TW201224035A - Resin composition having excellent transparency and moisture prevention properties, and sheet obtained by molding same - Google Patents

Resin composition having excellent transparency and moisture prevention properties, and sheet obtained by molding same Download PDF

Info

Publication number
TW201224035A
TW201224035A TW100136921A TW100136921A TW201224035A TW 201224035 A TW201224035 A TW 201224035A TW 100136921 A TW100136921 A TW 100136921A TW 100136921 A TW100136921 A TW 100136921A TW 201224035 A TW201224035 A TW 201224035A
Authority
TW
Taiwan
Prior art keywords
resin
ethylene
solar cell
resin composition
layer
Prior art date
Application number
TW100136921A
Other languages
Chinese (zh)
Other versions
TWI500682B (en
Inventor
Kazuya Tanaka
Kouichirou Taniguchi
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010288460A external-priority patent/JP5593215B2/en
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Publication of TW201224035A publication Critical patent/TW201224035A/en
Application granted granted Critical
Publication of TWI500682B publication Critical patent/TWI500682B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09D123/0815Copolymers of ethene with aliphatic 1-olefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

To provide a novel resin composition which is capable of providing a sheet that is obtained by molding the resin composition with sufficient transparency and moisture prevention properties. The resin composition contains a metallocene ethylene polymer (A) that has a density of 0.936-0.948 g/cm3 and a crystal melting enthalpy of 150-200 J/g and a crystal nucleator (B), and is characterized in that the ratio of the component (B) in the total amount of the components (A) and (B) contained therein is 0.01-3% by mass.

Description

201224035 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種可適宜使用於需要透明性及防濕性之 •用途中的樹脂組成物、及自其成形所得之片材。 . 【先前技術】 乍為除要求熱成形性、剛性、耐衝擊性等以外,亦要求防 濕! 生透明性等之片材之主材料,先前一直主要使用聚氣乙 稀(以下亦稱為「PVC」)。然而,由於pvc存在燃燒時所產 生之氣化氫氣體使燃燒爐劣化,或者氣化氫氣體污染環境之 情況,故而不斷研究PVC之替代材料。 作為此種PVC之替代材料’提出有直鏈狀低密度聚乙 烯、高密度聚乙烯、聚丙烯等。 然而,直鏈狀低密度聚乙烯雖透明性優異,但防濕性不充 为,就長期保存時内容物之穩定性之觀點而言,難謂為最佳 樹脂。 聚丙烯雖與直鏈狀低密度聚乙烯相比防濕性優異,但仍存 在對於用於要求更咼防濕性之用途中不具有充分之防濕性 ' 的問題。 另一方面,高密度聚乙烯雖與直鏈狀低密度聚乙烯或聚丙 稀相比防濕性優異’但存在透明性較差之問題。 因此’為了使南也、度聚乙浠之透明性提高,於專利文獻1 中’揭示有於密度為0.942〜0.965 g/cm3之高密度聚乙稀中 100136921 3 201224035 調配成核劑所得之樹脂組成物。又,於專利文獻2中,揭示 有於密度為0.94〜0.97 g/cm3之高密度聚乙烯中調配不含極 性基之脂環族飽和烴樹脂所得之樹脂組成物。 [先前技術文獻] [專利文獻] 專利文獻1 :日本專利特開200^92513號公報 專利文獻2 :日本專利特開2〇〇7_137968號公報 【發明内容】 (發明所欲解決之問題) 即便如上述專利文獻1般,於高密度聚乙烯中調配成核 劑,亦難以於片材成形時獲得充分之透明性。 又’藉由如上述專利文獻2般,於高密度聚乙烯中調配不 含極性基之脂環族飽和烴樹脂,雖防濕性稍微提高,但難以 於片材成形時獲得充分之透明性。 因此’本發明之目的在於鑒於如上所述的先前技術之問 題’提供一種可於片材成形時賦予充分之透明性與防濕性的 新型樹脂組成物。 (解決問題之手段) 本發明提出一種樹脂組成物,其係含有密度為0 936〜 0.948 g/cm3、結晶熔解熱量為15〇〜2〇〇 J/g之二茂金屬乙烯 系聚合體(A)與結晶成核劑(b)者,且(B)在上述(a)與(b)之合 计含篁中所占之比例為〇.〇 1〜3 〇質量%。 100136921 201224035 (發明效果) 利用本發明之樹脂組成物,可於片材成形時賦予充分之透 明性與防濕性,因此可用作如例如醫藥品或糕點等之包裝材 料等要求透明性與防濕性之包裝材料的材料。又,可尤其適 宜地用作如太陽電池密封材等要求高透明性與防濕性的電 子裝置之保護材料。 【實施方式】 <本樹脂組成物> 以下,關於作為本發明之實施形態之一例的樹脂組成物 (稱為「本樹脂組成物」)進行說明。但是,本發明之範圍並 不限定於以下說明之實施形態。 本樹脂組成物係含有二茂金屬乙烯系聚合體(A)與結晶成 核劑(B)之樹脂組成物,且視需要進而含有烯烴相容樹脂 (C)、烯烴系樹脂(D)。 [二茂金屬乙烯系聚合體(A)] 本樹脂組成物中所使用之乙烯系聚合體重要的是為二茂 金屬乙烯系聚合體(A),即利用二茂金屬觸媒而聚合之乙烯 聚合體。 作為二茂金屬觸媒,可列舉將二茂金屬化合物與曱基鋁氧 烷組合之單中心觸媒。 作為使用二茂金屬觸媒而聚合之乙烯聚合體,即二茂金屬 乙烯系聚合體之特徵,可列舉:分子量分佈狹窄之方面、即 100136921 5 201224035 便相同密度下結晶熔解熱量亦較低之方面等。 根據以上特徵,二茂金屬乙稀系聚合體(A)較佳為分子量 分佈指數(Mw/Mn)為2.5〜4.5,尤佳兔1 A L上 刀里 兀住為2.6以上或4 3以下, 其中又以3.0以上或4.0以下齡估。 卜1 又佳错由於如此般分子量分 佈狹窄之乙烯系聚合體中添加成核劑,可更進—步提* 成形時之透明性與防濕性。 夕回片材 關於二茂金屬乙烯系聚合體(A)之密度,其下限值為㈣2 g/cm3’較佳為〇.936 g/cm3’更佳為〇 938 g/cm3,更佳為〇帽 g/cm3 ’進而更佳為〇·941 g/cm3。其上限值較佳為咖 g/cm3,更佳為 0.947 g/cm3,進而更佳為 〇 942 g/cm3。 根據以上所述’本發明中之二茂金屬乙烯系聚合體(八)之 密度較佳為0.936〜0.948 g/cm3,尤佳為0 941〜〇 948价瓜3。 二茂金屬乙烯系聚合體(A)之結晶炫解熱量重要的是為 150〜200 J/g,其中較佳為155 J/g以上或19〇 J/g以下其 中又以160 J/g以上或185 J/g以下為佳。 若二茂金屬乙烯系聚合體(A)之密度及結晶熔解熱量在該 範圍内,則可於片材成形時使透明性與防濕性一同提高。 又’二茂金屬乙烯糸聚合體(A)之結晶波峰溫度(Tc)較佳 為105〜130°C,其中較佳為n〇°C以上或125ac以下,其中 又以112。(:以上或12(TC以下為佳。 若二茂金屬乙烯系聚合醴(A)之結晶波峰溫度(tc)在上述 範圍内,則結晶速度足夠迅速’可形成微細之結晶,獲得透 100136921 6 201224035 明性優異之樹脂組成物,因而較佳。 二茂金屬乙烯系聚合體(A)可為乙烯均聚物,或者亦可為 乙烯與α -烯烴之共聚合體。又,可使用該等之混合物。該 等之中,較佳為使用乙烯均聚物、或者乙烯與1-丁烯、1-己烯及1-辛烯中之至少一種以上α-烯烴之共聚合體,具體 而言為:乙烯與1-丁烯之共聚合體、乙烯與1-己烯之共聚 合體、乙烯與1-辛烯之共聚合體、乙烯與1-丁烯及1-己烯 之共聚合體、乙烯與1-丁烯及1-辛烯之共聚合體、乙烯與 1-己烯及1-辛烯之共聚合體、或乙烯與1-丁烯、1-己烯及 1-辛烯之共聚合體。 於使用乙烯與烯烴之共聚合體之情況,較佳為1-丁 烯、1-己烯及1-辛烯之含量之合計在二茂金屬乙烯系聚合體 (Α)中占0.1〜3.0質量。/〇,其中進而較佳為0.3質量%以上或 2.8質量%以下,其中又以0.5質量%以上或2.6質量%以下 為佳。若α-烯烴在該範圍内,則可提供透明性與防濕性優 異之樹脂組成物。 作為二茂金屬乙烯系聚合體(Α)之較佳例,可列舉:包含 乙烯、1-丁烯及1-辛烯,且1-丁烯在二茂金屬乙烯系聚合體 (Α)中所占之比例為0.1〜2.0質量%,1-辛烯之比例為0.1〜 2.0質量%的聚合體;或者包含乙烯、1-己烯及1-辛烯,且 1-己烯在二茂金屬乙烯系聚合體(Α)中所占之比例為0.1〜 2.0質量%,1-辛烯之比例為0.1〜2.0質量%的聚合體。 100136921 7 201224035 [結晶成核劑(B)] 本樹脂組成物中所使用之結晶成核劑(B)只要可確認有使 二茂金屬乙烯系聚合體(A)之透明性提高之效果,則其種類 並無特別限制。例如可列舉:二亞苄基山梨糖醇(DBS)化合 物、1,3-0-雙(3,4-二甲基亞苄基)山梨糖醇、二烷基亞苄基山 梨糖醇、具有至少一個氯或溴取代基之山梨糖醇之二縮醛、 二(曱基或乙基取代亞节基)山梨糖醇、具有形成碳環之取代 基之雙(3,4-二烷基亞苄基)山梨糖醇;脂肪族、脂環族及芳 香族之羧酸、二羧酸或多元多羧酸,相應之酸酐及金屬鹽等 有機酸之金屬鹽化合物;環式雙酚磷酸鹽、雙環[2.2.1]庚烯 二羧酸二鈉等二環式二羧酸及鹽化合物、雙環[2.2.1]庚烷-二羧酸鹽等二環式二羧酸鹽之飽和的金屬或有機之鹽化合 物;1,3:2,4-0-二亞苄基-D-山梨糖醇、1,3:2,4-雙-0-(間曱基 亞苄基)-D-山梨糖醇、1,3:2,4-雙-0-(間乙基亞苄基)-D-山梨 糖醇、1,3:2,4-雙-0-(間異丙基亞苄基)-D-山梨糖醇、1,3:2,4-雙-0-(間正丙基亞苄基)-D-山梨糖醇、1,3:2,4-雙-0-(間正丁 基亞苄基)-D-山梨糖醇、1,3:2,4-雙-0-(對曱基亞苄基)-D-山 梨糖醇、1,3:2,4-雙-0-(對乙基亞苄基)-0-山梨糖醇、1,3:2,4-雙-〇-(對異丙基亞苄基)-D-山梨糖醇、1,3:2,4-雙-0-(對正丙 基亞苄基)-D-山梨糖醇、l,3:2,4-雙-0-(對正丁基亞苄基)-D-山梨糖醇、l,3:2,4-雙-0-(2,3-二曱基亞苄基)-D-山梨糖醇、 1,3:2,4-雙-0-(2,4-二甲基亞苄基)-D-山梨糖醇、1,3:2,4-雙 100136921 8 201224035 -0-(2,5-一甲基亞苄基)_d_山梨糖醇、1,3:2,4-雙-〇_(3 4-二甲 基亞苄基)-D-山梨糖醇、n.2,4·雙_〇_(3,5_二甲基亞节 基)-D-山梨糖醇、1,3:2,4_雙_〇_(2,3_二乙基亞苄基)_d_山梨 • 糖醇、l3:2,4·雙-〇-(2,4·二乙基亞苄基)-D-山梨糖醇、 -- 雙_〇_(2,5_—乙基亞节基)-D-山梨糖醇、ι,3:2,4-雙_〇_(3 4_ _ 乙基亞苄基)-D-山梨糖醇、ι,3··2,4-雙-〇-(3,5-二乙基亞苄 基)-D-山梨糖醇、ΐ,3··2,4_雙_〇_(2,4,5_三甲基亞苄基)_d_山梨 糖醇、1,3:2,4-雙-〇-(3,4,5-三f基亞苄基)_D·山梨糖醇、 1,3:2,4-雙-〇-(2,4,5-三乙基亞爷基)_D_山梨糖醇、^,^雙 -0-(3,4,5-二乙基亞苄基)_D-山梨糖醇、ι,3:2,4-雙_〇·(對甲氧 基羰基亞苄基)-D-山梨糖醇、^各雙·^(對乙氧基羰基亞 苄基)-D-山梨糖醇、1,3:2,4_雙_〇_(對異丙氧基羰基亞苄 基)-D-山梨糖醇、^4-雙_〇_(鄰正丙氧基羰基亞苄基 山梨糖醇、1,3:2,4-雙-〇-(鄰正丁基亞苄基)_D_山梨糖醇、 I,3:2,4-雙-〇-(鄰氣亞苄基)-D_山梨糖醇、1,3:2,4-雙-〇-(對氯 亞苄基)-D-山梨糖醇、13:2,4-雙·〇_[(5,6,7,8,_四氫+伸萘 基)-1-亞甲基]-D-山梨糖醇、6,7,8,-四氯-2_ 伸萘基)小亞甲基]-D-山梨糖醇、U_〇_亞节基_2,4办對甲基 亞节基-D-山梨糖醇、no·對甲基亞节基·2,4 0_亞节基_d_ 山梨糖醇、l,3-〇-亞苄基_2,4_〇_對乙基亞苄基_D_山梨糖 醇、U-0-對乙基亞节基_2,4_〇_亞节基·山梨糖醇、U-〇_ 亞¥基-2,4-〇·對氯亞节基_D_山梨糖醇、HQ·對氣亞节基 100136921 9 201224035 -2,4-0-亞苄基-D-山梨糖醇、l,3-0-亞苄基-2,4-0-(2,4-二曱 基亞苄基)-D-山梨糖醇、1,3-0-(2,4-二曱基亞苄基)-2,4-0-亞苄基-D-山梨糖醇、1,3-0-亞苄基-2,4-0-(3,4-二曱基亞苄 基)-D-山梨糖醇、1,3-0-(3,4-二曱基亞苄基)-2,4-0-亞苄基 -D-山梨糖醇、1,3-0-對曱基-亞苄基-2,4-0-對乙基亞苄基山 梨糖醇、1,3-對乙基-亞苄基-2,4-對甲基亞苄基-D-山梨糖 醇、1,3-0-對曱基-亞苄基-2,4-0-對氯亞苄基-0-山梨糖醇、 1,3-0-對氣亞苄基-2,4-0-對曱基亞苄基-0-山梨糖醇等二縮 醛化合物;2,2’-亞曱基-雙(4,6-二-第三丁基苯基)磷酸鈉、雙 [2,2'_亞甲基-雙(4,6-二-第三丁基苯基)磷酸]鋁、2,2-亞甲基 雙(4,6-二-第三丁基苯基)磷酸鈉;或己酸、庚酸、辛酸、壬 酸、癸酸、十一酸、月桂酸、十三酸、肉豆惹酸、十五酸、 棕摘酸、十七酸、硬脂酸、十九酸、花生酸、二十二酸、褐 煤酸等脂肪酸;油醯胺、芥子醯胺、硬脂醯胺、二十二醯胺 等脂肪醯胺;硬脂酸鎂、硬脂酸鋅、硬脂酸鈣等脂肪酸金屬 鹽;矽石、滑石、高嶺土、電石等之無機粒子;甘油、甘油 單酯等高級脂肪酸酯;及類似物。 該等之中,尤佳為:油醯胺、芥子酿胺、硬脂醯胺、二十 二醯胺等脂肪醯胺;硬脂酸鎂、硬脂酸鋅、硬脂酸鈣等脂肪 酸金屬鹽。 作為結晶成核劑(B)之具體例,可列舉:新日本理化股份 有限公司之商品名「Gel All D」系列、ADEKA股份有限公 100136921 10 201224035 司之商品名「Adekastab」系列、Milliken Chemical公司之 商品名「Millad」系列、「Hyperform」系列、BASF公司之 商品名「IRGACLEAR」系列等,又,作為結晶成核劑之母 • 料,可列舉·· Riken Vitamin股份有限公司之商品名 . 「Rikemaster CN」系列、Milliken Chemical 公司之商品名 「HL3-4」等。其中,作為提高透明性之效果特別高者,可 列舉:Milliken Chemical 公司之商品名「HYPERFORM HPN-20E」、「HL3-4」,Riken Vitamin股份有限公司之商品 名「Rikemaster CN-001」、「Rikemaster CN-002」。 關於結晶成核劑(B)之含量,較佳為(B)在二茂金屬乙烯系 聚合體(A)與結晶成核劑(B)之合計含量中所占之比例為 0.01〜3.0質量%,其中進而較佳為〇 〇3質量%以上或2 〇 質量%以下,其中又以〇.05質量%以上或1〇質量%以下更 佳。藉由在該範圍内調配結晶成核劑(B),不會產生因過量 添加結晶成_而導致之透明性降低,可有效地使透明性及 防濕性進一步提高。 f [烯烴相容樹脂(C)] . 藉由於上述本樹餘成物中調配雜相容樹脂(〇,可進 一步提高防濕性。 作為稀煙相容樹脂(C),較佳為與烯煙系樹脂、尤立是與 屬乙埽系聚合體㈧相容’並且玻璃轉移溫度高於二 戊"屬乙%糸聚合體(A)之樹脂。例如可列舉自以石油樹 100136921 11 201224035 月曰萜稀私’t月曰、f草η弄節樹脂、松香系樹脂、及該等之氮 化打生物所構成之群組中選擇的—種樹脂或兩種以上之樹 胳。 作為上述石油樹脂,例如可列舉:源自於環戊二稀或其二 聚物之脂環式石油樹脂,源自於C9成分之芳香族石油樹脂 例如可列舉:源自於万-蒎烯之萜烯_ 作為上述®烯樹脂, 驗樹脂等。 作為^述薰草。弄_節樹脂,例如可列舉:黃草译·節共聚合 體、或黨草°弄冬苯乙烯共聚合體等。 作為上述松香系樹脂,例如可列舉:脂松香、木松香等松 香樹脂,利用甘油、季戊四醇等而改質之§旨化松香樹脂等。 就混合於上述二茂金屬乙烯系聚合體(Α)中時之相容性、 色调、熱敎性等觀點而言,輯烴相容樹脂(c)較佳為使 用氫化物衍生物’尤其是氫化率(以下簡稱為「氫化率」,根 據 H-NMR(Nuclear Magnetic Resonance ’ 核磁共振)光譜, 由以笨基為基準之共輛二烯之不飽和雙鍵之比例而求出)為 95%以上,且實質上不含羥基、羧基、鹵素等極性基或雙鍵 等不飽和鍵的氫化石油樹脂或氫化萜烯樹脂。 於本樹脂組成物中,烯烴相容樹脂(c)之依據JIS κ22〇7 所測定之軟化溫度Ts(C)較佳為上述二茂金屬乙烯系聚合體 (A)之依據JIS K7121所測定之示差掃描熱量測定中以冷卻 100136921 12 201224035 速度l〇C/min而測定之結晶波峰溫度Tc(A) + 3〇(5c以下,即 若假設結晶波峰溫度Tc(A)為l0(rc,則為u〇<t以下,更 佳為該Tc(A) + 20°C以下,進而更佳為該Tc(A)+1(rc以下, • 尤佳為該TC(A)+5°C以下。再者,該Ts(C)之下限較佳為8〇 ;°C。 ’、、 藉由軟化度Ts(C)之上限滿足該條件,則於二茂金屬乙 烯系聚合體(A)之結晶化過程中,稀烴相容樹脂(〇之分子鏈 之自由度較尚,故而難以阻礙二茂金屬乙烯系聚合體(A)之 結晶化,可形成微細之結晶,獲得防濕性及透明性等優異之 樹脂組成物,因而較佳。 又,若烯烴相容樹脂(C)之軟化溫度Ts(C)g 8〇〇c以上, 較佳為90°c以上,則成形時不易發生原料黏連,或者於二 次加工時或運輸時、使用時不易發生樹脂組成物向表面滲 出,因而較佳。 該烯烴相容樹脂(C)之軟化溫度Ts(c)主要可藉由選擇分 子量而獲得所需之軟化溫度。201224035 VI. [Technical Field] The present invention relates to a resin composition which can be suitably used in applications requiring transparency and moisture resistance, and a sheet obtained by molding thereof. [Prior Art] In addition to the requirements for thermoformability, rigidity, and impact resistance, it is also required to prevent moisture. The main material of the sheet, such as transparency, has been mainly used for the purpose of collecting polyethylene (hereinafter also referred to as "PVC"). However, since the vaporized hydrogen gas generated by the combustion of pvc deteriorates the combustion furnace, or the gasification of hydrogen gas pollutes the environment, the alternative material of PVC is continuously studied. As a substitute for such PVC, linear low-density polyethylene, high-density polyethylene, polypropylene, and the like have been proposed. However, the linear low-density polyethylene is excellent in transparency, but its moisture-proof property is not sufficient, and it is difficult to be an optimum resin from the viewpoint of stability of the contents during long-term storage. Although polypropylene is superior in moisture resistance to linear low-density polyethylene, there is still a problem that it does not have sufficient moisture resistance for applications requiring more moisture resistance. On the other hand, high-density polyethylene is superior in moisture resistance to linear low-density polyethylene or polypropylene, but has a problem of poor transparency. Therefore, in order to improve the transparency of the yam and yttrium, it is disclosed in Patent Document 1 that the resin obtained by blending a nucleating agent with a high density polyethylene having a density of 0.942 to 0.965 g/cm 3 is 100136921 3 201224035. Composition. Further, Patent Document 2 discloses a resin composition obtained by blending an alicyclic saturated hydrocarbon resin having no polar group in a high-density polyethylene having a density of 0.94 to 0.97 g/cm3. [Prior Art] [Patent Document] Patent Document 1: Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. As described in the above Patent Document 1, it is difficult to obtain sufficient transparency in the formation of a sheet material by blending a nucleating agent into a high-density polyethylene. Further, by blending the alicyclic saturated hydrocarbon resin having no polar group in the high-density polyethylene as in the above-mentioned Patent Document 2, although the moisture resistance is slightly improved, it is difficult to obtain sufficient transparency at the time of sheet formation. Therefore, the object of the present invention is to provide a novel resin composition which can impart sufficient transparency and moisture resistance at the time of sheet forming in view of the problems of the prior art as described above. (Means for Solving the Problem) The present invention provides a resin composition comprising a metallocene ethylene-based polymer having a density of 0 936 to 0.948 g/cm 3 and a heat of crystal fusion of 15 〇 2 〇〇 J/g (A) And the ratio of (B) in the total yttrium of the above (a) and (b) is 〇.〇1 to 3 〇% by mass. 100136921 201224035 (Effect of the Invention) The resin composition of the present invention can impart sufficient transparency and moisture resistance at the time of sheet formation, and therefore can be used as a packaging material such as a pharmaceutical or a pastry, and requires transparency and prevention. The material of the wet packaging material. Further, it can be suitably used as a protective material for an electronic device requiring high transparency and moisture resistance such as a solar cell sealing material. [Embodiment] The resin composition (referred to as "the present resin composition") which is an example of the embodiment of the present invention will be described below. However, the scope of the present invention is not limited to the embodiments described below. The resin composition contains a resin composition of a metallocene ethylene-based polymer (A) and a crystal nucleating agent (B), and further contains an olefin-compatible resin (C) or an olefin-based resin (D), if necessary. [Micometallocene ethylene-based polymer (A)] It is important that the ethylene-based polymer used in the resin composition is a metallocene-based ethylene-based polymer (A), that is, ethylene which is polymerized by a metallocene catalyst. Polymer. As the metallocene catalyst, a single-center catalyst in which a metallocene compound is combined with a mercaptoaluminoxane can be cited. The ethylene polymer which is polymerized using a metallocene catalyst, that is, the characteristics of the metallocene ethylene-based polymer, may be exemplified by a narrow molecular weight distribution, that is, 100136921 5 201224035, and the heat of crystal melting at the same density is also low. Wait. According to the above feature, the metallocene ethylene-based polymer (A) preferably has a molecular weight distribution index (Mw/Mn) of 2.5 to 4.5, and particularly preferably, the rabbit 1 AL has a cleavage of 2.6 or more or 4 3 or less. Also estimated at 3.0 or above or 4.0 years old. Bu 1 is also a good mistake. Since a nucleating agent is added to the ethylene-based polymer having a narrow molecular weight distribution, the transparency and moisture resistance at the time of molding can be further improved. Regarding the density of the metallocene vinyl polymer (A), the lower limit value is (4) 2 g/cm 3 ', preferably 〇 936 g/cm 3 ', more preferably 〇 938 g/cm 3 , more preferably The cap g/cm3' is further preferably 〇·941 g/cm3. The upper limit is preferably g/cm3, more preferably 0.947 g/cm3, and still more preferably 942942 g/cm3. According to the above, the density of the metallocene ethylene-based polymer (VIII) in the present invention is preferably 0.936 to 0.948 g/cm3, more preferably 0 941 to 948 948. The crystallization heat of the metallocene ethylene polymer (A) is important to be 150 to 200 J/g, preferably 155 J/g or more or 19 〇J/g or less, and more preferably 160 J/g or more. Or 185 J/g or less is preferred. When the density of the metallocene ethylene-based polymer (A) and the heat of crystal fusion are within this range, transparency and moisture resistance can be improved at the time of sheet formation. Further, the crystallization peak temperature (Tc) of the metallocene ethylene ruthenium polymer (A) is preferably from 105 to 130 ° C, preferably from n 〇 ° C or more to 125 cp, and further from 112. (: above or 12 (TC or less is preferable. If the crystallization peak temperature (tc) of the ferrocene-based fluorene (A) is within the above range, the crystallization rate is sufficiently fast' to form fine crystals, and it is obtained through 100136921 6 201224035 It is preferable to use a resin composition excellent in visibility. The metallocene ethylene-based polymer (A) may be an ethylene homopolymer or may be a copolymer of ethylene and an α-olefin. Further, these may be used. Among these, it is preferred to use an ethylene homopolymer or a copolymer of ethylene and at least one or more of 1-butene, 1-hexene and 1-octene, specifically: a copolymer of ethylene and 1-butene, a copolymer of ethylene and 1-hexene, a copolymer of ethylene and 1-octene, a copolymer of ethylene and 1-butene and 1-hexene, ethylene and 1-butene a copolymer of an alkene and a 1-octene, a copolymer of ethylene and 1-hexene and 1-octene, or a copolymer of ethylene and 1-butene, 1-hexene and 1-octene. In the case of a copolymer of olefins, it is preferred that the total content of 1-butene, 1-hexene and 1-octene is in the metallocene The olefin polymer (Α) accounts for 0.1 to 3.0 mass%, more preferably 0.3% by mass or more, or 2.8 mass% or less, and more preferably 0.5% by mass or more or 2.6% by mass or less. When the olefin is in this range, a resin composition excellent in transparency and moisture resistance can be provided. Preferred examples of the metallocene ethylene-based polymer include ethylene, 1-butene and 1- a octene, and a ratio of 1-butene in the metallocene ethylene-based polymer (Α) of 0.1 to 2.0% by mass, a ratio of 1-octene of 0.1 to 2.0% by mass; or ethylene , 1-hexene and 1-octene, and the ratio of 1-hexene in the metallocene ethylene polymer (Α) is 0.1 to 2.0% by mass, and the ratio of 1-octene is 0.1 to 2.0 mass. % of the polymer. 100136921 7 201224035 [Crystal nucleating agent (B)] The crystal nucleating agent (B) used in the present resin composition is confirmed to have transparency in the metallocene ethylene-based polymer (A). The effect of the improvement is not particularly limited. For example, dibenzylidene sorbitol (DBS) compound, 1,3-0-bis (3,4-dimethyl) A acetal, a dialkylbenzylidene sorbitol, a diacetal of sorbitol having at least one chlorine or bromine substituent, a bis(indenyl or ethyl substituted subunit) sorbose An alcohol, a bis(3,4-dialkylbenzylidene) sorbitol having a substituent forming a carbocyclic ring; an aliphatic, alicyclic and aromatic carboxylic acid, a dicarboxylic acid or a polybasic polycarboxylic acid, correspondingly a metal salt compound of an organic acid such as an acid anhydride or a metal salt; a bicyclic dicarboxylic acid such as a cyclic bisphenol phosphate or a bicyclo [2.2.1] heptene dicarboxylate; and a salt compound, a bicyclic ring [2.2.1] a saturated metal or organic salt compound of a bicyclic dicarboxylic acid salt such as heptane-dicarboxylate; 1,3:2,4-0-dibenzylidene-D-sorbitol, 1,3: 2,4-bis-0-(m-decylbenzylidene)-D-sorbitol, 1,3:2,4-bis-0-(m-ethylbenzylidene)-D-sorbitol, 1,3:2,4-bis-0-(m-isopropylbenzylidene)-D-sorbitol, 1,3:2,4-bis-(----n-propylbenzylidene)- D-sorbitol, 1,3:2,4-bis-0-(m-n-butylbenzylidene)-D-sorbitol, 1,3:2,4-bis-0-(p-decyl) Benzylidene)-D-sorbitol, 1,3:2,4-double-0-(for B Benzylene)-0-sorbitol, 1,3:2,4-bis-indole-(p-isopropylbenzylidene)-D-sorbitol, 1,3:2,4-double-0 -(p-propylbenzylidene)-D-sorbitol, l,3:2,4-bis-0-(p-n-butylbenzylidene)-D-sorbitol, l, 3:2 , 4-bis-0-(2,3-dimercaptobenzylidene)-D-sorbitol, 1,3:2,4-bis-0-(2,4-dimethylbenzylidene) -D-sorbitol, 1,3:2,4-double 100136921 8 201224035 -0-(2,5-monomethylbenzylidene)_d_sorbitol, 1,3:2,4-double- 〇_(3 4-Dimethylbenzylidene)-D-sorbitol, n.2,4·bis-〇-(3,5-dimethylphenylidene)-D-sorbitol, 1 ,3:2,4_bis_〇_(2,3_diethylbenzylidene)_d_sorbent • Sugar alcohol, l3:2,4·bis-indole-(2,4·diethylbenzylidene Base)-D-sorbitol, --bis_〇_(2,5_-ethylheptylidene)-D-sorbitol, ι,3:2,4-double_〇_(3 4_ _ B Benzylidene)-D-sorbitol, ι,3··2,4-bis-indole-(3,5-diethylbenzylidene)-D-sorbitol, hydrazine, 3··2 , 4_bis_〇_(2,4,5_trimethylbenzylidene)_d_sorbitol, 1,3:2,4-bis-indole-(3,4,5-trif-based Benzyl)_D·sorbitol, 1,3:2,4-bis-indole-(2,4,5-triethyl sulfenyl)_D_ Yamanashi Alcohol, ^, ^bis-0-(3,4,5-diethylbenzylidene)_D-sorbitol, iota, 3:2,4-bis-indole (p-methoxycarbonylbenzylidene) )-D-sorbitol, each bis(^-ethoxycarbonylbenzylidene)-D-sorbitol, 1,3:2,4_bis-〇-(p-isopropoxycarbonyl) Benzyl)-D-sorbitol, ^4-bis-indole-(o-n-propoxycarbonylbenzylidene sorbitol, 1,3:2,4-bis-indole-(o-n-butylbenzylidene) Base)_D_sorbitol, I, 3:2,4-bis-indole-(o-benzylidene)-D_sorbitol, 1,3:2,4-bis-indole-(p-chloroa Benzyl)-D-sorbitol, 13:2,4-bis-indole_[(5,6,7,8,_tetrahydro+thylenenaphthyl)-1-methylene]-D-sorbose Alcohol, 6,7,8,-tetrachloro-2_naphthyl)methylene]-D-sorbitol, U_〇_subunit base_2, 4-to-methyl subunit-D- Sorbitol, no·p-methyl subunit·2,40-subunit _d_sorbitol, l,3-〇-benzylidene-2,4_〇_p-ethylbenzylidene _ D_sorbitol, U-0-p-ethyl subunit, 2,4_〇_subunit, sorbitol, U-〇_ ¥ 基-2,4-〇·p-chloroarylene _D_sorbitol, HQ·gas subunit 100136921 9 201224035 -2,4-0-benzylidene-D-sorbitol, l 3-0-benzylidene-2,4-0-(2,4-dimercaptobenzylidene)-D-sorbitol, 1,3-0-(2,4-didecylbenzylidene -2,4-0-benzylidene-D-sorbitol, 1,3-0-benzylidene-2,4-0-(3,4-didecylbenzylidene)-D-sorbent Sugar alcohol, 1,3-0-(3,4-dimercaptobenzylidene)-2,4-0-benzylidene-D-sorbitol, 1,3-0-p-decyl-benzylidene Base-2,4-0-p-ethylbenzylidene sorbitol, 1,3-p-ethyl-benzylidene-2,4-p-methylbenzylidene-D-sorbitol, 1,3 -0-p-decyl-benzylidene-2,4-0-p-chlorobenzylidene-0-sorbitol, 1,3-0-p-p-benzylidene-2,4-0-p-decyl Diacetal compound such as benzylidene-0-sorbitol; 2,2'-arylene-bis(4,6-di-t-butylphenyl)phosphate, bis[2,2'- Methyl-bis(4,6-di-t-butylphenyl)phosphoric acid]aluminum, 2,2-methylenebis(4,6-di-t-butylphenyl)phosphate; or caproic acid , heptanoic acid, caprylic acid, citric acid, citric acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nineteen acid, arachidic acid Fatty acids such as behenic acid and montanic acid; ceramide, mustard, stearylamine, behenamide Fatty acid amide; fatty acid metal salt such as magnesium stearate, zinc stearate, calcium stearate; inorganic particles such as vermiculite, talc, kaolin, calcium carbide, etc.; higher fatty acid esters such as glycerin and monoglyceride; Things. Among these, it is particularly preferable: fat amide such as saponin, mustard-brown amine, stearylamine, and behenylamine; fatty acid metal salts such as magnesium stearate, zinc stearate, and calcium stearate; . Specific examples of the crystal nucleating agent (B) include the product name "Gel All D" series of New Japan Physical and Chemical Co., Ltd., ADEKA Co., Ltd. 100136921 10 201224035, the trade name "Adekastab" series, Milliken Chemical Co., Ltd. The "Millad" series, the "Hyperform" series, and the product name "IRGACLEAR" of the BASF company, etc., as the parent material of the crystal nucleating agent, include the product name of Riken Vitamin Co., Ltd. Rikemaster CN" series, Milliken Chemical Company's trade name "HL3-4" and so on. Among them, those who have a particularly high effect of improving transparency include the product name "HYPERFORM HPN-20E" and "HL3-4" of Milliken Chemical Co., Ltd., and the trade name "Rikemaster CN-001" of Riken Vitamin Co., Ltd., " Rikemaster CN-002". With respect to the content of the crystallization nucleating agent (B), it is preferred that the ratio of (B) in the total content of the metallocene ethylene-based polymer (A) and the nucleating nucleating agent (B) is 0.01 to 3.0% by mass. Further, it is more preferably 3% by mass or more or 2% by mass or less, and more preferably 5% by mass or more or 1% by mass or less. By blending the crystal nucleating agent (B) in this range, the transparency is lowered by excessive addition of crystals, and the transparency and moisture resistance can be effectively improved. f [Olefin-compatible resin (C)]. The moisture-repellent property can be further improved by blending the above-mentioned remainder of the present tree with a hetero-compatible resin (as a smoke-compatible resin (C), preferably with an alkene The smoky resin, yupli is a resin which is compatible with the quinone-based polymer (VIII) and has a glass transition temperature higher than that of the di-pentane "ethyl hydrazine polymer (A). For example, it can be cited as a petroleum tree 100136921 11 201224035 a resin selected from the group consisting of the moon 曰萜 私 , , , , , , , , , , , , , , , , , , Examples of the petroleum resin include an alicyclic petroleum resin derived from cyclopentadiene or a dimer thereof, and an aromatic petroleum resin derived from the C9 component, for example, a terpene derived from valene-pinene _ As the above-mentioned olefin resin, the resin is examined, etc. As the resin, the resin is, for example, a yellow turmeric, a comonomer, or a styrene copolymer. Examples of the resin include rosin resins such as gum rosin and wood rosin, and glycerin is used. Hydrogen-compatible rosin resin, etc., which is modified by pentaerythritol, etc., in terms of compatibility, color tone, heat enthalpy, etc. when mixed in the above-mentioned metallocene ethylene-based polymer (Α), The resin (c) is preferably a hydride derivative, in particular, a hydrogenation rate (hereinafter referred to as "hydrogenation rate", based on H-NMR (Nuclear Magnetic Resonance 'NMR) spectrum, based on a stupid base. A hydrogenated petroleum resin or a hydrogenated terpene resin which is 95% or more and which does not substantially contain a polar group such as a hydroxyl group, a carboxyl group or a halogen, or an unsaturated bond such as a double bond, which is obtained by a ratio of an ethylenically unsaturated double bond. In the composition, the softening temperature Ts (C) measured by JIS κ22〇7 of the olefin-compatible resin (c) is preferably the differential scanning heat measured by the above-mentioned metallocene ethylene-based polymer (A) according to JIS K7121. In the measurement, the crystal peak temperature Tc(A) + 3〇 (5c or less) measured by cooling 100136921 12 201224035 speed l〇C/min, that is, if the crystal peak temperature Tc(A) is assumed to be l0 (rc, then u〇<; t or less, more preferably the Tc(A) + 20 ° C or less, and more preferably the Tc (A) +1 ( Rc or less, • particularly preferably TC(A) + 5 ° C or less. Further, the lower limit of Ts (C) is preferably 8 〇; ° C. ', , by the upper limit of softening degree Ts (C) When this condition is satisfied, in the crystallization process of the metallocene ethylene-based polymer (A), a dilute hydrocarbon-compatible resin (the molecular chain of ruthenium has a higher degree of freedom, so that it is difficult to hinder the metallocene ethylene-based polymer (A). It is preferable to form a fine crystal and obtain a resin composition excellent in moisture resistance and transparency, etc. Further, if the softening temperature of the olefin-compatible resin (C) is Ts(C)g 8〇〇 When c or more, preferably 90 ° C or more, the raw material adhesion is less likely to occur during molding, or the resin composition is less likely to bleed out to the surface during secondary processing or during transportation or use, which is preferable. The softening temperature Ts(c) of the olefin-compatible resin (C) can be mainly obtained by selecting a molecular weight to obtain a desired softening temperature.

V 作為烯煙相容樹脂(C)之具體例,例如可列舉··三井化學 股份有限公司之商品名「Hilets」系列、「Petrosin」系列’ 巟川化學工業股份有限公司之商品名「Ark〇n」系列, Yasuhara Chemical股份有限公司之商品名「clear〇n」系列, 出光興產版伤有限公司之商品名r I_Marv」系列,Tonex股 份有限公司之商品名「Escorez」系列等。 100136921 13 201224035 作為烯烴相容樹脂(c)之含量,較佳為在本樹脂組成物中 所占之比例為5〜30質量%,其中進而較佳為1〇質量%以 上或25質量%以下,其中又以15質量。/。以上或質量。以 下之比例為更佳。藉由在該範圍内調配上述(c),不會發生 上述(C)向成形品表面之渗出、機械物性之降低等,可進一 步提高防濕性。 [烯烴系樹脂(D)] 藉由於本樹脂組成物中調配特定之烯烴系樹脂(D),可進 一步提高透明性。 作為烯烴系樹脂(D) ’就使透明性提高之觀點而言,較佳 為結晶熔解熱量為〇〜1〇〇 J/g,其中較佳為8〇 J/g以下,進 而’其中又以50 J/g以下之烯烴系樹脂為佳。 作為烯煙系樹脂(D),例如可列舉:包含乙烯與α_稀烴之 共聚合體之直鏈狀低密度聚乙烯、聚丙烯系樹脂、環狀稀烴 系樹脂等。其中’尤佳為使用環狀烯烴系樹脂。藉由使用環 狀烯烴系樹脂作為烯烴系樹脂(D),可幾乎不降低防濕性地 南透明性。 作為上述環狀烯烴系樹脂,可例示:(i)將環狀烯烴之開環 (共)聚合體視需要氫化所得之聚合體’(ii)環狀烯烴之加成 (共)聚合體,(Hi)環狀烯烴與乙烯、丙烯等α-烯烴之無規共 聚合體’(iv)利用順丁烯二酸酐、順丁烯二醆、衣康酸酐、 衣康酸、(曱基)丙烯酸等不飽和羧酸或其酸酐之改質劑將上 100136921 14 201224035 述⑴〜(iii)改質所得之接枝共聚合體等。該等可單獨僅使用 一種或者亦可組合兩種以上使用。 上述環狀烯烴系樹脂之玻璃轉移溫度(Tg)較佳為5〇〜11〇 C,更佳為60〜9(TC,進而更佳為65〜85t:。此處,若破 璃轉移溫度(Tg)在該範_,則可種雜性、加工性大幅 度降低而提高本發明之樹脂組成物之透明性,因而較佳。 由於上述環狀烯烴系樹脂與上述二茂金屬乙烯系聚合體 (A)之相容性較低,故而考慮到透明性,常溫下之平均折射 率較佳為1.510〜1.540,更佳為1.515〜1.535,又,與所使 用的二茂金屬乙烯系聚合體(A)之平均折射率之差之絕對值 較佳為0.010以下,更佳為0 005以下,進而更佳為〇〇〇3 以下。 若平均折射率差之絕對值在該範圍内,則可不受本樹脂組 成物中之環狀烯烴系樹脂之分散直徑之較大影響而使透明 性提高,因而較佳。再者,平均折射率可使用公知之方法, 例如阿貝折射計而測定。 作為上述烯烴系樹脂(D)之具體例,可列舉作為上述直鏈 狀低密度聚乙稀之Ube-Maruzen Polyethylene股份有限公司 之商品名「Umerit」系列、Nippon Unicar股份有限公司之 商品名「NUC Polyethylene」系列等。 作為上述來丙細糸樹脂’可列舉· Japan Polypropylene股 份有限公司之商品名「Novatec PP」系列、住友化學股份有 100136921 15 201224035 限公司之商品名「Noblen」系列等。 作為上述環狀烯烴系樹脂,可列舉:p〇lyplastics股份有 限公司之商品名「T0PAS」系列、三井化學股份有限公司之 商品名「Apd」系列、曰本ZE0N股份有限公司之商品名 「ZEONOR」系列等。 再者,上述烯烴系樹脂(D)單獨使用一種樹脂或者混合數 種樹脂使用均可。 作為上述稀烴系樹脂(D)之含量,就無損防濕十生而使透明 性進-步提高之觀點而言’較佳為在本樹脂組成物中所占之 比例為10〜5 0質量%,其中進而較佳為2 〇質量%以上或4 5 質量%以下’其中又以25質量%以上或3() f量%以下為更 佳。 [其他成分] 又,本樹脂組成物中可在無損本發明之效果之範圍内調配 熱穩疋劑、抗氧化劑、备、外線吸收劑、光穩定劑、抗菌防黴 劑、抗靜電劑、潤滑劑等添加劑。 [使用本樹脂組成物之片材] 繼而,就使用本樹脂組成物之片材之製造方法進行說明。 使用本樹脂組成物之片材之成形方法並無特別限定。例 如,可利用單軸或雙軸擠出機等將二茂金屬乙稀系聚合體 (A)、結晶成核劑(B)、進而視需要之烯烴相容樹脂(c)、稀 烴系樹脂(D)及其他添加劑熔融混合,藉由τ字模擠出,並 100136921 16 201224035 利用繞鑄輥驟冷、固化而製作未延伸片材。 此處’所謂未延伸 極地延伸之片封,⑴ 提高片材之強度而未積 歹'&quot;^於擠出成形時藉由延伸輥而延伸未達 2倍者係包含於切伸諸中。 此時,片材之厚度並無特別限定,但考慮到加工性、實用 性,較佳為〇 〇1 η μ .職以上'3111111以下,更佳為〇〇5而以 、2·5軸以下,進而更佳為0.1贿以上,2.0 mm以下。 若在該範圍内,則可使片材之剛性充分滿足所需,且二次加 !生亦不會差’又’用作各種包裝材時之操作性亦無不良情 況,透明性亦可得到確保。 又為了使上述無延伸片材之耐熱性、各種機械特性、防 濕性進-步提高,亦可共擠出、擠出層壓、熱層壓、乾 式層壓等方法將包含本樹脂組成物之片材積層數個,或者將 本發明之樹脂組成物以外之樹脂組成物(例如聚對苯二曱酸 乙二醋、聚萘二甲酸乙二醋、聚對苯二曱酸丁二g旨等聚酉旨系 樹脂,聚丙烯系樹脂,聚丙烯系樹脂與石油樹脂之混合物, 聚苯乙烯系樹脂)於自本樹脂組成物成形所得之片材之單面 或兩面積層一層以上。另外,為了使上述未延伸片材、或積 層片材之耐熱性、防濕性進一步提高,亦可使用輥式法、拉 幅法、管式法等沿單軸或雙轴延伸。 於將本樹脂組成物使用於各種包裝材用途中之情況,就設 計性、内容物之視認性等觀點而言,於製成厚度〇丨mm之 100136921 17 201224035 片狀時,較佳為基於JIS K7105所測定之内部霧度為10%以 下,更佳為9°/。以下,進而更佳為8%以下。若内部霧度在 該範圍内,則可獲得充分之視認性,獲得設計性優異之製品。 自本樹脂組成物成形所得之片材亦可藉由真空成形、壓空 成形、壓空真空成形、壓機成形、其他熱成形而形成為各種 形狀之成形體’或者與其他樹脂或金屬、玻璃等多層化而使 用。由於自本樹脂組成物成形所得之片材異有優異之透明 性、防濕性’故而可適宜地使用於各種領域例如醫療、食品、 電子機器、能源領域等中要求透明性、防濕性之用途中。 又,為了提高製品之設計性或二次加工性等’亦可於片材 表面進行壓花加工或消光加工等加工。於此情況,可暫時掣 作鏡面狀之片材再利用壓花輥或消光輥實施加工,亦可於擠 出成形時將澆鑄輥變更為壓花輥或消光輥而成形。只要無浐 本發明之主旨,亦可進行如下操作:於片材表面塗佈抗靜電 hJ t石夕氧、堪荨,為了防止損傷附著而使用表面保護片材 形成皮膜;或設置印刷層。再者,印刷層之形成方法可採 公知之任意方法。 &lt;太陽電池用密封材&gt; 使用本樹脂組成物之片材可用作太陽電池用密封材。 本發明中之太陽電池用密封材可將使用上述本樹脂組成 物之片材以單層使用,或製成與其他層積層之多層體H | 於製成多層體使用之情況’對於與包含本樹脂組成 〈片 100136921 18 201224035 材(以下稱為樹脂層⑽積層之其他層並無特別限定,就密 封性、财熱性、透明性之方面而言,較佳為含有乙稀系樹脂 之樹脂層(I)。 - 料含有乙稀系樹脂之樹脂層(1),尤佳為下述樹脂 :及/或下述樹脂層⑴·2 ’健騎成具㈣樹闕作為曰最外 層之至少-層之太陽電池密封用多層體而使用。 樹脂層⑴-i:含有滿足下述⑷條件之乙婦务稀煙益規丘 $合_)、與滿足下述(_件之乙n稀烴嵌段共聚: 體(Q)之樹脂層 樹脂層⑴-2 :含有石夕烧改質乙婦系樹脂⑻之樹月匕声 ⑷:於示差掃描熱量敎^加_度1(rc/mi^ 之結晶熔解熱量為〇〜70 j/g ^ (b):於^掃描熱_定巾以加熱速度呢/她 之結晶溶解波峰溫度為觸〜145t 斤収 〜70 j/g 且、'°日日熔解熱量為5 藉由上❹層_,本發啊提供兼 元件充分之防濕性及優異之透明性、耐執性,電池 造太陽電池模組時騎予優異之密封性、及常^而用以於製 剛性的太陽電池密封用多:下之知作性之 模組。 彳曰體及使用其所製作之太陽電池 [樹脂層(I)]] 樹脂層(1)-1含有滿足 U件之乙埽t婦烴無規共 100136921 19 201224035 聚合體(P)、與滿足上述(b)條件之乙烯-α-烯烴嵌段共聚合 體(Q),主要具有表現用以保護太陽電池元件(單元)的優異 之密封性、耐熱性或用以對太陽電池賦予充分之發電效率的 優異之透明性之作用。 (乙烯-α-烯烴無規共聚合體(Ρ)) 本發明中所使用之乙烯-α -烯烴無規共聚合體(Ρ)只要滿 足上述條件(a)則並無特別限定,通常可適宜地使用乙烯與 碳數3〜20之烯烴之無規共聚合體。此處,作為與乙烯 共聚合之烯烴,可例示:丙烯、1-丁烯、1-戊烯、1-己烯、 1-庚烯、1-辛烯、1-壬烯、1-癸烯、3-甲基-1-丁烯、4-曱基 -1-戊烯等。於本發明中,就工業上的獲得容易性或諸特性、 經濟性等觀點而言,作為與乙烯共聚合之烯烴,可適宜 地使用丙烯、1-丁烯、1-己烯、1-辛浠。與乙稀共聚合之α-烯烴可單獨僅使用一種或者亦可組合兩種以上使用。 又,作為與乙烯共聚合之α-烯烴之含量,只要滿足上述 條件(a)則並無特別限定,相對於乙烯-α-烯烴無規共聚合體 (Ρ)中之全部單體單位,通常為2莫耳%以上,較佳為40莫 耳%以下,更佳為3〜30莫耳%,進而更佳為5〜25莫耳%。 若在該範圍内,則因共聚合成分而結晶性降低,藉此透明性 提高,並且亦難以發生原料顆粒黏連等不良情況,因而較 佳。再者,與乙烯共聚合之α-烯烴之種類與含量可利用公 知之方法,例如核磁共振(NMR)測定裝置、其他儀器分析裝 100136921 20 201224035 置而進行定性定量分析。 若乙烯-烯烴無規共聚合體(p)滿足上述條件(a),則亦 可含有基於α-烯烴以外之單體之單體單位。作為該單體, - 例如可列舉:環狀稀烴、乙烯基芳香族化合物(笨乙烯等)、 • 多烯化合物等。關於該單體單位之含量,於將乙烯-α-烯烴 無規共聚合體(Ρ)中之全部單體單位設為1〇〇莫耳%之情 況,為20莫耳%以下,較佳為15莫耳%以下。又,對於乙 烯-α -烯烴無規共聚合體(Ρ)之立體構造、分支、分支度分佈 或分子量分佈,只要滿足上述條件(a)則並無特別限定,但 例如含有長鏈分支之共聚合體通常具有機械物性良好,且成 形片材時之熔融張力(熔體張力)增大而壓光成形性提高等 優點。使用單中心觸媒聚合所得之分子量分佈狹窄之共聚合 體有具低分子莖成分較少,相對難以發生原料顆粒黏連等優 點。 本發明中所使用之乙烯-α-烯烴無規共聚合體(p)之炫融 流動速率(MFR,Melt Flow Rate)並無特別限制,通常使用 &quot;MFR(JISK7210,溫度:,荷重·· 21.18岣為 〇 5〜1〇〇 • g/10mm之程度,更佳為之〜刈以川如心進而更佳為]〜 30的0^者。此處,醒只要考慮成料材時之成形加 工性或密封太陽電池元件(單元)時之密接性、回包狀況等選 擇即可。例如,關光成料材之情況,就將片材自成形= 上剝離時之操作性而言,使用MFR較佳為相對較低之值, 100136921 21 201224035 具體而言較佳為0.5〜5 g/l〇 min之程度者即可,又,於使 用T字模而擠出成形之情況,就降低擠出負載而提高擠出 量之觀點而言,使用MFR較佳為2〜50 g/l〇 min,進而較 佳為3〜30 g/10 min者即可。進而,就密封太陽電池元件(單 兀)時之密接性或回包容易性之觀點而言,使用MFR較佳為 2〜50 g/10 min,進而較佳為3〜3〇 g/1〇 min者即可。 本發明巾所使用之乙烯•烯煙無規共聚合體(p)之製造 方法並無特別限定,可採用使用公知之烯烴聚合賴媒的公 知之聚合方法。例如可列與. 準·使用以戚格勒-納他型 伽a㈣觸媒為代表之多中心 液聚合法、溶絲合法、塊㈣1\代表之w媒㈣ 可列舉使用自*其a/ 氣相聚合法等’另外 牛使用自由基起始劑之塊狀聚合 於乙稀-α·烯烴無規共聚合體(L。;本1日’由 聚合後之造粒(製粒)之容易性或防目對軟質之樹脂,故而就 而言,適宜的是❹可使低分子旦、止原料齡黏連等觀點 窄之原料進行聚合之單中心觸媒少且分子量分佈狹 本發明中所使用之乙烯法。 足上述條件⑷,即於示差掃描執量聚合^ ㈣所測定之結晶料敎量“ U中以加熱速度1〇°C %,進而較佳為10〜65 J/g。〜7〇化,較佳為5〜7〇 可確保太陽電池密封用多層體:〇〜70 J/g之範圍内’則 柔軟性或透明性(全光線穿 100136921 22 201224035 透率)等’因而較佳。尤其是若結晶熔解熱量為5 j/g以上, 則亦不易發生原料顆粒黏連等不良情況,因而較佳。此處, 作為έ亥結晶熔解熱量之參考值’通用之高密度聚乙烯(hdpe,V. Specific examples of the olefin-compatible resin (C) include the product name "Hilets" series of Mitsui Chemicals Co., Ltd., and the "Petrosin" series. The trade name "Ark〇 of Sasakawa Chemical Industry Co., Ltd." n" series, the product name "clear〇n" series of Yasuhara Chemical Co., Ltd., the brand name "I I" Marv" of Idemitsu Kosan Co., Ltd., and the "Escorez" series of Tonex Co., Ltd. 100136921 13 201224035 The content of the olefin-compatible resin (c) is preferably from 5 to 30% by mass in the resin composition, and more preferably from 1% by mass to 25% by mass. Among them, 15 quality. /. Above or quality. The following ratio is better. When the above (c) is blended in this range, the bleeding of the surface of the molded article (C) and the deterioration of mechanical properties are not caused, and the moisture resistance can be further improved. [Olefin-based resin (D)] By blending the specific olefin-based resin (D) in the present resin composition, the transparency can be further improved. From the viewpoint of improving the transparency of the olefin-based resin (D), it is preferred that the heat of crystal melting is 〇1 to 1 〇〇J/g, and preferably 8 〇J/g or less, and further An olefin resin of 50 J/g or less is preferred. The olefin-based resin (D) may, for example, be a linear low-density polyethylene, a polypropylene-based resin or a cyclic-diffuse-based resin containing a copolymer of ethylene and α-dilute hydrocarbon. Among them, it is preferred to use a cyclic olefin resin. By using a cyclic olefin-based resin as the olefin-based resin (D), the moisture-proof translucent property can be hardly lowered. The above-mentioned cyclic olefin-based resin may, for example, be an additive (co)polymer of a polymer (') a cyclic olefin obtained by hydrogenating a ring-opened (co)polymer of a cyclic olefin as needed ( Hi) a random copolymer of a cyclic olefin and an α-olefin such as ethylene or propylene' (iv) using maleic anhydride, maleic acid, itaconic anhydride, itaconic acid, (mercapto)acrylic acid, etc. A modifier of a saturated carboxylic acid or an anhydride thereof, which is a graft copolymer obtained by modifying (1) to (iii) of 100136921 14 201224035, and the like. These may be used alone or in combination of two or more. The glass transition temperature (Tg) of the above cyclic olefin-based resin is preferably from 5 〇 to 11 〇C, more preferably from 60 to 9 (TC, more preferably from 65 to 85 Torr: here, if the glass transition temperature ( In this case, Tg) is preferable because it can greatly improve the transparency of the resin composition of the present invention while greatly reducing the miscellaneous properties and workability. The above cyclic olefin-based resin and the above-mentioned metallocene ethylene-based polymer are preferable. (A) has low compatibility, and in view of transparency, the average refractive index at normal temperature is preferably from 1.510 to 1.540, more preferably from 1.515 to 1.535, and further, with the metallocene ethylene-based polymer used ( The absolute value of the difference in the average refractive index of A) is preferably 0.010 or less, more preferably 0 005 or less, still more preferably 〇〇〇3 or less. If the absolute value of the average refractive index difference is within the range, it is not acceptable In the resin composition, the dispersion diametric resin has a large influence on the dispersion diameter, and the transparency is improved, and the average refractive index can be measured by a known method such as an Abbe refractometer. Specific examples of the olefin-based resin (D) include the above-mentioned linear chain. "Umerit" series of Ube-Maruzen Polyethylene Co., Ltd., and "NUC Polyethylene" series of Nippon Unicar Co., Ltd., etc., as the above-mentioned propylene resin, can be cited as Japan Polypropylene The trade name "Novatec PP" series of the company and the Sumitomo Chemical Co., Ltd. are 100136921 15 201224035 The company name "Noblen" series, etc. As the above-mentioned cyclic olefin resin, the trade name of p〇lyplastics Co., Ltd. "T0PAS" series, the product name "Apd" series of Mitsui Chemicals Co., Ltd., and the product name "ZEONOR" series of ZEKO Co., Ltd., etc. Further, the above olefin resin (D) is used alone in a resin or a mixed number. As the content of the above-mentioned dilute-based resin (D), it is preferable that the content of the resin composition is not degraded from moisture prevention and the transparency is further improved. It is 10 to 50% by mass, and more preferably 2% by mass or more or 45% by mass or less of which is 25% by mass. It is more preferable that the amount of the upper or 3 () f is less than or equal to. [Other components] Further, the resin composition can be formulated with a heat stabilizer, an antioxidant, a preparation, an external absorbent, and light within a range not impairing the effects of the present invention. Additives such as a stabilizer, an antibacterial and antifungal agent, an antistatic agent, and a lubricant. [Using a sheet of the present resin composition] Next, a method of producing a sheet using the resin composition will be described. The method for forming the sheet is not particularly limited. For example, the metallocene ethylene compound (A), the crystal nucleating agent (B), and optionally the olefin phase can be used in a uniaxial or biaxial extruder. The resin (c), the dilute resin (D) and other additives are melt-mixed, extruded by a τ-die, and 100136921 16 201224035, which is quenched and solidified by a casting roll to produce an unstretched sheet. Here, the so-called unextendingly stretched sheet seal, (1) increases the strength of the sheet without accumulating '&quot; and is not included in the slitting by stretching rolls at the time of extrusion molding. In this case, the thickness of the sheet is not particularly limited. However, in view of workability and practicality, it is preferably 〇〇1 η μ. or more than '3111111 or less, more preferably 〇〇5 and 255. More preferably, it is 0.1 or more bribes and 2.0 mm or less. If it is within this range, the rigidity of the sheet can be sufficiently satisfied, and the second addition is not bad. The operability in the use of various packaging materials is not bad, and the transparency can also be obtained. make sure. Further, in order to further improve the heat resistance, various mechanical properties, and moisture resistance of the unstretched sheet, the resin composition may be included in a method such as coextrusion, extrusion lamination, heat lamination, or dry lamination. A plurality of sheets are laminated, or a resin composition other than the resin composition of the present invention (for example, polyethylene terephthalate, polyethylene naphthalate, or polyethylene terephthalate) The polycrystalline resin, the polypropylene resin, the mixture of the polypropylene resin and the petroleum resin, and the polystyrene resin are one or more layers of one or two layers of the sheet formed from the resin composition. Further, in order to further improve the heat resistance and moisture resistance of the unstretched sheet or the laminated sheet, it is possible to extend along a single axis or a biaxial shape by a roll method, a tenter method, a tubular method or the like. When the resin composition is used in various packaging materials, it is preferably based on JIS when it is formed into a sheet having a thickness of 136mm 100136921 17 201224035 from the viewpoints of designability and visibility of the contents. The internal haze measured by K7105 is 10% or less, more preferably 9°/. Hereinafter, it is more preferably 8% or less. When the internal haze is within this range, sufficient visibility can be obtained, and a product excellent in design can be obtained. The sheet obtained by molding the resin composition may be formed into a molded body of various shapes by vacuum forming, pressure forming, vacuum forming, press forming, or other thermoforming, or with other resins or metals or glass. Use it in multiple layers. Since the sheet obtained by molding the resin composition has excellent transparency and moisture resistance, it can be suitably used in various fields such as medical, food, electronic equipment, energy, and the like, requiring transparency and moisture resistance. In use. Further, in order to improve the designability of the product, secondary workability, etc., it is also possible to perform embossing or matting processing on the surface of the sheet. In this case, the mirror-shaped sheet may be temporarily processed by an embossing roll or a matting roll, or may be formed by changing the casting roll to an embossing roll or a matting roll at the time of extrusion molding. As long as it is not in accordance with the gist of the present invention, it is possible to apply an antistatic coating to the surface of the sheet, to form a film by using a surface protective sheet to prevent damage from adhering, or to provide a printed layer. Further, the method of forming the printed layer can be any known method. &lt;Sealing Material for Solar Cell&gt; A sheet using the resin composition can be used as a sealing material for a solar cell. In the sealing material for a solar cell of the present invention, the sheet using the above-mentioned resin composition can be used as a single layer, or can be formed into a multilayer body H | with other laminated layers. Resin composition <Table 100136921 18 201224035 The material (hereinafter referred to as the other layer of the resin layer (10) layer is not particularly limited, and in terms of sealing property, heat efficiency, and transparency, a resin layer containing an ethylene resin is preferable ( I) - A resin layer (1) containing an ethylene resin, particularly preferably the following resin: and/or the following resin layer (1)·2 'Jianqicheng (4) tree shrub as at least the outermost layer of the crucible The solar cell is sealed with a multilayer body. The resin layer (1)-i: contains the following conditions (4), which meets the following conditions (4), and satisfies the following (() Copolymerization: Resin layer of the body (Q) Resin layer (1)-2: The tree 匕 匕 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The heat of fusion is 〇~70 j/g ^ (b): in the scanning hot _ fixed towel at the heating rate / her crystal dissolution peak temperature is ~145t kg to ~70 j/g and '°day heat melting is 5 by the upper layer _, this hair provides both the full moisture resistance and excellent transparency, durability, battery making sun When the battery module is used for the sealing of the battery, it is often used for the sealing of the solar cell for the rigidity. The following is a module for the purpose of the invention. The body of the solar cell and the solar cell produced by the battery module [resin layer] (I)]] The resin layer (1)-1 contains an ethylene-α-olefin block copolymer which satisfies the conditions of the above (b), and contains a polymer of a total amount of 100136921 19 201224035 polymer (P) satisfying the above condition (b). The combination (Q) mainly has an effect of exhibiting excellent sealing property, heat resistance, or excellent transparency for imparting sufficient power generation efficiency to a solar cell to protect a solar cell element (unit). (Ethylene-α-olefin The random copolymer (Ρ)) The ethylene-α-olefin random copolymer (Ρ) used in the present invention is not particularly limited as long as the above condition (a) is satisfied, and ethylene and carbon number 3 are usually suitably used. a random copolymer of 20 olefins. Here, as an olefin copolymerized with ethylene, it can be exemplified Propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-decene, 3-methyl-1-butene, 4-anthracene In the present invention, as an olefin which is copolymerized with ethylene, propylene or 1-butene can be suitably used from the viewpoints of ease of industrial availability, properties, economy, and the like. 1-hexene and 1-octyl. The α-olefin copolymerized with ethylene may be used alone or in combination of two or more. Further, as the content of the α-olefin copolymerized with ethylene, as long as the above is satisfied The condition (a) is not particularly limited, and is usually 2 mol% or more, preferably 40 mol% or less, more preferably all monomer units in the ethylene-α-olefin random copolymer (Ρ). It is 3 to 30 mol%, and more preferably 5 to 25 mol%. When it is within this range, the crystallinity is lowered by the copolymerization component, whereby the transparency is improved, and it is also difficult to cause problems such as adhesion of the raw material particles, which is preferable. Further, the kind and content of the α-olefin copolymerized with ethylene can be qualitatively and quantitatively analyzed by a known method such as a nuclear magnetic resonance (NMR) measuring apparatus or other instrumental analysis apparatus 100136921 20 201224035. When the ethylene-olefin random copolymer (p) satisfies the above condition (a), it may contain a monomer unit based on a monomer other than the α-olefin. Examples of the monomer include a cyclic hydrocarbon, a vinyl aromatic compound (such as stupid ethylene), and a polyene compound. The content of the monomer unit is 20 mol% or less, preferably 15 or less, in the case where the total monomer unit in the ethylene-α-olefin random copolymer (Ρ) is 1% by mol%. Mole% or less. Further, the stereostructure, branching, branching distribution, or molecular weight distribution of the ethylene-α-olefin random copolymer (Ρ) is not particularly limited as long as the above condition (a) is satisfied, but for example, a copolymer having a long-chain branch is contained. It is generally advantageous in that the mechanical properties are good, and the melt tension (melt tension) at the time of forming a sheet is increased to improve the calendering formability. The copolymer having a narrow molecular weight distribution obtained by single-center catalyst polymerization has a low molecular weight stem component and is relatively difficult to cause adhesion of raw material particles. The flow rate (MFR, Melt Flow Rate) of the ethylene-α-olefin random copolymer (p) used in the present invention is not particularly limited, and generally, "MFR (JISK7210, temperature:, load · 21.18) is used.岣 is 〇5~1〇〇• g/10mm degree, more preferably ~ 刈 川 如 如 如 如 如 如 如 ~ ~ 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 For the purpose of sealing or sealing the solar cell element (unit), it is preferable to use the MFR in terms of the operability when the sheet is peeled off from the forming. For a relatively low value, 100136921 21 201224035 is preferably 0.5 to 5 g / l 〇 min, and in the case of extrusion molding using a T-shaped mold, the extrusion load is lowered and the extrusion load is increased. From the viewpoint of the amount of extrusion, the MFR is preferably 2 to 50 g/l 〇 min, and more preferably 3 to 30 g/10 min. Further, when the solar cell element (single enamel) is sealed, The MFR is preferably from 2 to 50 g/10 min, and more preferably from 3 to 3, from the viewpoint of adhesion or ease of returning the package. The method for producing the ethylene-olefin smoke random copolymer (p) used in the present invention is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst can be employed. Can be listed and used. The multi-center liquid polymerization method represented by the 戚gler-nata type gamma (four) catalyst, the dissolution of the filament, the block (4) 1\ represents the w medium (4), which can be used as a / a gas phase polymerization Legitimate et al. 'Block polymerization of free radical initiators in ethylene. Ethylene-α·olefin random copolymers (L.; 1st 'Easy or anti-mesh by granulation (granulation) after polymerization) For the soft resin, it is suitable that the raw material having a narrow viewpoint such as a low molecular weight and a low age of the raw material can be polymerized, and the single-center catalyst is small and the molecular weight distribution is narrow. The above condition (4), that is, the amount of crystal material measured in the differential scanning amount polymerization ^ (4) "the heating rate in U is 1 〇 ° C %, and further preferably 10 to 65 J / g. It is preferably 5 to 7 inches to ensure a multilayer body for solar cell sealing: 〇~70 J/g in the range of ' Softness or transparency (total light wear 100136921 22 201224035 permeability), etc. is preferred. In particular, if the heat of crystal melting is 5 j/g or more, it is also less likely to cause problems such as adhesion of raw material particles, which is preferable. Where, as the reference value of the melting heat of the έ海, the general-purpose high-density polyethylene (hdpe,

High-Density Polyethylene)為 170〜220 J/g 之程度,低密度 聚乙烯樹脂(LDPE,Low-Density Polyethylene)或直鏈狀低密 度聚乙稀(LLDPE,Linear Low_Density Polyethylene)為 100 〜160 J/g之程度。該結晶溶解熱量可使用示差掃描熱量 計’依據JIS K7122以加熱速度l〇°c/min進行測定。 又,本發明中所使用之乙烯_α_烯烴無規共聚合體(p)之結 晶熔解波峰溫度並無特別限定,通常未達l〇〇〇c,為3〇〜9〇 °C之情況較多。此處,作為該結晶熔解波峰溫度之參考值, 通用之高密度聚乙烯(HDPE)為130〜145。(:之程度,低密度 聚乙烯樹脂(LDPE)或直鏈狀低密度聚乙烯(LLDPE)為100〜 125C之程度。即,本發明所使用之乙烯烴無規共聚 合體(Ρ)難以獨自達成於示差掃描熱量測定中以加熱速度10 °C/min所測定之結晶熔解波峰溫度為i〇(rc以上,且結晶熔 解熱量為5〜70 J/g。該結晶熔解波峰溫度可使用示差掃描 熱量計’依據JIS K7121以加熱速度i〇°c/min進行測定。 作為本發明所使用之乙烯_α _烯烴無規共聚合體之具 體例,可例示:Dow Chemical股份有限公司製造之商品名 「Engage」、「Affinity」,三井化學股份有限公司製造之商品 名 Tafmer A」、「Tafmer P」,Japan Polyethylene Corporation 100136921 23 201224035 製造之商品名「Karnel」等。 (乙烯-α -烯烴嵌段共聚合體(Q)) 本發明中所使用之乙烯烯烴嵌段共聚合體(q)只要滿 足上述條件⑻則並無特別限定,通常適宜地使用乙婦與碳 數3〜20之α·烯烴之嵌段共聚合體。此處,作為與乙稀共 聚合之α-烯烴,可例示:丙烯、r丁烯、i姻、卜己烯: 1-庚婦、h辛稀、1-壬稀、癸烯、3_甲基+丁烯、4_甲基 -1-戊缚等。本發明中,就工業上的獲得容易性或 土 經濟性等觀點而言,作為與乙烯共聚合之^烤煙適宜使用 j烯、己歸、i-辛稀。與乙稀共聚合之心稀煙可 單獨僅使用一種或者亦可組合兩種以上使用。 又,若乙烯-心稀烴嵌段共聚合體(Q)滿足上述條件⑻, 則亦可含有基於α·馳以外之單體之單體單位 體,例如可列舉:環狀烯烴、乙·料族化合物(苯=婦 等)、多烯化合物等。關於該單體單位之含量,於將乙稀 -烯烴嵌段共聚合體(Q)中之全部單體單位設為上⑼莫耳%之 情況,為20莫耳%以下,較佳為15莫耳%以下。 本舍明中所使用之乙稀-α •稀烴嵌段共聚合體⑼之欲段 構造只要滿足上述條件_並無特·定,就錄性、耐 熱It透明性等平衡化之觀點而言,較佳為含有共聚單體含 有率、、、。曰曰隹&amp;度、結晶炼解波蜂溫度(熔點Tm)、或玻 璃轉移溫度(τ g)不同之2個以上,較佳為3個以上之鍵段或 100136921 24 201224035 飯段的多嵌段構造。具體而言列舉完全對Μ段、#對 稱般段、遞㈣段構造(*段構造之比率於线内漸增之構 造)等。關於具有該多嵌段構造之共聚合體之構造或製造方 . 法,可採用國際公開第2005/090425 5虎么報 , (W02005/090425)、國際公開第 2005/090426 號公報 (W〇2〇05/09〇426)、及國際公開第2005/090427號公報 (W02005/090427)等中詳細揭示者。 以下,對本發明中具有上述多嵌段構造之乙烯-α -烯煙後 段共聚合體詳細地進行說明。 具有該多嵌段構造之乙烯-α -烯烴嵌段共聚合體可適宜 地使用於本發明中,較佳為將作為α _烯烴之1-辛烯設為共 聚合成分之乙烯-辛烯多嵌段共聚合體。作為該嵌段共聚合 體’較佳為相對於乙烯較多辛烯成分(約15〜2〇莫耳〇/〇)共聚 合而成的大致非晶性之軟鏈段、與相對於乙烯較少辛烯成分 (約未達2莫耳%)共聚合而成的結晶熔解波峰溫度為1〇〇〜 14 5 °C之高晶性之硬鏈段分別存在2個以上的多嵌段共聚合 體藉由控制遠等軟鏈段與硬鏈段之鏈長或比率 ,可達成柔 軟J·生與耐熱性之並存。作為具有該多嵌段構造之共聚合體之 ,、體例可列Dow Chemical股份有限公司製造之商品名 「Infuse」。 、毛月中所使用之乙烯_α_埽烴嵌段共聚合體⑼之溶融 抓動速率_%亚域靠制,通常使用麗, 100136921 25 201224035 溫度:〗9〇亡,荷重:2!.18岣為〇5〜1〇〇g/1()mini程度, 更佳為1〜50 g/10 min,進而更佳為g/10 min,尤佳 為 1〜10 g/10 min 者。 此處’ MFR只要考慮成形片材時之成形加工性或密封太 陽電池元件(單元)時之密触、回包狀況㈣擇即可。具體 而言,於壓光成形片材之情況,就將片材自成形親上剝離時 之心作IH MFR較佳為相對較低,具體而言較佳為〇 5 〜5g/H) min之程度,又,於使用τ字模而擠出成形之情況, 就降低擠出負載而提高擠出量之觀點而言,適宜使用驗 為1〜30g/10min者。進而,就密封太陽電池元件(單元)時 之也接J1 生或回包合易性之觀點而言,適宜使用MFR為3〜 50 g/10 min 者。 本發明中所使用之乙烯_ α _烯烴嵌段共聚合體⑼必須滿 足上述條件⑻,即於示差掃描熱量測定巾以加熱速度抓 /ππη所測定之結晶溶解波峰溫度為⑽〜14穴,並且結晶 炫解‘、.、里A 5〜7G J/g。結晶熔解波峰溫度較佳為以 上’進而較佳為峨以上,上限通常為⑽。又結晶 溶解熱量較佳為1G〜6(U/g,進而較佳為Ml 結晶 轉料溫度及結晶_熱量之測定方法如上文中所述。 射太陽電池模組會因發電時之發熱或太陽光之韓 U上ρΓ至85〜听左右’若結晶轉波峰溫度為100 則可確保本發明之太陽電池密湘多層體之财熱 100136921 26 201224035 性,因而較佳,另一方面,若其上限為145°C,則於太陽電 池元件之密封步驟中不設置為太高之溫度即可密封,因而較 佳。又,若結晶熔解熱量在5〜70 J/g之範圍内,則可確保 本發明之太陽電池密封用多層體之柔軟性或透明性(全光線 穿透率)等,又,亦不易發生原料顆粒黏連等不良情況,因 而較佳。 (樹脂層⑴-1) 樹脂層(1)-1為含有上述乙烯-α-烯烴無規共聚合體(P)與 上述乙烯-α-烯烴嵌段共聚合體(Q)之樹脂層。此處,該等 共聚合體(Ρ)及共聚合體(Q)各自所使用之α -烯烴之種類可 相同亦可不同,於本發明中,若相同則混合時之相容性及太 陽電池密封用多層體之透明性提高,即太陽電池之光電轉換 效率提高,因而較佳。 其次,對於樹脂層(1)-1中的乙烯-α-烯烴無規共聚合體(Ρ) 與乙烯-α-烯烴嵌段共聚合體(Q)之含量,就柔軟性、耐熱 性、透明性等具有優異之平衡性之觀點而言,分別較佳為 50〜99質量%、1〜50質量%,更佳為60〜98質量%、2〜 40質量%,進而更佳為70〜97質量°/〇、3〜30質量%。又, 乙烯-烯烴無規共聚合體(Ρ)與乙烯-α -烯烴嵌段共聚合 體(Q)之混合(含有)質量比並無特別限制,較佳為(P)/(Q) = 99 〜50/1〜50,更佳為98〜60/2〜40,更佳為97〜70/3〜30, 更佳為97〜80/3〜20,進而更佳為97〜90/3〜10。其中, 100136921 27 201224035 將(P)與(Q)之合計設為 100質量份。此處,若混合(含有)質 量比在該範圍内,則容易獲得柔軟性、耐熱性、透明性等之 平衡性優異之太陽電池密封用多層體,因而較佳。 [樹脂層(1)-2] 樹脂層(1)-2亦可為以矽烷改質乙烯系樹脂(χ)作為主成分 之樹脂層、或以石夕烧改質乙稀系樹脂(χ)與聚乙稀系樹脂(巧 一乍為主成分之樹脂層。梦炫改質乙稀系樹腊(X)如 上所述通常可藉由將聚乙稀系樹脂與乙烯基梦燒化合物 及自由基產生劑於高溫下熔融混合,使之純聚合而獲得, ==由於使用自由基產生劑,因此存在所使用之 '、,知。卩分交聯從而混入凝膠或魚 乙烯基石夕烧化合物或自由其Η刺去。4者所使用之 此,於本發财 / 核應㈣_情況。因 烯系樹脂(F)之混合物作 ’、 合物,經濟性提高,並牟刀3、月曰層。藉由設為該混 之情柔# 透明性或耐執性等諸特性 之·亦可相對容易地進行,因而較佳。&quot;'、㈣ 此處,作為聚乙埽系樹脂⑺並 改質乙歸系樹脂(啦合而調整樹脂^限定,其係與石夕烧 稀系樹脂(X)之含量,並且調整樹脂;1中之雜改質乙 性、密封性或耐祕料特性者。之柔軟性、透明 上述石夕燒改質乙埽系樹脂(X)時所使用之:,可列舉與獲得 之樹脂,即低密度聚乙稀之♦乙歸系樹脂相同 乙烯、高密度聚乙烯、 100136921 28 201224035 超低密度聚乙烯、或直鍵狀低密度聚乙烯。該等可單獨僅使 用-種或亦可組合兩種以上使用。 本發明中所使用之聚乙烯系樹脂(F)之熔融流動速率 (MFR)並無特別限制,通常使用MFR(JIS K7210,溫度:190 C ’荷重· 21.18 N)為〇.5〜1〇〇 g/l〇 min之程度,更佳為2 〜50 g/1〇 min,進而更佳為3〜30 g/10 min者。此處,MFR 只要考慮成形片材時之成形加工性或密封太陽電池元件(單 疋)時之密接性、回包狀況等選擇即可。例如,於壓光成形 片材之情況’就將片材自成形輥上剝離時之操作性而言,使 用MFR較佳為相對較低,具體而言較佳為〇 5〜5 g/1〇 之程度者即可,又,於使用τ字模而擠出成形之情況,就 降低擠出負載而提高擠出量之觀點而言,使用MFR較佳為 2〜50g/10min,進而較佳為3〜30g/10min者即可。進而, 就密封太陽電池元件(單元)時之密接性或回包容易性之觀 點而§ ’使用MFR較佳為2〜50 g/10 min,進而較佳為3 〜30 g/10 min者即可。 於本發明中,該聚乙烯系樹脂(F)可使用與獲得上述石夕院 改質乙烯系樹脂(X)時所使用之聚乙烯系樹脂相同之樹脂, 亦可使用不同之樹脂,就混合時之相容性或透明性等觀點而 言’較佳為相同樹脂。又,於本發明中,就透明性及柔軟性 良好之方面而言,適宜使用密度較低之聚乙烯系樹脂。具體 而言較佳為密度為0.850〜0.920 g/cm3之聚乙烯系樹脂,更 100136921 29 201224035 佳為密度為0.860〜0.880 g/cm3之直鏈狀低密度聚乙燦。進 而’於該直鏈狀低密度聚乙烯中,尤佳為作為共聚合成分之 α-烯烴之種類與獲得矽烷改質乙烯系樹脂(X)時所使用之 聚乙烯系樹脂相同。 於本發明中’作為可適宜使用之密度較低之聚乙烯系樹月旨 之具體例’可例示:Dow Chemical股份有限公司製造之商 品名「Engage」、「Affinity」、「Infuse」’三井化學股份有限 公司製造之商品名「Tafmer A」、「Tafmer P」,Nipp〇n Polyethylene股份有限公司製造之商品名rkarnel」等。 將樹脂層(1)-2形成為以矽烷改質乙烯系樹脂(乂)與聚乙烯 系樹脂(F)之混合物作為主成分之樹脂層時的混合質量比並 無特別限定,以矽烷改質乙烯系樹脂(χ)/聚乙烯系樹脂(巧 比計為1〜99/99〜1’較佳為2〜70/98〜30,更佳為3〜4〇/97 〜60。若在該範圍内,則容易調整樹脂層(1)_2中之矽烷改 質乙稀系樹脂(X)之含量即石夕燒改質基濃度,可保持樹脂層 (1)-2之主要作用即作為接著層之功能,並且可相對容易地 調整作為表面層、密封層之柔軟性、透明性、密封性或耐熱 性等諸特性,因而較佳。 於本發明之太陽電池用多層體中,樹脂層⑴_2具有主要 表現作為表面層、密封層及接著層之功能的作用。因此,用 於樹脂層(1)-2中之樹脂較佳為具有柔軟性者。另—方面, 樹脂層(1)-2作為表面層,亦要求防止因軟化所導致之黏連。 100136921 30 201224035 雖於本發明中並無特別限定,但較佳為樹脂層(1)_2之維卡 軟化溫度為6CTC以下’更佳為3旳以上且未;_,進而 MU ,則可充分確 保樹脂層(1)-2之柔軟性’並且於通常之保管環境(溫产% °C、濕度50%左右)下不易黏連,因而較佳。心 ^ 丹者,維卡軟 化溫度可依據JIS K7206而測定。具體而古 .. σ,係一面經由與 加熱浴槽中之試驗片垂直地放置之頂端剖而接, 9 J吗檟1 mm的針 狀壓頭施加10 N(A法)之總荷重,一面以, 5〇 C/h之速度使 導熱介質升溫’壓頭頂端侵入試驗片中1功扭時之、w产 於樹脂層(1)-2中使用石夕烧改質乙稀系樹 樹脂(F)之混合物時之混合方法並無特別限定,可預先與樹 脂-同乾摻後供給至料斗,亦可預先將全部材料溶融混:而 製作顆粒後再供給。又’於本發日种,由於如上述般存在獲 得魏改質乙烯系樹脂00時所添加之乙烯基魏化合物及 自由基產生劑未反應而殘存的情況,故而於混合料改質乙 烯系樹脂(X)與聚乙烯㈣脂(F)時,較佳為藉由真空排氣去 除揮發成分。 樹脂層(I)之厚度並無特別限制,就太陽電池元件(單元) 之密封性或經濟性等觀點而言,較佳為0.02〜0.7顏,更 佳為 0.05〜0.6 mm。 [樹脂層(II)] 樹月曰層(II)包含含有上述之本樹脂組成物,即含密度為 100136921 201224035 0.936〜0.948 g/cm3、結晶炫解熱量為15〇〜雇j/g之二茂 金屬乙稀系聚合體(A)與結晶成核劑⑻之樹脂組成物的片 材。藉此,可平衡性良好地對本發明之太陽電池用多層體賦 予優異之防濕性、透明性以及耐熱性、剛性。 [其他成分] 又,構成本發明之太陽電池用多層體之樹脂層⑴中,可在 不脫離本發明之主旨之範圍内’以使諸特性(柔軟性、剛性、 耐熱性、透明性、接者性專)、成形加工性或經濟性等進一 步提高為目的而混合其他樹脂。此處,作為其他樹脂,例如 可列舉其他聚烯烴系樹脂或各種彈性體(稀烴系、苯乙烯系 等),利用羧基、胺基、醯亞胺基、羥基、環氧基、。等唑啉 基、硫醇基等極性基改質之樹脂等。 又’於樹脂層(I)中’可視需要添加各種添加劑。作為該添 加劑’例如可列舉:矽烷偶合劑、抗氧化劑、紫外線吸收劑、 耐候穩定劑、光擴散劑、成核劑、顏料(例如白色顏料)、難 燃劑、防變色劑等。於本發明中,添加自抗氧化劑、紫外線 吸收劑、耐候穩定劑中選擇之至少一種添加劑因後述之理由 等而較佳。 矽烷偶合劑於使密封材對保護材(玻璃、樹脂製之前片 材、後片材等)或太陽電池元件等之接著性提高方面有用, 例如可列舉具有如乙烯基、丙烯醯氧基、曱基丙烯醯氧基之 類的不飽和基,胺基、環氧基等並且具有如烷氧基之類的可 100136921 32 201224035 具體例,可例 不 矽垸、 水解之基的化合物。作為矽烷偶合劑之 N-(y5_胺基乙基)-r -胺基丙基三曱氧基 基)-7_胺基丙基曱基二曱氧基矽烷、^ 石夕烧、7 _縮水甘油氧基丙基三?氧基外f丙基—乙氧基 备盆工甘一 凡、7-甲基丙烯酉i 虱暴丙基三曱氧基矽烷等。於添加矽烷僦 朴k A ws劑之情況,就接 者性良好且黃變等變色較少等方面而言, ° 較佳為使用r-縮 水甘油氧基丙基三曱氧基矽烷或r-甲基 醯氧基丙基三 曱氧基矽炫。該矽烧偶合劑之添加量相對於構成各樹脂層之 樹脂組成物100質量份,通常為〇.0〜5.0質量份之程度,又, 與矽烷偶合劑同樣地,亦可有效地利用有機鈦酸酯化合物等 偶合劑,但於本發明中較佳為不添加。 作為抗氧化劑,可應用各種市售品,可列舉:單酚系、雙 酚系、高分子型酚系、硫系、亞磷酸酯系等各種類型者。作 為單酚系,例如可列舉:2,6-二-第三丁基對甲酚、丁基化羥 基苯曱醚、2,6-二-第三丁基-4-乙基苯酚等。作為雙酚系, 可列舉:2,2-亞甲基-雙(4-甲基-6-第三丁基苯酚)、2,2'-亞甲 基-雙(4-乙基-6-第三丁基苯鹼)、4,4,-硫代雙(3_甲基-6-第三 丁基苯酚)、4,4,-亞丁基-雙(3-曱基-6-第三丁基苯酚)、3,9· 雙[{1,卜二曱基-2-{/5-(3-第三丁基_4-羥基-5_曱基苯基)丙醯 氧基}乙基}-2,4,9,10-四氧雜嫘]-5,5-十一烷等。 作為高分子酚系,可列舉:i,1,3·三_(2-甲基_4_羥基第 三丁基苯基)丁烷、1,3,5-三甲基-2,4,6-三(3,5-二-第三丁基-4- 100136921 33 201224035 羥基苄基)苯、四-{亞甲基-3-(3·,5’-二-第三丁基·4,_羥基苯基) 丙酸醋}甲烷、雙{(3,3'_雙-4,-經基-3,-第三丁基苯基)酷乙 二醇酯、1,3,5-三(3’,5’_二-第三丁基_4,·羥基苄基)_均三 0井-2,4,6-(111,311,511)-三酮、三苯紛(維生素£)等。 作為硫系,可列舉:硫代二丙酸二月桂酯、硫代二丙酸二 肉豆蔻酯、硫代丙酸二硬脂酯等。 作為亞墙酸酯系’可列舉:亞罐酸三苯酯、亞鱗酸二苯基 異癸酯、亞填酸苯基二異癸酯、4,4’-亞丁基-雙(3-曱基-6-第 一 丁基本基-一_十二烧基)亞麟酸S旨、環狀新戍烧四基雙(亞 磷酸十八烷基酯)、亞峨酸三(單及/或二)苯酯、二異癸基季 戊四醇一亞罐酸S旨、9,10-二氫-9-氧雜-ίο-填雜菲_ι〇_氧化 物、10-(3,5-二-第三丁基-4-經基节基)-9,10-二氫_9_氧雜_ι〇· 磷雜菲-10-氧化物、10_癸氧基_9,10_二氫_9_氧雜_1〇_磷雜 菲、環狀新戊烷四基雙(2,4-二-第三丁基苯基)亞磷酸酯、環 狀新戊烷四基雙(2,6-二-第三甲基苯基)亞磷酸酯、2,2_亞曱 基雙(4,6-第三丁基苯基)亞磷酸辛酯等。 於本發明中,就抗氧化劑之效果、熱穩定性、經濟性等方 面而言,可較佳地使用酚系及亞磷酸酯系之抗氧化劑,進而 較佳為組合兩者而使用。該抗氧化劑之添加量相對於構成各 樹脂層之樹脂組成物1〇〇質量份,通常為0.1〜1.〇質量份之 私度’較佳為添加0.2〜0.5質量份。 作為紫外線吸收劑,可列舉二苯甲酮系、苯并三唑系、三 100136921 34 201224035 讲系、水揚酸酯系等各種類型者,可應用各種市售品。作為 二苯$酮系紫外線吸收劑,例如可列舉:2-羥基-4-甲氧基二 苯曱酮、2-羥基-4-甲氧基-2,·羧基二苯甲酮、2-羥基_4-辛氧 基二苯甲ig、2-經基-4-正十二烧氧基二苯甲g同、2_經基冰 正十八烷氧基二苯甲酮、2-羥基_4_苄氧基二苯甲酮、2_羥基 -4-甲氧基-5-磺基二笨甲酮、2_羥基_5_氣二苯甲酮、2,4_二 羥基二苯曱酮、2,2,_二羥基_4_甲氧基二苯甲酮、2,2,_二羥基 -4,4'-二甲氧基二苯甲酮、2,2,,4,4,·四經基二苯甲嗣等。 苯并三唾系紫外線吸收劑可列舉作為經基苯基取代苯并 二唑化合物的例如2-(2-羥基-5-曱基笨基)苯并三唑、2_(2_ 备基-5-第三丁基苯基)苯并三唾、2·(2_經基-3,5_二甲基苯基) 苯并三。坐、2-(2-甲基_4_經基苯基)苯并三〇坐、2_(2_經基-3_ 甲基-5-第三丁基苯基)苯并三唾、吵經基〇,5_二·第三戍基 苯基)苯并三嗤、2-(2_經基_3,5·二·第三丁基苯基)苯并三唾 等。又,作為三讲系紫外線吸收劑,可列舉:2_[4,6_雙(2,4_ 二甲基苯基Η,3,5·三讲-2·基]_5_(辛氧基)苯齡、2_(4,6_二苯 基-U,5-三讲-2-基)·5_(己氧基)笨紛等。作為水楊酸醋系, 可列舉:水楊酸苯酯、水揚酸對辛基苯酯等。 該紫外線吸收狀添加量相對於構旨層之樹脂组 成物Π)〇質量份,通常為0.01〜2.〇質量份之程度,較佳為 添加0.05〜0.5質量份。 除上述紫外線吸收劑以外,作為賦予耐候性之_穩定 100136921 35 201224035 劑,適宜使用受阻胺系光穩定劑。受阻胺系光穩定劑儘管不 會如紫外線吸收劑般吸收紫外線,但藉由與紫外線吸收劑併 用,可表現出顯著之相乘效果。除受阻胺系以外亦有可作為 光穩定劑而發揮功能者,但多會著色,對於本發明之太陽電 池用多層體而言並不佳。 作為受阻胺系光穩定劑,可列舉:琥珀酸二甲基4-(2-羥 基乙基)-4-羥基-2,2,6,6-四曱基哌啶縮聚物、聚 四曱基丁基)-胺基-1,3,5-三讲·2,4-二基}_{(2,2,6,6_四曱基_4· 哌啶基)亞胺基}-六亞曱基{{2,2,6,6_四甲基_4_哌啶基}亞胺 基}]、Ν,Ν’-雙(3-胺基丙基)_乙二胺_2,4_雙[Ν_ 丁基 -:^-(1,2,2,6,6-五曱基-4-哌啶基)胺基]_6_氣_1,3,5_三讲縮合 物、雙(2,2,6,6-四曱基-4-派咬基)癸二酸酯、2-(3,5-二·第三 -4-經基节基)-2-正丁基丙二酸雙(1,2,2,6,6_五曱基冬派啶基) 酯等。 該受阻胺系光穩定#j之添加量相對於構成各樹脂層之樹 脂組成物100質量份,通常為0 01〜0 5質量份之程度,較 佳為添加0.05〜0.3質量份。 [太陽電池密封用多層體] 包含本樹脂組成物之材較佳為使用於太陽電池用密封 材中,又,較佳為使用於太陽電池用㈣用多層體中。 太陽電池密·多層體為防祕優異者,較佳為於總厚度 0.3 mm、溫度桃、㈣濕度9〇%下測定之水蒸氣穿透率 100136921 36 201224035 為3·0 g/(m2.24小時)以下。於本發明中’就使用太陽電池 密封用多層體所製作之太陽電池模組的财久性或長期可靠 性等觀點而言,更佳為2.0 g/(m2.24小時)以下’進而更佳 為1.0g/(m2.24小時)以下,尤佳為〇.5 g/(m、24小時)以下。 本發明中如此之優異之防濕性主要巧·藉由組合上述乙烯系 樹脂(A)與結晶成核劑(B),進而添加烯烴相容樹脂(C)及/或 環狀烯烴系樹脂等烯烴系樹脂(D)而達成。再者,該水蒸氣 穿透率可利用公知各種之方法而測定,於本發明中係依據 JIS K7129B,使用 MOCON 公司製造之 PERMATRAN W 3/31 ’於溫度40。(:、相對濕度90%之條件下測定總厚度〇.3 mm之多層片材之水蒸氣穿透率。 太陽電池密封用多層體可考慮應用之太陽電池之形狀或 厚度、設置部位等而適當地調整其柔軟性或剛性。例如考慮 到以片狀取用太陽電池密封用多層體時之操作性或防止片 材表面彼此Ά連或者太陽電池模組之輕量化(通常為3 mm 左右’相對於此’可應用薄膜玻璃(i i mm左右)或者可應用 無玻璃之構成)等’較佳為動態黏彈性測定巾振動頻率 Hz,皿度2〇c下之儲存彈性模數⑽為,更 佳為250 %〇MPa,進而更佳為細〜·Μρ&amp;,尤佳為4〇〇 6〇0 MPa再者,该儲存彈性模數印,)係藉由使用動態黏 彈性測定裝置,於振動頻率1QHz下狀既定溫度範圍,求 出溫度20 C下之值而獲得。 100136921 37 201224035 作也!封:多層體為具有樹脂層⑴與樹梅i) 性等表面二多層構成’故而可使接著性或柔軟 體整體所要求之紐平衡絲好地鱗。m)專夕層 例如,以柔軟性與操作性(剛性)為例進行說明,太陽雷·也 =:可藉::_質層作為卿 田(η)並適當地調整該等之厚廑比而枯承± 操作性⑽性)平触良好地並存。太陽電池 '人= 要為樹脂層_樹脂層⑻之兩層以上之積層構成;; 就:為多層體之捲曲防止(平面性之保持)或製膜性等觀點 而言,較佳為樹脂層⑴/樹脂層(11)/樹脂層p,換言之為軟 質層/硬質層/軟質層之兩種三層構成等對稱構成。 上述軟質層並無特別限定,其為動態黏彈性測定十振動頻 率10 Hz、溫度2Gt下之儲存彈性模數(E,)較佳為1〇〇 Mpa 以下’更佳為5〜50 MPa之層’硬質層為儲存彈性模數⑽ 較佳為超過100 MPa,更佳為200〜3000 MPa,進而更佳為 500〜2000 MPa之層。藉由採用此種積層構成,將太陽電池 密封用多層體例如用作太陽電池密封材之情況,可相對容易 地實現太陽電池元件之保護性(緩衝性)與作為密封材整體 之操作性(常溫下之彈性模數等)之並存,因而較佳。 關於太1%電池推封用多層體於總厚度〇. 3 rnm下之全光線 穿透率,根據應用之太陽電池之種類,例如於非晶質之薄膜 100136921 38 201224035 系石夕型等巾’或應用於不會遮朗達太陽電池元件之 之部位的情況,有時亦並不太重 〜 $視但考慮到太陽電池之光 電轉換效率或將各種構件重疊時之作業性等,較佳為· .以上’更佳為88%以上’進而更佳為9〇%以上。再者,該 :全綠穿透率可利用公知之各種方法而測定,於本發明中係 依據JIS K7105,使用村上色彩技術研究所股份有限公司製 造之「反射/穿透率計」測定總厚度〇 3麵之多層片材之全 光線穿透率。 太陽電池密封用多層體可適宜地用作容易形成太陽電池 模組,可省略交聯步驟且透明性、防濕性、密封性及操作性 (剛性)等優異之太陽電池密封材。為了同時滿足該等特性, 較佳為於測定總厚度0.3 mm之太陽電池密封用多層體之情 况,動黏彈性測疋中振動頻率1 〇 Hz、溫度2〇°c下之儲存 彈性模數(E,)為300〜700 MPa,於溫度401、相對濕度9〇0/〇 下測定之水蒸氣穿透率為3.0 g/(m2.24小時)以下,並且全 光線穿透率為85%以上。更佳為動態黏彈性測定中振動頻率 10 Hz、溫度2〇°C下之儲存彈性模數(E,)為4〇0〜600 MPa, • 於溫度4〇t、相對濕度90%下測定之水蒸氣穿透率為2 〇 g/(m ·24小時)以下,並且全光線穿透率為以上;進而 較佳為動態黏彈性測定中振動頻率10 Hz、溫度2(TC下之儲 存彈性模數(E’)為400〜600 MPa,於溫度4〇〇C、相對濕度 9〇%下測定之水蒸氣穿透率為1.0 g/(m2.24小時)以下,並且 100136921 39 全光線穿透率為88°/。以上。 太陽電池密封用多層體之耐 中所用之樹脂之諸特性曰〜戈樹脂層(I)與樹脂層(H) 量、MFR、分子量等)的」日炫—解波峰溫度、結晶炼解熱 因發電時之發熱以陽;言,太陽電池模組會 右,若結晶炼解波峰溫度為1〇〇。^而升溫至^挑左 密封用多層體之耐熱性,因⑲^上,則可確保太陽電池 太陽電池密封用多層體之總厚— 0.03〜1.0 —左右’就透::’別限疋’通I”、 言,較佳為以0·10〜0 75 m 防濕性及操作性等方面而 〇.75軸之片狀使用。 繼而,就太陽電池密封用客 作AW夕女㈣體之製造方法進行說明。 知==池密封用多層體之製膜方法,可採用公 例如具有單轴擠出機、多轴擠出機、班布裏混合 機、捏和機等溶融混合設備, 、 壓光法或膨脹法等,並無特用::核之擠出澆鑄法、 或生產性魏㈣言,教她/於轉明巾,就操作性 使用τ字模之纖鑄法中之擠出洗缚法。 層之樹脂組之流動雜”㈣生構成各樹脂 為削〜28〇t,較佳為150〜25〇:專而適虽地調整,通常 可使用公知之方法,例如共擠。又’多層化之方法亦 乾式層壓法等方法,於本發'一擠出層壓法、熱層壓法、 而言,適宜使用共擠出法。於兮妓认作&amp;或生產性等觀點 &quot;擠出法中可選擇各種多層 100136921 201224035 喷嘴,例如可列舉給料塊法(feecj block method)、多歧管法 (multi-manifold method)。又,為了防止各樹脂層之修整效 率或再生添加時之透明性降低等,亦可適宜地使用咕铃喷嘴 或膠囊喷嘴等。 於利用上述製造方法所製作之太陽電池密封用多層體 中,樹脂層(II)相對於總厚度之厚度比率較佳為1〇%以上、 90%以下’更佳為20%以上、6〇%以下,進而更佳為25%以 上、45%以下。此處,若樹脂層(II)之厚度比率在該範圍内, 則可獲得防濕性與剛性及透明性之平衡性優異的太陽電池 密封用多層體’因而較佳。又’由於太陽電池密封用多層體 於常溫下之剛性優異’故而例如若用於可撓型之太陽電池模 組中’則可賦予剛性喻性),又,若用於硬質型之太陽電池 模組中,則可應用薄壁玻璃(例如U麵等)或者應用無玻 璃等構成,從而亦可期待輕量化等。 又,太陽電池密封用多層體適宜使用上述之樹脂層(物 脂糊/樹脂_之兩種三層構成,但亦可為提高作為太陽 電池模組之特性或調整外觀(改善曲或捲曲等)等而採用 其他積層構成。例如可列舉:樹脂層(ιχ含添加劑赠· ⑴(不含添加劑)/樹脂層(η)、樹脂層⑴(含添加劑α)/樹月^ (ι)(含添加劑Β)(添加劑a與Β之添加劑配方不同)/樹月^ ⑼、樹脂層⑴7樹脂層⑴”(樹脂層⑴’與⑴,,之儲存彈性^ (Ε’)或添加劑之混合比不同)/樹脂層(11)、樹脂層_脂層 100136921 41 201224035 (π) v樹脂層(π)”(樹脂層(11),與(II)&quot;之儲存彈性模數(e,)或添 加劑之混合比不同)之三種三層構成;樹脂層(I)/接著層/樹脂 層(Π)/接著層/樹脂層(11)(接著層為樹脂層(1)與樹脂層(11)之 接著層)、樹脂層(1)/再生層/樹脂層(11)/再生層/樹脂層⑴、及 樹脂層(I)/再生層/樹脂層(11)/再生層/樹脂層(11)之三種五層 構成等。此處,於再生層中,可添加因修整對太陽電池密封 用多層體製膜時產生之邊緣或調整製品之寬度而產生之捲 狀物等。於本發明中,為了不使樹脂層(II)之主要功能即防 濕性、透明性或剛性等下降,較佳為儘可能地不於樹脂層(11) 中添加因修整製膜時所產生之邊緣或調整製品之寬度(切割) 而產生之捲狀物等,而設定並添加再生層。 作為於太陽電池密封用多層體中使用之抗氧化劑、紫外線 吸收劑、耐候穩定劑等各種添加劑之混合方法,可預先與樹 脂一同乾換後供給至料斗,亦可預先將全部材料熔融混合而 製作顆粒後再供給’亦可製作預先僅將添加劑濃縮於樹脂中 之母料而供給。又,於以片狀而獲得之太陽電池密封用多層 體之正面及/或背面,亦可視需要進行目的在於防止將片材 製成捲狀物時片材彼此黏連,或提高太陽電池元件之密封步 驟中之操作性或排除空a之容易性等的壓花加工或各種凹 凸(圓錐或角錐形、或半球形等)加工。 進而’於製作太陽電池密封用多層體時,亦可與其他基材 溥膜(例士 I伸聚g旨薄膜(ΟΡΕτ,〇riente(j p〇iyester)、延伸聚 100136921 42 201224035 丙烯薄膜(OPP, Oriented Polypropylene)或四It乙烯-乙烯共 聚合體(ETFE, Ethylene-Tetrafluoroethylene)、聚 I 乙烯(PVF, Polyvinylfuoride)、聚偏二氣乙稀(PVDF,Polyvinylidene • Fluoride)及丙烯酸系等之各種耐候性薄膜等)藉由擠出層 ; 壓、共擠出或夾心層壓等方法進行積層。藉由將太陽電池密 封用多層體與各種基材薄膜積層,可提高操作性,或可根據 積層比而相對容易地調整所需之特性或經濟性等。 [太陽電池模組] 太陽電池密封用多層體係作為太陽電池用構件而使用 者’其部位並無特別限定’主㈣用於作為密接於太陽電池 元件上進行保護之太陽電池密封材的部位,或亦可為了調整 作為太陽電池模組整叙柔軟性、剛性、捲曲、厚度或絕緣 破壞電壓等而用於不密接於太陽電池元件上的部位。此處, 陽電池元件上的部位之具體例,例如作為如 上祕遵材/㈣材/太陽電池元件/ 陽電池模組的上部保護材之構成声才下W。蔓材之太 .陽電池密封用多層體/阻障;、最9。列舉:最表面層/太 ··封用多層體、最表面層/太;電池:層/阻障層/太陽電池密 層/太陽電池密封用多屙體 4封用多層體、或最表面 等,又,作為下部保護:陽電繼用多層雜 用多層體/阻障層/最背面層、其他取=歹]舉.太陽電池密封 池密封用多層體/阻障層/最背面屑κ烯蛵層(CpP等)/太陽電 3、其他聚烯烴層(cpp等)/ 100136921 43 201224035 阻障層/太陽電池密封用多㈣ (cpp等)/太陽電池密封用“雜,且層次兵他小裝層 θ 曰體/最背面層等。又,於將太 %電池密封用多層體使用於 、 t .. &amp; ?关於太陽電池元件上的部 位之情況,密接於太陽電池元 材可使用太陽電池㈣㈣多保護之太陽電池密封 vinylacetateC0p0lymer’乙:或者市售之腸__ 聚合體系之太陽電池旨共聚合體)或離子 « ^^ 匕處,對將太陽電池密封用多 =:=Γ元件上進行保護之太陽電池㈣ 材而衣作的太陽電池模組進行說明。 使用太陽電池密封用多; 片材與後片材固定太陽電L元件利用上下部之保護材即前 ==_組,可例示各種類型者,較佳可:: 二、太咖元件及下部保護材而製作之太 保|蒦 體而言可列舉··如上部保護材/密封材/太陽t 、:且具 =材般以太陽電池密封用多層體自太陽電池=! =面夾狀構成者;如糾彡狀τ部健材之㈣面上 %電池几件上形成密封材與上部保護材之構成者;如 :上部保護材之内周面上的太陽電池科、例如在氟樹月^ 透明保遵材上藉由韻等製作非晶質太陽電池元件所成者 上,形成密崎與下部賴材之構成者等。再者,當於 太陽電池密封用多層體之太陽電池模組中將密封材用於2 100136921 44 201224035 個以上之部位時,可於所有部位使用太陽電池密封用多層 體,亦可僅於一個部位使用太陽電池密封用多層體。又,將 密封材用於兩個以上之部位之情況,形成構成使用於各部位 之太陽電池密封用多層體的樹脂層(I)、及樹脂層(II)之樹脂 組成物之組成、或樹脂層(I)及樹脂層(II)在多層體中所占之 厚度比率可相同亦可不同。再者,於任意情況,藉由以太陽 電池密封用多層體之樹脂層(I)側接觸於太陽電池元件側之 方式製作太陽電池模組,均可於密封太陽電池元件時獲得充 分之接著性或密封性,因而較佳。 作為配置並配線於密封材間之上述太陽電池元件,例如可 列舉:單晶矽型、多晶矽型、非晶質矽型,鎵-砷、銅-銦-硒、鎘-碲等III-V族或II-VI族化合物半導體型,色素增感 型、有機薄膜型等。 構成使用太陽電池密封用多層體所製作之太陽電池模組 的各構件並無特別限定,作為上部保護材,例如可列舉:玻 璃、丙浠酸系樹脂、聚碳酸g旨、聚醋、含氟樹脂等之板材或 薄膜的單層或多層之保護材。下部保護材為金屬或各種熱塑 性樹脂薄膜等的單層或多層之片材,例如可列舉:錫、銘、 不鏽鋼等金屬;玻璃等無機材料;聚酯、無機物蒸鍍聚酯、 含氟樹脂、聚烯烴等的單層或多層之保護材。於該等上部及 /或下部之保護材之表面,可為了提高與太陽電池密封用多 層體或其他構件之接著性而實施底塗處理或電暈處理等公 100136921 45 201224035 知之表面處理。 以上述的如上部保s蔓材/在、封材(樹脂層(I)/樹脂層(Η)/樹 脂層(I))/太陽電池元件/密封材(樹脂層⑴/樹脂層⑼/樹脂層 (I))/下部保護材般以密封材自太陽電池元件之兩側夾持之 構成者為例,對使用太陽電池密封用多層體所製作之太陽電 池模組進行說明。自太陽光受光側起,依序積層有透明基 板、使用太陽電池密封用多層體(樹脂層⑴/樹脂層⑼/樹脂 層⑴)之密封材A、太陽電池元件、使用太陽電池密封用多 層體(樹脂層⑴/樹脂層(II)/樹脂層⑴)之密封材B、後片材, 進一步,於後片材之下面,接著有接線盒(連接用以將由太 陽電池元件發出之電向外部取出之配線的端子盒&quot;太陽電 池元件係為了將發電電流向外部導出而藉由配線連結。配線 通過後片材上設置之貫通孔向外部伸出,連接於接線盒上。 作為太陽電池模組之製造方法,可應用公知之製造方法, 並無特別限定,一般而言包括:將上部保護材、密封材、太 陽電池元件、密封材、下部保護材依序積層之步驟;及對該 等進行真空抽吸且加熱壓接之步驟。又,亦可應用批次式: 製造設備或捲對捲式之製造設備等。 使用本發明之太陽電池密封用多層體所製作之太陽電、也 模組可根據所應用之太陽電池之類型與模組形狀, 叩應用於 以移動設備為代表之小型太陽電池、設置於屋頂或房了員 型太陽電池等無論室内、室外之各種用途中。 100136921 46 201224035 [實施例] 以下揭示實施例’但本發明並不受下述實施例之任何限 制。 . (1)分子量分佈指數(Mw/Mn) : 使用日本Waters公司製造之高溫GPC(Gel PermeationHigh-Density Polyethylene) is 170 to 220 J/g, low density polyethylene resin (LDPE, Low-Density Polyethylene) or linear low density polyethylene (LLDPE, Linear Low_Density Polyethylene) is 100 to 160 J/ The extent of g. The heat of dissolution of the crystal can be measured using a differential scanning calorimeter in accordance with JIS K7122 at a heating rate of 10 ° C / min. Further, the crystal melting peak temperature of the ethylene_α-olefin random copolymer (p) used in the present invention is not particularly limited, and is usually less than 10 ° C, which is 3 〇 to 9 〇 ° C. many. Here, as a reference value of the crystal melting peak temperature, a general-purpose high-density polyethylene (HDPE) is 130 to 145. (To the extent that the low density polyethylene resin (LDPE) or the linear low density polyethylene (LLDPE) is from 100 to 125 C. That is, the ethylene hydrocarbon random copolymer (Ρ) used in the present invention is difficult to achieve alone. In the differential scanning calorimetry, the crystal melting peak temperature measured at a heating rate of 10 ° C/min is i 〇 (rc or more, and the crystal melting heat is 5 to 70 J/g. The crystal melting peak temperature can be used for differential scanning calorimetry. The measurement is carried out in accordance with JIS K7121 at a heating rate of i〇°c/min. As a specific example of the ethylene_α-olefin random copolymer used in the present invention, the product name "Engage" manufactured by Dow Chemical Co., Ltd. can be exemplified. "Affinity", trade name "Tafmer A" manufactured by Mitsui Chemicals Co., Ltd., "Tafmer P", Japan Polyethylene Corporation 100136921 23 201224035 Manufactured under the trade name "Karnel", etc. (Ethylene-α-olefin block copolymer ( Q)) The ethylene olefin block copolymer (q) used in the present invention is not particularly limited as long as it satisfies the above condition (8), and it is usually suitable to use a woman and a carbon number of 3 to 20 The block copolymer. Here, as the α-olefin copolymerized with ethylene, propylene, rbutene, i, and hexene are exemplified: 1-gum, h-sin, 1-n-dilute, Terpene, 3-methyl-butene, 4-methyl-1-pentene, etc. In the present invention, as a result of industrial ease of obtaining or soil economy, it is used as a flue-cured tobacco copolymerized with ethylene. It is suitable to use jene, hexahydrate, and i-sin. The dilute tobacco which is copolymerized with ethylene may be used alone or in combination of two or more. Further, if ethylene-heart-difficult block copolymer (Q) When the above condition (8) is satisfied, a monomer unit based on a monomer other than α·Chi may be contained, and examples thereof include a cyclic olefin, a B-based compound (benzene, a woman), and a polyene compound. The content of the monomer unit is 20 mol% or less, preferably 15 mol%, in the case where all the monomer units in the ethylene-olefin block copolymer (Q) are upper (9) mol%. In the following, the structure of the ethylene-α • dilute hydrocarbon block copolymer (9) used in the present invention is as long as it satisfies the above conditions. From the viewpoint of balance between heat resistance and transparency, etc., it is preferred to contain a comonomer content, a 曰曰隹 &amp; degree, a crystallization refining bee temperature (melting point Tm), or a glass transition temperature (τ) g) two or more different, preferably three or more key segments or a multi-block structure of the 100136921 24 201224035 rice section. Specifically, the complete pair of Μ section, #symmetric section, and the (four) section structure (* section) The ratio of the structure is increased in the line) and so on. Regarding the construction or manufacture of the copolymer having the multi-block structure.  The law may be adopted by the International Publication No. 2005/090425 5, the Tigers, (W02005/090425), International Publication No. 2005/090426 (W〇2〇05/09〇426), and International Publication No. 2005/090427. (W02005/090427) and the like are disclosed in detail. Hereinafter, the ethylene-α-olefin late stage copolymer having the above multi-block structure in the present invention will be described in detail. The ethylene-α-olefin block copolymer having the multi-block structure can be suitably used in the present invention, and it is preferred to use ethylene-octene polyene as a copolymerization component of 1-olefin of α-olefin. Segmental copolymer. The block copolymer is preferably a substantially amorphous soft segment which is copolymerized with respect to an ethylene-rich octene component (about 15 to 2 moles/〇), and is relatively less than ethylene. The octene component (about less than 2 mol%) is obtained by copolymerization of a crystal melting peak temperature of 1 〇〇 to 14 5 ° C. The high-crystalline hard segment has two or more multi-block copolymers respectively. By controlling the chain length or ratio of the far soft segment and the hard segment, it is possible to achieve the coexistence of softness and heat resistance. As a copolymer having the multi-block structure, the product name can be listed as "Infuse" manufactured by Dow Chemical Co., Ltd. The melting of ethylene_α_埽 hydrocarbon block copolymer (9) used in Maoyue. Grasping rate _% sub-domain system, usually using Li, 100136921 25 201224035 Temperature: 〗 9 death, load: 2! 18岣 is 〇5~1〇〇g/1()mini, more preferably 1 to 50 g/10 min, and even more preferably g/10 min, and particularly preferably 1 to 10 g/10 min. Here, the MFR may be selected in consideration of the formability at the time of forming the sheet or the close contact and the returning condition (4) when the solar cell element (unit) is sealed. Specifically, in the case of calendering a sheet, the core IH MFR is preferably relatively low when the sheet is peeled off from the forming, and specifically, preferably 〇5 to 5 g/H) min. In addition, in the case of extrusion molding using a τ font, it is suitable for use in the range of 1 to 30 g/10 min from the viewpoint of reducing the extrusion load and increasing the extrusion amount. Further, in terms of sealing the solar cell element (unit), it is also preferable to use an MFR of 3 to 50 g/10 min from the viewpoint of the J1 production or the retractability. The ethylene_α-olefin block copolymer (9) used in the present invention must satisfy the above condition (8), that is, the crystal dissolution peak temperature measured by the differential scanning calorimeter at a heating rate of ππη is (10) to 14 holes, and is crystallized. Hyunjie ',. , A 5~7G J/g. The crystal melting peak temperature is preferably at least ', more preferably 峨 or more, and the upper limit is usually (10). Further, the heat of crystal dissolution is preferably 1 G to 6 (U/g, and further preferably, the measurement method of Ml crystal transfer temperature and crystallization_heat is as described above. The solar cell module generates heat or sunlight due to power generation. If the temperature of the crystal transition peak is 100, it can ensure the solar cell of the present invention, which is preferable, on the other hand, if the upper limit is 145 ° C, in the sealing step of the solar cell element is not set too high temperature can be sealed, so it is better. Moreover, if the heat of crystal melting is in the range of 5 to 70 J / g, the present invention can be ensured The softness or transparency (total light transmittance) of the multilayer body for solar cell sealing is also less likely to cause problems such as adhesion of raw material particles. (Resin layer (1)-1) Resin layer (1) And -1 is a resin layer containing the above ethylene-α-olefin random copolymer (P) and the above ethylene-α-olefin block copolymer (Q). Here, the copolymers and copolymers ( Q) The types of α-olefins used may be the same or different. In the present invention, if the compatibility is the same, the compatibility at the time of mixing and the transparency of the multilayer body for solar cell sealing are improved, that is, the photoelectric conversion efficiency of the solar cell is improved, which is preferable. Next, for the resin layer (1)-1 The content of the ethylene-α-olefin random copolymer (Ρ) and the ethylene-α-olefin block copolymer (Q) is superior in terms of flexibility, heat resistance, transparency, etc., respectively. It is preferably 50 to 99% by mass, 1 to 50% by mass, more preferably 60 to 98% by mass, 2 to 40% by mass, still more preferably 70 to 97% by mass or more, and 3 to 30% by mass. The mixing ratio of the ethylene-olefin random copolymer (Ρ) to the ethylene-α-olefin block copolymer (Q) is not particularly limited, and is preferably (P) / (Q) = 99 〜 50 / 1 to 50, more preferably 98 to 60/2 to 40, more preferably 97 to 70/3 to 30, more preferably 97 to 80/3 to 20, and even more preferably 97 to 90/3 to 10. 100136921 27 201224035 The total of (P) and (Q) is 100 parts by mass. Here, when the mass ratio of the mixture (inclusive) is within this range, flexibility, heat resistance, transparency, etc. are easily obtained. The resin layer (1)-2 is also preferably a resin layer containing a decane-modified ethylene resin (χ) as a main component. Or, the stone layer is modified with a vinyl resin (χ) and a polyethylene resin (a layer of resin as a main component. The dream-decorating B-tree wax (X) can usually be borrowed as described above. It is obtained by melt-mixing a polyethylene-based resin, a vinyl monoxide compound, and a radical generator at a high temperature to carry out pure polymerization, and == using a radical generator, so that it is used. The mash is cross-linked to mix in the gel or fish. 4, the use of this, in this financial / nuclear (4) _ situation. Since the mixture of the olefinic resin (F) is used as a compound, the economy is improved, and the enamel 3 and the ruthenium layer are formed. It is preferable to use such characteristics as transparency, durability, and the like, which are relatively easy to perform. &quot;', (4) Here, as the polyethylene-based resin (7) and modified B-based resin (recombination and adjustment of the resin ^, which is related to the content of the stone-burning resin (X), and adjust the resin; (1) The softness and transparency of the above-mentioned materials used in the modification of the acetonitrile resin (X): the resin obtained, that is, the resin obtained, Low-density polyethylene ♦ B-based resin is the same ethylene, high-density polyethylene, 100136921 28 201224035 ultra-low density polyethylene, or straight-bonded low-density polyethylene. These can be used alone or in combination. The melt flow rate (MFR) of the polyethylene-based resin (F) used in the present invention is not particularly limited, and MFR (JIS K7210, temperature: 190 C' load · 21. 18 N) is 〇. The degree of 5 to 1 〇〇 g / l 〇 min is more preferably 2 to 50 g / 1 〇 min, and more preferably 3 to 30 g / 10 min. Here, the MFR may be selected in consideration of the formability at the time of forming a sheet, the adhesion in sealing a solar cell element (single ridge), the state of returning, and the like. For example, in the case of calendering a sheet, the MFR is preferably relatively low in terms of workability when the sheet is peeled off from the forming roll, and specifically, preferably 〇5 to 5 g/1 〇. In the case of extrusion molding using a τ font, the MFR is preferably 2 to 50 g/10 min, and more preferably 3, from the viewpoint of reducing the extrusion load and increasing the extrusion amount. ~30g/10min can be. Further, from the viewpoint of sealing the solar cell element (unit) for the adhesion or ease of packaging, the use of MFR is preferably 2 to 50 g/10 min, and more preferably 3 to 30 g/10 min. can. In the present invention, the polyethylene-based resin (F) may be the same one as the polyethylene-based resin used in the case of obtaining the above-mentioned Shi Xiyuan-modified ethylene-based resin (X), or may be mixed using a different resin. From the viewpoint of compatibility or transparency, it is preferably the same resin. Further, in the present invention, a polyethylene resin having a low density is preferably used in terms of transparency and flexibility. Specifically, the density is preferably 0. 850~0. Polyethylene resin of 920 g/cm3, more 100136921 29 201224035 Good density is 0. 860~0. 880 g/cm3 linear low-density polyethylene. Further, in the linear low-density polyethylene, it is particularly preferable that the type of the α-olefin as the copolymerization component is the same as the polyethylene-based resin used in obtaining the decane-modified ethylene resin (X). In the present invention, 'a specific example of a polyethylene tree having a low density which can be suitably used' can be exemplified by the trade name "Engage", "Affinity", "Infuse" manufactured by Dow Chemical Co., Ltd. The trade name "Tafmer A" and "Tafmer P" manufactured by the company, and the trade name rkarnel manufactured by Nipp〇n Polyethylene Co., Ltd., etc. When the resin layer (1)-2 is formed into a resin layer containing a mixture of a decane-modified ethylene resin (乂) and a polyethylene resin (F) as a main component, the mixing ratio is not particularly limited, and the decane is modified. Ethylene resin (χ) / polyethylene resin (comparable to 1 to 99 / 99 to 1 ' is preferably 2 to 70 / 98 to 30, more preferably 3 to 4 / 97 to 60. If in the In the range, it is easy to adjust the content of the decane-modified ethylene resin (X) in the resin layer (1)_2, that is, the concentration of the modified base of the sulphur, and the main function of the resin layer (1)-2 can be maintained as a The function of the layer, and the characteristics of the surface layer and the sealing layer, such as flexibility, transparency, sealing property, or heat resistance, can be adjusted relatively easily. Therefore, in the multilayer body for a solar cell of the present invention, the resin layer (1)_2 It has a function mainly as a function of the surface layer, the sealing layer and the adhesive layer. Therefore, the resin used in the resin layer (1)-2 is preferably soft. On the other hand, the resin layer (1)-2 As the surface layer, it is also required to prevent adhesion due to softening. 100136921 30 201224035 Although there is no special in the present invention However, it is preferable that the Vicat softening temperature of the resin layer (1)_2 is 6 CTC or less, more preferably 3 Å or more and no; _, and further MU, the flexibility of the resin layer (1)-2 can be sufficiently ensured' In addition, it is not easy to adhere in a normal storage environment (temperature production % ° C, humidity 50% or so), so it is better. For the heart, the Vicat softening temperature can be measured according to JIS K7206. .  σ, one side is connected through the top end perpendicular to the test piece in the heating bath, and the total load of 10 N (method A) is applied to the needle head of 9 J?1 mm, one side, 5 〇C/ The speed of h causes the temperature of the heat-conducting medium to rise. When the tip of the indenter invades the test piece, the w is produced in the resin layer (1)-2, and the mixture of the stone-heated ethylene resin (F) is used. The mixing method is not particularly limited, and may be supplied to the hopper in advance with the resin-dry blending, or all the materials may be melted and mixed in advance: the pellets are prepared and then supplied. In addition, since the vinyl-Wei compound and the radical generator which were added when the Wei-modified ethylene-based resin 00 was obtained were not reacted and remained as described above, the mixture was modified with an ethylene-based resin. In the case of (X) and polyethylene (tetra) grease (F), it is preferred to remove volatile components by vacuum evacuation. The thickness of the resin layer (I) is not particularly limited, and is preferably 0. from the viewpoints of the sealing property or economy of the solar cell element (unit). 02~0. 7 colors, better 0. 05~0. 6 mm. [Resin layer (II)] The tree layer (II) contains the above-mentioned resin composition, that is, the density is 100136921 201224035 0. 936~0. The 948 g/cm3, crystal heat-dissipating heat is 15 〇~ employs j/g of the metallocene polymer (A) and the crystal nucleating agent (8) resin composition of the sheet. By this, the multilayer body for a solar cell of the present invention can be excellent in moisture resistance, transparency, heat resistance and rigidity. [Other components] The resin layer (1) constituting the multilayer body for a solar cell of the present invention can be made to have various properties (softness, rigidity, heat resistance, transparency, and connection) without departing from the gist of the present invention. The other resin is mixed for the purpose of further improving the molding process, the molding processability, or the economy. Here, examples of the other resin include other polyolefin resins or various elastomers (dilute hydrocarbons, styrenes, etc.), and a carboxyl group, an amine group, a ruthenium group, a hydroxyl group, or an epoxy group. A resin modified with a polar group such as an oxazoline group or a thiol group. Further, various additives may be added to the resin layer (I) as needed. Examples of the additive include a decane coupling agent, an antioxidant, an ultraviolet absorber, a weathering stabilizer, a light diffusing agent, a nucleating agent, a pigment (for example, a white pigment), a flame retardant, and an anti-tarnishing agent. In the present invention, at least one additive selected from the group consisting of an antioxidant, an ultraviolet absorber, and a weathering stabilizer is preferred because of the reasons described later. The decane coupling agent is useful for improving the adhesion of the sealing material to the protective material (glass, resin-made sheet, back sheet, etc.) or solar cell element, and examples thereof include, for example, a vinyl group, a propylene oxy group, and an anthracene. An unsaturated group such as a acryloxy group, an amine group, an epoxy group or the like and having a compound such as an alkoxy group can be exemplified by a specific example of a compound such as an alkoxy group. As a decane coupling agent, N-(y5-aminoethyl)-r-aminopropyltrimethoxy-)-7-aminopropyl decyl decyloxy decane, ^Shi Xia, 7 _ Glycidoxypropyl three? Oxygen-exo-propyl-ethoxylate Pottery-glycan, 7-methylpropene 酉i 虱 propyl propyl tridecyloxydecane. In the case of adding a decane ruthenium k A ws agent, it is preferred to use r-glycidoxypropyltrimethoxy decane or r- in terms of good acceptability and less discoloration such as yellowing. Methyl methoxy propyl trimethoxy oxime. The amount of the simmering coupling agent added is usually 〇. by mass based on 100 parts by mass of the resin composition constituting each resin layer. 0~5. In the same manner as the decane coupling agent, a coupling agent such as an organic titanate compound can be effectively used, but it is preferably not added in the present invention. Various commercially available products can be used as the antioxidant, and examples thereof include various types such as a monophenol type, a bisphenol type, a polymer type phenol type, a sulfur type, and a phosphite type. Examples of the monophenolic compound include 2,6-di-t-butyl-p-cresol, butylated hydroxybenzophenone, and 2,6-di-t-butyl-4-ethylphenol. Examples of the bisphenol system include 2,2-methylene-bis(4-methyl-6-tert-butylphenol) and 2,2'-methylene-bis(4-ethyl-6-). Tert-butyl phenate), 4,4,-thiobis(3-methyl-6-tert-butylphenol), 4,4,-butylene-bis(3-mercapto-6-third Butylphenol), 3,9·bis[{1,b-diyl-2-{/5-(3-t-butyl-4-hydroxy-5-nonylphenyl)propenyloxy}B Base}-2,4,9,10-tetraoxaindole]-5,5-undecane, and the like. Examples of the polymer phenol system include i,1,3·tris(2-methyl-4-hydroxy-3-butylidene)butane, and 1,3,5-trimethyl-2,4. 6-tris(3,5-di-t-butyl-4-100136921 33 201224035 hydroxybenzyl)benzene, tetra-{methylene-3-(3·,5'-di-t-butyl·4 , _hydroxyphenyl) propionic acid vinegar} methane, bis{(3,3'-bis-4,-carbyl-3,-t-butylphenyl)cob ethylene glycol ester, 1,3,5- Tris(3',5'-di-t-butyl-4-4,-hydroxybenzyl)_-three-zero well-2,4,6-(111,311,511)-trione, triphenyl (vitamin) £) and so on. Examples of the sulfur system include dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiopropionate. Examples of the sub-wall acid ester system include triphenyl benzoate, diphenylisodecyl sulfite, phenyl diisodecyl linoleate, and 4,4'-butylene-bis(3-oxime). Base-6-first butyl-based-mono-dodecyl) linalic acid S, cyclic neodymium tetrakisyl bis(octadecyl phosphite), arsenic tris (mono and/or b) phenyl ester, diisodecyl pentaerythritol, a sub-tank acid, 9,10-dihydro-9-oxa-ίο-filled phenanthrene, oxide, 10-(3,5-di- Third butyl-4-trans) -9,10-dihydro -9-oxa oxime phosphaphenanthrene-10-oxide, 10 fluorenyl _9,10-dihydro _ 9_oxax〇_phosphaphenanthrene, cyclic neopentyltetrakis(2,4-di-tert-butylphenyl)phosphite, cyclic neopentane tetrayl double (2,6 -Di-t-methylphenyl)phosphite, 2,2-indenylbis(4,6-tert-butylphenyl)phosphite octyl ester, and the like. In the present invention, phenol-based and phosphite-based antioxidants can be preferably used in terms of the effect of the antioxidant, thermal stability, economy, and the like, and it is preferred to use them in combination. The amount of the antioxidant added is usually 0% by mass based on 1 part by mass of the resin composition constituting each resin layer. 1~1. The mass of the mass is preferably 'added 0. 2~0. 5 parts by mass. Examples of the ultraviolet absorber include various types such as benzophenone-based, benzotriazole-based, and tri-100136921 34 201224035, and salicylic acid ester-based compounds, and various commercially available products can be used. Examples of the diphenyl ketone ultraviolet absorber include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2, carboxybenzophenone, and 2-hydroxyl group. _4-octyloxybenzophenone ig, 2-carbyl-4-n-dodecyloxydibenzoyl g, 2—transbasic sec-octadecyloxybenzophenone, 2-hydroxyl 4_benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfodimethylidene ketone, 2-hydroxy-5-benzoic benzophenone, 2,4-dihydroxydiphenylhydrazine Ketone, 2,2,-dihydroxy-4_methoxybenzophenone, 2,2,-dihydroxy-4,4'-dimethoxybenzophenone, 2,2,,4,4 , · Tetrakilyl benzoquinone and so on. The benzotrisole-based ultraviolet absorber may, for example, be a 2-phenyl-2-substituted nonylbenzoxazole compound, such as 2-(2-hydroxy-5-fluorenylphenyl)benzotriazole, 2_(2_substituent-5- Tert-butylphenyl)benzotrisole, 2·(2-disyl-3,5-dimethylphenyl)benzotrien. Sit, 2-(2-methyl-4-yl-phenylphenyl)benzotriazine, 2_(2_ylamino-3_methyl-5-t-butylphenyl)benzotrisole, noisy Base, 5_di-t-decylphenyl)benzotriazine, 2-(2_trans-based_3,5·di-t-butylphenyl)benzotrisene, and the like. Further, as the three-speaking ultraviolet absorber, 2_[4,6-bis(2,4-dimethylphenylhydrazine, 3,5·3 lecture-2·yl]_5_(octyloxy)benzene age can be mentioned. 2_(4,6-diphenyl-U,5-tris-2-yl)·5_(hexyloxy) is abbreviated. As the salicylic acid vinegar, phenyl salicylate and water are mentioned. Penicillic acid p-octyl phenyl ester, etc. The amount of the ultraviolet absorbing agent added is usually 0% with respect to the resin composition of the layer. 01~2. The mass of the mass is preferably 0. 05~0. 5 parts by mass. In addition to the above ultraviolet ray absorbing agent, a hindered amine light stabilizer is preferably used as a stabilizer for imparting weather resistance to 100136921 35 201224035. The hindered amine light stabilizer, although not absorbing ultraviolet rays like an ultraviolet absorber, exhibits a remarkable synergistic effect by being used in combination with an ultraviolet absorber. In addition to the hindered amine system, it can function as a light stabilizer, but it is often colored, and it is not preferable for the multilayer body for a solar cell of the present invention. Examples of the hindered amine light stabilizer include dimethyl 4-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetradecylpiperidine condensate and polytetradecyl succinate. Butyl)-amino-1,3,5-trisyl·2,4-diyl}_{(2,2,6,6-tetradecyl-4(piperidinyl)imido}-six Amidinoyl{{2,2,6,6-tetramethyl-4(piperidinyl}imino}}, hydrazine, Ν'-bis(3-aminopropyl)-ethylenediamine_2, 4_bis[Ν-butyl-:^-(1,2,2,6,6-pentamethyl-4-piperidyl)amino]_6_gas_1,3,5_three condensate, Bis(2,2,6,6-tetradecyl-4-pyranyl) sebacate, 2-(3,5-di-tris--4-phenyl)-2-n-butyl Bis(1,2,2,6,6-pentacylanyl) and the like. The amount of the hindered amine-based light-stable #j added is usually from 0 01 to 0.05 parts by mass, preferably from 0 to 0.5 parts by mass, based on 100 parts by mass of the resin composition constituting each resin layer. 05~0. 3 parts by mass. [Multilayer body for solar cell encapsulation] The material containing the resin composition is preferably used in a solar cell sealing material, and is preferably used in a multilayer body for solar cell (4). The solar cell dense and multi-layered body is excellent in anti-mystery, preferably in a total thickness of 0. Water vapor permeability measured under 3 mm, temperature peach, (iv) humidity 9〇% 100136921 36 201224035 is 3·0 g/(m2. 24 hours) below. In the present invention, it is more preferable that the solar cell module produced by using the multilayer body for solar cell encapsulation has a long-term reliability or long-term reliability. 0 g/(m2. 24 hours) below and further preferably 1. 0g/(m2. 24 hours) below, especially good for 〇. 5 g / (m, 24 hours) or less. In the present invention, the excellent moisture resistance is excellent, and the ethylene resin (A) and the crystal nucleating agent (B) are combined, and an olefin-compatible resin (C) and/or a cyclic olefin resin are further added. The olefin resin (D) is achieved. Further, the water vapor transmission rate can be measured by a known method. In the present invention, according to JIS K7129B, PERMATRAN W 3/31 ' manufactured by MOCON Corporation is used at a temperature of 40 Å. (:, the total thickness is measured under the condition of 90% relative humidity. Water vapor transmission rate of 3 mm multilayer sheets. The multilayer body for solar cell sealing can be appropriately adjusted in flexibility or rigidity in consideration of the shape, thickness, installation position, and the like of the solar cell to be applied. For example, it is considered that the operability in the case of taking a multilayer body for solar cell sealing in a sheet form or preventing the surface of the sheet from being connected to each other or the weight of the solar cell module (usually about 3 mm 'relative to this' can be applied to the film glass ( Ii mm or so) or glass-free composition can be applied. It is preferably a dynamic viscoelasticity measuring towel vibration frequency Hz. The storage elastic modulus (10) at a dish size of 2 〇c is more preferably 250% 〇 MPa, and thus more佳为细〜·Μρ&amp;, especially for 4〇〇6〇0 MPa, the storage elastic modulus printing,) is obtained by using a dynamic viscoelasticity measuring device at a vibration frequency of 1QHz. Obtained at a temperature of 20 C. 100136921 37 201224035 !! Seal: The multilayer body has a two-layered structure of a surface such as a resin layer (1) and a tree plume. m) The special layer is described by, for example, softness and operability (rigidity). Sun Ray· also =: can use: _ quality layer as Qingtian (η) and adjust the thickness ratio of these And the dryness ± operability (10) sex) coexisted well. The solar cell 'person = is composed of a laminate of two or more layers of the resin layer _ resin layer (8);; for the purpose of preventing curling of the multilayer body (holding of planarity) or film forming property, a resin layer is preferable. (1) / Resin layer (11) / resin layer p, in other words, two layers of a soft layer / a hard layer / a soft layer are symmetrically constituted. The soft layer is not particularly limited, and the dynamic viscoelasticity is 10 Hz, and the storage elastic modulus (E,) at a temperature of 2 Gt is preferably 1 〇〇Mpa or less, more preferably 5 to 50 MPa. The hard layer is a storage elastic modulus (10) preferably more than 100 MPa, more preferably 200 to 3000 MPa, and still more preferably 500 to 2000 MPa. By using such a laminated structure, the solar cell sealing multilayer body can be used as a solar cell sealing material, for example, and the solar cell element can be relatively easily protected (buffering property) and the operability as a sealing material (normal temperature). The lower elastic modulus, etc.) coexist and is therefore preferred. About the 1% battery push-sealing multilayer body in total thickness 〇.  The total light transmittance at 3 rnm, depending on the type of solar cell used, for example, in amorphous film 100136921 38 201224035 石 夕 等 等 or ' applied to parts that do not cover the solar cell components In some cases, it is not too heavy. _ Considering the photoelectric conversion efficiency of solar cells or the workability when overlapping various components, etc., it is preferable. The above is more preferably 88% or more and further preferably 9% or more. Further, the total green transmittance can be measured by various known methods. In the present invention, the total thickness is measured by the "reflection/permeability meter" manufactured by Murakami Color Research Co., Ltd. in accordance with JIS K7105. The total light transmittance of the multilayer sheet of 3 sides. The multilayered body for solar cell sealing can be suitably used as a solar cell sealing material which is easy to form a solar cell module, and which can eliminate the crosslinking step and is excellent in transparency, moisture resistance, sealing property, and workability (rigidity). In order to satisfy these characteristics at the same time, it is preferred to determine the total thickness of 0. In the case of a multilayer body for sealing a 3 mm solar cell, the vibrational frequency of the dynamic viscoelasticity measurement is 1 〇 Hz, and the storage elastic modulus (E,) at a temperature of 2 〇 °c is 300 to 700 MPa at a temperature of 401, relative. The water vapor transmission rate measured under the humidity of 9〇0/〇 is 3. 0 g/(m2. Below 24 hours), and the total light transmittance is 85% or more. More preferably, the dynamic viscoelasticity measurement has a vibration frequency of 10 Hz and a storage elastic modulus (E,) at a temperature of 2 〇 ° C of 4 〇 0 to 600 MPa, and is measured at a temperature of 4 〇 t and a relative humidity of 90%. The water vapor transmission rate is below 2 〇g/(m · 24 hours), and the total light transmittance is above; further preferably, the vibration frequency is 10 Hz and the temperature 2 in the dynamic viscoelasticity measurement (the storage elastic mode under TC) The number (E') is 400 to 600 MPa, and the water vapor permeability measured at a temperature of 4 〇〇 C and a relative humidity of 9 〇 % is 1. 0 g/(m2. Below 24 hours), and 100136921 39 full light transmittance is 88 ° /. the above. The characteristics of the resin used in the resistance of the multilayer body for solar cell sealing, such as the amount of the resin layer (I) and the amount of the resin layer (H), the MFR, the molecular weight, etc., the peak temperature, the crystallization heat, and the heat generation When the heat is yang, the solar cell module will be right, if the crystal refining peak temperature is 1〇〇. ^When the temperature is raised to the left, the heat resistance of the multilayer body for sealing is ensured by 19^, and the total thickness of the multilayer body for solar cell sealing of the solar cell is ensured - 0. 03~1. 0 - left and right 'is transparent:: 'Do not limit 疋 '通I", say, preferably from 0. 10~0 75 m moisture resistance and operability. The 75-axis sheet is used. Next, a description will be given of a manufacturing method of a guest AW Xi (4) body for solar cell sealing. Knowing that the method for forming a multi-layered body for pool sealing can be used, for example, a single-axis extruder, a multi-axis extruder, a Banbury mixer, a kneader, etc., calendering or expansion There is no special use in the law, etc.:: the nuclear extrusion casting method, or the production of Wei (4), teach her / in the transfer of the towel, the operative method of the use of the τ word mold in the fiber-casting method of extrusion and binding. The flow of the resin group of the layer "four" raw resin is cut to 28 〇t, preferably 150~25 〇: specially adjusted, usually using a known method, such as co-extrusion. The method is also a dry lamination method, etc., in the present invention, an extrusion lamination method, a thermal lamination method, and a co-extrusion method are suitably used. The viewpoint of "being recognized as &amp; or productive" In the extrusion method, various multilayer 100136921 201224035 nozzles can be selected, and examples thereof include a feecj block method and a multi-manifold method, and in order to prevent trimming efficiency or regeneration of each resin layer. In the multilayer body for solar cell encapsulation produced by the above-described production method, the thickness ratio of the resin layer (II) to the total thickness is preferably 1 in the case of a decrease in the transparency. 〇% or more and 90% or less are more preferably 20% or more and 6% or less, and still more preferably 25% or more and 45% or less. Here, if the thickness ratio of the resin layer (II) is within the range, Excellent balance between moisture resistance and rigidity and transparency It is preferable to use a multilayer body for solar cell sealing. Further, since the multilayer body for solar cell sealing is excellent in rigidity at normal temperature, it can be imparted to a rigid metaphor such as, for example, in a flexible solar cell module. In addition, when it is used in a hard type solar cell module, it can be applied to a thin-walled glass (for example, a U-face) or a glass-free application, and it is also expected to be lightweight. It is preferable to use the two-layer structure of the above-mentioned resin layer (paste paste/resin_), but it is also possible to adopt other laminated structure for improving the characteristics of the solar cell module or adjusting the appearance (improving curvature, curl, etc.). For example, a resin layer (including an additive) (1) (without additives)/resin layer (η), a resin layer (1) (with additive α), or a tree (^) (additive Β) (additive a and Β Different additive formulas) / tree month ^ (9), resin layer (1) 7 resin layer (1)" (resin layer (1)' and (1), storage elastic ^ (Ε') or additive mixing ratio is different) / resin layer (11), resin layer _lipid layer 100136921 41 201224035 (π) v resin Three kinds of three layers of (π)" (resin layer (11), and (II) &quot; storage elastic modulus (e,) or additive mixing ratio); resin layer (I) / adhesive layer / resin layer (Π) / adhesive layer / resin layer (11) (the subsequent layer is the adhesive layer of the resin layer (1) and the resin layer (11)), the resin layer (1) / the reproduction layer / the resin layer (11) / the reproduction layer / Three layers of the resin layer (1), and the resin layer (I)/regeneration layer/resin layer (11)/regeneration layer/resin layer (11), etc. Here, in the regeneration layer, the solar cell may be added due to trimming A roll or the like which is produced by sealing the edge formed when the multilayer film is sealed or adjusting the width of the product. In the present invention, in order not to lower the main function of the resin layer (II), that is, moisture resistance, transparency, rigidity, etc., it is preferable to add as much as possible to the resin layer (11) due to trimming film formation. The edge or the width (cut) of the article is adjusted to produce a roll or the like, and the reproduction layer is set and added. As a method of mixing various additives such as an antioxidant, a UV absorber, and a weathering stabilizer used in a multilayer body for solar cell encapsulation, it may be dry-exchanged with a resin and supplied to a hopper, or may be prepared by melt-mixing all materials in advance. After the granules are supplied, it can also be supplied as a masterbatch which concentrates only the additive in the resin in advance. Moreover, the front surface and/or the back surface of the multilayer body for solar cell sealing obtained in the form of a sheet may be optionally used to prevent the sheets from sticking to each other when the sheet is formed into a roll, or to improve the solar cell element. The operability in the sealing step or the embossing process or the various irregularities (cone or pyramidal or hemispherical) are excluded from the ease of empty a. Further, when manufacturing a multilayer body for solar cell sealing, it is also possible to form a film with other substrates (for example, Iτ, 〇riente (jp〇iyester), extended poly 100136921 42 201224035 propylene film (OPP, Oriented Polypropylene) or various weather resistant films such as ETFE, Ethylene-Tetrafluoroethylene, PVF, Polyvinylfuoride, PVDF, Polyvinylidene • Fluoride, and Acrylic The layering is carried out by extrusion, coextrusion or sandwich lamination, etc. By stacking the solar cell sealing multilayer body with various substrate films, the operability can be improved, or the laminate ratio can be relatively [Solar cell module] The multilayer system for solar cell sealing is used as a member for solar cells, and the user's part is not particularly limited. 'Main' (4) is used as a solar cell component. The part of the solar cell sealing material that is protected, or may be adjusted for the flexibility, rigidity, curl, thickness or absoluteity of the solar cell module. It is used for a portion that is not in close contact with the solar cell element, etc. Here, a specific example of a portion on the anode cell element is, for example, the upper part of the above-mentioned sacred material/(four) material/solar cell element/positive battery module The composition of the protective material is only under W. The vine is too. Multi-layer body / barrier for solar cell sealing; List: the outermost layer / too · · sealed multi-layer body, the outermost layer / too; battery: layer / barrier layer / solar cell dense layer / solar cell sealing multi-body 4 sealed multi-layer body, or the most surface And, as a lower protection: the solar power is followed by a multi-layer miscellaneous multi-layer body / barrier layer / the most back layer, other take = 歹] lift. Multilayer body/barrier layer for solar cell sealed cell seal/backmost chip κ olefin layer (CpP, etc.)/Solar power 3, other polyolefin layer (cpp, etc.) / 100136921 43 201224035 Barrier/solar cell seal (4) (cpp, etc.) / solar cell seal with "miscellaneous, and the layer of his small layer of θ 曰 body / the most back layer, etc.. In addition, the use of multi-layer battery for too much battery seal, t. .  &amp; ?About the location on the solar cell component, the solar cell can be used in close proximity to the solar cell element. (4) (4) Multi-protected solar cell seal vinylacetateC0p0lymer' B: or commercially available sausage __ polymer system solar cell aggregate) Or the solar cell module of the solar cell (four) that protects the solar cell from being sealed with a large number of ===Γ components. It is used for sealing with solar cells; the solar cell L element is fixed to the sheet and the rear sheet. The upper and lower protective materials, that is, the front ==_ group, can be exemplified by various types, preferably: 2. The coffee component and the lower protection The material is made of Taibao. The body can be listed as the above-mentioned protective material/sealing material/sun t, and the multilayer body for solar cell sealing is made of solar cells =! = face clip shape; For example, the quaternary τ part of the material (4) on the surface of several parts of the battery to form a seal material and the upper protective material; for example: the upper protective material on the inner peripheral surface of the solar cell, for example, in the fluoride tree month ^ transparent In the case of making an amorphous solar cell element by rhyme, etc., it is a member of Mizusaki and the lower part of the material. In the case of a solar cell module for a solar cell encapsulation multilayer body, when the sealing material is used for a portion of 2,100,136,921, 2012, 2012,430, or more, the solar cell sealing multilayer body may be used in all parts, or may be used in only one part. A multilayer body for solar cell sealing is used. In addition, when the sealing material is used for two or more portions, the resin layer (I) constituting the multilayer body for solar cell sealing used in each portion, and the composition of the resin composition of the resin layer (II) or resin are formed. The thickness ratio of the layer (I) and the resin layer (II) in the multilayer body may be the same or different. Further, in any case, the solar cell module can be produced by contacting the side of the resin layer (I) of the multilayer body for solar cell sealing on the side of the solar cell element, thereby obtaining sufficient adhesion when sealing the solar cell element. Or sealing, so it is preferred. Examples of the solar cell element disposed between and wired between the sealing materials include a single crystal germanium type, a polycrystalline germanium type, an amorphous germanium type, a group III-V such as gallium-arsenic, copper-indium-selenium, and cadmium-strontium. Or a II-VI compound semiconductor type, a dye-sensitized type, an organic film type, or the like. The member for constituting the solar cell module produced by using the multilayer body for solar cell encapsulation is not particularly limited, and examples of the upper protective material include glass, propionate-based resin, polycarbonate, polyacetate, and fluorine-containing. A single or multiple layer of protective material for a sheet or film of resin or the like. The lower protective material is a single layer or a plurality of layers of a metal or various thermoplastic resin films, and examples thereof include metals such as tin, magnesium, and stainless steel; inorganic materials such as glass; polyester, inorganic vapor-deposited polyester, and fluorine-containing resin. A single or multiple layer of protective material such as polyolefin. The surface of the upper and/or lower protective material may be subjected to a primer treatment or a corona treatment to improve the adhesion to the multi-layer or other member for solar cell sealing, and the surface treatment is known. In the above-mentioned above, the stalk material/inner, sealing material (resin layer (I) / resin layer (Η) / resin layer (I)) / solar cell element / sealing material (resin layer (1) / resin layer (9) / resin In the layer (I))/lower protective material, a solar cell module produced by using a multilayer body for solar cell sealing will be described as an example in which a sealing material is sandwiched between both sides of a solar cell element. A sealing material A using a transparent substrate, a multilayer body for sealing a solar cell (resin layer (1) / resin layer (9) / resin layer (1)), a solar cell element, and a multilayer body for solar cell sealing are sequentially laminated from the light receiving side of the sunlight. (Resin layer (1) / resin layer (II) / resin layer (1)) sealing material B, rear sheet, and further, under the rear sheet, followed by a junction box (connected to discharge electricity from the solar cell element to the outside The terminal box of the removed wiring "the solar cell element" is connected by wiring in order to guide the generated current to the outside. The wiring is extended to the outside through the through hole provided in the rear sheet, and is connected to the junction box. The manufacturing method of the group can be applied to a known manufacturing method, and is not particularly limited. Generally, it includes a step of sequentially laminating an upper protective material, a sealing material, a solar cell element, a sealing material, and a lower protective material; The steps of vacuum suction and heat crimping are also applied. Further, batch type: manufacturing equipment or roll-to-roll manufacturing equipment, etc. can be applied. The solar power and module produced by the body can be applied to the small solar cells represented by mobile devices, solar cells installed on the roof or room, etc., regardless of the type of solar cells applied and the shape of the module. In various applications for outdoor use. 100136921 46 201224035 [Examples] The following examples are disclosed, but the present invention is not limited by the following examples.  (1) Molecular weight distribution index (Mw/Mn) : High temperature GPC (Gel Permeation) manufactured by Japan Waters Corporation

Chromatograph,凝膠滲透色譜)系統測定重量平均分子量 (Mw)及數量平均分子量(Μη) ’算出分子量分佈指數 (Mw/Mn)。 (2) 透明性(内部霧度) 所謂「内部霧度」’係指自薄膜整體之霧值減去外部霧值 所得之值。 内部霧度係基於JIS K7105,藉由於厚度0.1 mm之片材(樣 品)之兩表面塗佈鄰苯二曱酸二辛酯(D0P,Dioctyl Phthalate) 將外部霧度調整為零而進行測定。將内部霧度為1〇%以下者 視為合格。 (3) 防濕性(水蒸氣穿透率) 基於JIS K7129B,使用MOCON公司製造之PERMATRAN W3/31 ’於4(TC、9〇%RH之環境下測定厚度0.1 mm下之水 蒸氣穿透率。將水蒸氣穿透率為1.2〇g/(m2.24小時)以下者 視為合格。 (4) 結晶熔解熱量(沾㈨ 使用示差掃描熱量計「DSC-7」(PerkinElmer製造),依據 100136921 47 201224035 JIS K7122,將約l〇 mg之試樣以加熱速度i〇°c/min自_4〇 C升溫至200°C ’於200°C下保持1分鐘後,以冷卻速度ι〇 °C/min降溫至-40°C ’再次以加熱速度l〇t/min升溫至200 °C ’測定此時之熱譜’由其求出結晶熔解熱量(^^(^)。 (5) 結晶波峰溫度(Tc) 使用示差掃描熱量計「DSC-7」(PerkinElmer製造),依據 JIS K7121,將約1〇 mg之試樣以加熱速度1(rc/min自_4〇 °C升溫至2〇(TC,於20(TC下保持i分鐘後’以冷卻速度1〇 °C/min降溫至-4(TC,測定此時之熱譜,由其求出結晶波峰 溫度(Tc)(°C)。 (6) 軟化溫度(Ts) 依據JISK2207,求出烯烴相容樹脂(c)之軟化溫度(。〇。 (7) 平均折射率 對成形為厚度G.1 mm之樣品,使用Atag。公司製造之阿 貝折射計,以鈉D線(589 nm)作為光源,基於jisk7124k 環境溫度2 3 °C下進行η = 5之測^,算出折射率之平均值作 為平均折射率。 [樹脂(Α)] (A)-l :二茂金屬乙烯系聚合體(樹脂(Ay中之各質量 例:乙稀丁烯辛稀=97.7/1.1/12質量%,密度 g/cm3,結晶熔解熱量=丨83 J/g,結晶波峰溫度(Tc^ = i °C,Mw/Mn= 3.12,平均折射率 100136921 48 201224035 (A)-2 :二茂金屬乙烯系聚合體(樹脂(A)_2中之各質量比 例:乙稀/1-丁烯/1-辛烯= 97 9/0 8/1·3質量%,密度= 〇·947 g/Cm3,結晶溶解熱量= 181 J/g,結曰曰曰波峰溫度(Tc㈧)=113 C ’ Mw/Mn=2_87 ’ 平均折射率=153〇) (A) -3 ·二茂金屬乙烯系聚合體(樹脂(A)_3中之各質量比 例:乙烯/1-己烯/1-辛烯=97 6/1 4/1 〇質量%,密度=〇.94〇 g/cm3,結晶熔解熱量ewoj/g,結晶波峰溫度(Tc(A))=U3 °C,Mw/Mn = 2.90,平均折射率=1 526) [結晶成核劑(B)] (B) -l :脂肪酸金屬鹽(硬脂酸鋅/;1,2_環己二羧酸鈣鹽= 34/66 質量 %) [烯烴相容樹脂(C)] (C) -l :氫化石油樹脂(荒川化學工業股份有限公司之商品 名 ArkonP115,軟化溫度(Ts(c))=115〇c) (C) -2 :氫化石油樹脂(荒川化學工業股份有限公司之商品 名 ArkonP140,軟化溫度(Ts(C))=14(rc) [烯烴系樹脂(D)] (D) -1 :環狀烯烴系樹脂(polyplastics股份有限公司之商品 名TOPAS9506F-04,玻璃轉移溫度= 68°C,結晶熔解熱量 =0 J/g,平均折射率=1.529) [乙烯-α-烯烴無規共聚合體 (P)-l :乙烯-辛烯無規共聚合體(Dow Chemical股份有限 100136921 49 201224035 公司製造,商品名:Engage 8200,乙烯/辛烯= 76/24質量 %(93/7莫耳%) ’結晶熔解波峰溫度= 65〇c、結晶熔解熱量 =53 J/g) (P) -2 :乙烯-丙烯-己烯無規共聚合體(Nipp〇n p〇iyethylene 月又伤有限公司製造,商品名:Karnel KJ640T,乙婦/丙婦/ 己烯=80/10/1 〇質量%(89/7/4莫耳%),結晶熔解波峰溫度= 53 C ’結晶溶解熱量=58 J/g) [乙烯-α -稀烴礙段共聚合體(q)] (Q) -l :乙烯-辛烯嵌段共聚合體(D〇w Chemical股份有限 公司製造,商品名:infuse 9000,乙烯/辛烯=65/35質量 %(88/12莫耳%),結晶熔解波峰溫度:122。〇,結晶熔解熱 量:44 J/g) [添加劑(G)] (G)-l :矽烷偶合劑(信越化學股份有限公司製造,商品 名.KBM 503,τ_曱基丙烯醯氧基丙基三曱氧基矽烷) [矽烧改質乙烯系樹脂(X)] (X)-l.矽烷改質乙烯·辛烯無規共聚合體(三菱化學股份有 限公司製造’商品名:Linklon SL800N,密度:0.868 g/cm3, 結晶熔解波峰溫度:5代與116。〇,結晶溶解熱量:22 J/g 與4 J/g’2〇C下之儲存彈性模數(E’): 15MPa,平均折射率: 1.4857,MFR(溫度:i9〇°c,荷重:2118N) : 17g/1〇min) (X)-2.矽烷改質乙烯_己烯無規共聚合體(三菱化學股份有 100136921 50 201224035 限公司製造,商品名:Linklon XLE815N,密度:0.915 g/cm3, 結晶炼解波峰溫度:121。(:,結晶熔解熱量:127 J/g,2〇。(: 下之儲存彈性模數(E,): 398 MPa,平均折射率:1.5056, MFR(溫度.19〇。〇,荷重:21.18 N) : 0.5 g/10 min) [乙烯系樹脂(F)] (FH :乙烯-辛烯無規共聚合體(Dow Chemical股份有限 公司製造,商品名:Affinity EG8200G,密度:0.870 g/cm3, 乙烯/1-辛烯= 68/32質量%(89/11莫耳%),結晶熔解波峰溫 度.59C ’結晶熔解熱量:49 J/g,維卡軟化溫度:45¾, 2〇°C下之儲存彈性模數(E,): 14MPa,平均折射率:1 4856, MFR(溫度:190。〇,荷重:21.18 N) : 5 g/l〇 min) (實施例1) 以混合質量比99.95 : 0.05之比例將(八)^與⑺)」乾摻而 獲付樹脂組成物後,使用4〇麵0之同向雙軸擠出機於 °C下混練,繼而自τ字模擠出後,利用約贼之洗_驟 冷,製作厚度0.1 mm之片材(樣品)。 對所G得之片材(樣品)之透明性、防濕性進行評價。將結 果示於表1。 (實施例2) 將(A)-i與(bh之混合質量比設為99 9: 〇],除此以外, 利用與實施例1㈣之方法製作賴組成物及諸(樣品), 同樣地進行評價。將結果示於表1。 100136921 51 201224035 (實施例3) 將(A)-1與(B)-l之混合質量比設為99.8 : 0.2 ’除此以外, 利用與實施例1相同之方法製作樹脂組成物及片材(樣品), 同樣地進行評價。將結果示於表1。 (實施例4) 以混合質量比79.9: 0.1 : 20之比例將(A)-l、(B)-i及 乾糝而獲得樹脂組成物,除此以外,利用與實施例1相同之 方法製作片材(樣品)’同樣地進行評價。將結果示於表1。 (實施例5) 以混合質量比49.9 : 0.1 : 20 : 30之比例將(A)]、⑼]、 (C)-l及(D)-l乾摻而獲得樹脂組成物,除此以外,利用與實 =丄=之方法製作片材制,同樣地進行評價。將結 (貫施例6) 以混合質量比99 q . π, β y9.9 · 0.1之比例將(Α)-2與(Β)]乾摻市 付樹月曰、、且成物,除此以外,利用與實施例1相同之方法 片材(樣πσ) ’同樣地進行評價。將結果示於表卜 (實施例7) 以混合質量t卜Q〇 π . 匕99.9 · 0.1之比例將(Α)·3與(B)_u 得樹脂組成物,降乾各所 除此以外,利用與實施例丨相同之方 片材(樣品),同忐取 地進仃評價。將結果示於表1。 (實施例8) 100136921 52 201224035 以混合質量比79.9 : 0.1 : 20之比例將(A)-卜(B)-l及(C)-2 乾摻而獲得樹脂組成物,除此以外,利用與實施例丨相同之 方法製作片材(樣品),同樣地進行評價。將結果示於表i。 (比較例1) 單獨使用(A)-l,利用與實施例1相同之方法進行片材之 製作及評價。將結果示於表工。 (比較例2) 以混合質量比80 : 20之比例將(a)-1與(C)-l乾摻而獲得 樹脂組成物,除此以外,利用與實施例丨相同之方法製作片 材(樣品)’同樣地進行評價。將結果示於表1。 (比較例3) 代替樹脂(A}而使用p〇lymer股份有限公司之商品 名Hi-Zex 3600F(高密度聚乙烯,密度= 〇·958 g/cm3,結晶 炼解熱量= 195 J/g,結晶波蜂溫度(tc)=116°C ’ Mw/Mn = 4.72),以混合質量比99.9 : 0.1之比例將Hi-Zex 3600F與 (B)-l乾摻而獲得樹脂組成物,除此以外,利用與實施例1 相同之方法製作片材(樣品),同樣地進行評價。將結果示於 表1。 (比較例4) 代替樹脂(A)而使用Ube-Maruzen Polyethylene股份有限 公司之商品名Umerit2040FC(直鏈狀低密度聚乙烯,密度= 0.918 g/cm3 ’結晶熔解熱量=134 J/g,結晶波峰溫度(Tc) = 100136921 53 201224035 105°C,Mw/Mn=2.80),以混合質量比99.9 : 0.1之比例將 Umerit 2040FC與(B)-l乾摻而獲得樹脂組成物,除此以外, 利用與實施例1相同之方法製作片材(樣品),同樣地進行評 價。將結果示於表1。 100136921 54 201224035 1比較例4| 1 99.9 1 o 2.43 m [tb較例3 1 99.9 1 0.93 18.7 [tb較例2j 80.0 1.21 29.4 1比較例1 〇 1-H CN cn 35.6 實施例8 | 79.9 ( 0.89 Ο |實施例7| 1 99.9 1 r-H 0.94 |實施例6| 1 99.9 1 i—f 0.81 寸 cK |實施例5| | 49.9 | o 1 0.55 Os rn |實施例4| | 79.9 | o 0.64 卜 實施例3 | 99.8 CN d 0.89 in |實施例2| | 99.9 | d 0.91 卜 |實施例1 | 99.95 | 「0.05 1 CN O) &lt; (A)-2 &lt; Hi-Zex 3600F Umerit 2040FC (B)-l (C)-l (C)-2 r· Η Q —p 内部霧度(%) s 1369-001 201224035 由該結果與以上之試驗結果得知,若如實施例丨〜8所示 般’由含有密度為0.936〜0.948 g/cm3,結晶熔解熱量為150 〜200 J/g之二茂金屬乙烯系聚合體(A)與結晶成核劑(B)之 樹脂組成物成形片材,則可獲得防濕性與透明性均優異之片 材。 亦得知,此時重要的是將(B)在二茂金屬乙烯系聚合體(A) 與結晶成核劑(B)之合計含量中所占之比例調整至〇 〇1〜3 〇 質量%之範圍内。再者’於實施例1〜8中,(B)之比例為〇 〜0.2質量%之範圍,但由以上之試驗結果,可認為在〇〇1 〜3.0質量%之範圍内調配(B)亦可期待同樣之效果。 又,亦得知藉由進而調配與二茂金屬乙烯系聚合體(A)相 容之烯烴相容樹脂(C),可進一步提高防濕性與透明性(參照 實施例4、8)。 另外’亦得知藉由進而調配結晶熔解熱量為〇〜1〇〇 J/g 之烯烴系樹脂(D) ’可進一步提高防濕性與透明性(參照實施 例5)。 以下揭示使用本樹脂組成物之多層體之實施例。再者,於 以下之實施例中,除上述評價以外,亦進行以下評價。 (8)結晶熔解波峰溫度(Tm)The Chromatograph, gel permeation chromatography system was used to measure the weight average molecular weight (Mw) and the number average molecular weight (?η) to calculate the molecular weight distribution index (Mw/Mn). (2) Transparency (internal haze) The term "internal haze" refers to the value obtained by subtracting the external haze value from the fog value of the entire film. The internal haze was measured based on JIS K7105 by adjusting the external haze to zero by coating dioctyl phthalate (D0P, Dioctyl Phthalate) on both surfaces of a sheet having a thickness of 0.1 mm. Those whose internal haze is 1% or less are considered as qualified. (3) Moisture resistance (water vapor transmission rate) Based on JIS K7129B, using PERMATRAN W3/31 ' manufactured by MOCON Corporation to measure the water vapor transmission rate at a thickness of 0.1 mm in an environment of 4 (TC, 9〇% RH) The water vapor transmission rate is 1.2 〇g/(m2.24 hours) or less. (4) Crystal melting heat (dip (9) Using a differential scanning calorimeter "DSC-7" (manufactured by PerkinElmer), according to 100136921 47 201224035 JIS K7122, the sample of about l〇mg is heated from _4〇C to 200°C at a heating rate of i〇°c/min. After holding at 200°C for 1 minute, the cooling rate is 〇°°C. /min is cooled to -40 °C 'heating again at a heating rate l〇t/min to 200 °C 'determine the thermal spectrum at this time' from which the heat of crystal melting is determined (^^(^). (5) Crystalline peak Temperature (Tc) Using a differential scanning calorimeter "DSC-7" (manufactured by PerkinElmer), a sample of about 1 〇mg was heated at a heating rate of 1 (rc/min from _4 〇 ° C to 2 依据 according to JIS K7121. TC was cooled to 2 -4 (TC at a cooling rate of 1 ° C/min at 20 °C for 1 minute at TC, and the thermal spectrum at this time was measured, and the crystal peak temperature (Tc) (° C.) was determined therefrom. (6) Softening temperature ( Ts) According to JIS K2207, the softening temperature of the olefin-compatible resin (c) is determined (.) (7) The average refractive index is formed into a sample having a thickness of G.1 mm, using Atag. The Abbe refractometer manufactured by the company The sodium D line (589 nm) was used as the light source, and η = 5 was measured based on the ambient temperature of jisk7124k at 2 3 °C, and the average value of the refractive index was calculated as the average refractive index. [Resin (Α)] (A)-l : Metallocene ethylene-based polymer (resin (each mass of Ay: ethylene bromide = 97.7/1.1/12% by mass, density g/cm3, heat of crystal melting = 丨83 J/g, crystallization peak temperature) (Tc^ = i °C, Mw/Mn = 3.12, average refractive index 100136921 48 201224035 (A)-2: Metallocene ethylene polymer (resistance ratio in resin (A)_2: ethylene/1- Butene/1-octene = 97 9/0 8/1·3 mass%, density = 〇·947 g/cm3, heat of crystal dissolution = 181 J/g, peak temperature of knot (Tc (eight)) = 113 C ' Mw / Mn = 2_87 ' average refractive index = 153 〇) (A) -3 · Metallocene ethylene polymer (resistance ratio of resin (A)_3: ethylene / 1-hexene / 1-octene =97 6/1 4/1 〇% by mass, density=〇.94〇g/cm3, crystal melting Heat ewoj/g, crystallization peak temperature (Tc(A))=U3 °C, Mw/Mn = 2.90, average refractive index = 1 526) [Crystal nucleating agent (B)] (B) -l : fatty acid metal salt (Zinc stearate/1,2_cyclohexanedicarboxylate calcium salt = 34/66% by mass) [Olefin compatible resin (C)] (C) -l : Hydrogenated petroleum resin (Arakawa Chemical Industry Co., Ltd.) Trade name: Arkon P115, softening temperature (Ts(c)) = 115〇c) (C) -2 : Hydrogenated petroleum resin (trade name ArkonP140, Arakawa Chemical Industry Co., Ltd., softening temperature (Ts(C)) = 14 ( Rc) [olefin resin (D)] (D) -1 : cyclic olefin resin (trade name TOPAS9506F-04 of polyplastics Co., Ltd., glass transition temperature = 68 ° C, heat of crystal melting = J / g, Average refractive index = 1.529) [Ethylene-α-olefin random copolymer (P)-1: ethylene-octene random copolymer (Dow Chemical Co., Ltd. 100136921 49 201224035, manufactured by the company, trade name: Engage 8200, ethylene/xin Alkene = 76/24% by mass (93/7 mol%) 'Crystal melting peak temperature = 65 〇 c, heat of crystal melting = 53 J/g) (P) -2 : Ethylene-propylene-hexene random copolymer (Nipp〇np〇iyethylene month Manufactured by Injury Co., Ltd., trade name: Karnel KJ640T, 乙妇/丙妇/ hexene = 80/10/1 〇% by mass (89/7/4 mol%), crystal melting peak temperature = 53 C 'crystal dissolution Heat = 58 J/g) [Ethylene-α-lean hydrocarbon block copolymer (q)] (Q) -l : Ethylene-octene block copolymer (manufactured by D〇w Chemical Co., Ltd., trade name: infuse 9000, ethylene/octene = 65/35 mass% (88/12 mol%), crystal melting peak temperature: 122. 〇, crystal melting heat: 44 J/g) [Additive (G)] (G)-l : decane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name. KBM 503, τ_mercapto propylene methoxypropyl Tridecyloxydecane) [Strontium-modified vinyl resin (X)] (X)-l. Decane-modified ethylene·octene random copolymer (manufactured by Mitsubishi Chemical Corporation) Trade name: Linklon SL800N, density :0.868 g/cm3, Crystal melting peak temperature: 5 generations and 116. 〇, crystal dissolved heat: 22 J/g and 4 J/g'2〇C storage elastic modulus (E'): 15 MPa, average refraction Rate: 1.4857, MFR (temperature: i9〇°c, load: 2118N): 17g/1〇min) (X)-2. decane modified ethylene_hexene random copolymer (Mitsubishi Chemical Co., Ltd. has 100136921 50 201224035 Made by the company, trade name: Linklon XLE815N, density: 0.915 g/cm3, crystal refining peak temperature: 121. (:, crystal melting heat: 127 J/g, 2 〇. (: storage elastic modulus (E, ): 398 MPa, average refractive index: 1.5056, MFR (temperature: 19. 〇. 〇, load: 21.18 N): 0.5 g/10 min) [ethylene resin (F)] (FH: ethylene - Alkene random copolymer (manufactured by Dow Chemical Co., Ltd., trade name: Affinity EG8200G, density: 0.870 g/cm3, ethylene/1-octene = 68/32% by mass (89/11 mol%), crystal melting peak Temperature .59C 'Crystal melting heat: 49 J/g, Vicat softening temperature: 453⁄4, storage elastic modulus at 2 °C (E,): 14 MPa, average refractive index: 1 4856, MFR (temperature: 190. 〇, load: 21.18 N) : 5 g / l 〇 min) (Example 1) After the resin composition was obtained by dry blending (8) and (7)) with a mass ratio of 99.95:0.05, use 4 Kneading the same direction of the twin-axis extruder at °C, and then extruding from the τ-shaped die, using a thief's wash_quenching to make a sheet (sample) with a thickness of 0.1 mm. The transparency and moisture resistance of the sheet (sample) were evaluated. The results are shown in Table 1. (Example 2) The mass ratio of (A)-i to (bh was set to 99 9: 〇), The lysate composition and the (sample) were produced in the same manner as in Example 1 (4), and the results were evaluated in the same manner. The results are shown in Table 1. 100136921 51 201224035 (Example 3) (A)-1 and (B)- l A resin composition and a sheet (sample) were produced in the same manner as in Example 1 except that the mixing mass ratio was 99.8 : 0.2 Å, and the evaluation was carried out in the same manner. The results are shown in Table 1. (Example 4) A resin composition was obtained by obtaining (A)-1, (B)-i and dryness in a ratio of a mixed mass ratio of 79.9:0.1:20, and the same procedure as in Example 1 was carried out. The sheet (sample) was evaluated in the same manner. The results are shown in Table 1. (Example 5) (A), (9), (C)-1, and (D)-1 were dry blended at a mixing mass ratio of 49.9 : 0.1 : 20 : 30 to obtain a resin composition, and The sheet system was produced by the method of real = 丄 = and evaluated in the same manner. The knot (Scheme 6) is mixed with (混合)-2 and (Β)] in a ratio of a mixture mass ratio of 99 q . π, β y9.9 · 0.1, and the product is removed. Otherwise, the sheet (sample πσ)' was evaluated in the same manner as in Example 1. The results are shown in Table (Example 7). The resin composition was obtained by mixing (质量)·3 and (B)_u in a ratio of 质量99.9 · 0.1, and the mixture was dried. The same square sheet (sample) as in Example , was evaluated with the same extraction. The results are shown in Table 1. (Example 8) 100136921 52 201224035 (A)-Bu(B)-l and (C)-2 were dry-blended at a mixing mass ratio of 79.9 : 0.1 : 20 to obtain a resin composition, and EXAMPLES A sheet (sample) was produced in the same manner and evaluated in the same manner. The results are shown in Table i. (Comparative Example 1) Using (A)-1, the sheet was produced and evaluated in the same manner as in Example 1. The results are shown in the table. (Comparative Example 2) A sheet was produced in the same manner as in Example 除 except that (a)-1 and (C)-1 were dry blended to obtain a resin composition at a mixing ratio of 80:20. The sample) was evaluated in the same manner. The results are shown in Table 1. (Comparative Example 3) Instead of the resin (A), the product name Hi-Zex 3600F (high-density polyethylene, density = 〇·958 g/cm3, heat of crystal refining = 195 J/g, p〇lymer Co., Ltd.) was used. Crystallization wave bee temperature (tc) = 116 ° C ' Mw / Mn = 4.72), and Hi-Zex 3600F and (B)-1 were dry blended at a mixing mass ratio of 99.9 : 0.1 to obtain a resin composition. A sheet (sample) was produced in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. (Comparative Example 4) The trade name of Ube-Maruzen Polyethylene Co., Ltd. was used instead of the resin (A). Umerit2040FC (linear low density polyethylene, density = 0.918 g/cm3 'crystal melting heat = 134 J/g, crystallization peak temperature (Tc) = 100136921 53 201224035 105 ° C, Mw / Mn = 2.80), with mixing quality A sheet (sample) was produced in the same manner as in Example 1 except that the resin composition was obtained by dry blending Umerit 2040FC and (B)-1 with a ratio of 99.9 to 0.1, and the results were evaluated in the same manner. In Table 1. 100136921 54 201224035 1Comparative Example 4| 1 99.9 1 o 2.43 m [tbComparative Example 3 1 99.9 1 0.93 18.7 [tb Comparative Example 2j 80.0 1.21 29.4 1 Comparative Example 1 〇1-H CN cn 35.6 Example 8 | 79.9 (0.89 Ο | Example 7 | 1 99.9 1 rH 0.94 | Example 6 | 1 99.9 1 i-f 0.81 inch cK | Example 5| | 49.9 | o 1 0.55 Os rn | Example 4| | 79.9 | o 0.64 Example 3 | 99.8 CN d 0.89 in | Example 2 | | 99.9 | d 0.91 | 1 | 99.95 | "0.05 1 CN O) &lt; (A)-2 &lt; Hi-Zex 3600F Umerit 2040FC (B)-l (C)-l (C)-2 r· Η Q —p Internal haze ( %) s 1369-001 201224035 From the results and the above test results, it is found that, as shown in Examples 丨8, the density of the crystal is from 0.936 to 0.948 g/cm3, and the heat of crystal melting is 150 to 200 J/g. When a sheet of a resin composition of the metallocene ethylene polymer (A) and the crystal nucleating agent (B) is formed, a sheet excellent in both moisture resistance and transparency can be obtained. It is also known that it is important at this time to adjust the ratio of (B) in the total content of the metallocene ethylene-based polymer (A) and the crystal nucleating agent (B) to 〇〇1 to 3 〇% by mass. Within the scope. Further, in Examples 1 to 8, the ratio of (B) is in the range of 〇 to 0.2% by mass, but it is considered that the above test results are adjusted in the range of 〇〇1 to 3.0% by mass. The same effect can be expected. Further, it has been found that the moisture barrier property and the transparency can be further improved by further blending the olefin-compatible resin (C) compatible with the metallocene ethylene-based polymer (A) (see Examples 4 and 8). Further, it has been found that the moisture resistance and transparency can be further improved by further adjusting the olefin-based resin (D)' in which the heat of crystal fusion is 〇1 to 1 〇〇 J/g (see Example 5). Examples of the multilayer body using the present resin composition are disclosed below. Further, in the following examples, in addition to the above evaluations, the following evaluations were also carried out. (8) Crystal melting peak temperature (Tm)

使用PerkinElmer股份有限公司製造之商品名「pyrisl DSC」之示差掃描熱量計,依據K7121,將約1〇 mg之 試樣以加熱速度l〇°C/min自-40。(:升溫至200°C,於2〇(TC 100136921 56 201224035 下保持1分鐘後,以冷卻速度l〇°C/min降溫至-40°C,再次 以加熱速度l〇°C/min升溫至200°C,測定此時之熱譜,由 其求出結晶熔解波峰溫度(Tm)(°C)。 (9) 透明性(全光線穿透率) 使用村上色彩技術研究所股份有限公司製造之「反射/穿 透率計」,依據JIS K7105,測定總厚度0.3 mm之多層片材 之全光線穿透率。記載其結果,且亦一併記載以下述基準所 評價之結果。 (〇)全光線穿透率為85%以上 (X)全光線穿透率未達85% (10) 防濕性(水蒸氣穿透率) 根據上述(3)之方法而測定,並以下述基準進行評價。 (◎)水蒸氣穿透率為l.〇g/(m2’24小時)以下 (〇)水蒸氣穿透率超過1.0 g/(m2*24小時)、3.0 g/(m2-24 小時)以下 (x)水蒸氣穿透率超過3.0 g/(m2_24小時) (11) 維卡軟化溫度 依據JISK7206而測定。即,一面經由與加熱浴槽中之試 驗片垂直地放置之頂端剖面積1 mm2的針狀壓頭施加10 N(A法)之總荷重,一面以50°C/h之速度使導熱介質升溫, 測定壓頭頂端侵入至試驗片中1 mm時之溫度。 (12) 剛性(儲存彈性模數(E’)) 100136921 57 201224035 使用IT Keis〇ku Seigyo,股份有限公司製造之商品名「黏 彈邊儀DVA-200」之動態黏彈性測定儀,以振動頻率1〇Hz、 應^ 0.1/。、升溫速度3°c/min、夾頭間距25匪,自_15〇〇c 至150 C對樣品(縱:4mm、橫.·60 mm)之橫方向進行測定, 由所獲%之資料求出2〇t:下之儲存彈性模數(E,)。記載其結 果且亦一併記載以下述基準所評價之結果。 (◎)20(:下之儲存彈性模數(£,)為3〇〇熥1&gt;&amp;以上、7〇〇1^?3 以下 (〇)20°C下之儲存彈性模數(£,)為1〇〇 Mpa以上且未達 300 MPa,或者超過7〇〇 MPa且為1〇〇〇 Mpa以下 (x)2〇C下之儲存彈性模數(E’)超過1〇〇〇Μρ&amp; (13)密封性 使用NPC股份有限公司製造之商品名「LM3〇x3〇」之真 空貼合機,於熱板溫度:15〇。〇、加工時間:2〇分鐘(細項: 真空處理.5分鐘,壓製:5分鐘,壓力保持:1()分鐘)、 壓接速度.急速之條件下’自熱板側起依序真空壓製厚度3 mm之白板玻璃(旭硝子股份有限公司製造,商品名:A sample of about 1 〇 mg was heated at a heating rate of 10 ° C/min from -40 according to K7121 using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd. under the trade name "pyrisl DSC". (: The temperature is raised to 200 ° C, after 2 minutes (TC 100136921 56 201224035 for 1 minute, the temperature is cooled to -40 ° C at a cooling rate of 10 ° C / min, and the temperature is again raised to a heating rate of l ° ° C / min to The thermal spectrum at this time was measured at 200 ° C, and the crystal melting peak temperature (Tm) (° C.) was determined therefrom. (9) Transparency (total light transmittance) Manufactured by Murakami Color Technology Research Co., Ltd. The "reflection/permeability meter" measures the total light transmittance of a multilayer sheet having a total thickness of 0.3 mm in accordance with JIS K7105. The results are described together, and the results evaluated by the following criteria are also described. The light transmittance was 85% or more (X) The total light transmittance was less than 85%. (10) Moisture resistance (water vapor transmission rate) Measured according to the method of the above (3), and evaluated according to the following criteria. (◎) Water vapor transmission rate is 1. 〇g / (m2 '24 hours) or less (〇) Water vapor transmission rate is more than 1.0 g / (m2 * 24 hours), 3.0 g / (m2 - 24 hours) or less (x) Water vapor transmission rate exceeds 3.0 g/(m2_24 hours) (11) Vicat softening temperature is measured in accordance with JIS K7206. That is, one side is placed perpendicularly to the test piece in the heating bath. The needle-shaped indenter with a cross-sectional area of 1 mm2 was applied with a total load of 10 N (method A), and the heat transfer medium was heated at a rate of 50 ° C / h, and the tip of the indenter was invaded to 1 mm in the test piece. (12) Rigidity (Storage Elastic Modulus (E')) 100136921 57 201224035 Dynamic viscoelasticity meter manufactured by IT Keis〇ku Seigyo Co., Ltd. under the trade name "Binderstick DVA-200" The vibration frequency is 1 〇 Hz, should be ^ 0.1 /., the heating rate is 3 ° c / min, the chuck spacing is 25 匪, from _15 〇〇 c to 150 C to the sample (vertical: 4 mm, horizontal . 60 mm) The direction was measured, and the storage elastic modulus (E,) under 2〇t: was obtained from the obtained data. The results are also described together and the results evaluated by the following criteria are described. (◎) 20 (: The storage elastic modulus (£,) is 3〇〇熥1&gt;&amp; above, 7〇〇1^?3 or less (〇), the storage elastic modulus (£,) at 20 ° C is 1〇〇Mpa or more And the storage elastic modulus (E') of less than 300 MPa, or more than 7 MPa and less than 1 〇〇〇Mpa (x) 2 〇C exceeds 1 〇〇〇Μρ &amp; (13) NPC using hermeticity Shares have Vacuum laminating machine manufactured by the company under the trade name "LM3〇x3〇", at a hot plate temperature: 15 〇. 加工, processing time: 2 〇 minutes (fine items: vacuum treatment. 5 minutes, pressing: 5 minutes, pressure retention :1 () minutes), crimping speed. Under the condition of rapid speed, the white plate glass with a thickness of 3 mm is vacuum-pressed from the side of the hot plate (made by Asahi Glass Co., Ltd., trade name:

Sohte)、厚度〇,3 mm之多層片材(密封材)、厚度〇 4imn之 太陽電池元件(單元)(法國ph〇t〇watt公司製造,商品名: ΙΟΙχΙΟΙΜΜ)、厚度0 3mm之多層片材(密封材)、厚度〇 125 mm之耐候性PET薄臈(T〇ray股份有限公司製造,商品名: Lurmrror X10S)之5層而製作太陽電池模組(尺寸·· 15〇 100136921 58 201224035 mmx 150 mm) ’目視觀察其外觀,以下述基準評價其結果。 (〇)多層片材於太陽電池元件周圍無空隙地充分回包 (X)多層片材未對太陽電池元件周圍充分回包而產生氣泡 或隆起 (14)耐熱性 於厚度3 mm之白板玻璃(尺寸:縱75 mm、橫25 mm)與 厚度5 mm之鋁板(尺寸:縱120 mm、橫60 mm)間重疊總厚 度為0.3 mm之多層片材,使用真空壓製機,於150°C、15 分鐘之條件下進行積層壓製而製作試樣,將該試樣於85 °C、85%RH之恆溫恆濕槽内傾斜60度而設置,觀察經過 2000小時後之狀態,並以下述基準進行評價。 (〇)玻璃未自初始之基準位置偏移者 (X)玻璃自初始之基準位置偏移者,或片材溶融者 (實施例9) 以混合質量比94.5 : 5 : 0.5之比例將(pw、(q)^及⑴)1 乾摻後,使用(HO mm之同向雙軸擠出機, 一 ^目兩種三層之多 歧管式喷嘴於設定溫度190〜200。(:下擠出而 、 層之樹脂層(I)。又,同時以混合質量比99 9.:f作為兩外 (A)-l與(B)-l乾摻後’使用MOmm之n a 之比例將 同一噴嘴於設定溫度200〜22〇°C下褂出 一一……问向雙細擦出機,白 而製成作為中間層 之樹脂層(II)。此時’以各層之厚度成為樹腊展 樹脂層⑴為之方式調整^ )/樹骑層(II)/ 59 100136921 、谷融樹脂之吐出 201224035 量。繼而,將該共擠出片材利用約2(rc之澆鑄輥驟冷,獲 得厚度0.3 mm之多層片材。對所獲得之多層片材進行透明 性、水蒸氣穿透率、耐熱性之評價。將結果示於表2。 (實施例10) 於實施例9中,將構成樹脂層(II)之樹脂組成物變更為以 混合負里比79.9 . 〇.1 : 2〇之比例將(a)-1、(B)-l及(〇-1混 合所得者,除此以外,利用與實施例9相同之方法、厚度構 成而進行多層片材之製作、評價。將結果示於表2。 (實施例11) 於實施例9中,將構成樹脂層(11)之樹脂組成物變更為以 混合質量比 49.9 : 0.1 : 20 : 30 之比例將(A)-l、(B)-i、(cy 及(D)-l混合所得者,除此以外,利用與實施例9相同之方 法、厚度構成而進行多層片材之製作、評價。將結果示於表 2 ° (實施例12) 於實施例11中,將構成樹脂層(Π)之樹脂組成物中之(八)“ 變更為(A)-2,除此以外,利用與實施例9相同之方法、厚 度構成而進行多層片材之製作、評價。將結果示於表2。 (實施例13) 於實施例11中,將構成樹脂層⑴之樹脂組成物中之(p)^ 變更為(P)-2,除此以外,利用與實施例9相同之方法、厚 度構成而進行多層片材之製作、評價。將結果示於表2。 100136921 201224035 (實施例14) 於實施例11中,將構成樹脂層(II)之樹脂組成物中之(C)-l 變更為(C)-2,除此以外,利用與實施例11相同之方法、厚 度構成而進行多層片材之製作、評價。將結果示於表2。 (實施例15) 以混合質量比94.5 : 5 : 0.5之比例將(P)-卜(Q)-l及(G)-l 乾摻後,使用#40 mm之同向雙轴擠出機,自兩種兩層之多 歧管式喷嘴於設定溫度190〜200°C下擠出而製成樹脂層 (I)。又,同時以混合質量比49.9:0.1:20:30之比例將(A)-l、 @)-1、((:)-1及(〇)-1乾摻後,使用04〇111111之同向雙軸擠出 機,自同一喷嘴於設定溫度200〜220°C下擠出而製成樹脂 層(II)。此時,以各層之厚度成為樹脂層(I)/樹脂層(II)為 0.15/0.15(mm)之方式調整熔融樹脂之吐出量。繼而,將該共 擠出片材利用約20°C之澆鑄輥驟冷,獲得厚度0.3 mm之多 層片材。對所獲得之多層片材進行與實施例9相同之評價。 將結果示於表2。 100136921 61 201224035Sohte), thickness 〇, 3 mm multilayer sheet (sealing material), solar cell component (unit) with thickness 〇4imn (manufactured by ph〇t〇watt, France, trade name: ΙΟΙχΙΟΙΜΜ), multilayer sheet with thickness of 0 3mm (sealing material), solar cell module made of 5 layers of weather-resistant PET thin film (manufactured by T〇ray Co., Ltd., trade name: Lurmrror X10S) having a thickness of mm125 mm (size ··································· Mm) 'The appearance was visually observed, and the results were evaluated on the basis of the following criteria. (〇) The multilayer sheet is sufficiently refilled around the solar cell element without voids. (X) The multilayer sheet does not sufficiently wrap around the solar cell element to generate bubbles or ridges (14) heat-resistant white plate glass having a thickness of 3 mm ( Multi-layer sheet with a total thickness of 0.3 mm overlapped between aluminum sheets (size: vertical length 120 mm, horizontal 60 mm) with a thickness of 5 mm and a thickness of 5 mm, using a vacuum press at 150 ° C, 15 The sample was laminated under the conditions of a minute to prepare a sample, and the sample was placed at a temperature of 80 ° C and 85% RH in a constant temperature and humidity chamber at a temperature of 60 degrees, and the state after 2000 hours was observed and evaluated on the basis of the following criteria. . (〇) The glass is not offset from the initial reference position (X) The glass is offset from the initial reference position, or the sheet melter (Example 9) is at a mixture mass ratio of 94.5 : 5 : 0.5 (pw , (q)^ and (1))1 After dry blending, use (HO mm co-rotating twin-screw extruder, one mesh and two three-layer manifold nozzles at a set temperature of 190~200. Out, the layer of the resin layer (I). Also, at the same mass ratio of 99 9.: f as the two outer (A)-l and (B)-l dry blended 'use the ratio of MOmm of the same nozzle At a set temperature of 200~22〇°C, the resin layer (II) is formed as an intermediate layer. The thickness of each layer becomes the resin of the tree. The layer (1) is adjusted in such a way that ^ ) / tree riding layer (II) / 59 100136921, and the amount of the melted resin is 201224035. Then, the co-extruded sheet is quenched by a casting roll of about 2 (rc) to obtain a thickness of 0.3. Multilayer sheet of mm. The obtained multilayer sheet was evaluated for transparency, water vapor transmission rate, and heat resistance. The results are shown in Table 2. (Example 10) In Example 9, The resin composition constituting the resin layer (II) is changed to be a mixture of (a)-1, (B)-l, and (〇-1) in a ratio of a mixed negative internal ratio of 79.9 to 1.1:2〇. The production and evaluation of the multilayer sheet were carried out by the same method and thickness configuration as in Example 9. The results are shown in Table 2. (Example 11) In Example 9, the resin constituting the resin layer (11) was used. The composition was changed to a mixture of (A)-1, (B)-i, (cy and (D)-1 at a mixing mass ratio of 49.9:0.1:20:30, and the use and examples were used. 9 The same method and thickness were used to fabricate and evaluate the multilayer sheet. The results are shown in Table 2 (Example 12). In Example 11, the resin composition constituting the resin layer (Π) was used. In the same manner as in Example 9, the multilayer sheet was produced and evaluated in the same manner as in Example 9. The results are shown in Table 2. (Example 13) In the examples In the resin composition of the resin layer (1), the (p)^ in the resin composition (1) is changed to (P)-2, and the same method as in the example 9 and the thickness configuration are used. The production and evaluation of the multilayer sheet were carried out. The results are shown in Table 2. 100136921 201224035 (Example 14) In Example 11, (C)-l in the resin composition constituting the resin layer (II) was changed to ( In addition to the above, the production and evaluation of the multilayer sheet were carried out in the same manner as in Example 11 except that the thickness was changed. The results are shown in Table 2. (Example 15) The mixing ratio was 94.5 : 5 : The ratio of 0.5 is (P)-Bu (Q)-l and (G)-l dry blended, using a #40 mm co-rotating twin-screw extruder, set from two two-layer manifold nozzles The resin layer (I) was formed by extrusion at a temperature of 190 to 200 °C. Further, at the same time, (A)-l, @)-1, ((:)-1 and (〇)-1 are dry blended at a mixing mass ratio of 49.9:0.1:20:30, and the same is used for 04〇111111. The resin layer (II) is extruded from the same nozzle at a set temperature of 200 to 220 ° C in a twin-screw extruder. In this case, the thickness of each layer is the resin layer (I) / resin layer (II). The discharge amount of the molten resin was adjusted in a manner of 0.15 / 0.15 (mm). Then, the co-extruded sheet was quenched by a casting roll at about 20 ° C to obtain a multilayer sheet having a thickness of 0.3 mm. The material was evaluated in the same manner as in Example 9. The results are shown in Table 2. 100136921 61 201224035

【&lt;NCI[&lt;NCI

1實施例15| wo 窆 in 〇 ON d I (Ι)/(Π) 1 cn o 家δ 2§ IQ 〇 〇 |實施例14| 窆 in O On (1)/(11)/(1) m O m so !·〇 Si 〇 〇 1實施例13| i〇 d 〇\ o Ο m 1 (1)/(11)/(1) I m O m ro so s—✓ s® l§ 〇 〇 實施例12 o ON Os o ο (1)/(11)/(1) m O m CO go 2® O ^ 〇 〇 1實施例ll| in »n d Os 妾 o ο m l(i)/(ii)/(i)| m O m ro go 5® 1® 〇 〇 實施例10 \n t 们 d G\ a\ o 1 (ΐ)/(π)/(ΐ) | o m so 'S^ d© o ^ 〇 〇 實施例9 »n O 〇\ a; 〇\ l(i)/(ii)/(i)l ΓΟ o cn cn sso s—✓ s® OR 〇 〇 ε 1 (P)-2 1 1 (QH 1 1 (G)-l | &lt; N—✓ 1 (A)-2 1 a r-H 1 Sw* 1 (C)-2 | 1 (D)-l | 層構成 總層厚(mm) 樹脂層(II)之厚度比率(%) 全光線穿透率(%) 水蒸氣穿透率(g/m2_24小時) 儲存彈性模數((E'XMPa) 密封性 财熱性 5 ? π 1 二 坦 aJ as 5 V ? D A s-69-001 201224035 (實施例16) 使用NPC股份有限公司製造之真㉞合機⑽_ 熱板溫度:威、加工時間:20分鐘(細項:真空處理於 •分鐘,壓製3分鐘,壓力保持:1〇分鐘)、壓接❹= ;速之條件下’自熱板側起依序真空壓製作為上部保護:之; 度為3mm之白板玻璃(旭硝子股份有限公司製造,商。〇子 some)、於實施例u巾獲取之厚度為。3随:多層片:二 封材,樹脂層(I)位於太陽電池元件側)、厚度為〇4_之: 陽電池元件(單元)(Ph〇t〇watt公司製造,型號. ιοίχίοιΜΜ)、於實施例η中獲取之厚度為〇 3mm之ζ層 片材(密封材,樹脂層(I)位於太陽電池元件側)、作為下部^ 護材之厚度為0.125!!1111之耐候性1^丁薄膜(丁〇^7股份有限 公司製造’商品名:LumirrorXlOs)之5層而製作太陽電池 模組(尺寸:150 mmx 150 mm)。所獲得之太陽電池模組之透 明性及外觀等優異。 (實施例17) 使用(MO mm之同向雙轴擠出機,自兩種三層之多歧管式 之喷嘴,於設定溫度180〜200°C下,以混合質量比3〇 : 7() 之比例將(X)-1與(F)-1擠出而製成作為兩外層之樹脂層 (I)。又,同時使用《40 mm之同向雙軸擠出機,自同—喷嘴 於設定溫度200〜23(TC下,以混合質量比99.9 : 0.1之比例 將⑷-1與(B)-l擠出而製成作為中間層之樹脂層(11)。繼 100136921 63 201224035 而,調整熔融樹脂之吐出量,將該共擠出片材利用約20°C 之澆鑄輥驟冷,藉此以各層之厚度為樹脂層(I)/樹脂層(II)/ 樹脂層(1) = 0.1/0.1/0.l(mm)而獲得總厚度0.3 mm之多層片 材。使用所獲得之多層片材,進行透明性、防濕性、耐熱性 等評價。將結果示於表3。 (實施例18) 於實施例17中,將構成樹脂層(II)之樹脂組成物變更為混 合質量比79.9 : 0.1 : 20之比例之(A)-l、(B)-l及(C)-l,除 此以外,利用與實施例17相同之方法、厚度構成而獲得多 層片材。使用所獲得之多層片材,進行透明性、防濕性、而才 熱性等評價。將結果示於表3。 (實施例19) 於實施例18中,將構成樹脂層(II)之樹脂組成物中之(C)-l 變更為(C)-2,除此以外,利用與實施例17相同之方法、厚 度構成而獲得多層片材。使用所獲得之多層片材,進行透明 性、防濕性、耐熱性等評價。將結果示於表3。 (實施例20) 於實施例17中,將構成樹脂層(II)之樹脂組成物變更為混 合質量比 49.9 : 0.1 : 20 : 30 之比例的(A)-l、(B)-l、(C)-l 及(D)-l,除此以外,利用與實施例17相同之方法、厚度構 成而獲得多層片材。使用所獲得之多層片材,進行透明性、 防濕性、耐熱性等評價。將結果示於表3。 100136921 64 201224035 (實施例21) 於實施例20中,將構成樹脂層(II)之樹脂組成物中之(A)-l 變更為(A)-2,除此以外,利用與實施例20相同之方法、厚 度構成而獲得多層片材。使用所獲得之多層片材,進行透明 性、防濕性、耐熱性等評價。將結果示於表3。 100136921 65 201224035 [表3] 樹脂層(I) (質量份) ^χ)Ί Γ^τ 實施例17 實施例18 實施例19 實施例20 ~30 實施例21 30 30 30 30 (X)-2 JO-1 70 70 70 70 70 樹脂層(II) (質量份) (Α) (A)-l 99.9 79.9 79.9 49.9 (A)-2 49.9 ⑼ (B)-l 0.1 0.1 0.1 0.1 0.1 (C) (c)-i 20 20 20 (C)-2 20 JDVl 30 30 層才1 •l·成 (1)/(11)/(1) (1)/(11)/(1) (1)/(11)/(1) (1)/(11)/(1) (1)/(11)/(1) ?思層厚(mm、 0.3 0.3 0.3 0.3 0.3 樹脂層(II)之厚皮 33 33 33 33 33 全光線穿透率(%) 87 (〇) 89 (〇) 89 (Ο) 90 (0) 90 (Ο) 水蒸氣穿透率(g/m2 _ 24小時) 0.9 (◎) 0.7 (◎) 1.7 (〇) 0.6 (◎) 0.5 (◎) 儲存彈性模數((E,)〇V[P4 453 (◎) 503 (◎) 537 (◎) 600 (◎) 624 (◎) 密封性 〇 〇 〇 〇 〇 耐熱性 〇 〇 〇 〇 〇 (實施例22) 使用NPC股份有限公司製造之商品名「LM3〇x3〇」之真 空貼合機,於熱板溫度:15〇°c、加工時間:2〇分鐘(細項: 真空處理:5分鐘、壓製:5分鐘、壓力保持:1()分鐘)、 壓接速度.急速之條件下,自熱板側起依序真空壓製作為上 部保護材之厚度為3 mm之白板玻璃(旭硝子股份有限公司 製造,商品名.Solite)、於各實施例中獲得之總厚度為q 3以爪 之多層片材(密封材) Λ 〜八1勿电 疋ψ 元KPhotowatt公司製造,商品名:1〇1χ1〇1ΜΜ)、於實 中獲得之總厚度為0.3 mm之多層片材(密封材)、作為 保護材之厚度為0.125 mm之耐候性ρΕτ薄膜(T〇ray股 100136921 66 201224035 限公司製造,商品名:LumirrorXlOS)之5層而製作太陽電 池模組(尺寸:150 mmxl50 mm)。所獲得之太陽電池模組分 別透明性及外觀等優異。 100136921 671 Example 15| wo 窆in 〇ON d I (Ι)/(Π) 1 cn o Home δ 2§ IQ 〇〇|Example 14| 窆in O On (1)/(11)/(1) m O m so !·〇Si 〇〇1Example 13| i〇d 〇\ o Ο m 1 (1)/(11)/(1) I m O m ro so s—✓ s® l§ 〇〇Implementation Example 12 o ON Os o ο (1)/(11)/(1) m O m CO go 2® O ^ 〇〇1 Example ll| in »nd Os 妾o ο ml(i)/(ii)/ (i)| m O m ro go 5® 1® 〇〇Example 10 \nt us d G\ a\ o 1 (ΐ)/(π)/(ΐ) | om so 'S^ d© o ^ 〇 〇Example 9 »n O 〇\ a; 〇\ l(i)/(ii)/(i)l ΓΟ o cn cn sso s—✓ s® OR 〇〇ε 1 (P)-2 1 1 (QH 1 1 (G)-l | &lt; N—✓ 1 (A)-2 1 a rH 1 Sw* 1 (C)-2 | 1 (D)-l | Layer composition total layer thickness (mm) resin layer ( II) Thickness ratio (%) Total light transmittance (%) Water vapor transmission rate (g/m2_24 hours) Storage elastic modulus ((E'XMPa) Sealing property 5 ? π 1 二坦aJ as 5 V ? DA s-69-001 201224035 (Example 16) Using the true 34 machine manufactured by NPC Co., Ltd. (10)_ Hot plate temperature: Granville, processing time: 20 Clock (fine items: vacuum treatment in • minutes, pressing for 3 minutes, pressure retention: 1 〇 minutes), crimping ❹ = ; under the conditions of speed, 'since the vacuum plate side from the vacuum pressing as the upper protection: the degree is 3mm white glass (manufactured by Asahi Glass Co., Ltd., quotient, some), thickness obtained in the example u towel. 3 with: multilayer sheet: two sealing materials, resin layer (I) on the side of the solar cell element) The thickness is 〇4_: a positive battery element (unit) (manufactured by Ph〇t〇watt Co., Ltd., model. ιοίχίοιΜΜ), a layer of ζ3 mm (sealing material, resin layer) obtained in Example η In the case of the solar cell element side, the solar cell is made of 5 layers of the weather resistance of the lower part of the material, which is a thickness of 0.125!!1111 (manufactured by Dingsong Co., Ltd., trade name: Lumirror XlOs). Module (size: 150 mm x 150 mm). The obtained solar cell module is excellent in transparency and appearance. (Example 17) Using (MO mm co-rotating twin-screw extruder, from two nozzles of three-layer manifold type, at a set temperature of 180 to 200 ° C, at a mass ratio of 3 〇: 7 ( The ratio of (X)-1 and (F)-1 is extruded to form the resin layer (I) as the two outer layers. Also, the 40 mm co-rotating twin-screw extruder is used at the same time. (4)-1 and (B)-1 are extruded at a set temperature of 200 to 23 (TC at a mixing mass ratio of 99.9:0.1 to form a resin layer (11) as an intermediate layer. Following 100136921 63 201224035, The discharge amount of the molten resin is adjusted, and the co-extruded sheet is quenched by a casting roll at about 20 ° C, whereby the thickness of each layer is the resin layer (I) / resin layer (II) / resin layer (1) = A multilayer sheet having a total thickness of 0.3 mm was obtained at 0.1/0.1/0.1 (mm), and the obtained multilayer sheet was evaluated for transparency, moisture resistance, heat resistance, etc. The results are shown in Table 3. [Example 18] In Example 17, the resin composition constituting the resin layer (II) was changed to (A)-l, (B)-l, and (C)- in a ratio of a mixed mass ratio of 79.9:0.1:20. l, in addition to, use and embodiment 17 The multilayer sheet was obtained by the same method and thickness. The obtained multilayer sheet was evaluated for transparency, moisture resistance, heat resistance, etc. The results are shown in Table 3. (Example 19) In Example 18 In the resin composition of the resin layer (II), (C)-1 was changed to (C)-2, and a multilayer sheet was obtained by the same method and thickness as in Example 17. The multilayer sheet obtained was evaluated for transparency, moisture resistance, heat resistance, etc. The results are shown in Table 3. (Example 20) In Example 17, the resin composition constituting the resin layer (II) was changed. The same method as in Example 17 except that (A)-1, (B)-1, (C)-1, and (D)-1 were mixed at a mass ratio of 49.9:0.1:20:30. The multilayer sheet was obtained by the thickness of the multilayer sheet, and the obtained multilayer sheet was evaluated for transparency, moisture resistance, heat resistance, etc. The results are shown in Table 3. 100136921 64 201224035 (Example 21) In Example 20 (A)-l in the resin composition constituting the resin layer (II) is changed to (A)-2, and other uses and A multilayer sheet was obtained by the same method and thickness configuration as in Example 20. The obtained multilayer sheet was evaluated for transparency, moisture resistance, heat resistance, etc. The results are shown in Table 3. 100136921 65 201224035 [Table 3] Resin Layer (I) (mass parts) ^χ) Ί τ^τ Example 17 Example 18 Example 19 Example 20 to 30 Example 21 30 30 30 30 (X)-2 JO-1 70 70 70 70 70 Resin Layer (II) (mass parts) (Α) (A)-l 99.9 79.9 79.9 49.9 (A)-2 49.9 (9) (B)-l 0.1 0.1 0.1 0.1 0.1 (C) (c)-i 20 20 20 (C )-2 20 JDVl 30 30 layers only 1 • l·成(1)/(11)/(1) (1)/(11)/(1) (1)/(11)/(1) (1) /(11)/(1) (1)/(11)/(1) ?Thickness of layer (mm, 0.3 0.3 0.3 0.3 0.3 Thick layer of resin layer (II) 33 33 33 33 33 Total light transmittance ( %) 87 (〇) 89 (〇) 89 (Ο) 90 (0) 90 (Ο) Water vapor transmission rate (g/m2 _ 24 hours) 0.9 (◎) 0.7 (◎) 1.7 (〇) 0.6 (◎ ) 0.5 (◎) Storage modulus ((E,)〇V[P4 453 (◎) 503 (◎) 537 (◎) 600 (◎) 624 (◎) Sealing heat resistance 〇〇〇 〇〇 (Example 22) Using NPC The vacuum laminating machine of the product name "LM3〇x3〇" manufactured by the company, at the hot plate temperature: 15 ° ° C, processing time: 2 〇 minutes (fine items: vacuum treatment: 5 minutes, pressing: 5 minutes, Pressure holding: 1 () minutes), crimping speed. Under the condition of rapid speed, the white plate glass with a thickness of 3 mm as the upper protective material is pressed from the hot plate side (manufactured by Asahi Glass Co., Ltd., trade name. Solite ), the total thickness obtained in each of the examples is q 3 to the multi-layer sheet of the claw (sealing material) Λ ~ 八 1 疋ψ electric 疋ψ Yuan KPhotowatt company, trade name: 1〇1χ1〇1ΜΜ), in the real A multilayer sheet (sealing material) having a total thickness of 0.3 mm and a weather-resistant ρΕτ film having a thickness of 0.125 mm as a protective material (manufactured by T〇ray 100136921 66 201224035, trade name: Lumirror XlOS) Make a solar cell module (size: 150 mm x l50 mm). The obtained solar cell module has excellent transparency and appearance. 100136921 67

Claims (1)

201224035 七、申晴專利範圍: 1·一種樹脂組成物’其特徵在於:其係含有密度為〇936 〜0.948 g/cm3、結晶熔解熱量為15〇〜2〇〇 J/g之二茂金屬乙 稀系聚合體(A)與結晶成核劑⑼者,且⑼在上述⑷與⑻ 之合计含里中所占之比例為〇 〇1〜3 〇質量0/〇。 2. 如申請專利範圍第1項之樹脂組成物,其中,進而含有 包含自由石油樹脂、㈣樹脂、黨草酮-節樹脂、松香系樹 脂及該等之氫化衍生物構成之群組中選擇之一種樹脂或兩 種以上樹脂的烯烴相容樹脂(c)。 3. 如申請專利範圍第2項之樹脂組成物,其中,上述稀煙 相谷樹知(c)之軟化溫度Ts(c)4 8〇&lt;&gt;c以上,且為上述乙烯 系知U曰(A)之藉由示差掃描熱量測定於1〇〇c/min之冷卻速度 下測付之結晶波峰溫度Tc(A) + 30。(3以下。 4. 如申請專利範圍第1至3項中任一項之樹脂組成物,其 中,二茂金屬乙烯系聚合體(A)之分子量分佈指數為2 5〜 4.5。 5. 如申請專利範圍第1至4項中任一項之樹脂組成物,其 中,含有1-丁烯、1-己烯及1_辛烯中之至少一種以上之 烯烴作為二茂金屬乙烯系聚合體(Α)的乙烯以外之成分,並 且1-丁烯、1-己烯及1-辛烯之含量之合計在二茂金屬乙烯系 聚合體(A)中佔0.1〜3.0質量%。 6. 如申請專利範圍第1至5項中任一項之樹脂組成物,其 100136921 68 201224035 中,進而含有結晶熔解熱量為〇〜1 〇〇 j/g之烯烴系樹脂(D) 7. 如申請專利範圍第〗至6項中任一項之樹脂組成物,其 中,上述烯烴系樹脂(D)係選自由直鏈狀低密度聚乙烯、取 丙烯系樹脂及環狀烯烴系樹脂構成之群組中的一種樹脂或 兩種以上樹脂之混合樹脂。 8. 如申請專利範圍第1至7項中任一項之樹脂組成物,其 中,使上述樹脂組成物以厚度0.1 mm成膜時,根據JIS K7105所測定之内部霧度為10%以下。 9. 一種片材’其係藉由將申請專利範圍第1至8項中任— 項之樹脂組成物成形而獲得者。 10. —種太陽電池用密封材,其包含申請專利範圍第i 項中任一項之樹脂組成物。 範圍 乙烯 11. 一種太陽電池用密封材,其包含於含有申請專利 第1至8項中任一項之樹脂組成物之層(II)上具有含有 系樹脂之樹脂層(I)的多層體。 12.如申請專利範圍第11項之太陽電池用密封材,其中 上述含有乙烯系樹脂之樹脂層(I)為含有滿足下述(a)條件&lt; 乙烯-α-烯烴無規共聚合體(P)、與滿足下述(b)條件之乙稀 α-烯烴嵌段共聚合體(Q)的樹脂層; (a):於示差掃描熱量測定中以加熱速度l〇°c/min測得&lt; 結晶熔解熱量為0〜70 J/g ; (b):於示差掃描熱量測定中以加熱速度 100136921 69 201224035 、、。甜熔解波峰溫度為·〜145&lt;3(:,且結晶轉熱量為5〜% J/g。 13. 如申請專利範圍第u項之太陽電池用密封材,其中, 上述含有乙烯系樹脂之樹脂層(1)為含有我改f乙稀系樹 脂(X)之樹脂層。 14. 一種太陽電池模組,其係使用申請專利範圍第丨丨至u 項中任一項之太陽電池用密封材、上部保護材、太陽電池單 元及下部保護材而製作者。 100136921 70 201224035 四、指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明: 無 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 無 100136921201224035 VII. Shenqing Patent Range: 1. A resin composition characterized by: it contains a density of 〇936~0.948 g/cm3, and the crystal melting heat is 15〇~2〇〇J/g. The ratio of the rare polymer (A) to the crystal nucleating agent (9) and (9) in the total contents of the above (4) and (8) is 〇〇1 to 3 〇 mass 0/〇. 2. The resin composition of claim 1, wherein the resin composition further comprises a group consisting of a free petroleum resin, a (four) resin, a ketone-based resin, a rosin-based resin, and the hydrogenated derivative. A resin or an olefin compatible resin (c) of two or more kinds of resins. 3. The resin composition according to item 2 of the patent application, wherein the above-mentioned smoky phase is known to have a softening temperature Ts(c) 4 8 〇 &lt;&gt;c or more, and is the above-mentioned ethylene-based U 曰 ( A) The crystallization peak temperature Tc(A) + 30 measured at a cooling rate of 1 〇〇c/min was measured by differential scanning calorimetry. (3) The resin composition according to any one of claims 1 to 3, wherein the molecular weight distribution index of the metallocene ethylene polymer (A) is from 2 5 to 4.5. The resin composition according to any one of the items 1 to 4, wherein the olefin containing at least one of 1-butene, 1-hexene and 1-octene is used as a metallocene ethylene-based polymer (Α The component other than ethylene, and the total content of 1-butene, 1-hexene, and 1-octene is 0.1 to 3.0% by mass in the metallocene ethylene-based polymer (A). The resin composition of any one of items 1 to 5, which is 100136921 68 201224035, further comprising an olefin resin (D) having a heat of crystal melting of 〇~1 〇〇j/g. 7. The olefin-based resin (D) is a resin selected from the group consisting of a linear low-density polyethylene and a propylene-based resin and a cyclic olefin-based resin. Or a mixed resin of two or more resins. 8. A tree according to any one of claims 1 to 7. In the composition, when the resin composition is formed into a film having a thickness of 0.1 mm, the internal haze measured according to JIS K7105 is 10% or less. 9. A sheet "is to be patented by the first to eighth patents. The resin composition of any one of the items is obtained by the method of forming a resin composition. The resin composition for a solar cell comprising the resin composition of any one of the claims of the invention. The range of ethylene 11. A solar cell seal A multilayer body comprising a resin layer (I) containing a resin on a layer (II) containing the resin composition according to any one of claims 1 to 8. 12. The scope of claim 11 The sealing material for a solar cell, wherein the resin layer (I) containing the vinyl resin contains a condition (a) satisfying the following (a) ethylene-α-olefin random copolymer (P), and satisfying the following (b); The resin layer of the ethylene-α-olefin block copolymer (Q) of the condition; (a): measured by the heating rate l〇°c/min in the differential scanning calorimetry &lt; the heat of crystal melting is 0 to 70 J/ g; (b): heating rate in differential scanning calorimetry 100136921 69 201224035 And the melting temperature of the sweet melting peak is ~145 &lt; 3 (:, and the heat of crystallization is 5 to % J/g. 13. The sealing material for solar cells according to the scope of the invention, wherein the above-mentioned ethylene-containing The resin layer (1) of the resin is a resin layer containing the ethylenic resin (X). 14. A solar cell module using the solar cell of any one of the claims 丨丨 to u. Produced by sealing material, upper protective material, solar cell unit and lower protective material. 100136921 70 201224035 IV. Designated representative map: (1) The representative representative figure of this case is: None (2) The symbol of the symbol of the representative figure is simple: No. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: No 100136921
TW100136921A 2010-10-12 2011-10-12 Transparency and moisture resistance of the resin composition, and its shape from the sheet TWI500682B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010229940 2010-10-12
JP2010267013 2010-11-30
JP2010288460A JP5593215B2 (en) 2010-12-24 2010-12-24 Multilayer body for solar cell and solar cell module manufactured using the same
JP2011152756 2011-07-11

Publications (2)

Publication Number Publication Date
TW201224035A true TW201224035A (en) 2012-06-16
TWI500682B TWI500682B (en) 2015-09-21

Family

ID=45938322

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100136921A TWI500682B (en) 2010-10-12 2011-10-12 Transparency and moisture resistance of the resin composition, and its shape from the sheet

Country Status (2)

Country Link
TW (1) TWI500682B (en)
WO (1) WO2012050093A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926034A (en) * 2022-11-28 2023-04-07 浙江石油化工有限公司 Preparation method of high-strength waterproof polyethylene film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064037B1 (en) * 2005-05-18 2011-09-08 미쓰이 가가쿠 가부시키가이샤 Catalyst for olefin polymerization, method for producing olefin polymer, method for producing propylene copolymer, propylene polymer, propylene polymer composition, and use of those
CN101838363B (en) * 2005-05-18 2012-07-25 三井化学株式会社 Method for producing propylene series copolymer
CN101313046B (en) * 2005-11-25 2013-06-12 三井化学株式会社 Sealing material for solar cell, sheet for solar-cell sealing, and solar cell module employing these
US20070221268A1 (en) * 2006-03-21 2007-09-27 Hasch Bruce M Encapsulants for electronic components
CN101490168B (en) * 2006-07-31 2012-05-23 三井化学株式会社 Thermoplastic resin composition for solar cell sealing, sheet for solar cell sealing, and solar cell
BRPI0715034B1 (en) * 2006-09-20 2019-05-14 Dow Global Technologies Inc. ELECTRONIC DEVICE MODULE
JP5247232B2 (en) * 2008-05-15 2013-07-24 リケンテクノス株式会社 Multilayer film
WO2010095603A1 (en) * 2009-02-17 2010-08-26 三井・デュポンポリケミカル株式会社 Solar cell sealing sheet and solar cell module
JP2010226042A (en) * 2009-03-25 2010-10-07 Asahi Kasei E-Materials Corp Low crosslinking resin sealing sheet and solar cell module using the same
WO2010114028A1 (en) * 2009-03-31 2010-10-07 日本ポリエチレン株式会社 Resin composition for solar cell sealing material, solar cell sealing material, and solar cell module using the material
JP2010275415A (en) * 2009-05-28 2010-12-09 Tosoh Corp Polyolefin resin composition film, sealing film for solar cell using the same, and solar cell using the same
JP5287538B2 (en) * 2009-06-19 2013-09-11 大日本印刷株式会社 Filler composition for solar cell module, filler for solar cell module, and solar cell module
CN102217091B (en) * 2009-07-17 2012-11-21 三菱树脂株式会社 Solar cell sealing material and solar cell module produced using the same

Also Published As

Publication number Publication date
TWI500682B (en) 2015-09-21
WO2012050093A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
TWI536586B (en) Multi-layer solar cells and the use of its production of solar modules
JP5625060B2 (en) SOLAR CELL SEALING MATERIAL AND SOLAR CELL MODULE PRODUCED BY USING THE SAME
JP4634535B1 (en) SOLAR CELL SEALING MATERIAL AND SOLAR CELL MODULE PRODUCED BY USING THE SAME
JP5296907B2 (en) Propylene resin composition and use thereof
JP6318619B2 (en) Solar cell sealing sheet
JP5593215B2 (en) Multilayer body for solar cell and solar cell module manufactured using the same
JP5396556B1 (en) Solar cell module and manufacturing method thereof
TW201221571A (en) Covering film for solar cell and solar cell module made using same
TW201219423A (en) Solar cell sealing material and solar cell module manufactured using the same
JP5654804B2 (en) SOLAR CELL SEALING MATERIAL AND SOLAR CELL MODULE PRODUCED BY USING THE SAME
TW200930783A (en) Surface protective film
JP5764481B2 (en) Multilayer for solar cell
JP2006299060A (en) Polypropylene-based drawing adhesive film
JP2013211451A (en) Solar battery sealant-surface protection sheet laminate
JP2014204090A (en) Solar cell sealing material and solar cell module manufactured using the same
TW201224035A (en) Resin composition having excellent transparency and moisture prevention properties, and sheet obtained by molding same
JP2002012731A (en) Thermal shrinkable polyolefin tube
JP6496999B2 (en) Manufacturing method of solar cell dummy module
JP2013212600A (en) Laminated moisture-proof film
WO2006068275A1 (en) Stretched film of olefin polymer
JP2015093974A (en) Sealing material and solar battery module produced using the same
JP2016051772A (en) Solar cell module and manufacturing method thereof
JP2012074686A (en) Front surface protective sheet for solar battery and solar battery module produced using same
JP2018144351A (en) Multilayer biaxially oriented film
JP2013214559A (en) Solar cell surface protection sheet and sealing material laminate