppresses the short life of the immersion of moisture. Between the light-emitting elements 13A, R3, g, and 130B and the light-diffusing sheet 117, only the sealing layer 丨", the subsequent layer i5〇, and the color-sensitive light-receiving sheets 160R, 160G, and 160B are present. Therefore, the light-emitting element 130R The distance between the 130G and 130B and the light-diffusing layer 116 is reduced, and the blurring of the image caused by the double image is suppressed. (Seventh embodiment) FIG. 19 is a view showing the outline of the organic display device of the seventh embodiment. The constituent elements common to the organic EL display device 5 of the fifth embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted. The organic EL display device shown in Fig. 19 is omitted. In the organic EL display device 5 of the fifth embodiment, a light-shielding film is provided between the color filters j 6R, 160G, and 160B adjacent to each other. The light-shielding film i 6 j is, for example, Black matrix. The organic EL display device 7 of the present embodiment has The light diffusing plate 丨7 is provided, so that the wide viewing angle is obtained and the generation of the double image is suppressed, and the short life of the water is suppressed. Further, the organic EL display device 7 is substantially absorbed by the light shielding film 161. Since the light-emitting elements i3〇r and 13〇(3, 13〇B are obliquely emitted, there is less entanglement between the adjacent pixels. Further, in the present embodiment, the color filter and the light-shielding film are disposed. Yu Guang 159931. Doc • 31 · 201226997 The surface of the diffusion layer 116 facing the element substrate 110 is not limited to this, but the positions of the color reduction sheet and the light shielding film are not limited thereto. For example, the color light-receiving sheet and the light-shielding film may be provided on the surface of the sealing substrate 119 opposite to the light-diffusing sheet 117, and the surface of the sealing substrate 119 on which the color filter and the light-shielding film are provided and light diffusion may be used. The transparent substrate U3 of the board 117 is followed by the adhesion layer 118. Further, in the present embodiment, the light absorbing member ' of the low refractive index portion 11 of the light diffusion layer 116 may be omitted, and the same effect can be obtained even in this case. (Embodiment 8) FIG. 20 is a cross-sectional view showing a schematic configuration of an organic EL display device of an eighth embodiment. The components common to the organic EL display device 7 of the seventh embodiment in the organic EL display device 8 are denoted by the same reference numerals, and the detailed description thereof will be omitted. The organic EL display device 8 shown in Fig. 20 is a configuration in which the sealing substrate 119 of the organic EL display device 7 of the seventh embodiment is omitted. Since the organic EL display device 8 is provided with the light diffusing plate 117, it has a wide viewing angle and suppresses generation of a ghost image, and suppresses the short life of the water immersion. In the organic display device 8, between the light-emitting elements 130R, 130G, and 130B and the light-diffusing layer 1 72, only the sealing layer 丨丨i, the subsequent layer 〇5〇, the color filters 160R, i60G, and 16〇 exist. B and light shielding film 161. Therefore, the distance between the light-emitting elements 130R, 130G, and 130B and the light-diffusing layer U6 becomes small, and the blur of the image formed by the double image is suppressed. Further, in the present embodiment, the light absorbing member of the low refractive index portion U5 of the light diffusion layer 116 may be omitted, that is, the same effect can be obtained in this case. 159931. Doc. 32. 201226997 (9th embodiment) FIG. 21 is a cross-sectional view showing a schematic configuration of an organic anal display device according to a ninth embodiment. The constituent elements common to the organic EL display device 5 of the fifth embodiment of the organic EL display device 9 are denoted by the same reference numerals, and the detailed description thereof will be omitted. The organic EL display device 9 shown in Fig. 21 has a structure in which an insulating layer 181 is formed on the substrate of the pixel electrode 1A3 of the organic EL display device 5 of the fifth embodiment. The insulating layer 181 is laminated on the circuit layer 102 of the element substrate 183 so that its surface becomes flat. The pixel electrode 1〇3 is formed by covering the insulating layer 丨8 with a flat insulating layer 181 as a base. Since the organic EL display device 9 of the present embodiment is provided with the light diffusing plate 丨丨7, it has a wide viewing angle, suppresses generation of double images, and suppresses shortening of life due to immersion of moisture. Further, since the pixel electrode 1 〇 3 is formed by using the flat insulating layer 181 as a base, the surface of the pixel electrode 1 〇 3 becomes flat. Thereby, the optical distance between the pixel electrode 103 and the counter electrode 109 becomes substantially uniform on each of the sub-pixels of the respective colors. Thereby, the organic EL display device 9 narrows the light emitted from the plurality of light-emitting elements 13011, n〇G, and 13B, with high precision, and the color reproducibility is high. Further, in the organic EL display device 9, only the sealing layer 111, the subsequent layer 15A, and the color filters 160R, 160G, 160B exist between the light-emitting elements 13R, 13〇σ, 1308 and the light diffusion layer 116. . Therefore, the distance between the light-emitting elements 130R, 130G, and 130B and the light-diffusing layer 116 becomes small, and the blur of the image caused by the double image is suppressed. (Tenth embodiment) Fig. 22 is a view showing a schematic configuration of an organic EL display device according to a tenth embodiment. Doc •33· 201226997 Sectional view. The constituent elements common to the organic EL member device 9 of the ninth embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted. The organic EL display device 1 shown in Fig. 22 is a configuration in which the sealing substrate 9 of the organic EL display device 9 of the ninth embodiment is omitted. Since the organic EL display device 1 is provided with the light diffusing plate 117, it has a wide viewing angle, suppresses the occurrence of double images, and suppresses the short life caused by the intrusion of moisture. Further, in the organic EL display device 1, only the sealing layer m, the subsequent layer 150, and the color filters 160R, 160G, and 160B are present between the light-emitting elements 13A, 130G, and 130B and the light-diffusing layer 116. Therefore, the distance between the light-emitting elements 130R' 130G, 130B and the light diffusion layer 116 becomes small, and the blur of the image caused by the double image is suppressed. (11th embodiment) FIG. 23 is a cross-sectional view showing a schematic configuration of an organic EL display device according to an eleventh embodiment. In the organic EL display device 11, the same components as those of the organic EL display device 9 of the ninth embodiment and the organic EL display device 7 of the seventh embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The organic EL display device 11 shown in Fig. 23 is configured such that the light-shielding film 161 is provided between the color filters 160R, i6〇g, and 160B adjacent to each other in the organic EL display device 9 of the ninth embodiment. Since the organic EL display device is provided with the light diffusing plate 117, it has a wide viewing angle and suppresses the occurrence of double images, and suppresses the shortening of life due to the intrusion of moisture. Further, in the organic EL display device 11, between the light-emitting elements 13〇r, 130G, and 130B and the light-diffusing layer 172, only the sealing layer m and the connection 159931 are present. Doc . 34- 201226997 Layer 150, color calender 160R, 16〇G, 16卯 and light-shielding film (6). Therefore, the distance between the light-emitting elements 130R, 130G, and 130b and the light-diffusing layer 172 becomes small, and the blurring of the image caused by the double image is suppressed. Further, in the present embodiment, the light absorbing member of the low refractive index portion 115 of the light diffusion layer 116 may be omitted, and even in this case, the same effect can be obtained. (Twelfth Embodiment) Fig. 24 is a cross-sectional view showing a schematic configuration of an organic display device according to a twelfth embodiment. In the organic EL display device 12, the components common to the organic EL display device u of the uth embodiment are denoted by the symbols of the phase @, and the detailed description thereof will be omitted. The organic EL display device 12 shown in Fig. 24 is a configuration in which the sealing substrate 119 of the organic EL display device 11 of the nth embodiment is omitted. Since the organic EL display device 12 is provided with the light diffusing plate 117, it has a wide viewing angle, suppresses the occurrence of double images, and suppresses the shortening of life due to the intrusion of moisture. Further, in the organic display device 12, between the light-emitting elements 13A, 130G, 130B and the light-diffusing layer 172, only the sealing layer m, the adhesive layer 150, the color filters 160R, 16A, and 16B exist. And a light shielding film 161. Therefore, the distance between the light-emitting elements 130R, 130G, and 13B and the light-diffusing layer 172 becomes small, and the blurring of the image caused by the double image is suppressed. Furthermore, in this.  In the embodiment, the light absorbing member of the low refractive index portion 115 of the light diffusion layer 116 may be omitted, and even in this case, the same effect can be obtained. (Thirteenth Embodiment) Fig. 2 is a cross-sectional view showing a schematic configuration of an organic EL display device according to a thirteenth embodiment. In the organic EL display device 13, there is 15993l in the seventh embodiment. Doc -35- 201226997 The components common to the EL display device 7 are denoted by the same reference numerals, and detailed descriptions will be omitted. The organic EL display device 13 shown in Fig. 25 is composed of a plurality of conductive films (first conductive film ι 91 and second conductive film 192). The pixel electrode 193 is formed over the insulating layer 194 of the circuit layer 190 on the element substrate 195. The insulating layer 1 94 is formed to cover the driving element 丨〇 2a and the like. The insulating layer 1 94 is formed by coating a resin material. Insulation! 94 flattens the unevenness caused by the driving element 1 〇 2a or the like, and the surface thereof is flat. The first conductive film 191 is formed by using a flat insulating layer i94 as a base, and the surface thereof is flat. The first conductive film 191 is formed of, for example, a light-reflecting material such as aluminum (A1) or silver (Ag). The second conductive film 192 is formed by forming a flat conductive film 191 as a base. The thickness thereof is substantially uniform over each sub-pixel. The second conductive film 192 is formed of a light-transmitting conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO, Indium Zinc Oxide: registrar). Further, the pixel electrode 193 may be composed of three or more conductive films. Since the organic EL display device 13 of the present embodiment is provided with the light diffusing plate 117, it has a wide viewing angle, suppresses the occurrence of double images, and suppresses the shortening of life caused by the intrusion of moisture. Further, a plurality of light-emitting elements n〇R Each of 13〇G and 130B has an optical resonator structure in which the first conductive film 191 and the counter electrode 1〇9 are a pair of resonant mirrors. The second conductive film 丨 9 is formed by flattening the insulating layer 194 as a base, and the second conductive film 192 is formed by uniformly forming a flat conductive film 191 as a base. Therefore, the optical distance between the first conductive film 191 and the counter electrode 1〇9 is 159931. Doc -36- 201226997 becomes roughly uniform on each sub-pixel of each color. Therefore, the organic EL display device 13 narrows the band of light emitted from the plurality of light-emitting elements 13R, 13A, and OB accurately, and the color reproducibility is high. Further, in the organic EL display device 13, between the light-emitting elements 〖3r, 13〇g, 〗 30B and the light-diffusing layer 116, only the sealing layer m, the subsequent layer 50, and the color light-emitting sheet 16R are present. , i6〇g, i6〇B. Therefore, the distance between the light-emitting elements 130R, 13A, G, and the light-diffusing layer 116 becomes small, and the blur of the image caused by the double image is suppressed. (Fourteenth Embodiment) Fig. 26 is a cross-sectional view showing a schematic configuration of an organic EL display device according to a fourth embodiment. In the organic EL display device 14, the same components as those of the organic EL display device 13 of the thirteenth embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The organic EL display device 14 shown in Fig. 26 is a configuration in which the sealing substrate 119 of the organic EL display device π of the thirteenth embodiment is omitted. Since the organic EL display device 14 is provided with the light diffusing plate 117, it has a wide viewing angle and suppresses the occurrence of double images, and the life of the water is prevented from being immersed. Further, in the organic EL display device, only the sealing layer 111, the subsequent layer 150, and the color filters i6〇R, 16〇 exist between the light-emitting elements 13〇R, 130〇, 13 (^ and the light diffusion layer 116). g, 16 〇 B. Therefore, the distance between the light-emitting elements 130R, 130G, and 130B and the light-diffusing layer 116 is small, and the blurring of the image caused by the double image is suppressed. (Fifteenth embodiment) FIG. The schematic structure of the organic £1^ display device of the embodiment is 159931. Doc • 37- 201226997 section view. The constituent elements common to the organic EL display device 13 of the thirteenth embodiment and the organic display device 7 of the seventh embodiment are denoted by the same reference numerals, and the detailed description thereof will be omitted. In the organic EL display device 15 of the thirteenth embodiment, a light-shielding film is provided between the color filters i6〇R, i6〇G, and 16B adjacent to each other in the organic display device 13 of the thirteenth embodiment. The composition of 161. Since the organic EL display device 15 is provided with the light diffusing plate 117, it has a wide viewing angle, suppresses the generation of a double image, and suppresses the shortening of life due to the intrusion of moisture. Further, in the organic EL display device 15, between the light-emitting elements 13A, 130G, and 130B and the light-diffusing layer 172, only the sealing layer ι, the subsequent layer 150, the color grading sheets 160R, 160G, and 160B, and the light-shielding film 161 are present. . Therefore, the distance between the light-emitting elements 130R, 130G, and 130B and the light-diffusing layer 172 becomes small, and the blur of the image caused by the double image is suppressed. (16th embodiment) FIG. 28 is a cross-sectional view showing a schematic configuration of an organic EL display device of a sixteenth embodiment. The constituent elements common to the organic EL display device 15 of the fifteenth embodiment in the organic EL display device 16 are denoted by the same reference numerals, and the description of "Yang, Tian" is omitted. The organic EL display device 6 shown in Fig. 28 is a configuration in which the sealing substrate 119 of the organic EL display device 15 of the fifth embodiment is omitted. Since the organic EL display device 16 is provided with the light diffusing plate ι7, it becomes a wide view. It suppresses the occurrence of a ghost image and suppresses the short life of the water immersion. In the organic EL display device 16, between the light-emitting elements 13〇R, 3 and the light diffusion layer 172, only the sealing layer 11 i and the 159931 are present. Doc -38- 201226997 Layer 150, color filter, light film 160R, 160G, 160B and light-shielding film ι61. Therefore, the distance between the light-emitting elements 130R, 130G, and 130B and the light-diffusing layer 172 becomes small. The blur of the image caused by the double image is suppressed. (Modified) In the first embodiment to the sixteenth embodiment, an example of the configuration of the organic EL display device of the present invention is shown. However, the configurations of the embodiments can be used in combination. The material, thickness, and the like of the constituent members of the organic EL display device are merely examples, and are not limited to the above examples. The organic EL display device according to each of the above embodiments is characterized in that a thick-thickness sealing member, such as a glass substrate or a resin substrate, is not interposed, and a thinner thickness of the adhesive layer 150 or the inert gas layer 112 is interposed. Aspects of the laminated light-emitting element and the light diffusing plate; and aspects in which the light diffusing plate 117 is provided. As long as such a characteristic configuration is provided, the arrangement of other constituent members can be appropriately changed. (Electronic Apparatus) Figs. 29A to 29D are views showing an electronic apparatus according to the embodiment. The thin display device 9100 shown in Fig. 29A includes a housing 9101, a support table 9102, a display portion 9103, a speaker portion 9104, and a video input terminal 9105. The organic EL display device of the above embodiment is included. The notebook computer 9200 shown in Fig. 29B includes a main body 9201, a housing 9202, a display portion 9203, a keyboard 9204, an external connection port 9205, and an index mouse 9206. The display unit 9203 is configured by including the organic EL display device of the above embodiment. The mobile phone 9400 shown in FIG. 29C includes a main body 9401, a housing 9402, a display portion 9403, an audio input portion 9404, an audio output portion 9405, and operation keys 159931. Doc-39-201226997 94〇6, external connection port 9407, and antenna 9401 display unit 93〇3 are configured to include the organic EL display device of the above-described embodiment. The camera 9500 shown in FIG. 29D includes a main body 9501, a display portion %", a housing 9503, an external connection port 9504, a remote control receiving portion 95〇5, an image receiving portion 9506, a battery 9507, an audio input portion 9508, operation keys 95〇9, And a portion 951 (the display portion 9502 includes the organic el display of the above embodiment). The display unit of each of the electronic devices shown in FIGS. 29A to 29D includes the organic EL display device of the above-described embodiment. In view of the above, the electronic device can reduce the widening of the viewing angle and the reduction of the visibility, and can suppress the deterioration of the display performance caused by the intrusion of moisture. [Industrial Applicability] The light diffusing plate of the present invention It is applied to various devices such as an organic EL display device and an electronic device that utilize light and moisture resistance. [Brief Description of the Drawings] Fig. 1 is a cross-sectional view showing a schematic configuration of an organic EL display device according to a first embodiment. Fig. 3 is a plan view schematically showing a cross section orthogonal to the first plane of the light diffusing plate. Fig. 4 is a view showing light having a difference in particle diameter of the moisture absorbent. F a graph comparing the rate of penetration. Figure 5 is formed by the light diffusion plate of a double image of Fig. Figure 6 is a sectional view showing a first modification of the embodiment of the light diffusing plate. 15993 Shu. Doc-40-201226997 Fig. 7 is a cross-sectional view showing a second modification of the light diffusing plate. Fig. 8 is a cross-sectional view showing a third modification of the light diffusing plate. Fig. 9 is a cross-sectional view showing a fourth modification of the light diffusing plate. Fig. 1 is a cross-sectional view showing a fifth modification of the light diffusing plate. Fig. 11 is a plan view showing a sixth modification of the light diffusing plate. Fig. 2 is a plan view showing a seventh modification of the light diffusing plate. Fig. 13 is a plan view showing an eighth modification of the light diffusing plate. Fig. 14 is a cross-sectional view showing the schematic configuration of the display device in the second embodiment. Fig. 15 is a cross-sectional view showing a schematic configuration of an organic EL display device of a third embodiment. Fig. 16 is a cross-sectional view showing a schematic configuration of an organic EL display device of a fourth embodiment. Fig. 17 is a cross-sectional view showing a schematic configuration of an organic EL display device of a fifth embodiment. Fig. 18 is a cross-sectional view showing a schematic configuration of an organic EL display device according to a sixth embodiment. Fig. 19 is a cross-sectional view showing the schematic configuration of an organic EL display device according to a seventh embodiment. Fig. 20 is a cross-sectional view showing the schematic configuration of an organic EL display device of an eighth embodiment. Fig. 21 is a cross-sectional view showing the schematic configuration of an organic EL display device of a ninth embodiment. Figure 22 is a schematic view showing the schematic configuration of an organic EL display device according to a third embodiment. Doc 201226997 section view. Fig. 23 is a cross-sectional view showing the schematic configuration of an organic EL display device according to a second embodiment. Fig. 24 is a cross-sectional view showing the schematic configuration of an organic EL display device of a twelfth embodiment. Fig. 25 is a cross-sectional view showing the schematic configuration of an organic EL display device according to a thirteenth embodiment. Fig. 26 is a cross-sectional view showing the schematic configuration of the organic display device of the fourteenth embodiment. Fig. 27 is a cross-sectional view showing the schematic configuration of an organic EL display device of a fifteenth embodiment. Fig. 28 is a cross-sectional view showing the schematic configuration of an organic display device according to a sixteenth embodiment. Fig. 29A is a view showing an example of an electronic apparatus including an organic EL display device. Fig. 2 is a view showing an example of an electronic apparatus including an organic EL display device. Fig. 29C is a view showing an example of an electronic apparatus including an organic EL display device. Fig. 29D is a view showing an example of an electronic apparatus including an organic EL display device. [Main component symbol description] 1 to 16 101 Organic EL display device Substrate 159931. Doc • 42- 201226997 102 circuit layer 102a driving device 102b first power supply line 102c first power supply line 103 pixel electrode 104 insulating layer 104a first opening portion 104b second opening portion 105 hole injection layer 106 hole transport layer 107 light Layer 108 Electron transport layer 109 Counter electrode 110 Element substrate 111 Sealing layer 112 Inert gas layer 113 Transparent substrate 114 High refractive index portion 115 Low refractive index portion 116, 151 to 158 Light diffusion layer (light diffusing plate body) 117 Light diffusing plate 118 then layer 119 sealing substrate 120 sealing member 159931. Doc -43- 201226997 121 Next layer 130R, 130G, 130B Light-emitting element 140 Moisture absorber 141 Light incident surface (first surface) 142 Light exit surface (second surface) 143 Interface between low refractive index portion and high refractive index portion 144 Light absorber 150 Next layer 160R, 160G, 160B Color filter 161 Light shielding film 172 Light diffusion layer 181 Insulation layer 183 Element substrate 190 Circuit layer 191 First conductive film 192 Second conductive film 193 Pixel electrode 194 Insulating layer 195 Element substrate 9100 Thin display device (electronic machine) 9101 Housing 9102 Support table 9103 Display unit 9104 Speaker unit 159931. Doc -44- 201226997 9105 Video input terminal 9200 Notebook computer (electronic machine) 9201 Main body 9202 Case 9203 Display part 9204 Keyboard 9205 External connection port 9206 Indicator mouse 9400 Action (electronic machine) 9401 Body 9402 Housing 9403 Display part 9404 Audio input unit 9405 Audio output unit 9406 Operation key 9407 External connection port 9408 Antenna 9500 Camera (electronic device) 9501 Main body 9502 Display portion 9503 Case 9504 External connection port 9505 Remote control receiving portion 9506 Image receiving unit 159931. Doc -45- 201226997 9507 Battery 9508 Audio input section 9509 Operation keys 9510 Eyepiece section D Interval LI, L2, L3 Light Li, Ld Light LR, LG, LB Light P Observer W Interval X, Y, z direction 159931. Doc • 46-

Claims (1)

201226997 七、申請專利範圍: 1. 一種光擴散板,其係具有相互對向之第丨面及第2面,使 自上述第1面入射之光擴散並自上述第2面射出者,且包 括: 低折射率部,其為具有第丨折射率者,平行於上述第工 面之剖面之面積隨著自上述第!面朝向上述第2面而增 大;及 尚折射率部,其與上述低折射率部接觸,具有高於上 述第1折射率之第2折射率; 上述低折射率部與上述高折射率部之至少一者含有吸 濕劑。 2·如請求項1之光擴散板,其中上述高折射率部含有上述 吸濕劑,且 上述吸濕劑包含平均粒徑小於可見光之波長之粒子。 3. 如請求項2之光擴散板,其中.上述平均粒徑設定為丨nm β上500 nm以下之範圍内。 4. 如請求項丨至3中任一項之光擴散板,其中上述高折射率 部具有相互對向之第3面及第4面, 上述弟3面為上述第1面之一部分, 上述第4面為上述第2面之一部分, 上述第4面之面積為上述第3面之面積之丨〇%以上9〇% 以下。 5. 如請求項1至4中任一項之光擴散板,其中上述低折射率 部含有吸收可見光之光吸收體。 159931.doc 201226997 6.如請求項1至4中任一項之光擴散板,其中上述低折射率 部之内部為空隙。 7· 士《月求項1至6中任一項之光擴散板,其中上述光擴散板 具備複數個上述低折射率部,且 上述複數個低折射率部俯視時為散在各處。 8. 一種有機電致發光顯示裝置,其包括: 元件基板、 位於上述疋件基板上且具有光共振器構造之發光元 件、 覆蓋上述發光元件與上述元件基板之密封層、及 位於上述密封層上且使自丨述發(元件入射之光擴散 並射出之光擴散板,且 上述光擴散板係如請求項丨至8中任一項之光擴散板。 9·如請求項8之有機電致發光顯示裝置,其中於上述光擴 散,與上述密封層之間’進而包括將上述光擴散板與上 述达封層連接之接著層或惰性氣體層。 10·如請求項8或9之有機電致發光顯示裝置,其中於上述元 件基板上,具備複數個上述發光元件, 上述光擴散板具備複數個上述低折射率部, 上述複數個發光元件以第1間隔而配置, 上述複數個低折射率板以小於上述第…隔之第2間隔 而配置。 11·如請求項8或9之有機電致發光顯示裝置,其中上述光擴 散板具備複數個上述低折射率部, 15993 丨,doc 201226997 上述複數個發光元件相互隔開, 上述複數個低折射率板俯視時為隨機地配置。 12_如請求項8至11中任一項之有機電致發光顯示裝置,其 中於上述光擴散板上,或上述光擴散板與上述元件基板 之間進而包括至少1片彩色濾光片。 13.如請求項8至11中任一項之有機EL顯示裝置,其進而包 括: 複數片彩色濾光片,其位於上述光擴散板上,或上述 光擴散板與上述元件基板之間;及 遮光膜,其位於上述複數片彩色滤光片中相互鄰接< 2片彩色濾光片之間。 1 4.如請求項8至1 3中任一項夕古嫵p _ 丁饮項之有機EL顯不裝置,其進 括位於上述光擴散板上之密封基板。 15. 一種f子機器’其具有如請求項8至14中任—項 電致發光顯示裝置。 有機 159931.doc201226997 VII. Patent application scope: 1. A light diffusing plate having a second surface and a second surface facing each other, and diffusing light incident from the first surface and emitting from the second surface, and including : a low refractive index portion, which has a third refractive index, and an area parallel to the above-mentioned working surface is from the above! The surface is increased toward the second surface; and the refractive index portion is in contact with the low refractive index portion and has a second refractive index higher than the first refractive index; and the low refractive index portion and the high refractive index portion At least one of them contains a moisture absorbent. The light diffusing plate of claim 1, wherein the high refractive index portion contains the moisture absorbent, and the moisture absorbent comprises particles having an average particle diameter smaller than a wavelength of visible light. 3. The light diffusing plate of claim 2, wherein the average particle diameter is set to be within a range of 500 nm or less on 丨nm β. 4. The light diffusing plate according to any one of claim 3, wherein the high refractive index portion has a third surface and a fourth surface that face each other, and the third surface of the third surface is a portion of the first surface, The four faces are one of the second faces, and the area of the fourth face is 丨〇% or more and 9〇% or less of the area of the third face. 5. The light diffusing plate according to any one of claims 1 to 4, wherein the low refractive index portion contains a light absorber that absorbs visible light. The light diffusing plate according to any one of claims 1 to 4, wherein the inside of the low refractive index portion is a void. The light diffusing plate according to any one of the preceding claims, wherein the light diffusing plate has a plurality of the low refractive index portions, and the plurality of low refractive index portions are scattered throughout the plan view. An organic electroluminescence display device comprising: an element substrate; a light-emitting element having an optical resonator structure on the element substrate; a sealing layer covering the light-emitting element and the element substrate; and being located on the sealing layer And a light diffusing plate which is diffused and emitted by the element incident light, and the light diffusing plate is a light diffusing plate according to any one of claims 8 to 9. 9. The organic electrochemistry of claim 8 An illuminating display device, wherein the light diffusing between the sealing layer and the sealing layer further comprises an adhesive layer or an inert gas layer connecting the light diffusing plate to the sealing layer. 10. The organic electrochemistry according to claim 8 or 9. a light-emitting display device comprising: a plurality of the light-emitting elements on the element substrate; wherein the light-diffusing plate includes a plurality of the low-refractive-index portions, wherein the plurality of light-emitting elements are arranged at a first interval, and the plurality of low-refractive-index plates The organic electroluminescence display device according to claim 8 or 9, wherein the light diffusing plate is provided a plurality of the low refractive index portions, 15993 丨, doc 201226997, the plurality of light emitting elements are spaced apart from each other, and the plurality of low refractive index plates are randomly arranged in plan view. 12_ as in any one of claims 8 to 11 An electroluminescent display device, wherein the light diffusing plate or the light diffusing plate and the element substrate further comprise at least one color filter. 13. The organic EL according to any one of claims 8 to The display device further includes: a plurality of color filters disposed on the light diffusing plate or between the light diffusing plate and the element substrate; and a light shielding film located adjacent to each other in the plurality of color filters < between two color filters. 1 4. The organic EL display device of any of the items 8 to 13 of the present invention, which is located on the light diffusing plate. Sealing the substrate 15. An FF machine having the electroluminescent display device of any of claims 8 to 14. Organic 159931.doc
TW100140971A 2010-11-11 2011-11-09 Light diffusing plate, organic electroluminescence display device, and electronic apparatus TW201226997A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010252968 2010-11-11
JP2010257814 2010-11-18

Publications (1)

Publication Number Publication Date
TW201226997A true TW201226997A (en) 2012-07-01

Family

ID=46050850

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140971A TW201226997A (en) 2010-11-11 2011-11-09 Light diffusing plate, organic electroluminescence display device, and electronic apparatus

Country Status (2)

Country Link
TW (1) TW201226997A (en)
WO (1) WO2012063700A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810718A (en) * 2016-05-06 2016-07-27 京东方科技集团股份有限公司 Organic light-emitting diode (OLED) display panel and fabrication method thereof
US9535296B2 (en) 2012-07-31 2017-01-03 Joled Inc. Display apparatus, method of manufacturing a display apparatus, electronic appliance, and method of driving a display apparatus
CN107689426A (en) * 2017-09-30 2018-02-13 京东方科技集团股份有限公司 Luminescent device, electronic installation and luminescent device preparation method
CN109524568A (en) * 2018-12-10 2019-03-26 京东方科技集团股份有限公司 Organic LED panel and preparation method thereof, display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20101250A1 (en) * 2010-07-07 2012-01-08 Getters Spa IMPROVEMENTS FOR PHOSPHORS
DE102012109143A1 (en) * 2012-09-27 2014-03-27 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
KR102051103B1 (en) * 2012-11-07 2019-12-03 삼성디스플레이 주식회사 Organic light emitting diode display
WO2014199565A1 (en) * 2013-06-10 2014-12-18 パナソニックIpマネジメント株式会社 Organic electroluminescent light emitting apparatus, and lighting apparatus
JP2018005113A (en) * 2016-07-07 2018-01-11 大日本印刷株式会社 Optical sheet, lighting device and graphic display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220519A (en) * 1995-02-14 1996-08-30 Matsushita Electric Ind Co Ltd Diffusion screen and liquid crystal display device using it
JPH11329742A (en) * 1998-05-18 1999-11-30 Idemitsu Kosan Co Ltd Organic electroluminescent(el) element and light emitting device
JP2004020746A (en) * 2002-06-13 2004-01-22 Sumitomo Bakelite Co Ltd Substrate for light emitting device and light emitting device using same
JP2004087225A (en) * 2002-08-26 2004-03-18 Fuji Photo Film Co Ltd Optical function element
JP2004296438A (en) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp Electroluminescent element
JP2005123089A (en) * 2003-10-17 2005-05-12 Fuji Electric Holdings Co Ltd Color organic el display and its manufacturing method
US20080176041A1 (en) * 2005-03-10 2008-07-24 Konica Minolta Holdings, Inc Resin Film Substrate for Organic Electroluminescence and Organic Electroluminescence Device
US7531955B2 (en) * 2005-07-12 2009-05-12 Eastman Kodak Company OLED device with improved efficiency and robustness
TWI271883B (en) * 2005-08-04 2007-01-21 Jung-Chieh Su Light-emitting devices with high extraction efficiency

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9535296B2 (en) 2012-07-31 2017-01-03 Joled Inc. Display apparatus, method of manufacturing a display apparatus, electronic appliance, and method of driving a display apparatus
CN105810718A (en) * 2016-05-06 2016-07-27 京东方科技集团股份有限公司 Organic light-emitting diode (OLED) display panel and fabrication method thereof
CN107689426A (en) * 2017-09-30 2018-02-13 京东方科技集团股份有限公司 Luminescent device, electronic installation and luminescent device preparation method
CN107689426B (en) * 2017-09-30 2024-04-05 京东方科技集团股份有限公司 Light emitting device, electronic device and manufacturing method of light emitting device
CN109524568A (en) * 2018-12-10 2019-03-26 京东方科技集团股份有限公司 Organic LED panel and preparation method thereof, display device
US11997871B2 (en) 2018-12-10 2024-05-28 Boe Technology Group Co., Ltd. Organic light-emitting diode display panel, method for preparing the same, and display device

Also Published As

Publication number Publication date
WO2012063700A1 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
TW201226997A (en) Light diffusing plate, organic electroluminescence display device, and electronic apparatus
CN109119453B (en) Display panel, manufacturing method thereof and display device
CN110853507B (en) Display screen and electronic equipment
CN109713018B (en) Display device and manufacturing method thereof
US8536568B2 (en) Display device
KR102572128B1 (en) Organic light emitting display device
TWI663447B (en) Display panel
CN112447931A (en) Display panel and display device
US10522602B1 (en) Organic light-emitting display panel and display device
JP2015128003A (en) Display device and electronic apparatus
CN109256491B (en) Display panel, display module and electronic device
CN112531006A (en) Organic light emitting display panel and organic light emitting display device
CN112987423B (en) Display panel and display device
TWI495098B (en) Organic light emitting display device
JP2011053339A (en) Color filter for organic electroluminescent display device, and the organic electroluminescent display device
JP2013258021A (en) Display device
CN110277509B (en) Display panel and display device
JP2017182892A (en) Light-emitting element, light-emitting device and electronic apparatus
JP2008159309A (en) Light emitting device, its manufacturing method, and display device
JP2007287462A (en) Electro-optical device and electronic equipment
CN111381727B (en) Touch panel and display device
JP2005142002A (en) Lighting apparatus and display device
US7675585B2 (en) Liquid crystal display with organic EL backlight comprising cap member with protrusions
JP4932317B2 (en) Display device
JP5459728B2 (en) Liquid crystal display