TW201226463A - Sealing material for solar cell, solar cell protective sheet and process for producing solar cell module - Google Patents

Sealing material for solar cell, solar cell protective sheet and process for producing solar cell module Download PDF

Info

Publication number
TW201226463A
TW201226463A TW100104724A TW100104724A TW201226463A TW 201226463 A TW201226463 A TW 201226463A TW 100104724 A TW100104724 A TW 100104724A TW 100104724 A TW100104724 A TW 100104724A TW 201226463 A TW201226463 A TW 201226463A
Authority
TW
Taiwan
Prior art keywords
solar cell
sealing material
sheet
laminated
sealing
Prior art date
Application number
TW100104724A
Other languages
Chinese (zh)
Inventor
Hiroshi Hiraike
Masahiro Asuka
Masahiro Ishii
Jia-Mo Guo
Kiyomi Uenomachi
Takahiko Sawada
Takahiro Nomura
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of TW201226463A publication Critical patent/TW201226463A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a sealing material for a solar cell, which can seal a solar cell element in a solar cell within a short time in the production of a solar cell module to produce the solar cell module with high efficiency. The sealing material for a solar cell is characterized by comprising: 100 parts by weight of a modified butane resin which is produced by the graft modification of a butene-ethylene copolymer having a butene content of 1 to 25 wt% with maleic anhydride and contains maleic anhydride in the total amount of 0.1 to 3 wt%; and 0.1 to 15 parts by weight of a silane compound having an epoxy group.

Description

201226463 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種太陽電池密封材料、太陽電池保護 片及太陽電池模組之製造方法。 【先前技術】 由矽或砸之半導體晶圓戶斤構成之太陽電池模組係藉由 =下方法製造:於使用互連饋線將具有照射光就會產生電 •之功i的⑪半導體(件或砸半導體元件之晶圓_聯或並 ’而成的太陽電池元件之上下面積層太陽電池用密封材 料:於該太陽電池用.密封材料之上面疊合透明之上側保護 材料且於其下面疊合下側保護材料,對所得之積層體一邊 於減壓下脫氣-邊加熱,隔著太陽電池用密封材料於太陽 電池元件之上下面將保護材料積層一體化。又,於含有於 基板上將由矽或化合物半導體等所構成之太陽電池元件積 層為薄膜狀而成之結構的太陽電池中,為了密封太陽電池 元件亦使用同樣之太陽電池用密封材料。 作為此種用於太陽電池模組之太陽電池用密封材料, 例如專利文獻1中提出有一種太陽電池模組用保護片,其 特徵在於:於由含有有機過氧化物之乙稀共聚物所構成之 太陽電池模組用保護片中,使用將過氧化二烷基(Α)、與 選自由過氧化烷基酯及過氧化縮酮所構成之群中之至少一 種過氧化物(Β)以(A) / (Β)之重量比Α 1〇/9〇〜9〇/1〇 之比例摻合而成者,來作為有機過氧化物。 上述太陽電池模組用保護片係由乙烯共聚物所形成, 201226463 且為了賦予财熱性而含有有機過氧化物,力太陽電池元件 上且口太陽電池模組用保護片而形成積層片或積層體後, -邊藉由真空層壓將該積層片或積層體沿厚度方向推壓, 一邊加熱’藉此將太陽電池模組用保護片中之有機過氧化 物/刀解,使乙烯共聚物交聯而賦予耐熱性,並且將太陽電 池元件與太陽電池模組用保護片—體化而製造太陽電池模 組0 —因此,若太陽電池模組用保護片之交聯不均勻地進 订則會產生如下問題:太陽電池模組用保護片之一部分 之財熱性變得不充分,導致所得太陽電池模組之对久性下 降0 為防止此種問題之發生,並非於搬送狀態中對在太陽 電池元件上憂合有太陽電池模組用保護片之狀態之積層片 或積層體進行加熱,而是需要進行如下之交聯步驟:「預先 將積層片或積層體切割成期望之形狀後,於靜止狀態下藉 由真空層壓沿厚度方向對積層片或積層體施加壓力數二 至十數分鐘而使之臨時接著,其後加熱至有機過氧化物發 生分解之溫度’以數十分鐘至一小時使其正式接著」,因而 產生太陽電池模組之製造效率低之問題。 又,為、了對上述太陽電池模組用保護片賦予耐熱性, 、:利用有機過氧化物進行交㈣,但會產生如下問題:於製 造太陽電池模組用保護月時,有機過氧化物發生分解,導 致無法進行太陽電池模組用保護片之成膜、或太陽電池模 、、且用保護片之接著性下降;或於接著界面生成有機過氧化 201226463 '»· 物引起之刀解生成物,導致太陽電池模組用保護片之 性下降。 $ 即,由於太陽電池元件為精密零件,故於製造或使用 太陽電池模組時,有如下擔憂:自太陽電池模組用保護片 產生由有機過氧化物之分解生成物引起之氣體,而導致太 陽電池之電池性能下降。 專利文獻1 :日本特開平u — 26791號公報 【發明内容】 本發明係提供一種太陽電池用密封材料、使用其之太 陽電池保護片以及太陽電池模組之製造方法,該太陽電池 用密封材料可於製造太陽電池模組時,於短時間内密封太 陽電池之太陽電池元件而高效率地製造太陽電池模組。 本發明之太陽電池用密封材料之特徵在於:含有改質 丁稀系樹脂100重量份與具有環氧基之矽烷化合物〇 i〜i5 重量伤,5玄改質丁烯系樹脂係利用順丁烯二酸酐接枝改質 丁晞含量為1〜25重量%之丁稀—乙稀共聚物而成者,且順 丁稀二酸酐之總含量為0.1〜3重量%。 構成本發明之太陽電池用密封材料之改質丁烯系樹 月曰係矛J用順丁稀二酸酐接枝改質丁稀-乙稀共聚物而成 者上述丁稀-乙稀共聚物中之丁烯含量若較少,則太陽 電:用密封材料之柔軟性下降,於使用太陽電池用密封材 料密封太陽電池元件時需要高溫加熱,若較多,則太陽電 ’也用密封材料之結晶性或流動性變得不均勻,使太陽電池 用密封材料發生應變,結果導致太陽電池用密封材料之接 201226463 著性下降,因此限定於1〜25重量%,較佳為1 0〜20重量 %。 又’ 丁烯一乙烯共聚物中之丁烯含量,玎藉由將丁烯 一乙烯共聚物溶解至氘化氣仿中,測定nc _ nMR光譜(核 磁共振光譜)’並由源自1 一丁烯結構之光譜積分值與源自 乙烯結構之光譜積分值而算出。再者,源自1 一丁烯結構之 光δ普通常於1 〇.9 ppm附近、26.1 ppm附近、39.1 ppm附近 獲得,源自乙烯結構之光譜通常於26.9 ppm附近、29.7 ppm 附近、30.2 ppm附近、33.4 ppm附近獲得。又,關於13C 一 NMR光譜之歸屬,可參考使用高分子分析手冊[日本分析化 學會編、朝倉書店發行、(2008年)、第Π01頁〜第11〇9 頁]。 又’改質丁烯系樹脂中之順丁烯二酸酐之總含量若較 少’則太陽電池用密封材料之接著性下降,若較多,則改 質丁稀系樹脂發生交聯反而導致太陽電池用密封材料之接 著性下降或太陽電池用密封材料之擠出成形性下降,因而 限定於0.1〜3重量%,較佳為〇.15〜15重量%,更佳為〇 15 重里%以上且未達1.〇重量% 0 再者’改質丁烯系樹脂中之順丁烯二酸酐之總含量, 可藉由使用構成太陽電池用密封材料之改質丁烯系樹脂製 作试驗膜,測定該試驗膜之紅外線吸收光譜,並由丨79〇 cm 附近之吸收強度算出。具體而言,改質丁烯系樹脂中之 項丁烯二酸酐之總含量,例如可使用FT — IR (傅立葉轉換 紅外線光譜儀,Nic〇let 6700 FT—IR)並藉由高分子分析手 201226463 冊[日本分析化學會編、朝倉書店發行、(纏 頁〜第154頁]中記載之方法而測定。 第152 改質丁烯系樹脂,係利用順丁稀二酸酐接 特疋丁烯含量之丁烯—乙 、有 之方法係採用通用之要點;:物:成者,但該接枝改質 直伟將丁 μ二 可舉出:⑴溶融改質法, 二係將丁婦-乙稀共聚物'順丁稀二酸肝 始劑供於擠出機,進行溶融基^。起 株7 κ u 見練而使順丁烯二酸酐與丁 稀-乙稀共聚物接枝聚合;(2)溶液改質法,其传將= 乙烯共聚物溶解至溶劑中製 ' , 添加順丁稀二酸肝及自…!:解液,向该溶解液中 肝… 基聚合起始劑,而使順丁稀二酸 酐與丁烯-乙烯共聚物接枝聚 改質法。 衩佳為上述(1)之熔融 又,為了基於與上述熔融改質冰 同之耍駐制Λ 貞法或上述溶液改質法相 J之要點,製造順丁烯二 皙丁祕 町又、.恩3 Ϊ為鬲於3重量%之改 之順丁、Μ , 门豎該改質丁烯-乙烯共聚物中 聚物中:二…總含量,亦可藉由向改質丁稀-乙稀共 中添加未經順丁烯二酸酐改質 、 加以混合,來料… [乙埽共聚物並 稀nt 軒之總含量,藉此製造順丁 邱一酸酐之總含量為0.1〜3重量 ^ & ^ 里里/〇之改質丁烯系樹脂》 …、自由基聚合起始劑,只®盔止a β 者則無㈣w ”要為先前用於自由基聚合 異丙笨、^ 例如可舉出:過氧化苯甲酿、氮過氧化 過氧化辛酸㈣二異丙_、過氧化新癸酸異丙苯酿、 、 戈異丙苯酯、偶氮雙異丁腈等。 並且,藉由示差掃描熱量分析來測定改質丁稀系樹脂 201226463 而獲得的吸熱曲線之最大波峰溫度(Tm)若較低,則太陽 電池用密封材料之耐熱性下降,若較高,則利用太陽電池 用密封材料密封太陽電池元件而製造太陽電池模組時,太 陽電池用密封材料之加熱時間延長,太陽電池模組之生產 性下降,或由於太陽電池用密封材料之加熱不充分而導致 太陽電池元件之密封變得不充分’因而較佳為8〇〜12代, 更佳為83〜uo°c。於本發明中,藉由示差掃描熱量分析而 獲得之合成樹脂吸熱曲線,係依據JISK712】所規定之測定 方法而測定。 並且,改質丁烯系樹脂之熔融流動速率若較低,則有 太陽電池用密封材料之擠出成形性下降的情形,若較高, 則有太陽電池用密封材料之擠出成形性下降,造成太陽電 池用密封材料之厚度精度下降的情形,因而較佳為0‘5〜29 gm_’更佳為2〜1Gg/1Gmin。再者,&質丁稀系樹脂 之熔融流動速率係依據ASTMD1238於2.16 kg負重下測广 的值。 /于 改質丁烯系樹脂於3〇它下之黏彈性儲存模數若較高, 則太陽電池用密封材料之柔軟性下降導致操作性下降,或 於利用太陽t池用密封材料密封太陽f ·池元件❿製造太陽 電池模組時,需要急遽加熱太陽電池用密封材料,因而較 佳為2χ 1 〇 pa以下,若過低,則太陽電池用密封材料於室 溫下表現出黏著性,導致太陽電池用密封材料之操作性下 降’因而更佳為lx1〇7〜15xl〇8pa。 進而,改質丁烯系樹脂於1〇〇«C下之黏彈性儲存模數若 201226463 較高,則太陽電池用密封材料之接著性下降,因而較佳 “ΙΟ6 Pa以下,若過低,則於利用太陽電池用密封材料密封 太陽電池元件而製造太陽電池模組時,《陽電池用密封材 料會因推壓力而激烈流動,導致太陽電池用密封材 度之不均勻化加重,因而更佳為1χ1〇4〜4xl〇6pa。 再者,於本發明中,改質丁烯系樹脂之黏彈性儲 數係藉由依據JISK6394之動態性質試驗方法而測得的值: 並且’太陽電池用密封材料中,含有具有環氧基之石夕 二匕合物。若用於太陽電池模組之太陽電池用密封材料含 ^用於接枝改質之順丁稀二酸酐或順丁稀二酸,則有順 ’-酸Sf或順T稀H腐#太陽電池模組内部所含之 極或導線等構件, 導致太陽電池模組之發電性能下降之 、別是’於高溫高濕度環境下長時 ::::Γ而成之太陽電池模組之情形時,有= 二所含之改質丁稀系樹脂發生水解,而生成順丁 歸一I酐或順丁烯二酸之虞。 化合::二=具有環氧基之錢化合物,則藉由# 庫,可捕/與順τ稀二酸野或順丁稀二酸發生加成反 二捉順丁稀二酸野,藉此可大幅抑制 戈頃丁烯二酸對電極或導線之腐钱。 矽烷化合物只要於分子内具有至少丨個r 土、脂環式環氧基等環氧基即曰、^ 化合物,可較佳地舉出下述通式⑴二:…基… 遇式(1)所不之矽烷化合物。 201226463201226463 VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell sealing material, a solar cell protective sheet, and a solar cell module manufacturing method. [Prior Art] A solar cell module consisting of a semiconductor wafer of a crucible or a crucible is manufactured by the following method: an 11-semiconductor (a piece of semiconductor in which an electric light is generated by using an interconnecting feed line) Or a wafer of semiconductor elements _ joint or combined solar cell element upper surface layer solar cell sealing material: on the solar cell. The sealing material is superposed on the transparent upper side protective material and stacked underneath The lower side protective material is combined, and the obtained laminated body is degassed and heated under reduced pressure, and the protective material is laminated on the upper surface of the solar cell element via a sealing material for the solar cell. Further, it is integrated on the substrate. In a solar cell having a structure in which a solar cell element composed of ruthenium or a compound semiconductor or the like is laminated, a solar cell sealing material is used for sealing a solar cell element. A sealing material for a solar cell, for example, Patent Document 1 proposes a protective sheet for a solar cell module, which is characterized in that it contains organic The protective sheet for a solar cell module comprising an ethylene oxide copolymer comprising at least a dialkyl peroxide and at least one selected from the group consisting of alkyl peroxyalkyl esters and peroxy ketals. A peroxide (Β) is blended with a weight ratio of (A) / (Β) of 〇 1〇/9〇~9〇/1〇 to form an organic peroxide. The protective sheet is formed of an ethylene copolymer, and 201226463, in order to provide heat, contains an organic peroxide, and after forming a laminated sheet or a laminated body with a protective sheet for a solar cell module on a solar cell element, The laminated sheet or the laminated body is pressed in the thickness direction by vacuum lamination, and the organic peroxide/knife in the protective sheet for a solar cell module is heated while being heated to crosslink the ethylene copolymer to impart heat resistance. And the solar cell module and the solar cell module protective sheet are used to form the solar cell module 0. Therefore, if the cross-linking of the solar cell module protective sheet is unevenly ordered, the following problem occurs: the sun One of the protective sheets for the battery module Part of the financial heat has become insufficient, resulting in a decrease in the durability of the obtained solar cell module. To prevent this problem from happening, it is not in the state of transport that there is a solar cell module protection sheet on the solar cell component. In the state of the laminated sheet or the laminated body, heating is carried out, but a cross-linking step is required: "after the laminated sheet or the laminated body is cut into a desired shape in advance, the laminated layer is laminated in the thickness direction by vacuum lamination in a stationary state. The sheet or laminate is applied with a pressure for two to ten minutes to temporarily carry it out, and then heated to a temperature at which the organic peroxide is decomposed, which is officially followed by tens of minutes to one hour, thereby producing a solar cell module. The problem of low manufacturing efficiency. In addition, heat resistance is applied to the protective sheet for a solar cell module, and the organic peroxide is used for the fourth (fourth). However, the following problems occur: protection for manufacturing a solar cell module. At the time of the month, the organic peroxide is decomposed, resulting in failure to form a film for the solar cell module protective sheet, or a solar cell mold, and a protective sheet. Significantly decreased; or subsequently to cause the knife through the interface generator of the organic peroxide 201,226,463 ' »· resultant solution was led to decrease solar cell module using the protective sheet. $ That is, since the solar cell component is a precision component, when manufacturing or using a solar cell module, there is a concern that a gas generated by a decomposition product of an organic peroxide is generated from a protective sheet for a solar cell module, resulting in The battery performance of solar cells is degraded. SUMMARY OF THE INVENTION The present invention provides a solar cell sealing material, a solar cell protective sheet using the same, and a solar cell module manufacturing method, and the solar cell sealing material can be used. When manufacturing a solar cell module, the solar cell element of the solar cell is sealed in a short time to efficiently manufacture the solar cell module. The sealing material for a solar cell of the present invention is characterized in that 100 parts by weight of the modified butadiene-based resin and decane compound 〇i~i5 having an epoxy group are damaged, and the 5-modified butadiene-based resin is made of cis-butene. The dianhydride is graft-modified with a butadiene-ethylene copolymer having a butyl sulfonate content of 1 to 25% by weight, and the total content of the cis-succinic anhydride is 0.1 to 3% by weight. The modified butene-based sapphire spear, which constitutes the sealing material for solar cells of the present invention, is grafted with a butadi-diethylene hydride to form a butadiene-ethylene copolymer. If the content of butene is small, the solar power: the flexibility of the sealing material is lowered, and high-temperature heating is required when the solar cell element is sealed with a sealing material for a solar cell. If there is more, the solar energy is also crystallized with a sealing material. The property or fluidity becomes uneven, and the sealing material for the solar cell is strained. As a result, the sealing property of the solar cell sealing material is lowered, so it is limited to 1 to 25% by weight, preferably 10 to 20% by weight. . In addition, the butene content in the butene-ethylene copolymer was determined by dissolving the butene-ethylene copolymer into the deuterated gas, and measuring the nc_nMR spectrum (nuclear magnetic resonance spectrum) The spectral integral value of the olefin structure is calculated from the spectral integral value derived from the ethylene structure. Furthermore, the light δ derived from the 1-butene structure is usually obtained near 1 〇.9 ppm, near 26.1 ppm, and near 39.1 ppm. The spectrum derived from the ethylene structure is usually around 26.9 ppm, around 29.7 ppm, and 30.2 ppm. Nearby, near 33.4 ppm. Further, regarding the assignment of the 13C-NMR spectrum, reference may be made to the use of a polymer analysis manual [Edited by the Japan Analytical Society, issued by Asakura Bookstore, (2008), page 〜 01 to page 11]. Further, if the total content of maleic anhydride in the modified butylene-based resin is small, the adhesion of the solar cell sealing material is lowered. If the amount is large, the modified butadiene-based resin is crosslinked and the sun is caused. The adhesiveness of the sealing material for a battery is lowered or the extrusion moldability of the sealing material for a solar cell is lowered, and thus it is limited to 0.1 to 3% by weight, preferably 15 to 15% by weight, more preferably 5% by weight or more. When the total content of maleic anhydride in the butene-based resin is changed, the test film can be produced by using a modified butylene-based resin constituting a sealing material for a solar cell. The infrared absorption spectrum of the test film was measured and calculated from the absorption intensity in the vicinity of 丨79〇cm. Specifically, the total content of the term butylene anhydride in the modified butylene-based resin can be, for example, FT-IR (Fourier transform infrared spectrometer, Nic〇let 6700 FT-IR) and by polymer analysis hand 201226463 [Measured by the method described in the Japanese Society of Analytical Chemistry, issued by Asakura Bookstore, (Wrap-page ~ page 154). The 152th modified butene-based resin is based on the content of terpene butadiene anhydride. The ene-B, the method is based on the general point;: the material: the person, but the graft modification is straightforward. The butyl bis can be exemplified: (1) the melt modification method, the second system will be the butyl-ethylene copolymerization The 'succinic acid dilute liver starter is supplied to the extruder to carry out the melting reaction. The strain 7 κ u is trained to graft copolymerize maleic anhydride with the butadiene-ethylene copolymer; (2) Solution modification method, which transmits = ethylene copolymer dissolved in a solvent to make ', add cis-butanic acid liver and self-...!: solution, to the solution in the liver ... base polymerization initiator, and so Grafting polymerization modification method of butadiene dianhydride and butene-ethylene copolymer. 衩佳 is the melting of the above (1) Based on the point of the above-mentioned melt-modified ice method or the above-mentioned solution modification method, the production of the succinimide 秘 秘 又 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Ding, Μ, 竖, the modified butene-ethylene copolymer in the polymer: two ... total content, can also be modified by adding no maleic anhydride to the modified dilute-ethylene Mix and feed... [The total content of acetamethylene copolymer and dilute nt Xuan, to make the total content of cis-butylic acid anhydride 0.1~3 by weight ^ & ^ Lili / 〇 modified butene resin 》,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Caprylic acid (tetra) diisopropyl _, peroxy neodymium cumene, cumene, azobisisobutyronitrile, etc. Also, the modified butyl resin 201226463 is determined by differential scanning calorimetry. If the maximum peak temperature (Tm) of the obtained endothermic curve is low, the heat resistance of the sealing material for solar cells is lowered, if higher When a solar cell module is sealed with a solar cell sealing material to produce a solar cell module, the heating time of the solar cell sealing material is prolonged, the productivity of the solar cell module is lowered, or the heating of the solar cell sealing material is insufficient. The sealing of the solar cell element is insufficient. Therefore, it is preferably 8 to 12 generations, more preferably 83 to uo ° C. In the present invention, the heat absorption curve of the synthetic resin obtained by differential scanning calorimetry is When the melt flow rate of the modified butylene-based resin is low, the extrusion moldability of the solar cell sealing material is lowered, and if it is high, there is a sun. The extrusion molding property of the sealing material for a battery is lowered, and the thickness precision of the sealing material for a solar cell is lowered. Therefore, it is preferably 0'5 to 29 gm_', more preferably 2 to 1 Gg/1 Gmin. Further, the melt flow rate of the & slag-based resin is a value measured in accordance with ASTM D1238 under a load of 2.16 kg. / If the modified butadiene-based resin has a high viscoelastic storage modulus under 3 ,, the flexibility of the solar cell sealing material is lowered to cause a decrease in operability, or the solar t-cell is sealed with a sealing material. ·The cell component is required to rapidly heat the solar cell sealing material when manufacturing the solar cell module, so it is preferably 2 χ 1 〇pa or less. If it is too low, the solar cell sealing material exhibits adhesion at room temperature, resulting in adhesion. The operability of the sealing material for solar cells is lowered, and thus it is more preferably lx1〇7~15xl〇8pa. Further, if the viscoelastic storage modulus of the modified butylene-based resin at 1 〇〇 «C is higher at 201226463, the adhesion of the solar cell sealing material is lowered, so that it is preferably "ΙΟ6 Pa or less, and if it is too low, When a solar cell module is sealed with a sealing material for a solar cell to produce a solar cell module, the sealing material for a positive electrode is strongly flown by a pressing force, which causes an unevenness in the degree of sealing of the solar cell, which is preferable. Further, in the present invention, the viscoelastic storage number of the modified butylene-based resin is a value measured by a dynamic property test method according to JIS K6394: and 'Solar sealing material for solar cells In the case of a solar cell sealing material for a solar cell module, which is used for graft modification of cis-succinic anhydride or cis-succinic acid, There are components such as poles or wires contained in the solar cell module of the S-acid Sf or the S-T-H rot #, which cause the power generation performance of the solar cell module to decrease, not to be long in the high temperature and high humidity environment: :::Γ成的太阳电In the case of the pool module, the modified butadiene resin contained in the second is hydrolyzed to form a cis-butanic anhydride or a maleic acid. The combination: two = money with an epoxy group The compound can be trapped/added with cis-tautic acid or cis-succinic acid by the # library, and the cis-succinic acid field can be captured. Or a decane compound, as long as it has at least one epoxy group such as r earth or alicyclic epoxy group in the molecule, that is, a compound of the formula (1): ... a decane compound which is not in the formula (1). 201226463

.··⑴ 中R表示3-環氧丙氧基丙基(giyeidGXypr〇p^) 或2-(3,4—環氧環己基)乙基,r2表示碳數為卜3之燒 基’ R3表示碳數為卜3之院基,且〇為〇或n。 上述R1表示下述化學式(„)所示《3_環氧丙氧基丙 基,或下述化學式(111)所示之2—(3,4_環氧環己基)乙基。 -CH2CH2CH2OCH2CH—ch2 0. . . (1) where R represents 3-glycidoxypropyl (giyeidGXypr〇p^) or 2-(3,4-epoxycyclohexyl)ethyl, and r2 represents a carbon number of 3 Indicates that the carbon number is the base of Bu 3 and that 〇 is 〇 or n. R1 above represents "3_glycidoxypropyl group represented by the following chemical formula ("), or 2-(3,4-epoxycyclohexyl)ethyl group represented by the following chemical formula (111). -CH2CH2CH2OCH2CH- Ch2 0

(Π) <DI) 作為上述R2,只要為碳數為卜3之烷基則無特別限 定’例如可舉出:甲基、乙基、丙基,較佳為甲基及乙基, 更佳為甲基。 1〜3之烷基則無特別限 丙基,較佳為甲基。 院化合物’例如可舉出:3 作為上述R3,只要為碳數為 定’例如可舉出:甲基、乙基、 作為上述通式(I)所示之石夕 -環氧丙氧基丙基甲基二甲氧基石夕院、3—環氧丙氧基丙基 :基二乙氧基残;3-環氧丙氧基丙基三甲氧基我、3 —環氧丙氧基丙基三乙氧基石夕烷、3_環氧丙氧基丙基三丙 氧基錢、2—(3,4_環氧環己基)乙基三甲氧基钱、2_ (3,4 —環氧環己基)乙基三乙氧基矽烷、2_ (3,4一環氧環己 201226463 基)乙基三丙氧基矽烷等。 上述通式⑴+,較佳為n為卜作為錢化合物, 可特佳地舉出3-環氧丙氧基丙基三甲氧基矽烷。 太陽電池用密封材料中之上述石夕炫化合物之含量 少,則太陽電池用密封材料之接著性下降,若較多, 陽電池用密封材料之接著性反而會 卜降因而相對於改質 丁婦系㈣⑽重量份而限重量份,較佳為 〇·ι〜1.5重量份。 平父住马 再者,太陽電池用密封材料亦可於無損其物性之範圍 内含有光敎劑、料㈣㈣、熱穩定料添加劑。 並且,亦可於太陽電池用密封材料之—面將氣樹脂片 積層一體化,^作太陽電池保護片。作為構成此種氣樹 脂片之氟樹脂,可舉出:聚四氣乙婦、聚氣三氟乙稀、聚 偏:乱乙烯、聚氟乙烯、全氟烷氧基氣樹脂、日氟乙烯一 μ丙烯共聚物'乙稀__四氣乙稀共聚物、乙稀_氣三氟 乙烯共聚物等,較佳為聚偏二氟乙烯。 其次,對上述太陽電池用密封材料之製造方法進行説 明。太陽電池用密封材料之製造方法並無特別限定,例如 可舉出如下之製造方法··將改質丁烯系樹脂、具有環氧基 之矽烷化合物及視需要而添加之添加劑以特定之重量比例 供於擠出機,進行溶融、混練,自擠出機以片狀擠出而製 造太陽電池用密封材料。 於上述方法中使用視需要而添加之添加劑之情形時, 上述添加劑亦可製成含有其之母粒⑽仙咖灿)而使用。例 -11 - 201226463 如可向聚烯烴系樹脂中以汽,,曹疮,天‘ *丄 粒 ^问濃度添加添加劑而製作母 將6亥母粒、改質丁烯系 物以特宕夕击I L 衡舳及具有%氧基之矽烷化合 物乂特疋之重量比例供於擠出機,進行 出機以片狀擠出而製造太陽φ a 混練,自擠 用母m 用密封材料。藉由如此使 ’、可提供尚度分散有添加 削之太陽電池用密封材料。 作為上述用於母粒之聚烯烴系樹 聚乙烯、中密唐帶r^ J舉出·低妆度 '乙…::。=::=鍵狀: 聚乙埽系樹脂,均聚丙烯、含有超過%重量 =二:共聚物等聚丙烯系樹脂等。作為與乙稀 某 —烯烴’例如可舉出:丙烯'1-丁埽、4—甲 基戍烯、1一己彿、i—辛 甲 ^ ^ 辛婦專°作為與丙烯丘聚入之 α 一烯烴,例如可舉出: " 稀、卜己稀、卜辛浠等…T埽、4-甲基-卜戊 乙稀系樹r 聚㈣系樹脂較佳為聚 乙烯系樹月曰’更佳為低密度聚 聚乙烯。 文佳為直鏈狀低密度 低密度聚乙稀之密度較佳為 …再者,於本發明中,〇:= 度係依據仍训2而測得之值。_低密度聚乙烯之密 並且,作為於太陽電池用密封材 積層一體^卜的 面將氟樹脂片 檟層ϋ化的方法’無特別限定,例 池用密封材料之一面擠出層麗氣樹脂片之方^於太陽電 池用密封材料與敦樹脂片共擠出之方法等。法、將太陽電 接著,對使用上述太陽電池用 茶封材料來製造太陽電 -12- 201226463 池模組之要點進行說明。本發明之太陽電池用密封材料不 同於先刖之太陽電池用密封材料’無須為了分解有機過氧 化物而進行加熱’亦無須為了使樹脂交聯而確保必要之時 間,而可於短時間内密封太陽電池元件。 特別疋,於具有可撓性之長條狀基板上形成由矽或化 合物半導體等所構成之薄膜狀太陽電池元件而成之太陽電 池之太陽電池it件之密封,可藉由捲對捲(r〇1卜t。—r〇u) 而進行,可提高太陽電池模組之製造效率。 具體而言,如圖1所示,準備如下之太陽電池A:於具 有可撓性之長條狀基板1上,形成藉由光照射會產生電i 薄膜狀太陽電池兀彳2而成者。再者,具有可撓性之長條 狀基板1並無特別限定,例如可舉出:由聚醯亞胺、聚醚 醚_、聚醚砜等耐熱性樹脂所構成之片體。又,薄膜狀太 陽電池几件2係根據通用之要點由單晶矽、單晶鍺、多晶 矽、微晶矽等結晶系半導體,非晶矽等非晶系半導體, ?aAs、InP、AlGaAs、CdS、CdTe、Cu2S、CuInSe2、CuInS2 等化合物半導體,酞青素、聚乙炔等有機半導體等所形成。 又,於薄膜狀太陽電池元件之上面及下面,形成有由二氧 化石夕等氧化石夕層、氧化銦錫(IT〇) &、及氧化_ (Zn〇) 層等所構成之電極。 如圖2所示,長條狀太陽電池A係捲繞為輥狀,另一 方面,上述長條狀太陽電池用密封材料B亦捲繞為輥狀, 捲出太陽電池A及太陽電池用密封材料B,將太陽電池用 密封材料B積層於太陽電池A之基板丨上而呈與太陽電池 -13· 201226463 元件2相對向之狀態而製成積層片c,其後,將該積層片c 供於加熱至特定溫度之一對輥D、D之間,一邊將積層片c 沿其厚度方向推壓,一邊加熱積層片C,藉此於太陽電池a 之基板1上將太陽電池用密封材料B接著一體化,藉此可 密封太陽電池元件2而連續地製造太陽電池模組E。 於使用已在太陽電池用密封材料B之一面將說樹脂片 B 1積層一體化之太陽電池保護片B’之情形時,藉由將太陽 電池保護片B’積層於太陽電池A之太陽電池元件2上而呈 該太陽電池用密封材料B與太陽電池元件2相對向之狀 態’可製造太陽電池模組E,於太陽電池模組之最外層,阻 氣性優良之氟樹脂片B1被積層一體化來作為保護材料,因 而可獲得可長時間穗定發電之太陽電池模組(參照圖3 )。 如此’由於本發明之太陽電池用密封材料B即使不進 行使用有機過氧化物之交聯亦具有優良耐熱性,故無須嚴 密地控制太陽電池用密封材料B之加熱,如上所述,於太 陽電池A之太陽電池元件2上疊合太陽電池用密封材料B 並於加熱狀態下進行壓接,藉由如此之簡單步驟,可利用 太陽電池用密封材料B確實地密封太陽電池元件2,而可製 造長時間保持穩定之太陽電池模組。 上文對利用太陽電池用密封材料B僅密封太陽電池A 之基板1上之太陽電池元件2之形成面而製造太陽電池模 組之情形進行了說明,但亦可如圖4所示,利用太陽電池 用密封材料B、B,自太陽電池A之上下面進行密封而製造 太陽電池模組。 • 14- 201226463 具體而言,準備捲繞為輥狀之長條狀太陽電池A,另一 方面準備兩個捲繞為輥狀之長條狀太陽電池用密封材料 B°接著’分別捲出長條狀太陽電池用密封材料b、b,同 時捲出長條狀太陽電池A ’隔著太陽電池A將上述太陽電 池用密封材料B、B彼此疊合而製成積層片c後,將該積層 片C供於加熱至特定溫度之一對輥d、d之間,一邊將積 層片C沿其厚度方向推壓,一邊加熱積層片c,藉此使太 陽電池用密封材料B、B彼此接著一體化,利用太陽電池用 在、封材料B、B密封太陽電池A ,可連續地製造太陽電池模 組E。亦可隔著太陽電池A將太陽電池用密封材料b、b彼 此疊合而形成積層片C,同時一邊將積層片c沿其厚度方 向推壓,一邊加熱積層片c。再者,於使用已在太陽電池用 密封材料B之一面將氟樹脂片B1積層一體化之太陽電池保 護片B’之情形時,於上述製造方法中,使用太陽電池保護 片B'代替太陽電池用密封材料B,將太陽電池保護片b,、 B彼此疊合為等太陽電;也用密封材才斗B、b ^皮此相對向之 狀態即可。此時,λ陽電池保護片B,、B,中任一方之太陽 1: &保€ Β'之氟樹脂片B i成為透明之上側保護材料,另 一方之太陽電池料片B,之氟樹脂片β1 &為下側保護材 料。 又,上文對一邊捲出長條狀太陽電池A 一邊連續地製 &太陽電池模組之情形進行了說明,但太陽電;也A並非必 須為長條狀,亦可為於矩形狀等片狀之具有可撓性之基板ι 上形成藉由光照射會產生電之薄膜狀太陽電池元件2而成 -15 - 201226463 的太陽電池A。於使用此種太陽電池之情形時,如圖5所 示,準備兩個捲繞為輥狀之長條狀太陽電池用密封材料B。 並且,分別捲出長條狀太陽電池用密封材料B ' B,每隔特 定時間將太陽電池A供於太陽電池用密封材料b、b之間, 隔著太陽電池A將太陽電池用密封材料b、b彼此曼合而製 成積層片C後’將該積層片C供於加熱至特定溫度之一對 輥D、D之間,一邊將積層片C沿其厚度方向推壓,—邊 加熱積層片c,藉此使太陽電池用密封材料B、B彼此接著 一體化,並利用太陽電池用密封材料b、b密封太陽電池a, 而可連續地製造太陽電池模組E。再者,於使用在太陽電池 用密封材料B之-面職樹脂片Bl#層—體化的太陽電池 保護“,之情形時,於上述製造方法中,使用太陽電池保 護片B’代替太陽電池用密封㈣B,將太陽電池保護片B,、 B,彼此Φ合為該等太陽電池用密封材料B、b彼此相對向之 狀態即可。此時’太陽電池保護# B,、B,中任—方之太陽 電池保護片之氟樹脂片B1成為透明之上側保護材料,另 一方之太陽電池保護片Bl之氟樹脂片Βι &為下側保護材 上文中,作為太陽電池,對於使用在具有可挽性戈 板1上形成藉由光照射會產生電之薄膜狀太陽電池元和 而成的太陽電池之情形進行了說明,但本發明之太陽電 用密封材料亦可用作具右 ..^ 、有上述構成以外之構成之太陽電 電池模組之密封材料。作為此種太陽電池,例如 .⑴於玻璃板等不具有可撓性之基板上形成藉由 -16 · 201226463 照射會產生電之薄膜狀太陽電池元件而成的太陽電池,或 (2 )使用互連饋線將由具有光照射後會產生電流之功能之 石夕半導體元件或硒半導體元件所形成之太陽電池元件串聯 或並聯而成的太陽電池。 若為具有上述(1)之構成之太陽電池,當利用太陽電 池用密封材料僅密封太陽電池之基板上之太陽電池元件之 形成面而製造太陽電池模組時,與於具有可撓性之基板上 形成藉由光照射會產生電之薄膜狀太陽電池元件而成之太 陽電池之時同樣地,可將太陽電池用密封材料積層於太陽 電池上而呈與半導體元件相對向之狀態而製造積層片後, 藉由將積層片供於一對輥之間,一邊加熱一邊沿厚度方向 進行推壓,而將太陽電池用密封材料於太陽電池之基板之 一面積層一體化’藉此密封太陽電池元件來製造太陽電池 模組。 之構成之太陽電池 ,當利用太(Π) <DI) The R2 is not particularly limited as long as it is an alkyl group having a carbon number of 3, and examples thereof include a methyl group, an ethyl group, and a propyl group, preferably a methyl group and an ethyl group. Good for methyl. The alkyl group of 1 to 3 is not particularly limited to a propyl group, and is preferably a methyl group. For example, as the above-mentioned R3, the above-mentioned R3 may be, for example, a methyl group or an ethyl group, and as a compound of the above formula (I), Methyl-dimethoxyxanthine, 3-glycidoxypropyl:diethoxy residue; 3-glycidoxypropyltrimethoxy-, 3-glycidoxypropyl Triethoxy oxalate, 3_glycidoxypropyltripropoxy ketone, 2-(3,4-epoxycyclohexyl)ethyltrimethoxy ketone, 2_(3,4-epoxy ring Hexyl)ethyltriethoxydecane, 2_(3,4-epoxycyclohexane 201226463)ethyltripropoxydecane, and the like. The above formula (1)+, preferably n is a money compound, and particularly preferably 3-glycidoxypropyltrimethoxydecane. When the content of the above-mentioned Shi Xixuan compound in the sealing material for a solar cell is small, the adhesion of the sealing material for a solar cell is lowered, and if it is large, the adhesion of the sealing material for the solar cell may be lowered, thereby being compared with the modified Ding (4) (10) parts by weight and parts by weight, preferably 〇·ι to 1.5 parts by weight. In addition, the sealing material for solar cells can also contain a light-receiving agent, a material (4) (4), and a heat stabilizer additive in a range that does not impair the physical properties thereof. Further, the gas resin sheet layer may be integrated into the surface of the solar cell sealing material to be used as a solar cell protective sheet. Examples of the fluororesin constituting the gas resin sheet include polytetraethylene, polytrifluoroethylene, polydisperse: chaotic ethylene, polyvinyl fluoride, perfluoroalkoxy resin, and fluoroethylene. The μ propylene copolymer 'ethylene __ tetraethylene ethylene copolymer, ethylene _ gas trifluoroethylene copolymer, etc., preferably polyvinylidene fluoride. Next, a method of manufacturing the above-mentioned solar cell sealing material will be described. The method for producing the solar cell sealing material is not particularly limited, and examples thereof include the following production methods: a modified butylene-based resin, an epoxy group-containing decane compound, and optionally an additive added in a specific weight ratio It is supplied to an extruder, melted and kneaded, and extruded in a sheet form from an extruder to produce a sealing material for a solar cell. In the case where an additive to be added as needed is used in the above method, the above additive may be used as a masterbatch (10) containing it. Example-11 - 201226463 If the additive can be added to the polyolefin resin by steam, Cao, Tian, * 丄 ^ ^ 问 而 添加剂 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 The weight ratio of IL balance and decane compound having a % oxygen group is supplied to an extruder, and the machine is extruded in a sheet form to produce a sun φ a kneading, and a self-extruding mother m sealing material. By doing so, it is possible to provide a sealing material for a solar cell in which the addition is cut. As the above-mentioned polyolefin-based polyethylene for the masterbatch, the middle-density band is given by the R^J, and the low-preciousness 'B...::. =::= Key: Polyethylene phthalide resin, homopolypropylene, polypropylene resin containing more than % by weight = two: copolymer. As the olefin-olefin, for example, propylene '1-butanthene, 4-methyl decene, 1 hexanol, i-octyl^^ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ Examples of the olefin include: "thin, diarrhea, 卜辛浠, etc.... T埽, 4-methyl-p-pentyl-based tree r-poly(tetra)-based resin is preferably polyethylene-based tree 曰 曰Good for low density polyethylene. Wen Jia is a linear low density. The density of the low density polyethylene is preferably ... In the present invention, the 〇: = degree is based on the value measured by still training 2. _ Low-density polyethylene is dense, and the method of deuterating the fluororesin sheet as a surface for laminating the sealing material for a solar cell is not particularly limited, and one of the sealing materials for the cell is extruded on one side of the sealing material. The method of the film is to coextrude the sealing material for the solar cell with the resin sheet. Method, Solar Power Next, the main points of the solar cell -12-201226463 pool module using the above-mentioned solar cell tea sealing material will be described. The sealing material for a solar cell of the present invention is different from the sealing material for a solar cell of the prior art, which does not need to be heated for decomposing the organic peroxide, and does not need to ensure the necessary time for crosslinking the resin, and can be sealed in a short time. Solar battery components. In particular, the sealing of a solar cell of a solar cell in which a thin film-shaped solar cell element composed of a ruthenium or a compound semiconductor is formed on a flexible strip-shaped substrate can be wound by a roll. 〇1b t.—r〇u) can improve the manufacturing efficiency of the solar cell module. Specifically, as shown in Fig. 1, a solar cell A is prepared in which an electric i-film solar cell 2 is formed by light irradiation on a long strip substrate 1 having flexibility. In addition, the flexible strip-shaped substrate 1 is not particularly limited, and examples thereof include a sheet made of a heat-resistant resin such as polyimine, polyether ether or polyethersulfone. In addition, some of the thin-film solar cells are made of a crystalline semiconductor such as a single crystal germanium, a single crystal germanium, a polycrystalline germanium or a microcrystalline germanium, or an amorphous semiconductor such as an amorphous germanium, ?aAs, InP, AlGaAs, or CdS. Compound semiconductors such as CdTe, Cu2S, CuInSe2, and CuInS2, and organic semiconductors such as anthracycline and polyacetylene. Further, on the upper surface and the lower surface of the thin film solar cell element, an electrode made of a oxidized oxidized layer such as a oxidized silica, an indium tin oxide (IT 〇) & oxidized _ (Zn 〇) layer, or the like is formed. As shown in FIG. 2, the long-length solar cell A is wound into a roll shape, and the long-sealed solar cell sealing material B is also wound into a roll shape, and the solar cell A and the solar cell seal are wound up. In the material B, the solar cell sealing material B is laminated on the substrate of the solar cell A to form a laminated sheet c in a state opposed to the solar cell-13·201226463 element 2, and thereafter, the laminated sheet c is supplied. The solar cell sealing material B is applied to the substrate 1 of the solar cell a while heating the laminated sheet C while pressing the laminated sheet c in the thickness direction between the rolls D and D. Then, it is integrated, whereby the solar cell element 2 can be sealed and the solar cell module E can be continuously manufactured. When the solar cell protective sheet B' in which the resin sheet B1 is integrated in one surface of the solar cell sealing material B is used, the solar cell element is laminated on the solar cell element of the solar cell A by the solar cell protective sheet B'. In the state in which the solar cell sealing material B and the solar cell element 2 are opposed to each other, the solar cell module E can be manufactured, and the fluororesin sheet B1 having excellent gas barrier properties is laminated in the outermost layer of the solar cell module. As a protective material, a solar cell module capable of generating electricity for a long period of time can be obtained (refer to FIG. 3). Since the sealing material B for a solar cell of the present invention has excellent heat resistance even without cross-linking using an organic peroxide, it is not necessary to strictly control the heating of the sealing material B for a solar cell, as described above, in a solar cell. The solar cell element 2 of A is laminated on the solar cell sealing material B and is pressure-bonded in a heated state. By such a simple procedure, the solar cell element 2 can be reliably sealed by the solar cell sealing material B, and can be manufactured. A solar cell module that remains stable for a long time. In the above, the case where the solar cell module 2 is formed by sealing only the surface of the solar cell element 2 on the substrate 1 of the solar cell A by the solar cell sealing material B has been described. However, as shown in FIG. The battery sealing materials B and B are sealed from above and below the solar cell A to manufacture a solar cell module. • 14- 201226463 Specifically, a long-length solar cell A wound in a roll shape is prepared, and on the other hand, two long-sealed solar cell sealing materials B° are prepared, which are wound into rolls, and then rolled out separately. The strip-shaped solar cell sealing materials b and b are simultaneously wound out of the long-length solar cell A'. The solar cell sealing materials B and B are superposed on each other via the solar cell A to form a laminated sheet c, and then the laminated layer is formed. The sheet C is heated to a specific temperature between the pair of rolls d and d, and while the laminated sheet C is pressed in the thickness direction thereof, the laminated sheet c is heated, whereby the solar cell sealing materials B and B are integrated with each other. The solar cell module E can be continuously manufactured by using the solar cell for the sealing material B and B to seal the solar cell A. The solar cell sealing materials b and b may be stacked one upon another to form a laminated sheet C, and the laminated sheet c may be heated while pressing the laminated sheet c in the thickness direction thereof. In the case where the solar cell protective sheet B' in which the fluororesin sheet B1 is laminated on one side of the solar cell sealing material B is used, in the above manufacturing method, the solar cell protective sheet B' is used instead of the solar cell. The solar cell protection sheets b, and B are superposed on each other by the sealing material B to be equal to the solar power; the sealing material is also used for the bucket B, b. At this time, the fluorochemical resin sheet B i of the λ positive battery protection sheet B, B, or any of the sun 1: & 成为 成为 becomes the transparent upper side protective material, and the other side of the solar cell material sheet B, the fluorine The resin sheet β1 & is a lower protective material. Further, the above description has been made on the case where the solar battery module A is continuously wound while the long solar battery A is being wound out, but the solar power is also not required to be elongated, and may be rectangular or the like. A solar cell A of -15 - 201226463 is formed on a sheet-like flexible substrate ι by forming a thin film-shaped solar cell element 2 which is generated by light irradiation. In the case of using such a solar cell, as shown in Fig. 5, two long sealing materials B for solar cells wound in a roll shape are prepared. In addition, the long-length solar cell sealing material B'B is wound out, and the solar cell A is supplied between the solar cell sealing materials b and b at regular intervals, and the solar cell sealing material b is interposed between the solar cells A. After b is joined to each other to form a laminated sheet C, the laminated sheet C is heated to a temperature between one of the rolls D and D, and the laminated sheet C is pressed in the thickness direction thereof while heating the laminated layer. In the sheet c, the solar cell sealing materials B and B are integrated with each other, and the solar cell a is sealed by the solar cell sealing materials b and b, whereby the solar cell module E can be continuously manufactured. Further, in the case where the solar cell protection of the solar cell sealing material B-face resin sheet B1# is used, in the above manufacturing method, the solar cell protection sheet B' is used instead of the solar cell. Sealing (4) B, the solar cell protection sheets B, B, and Φ are combined so that the sealing materials B and b for the solar cells are opposite to each other. At this time, 'solar battery protection # B, B, Zhong Ren - The fluororesin sheet B1 of the solar cell protection sheet becomes the transparent upper side protective material, and the fluororesin sheet of the other solar cell protection sheet B1 is the lower side protective material. As the solar cell, for use, The case where the film-forming solar cell and the solar cell which generate electricity by light irradiation are formed on the levisable sheet 1 is described, but the solar electric sealing material of the present invention can also be used as the right.. ^ A sealing material for a solar cell module having a configuration other than the above-described configuration. As such a solar cell, for example, (1) a substrate having no flexibility such as a glass plate is formed by irradiation with -16 · 201226463 A solar cell formed by an electric film-like solar cell element, or (2) a solar cell element formed by a stellite semiconductor element or a selenium semiconductor element having a function of generating a current after light irradiation is connected in series or in parallel using an interconnecting feed line. In the case of the solar cell having the above configuration (1), when the solar cell sealing material is used to seal only the surface of the solar cell element on the substrate of the solar cell, the solar cell module is manufactured. When a solar cell in which a thin film-shaped solar cell element that generates electricity is generated by light irradiation is formed on a flexible substrate, a solar cell sealing material can be laminated on the solar cell to face the semiconductor element. After the laminated sheet is produced in a state, the laminated sheet is supplied between the pair of rolls, and is pressed in the thickness direction while being heated, thereby integrating the solar cell sealing material on one of the substrate layers of the solar cell. Sealing solar cell components to manufacture solar cell modules. The solar cells that make up the

密封’來製造太陽電池模組。 又’若為具有上述(1)之構成之 陽電池用密封材料自太陽電池之上下 陽電池模組時,與於具有可藉枓夕箕Seal ' to make a solar cell module. Further, in the case of the solar cell sealing material having the above configuration (1), when the solar cell module is mounted from the solar cell, the solar cell module can be used.

,隔著太陽 -17- 201226463 電池用密封材料B於太陽電池3之上面積層透明之上側保 護材料4’隔著太陽電池用密封材料B於太陽電池3之下面 積層下側保護材料5,藉此製造積層體,.較佳為於減壓下, 一邊對上述積層體沿其厚度方向施加推壓力—邊加熱,利 用太陽電池用㈣材# B、B密封太陽電池3,肖此亦可製 造太陽電池模組(參照圖6 )。 1乍為上述透明之上側保護材料4,例如可舉出:矽酸鹽 玻璃等玻璃之基板、及氟樹脂片。作為下側保護材料5,例 如可舉出:氟樹脂片、聚對苯二甲酸乙二酯(ρΕτ)片、聚 萘-甲酸乙二酯(ΡΕΝ)片、聚丁酸乙二酯片等塑膠片。作 為氟:脂4,例如可舉出:與上述用於太陽電池保護片之 敦樹月曰片相同者。尤其是’作為透明之上側保護材料4 .及 下側保護材料5,較佳為使用氟樹脂片,更佳為使用聚偏二 仍上述方法中,於使 _ %八丨勿电〜川仿河啊' 竹 將氟樹脂片積層一體化的太陽電池保護片之 時,將笛_ + m π 于弟太陽電池保護片(於太陽電池用密封材料之一 =作為透明上側保護材料之氣樹脂片積層—體化而成者 =太陽電池之上面而呈上述太陽電池與上述太陽電池 2材料相對向之狀態’並且將第二太陽電池保護片(於 葙届一用密封材料之一面將作為下側保護材料之氟樹脂 一體化而成者)積層於上述太陽電池之下面而呈上 陽電池輿卜a· 籍思Μ ' 4太陽電池用密封材料相對向之狀態,以製 °較佳為於減壓下,一邊對上述積層體沿其厚度 -18· 201226463 向把加推壓力一邊加熱,利用太陽電池用密封材料B、b密 封太陽電池3,藉此亦可製造太陽電池模組。 較佳為在邊對積層體沿其厚度方向施加推壓力一邊 刖實施藉由預先將積層體加熱至特定溫度而除去 積層體内所含之氣體的脫氣步驟。再者,於脫氣步驟中, 當加熱積層體時’不必對積層體沿其厚度方向施加推壓力。 於脫氣步驟中,較佳為將積層體加 達赋,更佳為加熱至8。。。以上且未達一= 中之積層體之加教、、®4^ …/孤度右過尚’則有無法充分除去積層體 所含氣體之虞,^Ν _ 右過低,則有於脫氣步驟中自積層體充分 地除去氣體所需之時間延長之虞。 脫乳步驟中之積層體之加熱時間較佳為1〜10分鐘’ 更佳為2〜5分鐘。脫氣步驟中之積層體之加熱時間若較 短,則有無法充分除去積層體所含氣體之虞,若過長,則 有於脫氣步驟中自積層體充分地除去氣體所需之時間延長 之虞。 其人™邊對積層體沿其厚度方向施加推壓力一邊 加熱時’較佳為將積層體加熱至1〇〇〜"Ο。。,更佳為加熱 至〇〇 120C。X ’ 一邊對積層體沿其厚度方向施加推壓 力-邊加熱之時間較佳為Μ0分鐘,更佳為2〜5分鐘。 -邊對積層體沿其厚度方向施加推壓力一邊加熱之步 驟’較佳為於1000 Pa以下之減壓環境下進行,更佳為於 〇〇〇 Pa之減壓環境下進行。藉由如此於減壓環境下加 熱積層體’可在所得太陽電池模組不發生麵曲、或太陽電 201226463 池用密封材料不產生皺褶或氣泡之情況下獲得太陽電池槿 組。 、 再者’預先將積層體加熱至特定溫度之脫氣步驟、及 邊對積層體沿其厚度方向施加推壓力一邊加熱之步驟, 可使用真空貼合機等先前公知之裝置來進行。 一邊對在太陽電池3之兩面配置太陽電池用密封材料 B而成之積層體加壓一邊加熱而製造太陽電池模組之上述 方法中,即使縮短積層體之加熱時間,亦可利用太陽電池 用密封材料B確實地密封太陽電池3。因此,藉由上述方 法,可縮短利用太陽電池用密封材料B密封太陽電池3之 密封步驟所需之時間’可高效率地製造可長時間穩定地發 揮發電性能之太陽電池模組。又,於上述方法中由於太 陽電池用密封材料B不含有機過氧化物,故無須嚴密地控 制積層體之加熱溫度,即使降低積層體之加熱溫度,亦可 利用太陽f池用密封材料B確實地密封太陽電池3。進而, P使於減壓下加熱積層H ’亦可抑制因太陽電池用密封材 料B熔融流動而自積層體之側面滲出,因此,上述太陽電 池用密封材料B不存在太陽電池模組之外觀特性或發電性 能下降之虞。 上文中,作為太陽電池,對使用具有上述(2)之構成 之太陽電池來製造太陽電池模組之情形進行了說明,但亦 可使用如下電池代替具有上述⑺之構成之太陽電池:於 矩形狀等片狀之具有可撓性之基板上形成藉由光照射會產 生電之薄膜狀太陽電池元件而成之太陽電池A,或於矩形狀 •20· 201226463 等片狀之不具有可撓性之基板上形成藉由光照射會產生電 之薄膜狀太陽電池元件而成之太陽電池A(參照圖7)。 本發明之太陽電池用密封材料具有如上所述之構成, 無須含有有機過氧化物,於密封太陽電池元件而製造太陽 電池模組時,無須為了控制有機過氧化物之分解而嚴密地 控制太陽電池用密封材料之加熱,藉由於已將太陽電池用 密封材料加熱之狀態下將其壓接至太陽電池元件、或者使 西+己置於太陽電池之上下面之太陽電池用密封材料彼此密 著,可確貫且簡單地進行太陽電池元件之密封。 特別是,進行於具有可撓性之基板上形成薄膜狀太陽 電池元件而成之太陽電池之太陽電池元件之密封之情形 時-邊捲出捲繞為輥狀之太陽電池,一邊捲出捲繞為親 狀之太陽電池用密封材料,於太陽電池之基材上之太陽電 池几件之形成面上積層太陽電池用密封材料而製成積層片 後將該積層片供於一對輥之間,一邊加熱一邊沿厚度方 =進行壓接,可根據上述簡單之要點進行太陽電池元件之 密封,並藉由捲對捲簡單且高效率地製造太陽電池模組。 又,即使藉由對於太陽電池之上面及下面積層有太陽 電池用密封材料之積層體進行真空層壓,利用太陽電池用 密封材料密封太陽電池而製造太陽電池模組,亦可縮短該 密封步驟所需之時間,無須嚴密地控制積層體之加熱。因 此,即使藉由上述方法,亦可高效率地製造太陽電池模組。 進而即使於減壓下進行積層體之加熱,亦可大幅抑制太 陽電池用密封材料自積層體之側面滲出。 •21 201226463 並且’由於本發明之太陽電池用密封材料如上所述不 含有機過氧化物,故於製造時亦可謀求擠出速度之高速化 而提高製造效率,並且於組入太陽電池模組後,亦無自太 陽電池用密封材料產生由有機過氧化物導致之氣體之虞。 進而,本發明之太陽電池用密封材料藉由含有具有環氧基 之矽烷化合物,即使太陽電池用密封材料含有未用於接枝 改質而游離之順丁烯二酸酐或順丁烯二酸,亦可大幅抑制 順丁烯二酸酐或順丁烯二酸對太陽電池模組内部之電極或 導線等構件之腐蝕。因此,本發明之太陽電池用密封材料 可長時間較高地保持太陽電池模組之電池性能。 【實施方式】 以下,列舉實施例更加詳細地說明本發明之態樣,但 本發明並不限定於該等實施例。 (實施例1〜16 '比較例1、2、6〜7及1〇〜14) 將含有利用順丁烯二酸酐接枝改質具有表丨〜4所示之 特定量之丁烯含量及乙烯含量的丁烯一乙烯共聚物而成之 改質丁烯系樹脂100重量份 '與作為矽烷化合物之表丨〜4 所示之特定量t 3-環氧丙氧基丙基三甲氧基石夕烷(D〇w Coming Toray公司製造,商品名「z-6〇4〇」)或3_丙稀 酿氧基丙基三甲氧基矽烷(3一(acryl〇xypr〇p川 trimethoxysilane)(信越化學工業公司製造’商品名「kbm —5103」)之太陽電池用密封材料料用組合物供於第一擠出 機於230t下進行熔融混練,另一方面,將聚偏二敗乙烯 (Arkema公司製造,商品名「KYNAR 72〇」)供於第二擠 -22· 201226463 出機於230°C下進行熔融混練,將太陽電池用密封材料用組 合物及聚偏二氟乙烯供於連接了第一擠出機與第二擠出機 的合流模而使該等合流’自合流模所連接之T型模擠出為 片狀’而獲得於由太陽電池用密封材料用組合物所構成之 厚度為0.2 mm之太陽電池用密封材料之—面將厚度為〇 mm之聚偏二氟乙烯片積層一體化而成的長條狀之具有特 疋寬度之太陽電池保護片。再者,將改皙丁 ,法έ此& 町p又負丁烯系樹脂之熔 融流動速率、藉由示差掃描熱量分析而測得之吸熱曲線之 最大波峰溫度(Tm)、以及3(TC及l〇Gt下之黏彈㈣存模Between the solar cell 3 and the upper surface protective material 4' of the solar cell 3, the solar cell sealing material B is placed under the solar cell 3 under the surface layer under the protective material 5, In order to manufacture the laminated body, it is preferable to apply a pressing force to the laminated body along the thickness direction thereof under reduced pressure, and to heat the solar cell 3 by using the solar cell (four) materials #B and B, and the solar cell can be manufactured. Battery module (see Figure 6). The transparent upper protective material 4 is, for example, a glass substrate such as bismuth silicate glass or a fluororesin sheet. Examples of the lower protective material 5 include a fluororesin sheet, a polyethylene terephthalate (ρΕτ) sheet, a polyethylene naphthalate (yttrium) tablet, and a polybutyl butyrate tablet. sheet. The fluorine: lipid 4 is, for example, the same as the above-mentioned Dunshu Mooncake for solar cell protective sheets. In particular, 'as the transparent upper side protective material 4 and the lower side protective material 5, it is preferable to use a fluororesin sheet, and it is more preferable to use the polydisperse 2 in the above method, so that _ % 丨 丨 电 〜 ~ 川 川 川啊' When the bamboo fluororesin sheet is integrated with the solar cell protection sheet, the flute _ + m π is applied to the solar cell protection sheet (one of the sealing materials for the solar cell = the gas resin sheet layer as the transparent upper side protective material) - the body becomes the upper side of the solar cell and the solar cell is in a state opposite to the above-mentioned solar cell 2 material' and the second solar cell protection sheet (the one side of the sealing material for the first time will be used as the lower side protection) The fluororesin of the material is integrated. The layer is laminated on the underside of the above solar cell and is in the upper yang battery. · · Μ Μ ' 4 The solar cell sealing material is in a relative state, and the temperature is preferably under reduced pressure. The solar cell module can be manufactured by sealing the solar cell 3 with the solar cell sealing materials B and b by heating the above-mentioned laminated body along the thickness -18·201226463, and sealing the solar cell 3 by the solar cell sealing materials B and b. The degassing step of removing the gas contained in the laminated body by heating the laminated body to a specific temperature in advance by applying a pressing force in the thickness direction of the laminated body. Further, in the degassing step, when the laminated body is heated When it is not necessary to apply a pressing force to the laminated body along its thickness direction. In the degassing step, it is preferred to add the laminated body, preferably to a temperature of 8 or more. If you add the teaching, the ®4^ .../the degree of the right is too good, you can't remove the gas contained in the layer. ^ Ν _ Right too low, the gas is fully removed from the layer during the degassing step. The heating time of the laminate in the de-milking step is preferably from 1 to 10 minutes', more preferably from 2 to 5 minutes. If the heating time of the laminate in the degassing step is short, there is no possibility When the gas contained in the laminated body is sufficiently removed, if it is too long, the time required for the gas to be sufficiently removed from the laminated body in the degassing step is prolonged. The human TM side applies a pressing force to the laminated body along the thickness direction thereof. When heating, it is better to heat the laminate 1〇〇〜"Ο.., more preferably heated to 〇〇120C. X ' while applying pressure to the laminate along its thickness direction - the heating time is preferably Μ0 minutes, more preferably 2 to 5 minutes - the step of heating while applying pressure to the laminate in the thickness direction thereof is preferably carried out under a reduced pressure environment of 1000 Pa or less, more preferably under a reduced pressure environment of 〇〇〇Pa. Heating the laminate in a reduced pressure environment can obtain the solar cell stack without the surface curvature of the obtained solar cell module, or the solar cell 201226463 pool sealing material does not produce wrinkles or bubbles. The step of heating the laminate to a specific temperature and the step of heating the laminate while applying a pressing force in the thickness direction thereof can be carried out by using a conventionally known device such as a vacuum laminator. In the above method of manufacturing a solar cell module by heating a laminate body in which a sealing material B for a solar cell is disposed on both surfaces of the solar cell 3, the solar cell module can be used, and the solar cell sealing can be used even if the heating time of the laminated body is shortened. Material B positively seals the solar cell 3. Therefore, by the above method, the time required for the sealing step of sealing the solar cell 3 by the solar cell sealing material B can be shortened, and the solar cell module which can stably emit volatile electric power for a long period of time can be efficiently manufactured. Further, in the above method, since the solar cell sealing material B does not contain an organic peroxide, it is not necessary to strictly control the heating temperature of the laminate, and even if the heating temperature of the laminate is lowered, the sealing material B for the solar cell can be used. The solar cell 3 is sealed. Further, P can prevent the solar cell sealing material B from being oozing out from the side surface of the laminated body by the melted flow of the sealing material B for the solar cell, and the solar cell sealing material B does not have the appearance characteristics of the solar cell module. Or the decline in power generation performance. In the above, a solar cell module is manufactured using the solar cell having the above configuration (2), but a solar cell having the above configuration (7) may be used instead of the rectangular battery. A solar cell A in which a film-like solar cell element that generates electricity by light irradiation is formed on a flexible substrate such as a sheet, or a sheet-like shape such as a rectangular shape, which is not flexible. A solar cell A (see FIG. 7) in which a thin film-shaped solar cell element that generates electricity is generated by light irradiation is formed on the substrate. The sealing material for a solar cell of the present invention has the above-described configuration, and does not need to contain an organic peroxide. When the solar cell module is sealed and the solar cell module is sealed, it is not necessary to strictly control the solar cell in order to control the decomposition of the organic peroxide. Heating with a sealing material, by sealing the solar cell to the solar cell element in a state where the solar cell has been heated by the sealing material, or by sealing the solar cell sealing material which is placed below the solar cell. The sealing of the solar cell elements can be carried out in a straightforward and simple manner. In particular, when sealing a solar cell element of a solar cell in which a film-shaped solar cell element is formed on a flexible substrate, the solar cell wound in a roll shape is rolled up and wound up. A solar cell sealing material is formed on a surface of a solar cell on a substrate of a solar cell, and a sealing sheet for a solar cell is laminated to form a laminated sheet, and the laminated sheet is supplied between a pair of rolls. By heating and pressing along the thickness side, the solar cell element can be sealed according to the above-mentioned simple points, and the solar cell module can be easily and efficiently manufactured by roll-to-roll. In addition, even if the solar cell module is sealed by sealing the solar cell with a solar cell sealing material by vacuum laminating the laminated body of the solar cell sealing material on the upper and lower surface layers of the solar cell, the sealing step can be shortened. The time required does not require strict control of the heating of the laminate. Therefore, even with the above method, the solar cell module can be efficiently manufactured. Further, even if the laminate is heated under reduced pressure, the sealing material for the solar cell can be largely prevented from oozing out from the side surface of the laminate. • 21 201226463 and the fact that the sealing material for a solar cell of the present invention does not contain an organic peroxide as described above, it is also possible to increase the speed of extrusion at the time of manufacture and to improve the production efficiency, and to incorporate a solar cell module. After that, there is no gas generated by the organic peroxide caused by the sealing material for the solar cell. Further, the sealing material for a solar cell of the present invention contains a decane compound having an epoxy group, and even if the sealing material for a solar cell contains maleic anhydride or maleic acid which is not used for graft modification, Corrosion of components such as electrodes or wires inside the solar cell module by maleic anhydride or maleic acid can be greatly suppressed. Therefore, the sealing material for a solar cell of the present invention can maintain the battery performance of the solar cell module at a high level for a long period of time. [Embodiment] Hereinafter, embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the embodiments. (Examples 1 to 16 'Comparative Examples 1, 2, 6 to 7, and 1 to 14>) The content of butene contained in the specific amount shown in Table 丨4 and ethylene was modified by grafting with maleic anhydride. 100 parts by weight of the modified butylene-based resin of the content of the butene-ethylene copolymer and the specific amount of t 3-glycidoxypropyltrimethoxy-infraline as shown in Table 1-4 of the decane compound (manufactured by D〇w Coming Toray, trade name "z-6〇4〇") or 3_propylene oxypropyltrimethoxysilane (3 ((acryl〇xypr〇pchuan trimethoxysilane) (Shin-Etsu Chemical Industry) The company manufactures a composition for a sealing material for solar cells of 'product name "kbm-5103") for melt-kneading at 230 t in a first extruder, and on the other hand, a polyethylene-based ethylene (manufactured by Arkema Co., Ltd., The product name "KYNAR 72〇" is supplied to the second extrusion-22· 201226463. The melt-kneading is carried out at 230 °C, and the composition for sealing materials for solar cells and polyvinylidene fluoride are used to connect the first extrusion. The merged die of the outlet and the second extruder is used to extrude the merged T-die connected by the merged die into A sheet-like shape obtained by integrating a polyvinylidene fluoride sheet having a thickness of 〇 mm on a surface of a sealing material for a solar cell having a thickness of 0.2 mm, which is composed of a composition for a sealing material for a solar cell. A strip of solar cell protection sheet with a special width. In addition, it will change the melting flow rate of the butadiene resin and the endothermic heat of the butadiene resin. The maximum peak temperature (Tm) of the curve, and 3 (the viscoelastic (four) of the TC and l〇Gt

數示於表卜4。改質丁烯系樹脂中之順丁烯二酸酐之總含 量亦記載於表1〜4。 W 用於實施例1及比較例 〜队貝丨烯系樹脂 係由三井化學公司以商品名.「AdmerXE〇7〇」於市場上銷售 (比較例3) 以外,以與實施例 1 除使用聚乙烯代替改質丁烯系樹脂 相同之方式獲得太陽電池保護片。 (比較例4及8) 除使用利用表3及4 行接枝改質而成之改質聚 用表4所示之特定量之3〜 外,以與實施例1相同之 (比較例5) 所不之特定量之順丁烯二酸酐進 乙烯代替改質丁烯系樹脂,且使 環氧丙氧基丙基三甲氧基矽烷以 方式獲得太陽電池保護片。 除使用未利用順丁 所示之特定量之丁烯含 烯二酸酐接枝改質且具有表3及4 置及乙烯含量之丁烯—乙烯共聚物 -23- 201226463 代替改質丁烯系樹脂以外,以與實施例1相同之方式獲得 太陽電池保護片。 (比較例9) 除使用乙烯一乙酸乙烯酯共聚物(乙酸乙烯酯含量: 28重量% )代替改質丁烯系樹脂,且使用表4所示之特定 量之3 —環氧丙氧基丙基三曱氧基矽烷以外,以與實施例1 相同之方式獲得太陽電池保護片。 (比較例1 5 ) 除使用藉由將乙烯77.2重量份、丙烯酸乙酯20重量 份、及順丁烯二酸酐2.8重量份進行自由基聚合而獲得之三 元共聚物(Arkema公司製造,Lotader HX8140 )代替改質 丁稀系樹脂以外,以與實施例1相同之方式獲得太陽電池 保護片。再者,於下述之表1〜1〇中,將上述三元共聚物 簡稱為「EEAM」。 (比較例1 6 ) 將含有乙烯一乙酸乙烯酯共聚物(乙酸乙烯酯含量: 28重量% ) 1 〇〇重量份、有機過氧化物}(三級丁基過氧化 碳酸一2 -乙基己酯)〇·35質量份、交聯助劑(異氰尿酸三 烯丙酯(triallyl isocyanurate)) 0.5質量份、及矽烷偶合劑(3 —曱基丙烯醯氧基丙基三曱氧基矽烷(3〜 methacryloxypropyhrimethoxysilane)) 0·5 重量份之樹脂組 合物供於擠出機並於90°C下進行熔融混練,自安裝於擠出 機之尖端之T型模於90。(:下進行擠出而獲得厚度為〇.2 mm 之太陽電池用密封材料。 -24- 201226463 (太陽電池模組之製作:捲對捲) 使用實施例1〜16、比較例1〜1 5中所製作之太陽電池 保護片’根據下述要點製作太陽電池模組E。首先,準備如 圖1所示之於具有可撓性之由聚醯亞胺膜所構成之基板1 上形成薄膜狀之太陽電池元件2而成且捲繞為輥狀之太陽 電池A ’另一方面’準備兩個捲繞為輥狀之太陽電池保護片 B'。 其次’如圖4所示’捲出太陽電池a及兩個太陽電池 保護片B’、B’,隔著太陽電池a將太陽電池用密封材料b'、 B·彼此疊合而製成積層片C。再者,太陽電池用密封材料 B'、B1係疊合為此等太陽電池用密封材料彼此相對向之狀 態。其後’藉由於未加壓及減壓之大氣壓環境下,將上述 積層片C供於加熱至140。(:之一對輥D、d之間,一邊將積 層片C沿其厚度方向推壓’一邊加熱積層片c,使太陽電 池保護片B’、B,之太陽電池用密封材料B、B彼此接著一體 化’藉此利用太陽電池保護片B'、B'密封太陽電池元件2 而連續地製造太陽電池模組E,並將其捲取至未圖示之捲取 轴上。 針對藉由上述捲對捲法所得之太陽電池模組,根據下 述要點測定剝離強度及咼溫高濕耐久性。又,根據下述要 點確認上述太陽電池模組中之太陽電池用密封材料之渗出 之發生。將該等結果表示於表丨〜4。 (剝離強度 &lt; 基板一太陽電池保護片&gt; ) 於所得之太陽電池模組中’依據jIS K6854測定自太陽 25- 201226463 電池之基板剝離積層於太陽電池元件側之太陽電池保護片 時之剝離強度。再者,將太陽電池保護片發生剝離而無法 進行太陽電池模組之製作,而無法進行太陽電池模組之剝 離強度之評價者記為「_」。 (剝離強度&lt;太陽電池用密封材料_聚偏二氟乙烯片 &gt; ) 對於所得之太陽電池模組,依據JIS K6854測定自積層 於太陽電池元件側之太陽電池保護片之太陽電池用密封材 料Β剝離聚偏二氟乙烯片B1時之剝離強度。再者,將太陽 電池保濩片發生剝離而無法進行太陽電池模組之製作,而 無法進行太陽電池模組之剝離強度之評價者記為「_」。 (咼溫高濕耐久性〈接著〉) 厅仔之太陽電池模組依據JIS C8990所記之順序教 於听、相對濕纟85%之環境下,每5⑽小時觀察自開 放置太陽電池模組起至積層於太陽電池元件側之太陽電 :護片自太陽電池之基板剝離為止之時間,而測定確認 之時間》規定太陽電池模組之認證條件之爪c899〇 ^ 要求1000小時以卜夕μ Α η 之耐久性,可將於1000小時確認剝 1為接著性不I再者,於表卜4中,將太陽電池 關於11剝離而無法進行太陽電池模組之製作而無法進 為乂 —陽電池模組之接著性的高溫高濕耐久性之評價者 所記之程序於 (高溫高濕耐久性&lt;發電特性〉) 將所得之太陽電池模組依據m C89 -26 · 201226463 85C、相對濕度85%之環境下放置1〇〇〇小時計算出放置 後之最大功率Pmax相對於放置前之最大功率PmaxG之下降率 (Pmax/Pmax0xl〇〇[%])。再者,功率測定係使用Nisshin 丁⑽ 股伤有限A司製造之1116N。於表中將小時後 之最大功率之下降率為95%以上者記為「優」(exceUent), 未達95 /。者5己為「不良」(bad )。又將太陽電池保護片發 生剝離而無法進行太陽電池模組之製作而無法進行關於太 %電池模組之接著性的向溫高濕耐久性之評價者記為 「-」° (太陽電池用密封材料之滲出之發生) 針對剛製造後之太陽電池模組,以目視確認太陽電池 用密封材料是否自太陽電池模組之側面滲出。將太陽電池 用密封材料未自太陽電池模組之側面滲出者記為「優」 (excellent ),太陽電池用在、封材料b自太陽電池模組之侧 面滲出者記為「不良」(bad )。又,將太陽電池保護片發生 剝離而無法進行太陽電池模組之製作而無法進行關於太陽 電池用密封材料之滲出之產生的評價者記為「_」。 (抗腐钱性1 ) 藉由使用實施例1〜1 6、比較例1〜丨5中所製作之太陽 電池保護片,根據下述要點進行腐鉦促進試驗,來評價上 述太陽電池保護片之太陽電池用密封材料之抗腐蝕性。 於平面長方形之玻璃基板(厚度〇·7 μη〇之第一面之 整個面上’藉由濺鍍法形成由氧化鋅(Ζη〇 )所構成之透明 導電膜。其次’於玻璃基板之第二面上,藉由塗敷銀電極 -27- 201226463 糊並將其乾燥’形成2條具有一定寬度之帶狀集電電極, 而獲得模擬太陽電池元件。於模擬太陽電池元件中,集電 電極分別以集電電極之長度方向與玻璃基板之短邊方向平 行之方式且涵蓋玻璃基板之短邊方向之全長而形成。集電 電極係其長度方向之兩端部延長至玻璃基板之第一面侧而 形成’且被覆玻璃基板之短邊方向之端面與連接於此端面 之透明導電膜之兩端部。又,2條集電電極係以一定間隔形 成於玻璃基板之長邊方向。 其次’於2片太陽電池保護片之間,使該太陽電池用 密封材料成為與模擬太陽電池元件相對向之狀態來設置模 擬太陽電池元件,而獲得積層體。再者,2片太陽電池保護 片之中’設置於模擬太陽電池元件之玻璃基板之第二面上 之太陽電池保護片係藉由於其中央部預先設置平面長方形 之開口部而成為四方形框狀。以形成於模擬太陽電池元件 之玻璃基板之第二面上之2枚集電電極經由上述太陽電池 保護片之開口部露出至外部之方式,將太陽電池保護片設 置於模擬太陽電池元件之第二面上。並且,藉由使用真空 貼合機(SPIRE公司製造,spi- LAMINATOR 350 )將上述 積層體於80°C下加熱2.5分鐘而進行脫氣後,於12〇t下加 熱5分鐘,而製作模擬太陽電池模組。 依據JIS C8990將模擬太陽電池模組於85〇c、相對濕. 度8 5 /。之%境下放置丨〇〇〇小時。使用測試機測定放置前後 之各模擬太陽電池模組之2枚集電電極間之電阻值。將放 置後之模擬太陽電池模組之電阻值Ri ( Ω )相對於放置前之 -28- 201226463 模擬太陽電池模組之電 干於类〗 〇以5.5 Ω)的比(R丨/R())表 不於表1〜4。再者,於表丨〜4 ^ ^ 將放置後之模擬太陽電 、模..且中透明導電膜與太 ;、+ &amp; 电心用在封材料之間發生剝離 而…、法進行評價者記為「— 啻汕田—, 心者透明導電膜被太陽 電池用进封材料所腐蝕,模擬 T汽m π I苟電池模組之電阻變高, 而使電阻值比(l/Ro)變高。 (抗腐姓性2 ) 而評價比較例 藉由根據下述要點進行腐蝕促進試驗, K中製作之太陽電池用冑封材料之抗腐敍性 於平面長方形狀之玻璃基板(厚度〇 7//m)之第一面 之整個面上’藉由濺鍍法形成由氧化鋅(Zn〇)所構成之透 明導電膜。其次’於玻璃基板之第二面上,藉由塗敷銀電 極糊並使其乾燥而形成2條具有一定寬度之帶狀集電電 極而獲得模擬太陽電池元件。於模擬太陽電池元件中, 集電電極分別以集電電極之長度方向與玻璃基板之短邊方 向平行之方式且涵蓋玻璃基板之短邊方向之全長而形成。 集電電極係於其長度方向之兩端部延長至玻璃基板之第一 面側而开&gt;成,且被覆玻璃基板之短邊方向之端面與連接於 此端面之透明導電膜之兩端部。又,2條集電電極係以一定 間隔形成於玻璃基板之長邊方向。 其次’於模擬太陽電池元件之玻璃基板之第一面,依 序積層太陽電池用密封材料及厚度為〇.〇3 mm之聚偏二氣 乙稀片’並且於模擬太陽電池元件之玻璃基板之第二面, 依序積層太陽電池用密封材料及厚度為〇.〇3 mm之聚偏二 -29- 201226463 氟乙烯片,藉此獲得積層體。再者,積層於模擬太陽電池 元件之玻璃基板之第二面之太陽電池用密封材料及聚偏二 氟乙烯片’係藉由於該等之中央部預先設置平面長方形之 開口部,而製成四方形框狀。以形成於模擬太陽電池元件 之玻璃基板之第二面上之2牧集電電極經由上述太陽電池 用密封材料之開口部露出至外部之方式,於模擬太陽電池 元件之第二面上積層太陽電池用密封材料及聚偏二氟乙稀 片。並且’藉由使用真空貼合機(SpIRE公司製造,spi — LAMmATORSSO)’將上述積層體於8(rc下加熱2·5分鐘而 進行脫氣後,於12(TC下加熱5分鐘,而製作模擬太陽電池 模組。 依據JIS C8990將模擬太陽電池模組於85&lt;t、相對濕 度85%之環境下放置1000小時。使用測試機測定放置前後 之各模擬太陽電池模組之2枚集電電極間之電阻值。放置 後之模擬太陽電池模組之電阻值Rl ( Ω )相對於放置前之模 擬太陽電池模組之電阻值R〇(25.5i2)之比(Ri/Rq)為14。 隨著透明導電膜被太陽電池用密封材料所腐蝕,模擬太陽 電池模組之電阻變高,而使電阻值比(Ri/r〇 )變高。 (太陽電池模組之製作:真空層壓條件1 ) 使用實施例1 ' 2、6、10、12、14、16,比較例1、2 ' 4 5 13 1 5中所製作之太陽電池保護片,根據下述要點 製作圖7所示之太陽電池模組。首先,準備太陽電池保護 片、及於由具有可撓性之聚醯亞胺膜所構成之基板上形成 薄膜狀之太陽電池元件而成之太陽電池A。將太陽電池用保 -30- 201226463 蔓片積層於太陽電池A之太陽電池元件上而呈太陽電池元 件與太陽電池用密封材料B相對向之狀態,並且將太陽電 池保護片積層於太陽電池A之聚醯亞胺膜上而呈太陽電池 用密封材料B與聚醯亞胺膜相對向之狀態。藉此,獲得以 如下方式構成之積層體:於太陽電池A之太陽電池元件2 上隔著太陽電池用密封膜B積層聚偏二氟乙烯片4作為透 明之上側保護材料,並於太陽電池A之聚醯亞胺膜上隔著 太陽電池用密封膜B積層聚偏二氟乙稀片5作為下側保護 材料。 其次,藉由使用真空貼合機(SPIRE公司製造,SPI_ LAMINATOR 350 ) ’將積層體於80°C下加熱2分鐘而進行 脫氣後’於133 Pa之減壓環境下,於100〇C下加熱3分鐘, 邊將積層體沿其厚度方向推壓,一邊加熱積層體,而利 用太陽電池用密封材料B、B密封太陽電池a,並且隔著太 陽電池用密封材料B、B將太陽電池A及聚偏二氟乙稀片 4、5接著一體化,而製造圖7所示之太陽電池模組。 (太陽電池模組之製作:真空層壓條件1 )The number is shown in Table 4. The total content of maleic anhydride in the modified butylene-based resin is also shown in Tables 1 to 4. W used in Example 1 and Comparative Example - Teambethene-based resin was marketed by Mitsui Chemicals Co., Ltd. under the trade name "Admer XE(R) 7" (Comparative Example 3), except that it was used in combination with Example 1. A solar cell protective sheet was obtained in the same manner as ethylene instead of the modified butylene-based resin. (Comparative Examples 4 and 8) The same as Example 1 except that the specific amount shown in Table 4 of the modification polymerization using Tables 3 and 4 was used, (Comparative Example 5) A specific amount of maleic anhydride is added to ethylene instead of the modified butylene-based resin, and the glycidoxypropyltrimethoxydecane is obtained in such a manner as to obtain a solar cell protective sheet. In addition to the butene-ethylene copolymer -23-201226463, which has been modified with a specific amount of butene-containing dianhydride which is not modified by the use of cis-butyl, and has an ethylene content of Tables 3 and 4, instead of the modified butylene resin. A solar cell protective sheet was obtained in the same manner as in Example 1 except for the same. (Comparative Example 9) Except that an ethylene-vinyl acetate copolymer (vinyl acetate content: 28% by weight) was used instead of the modified butylene-based resin, and a specific amount of 3-glycidoxypropane shown in Table 4 was used. A solar cell protective sheet was obtained in the same manner as in Example 1 except for the tris-methoxydecane. (Comparative Example 1 5) A terpolymer obtained by radical polymerization of 77.2 parts by weight of ethylene, 20 parts by weight of ethyl acrylate, and 2.8 parts by weight of maleic anhydride (manufactured by Arkema Co., Ltd., Lotader HX8140) A solar cell protective sheet was obtained in the same manner as in Example 1 except that instead of the modified butadiene resin. Further, in the following Tables 1 to 1, the above terpolymer is simply referred to as "EEAM". (Comparative Example 1 6) A copolymer containing ethylene monovinyl acetate (vinyl acetate content: 28% by weight) 1 part by weight, an organic peroxide} (tertiary butyl peroxycarbonate 2-ethylhexyl) Ester) 35·35 parts by mass, crosslinking auxiliary (triallyl isocyanurate) 0.5 parts by mass, and decane coupling agent (3-nonyl propylene methoxy propyl tridecyloxy decane ( 3~ methacryloxypropyhrimethoxysilane)) 0.5 parts by weight of the resin composition was supplied to an extruder and melt-kneaded at 90 ° C from a T-die of 90 at the tip of the extruder. (: extrusion was carried out to obtain a solar cell sealing material having a thickness of 〇. 2 mm. -24- 201226463 (Production of solar cell module: roll-to-roll) Using Examples 1 to 16 and Comparative Examples 1 to 1 5 The solar cell protection sheet produced in the 'made solar cell module E' is formed according to the following points. First, a film is formed on the substrate 1 composed of a flexible polyimide film as shown in FIG. The solar cell element 2 is formed and wound into a roll-shaped solar cell A'. On the other hand, two solar cell protection sheets B' wound in a roll shape are prepared. Next, as shown in Fig. 4, the solar cell is rolled out. a and two solar cell protection sheets B' and B', and the solar cell sealing materials b' and B· are superimposed on each other via the solar cell a to form a laminated sheet C. Further, the solar cell sealing material B' The B1 is laminated so that the sealing materials for the solar cells are opposed to each other. Thereafter, the laminated sheet C is heated to 140 by the atmospheric pressure in an unpressurized and decompressed atmosphere. Between the rolls D and d, while the laminated sheet C is pushed in the thickness direction thereof, The laminated sheet c is used to integrate the solar cell protective sheets B' and B, and the solar cell sealing materials B and B are integrated with each other', thereby continuously manufacturing the sun by sealing the solar cell element 2 with the solar cell protective sheets B' and B'. The battery module E was taken up to a take-up reel (not shown). The solar cell module obtained by the above-described roll-to-roll method was used to measure the peel strength and the high temperature and high wet durability according to the following points. Moreover, the occurrence of bleeding of the sealing material for solar cells in the solar cell module was confirmed based on the following points. The results are shown in Tables 44. (Peel Strength &lt; Substrate-Solar Cell Protection Sheet&gt;) In the obtained solar cell module, the peel strength of the solar cell protective sheet deposited on the solar cell element side from the substrate of the solar cell 25-201226463 was measured in accordance with JIS K6854. Further, the solar cell protective sheet was peeled off and could not be removed. The evaluator of the solar cell module and the peeling strength of the solar cell module was recorded as "_". (Peel strength &lt; solar cell sealing material _ polyvinylidene fluoride Sheets> The peeling strength of the solar cell module obtained by peeling the polyvinylidene fluoride sheet B1 from the solar cell sealing material of the solar cell protective sheet laminated on the side of the solar cell element was measured in accordance with JIS K6854. The solar cell module is peeled off and the solar cell module cannot be produced, and the evaluation of the peel strength of the solar cell module cannot be performed as "_". (咼温高湿 durability<Next>) The solar cell module of Aberdeen is taught in the order of JIS C8990 in an environment of 85% relative humidity. Every 5 (10) hours, observe the solar power from the solar cell module on the side of the solar cell component. The time from the time when the sheet is peeled off from the substrate of the solar cell, and the time for the determination of the solar cell module is required to be 1000 hours for the durability of the claws of the solar cell module. 1 is the case where the adhesion is not the same. In Table 4, the solar cell is peeled off from 11 and the solar cell module cannot be fabricated, and the adhesion of the solar cell module cannot be achieved. The program recorded by the evaluator of high temperature and high humidity durability (high temperature and high humidity durability & power generation characteristics) The solar cell module obtained is placed in an environment of m C89 -26 · 201226463 85C and a relative humidity of 85%. The decrease rate of the maximum power Pmax after placement with respect to the maximum power PmaxG before placement (Pmax/Pmax0xl 〇〇 [%]) is calculated for 〇〇〇 hours. Further, the power measurement system used 1116N manufactured by Nisshin Ding (10) Strand Injury Limited A Division. In the table, the rate of decrease in the maximum power after the hour is 95% or more, which is regarded as "exceUent", which is less than 95 /. Person 5 is "bad". In addition, the solar cell protection sheet was peeled off and the solar cell module could not be produced, and the evaluation of the durability to the high-humidity durability of the solar cell module was not described as "-" ° (sea battery sealing) The occurrence of bleed out of the material) For the solar cell module immediately after manufacture, it is visually confirmed whether the sealing material for the solar cell oozes from the side of the solar cell module. The solar cell sealing material is not exuded from the side of the solar cell module as "excellent", and the solar cell used in and the sealing material b is exuded from the side of the solar cell module as "bad" (bad). . In addition, the evaluator who is unable to perform the production of the solar cell sealing material by peeling off the solar cell protective sheet and making it impossible to produce the solar cell module is referred to as "_". (Anti-corruption property 1) The solar cell protective sheet produced in Examples 1 to 16 and Comparative Examples 1 to 5 was subjected to a corrosion promotion test according to the following points to evaluate the solar cell protective sheet. Corrosion resistance of solar cell sealing materials. Forming a transparent conductive film made of zinc oxide by a sputtering method on a flat rectangular glass substrate (the entire surface of the first surface of the thickness 〇·7 μη〇). Secondly, the second on the glass substrate On the surface, by applying a silver electrode -27-201226463 paste and drying it to form two strip-shaped collector electrodes having a certain width, a simulated solar cell element is obtained. In the simulated solar cell element, the collector electrode is respectively The longitudinal direction of the collector electrode is parallel to the short side direction of the glass substrate and covers the entire length of the short side of the glass substrate. The collector electrode is extended to the first side of the glass substrate at both ends in the longitudinal direction. Further, the end faces of the short-side direction of the coated glass substrate and the both ends of the transparent conductive film connected to the end faces are formed. Further, the two collector electrodes are formed at a predetermined interval in the longitudinal direction of the glass substrate. Between the two solar cell protective sheets, the solar cell sealing material is placed in a state opposed to the pseudo solar cell element, and a pseudo solar cell element is provided to obtain a laminated body. Among the two solar cell protection sheets, the solar cell protection sheet disposed on the second surface of the glass substrate of the pseudo solar cell element has a square frame shape by providing a flat rectangular opening portion in the center portion thereof. The solar cell protection sheet is placed on the second surface of the analog solar cell element such that the two collector electrodes formed on the second surface of the glass substrate of the pseudo solar cell element are exposed to the outside through the opening of the solar cell protection sheet. On the other hand, the laminate was heated at 80 ° C for 2.5 minutes using a vacuum laminator (spi- LAMINATOR 350), and then heated at 12 Torr for 5 minutes. Make a simulated solar cell module. According to JIS C8990, the simulated solar cell module is placed in an environment of 85 ° C and a relative humidity of 8 5 / %. The test machine is used to measure the simulated sun before and after placement. The resistance value between the two collector electrodes of the battery module. The resistance value Ri ( Ω ) of the simulated solar battery module after placement is compared to the -28-201226463 simulated solar power before placement. The power supply module based on the dry〗 square to 5.5 Ω) ratio (R Shu / R ()) in Table 1 ~ 4 Table no. Furthermore, in the table 丨~4 ^ ^ will be placed after the simulation of the solar power, the mold and the transparent conductive film and too;, + &amp; electric core used in the sealing material is peeled off ..., the method of evaluation It is recorded as "- 啻汕田-, the transparent conductive film of the heart is corroded by the sealing material of the solar cell, and the resistance of the simulated T vapor m π I 苟 battery module becomes high, and the resistance value ratio (l/Ro) becomes High. (Anti-corruption 2) The evaluation of the comparative example was carried out according to the following points. The corrosion resistance test of the solar cell made of K was made into a flat rectangular glass substrate (thickness 〇 7). /m) The entire surface of the first side of the first surface is formed by a sputtering method to form a transparent conductive film composed of zinc oxide (Zn〇). Secondly, on the second side of the glass substrate, by coating a silver electrode The paste is dried and formed into two strip-shaped collector electrodes having a certain width to obtain a simulated solar cell element. In the simulated solar cell element, the collector electrodes are respectively in the longitudinal direction of the collector electrode and the short side direction of the glass substrate. Parallel and cover the full length of the short side of the glass substrate The current collecting electrode is formed by extending both end portions in the longitudinal direction to the first surface side of the glass substrate, and forming an end surface of the coated glass substrate in the short side direction and two transparent conductive films connected to the end surface. Further, the two collector electrodes are formed at a certain interval in the longitudinal direction of the glass substrate. Next, the sealing material and thickness of the solar cell are sequentially laminated on the first surface of the glass substrate simulating the solar cell element. 〇3 mm of polyethylene dioxide sheet' and on the second side of the glass substrate simulating the solar cell element, sequentially sealing the solar cell sealing material and the thickness of 聚.〇3 mm 201226463 A vinyl fluoride sheet is used to obtain a laminate. Further, a solar cell sealing material and a polyvinylidene fluoride sheet which are laminated on the second surface of the glass substrate simulating the solar cell element are used in advance by the central portion of the a rectangular rectangular opening is formed to form a square frame shape, and the two collector electrodes formed on the second surface of the glass substrate simulating the solar cell element are passed through the solar cell sealing material. The mouth is exposed to the outside, and a solar cell sealing material and a polyvinylidene fluoride sheet are laminated on the second surface of the simulated solar cell element. And 'by using a vacuum laminator (SpIRE, spi - LAMmATORSSO) ) 'The above laminated body was degassed by heating at 8 rc for 2·5 minutes, and then heated at 12 (TC for 5 minutes to make a simulated solar cell module. According to JIS C8990, the solar cell module was simulated at 85 &lt;;t, the relative humidity of 85% environment for 1000 hours. Use the test machine to measure the resistance between the two collector electrodes of each simulated solar cell module before and after placement. The resistance value of the simulated solar cell module after placement Rl The ratio (Ri/Rq) of (Ω) to the resistance value R〇(25.5i2) of the simulated solar cell module before placement is 14. As the transparent conductive film is corroded by the solar cell sealing material, the resistance of the simulated solar cell module becomes high, and the resistance value ratio (Ri/r〇) becomes high. (Production of Solar Cell Module: Vacuum Lamination Condition 1) The solar cell protective sheet produced in Example 1, '2, 6, 10, 12, 14, 16 and Comparative Example 1, 2' 4 5 13 1 5 was used. The solar cell module shown in Fig. 7 was produced according to the following points. First, a solar cell protective sheet and a solar cell A in which a film-shaped solar cell element is formed on a substrate made of a flexible polyimide film are prepared. The solar cell is laminated on the solar cell element of the solar cell A, and the solar cell element and the solar cell sealing material B are opposed to each other, and the solar cell protective sheet is laminated on the solar cell A. The polyimide film B is in a state in which the sealing material B for the solar cell and the polyimide film are opposed to each other. In this way, a laminate having the above-described configuration is obtained in which the polyvinylidene fluoride sheet 4 is laminated on the solar cell element 2 of the solar cell A via the solar cell sealing film B as a transparent upper protective material, and in the solar cell A. On the polyimide film, a polyvinylidene fluoride sheet 5 is laminated on the solar cell sealing film B as a lower protective material. Next, by using a vacuum laminator (SPI_ LAMINATOR 350), the laminate was heated at 80 ° C for 2 minutes and then degassed under a reduced pressure of 133 Pa at 100 ° C. After heating for 3 minutes, the laminate is heated in the thickness direction, and the laminate is heated, and the solar cell a is sealed by the solar cell sealing materials B and B, and the solar cell A is sealed via the solar cell sealing materials B and B. And the polyvinylidene fluoride sheets 4 and 5 are then integrated to manufacture the solar cell module shown in Fig. 7. (Production of solar cell module: vacuum lamination condition 1)

使用比較例1 6中所製作之太陽電池用密封材料,根據 下述要點製作圖7所示之太陽電池模組。首先,準備太陽 電池用Φ封材料、厚度為〇 Q3 mm之聚偏二氟乙稀片、及 於由具有可撓性之聚醯亞胺膜所構成之基板丨上形成薄膜 狀之太陽電池元件2而成之太陽電池A。於太陽電池A之 太陽電池元件上’依序積層太陽電池用密封材料B及作為 透明上側保護材料之聚偏二氟乙烯片4,並且於太陽電池A •31· 201226463 之聚酿亞胺膜上’依序積層太陽電池用密封材料B及作為 下側保護材料之聚偏二氟乙烯片5,而獲得積層體。 其次,藉由使用真空貼合機(SpIRE公司製造,spl _ LAMINATOR 350 ),將積層體於帆下加熱2分鐘而進行 脫氣後,於133 Pa之減壓環境下,於1〇〇〇c下加熱3分鐘, 邊將積層體沿其厚度方向推壓,一邊加熱積層體,而利 用太陽電池用密封材料B、B密封太陽電池A,並且隔著太 陽電池用密封材料B、B將太陽電池a及聚偏二氟乙烯片 4' 5接著一體化,而製造圖7所示之太陽電池模組❶ (太陽電池模組之製作:真空層壓條件2 ) 使用實施例1、2、6、1 〇、12、14、16,比較例1、2、 4、5、1 3、1 5中所製作之太陽電池保護片,根據下述要點 製作圖7所不之太陽電池模組。首先,準備太陽電池保護 片、及於由具有可撓性之聚醢亞胺膜所構成之基板上形成 溥膜狀之太陽電池元件而成之太陽電池Αβ將太陽電池用保 護片積層於太陽電池A之太陽電池元件上而呈太陽電池元 件與太陽電池用密封材料B相對向之狀態,並且將太陽電 池保護片積層於太陽電池A之聚醢亞胺膜上而呈太陽電池 用密封材料B與聚醯亞胺膜相對向之狀態。藉此,獲得以 如下方式構成之積層體:於太陽電池A之太陽電池元件2 上隔著太陽電池用密封膜B積層聚偏二氟乙烯片4作為透 明之上侧保濩材料’並於太陽電池A之聚醯亞胺膜上隔著 太陽電池用密封膜B積層聚偏二氟乙烯片5作為下側保護 材料。 ° •32· 201226463 其次, 其次,藉由使用真空貼合機(SPIRE公司製造, 35〇) ’將積層體於80°c下加熱2分鐘 脫氣後,於 氣後,於133 Pa之減壓環境下,於12〇&lt;t下加The solar cell module shown in Fig. 7 was produced in accordance with the following points using the sealing material for a solar cell produced in Comparative Example 16. First, a Φ sealing material for a solar cell, a polyvinylidene fluoride sheet having a thickness of 〇Q3 mm, and a solar cell element formed on a substrate formed of a flexible polyimide film are prepared. 2 made of solar battery A. On the solar cell component of the solar cell A, a solar cell sealing material B and a polyvinylidene fluoride sheet 4 as a transparent upper protective material are sequentially laminated, and on the solar nanotube film of the solar cell A • 31·201226463 A laminated body for a solar cell sealing material B and a polyvinylidene fluoride sheet 5 as a lower protective material is sequentially laminated. Next, by using a vacuum laminator (spl _ LAMINATOR 350, manufactured by SpIRE), the laminate was heated under a sail for 2 minutes to degas, and then under a reduced pressure of 133 Pa at 1 〇〇〇c After heating for 3 minutes, the laminate is heated in the thickness direction, and the laminate is heated, and the solar cell A is sealed by the solar cell sealing materials B and B, and the solar cell is sealed by the solar cell sealing materials B and B. a and the polyvinylidene fluoride sheet 4' 5 are then integrated to produce the solar cell module shown in Fig. 7 (the fabrication of the solar cell module: vacuum lamination condition 2) using the examples 1, 2, and 6, 1 〇, 12, 14, 16 and the solar cell protective sheets produced in Comparative Examples 1, 2, 4, 5, 1 3, and 1 5, the solar cell module shown in Fig. 7 was produced according to the following points. First, a solar cell protective sheet and a solar cell element in which a solar cell element is formed on a substrate made of a flexible polyimide film, and a solar cell protective sheet are laminated on the solar cell. In the solar cell element of A, the solar cell element and the solar cell sealing material B are opposed to each other, and the solar cell protective sheet is laminated on the polyimide film of the solar cell A to form a solar cell sealing material B and The polyimide film is relatively in a state of being oriented. In this way, a laminate body is formed in which the polyvinylidene fluoride sheet 4 is laminated on the solar cell element 2 of the solar cell A via the solar cell sealing film B as a transparent upper side protective material' On the polyimide film of Battery A, a polyvinylidene fluoride sheet 5 was laminated as a lower protective material via a sealing film B for a solar cell. ° •32· 201226463 Next, secondly, by using a vacuum laminator (manufactured by SPIRE, 35〇), the laminate was degassed by heating at 80 ° C for 2 minutes, and then decompressed at 133 Pa after gas. Under the environment, add at 12〇&lt;t

LAMINATOR i而進行 3分鐘, 、B密封太陽電池A,並且隔著太 將太陽電池A及聚偏二敗乙稀片 4、5接著一體化,而製造圖7所示之太陽電池模組。 (太陽電池模組之製作:真空層壓條件2 ) 使用比較例1 6中所製作之太陽電池用密封材料,根據 下述要點製作圖7所示之太陽電池模組。首先,準備太陽 電池用密封材料、厚度為〇〇3 mm之聚偏二氟乙烯片、及 於由具有可撓性之聚醯亞胺膜所構成之基板丨上形成薄膜 狀之太陽電池元件2而成之太陽電池a。於太陽電池A之 太陽電池元件上’依序積層太陽電池用密封材料B及作為 透明上側保護材料之聚偏二氟乙烯片4 ,並且於太陽電池A 之聚醯亞胺膜上,依序積層太陽電池用密封材料B及作為 下側保護材料之聚偏二氟乙烯片5,而獲得積層體。 其次’藉由使用真空貼合機(SPIRE公司製造,SPI — LAMINATOR 3 50 ),將積層體於8〇°C下加熱2分鐘而進行 脫氣後,於133 Pa之減壓環境下,於12(TC下加熱3分鐘, 一邊將積層體沿其厚度方向推壓,一邊加熱積層體,而利 用太陽電池用密封材料B、B密封太陽電池A,並且隔著太 陽電池用密封材料B、B將太陽電池A及聚偏二氟乙烯片 4、5接著一體化,而製造圖7所示之太陽電池模組。 -33- 201226463 針對藉由上述真空層壓而獲得之太陽電池模組,根據 上述要點確認太陽電池用密封材料之滲出之發生。進而, 針對上述太陽電池模組,根據下述要點測定剝離強度〈太 陽電池用密封材料—聚偏二氟乙烯片〉,並且根據下述要 點確認外觀特性。將該等結果表示於表5及6。 (剝離強度 &lt; 太陽電池用密封材料—聚偏二氟乙烯片 &gt; ) 對於所得之太陽電池模組,依據Jis κ6854測定自太陽 電池用密封材料Β剝離聚偏二氟乙烯片4時之剝離強度。 再者,,將太陽電池保護片發生剝離而無法進行太陽電池模 組之製作而無法進行太陽電池模組之剝離強度之評價者記 C太陽電池用密封材料 以目視確6忍所付之太陽電池模組中之太陽電池密封: 料是否產生氣泡或皺.褶。將太陽電池用密封材料未產生 泡及敏褶者記為「優」(exeellent),將太陽電池用密封材」 未產生氣泡但產生敵褶者記S「良」(gGGd),將太陽電 模組中之太陽電池用密封材料產生氣泡及敵相者記為「 良」(bad)。再者,將太陽電池保護片發生剝離而無法進 太陽電池模組之製作而無法進行太陽電池模組之 之評價者記為「一」。 -34· 201226463The LAMINATOR i was used for 3 minutes, B sealed the solar cell A, and the solar cell A and the polypyramidic tablets 4 and 5 were integrated next to each other to manufacture the solar cell module shown in Fig. 7. (Production of Solar Cell Module: Vacuum Lamination Condition 2) Using the sealing material for a solar cell produced in Comparative Example 1, the solar cell module shown in Fig. 7 was produced in accordance with the following points. First, a solar cell sealing material, a polyvinylidene fluoride sheet having a thickness of 〇〇3 mm, and a solar cell element 2 formed on a substrate formed of a flexible polyimide film are prepared. Made of solar cells a. On the solar cell element of the solar cell A, a solar cell sealing material B and a polyvinylidene fluoride sheet 4 as a transparent upper protective material are sequentially laminated, and sequentially laminated on the polyimide film of the solar cell A. A sealing material B for a solar cell and a polyvinylidene fluoride sheet 5 as a lower protective material were obtained to obtain a laminate. Secondly, by using a vacuum laminator (SPIRE company, SPI - LAMINATOR 3 50), the laminate was heated at 8 ° C for 2 minutes to degas, and then under a reduced pressure of 133 Pa, at 12 (When the laminate is heated for 3 minutes, the laminate is heated while being pressed in the thickness direction, and the laminate is heated, and the solar cell A is sealed by the solar cell sealing materials B and B, and the sealing materials B and B for the solar cell are interposed. The solar cell module A and the polyvinylidene fluoride sheets 4 and 5 are then integrated to manufacture the solar cell module shown in Fig. 7. -33- 201226463 For the solar cell module obtained by the above vacuum lamination, according to the above In the solar cell module, the peeling strength <the sealing material for solar cells—polyvinylidene fluoride sheet> is measured according to the following points, and the appearance is confirmed according to the following points. The results are shown in Tables 5 and 6. (Peel strength &lt; solar cell sealing material - polyvinylidene fluoride sheet &gt;) For the obtained solar cell module, it was determined according to Jis κ6854 The peeling strength of the solar cell sealing material Β when the polyvinylidene fluoride sheet 4 is peeled off. Further, the solar cell protective sheet is peeled off, and the solar cell module cannot be produced, and the peeling strength of the solar cell module cannot be performed. The evaluator remembers that the solar cell sealing material is used to visually confirm the solar cell seal in the solar cell module that is paid for: whether the material generates bubbles or wrinkles or pleats. The solar cell sealing material does not produce bubbles and pleats. For "exeellent", the solar cell sealing material "gGGd" is produced without the occurrence of air bubbles, but the solar cell sealing material is used to generate bubbles and enemy. It is marked as "bad". In addition, the solar cell protection sheet is peeled off and the solar cell module cannot be produced, and the evaluation of the solar cell module cannot be performed as "one". -34· 201226463

【II 實施例8 \q 〇 〇 〇 r4 v〇 o 70以上 3000以上 2.03 實施例7 in &lt;N 〇 〇 〇 § 0 01 〇 vd ^T) o 62以上 CN 2000 2.05 實施例6 Ο CN § m ο 〇 〇 m 00 (N &lt;N 寸 vd o 62以上 (N 3000以上 2.01 實施例5 Ο m ο 〇 m 卜 &lt;N ON o 70以上 3000以上 1.98 實施例4 σ\ 寸 ο 〇 〇 m &lt;N Os rn … o 1 70以上 0C ro 2000 2.04 實施例3 m ο 〇 〇 m 00 寸 CN v〇 &lt;5 V〇 o 70以上 〇s ro 3000以上 OS ON 實施例2 (N 〇 &lt;N oo 10.1 O 50以上| 卜 ro 3000以上 2.04 實施例1 σν ο 〇 〇 cn in (N 卜 o 70以上| 寸 3000以上 00 Ο) 丁烯成分(重量%) 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) 含量(重量份) 炫融流動速率(g/l〇min) 最大波峰溫度(°C) CU ?二】 X 'w- o Ph oO o 3-環氧丙氧基丙基三曱氧基矽烷(重量份) 剝離強度(N/cm) &lt;基板-太陽電池保護片&gt; Λ 装 ιΟ Ί i 1梯 ζ κ 齷¥ 冢V 高溫高濕耐久性&lt;接著&gt;(小時) 高溫高濕耐久性&lt;發電特性&gt; 太陽電池用密封材料之滲出性 電阻值比Ri/Ro 黏彈性儲存 模數 丁烯-乙烯共 聚物 改質丁烯樹 脂 樹脂物性 201226463 -ΐ 實施例16 S VO 〇 〇 〇 00 寸 CN vd 78以上 00 rn 3000以上 1.99 實施例15 〇 〇 〇 in 00 寸 (N v〇 (N o 78以上 ro 3000以上 2.01 實施例14 v〇 〇 〇 〇 〇 00 Tf CN v〇 d 50以上 CN — 2000 2.01 實施例13 ν〇 On 〇 〇 〇 οο 姦 〇 oi 00 in o 70以上 — 3000以上 2.03 i實施例12 | ν〇 〇 rn 〇 α\ 00 o (N 00 »r! o 78以上 — 1500 2.02 |實施例11 | in 〇 〇 卜 m 00 〇 cs 〇·&gt; o o | 78以上I Ο rn 2000 2.04 實施例10 〇 ο ο 00 寸 CN in 〇 | 25以上1 rn 寸· 2000 OS Ο) «·« |實施例9 I ν〇 CN 〇 ο ο in 00 寸 (N v〇 〇 50以上| 〇\ cn 3000以上| 2.00 丁烯成分(重量%) 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) 含量(重量份) 炫融流動速率(g/l〇min) 最大波峰溫度(°c) Gh X P Oh o X '—^ P o o 3-環氧丙氧基丙基三曱氧基矽烷(重量份) 剝離強度(N/cm) &lt;基板-太陽電池保護片&gt; Λ 装 t0 Ί i 友 C' ^ 1 ^ 2 K _辆1 娥螌 糠4&lt; 茶V 高溫高濕耐久性&lt;接著&gt;(小時) 高溫高濕耐久性 &lt; 發電特性&gt; 太陽電池用密封材料之滲出性 電阻值比Ri/R〇 黏彈性儲 存模數 丁烯-乙烯 共聚物 改質丁烯 樹脂 樹脂物性 -9e- 201226463 【ε ΐ 1比較例7 1 Ον 〇 〇 〇 ΓΠ 00 in CN 卜 Ο 1 1 1 不良 1 比較例6 g 〇 〇 〇6 〇 〇 (N 00 VO ON VO o Ο 1 00 rn 1 1 1 比較例5 〇 〇 | 67.0 00 卜 ι〇 in o Ο 1 〇\ 〇 1 1 不良 1 比較例4 1 〇 〇 〇 〇 〇 a\ m v〇 o ο 1 — 1 1 1 比較例3 1 〇 ί—Η 〇 〇 〇 〇 rn (N 1 21.2 | v〇 o ο 1 ΓΟ 1 1 不良 1 比較例2 S Os 〇 〇 〇 ο CO 00 ^T) CN 卜 v〇 o ο rn 1000 1 不良 4.55 比較例1 〇\ 〇 〇 〇 ο ΓΟ 们 00 CN o vd o ο (N 〇 1000 1 不良 4.41 丁烯成分(重量%) 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) 含量(重量份) 炫融流動速率(g/10min) 最大波峰溫度(°c) (X X S—X P 〇 ro /^N cd CLh X 〇 /^s _ «ifftii S—^ 3-丙烯醯氧基丙基三甲氧基矽烷(重量份) 剝離強度(N/cm) &lt;基板-太陽電池保護片&gt; Λ $ 装 Ο Ί i i银 錄Μ 慕V 高溫高濕耐久性&lt;接著&gt;(小時) 高溫高濕耐久性&lt;發電特性&gt; 太陽電池用密封材料之滲出性 電阻值比Ri/Ro 黏彈性儲 存模數 isf ®- 'Ί 幽 CO 丁稀乙稀共聚物 改質丁烯樹脂 樹脂物性 201226463 【寸ΐ 比較例15 ΕΕΑΜ 100 重量份 § ι&gt; ν〇 Ο 70以上 CN (N 3000 不良 不良| 10.5 比較例14 ΓΟ 〇 〇 〇 00 寸 CS SS 00 1 00 1 1 不良| 1 比較例13 〇 ΓΟ 〇 〇 〇 p Os ir! ο 70以上 〇\ ro 1000 1 1 比較例12 ν〇 〇 〇 〇 Ο 〇\ 00 Ο ο | 70以上| — 3000以上 不良| &lt;N (&gt; 比較例11 ν〇 m ο 〇 ο ΓΟ 00 寸 CS Ό vd 0.02 5以下 寸 〇 1000 1 不良 1 比較例10 0.01 〇 Ο ΓΛ 00 (N 卜 vd ο 10以上 〇 1000 1 不良 1 比較例9 EVA 100 重量份 泛 卜 1 104 I ο V) ο 1 〇 1 1 1不良| 1 |比較例8 1 1 〇 1 o.oi 1 〇 ο 寸 ο 1 〇 1 1 不良| 1 丁烯成分(重量%) 乙稀成分(重量%) 順丁烯二酸酐總含量(重量%) 含量(重量份) 炫融流動速率(g/10min) P s—✓ 〇, X 。。 /—Ν CQ CU X Ρ ο 3-環氧丙氧基丙基三甲氧基矽烷(重量份) 剝離強度(N/cm) &lt;基板-太陽電池保護片&gt; Λ 〇 Ί i 本 1 Z SE 镟¥ ^ V 高溫高濕耐久性&lt;接著&gt;(小時) 高溫高濕耐久性&lt;發電特性&gt; 太陽電池用密封材料之滲出性 電阻值比R^/Ro -κ 黏彈性儲存 模數 丁烯-乙烯 共聚物 改質丁烯樹 脂 樹脂物性 -se- 201226463 【二】 實施例16 VO 〇 〇 kD 00 寸 oi VO 70以上 70以上 實施例14 so VO 〇 〇 〇 m 00 呀 CN v〇 vd O 70以上 70以上 實施例12 〇 1«—^ Os 00 &lt;N 00 d 70以上 70以上 實施例10 Η 〇 〇 〇 m 00 寸 &lt;N m v〇 o 1 70以上 70以上 實施例6 g ΓΛ 〇 〇 00 &lt;N (N 寸 〇 70以上 70以上 實施例2 §: &lt;Ν 〇 (N OO o o 70以上 70以上 實施例1 v〇 Ο) ο 〇 〇 寸 00 oi 卜 v〇 o 70以上 70以上 丁烯成分(重量%) 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) 含量(重量份) 炫融流動速率(g/l〇min) 最大波峰溫度(°c) /-&quot;S ed £X r~-_^ » _ X Sw^ P 〇 N cd CU 了 X P o 3-環氧丙氧基丙基三甲氧基矽烷(重量份) 太陽電池用密封材料之滲出性 Λ π 袈 Ο »si Ί ύ 其 1梯 ζ Κ 史ί峡 鑛 m V 外觀特性 太陽電池用密封材料之滲出性 Λ μ: 敢 Ο »Si Ί 1银 ζ K 错Μ 赢V 外觀特性 黏彈性儲存模數 丁烯-乙烯共聚物 改質丁烯樹脂 1 樹脂物性 密Η 4&lt; w /—N (N 4: 刼漤 ^ (¾) 201226463 【9&lt;】 比較例16 EVA 100 重量份 ο ΓΛ ο 〇 1 1 1 1 1 1 比較例15 EEAM 100 重量份 s ν*ϊ ν〇 ο 〇 不良 〇 不良 〇 比較例13 〇 m 〇 ro 〇 〇 寸 On SO *&quot;·» in ο 〇 I不良| 〇 不良 〇 |比較例5 ] v〇 〇 〇 νο 00 ο 〇 |不良| 〇 不良 〇 比較例4 1 〇 Η 〇 〇 宕 0\ ΓΛ so ο 〇 1 1 1 〇 |比較例2 1 Os Ο 〇 00 yr\ &lt;N 卜 vd ο νο 〇 |不良| 〇 1不良I 〇 比較例1 ON ο 〇 00 &lt;N 卜 vd ο 〇 1不良I 〇 1不良1 〇 丁烯成分(重量%) 乙烯成分(重量%) 順丁烯二酸酐總含量(重量%) 含量(重量份) 炫融流動速率(g/10min) 最大波峰溫度(°c) cu X Vw/ P o m /—\ CQ CU X P ο »—Η 3-環氧丙氧基丙基三甲氧基矽烷(重量份) 3-丙烯醯氧基丙基三甲氧基矽烷(重量份) 太陽電池用密封材料之滲出性 Λ π 装 ο Ί i §掷 Z SE 綠¥ 甚V 外觀特性 太陽電池用密封材料之滲出性 Λ π 装 ο Ί i 1? Q ^ 1掷 z田 錄¥ Μ V 外觀特性 黏彈性儲存模數 丁烯-乙烯共聚物 改質丁烯樹脂 樹脂物性 密Η (N 刼漤 ^ 1¾) 索樊 ^ Η 圓6係表示使用有本發明之太陽電池 陽電池模組之另一例的模式縱剖面圖。[II Example 8 \q 〇〇〇r4 v〇o 70 or more 3000 or more 2.03 Example 7 in &lt;N 〇〇〇§ 0 01 〇vd ^T) o 62 or more CN 2000 2.05 Example 6 Ο CN § m ο 〇〇m 00 (N &lt; N inch vd o 62 or more (N 3000 or more 2.01 Example 5 Ο m ο 〇m 卜 &lt;N ON o 70 or more 3000 or more 1.98 Example 4 σ\ inch ο 〇〇m &lt N Os rn ... o 1 70 or more 0C ro 2000 2.04 Example 3 m ο 〇〇m 00 inch CN v〇&lt;5 V〇o 70 or more 〇s ro 3000 or more OS ON Example 2 (N 〇&lt;N Oo 10.1 O 50 or more | 卜ro 3000 or more 2.04 Example 1 σν ο 〇〇cn in (N 卜o 70 or more | inch 3000 or more 00 Ο) Butene component (% by weight) Ethylene component (% by weight) Butylene Total content of acid anhydride (% by weight) Content (parts by weight) Fractional flow rate (g/l〇min) Maximum peak temperature (°C) CU ? II] X 'w- o Ph oO o 3-epoxypropoxypropyl Base trimethoxy decane (parts by weight) Peel strength (N/cm) &lt;Substrate-solar battery protection sheet&gt; Λ Ο Ο 1 i 1 ladder ζ 龌 冢 冢V high High-humidity durability &lt;Next&gt; (hours) High-temperature and high-humidity durability &lt;Power generation characteristics&gt; Exudation resistance value of solar cell sealing material ratio Ri/Ro Viscoelastic storage modulus Butene-ethylene copolymer modification Butene resin resin physical properties 201226463 -ΐ Example 16 S VO 〇〇〇00 inch CN vd 78 or more 00 rn 3000 or more 1.99 Example 15 〇〇〇in 00 inch (N v 〇 (N o 78 or more ro 3000 or more 2.01 implementation) Example 14 v〇〇〇〇〇00 Tf CN v〇d 50 or more CN — 2000 2.01 Example 13 ν〇On 〇〇〇οο 〇 〇 oi 00 in o 70 or more — 3000 or more 2.03 i Example 12 | ν〇〇 Rn 〇α\ 00 o (N 00 »r! o 78 or more - 1500 2.02 | Example 11 | in 〇〇 m 00 〇cs 〇·&gt; oo | 78 or more I Ο rn 2000 2.04 Example 10 〇ο ο 00 inch CN in 〇 | 25 or more 1 rn inch · 2000 OS Ο) «·« |Example 9 I ν〇CN 〇ο ο in 00 inch (N v〇〇50 or more | 〇\ cn 3000 or more | 2.00 Butene Composition (% by weight) Ethylene component (% by weight) Total content of maleic anhydride % by weight) Content (parts by weight) Fractional flow rate (g/l〇min) Maximum peak temperature (°c) Gh XP Oh o X '—^ P oo 3-glycidoxypropyltrimethoxy decane (parts by weight) Peel strength (N/cm) &lt;substrate-solar battery protection sheet&gt; Λ 装 t0 Ί i 友 C' ^ 1 ^ 2 K _ vehicle 1 娥螌糠 4 &lt; tea V high temperature and high humidity durability &lt; And then (hours) high temperature and high humidity durability &lt; power generation characteristics&gt; solar cell sealing material exudation resistance value ratio Ri/R〇 viscoelastic storage modulus butene-ethylene copolymer modified butene resin resin Physical properties -9e- 201226463 [ε ΐ 1 Comparative Example 7 1 Ον 〇〇〇ΓΠ 00 in CN Ο 1 1 1 Bad 1 Comparative Example 6 g 〇〇〇 6 〇〇 (N 00 VO ON VO o Ο 1 00 rn 1 1 1 Comparative Example 5 〇〇| 67.0 00 卜 〇 〇 o 1 〇 〇 1 1 Bad 1 Comparative Example 4 1 〇〇〇〇〇a\ mv〇o ο 1 — 1 1 1 Comparative Example 3 1 〇ί —Η 〇〇〇〇rn (N 1 21.2 | v〇o ο 1 ΓΟ 1 1 Bad 1 Comparative Example 2 S Os 〇〇〇ο CO 00 ^T) CN Bu v〇o ο rn 1000 1 Bad 4.55 Comparative Example 1 〇\ 〇〇〇ο ΓΟ 00 CN o vd o ο (N 〇 1000 1 bad 4.41 butene component (% by weight) ethylene component (% by weight) maleic anhydride total content (% by weight) content ( Parts by weight) Flow rate (g/10min) Maximum peak temperature (°c) (XXS—XP 〇ro /^N cd CLh X 〇/^s _ «ifftii S—^ 3-Acryloxypropyl trimethyl Oxydecane (parts by weight) Peel strength (N/cm) &lt;Substrate-Solar cell protection sheet&gt; Λ $ Decoration Ί ii Silver recording 慕 Mu V High temperature and high humidity durability &lt;Next &gt; (hours) High temperature Wet Durability &lt;Power Generation Characteristics&gt; Exudation resistance value ratio of solar cell sealing material Ri/Ro viscoelastic storage modulus isf ®- 'Ί 幽 CO butyl ethylene dilute copolymer modified butene resin resin physical property 201226463 Inch ΐ Comparative Example 15 ΕΕΑΜ 100 parts by weight § ι&gt; ν 〇Ο 70 or more CN (N 3000 bad | 10.5 Comparative Example 14 ΓΟ 〇〇〇 00 inch CS SS 00 1 00 1 1 bad | 1 Comparative Example 13 〇ΓΟ 〇 〇〇p Os ir! ο 70+〇\ ro 1000 1 1 Comparative Example 12 ν〇〇〇〇Ο \ 00 Ο ο | 70 or more | — 3000 or more bad | &lt;N (&gt; Comparative Example 11 ν〇m ο 〇ο ΓΟ 00 inch CS Ό vd 0.02 5 or less 〇 1000 1 Bad 1 Comparative Example 10 0.01 〇Ο ΓΛ 00 (N Bu vd ο 10 or more 〇 1000 1 Bad 1 Comparative Example 9 EVA 100 parts by weight 1 104 I ο V) ο 1 〇 1 1 1 bad | 1 | Comparative Example 8 1 1 〇 1 o. oi 1 〇 ο inchο 1 〇1 1 bad | 1 butene component (% by weight) ethylene component (% by weight) maleic anhydride total content (% by weight) content (parts by weight) swell flow rate (g/10min) P S—✓ 〇, X. . /—Ν CQ CU X Ρ ο 3-glycidoxypropyltrimethoxydecane (parts by weight) Peel strength (N/cm) &lt;Substrate-solar battery protection sheet&gt; Λ 〇Ί i Ben 1 Z SE镟¥ ^ V High temperature and high humidity durability &lt;Next&gt; (hours) High temperature and high humidity durability &lt;Power generation characteristics&gt; Exudation resistance ratio of solar cell sealing material R^/Ro -κ Viscoelastic storage modulus Butene-ethylene copolymer modified butene resin resin physical property-se- 201226463 [II] Example 16 VO 〇〇kD 00 inch oi VO 70 or more 70 or more Example 14 so VO 〇〇〇m 00 呀 CN v〇vd O 70 or more 70 or more Example 12 〇 1 « - ^ Os 00 &lt; N 00 d 70 or more 70 or more Example 10 Η m 00 inch &lt; N mv〇o 1 70 or more 70 or more Example 6 g ΓΛ 〇〇00 &lt;N (N inch 〇 70 or more 70 or more Example 2 §: &lt; Ν 〇 (N OO oo 70 or more 70 or more embodiment 1 v〇Ο) ο 〇〇 inch 00 oi 卜 v〇o 70 or more 70 or more butene component (% by weight) ethylene component (% by weight) maleic anhydride total content Amount (% by weight) Content (parts by weight) Flow rate (g/l〇min) Maximum peak temperature (°c) /-&quot;S ed £X r~-_^ » _ X Sw^ P 〇N cd CU XP o 3-glycidoxypropyltrimethoxydecane (parts by weight) Exudation of solar cell sealing material π 袈Ο si »si Ί ύ 1 step ζ Κ History gorge m V Appearance characteristics Exudation of solar cell sealing material Λ μ: Dare Ο »Si Ί 1 silver ζ K Μ 赢 Win V Appearance characteristics Viscoelastic storage modulus Butene-ethylene copolymer modified butene resin 1 Resin physical property 4&lt; w /—N (N 4: 刼漤^ (3⁄4) 201226463 [9&lt;] Comparative Example 16 EVA 100 parts by weight ο ΓΛ ο 〇1 1 1 1 1 1 Comparative Example 15 EEAM 100 parts by weight s ν*ϊ ν〇ο 〇 〇 〇 〇〇 〇〇 On On On On On On On On On On On On On On On On On 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良 不良Example 4 1 〇Η 〇〇宕0\ ΓΛ so ο 〇1 1 1 〇|Comparative example 2 1 Os Ο 〇00 yr\ &lt;N 卜vd ο νο 〇|bad| 〇1 Poor I 〇Comparative Example 1 ON ο 〇00 &lt;N 卜vd ο 〇1 Poor I 〇1 Poor 1 〇 Butene component (% by weight) Ethylene component (% by weight) Total content of maleic anhydride (% by weight Content (parts by weight) Fractional flow rate (g/10min) Maximum peak temperature (°c) cu X Vw/ P om /—\ CQ CU XP ο »—Η 3-glycidoxypropyltrimethoxy Decane (parts by weight) 3-propenyloxypropyltrimethoxydecane (parts by weight) Exudation of solar cell sealing material π ο ο i §Throw Z SE Green ¥ V V Appearance characteristics Solar cell sealing material Exudation Λ π 装 Ί 1 i 1? Q ^ 1 throw z field record ¥ Μ V Appearance characteristics viscoelastic storage modulus butene-ethylene copolymer modified butene resin resin physical property (N 刼漤 ^ 13⁄4) Suo Fan ^ 圆 Circle 6 is a schematic longitudinal cross-sectional view showing another example of using the solar cell anode battery module of the present invention.

201226463 [產業上之可利用性] 根據本發明之太陽電池用密封材料,可 太陽電池用模組,可提供可長時間保持較高 陽電池模組。 【圖式簡單說明】 圖1係表示太陽電池之一例之縱剖面圖 圖2係表示使用有本發明之太陽電池用 陽電池模組之製造要點之一例的模式圖。 圖3係表示使用有本發明之太陽電池用 陽電池模組之一例的模式縱剖面圖。 圖4係表示使用有本發明之太陽電池用 陽電池模組之製造要點之—例的模式圖。 圓5係表示使用有本發明之太陽電池 陽電池模組之製造要點之―例的模式圖。 圖7係表示使用有本發明之太陽電池用 池模組之又-例的模式縱剖面圖。 【主要元件符號說明】 基材 1 太陽電池元件 3 太陽電池 4 上側保護材料 5 下側保護材料 有效率地製造 電池性能之太 〇 密封材料之太 在'封材料之太 密封材料之太 密封材料之太 在、封材料之太 密封材料之太 •41、 201226463 A 太陽電池 B 太陽電池用密封材料 B 1 氟樹脂片 B' 太陽電池保護片 C 積層片 D 輥 E 太陽電池模組 -42-201226463 [Industrial Applicability] The solar cell sealing material according to the present invention can provide a solar cell module which can maintain a high temperature for a long period of time. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a longitudinal sectional view showing an example of a solar battery. Fig. 2 is a schematic view showing an example of manufacturing points of a solar battery module for a solar battery according to the present invention. Fig. 3 is a schematic longitudinal sectional view showing an example of a solar battery module for a solar battery according to the present invention. Fig. 4 is a schematic view showing an example of manufacturing points of a solar battery module for a solar battery according to the present invention. The circle 5 shows a schematic diagram of an example in which the manufacturing points of the solar battery module of the present invention are used. Fig. 7 is a schematic longitudinal sectional view showing another example of the use of the solar battery module of the present invention. [Main component symbol description] Substrate 1 Solar cell component 3 Solar cell 4 Upper protective material 5 The underlying protective material efficiently manufactures the battery performance too. The sealing material is too much in the 'sealing material too sealing material too sealing material Too, sealing material too sealing material too 41, 201226463 A solar cell B solar cell sealing material B 1 fluororesin sheet B' solar cell protection sheet C laminated sheet D roller E solar battery module -42-

Claims (1)

201226463 七、申睛專利範圍: l一種太陽電池用密封材料,其含有改質丁 1〇0重量份與具有環氧基之㈣化合物0.1〜15重量份,:曰 改質丁稀系樹脂係利用順丁稀二酸酐接枝改質人旦: 重量/。之丁烯一乙烯共聚物而成者,且順丁 之總含量為〇.1〜3重量〜夂酐 2·如申請專利範圍第1項之太陽電池用密封材料, 中,矽烷化合物為下述通式(I)所示者, 、 R3n (I) R1 —Si—(〇R2)3.n (式中,R1表示3 —環氧丙氧基丙基(3 — giyCid〇xypropyi)或2_(3,4_環咸環己基)乙基,汉2 : 數為1〜3之院基’r3表示碳數為Η之 ^ 或1 )。 且η為0 3_—種太陽電池保護片,其係於申請專利範圍第1 太陽電池用密封材料之一面將氟樹脂片積層—體化而成^ 4.-種太陽電池模組之製造方法,其具有如:穑 層步驟,其係藉由隔著申請專利範圍第丨 〜双陽電池用 密封材料於太陽電池之上面積層透明之上侧保護材料,並 隔著申請專利範圍帛i項之太陽電池用密封材料於太陽電 池之下面積層下側保護材料,而製造積層冑;密封步驟, 其係一邊將該積層體沿其厚度方向推壓,_ 尽加熱,而利 用該太陽電池用密封材料密封該太陽電池。 -43- 201226463 5 ·如申请專利範圍第4項之太陽電池模組之製造方 法,其中’積層步驟係如下之步驟:將第一太陽電池保護 片積層於太陽電池之上面而呈該太陽電池與該太陽電池用 密封材料相對向之狀態,並且將第二太陽電池保護片積層 於该太陽電池之下面而呈該太陽電池與該太陽電池用密封 材料相對向之狀態,以製造積層體;該第一太陽電池保護 片,係於申請專利範圍第丨項之太陽電池用密封材料之_ 面將作為透明上側保護材料之氟樹脂片積層一體化而成 者,該第二太陽電池保護片,係於申請專利範圍第1項之 太陽電池用密封材料之一面將作為下側保護材料之氟樹脂 片積層一體化而成者。 6 ·種太陽電池模組之製造方法,其具有如下步驟:積 層步驟,其係將申請專利範圍第1項之太陽電池用密封材 料連續地積層於太陽電池元件上而製造積層片,該太陽電 池元件,係於具有可撓性之長條狀基板上將太陽電池元件 形成為薄膜狀而成之太陽電池中的太陽電池元件;密封步 驟’其係藉由一邊對該積層片沿其厚度方向施加推壓力一 邊加熱’而利用該太陽電池用密封材料密封該太陽電池之 太陽電池元件。 7 ·如申請專利範圍第6項之太陽電池模組之製造方 % I ’其中’積層步驟係如下之步驟:將太陽電池保護片積 層於太陽電池元件上而呈該太陽電池元件與該太陽電池用 密封材料相對向之狀態,以製造積層片;該太陽電池保護 片’係於申請專利範圍第1項之太陽電池用密封材料之一 • 44· 201226463 該太陽電池元件,係於 電池70件形成為薄膜狀 面將氟樹脂片積層一體化而成者; 具有可撓性之長條狀基板上將太陽 而成之太陽電池中的太陽電池元件 8.如申請專利範圍第6項之太陽電池模組之製造方 法’其中’積層步驟係於基板上進而連續地積層申請專利 範圍第1項之太陽電池用密封材料而製造積層片的步驟; 达封步驟係利用積層於太陽電池元件上之太陽電池用密 封材料與積層於基板上之太陽電池用密封材料來密封太陽 電池的步驟。 •45-201226463 VII. Applicable Patent Range: l A solar cell sealing material containing 0.1 parts by weight of modified butyl and 0.1 to 15 parts by weight of (4) compound having epoxy group: 曰 modified butyl resin Grafting of cis-succinic acid anhydride to humans: weight /. a butadiene-ethylene copolymer, and the total content of cis-butyl is 〇.1~3 by weight to phthalic anhydride. 2. The sealing material for solar cells according to claim 1 of the patent scope, wherein the decane compound is as follows As shown in the general formula (I), R3n (I) R1 - Si - (〇R2) 3.n (wherein R1 represents 3-glycidoxypropyl (3 - giyCid〇xypropyi) or 2_( 3,4_ ring-salt cyclohexyl)ethyl, Han 2: The number of the courtyards of the number 1 to 3 'r3 indicates that the carbon number is Η^ or 1). And η is a solar cell protective sheet, which is a method for manufacturing a solar cell module by laminating a fluororesin sheet on one of the sealing materials for the first solar cell of the patent application scope. The utility model has the following steps: a ruthenium layer step, which is a transparent upper side protective material on the surface layer of the solar cell by means of a sealing material of the application scope 丨 双 双 电池 battery, and the sun is separated by the patent application scope 帛i The sealing material for the battery is used to protect the material under the surface layer of the solar cell to form a laminated crucible; the sealing step is performed by pressing the laminated body along the thickness direction thereof, and heating the sealing material with the solar cell The solar cell. -43- 201226463 5 - The manufacturing method of the solar cell module of claim 4, wherein the step of laminating is a step of depositing a first solar cell protection sheet on top of the solar cell to present the solar cell and The solar cell sealing material is opposed to the state, and the second solar cell protection sheet is laminated under the solar cell to face the solar cell and the solar cell sealing material to form a laminate; A solar cell protection sheet, which is formed by integrating a fluororesin sheet of a transparent upper protective material, is formed by a solar cell sealing material according to the scope of the patent application, and the second solar cell protection sheet is attached to One of the sealing materials for solar cells of the first application of the patent scope is integrated with a fluororesin sheet layer as a lower protective material. (6) A method of manufacturing a solar cell module, comprising the steps of: laminating a solar cell sealing material of the first application of claim 1 to continuously laminate a solar cell element to form a laminated sheet, the solar cell The component is a solar cell element in a solar cell in which a solar cell element is formed into a film shape on a flexible strip substrate; the sealing step is performed by applying the laminated sheet along its thickness direction The solar cell element of the solar cell is sealed with the solar cell sealing material by pushing the pressure while heating. 7 · The manufacturing method of the solar cell module according to item 6 of the patent application scope is the following steps: the solar cell protection sheet is laminated on the solar cell element to present the solar cell element and the solar cell The sealing material is oppositely oriented to produce a laminated sheet; the solar cell protective sheet is one of the sealing materials for solar cells according to the first application of the patent scope. • 44· 201226463 The solar cell element is formed in 70 pieces of the battery. A solar cell element in which a fluororesin sheet is integrated into a film-like surface; a solar cell element in a solar cell in which a sun is formed on a flexible strip-shaped substrate. 8. A solar cell module according to claim 6 The manufacturing method of the group, wherein the step of laminating is performed on the substrate and continuously laminating the sealing material for the solar cell of the first application of the patent scope 1 to produce a laminated sheet; the step of sealing is to use a solar cell laminated on the solar cell element The step of sealing the solar cell with a sealing material and a sealing material for a solar cell laminated on the substrate. •45-
TW100104724A 2010-10-06 2011-02-14 Sealing material for solar cell, solar cell protective sheet and process for producing solar cell module TW201226463A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010226213 2010-10-06

Publications (1)

Publication Number Publication Date
TW201226463A true TW201226463A (en) 2012-07-01

Family

ID=46932784

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104724A TW201226463A (en) 2010-10-06 2011-02-14 Sealing material for solar cell, solar cell protective sheet and process for producing solar cell module

Country Status (1)

Country Link
TW (1) TW201226463A (en)

Similar Documents

Publication Publication Date Title
KR101388381B1 (en) Backing sheet for photovoltaic and method for repairing same
TWI479006B (en) Solar battery seal and flexible solar module
TWI504656B (en) &#34;sealing material for solar cell and solar cell module made using same&#34;
JP5570170B2 (en) Gas barrier unit, back sheet for solar cell module, and solar cell module
JP4889828B2 (en) Solar cell sealing material, solar cell protective sheet, and method for manufacturing solar cell module
TW201335262A (en) Solar cell module having excellent appearance and method for manufacturing same
CN102870226A (en) Protective sheet for solar cell module, and solar cell module
TW201144333A (en) Transparent film containing tetrafluoroethylene-hexafluoropropylene copolymer and having an organosilane coupling agent treated surface
JP6170042B2 (en) Method for obtaining a multilayer fluoropolymer film or sheet
JP2019093721A (en) Back sheet/front sheet having improved adhesiveness to sealing material and solar cell module manufactured using the same
TW201230361A (en) Thin-film solar cell module and method for producing the thin-film solar cell module
JP4977111B2 (en) Method for separating and collecting solar cell modules
EP2828078B1 (en) Use of a multilayer structure based on a halogenated polymer as a protective sheet of a photovoltaic module
TW201125141A (en) Sealing material film for solar cell module and method for producing solar cell module
KR101076787B1 (en) Preparation Method of Backside Protective Sheet for Solar Cell Module
JP2015073048A (en) Solar cell protective sheet, and solar cell module
JP2012099803A (en) Solar cell sealing sheet, production method therefor, and method of manufacturing flexible solar cell module
TW201226463A (en) Sealing material for solar cell, solar cell protective sheet and process for producing solar cell module
WO2014042217A1 (en) Solar cell protective sheet and flexible solar cell module
JP5514910B2 (en) Method for manufacturing a solar cell module
JP5601701B2 (en) Manufacturing method of resin joined body, and solar cell module using resin joined body manufactured thereby
JP2012079884A (en) Manufacturing method of flexible solar cell module
JP5696172B2 (en) Protective sheet for solar cell, method for producing the same, and solar cell module
JP2013199030A (en) Solar cell protection sheet and flexible solar cell module
TW201412555A (en) Solar cell module filling piece, solar cell sealing piece, and manufacturing method of solar cell module