201225407 F54yyuU2〇TW 34913twf.doc/t 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電池系統,且特別是有關於一種 燃料電池系統。 【先前技術】 燃料電池具有高效率、低噪音、無污染的優點,是符 合時代趨勢的能源技術。燃料電池區分為多種類型,常見 的為質子父換膜型燃料電池(proton exchange membrane fuel cell,PEMFC)以及直接甲醇燃料電池⑼贈methan〇1 fuel cell, DMFC)。以直接甲醇燃料電池為例,直接甲醇燃 料電池的燃料電池模組是由質子交換膜(pr〇t〇n exchange membmnce)及設置於質子交換膜兩侧的陰極(cath〇de)與陽 極(anode)所組成。 直接曱醇燃料電池是使用曱醇水溶液作為燃料,且直 接曱醇燃料電池的反應式如下: 陽極:CH30H+H20 — C02+6H++6e-陰極:3/2〇2+6H++6e·—> 3H2〇 總反應:CH3OH+H2〇+3/202 C02+3H20 由反應式可知水(H2〇)為陽極的反應物也是陰極的產 物’因此’有效利用陰極產生之水供陽極利用,將可有效 減少燃料電池的整體體積。此外,直接曱醇燃料電池的曱 醇水溶液需維持一定的濃度,以免發生嚴重的甲醇穿透 (methanol crossover)現象,降低燃料電池效率及壽命。通 201225407 rD^yyuu^OTW 34913twf.doc/t 常醇燃料電池需配置有曱醇燃料罐,其裝載純曱醇 或疋向濃度的曱醇水溶液,以適時補充燃料電池反應所需 的燃料。 、直接曱義料電池操作時,陽極產物中同時具有未反 應完之曱醇水溶液以及反應所產线⑽混合在一起,因 此C02必須透過一些開口將其排除以免造成系統内部壓 力,大^因此’如果燃料電池系統需要翻轉,必須找出可 -丨 以彳疋么、抗衡重力的氟體排除以及液體抽取的設計,以使系 統順利操作。 因此’諸多專利’如美國專利US2〇〇7/〇19〇3〇7號、 美國專利 US 2005/0058862 號、美國專利 US2〇〇7/〇〇77469 號' 中國專利cn101399348號、美國專利uS2〇〇9/〇24659〇 號以及美國專利US6,462,799號等,皆有提出將反應後的 氣液混合物分離的相關技術。舉例而言,美國專利us 2005/^)058862號提出一種氣液分離器,其在一封閉空間中 透過壓力應用親水阻氣材料與疏水透氣材料將反應後的混 Φ *物進行氣液分離。—般而言,親水阻氣材料在單位體積 體通透率不大。因此’為了液體通透量,需要採用增 加面積的方式。此一設計將無法符合產品體積精簡的需求。 進一步而言,US2005/0058862之設計,其分離器僅有 ,疏水材料的兩個壓力釋放端,在混合物流進分離器的流 篁較大時,氣液分離器内的液體若無法以足夠大的速率排 ,:則氣液分離器内將發生壓力過大而使液體通過疏水透 氣材料的情形造成漏水。在混合物流進分離器的流量較小 201225407 D4yy_TW 34913twf.doc" 時,氣液分離器内的液體可能完全被排出,而使發生親水 阻氣材料無法浸潤於液體中造成氣體由親水阻氣材料排放 (也就是會產生漏氣)。整體而言,要有效地將燃料電池中 反應後的氣體自混合物中排除及解決整體壓力平衡的問 題,並且回收可重複使用的液體,仍是一項重要的課題。 【發明内容】 本發明提供一種燃料電池系統,可以在壓力平衡的狀 態下,將反應後的氣液混合物分離以維持系統的穩定性。 本發明提出一種燃料電池系統,包括一薄膜電極組 (membrane electrode assembly,MEA)、一陰極、一陽極、 一氣液傳輸元件、一液體回收元件以及一液體幫浦。陰極 配置於薄膜電極組的一側。陽極配置於薄膜電極組的另一 側,且與陰極相對。陽極具有一陽極出口與一陽極入口, 而陰極具有一陰極出口與一陰極入口。氣液傳輸元件具有 一與陽極連接之第一端,且氣液傳輸元件包括一氣液分離 部以及一緩衝部。氣液分離部位於緩衝部與第一端之間, 其中氣液分離部具有一第一疏水透氣材料以及一第一親水 阻氣材料。液體回收元件配置於第一親水阻氣材料的— 側’且液體回收元件連接於陽極入口。陽極所排出的二排 出流體同時地流經第一疏水透氣材料以及第一親水阻氣材 料且有至少部分由氣液傳輸元件的氣液分離部透過第1親 水阻氣材料流入液體回收元件以作為一回收液體。液體'幫 浦連接於液體回收元件,以控制回收液體透過第一親水阻 201225407 FMWW20TW 34913twf.doc/t 氣材料流入陽極入口的流量。 基於上述,本發明採用壓力維持元件來維持氣液傳輸 元件内部的壓力並在氣液傳輸元件中分離燃料電池系統反 應後的氣液混合物。因此,燃料電池系統可以在穩定的壓 力狀態下持續進行氣液混合物的分離並回收可重複使用的 回收液體。此外,燃料電池系統中的氣液分離作用不受重 力方向的改變而影響,所以燃料電池系統不需以固定的方 鲁 向設置而可以應用於可攜式產品中。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1繪示為本發明第一實施例的燃料電池系統示意 圖:請參照圖卜燃料電池系、统100包括-薄膜電極組 (A)ll〇陰極120、一陽極13〇、一氣液傳輸元件14〇、 —液體回收元件15G以及-液體幫浦170。陰極120配置 於薄膜電極組110的-側,陽極13〇配置於薄膜電極組11〇 的A—側,且陽極13〇與陰極12〇相對。陰極12〇具有一 陰極入口 122以及—陰極出口 134 ’而陽極13G具有-陽 口 132以及一陽極出口 134。氣液傳輸元件14〇具有 一與陽,出口 134連接之第—端14GA。液體回收元件150 配Jl?氣液傳輸元件Μ〇的一側,且液體回收元件⑼連 接於陽極13G的陽極人口 132。此外,賴幫浦Π0連接 於液體回收元件15〇,且液體回收元件15〇實質上是透過 201225407 rj^yuuzOTW 34913twf.doc/t 液體幫浦170連接於陽極丨3〇的陽極入口 i32。 具體而s,氣液傳輸元件14〇包括一氣液分離部142 以及一緩衝部144。氣液分離部142位於緩衝部144與第 一端140A之間,其中氣液分離部142具有一第一疏水透 氣材料142A以及一第一親水阻氣材料142B。液體回收元 件150貫質上配置於第一親水阻氣材料142B的一側。陽 極13 0在反應後所產生及剩餘的物質會以氣液混合物的狀 態排出,此氣液混合物在本實施例中例如稱為排出流體。 在本實施例中,排出流體例如會同時地流經第一疏水 透氣材料142A以及第一親水阻氣材料142b且有至少一部 刀的排出流體可以由氣液傳輸元件140的氣液分離部142 透過第一親水阻氣材料142B流入液體回收元件15〇以作 為一回收液體。此時,液體幫浦170便可用以控制回收液 體透過第'親水阻氣材料142B並流入陽極入口 132的流 量。 值得一提的是,緩衝部144可由一容積可調變的元件 構成,其可以維持氣液傳輸元件140内部的壓力。當排出 流體流入氣液傳輸元件140的較多時’緩衝部144的體積 可以增大以容置較多量的排出流體。反之,緩衝部144的 體積則可以縮小。如此一來,氣液分離部142可在穩定的 壓力下使排出流體進4亍氣液分離’並且藉此維持燃料電池 系統100的工作穩定性。 詳言之’排出流體的流量大於第一親水阻氣材料142B 的液體滲透量時,氣液分離部142可能因無法及時排出液 201225407 P549<»0020TW 34913twf.doc/t 體而承受高於正常狀態的壓力。缓衝部144為了维持 内的壓力可可以增大體積以容置較多量的排出流體牛 時’仍然位於氣液分離部142的部份排出流體會持續 氣液分離而使氣體由第—疏水透氣材料142A排出且估J 體由第-親水阻氣材料142B流入液體回收元件15〇。位二 緩衝部144中的部份排出流體則暫不進行氣液分離。如此 離部140中可保持穩定的壓力,以避免因不 使第一疏水透氣材料则水或是第一親 材料142B漏氣的情形。 、 ^^流體流量小於第一親水阻氣㈣142B 的狀體滲透1時’氣液分離部142可能因液體已大部分产 ^液體回收元件15G而呈現低於正常狀態的壓力。緩衝^ 二^ 了維持元件内的壓力而可縮減體積以使位於緩衝部 144中的部份排出流體重新流回氣液分離部⑷中。此 ===中,排出流體可再次流回氣液分 抹",ν進仃乳液》離。換言之,在排出流體流量較小 體可:=ΓΓ42中仍填充有足夠的排出流體且回收液 一、、卞 生。如此一來,氣液分離部140的第一親水 阻氣材料142Β可持續地、、其們认、六触a 親尺 材料_液财蚊第―親水阻氣 遍H 氣的特性。值得—提的是,本實施 :-疏水透氣材料峨與第一親水阻氣材料刚在 ί, 量上可隨材料的選擇或是設計的需求而 疋其不限疋於特定範圍中。 進步而呂,液體幫浦170以較大的速率抽吸回收液 201225407 ⑽雇 〇TW 34913twf_d〇C/t ϋ,第Γ親水阻氣材料142B可以具有較高的液體渗透 速率而使氣液分離部142内的壓力下降較快。一曰^、 離部142内的壓力低於正常狀態’緩衝部M4可 體積以使位於緩衝部144中的排出㈣流人^分離= 142中。藉此,燃料電池系統1〇〇實質上維持在科 衡的狀態。 動〜、十 相反地,絲體幫浦17〇以⑹、201225407 F54yyuU2〇TW 34913twf.doc/t VI. Description of the Invention: [Technical Field] The present invention relates to a battery system, and more particularly to a fuel cell system. [Prior Art] Fuel cells have the advantages of high efficiency, low noise, and no pollution, and are energy technologies that conform to the trend of the times. Fuel cells are divided into various types. Commonly, proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (9) are supplied by methan〇1 fuel cell (DMFC). Taking a direct methanol fuel cell as an example, a fuel cell module of a direct methanol fuel cell is a proton exchange membrane (pr〇t〇n exchange membmnce) and a cathode (cath〇de) and an anode (anode) disposed on both sides of the proton exchange membrane. ) composed of. The direct oxime fuel cell uses an aqueous solution of decyl alcohol as a fuel, and the reaction formula of a direct oxime fuel cell is as follows: Anode: CH30H+H20 — C02+6H++6e-Cathode: 3/2〇2+6H++6e· —> 3H2〇 Total reaction: CH3OH+H2〇+3/202 C02+3H20 From the reaction formula, it is known that water (H2〇) is the reactant of the anode and also the product of the cathode. Therefore, the water produced by the cathode is effectively utilized for anode utilization. It will effectively reduce the overall volume of the fuel cell. In addition, the sterol aqueous solution of the direct sterol fuel cell needs to maintain a certain concentration to avoid serious methanol crossover and reduce fuel cell efficiency and life. 201225407 rD^yyuu^OTW 34913twf.doc/t The regular alcohol fuel cell is equipped with a methanol fuel tank filled with pure sterol or a hydrazine aqueous solution of a concentration to supplement the fuel required for the fuel cell reaction. When the battery is directly operated, the anode product has both an unreacted sterol aqueous solution and a reaction product line (10) mixed together, so C02 must be removed through some openings to avoid internal pressure of the system, so that ' If the fuel cell system needs to be turned over, it is necessary to find out the design of the fluorine removal and the liquid extraction that can be used to make the system operate smoothly. Therefore, 'a number of patents' are exemplified by US Patent No. 2, 〇 〇 〇 〇 〇 〇 〇 、 、 美国 美国 美国 美国 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 399 The related art for separating the gas-liquid mixture after the reaction is proposed in U.S. Patent Application Serial No. 4,462,799. For example, U.S. Pat. In general, hydrophilic gas barrier materials have a small permeability per unit volume. Therefore, in order to reduce the amount of liquid permeation, it is necessary to adopt an increase in area. This design will not meet the needs of the product's compact size. Further, in the design of US2005/0058862, the separator has only two pressure releasing ends of the hydrophobic material, and if the flow of the mixture into the separator is large, the liquid in the gas-liquid separator cannot be sufficiently large. The rate of discharge,: the pressure will be too large in the gas-liquid separator to cause the liquid to pass through the hydrophobic gas permeable material to cause water leakage. When the flow rate of the mixture into the separator is small 201225407 D4yy_TW 34913twf.doc", the liquid in the gas-liquid separator may be completely discharged, so that the hydrophilic gas barrier material cannot be infiltrated into the liquid, causing the gas to be discharged from the hydrophilic gas barrier material. (that is, it will cause air leaks). On the whole, it is still an important issue to effectively remove the reacted gas from the fuel cell from the mixture and solve the problem of overall pressure balance and recover the reusable liquid. SUMMARY OF THE INVENTION The present invention provides a fuel cell system that can separate a gas-liquid mixture after reaction in a pressure balanced state to maintain system stability. The invention provides a fuel cell system comprising a membrane electrode assembly (MEA), a cathode, an anode, a gas-liquid transport element, a liquid recovery element and a liquid pump. The cathode is disposed on one side of the thin film electrode group. The anode is disposed on the other side of the thin film electrode assembly and opposed to the cathode. The anode has an anode outlet and an anode inlet, and the cathode has a cathode outlet and a cathode inlet. The gas-liquid transporting member has a first end connected to the anode, and the gas-liquid transporting member includes a gas-liquid separating portion and a buffer portion. The gas-liquid separation portion is located between the buffer portion and the first end, wherein the gas-liquid separation portion has a first hydrophobic gas permeable material and a first hydrophilic gas barrier material. The liquid recovery element is disposed on the side of the first hydrophilic gas barrier material and the liquid recovery element is coupled to the anode inlet. The two discharge fluid discharged from the anode simultaneously flows through the first hydrophobic gas permeable material and the first hydrophilic gas barrier material and is at least partially passed through the first hydrophilic gas barrier material into the liquid recovery component by the gas-liquid separation portion of the gas-liquid transport element A liquid is recovered. The liquid 'helper is connected to the liquid recovery element to control the flow of the recovered liquid through the first hydrophilic barrier 201225407 FMWW20TW 34913twf.doc/t gas material flowing into the anode inlet. Based on the above, the present invention employs a pressure maintaining member to maintain the pressure inside the gas-liquid transporting member and separate the gas-liquid mixture after the reaction of the fuel cell system in the gas-liquid transporting member. Therefore, the fuel cell system can continuously separate the gas-liquid mixture and recover the recyclable liquid under stable pressure. In addition, the gas-liquid separation in the fuel cell system is not affected by changes in the direction of gravity, so the fuel cell system can be applied to a portable product without a fixed rectangular arrangement. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. 1 is a schematic diagram of a fuel cell system according to a first embodiment of the present invention: Please refer to the drawing. The fuel cell system 100 includes a thin film electrode assembly (A), a cathode 120, an anode 13 , and a gas. The liquid transport element 14A, the liquid recovery element 15G, and the liquid pump 170. The cathode 120 is disposed on the - side of the thin film electrode group 110, the anode 13 is disposed on the A side of the thin film electrode group 11A, and the anode 13'' is opposed to the cathode 12''. Cathode 12A has a cathode inlet 122 and a cathode outlet 134' and anode 13G has a --port 132 and an anode outlet 134. The gas-liquid transport element 14A has a first end 14GA connected to the anode and outlet 134. The liquid recovery element 150 is provided with one side of the J1? gas-liquid transport element, and the liquid recovery element (9) is connected to the anode population 132 of the anode 13G. Further, the Laipu Π0 is connected to the liquid recovery member 15A, and the liquid recovery member 15 is substantially connected to the anode inlet i32 of the anode 丨3〇 through the 201225407 rj^yuuzOTW 34913twf.doc/t liquid pump 170. Specifically, the gas-liquid transporting element 14 includes a gas-liquid separating portion 142 and a buffer portion 144. The gas-liquid separation portion 142 is located between the buffer portion 144 and the first end 140A, wherein the gas-liquid separation portion 142 has a first hydrophobic gas permeable material 142A and a first hydrophilic gas barrier material 142B. The liquid recovery unit 150 is disposed on one side of the first hydrophilic gas barrier material 142B. The substance produced and remaining after the reaction of the anode 130 is discharged as a gas-liquid mixture, which in the present embodiment is referred to as, for example, a discharge fluid. In the present embodiment, the exhaust fluid may flow through the first hydrophobic gas permeable material 142A and the first hydrophilic gas barrier material 142b, respectively, and the discharge fluid having at least one knife may be separated from the gas-liquid separation portion 142 of the gas-liquid transport element 140. The first hydrophilic hydrophilic gas barrier material 142B flows into the liquid recovery member 15A as a recovered liquid. At this time, the liquid pump 170 can be used to control the flow of the recovered liquid through the 'hydrophilic gas barrier material 142B and into the anode inlet 132. It is worth mentioning that the buffer portion 144 can be constituted by a variable volume variable member which can maintain the pressure inside the gas-liquid transport member 140. When the discharge fluid flows into the gas-liquid transporting member 140 more, the volume of the buffer portion 144 can be increased to accommodate a larger amount of the discharge fluid. Conversely, the volume of the buffer portion 144 can be reduced. As a result, the gas-liquid separation portion 142 can separate the discharge fluid into the gas-liquid separation at a steady pressure and thereby maintain the operational stability of the fuel cell system 100. In detail, when the flow rate of the discharge fluid is greater than the liquid permeation amount of the first hydrophilic gas barrier material 142B, the gas-liquid separation portion 142 may be subjected to a higher than normal state due to the inability to discharge the liquid 201225407 P549<»0020TW 34913twf.doc/t body in time. pressure. In order to maintain the internal pressure, the buffer portion 144 can increase the volume to accommodate a larger amount of the discharged fluid cow. The portion of the discharged fluid that is still located in the gas-liquid separation portion 142 will continue to be separated from the gas to be gas-permeable. The material 142A is discharged and the J body is introduced into the liquid recovery member 15A from the first hydrophilic gas barrier material 142B. A part of the discharge fluid in the second buffer portion 144 is temporarily not subjected to gas-liquid separation. Thus, a stable pressure can be maintained in the portion 140 to avoid leakage of water or the first parent material 142B by the first hydrophobic material. When the fluid flow rate is less than that of the first hydrophilic gas barrier (four) 142B, the gas-liquid separation portion 142 may exhibit a lower pressure than the normal state because the liquid has largely produced the liquid recovery member 15G. The buffer can maintain the pressure in the element to reduce the volume so that a portion of the discharge fluid located in the buffer portion 144 flows back into the gas-liquid separation portion (4). In this ===, the discharge fluid can flow back to the gas-liquid separation ", ν into the emulsion. In other words, in the case where the discharge fluid flow rate is small, the body can be filled with sufficient discharge fluid and the recovery liquid is ablated. As a result, the first hydrophilic gas barrier material 142 of the gas-liquid separation unit 140 can be continuously, and the characteristics of the six-touch a-foot material _ liquid-rich mosquito-hydrophilic gas barrier H gas. It is worth mentioning that the present embodiment: - the hydrophobic gas permeable material 峨 and the first hydrophilic gas barrier material are just in terms of material selection or design requirements, and are not limited to a specific range. Progressively, the liquid pump 170 draws the recovery liquid at a large rate 201225407 (10) employs TW 34913twf_d〇C/t ϋ, the second hydrophilic gas barrier material 142B can have a higher liquid permeation rate and the gas-liquid separation unit The pressure within 142 drops faster. The pressure in the separation portion 142 is lower than the normal state. The buffer portion M4 is sized so that the discharge (four) in the buffer portion 144 is separated by 142. Thereby, the fuel cell system 1 is substantially maintained in the state of the balance. Move ~, ten Conversely, the silk body pump 17 〇 to (6),
^ 142B 陽極130產生的排出流體可能無法即時進行氣液分離,而 造成氣液分離部142的動超過正常㈣。此時,緩衝部 144可增大體積以使位於氣液分離部142巾的排出流體流 入緩衝部144中。換言之,本實施例可以藉著液體幫浦17〇 與緩衝部144的調整來維持氣液傳輪元件14〇内的壓力恆 定,以使氣液分離部142持續地進行氣液分離而不會發生 漏氣或是漏水的狀態。 液體幫浦170的設置可令燃料電池系統1〇〇隨不同的 使用需求來調整第一親水阻氣材料142B的液體滲透速 率。因此,本實施例不需為了提高氣液分離效率而使用大 面積的親水阻氣材料與疏水透氣材料,其有助於精簡燃料 電池系統100的體積。此外,體積可調變的緩衝部144可 使氣液分離部142正常地進行氣液分離,而有助於讓燃料 電池系統100正常地運作。 進一步來說’本實施例不需使排出流體中的氣體與液 體在一分離腔體内分層而達成彼此分離的作用。因此,燃 34913twf.doc/t 201225407^ 142B The discharge fluid generated by the anode 130 may not be immediately capable of gas-liquid separation, causing the movement of the gas-liquid separation portion 142 to exceed normal (4). At this time, the buffer portion 144 can increase the volume to allow the discharge fluid located in the gas-liquid separation portion 142 to flow into the buffer portion 144. In other words, in the present embodiment, the pressure in the gas-liquid transfer member 14 is constant by the adjustment of the liquid pump 17 and the buffer portion 144, so that the gas-liquid separation portion 142 continuously performs gas-liquid separation without occurrence. A state of air leakage or water leakage. The setting of the liquid pump 170 allows the fuel cell system 1 to adjust the liquid permeation rate of the first hydrophilic gas barrier material 142B with different usage requirements. Therefore, this embodiment does not require the use of a large-area hydrophilic gas barrier material and a hydrophobic gas permeable material in order to improve the gas-liquid separation efficiency, which contributes to streamlining the volume of the fuel cell system 100. Further, the volume-adjustable buffer portion 144 allows the gas-liquid separation portion 142 to perform gas-liquid separation normally, and helps the fuel cell system 100 to operate normally. Further, the present embodiment does not require the separation of the gas in the discharge fluid from the liquid in a separate chamber to achieve separation from each other. Therefore, burning 34913twf.doc/t 201225407
i^D^yvuu/OTW 料電池系統100不須根據重力方向以特定的方式設置。在 上下顛倒的狀態或是傾斜的狀態下,燃料電池系統100的 氣液分離部I42仍可正常地進行氣液分離,因此燃料電池 系統100可進一步應用在可攜式產品中,諸如電動車、相 機、行動電腦、手機、吸塵器等等。 圖2繪示為本發明第二實施例的燃料電池系統示意 圖。請參照圖2,燃料電池系統200包括一薄膜電極組11〇、 一陰極120、一陽極130、一氣液傳輸元件240、一液體回 { 收元件1知、一氣體幫浦26〇、一液體幫浦17〇以及一第二 疏水透氣材料246。在本實施例中,薄膜電極組11()、陰極 120、陽極130、液體回收元件150以及液體幫浦17〇的配 置方式與第一實施例所述相同,因此標示這些元件所採用 的元件符號相同於第一實施例所述。也就是說,陰極12〇 與陽極130配置於薄膜電極組11〇的相對兩側。液體回收 元件150配置於氣液傳輸元件240的一側’且液體回收元 件150連接於陽極160。此外,液體幫浦17〇連接於液體 ❿ 回收元件150,以控制回收液體的流量。 在本實施例中’氣液傳輸元件24〇包括有氣液分離部 242以及緩衝部244。氣液分離部242位於緩衝部244與陽 極[3〇之間,並具有一第一疏水透氣材料242八以及一第 -親水阻氣材料242B。液體回枚元件⑼冑質上配置於第 -親水阻氣材料242B的-側,且液體时元件15〇連接 於陽極130。如此-來氣液傳輸元件24〇分離出來的 回收流體可以藉由液體回收元件15〇來回收。 11 201225407 r^4yyuu/0TW 34913twf.doc/t 氣液傳輸元件240的緩衝部244例如定義出一流道(如 圖2所示),其例如疋迁迴狀流道。舉例而言,緩衝部244 可以疋管狀元件’或是一畫刻有流道的平板狀元件。此外, 氣液傳輸元件240具有一與陽極13〇連接之第一端24〇A 以及一與陰極12〇連接之第二端24〇B,以使流道與陰極出 口 124連通。燃料電池系統2〇〇中,第二疏水透氣材料246 配置於緩衝部244上,鄰近陰極出口 124,而氣體幫浦26〇 連接於陰極120的陰極入口 122並透過陰極12〇間接連接 至,液傳輸元件240之第二端240B。也就是說,本實施例 ·. 將氣液傳輸元件240連接於陰極120並在緩衝部244上進 一步地配置有第二疏水透氣材料246以將陰極12〇所產生 的氣體排出並且搭配氣體幫浦26〇的設置而有助於維持 液傳輸元件240内的壓力。 以^實施例而言,氣體幫浦260與第二疏水透氣材料 的設置有助於使氣液傳輸元件240内部的壓力維持恆 疋,且此壓力即為陰極120的洩壓壓力。因此,氣液分離 部242可持續地進行氣液分離作用,且第一疏水透氣材料鲁 242A以及第一親水阻氣材料242B不容易因壓力不適當而 發生漏水與漏氣的情形。也就是說’燃料電池系統2〇〇可 具有良好的氣液分離作用以更有效地將可重複使用的回收 液體回收起來。此外,排出流體可藉著毛細現象填滿於氣 液傳輸元件240中,並直接在氣液分離部242受到氣液分 離:本實施例不需按照固定的方向設置燃料電池系統200 以藉由重力使氣液分層並分離。所以燃料電池系統⑽ 12 201225407 rD^yvuuzOTW 34913twf.doc/t 可進一步應用於可攜式或是可活動式的產品當中。 圖3繪示為本發明第三實施例的燃料電池系統的示意 圖5请參照圖3,燃料電池系統3〇〇實質上與燃料電池系 統200大致相同,因此本實施例中部份元件符號與第二實 施例所述相同。亦即,這些相同的元件符號標相同的 =件。不過,在本實施例中,第二疏水透氣材料246的數 量例如為一個,並且氣液分離部242包括有第一疏水透氣 籲材料342A、第一親水阻氣材料342B以及一阻流結構 342C。阻流結構342C位於第一疏水透氣材料342A與陽 極130之間,並且至少一部份的第一親水阻氣材料342B 對應於阻流結構342C。 具體而言,本實施例的阻流結構342c例如是氣液分 離部34G内部凸伸的多個阻流凸起p。不過在其他的實施 ,中,阻流結構342C可以是配置於氣液分離部 340内的 夕個阻流塊(未繪示)或是一突縮管、一突擴管、一婉誕流道 ,,疏水性之孔洞材料。陽極130所排出的排出流體由第一 鸲J40A 入氣液傳輸元件34〇後,會先經過一側為第一 1水阻氣材料342B另-側為阻流結構342c的部份。此 0、’排出流體的流速會減緩而受到第一親水阻氣材料The i^D^yvuu/OTW battery system 100 does not have to be set in a specific manner depending on the direction of gravity. In the upside down state or the tilted state, the gas-liquid separation portion I42 of the fuel cell system 100 can still perform gas-liquid separation normally, so the fuel cell system 100 can be further applied to a portable product, such as an electric vehicle, Cameras, mobile computers, cell phones, vacuum cleaners, etc. Fig. 2 is a schematic view showing a fuel cell system according to a second embodiment of the present invention. Referring to FIG. 2, the fuel cell system 200 includes a thin film electrode assembly 11A, a cathode 120, an anode 130, a gas-liquid transport element 240, a liquid return, a receiving element 1, a gas pump 26, and a liquid gang. Pu 17 and a second hydrophobic gas permeable material 246. In the present embodiment, the arrangement of the thin film electrode assembly 11 (), the cathode 120, the anode 130, the liquid recovery member 150, and the liquid pump 17A is the same as that described in the first embodiment, and thus the component symbols used for these components are indicated. Same as described in the first embodiment. That is, the cathode 12A and the anode 130 are disposed on opposite sides of the thin film electrode group 11'. The liquid recovery element 150 is disposed on one side of the gas-liquid transport element 240 and the liquid recovery element 150 is coupled to the anode 160. Further, a liquid pump 17 is connected to the liquid helium recovery unit 150 to control the flow rate of the recovered liquid. In the present embodiment, the gas-liquid transporting member 24 includes a gas-liquid separating portion 242 and a buffer portion 244. The gas-liquid separation portion 242 is located between the buffer portion 244 and the anode [3" and has a first hydrophobic gas permeable material 242 and a first hydrophilic gas barrier material 242B. The liquid rewritable element (9) is disposed on the - side of the first hydrophilic gas barrier material 242B, and the element 15 is connected to the anode 130 in the liquid state. Thus, the recovered fluid separated from the gas-liquid transporting member 24 can be recovered by the liquid recovery member 15A. 11 201225407 r^4yyuu/0TW 34913twf.doc/t The buffer portion 244 of the gas-liquid transport element 240 defines, for example, a first-class track (as shown in Fig. 2), which is, for example, a relocated flow path. For example, the buffer portion 244 may be a tubular member or a flat member engraved with a flow path. Further, the gas-liquid transporting member 240 has a first end 24A connected to the anode 13A and a second end 24B connected to the cathode 12B to communicate the flow path with the cathode outlet 124. In the fuel cell system 2, the second hydrophobic gas permeable material 246 is disposed on the buffer portion 244 adjacent to the cathode outlet 124, and the gas pump 26 is connected to the cathode inlet 122 of the cathode 120 and indirectly connected to the cathode 12 through the cathode 12 The second end 240B of the transmission element 240. That is, in the present embodiment, the gas-liquid transport element 240 is connected to the cathode 120 and the second hydrophobic gas permeable material 246 is further disposed on the buffer portion 244 to discharge the gas generated by the cathode 12 并且 and matched with the gas pump. The 26 〇 setting helps maintain the pressure within the fluid transport element 240. In the embodiment, the arrangement of the gas pump 260 and the second hydrophobic gas permeable material helps to maintain the pressure inside the gas-liquid transport element 240 constant, and this pressure is the pressure relief pressure of the cathode 120. Therefore, the gas-liquid separation unit 242 can continuously perform gas-liquid separation, and the first hydrophobic gas permeable material 242A and the first hydrophilic gas barrier material 242B are less likely to leak and leak due to improper pressure. That is to say, the fuel cell system 2 can have a good gas-liquid separation function to more efficiently recover the recyclable recovered liquid. In addition, the discharge fluid can be filled in the gas-liquid transporting element 240 by capillary phenomenon and directly subjected to gas-liquid separation in the gas-liquid separation section 242: this embodiment does not need to arrange the fuel cell system 200 in a fixed direction to be gravity-receiving The gas and liquid are layered and separated. Therefore, the fuel cell system (10) 12 201225407 rD^yvuuzOTW 34913twf.doc/t can be further applied to portable or movable products. 3 is a schematic diagram of a fuel cell system according to a third embodiment of the present invention. Referring to FIG. 3, the fuel cell system 3 is substantially the same as the fuel cell system 200. Therefore, some components and symbols in this embodiment are The same is true for the second embodiment. That is, these same component symbols are labeled with the same =. However, in the present embodiment, the number of the second hydrophobic gas permeable material 246 is, for example, one, and the gas-liquid separation portion 242 includes the first hydrophobic gas permeable material 342A, the first hydrophilic gas barrier material 342B, and a flow blocking structure 342C. The flow blocking structure 342C is located between the first hydrophobic gas permeable material 342A and the anode 130, and at least a portion of the first hydrophilic gas barrier material 342B corresponds to the flow blocking structure 342C. Specifically, the flow blocking structure 342c of the present embodiment is, for example, a plurality of flow blocking projections p projecting inside the gas-liquid separating portion 34G. In other implementations, the choke structure 342C may be a choke block (not shown) disposed in the gas-liquid separation unit 340 or a shunt tube, a protruding tube, and a flow channel. , hydrophobic pore material. The discharge fluid discharged from the anode 130 is passed through the first enthalpy J40A into the gas-liquid transporting member 34, and then passes through the portion of the first water-blocking material 342B on the other side and the blocking-structure 342c on the other side. This 0, 'the flow rate of the discharged fluid will be slowed down and the first hydrophilic gas barrier material
342B 防作用流入液體回收元件15〇,並且未被排除的氣體則保 =於氣液傳輸it件34〇中並於第一疏水透氣材料342 敌出去。 θ烊言之,排出流體先期於氣液分離部342上游處(也就 疋―侧設有第一親水阻氣材料342Β另-側設有阻流結構 13 201225407 P54990020TW 34913twf.doc/t 342C的部份)藉由液體幫浦170抽取排出流體中的液體部 份進入液體回收元件150。如此一來,排出流體中進入氣 液分離部342下游處(也就是一側設有第一親水阻氣材料 342B另一侧設有第一疏水透氣材料342A的部份)的液體 量大幅減少。由於下游處的液體量的減少,使得氣液分離 部342下游處的第一疏水透氣材料342A被液體阻擋的面 積iW之減少。因此,氣體可以排除的面積增加,使得排氣 更為谷易’排氣效率提昇。 另外’排出流體一般由陽極130排出時具有一定的溫 度(例如50°C〜80。〇。排出流體剛排出陽極130就分離出 來的氣體所呈現的溫度較外界高溫,因而容易在透氣材料 上發生凝結,進而使得排氣面積被液體堵住而降低排氣效 率。為了避免上述情形’本實施例使得排出流體中的液體 成分先分離出來並流入於液體回收元件15〇中,之後才使 得氣體成份由相對下游的第一疏水排氣材料342A排出。 因此,在本實施例中’排放氣體時,排出流體的溫度已經 相對下降而不容易發生凝結。換言之,本實施例在相對下 游處才進行氣體的排放可以避免氣體凝結的現象發生,從 而達到理想的氣體排放效率。 圖4繪示為本發明第四實施例的燃料電池系統示意 圖。請參照圖4,燃料電池系統400除了第二實施例中所 述的—薄膜電極組110、一陰極丨2〇、一陽極13〇、一氣液 傳輸元件240、一液體回收元件150、一氣體幫浦260、一 液體幫浦17〇以及一第二疏水透氣材料246外,更包括一 201225407 P5495O020TW 34913twf.doc/t 第三疏水透氣材料410、氣體儲放元件42〇、第四疏水透氣 材料430以及第二親水阻氣材料44〇。 在本實施例中’第三疏水透氣材料410配置於緩衝部 244上’而且氣體儲放元件42〇與緩衝部244分別位於第 三疏水透氣材料410的相對兩側。也就是說,氣體儲放元 件420透過第三疏水透氣材料41〇連接於緩衝部244所定 義的流道。第四疏水透氣材料4 3 〇設置於氣體儲放元件4 2 0 φ 遠離緩衝部244的末端,而第二親水阻氣材料440與第四 疏水透氣材料430配置於氣體儲放元件420的相對兩側。 此外’第二親水阻氣材料44〇配置於氣體儲放元件42〇的 末端與液體回收元件150之間。 位於氣體儲放元件41〇中的氣體可以由設置在末端的 第四疏水透氣材料430排出至外界。因此,本實施例可以 利用第二疏水透氣材料246以及第四疏水透氣材料430的 氣體排放量來調整氣液傳輸元件240内的壓力。 更進一步而言’本實施例在氣體儲放元件420末端還 • 設有連接至液體回收元件150的第二親水阻氣材料440。 因此’氣體若在氣體儲放元件42〇中凝結成液體時,可以 藉由第二親水阻氣材料440將凝結出來的液體傳遞至液體 回收元件150中。 圖5繪示為本發明第五實施例的燃料電池系統。請參 照圖5 ’燃料電池系統5〇〇實質上是在第二實施例的燃料 電池系統200中的氣液傳出元件240新增了 一分支544以 及-壓力遞減元件(pressure dr〇p device)580。分支544透 15 201225407 P54990020TW 34913twf.doc/t 過壓力遞減元件580連通於液體回收元件15〇,以藉由分 支544與壓力遞減元件58〇的設置來調整液體回收元件 150中的液體濃度以及溫度。舉例而言,壓力遞減元件58〇 可以是一流速調節元件,其例如為元件徑〇 2mm、長度 8mm的細長元件。另外,壓力遞減元件58〇也可以是一親 水阻氣材料,其設置面積可小於第一親水阻氣材料242B 的面積。在-實施例中,可以造成(流量下降)的結構或 是材料設計都可以作為壓力遞減元件58〇的實施方式,而 以上描述之細元件規格以及材料面積僅是舉例說明之用, 而非用以限定本發明。 具體而&,壓力遞減元件580的設計條件可配合燃料 電池系統500本體每分鐘燃料消耗量而定。通過壓力遞減 元件580之流量僅需略大於或者等於電池本體的燃料消耗 量即可。舉例來說,若電池本體消耗量為3ml/min,則通 過壓力遞減元件580的液體通過量可以為3ml/min,或 >3ml/min,但不宜太大,也不*<3ml/min。若壓力遞減元 件580的液體通過量太小可能使親水阻氣材料242B無法 潤濕,而抽到氣體。 詳言之,分支544中例如填充有部分的排出流體,而 壓力遞減元件580可以控制這些排出流體由分支544流入 於液體回收元件150的流量。一般而言,由第一親水阻氣 材料242B流入液體回收元件15〇的液體在溫度上較緩衝 部244以及分支544内的液體高溫。因此,本實施例可藉 由壓力遞減元件580來控制分支544中液體的流量以使回 201225407 P54990020TW 34913twf.doc/t 收液體具有所需的溫度。 相似地’排出流體隨燃料電池系統500的輸出功率以 及曱醇滲透量不同而有不同的組成濃度。因此’緩衝部244 以及分支544中的液體組成成分不同於氣液分離部242中 的液體組成成分。若回收液體在特定組成濃度下可以較有 效率的被重複利用或是回收液體需控制在特定濃度時,則 燃料電池系統500可以藉著壓力遞減元件580來調整分支 φ 544中液體的流量以使液體回收元件15〇中的回收液體具 有所需的'/農度。值得一提的是,分支544中液體的流量與 液體流經第一親水阻氣材料242B的流量的總和為回收液 體透過液體幫浦170被抽吸回收的流量。不過,本實施例 並不限定分支544中液體的流量需大於或是等於排出流體 中液體流經第一親水阻氣材料242B的流量,使用者可以 隨不同的需求與產品設計來調整這些參數。值得一提的 是’在一實施例中,也可選擇以第三實施例所繪示的氣液 分離部342來取代圖5中的氣液分離部242。 ® &此外,圖6繪示為本發明第六實施例的燃料電池系統 不%圖。請參照圖6,燃料電池系統600除了第五實施例 中:^料電池系統5〇〇所具有的元件外,更包括一第二親水 阻氣材料690。此外,第二親水阻氣材料_配置於氣液 ^離部242與緩衝部施之間,且陽極13〇所排出的排出 f體流入輔魏體时元件及緩衝部244之前係先 流經第二親水阻氣材料69〇。也就是說,本實施例使得排 出流體中的氣㈣分A虹在氣液分離部 242完全地排 17 201225407 P54990020TW 34913twf.doc/t 除,以使其他元件(諸如緩衝部244、分支544以及液體回 收元件150)中僅有液體部份存在。如此一來,分支中 所填充的物質僅有液體而可避免氣體部分由分支544流入 液體回收元件150造成回收液體的汙染。在一實施例中, 也可選擇以第三實施例所繪示的氣液分離部342來取代圖 4中的氣液分離部242。 圖7繪示為本發明第七實施例的燃料電池系統示意 圖。請參照圖7,燃料電池系統7〇〇包括薄膜電極組11〇、 陰極120、陽極130、氣液傳輸元件34〇包括緩衝部244、 第一疏水透氣材料342A、第一親水阻氣材料342B以及阻 流結構342C)、液體回收元件15〇、氣體幫浦26〇、液體幫 浦170、第二疏水透氣材料246、分支544、壓力遞減元件 580、第二疏水透氣材料41〇、氣體儲放元件42〇、第四疏 水透氣材料430、第二親水阻氣材料44〇、69〇、燃料槽71〇、 =料幫浦720以及冷凝器73(^也就是說,本實施例是結 合了上述第二、三、四、五、六實施例的元件,並且新增 了燃料槽710、燃料幫浦,以及冷凝器73()所構成的燃 料電池系統700。 ,實施例中,大部分的構件之間的連接關係已於前述 多個實施例中所描述,因此以下將針對燃料槽則、燃料 幫浦720以及冷凝器bo的配置位置進行描述。燃料槽 例如疋透過燃料幫浦72〇連接於陽極13〇的陽極出口。另 外’冷凝器730則設置於緩衝部244上,位在第二疏水透 氣材料246與第一疏水透氣材料342Α、第-親水阻氣材料 201225407 P54950020TW 34913twf.doc/t 遍^_^結構342C所構饥魏絲 4上所述,本發_用連接於陽 ^ 進行氣液分離並回收液體,其中氣二=傳輪兀件來 由-緩衝部的設置而大致上維::傳=件=:藉 2的氣液分離部可以穩定且持續地將陽極所 進行氣液分離。氣液分離後的液體可以回收再=放 ’本發!的燃料電池系統具有穩定性良好的液體回 ^力平衡設計。另外,氣輯輸元件巾的氣體盘液體 不^層就可讀分離’因此_電池系、統在使料不需 ^特疋的方向設置而可進—步地應用在可攜式或是可活 式的產品當中。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發月,任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 <1 【圖式簡單說明】The 342B is prevented from flowing into the liquid recovery element 15〇, and the unremoved gas is retained in the gas-liquid transporting unit 34〇 and enemies in the first hydrophobic gas permeable material 342.烊In other words, the discharge fluid is advanced upstream of the gas-liquid separation unit 342 (that is, the first hydrophilic gas barrier material 342 is disposed on the side of the crucible side, and the choke structure 13 is provided on the other side. 201225407 P54990020TW 34913twf.doc/t 342C The liquid pump 170 draws a portion of the liquid in the effluent fluid into the liquid recovery element 150. As a result, the amount of liquid in the discharge fluid which enters the downstream of the gas-liquid separating portion 342 (i.e., the portion on the other side where the first hydrophilic gas barrier material 342B is provided with the first hydrophobic gas permeable material 342A) is greatly reduced. Due to the decrease in the amount of liquid at the downstream, the area iW of the first hydrophobic gas permeable material 342A downstream of the gas-liquid separation portion 342 is blocked by the liquid. As a result, the area where the gas can be removed increases, making the exhaust gas more efficient. In addition, the discharge fluid generally has a certain temperature when discharged from the anode 130 (for example, 50 ° C to 80 ° 〇. The gas which is discharged from the discharge fluid immediately after exiting the anode 130 exhibits a temperature higher than the outside temperature, and thus is easily generated on the gas permeable material. Condensation, which in turn causes the exhaust area to be blocked by the liquid to reduce the exhaust efficiency. To avoid the above situation, the present embodiment allows the liquid component in the discharged fluid to be separated first and flows into the liquid recovery element 15〇, and then the gas composition is made. It is discharged from the relatively downstream first hydrophobic exhaust material 342A. Therefore, in the present embodiment, when the gas is discharged, the temperature of the discharged fluid has relatively decreased and condensation does not easily occur. In other words, the present embodiment performs gas at a relatively downstream portion. The discharge can avoid the phenomenon of gas condensation, so as to achieve the desired gas discharge efficiency. Figure 4 is a schematic diagram of a fuel cell system according to a fourth embodiment of the present invention. Referring to Figure 4, the fuel cell system 400 is in addition to the second embodiment. The membrane electrode group 110, a cathode 丨2〇, an anode 13〇, a gas-liquid transmission The member 240, a liquid recovery component 150, a gas pump 260, a liquid pump 17A, and a second hydrophobic gas permeable material 246, further includes a 201225407 P5495O020TW 34913twf.doc/t third hydrophobic gas permeable material 410, gas storage The discharge member 42A, the fourth hydrophobic gas permeable material 430, and the second hydrophilic gas barrier material 44A. In the present embodiment, the 'third hydrophobic gas permeable material 410 is disposed on the buffer portion 244' and the gas storage member 42 and the buffer portion 244 are respectively located on opposite sides of the third hydrophobic gas permeable material 410. That is, the gas storage element 420 is connected to the flow path defined by the buffer portion 244 through the third hydrophobic gas permeable material 41. The fourth hydrophobic gas permeable material 4 3 〇 The gas storage element 4 2 0 φ is disposed away from the end of the buffer portion 244, and the second hydrophilic gas barrier material 440 and the fourth hydrophobic gas permeable material 430 are disposed on opposite sides of the gas storage element 420. Further, the second hydrophilic barrier The gas material 44 is disposed between the end of the gas storage element 42A and the liquid recovery element 150. The gas located in the gas storage element 41 can be a fourth hydrophobic gas-permeable material disposed at the end. The 430 is discharged to the outside. Therefore, the present embodiment can utilize the gas discharge amount of the second hydrophobic gas permeable material 246 and the fourth hydrophobic gas permeable material 430 to adjust the pressure in the gas-liquid transport element 240. Further, the present embodiment is in the gas. The end of the storage element 420 further includes a second hydrophilic gas barrier material 440 connected to the liquid recovery element 150. Therefore, if the gas condenses into a liquid in the gas storage element 42, the second hydrophilic gas barrier material can be used. 440 transfers the condensed liquid to the liquid recovery element 150. Figure 5 illustrates a fuel cell system in accordance with a fifth embodiment of the present invention. Referring to Figure 5, the fuel cell system 5 is substantially in the second embodiment. The gas-liquid outgoing element 240 in the fuel cell system 200 adds a branch 544 and a pressure dr〇p device 580. Branch 544 is permeable 15 201225407 P54990020TW 34913twf.doc/t The overpressure reducing element 580 is in communication with the liquid recovery element 15A to adjust the liquid concentration and temperature in the liquid recovery element 150 by the arrangement of the branch 544 and the pressure decreasing element 58A. For example, the pressure decreasing element 58A can be a flow rate adjusting element such as an elongated element having an element diameter of 2 mm and a length of 8 mm. Alternatively, the pressure reducing element 58A may be a hydrophilic gas barrier material having a smaller area than the first hydrophilic gas barrier material 242B. In the embodiment, the structure or material design that can cause (flow reduction) can be used as the embodiment of the pressure decreasing element 58〇, and the fine element specifications and material areas described above are for illustrative purposes only, rather than To limit the invention. Specifically, the design conditions of the pressure decreasing element 580 may be adapted to the fuel consumption per minute of the body of the fuel cell system 500. The flow through the pressure decrement element 580 need only be slightly greater than or equal to the fuel consumption of the battery body. For example, if the battery body consumption is 3 ml/min, the liquid throughput through the pressure decreasing element 580 may be 3 ml/min, or > 3 ml/min, but not too large, nor *3 ml/min. . If the liquid throughput of the pressure decreasing element 580 is too small, the hydrophilic gas barrier material 242B may not be wetted and the gas is drawn. In particular, branch 544 is, for example, filled with a portion of the effluent fluid, and pressure reducing element 580 can control the flow of these effluent fluids from branch 544 to liquid recovery element 150. In general, the liquid flowing into the liquid recovery element 15 from the first hydrophilic gas barrier material 242B is at a higher temperature than the liquid in the buffer portion 244 and the branch 544. Thus, this embodiment can control the flow of liquid in branch 544 by pressure decrement element 580 to bring back the desired temperature of the 201225407 P54990020TW 34913twf.doc/t liquid. Similarly, the discharge fluid has a different composition concentration depending on the output power of the fuel cell system 500 and the amount of sterol permeation. Therefore, the liquid composition in the buffer portion 244 and the branch 544 is different from the liquid composition in the gas-liquid separation portion 242. If the recovered liquid can be reused more efficiently at a particular composition concentration or if the recovered liquid is to be controlled at a particular concentration, the fuel cell system 500 can adjust the flow of liquid in the branch φ 544 by the pressure decreasing element 580 to The recovered liquid in the liquid recovery element 15 has the desired '/agronomy'. It is worth mentioning that the sum of the flow rate of the liquid in the branch 544 and the flow rate of the liquid flowing through the first hydrophilic gas barrier material 242B is the flow rate at which the recovered liquid is sucked and recovered through the liquid pump 170. However, this embodiment does not limit the flow rate of the liquid in the branch 544 to be greater than or equal to the flow rate of the liquid in the discharge fluid through the first hydrophilic gas barrier material 242B. The user can adjust these parameters according to different needs and product designs. It is to be noted that, in an embodiment, the gas-liquid separation portion 342 shown in the third embodiment may be selected instead of the gas-liquid separation portion 242 in Fig. 5. ® & Further, Fig. 6 is a view showing a fuel cell system according to a sixth embodiment of the present invention. Referring to Fig. 6, the fuel cell system 600 further includes a second hydrophilic gas barrier material 690 in addition to the components of the fifth embodiment. In addition, the second hydrophilic gas barrier material _ is disposed between the gas-liquid separation portion 242 and the buffer portion, and the discharge body discharged from the anode 13 流入 flows into the auxiliary-wet body element and the buffer portion 244 before flowing through the second hydrophilic portion. The gas barrier material is 69 〇. That is to say, the present embodiment causes the gas (4) in the discharge fluid to be divided into A. The gas-liquid separation portion 242 is completely discharged 17 201225407 P54990020TW 34913 twf.doc/t to make other components (such as the buffer portion 244, the branch 544, and the liquid) Only the liquid portion of the recovery element 150) is present. As a result, the material filled in the branch is only liquid and the gas portion is prevented from flowing into the liquid recovery member 150 by the branch 544 to cause contamination of the recovered liquid. In an embodiment, the gas-liquid separation portion 342 of the third embodiment may be selected instead of the gas-liquid separation portion 242 of FIG. Fig. 7 is a schematic view showing a fuel cell system according to a seventh embodiment of the present invention. Referring to FIG. 7, the fuel cell system 7A includes a thin film electrode assembly 11A, a cathode 120, an anode 130, and a gas-liquid transport element 34, including a buffer portion 244, a first hydrophobic gas permeable material 342A, a first hydrophilic gas barrier material 342B, and The flow blocking structure 342C), the liquid recovery element 15〇, the gas pump 26〇, the liquid pump 170, the second hydrophobic gas permeable material 246, the branch 544, the pressure decreasing element 580, the second hydrophobic gas permeable material 41〇, the gas storage element 42〇, the fourth hydrophobic gas permeable material 430, the second hydrophilic gas barrier material 44〇, 69〇, the fuel tank 71〇, the material pump 720, and the condenser 73 (ie, this embodiment is combined with the above The components of the second, third, fourth, fifth, and sixth embodiments, and the fuel cell system 700 of the fuel tank 710, the fuel pump, and the condenser 73 () are added. In the embodiment, most of the components are The inter-connecting relationship has been described in the foregoing various embodiments, so the following describes the arrangement positions of the fuel tank, the fuel pump 720, and the condenser bo. The fuel tank, for example, is connected to the anode through the fuel pump 72〇. 13〇 The anode outlet is further disposed on the buffer portion 244 at the second hydrophobic gas permeable material 246 and the first hydrophobic gas permeable material 342, the first hydrophilic hydrophilic gas barrier material 201225407 P54950020TW 34913twf.doc/t According to the 342C constructed hunger Weisi 4, the hair _ is connected to the Yang ^ for gas-liquid separation and recovery of the liquid, wherein the gas _= 兀 兀 来 - - - 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲 缓冲Piece =: The gas-liquid separation unit of 2 can stably and continuously separate the gas and liquid from the anode. The liquid after the gas-liquid separation can be recovered and the fuel cell system of the present invention has a stable liquid back. The force balance design. In addition, the gas disk of the gas transmission component towel can be read and separated without the layer. Therefore, the battery system can be applied to the portable device without the need to set the direction. The present invention is not limited to the spirit and scope of the present invention, and the present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. When you can make some changes Retouch, so the scope of the present invention as defined by the following claims and their equivalents of the scope of the appended <. 1] [Brief Description of the drawings
圖1繪示為本發明第一實施例的燃料電池系統示意 圖C 圖2繪示為本發明第二實施例的燃料電池系統示意 圖^ 圖3繪示為本發明第三實施例的燃料電池系統的示意1 is a schematic view of a fuel cell system according to a first embodiment of the present invention. FIG. 2 is a schematic diagram of a fuel cell system according to a second embodiment of the present invention. FIG. 3 is a diagram showing a fuel cell system according to a third embodiment of the present invention. Signal
圖C 圖4繪示為本發明第四實施例的燃料電池系統示意Figure C Figure 4 is a schematic view of a fuel cell system according to a fourth embodiment of the present invention
S 19 201225407 P54990020TW 34913twf.doc/t 圖。 圖5繪示為本發明第五實施例的燃料電池系統示意 圖。 圖6繪示為本發明第六實施例的燃料電池系統示意 圖。 圖7繪示為本發明第七實施例的燃料電池系統示意 圖。 【主要元件符號說明】 100、200、300、400、500、600、700 :燃料電池系 統 110 :薄膜電極組 120 :陰極 122 :陰極入口 124 :陰極出口 130 :陽極 132 :陽極入口 134 :陽極出口 140、240、340 :氣液傳輸元件 140A、240A、340A :第一端 142、242、342 :氣液分離部 142A、242A、342A :第一疏水透氣材料 142B、242B、342B :第一親水阻氣材料 144、244 :緩衝部 20 201225407 P54990020TW 34913twf.doc/t 150 :液體回收元件 170 :液體幫浦 240B :第二端 246:第二疏水透氣材料 260 :氣體幫浦 342C :阻流結構 410 :第三疏水透氣材料 420 :氣體儲放元件 430 :第四疏水透氣材料 440、690 :第二親水阻氣材料 544 :分支 580 :壓力遞減元件 710 :燃料槽 720 :燃料幫浦 730 :冷凝器 P:阻流凸起 21S 19 201225407 P54990020TW 34913twf.doc/t Figure. Fig. 5 is a schematic view showing a fuel cell system according to a fifth embodiment of the present invention. Fig. 6 is a schematic view showing a fuel cell system according to a sixth embodiment of the present invention. Fig. 7 is a schematic view showing a fuel cell system according to a seventh embodiment of the present invention. [Main component symbol description] 100, 200, 300, 400, 500, 600, 700: Fuel cell system 110: Thin film electrode group 120: Cathode 122: Cathode inlet 124: Cathode outlet 130: Anode 132: Anode inlet 134: Anode outlet 140, 240, 340: gas-liquid transmission elements 140A, 240A, 340A: first ends 142, 242, 342: gas-liquid separation parts 142A, 242A, 342A: first hydrophobic gas permeable material 142B, 242B, 342B: first hydrophilic resistance Gas material 144, 244: buffer portion 20 201225407 P54990020TW 34913twf.doc/t 150: liquid recovery element 170: liquid pump 240B: second end 246: second hydrophobic gas permeable material 260: gas pump 342C: flow blocking structure 410: Third hydrophobic gas permeable material 420: gas storage element 430: fourth hydrophobic gas permeable material 440, 690: second hydrophilic gas barrier material 544: branch 580: pressure decreasing element 710: fuel tank 720: fuel pump 730: condenser P : choke bump 21