TW201223096A - Freewheel charge-pump controlled single-inductor multiple-output DC-DC converter - Google Patents

Freewheel charge-pump controlled single-inductor multiple-output DC-DC converter Download PDF

Info

Publication number
TW201223096A
TW201223096A TW99140461A TW99140461A TW201223096A TW 201223096 A TW201223096 A TW 201223096A TW 99140461 A TW99140461 A TW 99140461A TW 99140461 A TW99140461 A TW 99140461A TW 201223096 A TW201223096 A TW 201223096A
Authority
TW
Taiwan
Prior art keywords
output
terminal
inductor
switch
voltage
Prior art date
Application number
TW99140461A
Other languages
Chinese (zh)
Other versions
TWI411210B (en
Inventor
Chia-Min Chen
Chung-Chih Hung
Kai-Hsiu Hsu
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW99140461A priority Critical patent/TWI411210B/en
Publication of TW201223096A publication Critical patent/TW201223096A/en
Application granted granted Critical
Publication of TWI411210B publication Critical patent/TWI411210B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

This present invention disclose a freewheel charge-pump controlled single-inductor multiple-output DC-DC converter. The single-inductor multiple-output (SIMO) DC-DC converter is comprising a single-inductor multiple-output (SIMO) converting circuit and a controlling circuit. The SIMO converting circuit is further including at least one charge-pump where a charge storage device is included. By means of the charge storage function, in the state of pulse-frequency width modulation (PWM) switching, an added DC-DC output can be derived. The present invention provides the freewheel charge-pump control technique (FCPC) that leads the SIMO DC-DC converter to operate in the pseudo-continuous conduction mode (PCCM) and discontinuous conduction mode (DCM) by time-multiplexing control. A better crossover regulation and higher output current can be achieved.

Description

201223096 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於一種具電荷泵控制之單電感多重輸出直 流轉換器,特別是有關於一種使用順向導通電荷泵以控 制多輸出的技術之直流對直流轉換器。 【先前技術·】 [0002] 隨著消費類電子產品的快速發展,尤其在可檇式小型設 備的需求更是千變萬化,例如個人數位助理(personal digital assistants, PDAs)、手機、數位相機等, 對於電子設備的電路設計上,朝向高密度的系統佈局已 經成為必要的趨勢,儘可能減少電子元件的數目也成為 晶片設計所追求的目標之一。在提高可檇式設備的電力 管理及如何增加電池使用的時間,高效率的直流對直流 轉換轉換器一直扮演著十分重要的角色。因此要如何設 計出體積小、效率高且具有低輸入電壓的電源轉換器就 成為設計中的一大挑戰。 [0003] 在直流對直流轉換的電路中,交越失真的現象是持續存 在的,許多先前研究成果、論文、產品或專利所揭露的 文獻,常致力於降低交越失真的現象,或利用各種方法 以降低交越失真的影響;尤其在直流對直流電壓轉換器 的電路中,由於電壓和電流的關係不是線性的,在輸入 電壓較低時,輸出電壓存在滯區(dead zone),此段輸 出電壓與輸入電壓形成非線性關係,產生交越穩壓 (crossover regu 1 at i on)的問題。 [0004] 對於直流電壓轉換的電路,單電感多輸出 099140461 表單編號A0101 第4頁/共35頁 0992070452-0 201223096 (single-inductor mul tipi e-out put)的架構由於具 有高轉換效率,持續受到重視;單電感多輸出的直流電 壓轉換電路主要可區分為兩大類,分為單週期單充電多 放電模式(single energizing cycle per swing period)與單週期多重充放電模式(muitipl e ener—201223096 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a single-inductor multi-output DC converter with charge pump control, and more particularly to using a forward-pass charge pump to control multiple outputs The technology of DC to DC converters. [Previous Technology·] [0002] With the rapid development of consumer electronic products, the demand for small and small devices is even more varied, such as personal digital assistants (PDAs), mobile phones, digital cameras, etc. In the circuit design of electronic equipment, the orientation towards high-density systems has become a necessary trend, and reducing the number of electronic components as much as possible has become one of the goals pursued by the wafer design. High-efficiency DC-to-DC converters have always played an important role in improving the power management of portable devices and how to increase battery usage. Therefore, how to design a power converter with small size, high efficiency and low input voltage is a big challenge in the design. [0003] In DC-to-DC conversion circuits, the phenomenon of crossover distortion persists. Many of the literatures published in previous research, papers, products, or patents are often devoted to reducing crossover distortion or using various Method to reduce the influence of crossover distortion; especially in the circuit of DC-to-DC voltage converter, since the relationship between voltage and current is not linear, when the input voltage is low, the output voltage has a dead zone. The output voltage forms a nonlinear relationship with the input voltage, creating a problem of crossover regu 1 at i on. [0004] For DC voltage conversion circuits, the architecture of single inductor multiple output 099140461 Form No. A0101 Page 4 / Total 35 Page 0992070452-0 201223096 (single-inductor mul tipi e-out put) continues to suffer due to its high conversion efficiency. Pay attention to; single-inductor and multi-output DC voltage conversion circuits can be divided into two categories, which are divided into single-energy single-charge multi-discharge period (single energizing cycle per swing period) and single-cycle multiple charge and discharge mode (muitipl e ener-

Sizing cycle per swing period),其中前者如台灣 專利TW508869、美國專利US6075295,在此電路架構下 。為達到負載可以隨需求改變的需求,常需要複雜的控 制理論所構成的複雜控制電路來操控,如此難以降低成 本。對於單週期多重充放電模式,如美國專利 US7224085揭露单電感雙重輸出(single-inductor dual-output, SID0)的電壓轉換電路,又美國專利 US7256568、US7432614、中國專利公蘭號 CN1 01 083432則揭露單電感多重輸出 (single-inductor multiple-output, SIM0)的電壓Sizing cycle per swing period), the former such as Taiwan patent TW508869, US patent US 6075295, under this circuit architecture. In order to meet the demand that the load can change with the demand, complex control circuits composed of complex control theory are often needed to control, which makes it difficult to reduce costs. For the single-cycle multiple charge and discharge mode, for example, US Pat. No. 7,224,085 discloses a single-inductor dual-output (SID0) voltage conversion circuit, and US Patent No. 7,256,568, US 7,432,614, and Chinese patent public number CN1 01 083432 disclose the single. Single-inductor multiple-output (SIM0) voltage

轉換電路,雖已降低交越電壓.的..間..題,也可以使用較不 複雜的控制架構,電路拓樸如第1圖;在第1圖中,昔知 單電感多重輸出t壓轉換電路10,使用順向導通開關 SFff(Freewheel switch),開關S〇1 導通時,當su 導通The conversion circuit, although the crossover voltage has been reduced, can also use a less complex control architecture, the circuit topology is as shown in Fig. 1; in Fig. 1, the single inductor multiple output t voltage is known. The conversion circuit 10 uses a SFW (Freewheel switch), and when the switch S〇1 is turned on, when su is turned on

時電源Vgl則對電感L充電(Si2導通時電源Vg2則對電感L 充電.....當Sim導通時電源Vgm則對電感L充電);在下 一階段’開關Sn導通’將輸出開關S〇1導通使電感L放電 ’產生電壓v〇l輸出,在下一個相位,將輸出開關s導通 0 2 使電感L放電’產生電壓V〇2輸出,…,在下一個相位, 將輸出開關S導通使電感L放電,產生電壓V輸出;以 on on 達到多重輸出的目的。然而此種電路雖可以減少交越穩 099140461 表單編號A0101 第5頁/共35頁 0992070452-0 201223096 壓的問題,但存在轉換效率不高與輸出電壓具有較大漣 波的問題。 [0005]為改善SIMO架構的轉換電路之轉換效率不高的問題,When the power supply Vgl charges the inductor L (when the Si2 is turned on, the power supply Vg2 charges the inductor L..... when the Sim is turned on, the power supply Vgm charges the inductor L); in the next stage, the switch S is turned on to output the switch S〇 1 conduction causes the inductor L to discharge 'generate voltage v〇l output, in the next phase, the output switch s is turned on 0 2 to discharge the inductor L' to generate a voltage V〇2 output, ..., in the next phase, the output switch S is turned on to make the inductor L discharge, generate voltage V output; to achieve multiple output on on. However, this type of circuit can reduce the problem of voltage stability. 099140461 Form No. A0101 Page 5 of 35 0992070452-0 201223096 Pressure problem, but there is a problem that the conversion efficiency is not high and the output voltage has a large ripple. [0005] In order to improve the conversion efficiency of the conversion circuit of the SIMO architecture, the problem is not high.

Dongsheng MA於IEEE J. Solid-State Circuits, Vol.38,No.l,Jan. 2003 發表了”4卩361](3〇- CCM/DCM SIMO Switching Converter With Freewheel Switching ,電路圖如第2圖,讓電壓轉換電 路操作在虛連續導通模式(pseudo_continu〇us conduction mode, PCCM) 與不連續導通模式 ( diSC0n— tinuous conduction mode,DCM)以複相位控制 (time-multiplexing control)進行.電壓轉換;在第 2 圖中,該電壓轉換電路亦使用順向導通開關~以構成虛 連續導通模式單電感多重輸出(pCCM SIM〇) ^當電感L充 電完成後,在第一個相位,使開關、不導通,將輸出 開關Sa導通使電感L放電,產生電壓v輸出,當電感[充 0 3 電完成之後,在下一個相位必匕,將輸出開關、導通使電 感L放電,產生電壓V〇b輸出;請參考第3圖,經由此電路 的相位與輸出,電壓轉換後的電流I變化較平穩,而直 L/ 流電流Idc也相對較高,即,經由此電路轉換後的電壓可 以減少交越穩壓的問題並且提供較高的輸出電流;但是 在順向導通開關期間,電路並沒有進行電壓的轉換,平 白浪費了時間與功率;且虛連續導通模式單電感多重輸 出(PCCM SIM0)電路要增加輸出數目就必須拉長操作週 期,而操作週期變長將會使的輸出電壓漣波變大,此一 問題仍亟待解決。 099140461 表單編號A0101 第6頁/共35頁 0992070452-0 201223096 【發明内容】 [0006] 有鑑於上述習知技藝之問題,本發明之其中一目的就是 在提供一種具電荷泵控制之單電感多重輸出直流轉換器 ,以解決昔知單電感多重輸出直流轉換器在順向導通開 關期間,電路並沒有進行電壓的轉換,平白浪費了時間 與功率。該具電荷泵控制之單電感多重輸出直流轉換器 係由單電感多輸出直流轉換電路與控制電路所組成,該 單電感多輸出直流轉換電路係將輸入直流端之電壓(vIN) 經由該控制電路以脈衝寬度調變控制,以轉換為二組的 Ο 輸出直流端之電壓,分別為第一輸出直流端之電壓(Vy) 與第二輸出直流端之電壓(v^);該單電感多輸出直流轉 換電路包含有: [0007] (1)—個單電感元件,連接於該輸入直流端,係由導通開 關(Sf)與電感器(L)所組成,該導通開關(Sf)與該電感器 (L)係以並聯連接;該導通開關用以控制該輸入直流端連 接至該電感器的頻率,並用以維持流經該電感器的電流 ;藉由導通開關(Sf)使該單電感多輸出直流轉換電路操 〇 f 作在虛連續導通模式(pseudo-continuous conduction mode, PCCM) 與不連續導通模式 (discontinuous conduction mode, DCM)),即當輸 出負載電流為重載時,該單電感多輸出直流轉換電路操 作在虛連續導通模式(PCCM);而在輕載時,該單電感多 輸出直流轉換電路操作在不連續導通模式(DCM)。 [0008] (2)—參考電壓切換開關(S ),串聯連接於該單電感元件 η 與參考電壓之間,用以使該輸入直流端之電壓對該電感 099140461 表單編號Α0101 第7頁/共35頁 0992070452-0 201223096 充電,對於某些運用上,參考電壓可為接地電壓或 高於接地電壓的參考電壓; [0009] [0010] [0011] [0012] ⑺-輸出控制模組,連接於該單電感元件與該參考電壓 切換開關(Sn)’用以將輸人直流端之直流錢進行電壓 轉換後輸出至該第—輸出直流端與該第二輸出直流端; 違輸出控制模組進一步包含一第一脈衝寬度調變褒置 (PWM1)、一電荷泵(charg卜pump)與一第二脈衝寬度調 變裝置(PWM2);其中: 該第一脈衝寬度調變裝置(削υ,包含一第一開關(') 與一第二開關(S2) ’經由該控制電路之相位控制該第— 開關(sp與該第二開關(\),將該輪人直流端之電壓輸 出至該第一輸出直流端; 該電荷果’包含—電荷儲存裝置,電荷儲存裝置可為單 -電谷或多個電容所構成’係連接於該第—脈衝寬度調 變裝置(PWM1)、該第二輸出直流端輿該第二脈衝寬度調 變裝置(PWM2 ) ’當該電荷_存裝置放電時用以對該第 二輪出直流端輸出電壓;更進—步,該電荷粟可再包含 -個二極體,係設置於該電射⑽裝置與該第二輸出直 流端之間,用以防止電流逆衝。 該第二脈衝寬度調變裝置(PWM2),包含一第三開關(&) 與-第四關(S4),經由該控制電路發出訊號之相位控 ㈣第三開_3)與該第四開關(\);當該電感器(L)對 該第-輸出直流端放電時,同時對該電荷泵充電;當該 導通開關(Sf)導通時,將該輪人直流端之輸出至該 099140461 表單編號AOlOi 第8頁/共35頁 0992070452-0 201223096 第二輸出直流端。又,該第一脈衝寬度調變裝置(PWM1) 與第二脈衝寬度調變裝置(PWM2),可由金氧半場效電晶 體MSOFET所構成。 [0013] 本發明之具電荷泵控制之單電感多重輸出直流轉換器使 用了順向導通電荷泵控制技術(freewhee 1 charge-pump control technique, FCPC) , 達到增加輸出但 不會拉長操作週期,解決了先前技術使用順向導通開關 時間的浪費。 〇 [麵] 根據本發明之另一目的,提出一種具電荷泵控制之單電 感多重輸出直流轉換器,類似如前述,但其中電荷泵為 二個,對於第二個電荷泵,設有對應的第三脈衝寬度調 變裝置(PWM3),用以控制另一個的直流輸出端;同理, 可再增設第三個電荷泵,設有對應的第四脈衝寬度調變 裝置(PWM4),用以控制增加的直流輸出端。 [0015] Ο 根據本發明之再一目的,提出一種具電荷泵控制之單電 感多重輸出直流轉換器,係包含一單電感多輸出直流轉 換電路與一控制電路,該單電感多輸出直流轉換電路係 將一輸入直流端之電壓(vIN)經由該控制電路以脈衝寬度 調變控制,以轉換為N個輸出直流端之電壓(V^,V%,… V^),其中N為偶數且大於等於4,其中該單電感多輸出 直流轉換電路包含: (1)一單電感元件,連接於該輸入直流端,包含一導 通開關(Sf)與一電感器(L),該導通開關(Sf)與該電感器 (L)係以並聯連接;其作用如前所述; 099140461 表單編號A0101 第9頁/共35頁 0992070452-0 [0016] 201223096 [0017] [0018] [0019] [0020] 099140461 (2)參考電屢切換開關(S。),串聯連接於該單電减 兀件與參考電壓之間,用以使該輸入直流端之電壓對該 電感器(L)充電,對於某些運用上,參考電壓可為接地電 麼或南於接地電屋的參考電壓; (3)複數個輸出控制模組,通常可為Ν/2個,分別連接 於该單電感元件與該參考電壓切換開關(s ),其中每— 個輪出控龍組用㈣輸人錢叙纽^進行電麼 轉換後輸出至_個輸出直流端;該每_個輸出控制模組 進一步包含第一脈衝寬度調變裝置(pwM1)、一電荷泵與 一第二脈衝寬度調變裝置(PWM2);其中: 該第一脈衝寬度調變裝置(PWM1),包含—第一開關(s ) 與-第二開關(s2) ’經由該控制電路發出訊號之相位控 制該第一開關(V與該第二開關(V,將該輸入直流端 之電壓輸出至該第一輸出直流端(ν〇ι); 該電荷栗,包含—電荷儲存轉;電顿存裝置可為單 一電容或多個電容所構成,係連接於辦-脈衝寬度調 變裝置(PWM1)、該第二輸教直流鱗輿該第二脈衝寬度調 變裝置(雨2),當該電荷儲存裝置放電時,用以對該第 二輸出直流端輸出電壓(V;更進-步,該電荷泵可再 包含-個二極體’係設置於該電荷儲存裝置與該第二輸 出直流端之間,用以防止電流逆衝; 該第二脈衝寬度調變裝置(PWM2),包含—第三開關(s) 與-第四開關(V,經由該控制電路發出訊號之相位: 制該第三開關(S)與該第四 咕认 開關CS4),當該電感器α)對 該第一輸出直流端玫電時, 表單編號麵 第10Λ時對遠電荷系充電;當該 乐頁/共35頁 Λ009Λ7Λ>ΐε9 201223096 [0021] Ο [0022] [0023] Ο [0024] 導通開關(Sf)導通時,將該輸入直流端之電壓輸出至該 第二輸出直流端。又,該第一脈衝寬度調變裝置(PWM1) 與第二脈衝寬度調變裝置(PWM2),可由金氧半場效電晶 體MSOFET所構成。 根據本發明之再一目的,提出一種具電荷泵控制之單電 感多重輸出直流轉換器,類似如前述,但其中複數個輸 出控制模組的每一個輸出控制模組,其電荷泵可為二個 或二個以上,對於第二個電荷泵,設有對應的第三脈衝 寬度調變裝置(PWM3),用以控制另一個的直流輸出端; 同理,可再增設第三個電荷泵,設有對應的第四脈衝寬 度調變裝置(PWM4),用以控制增加的直流輸出端。 承上所述,依本發明之具電荷泵控制之單電感多重輸出 直流轉換器,其可具有一或多個下述優點: (1) 本發明具電荷泵控制之單電感多重輸出直流轉換器 可藉由輸出控制模組之電荷泵,在脈衝寬度調變的順向 導通開關期間,由電荷儲存裝置儲存電量而增加一個直 流輸出,藉此可解決昔知單電感多重輸出直流轉換器在 順向導通開關期間,電路並沒有進行電壓的轉換,平白 浪費了時間與功率的問題。 (2) 本發明單電感多重輸出直流轉換器可藉由輸出控制 模組之電荷泵,在脈衝寬度調變的順向導通開關期間, 由電荷儲存裝置儲存電量而增加一個直流輸出,藉此可 解決昔知技術的單電感直流轉換器在虛連續導通模式 (pseudo-continuous conduction mode, PCCM)下 099140461 表單編號A0101 第11頁/共35頁 0992070452-0 201223096 ’轉換電料增加^數目就必齡錄作㈣,而操 作週期變長將會使的輸出電壓漣輕大的明顯缺陷問題 【實施方式】 [0025] [0026] [0027] 請參閱第4圖係為本發明之具電荷隸社單電感多重輪 出直流轉換器第-實施例之電路拓樸示意圖。如圖所示 ’本發明之具電料控制之單電❹重輸出直流轉換器 係由單電感多輪出直流轉換電路!與控制電路3所組成, 將輸入直流端2之電壓(V經由該控制電路3以脈衝寬度 調變控制,轉換為二組的輸出直流端之電壓,分別為第a -輸出直流端151之電壓(V〇i)與第二輸出直流端152之電 壓(v02),第一輸出直流端151之電壓(%)與第二輸出直 流端152之電壓(V〇2);經由此轉換’可將輪入直流端2之 電壓(vin)以降-升壓或升-升壓之方式,轉換為第一輸出 直流端151之電壓(V〇l)與第二輸出直流端152之電壓 (V〇2) 〇 單電感多輸出直流轉換電路1包含有單電感元件13、參考 電壓切換開關(Sn)12及輸出控制模組11,用以將輸入直 流端2之電壓(v〖N)轉換為直流-直流(dc-DC)的第一輸出 直流端151之電壓(V〇1)與第二輸出直流端152之電壓 (V〇2): (1 )單電感元件13 ’連接於輸入直流端2,係由導通開關 (Sf)與電感器(L)所組成,該導通開關(Sf)與該電感器 (L)係以並聯連接,接收控制電路3發出的訊號之相位必 Ύ f 為控制導通開關(sf)開與關,藉由導通開關(sf)用以控 099140461 表單編號A0101 第12頁/共35頁 0992070452-0 201223096 制該輸入直流端2連接至該電感器(L)的頻率,並用以維 持流經該電感器(L)的電流,使流經電感器(L)的電流處 =零到-定大小的電流範圍内;藉由導通開關(^)使該 單電感多輸出直流轉換電路i操作在虛連續導通模|式 (PCCM)與不連續導通模式(DCM),即當輸出負載電流為 重載時,該單電感多輸出直流轉換電路!操作在虛連續導 通模式(PCCM);而在輕載時,該單電感多輸出直流轉換 電路1操作在不連續導通模式(DCM)。 〇 _⑵參考電壓切換開關(V12,串聯連接於該單電感元件 13與參考電壓之間丨;,用以使讓輸入直流端.2之電壓對該電 感器(L)充電;對於某些運用上,參考電壓可為接地電壓 或兩於接地電壓的參考電壓;參考電壓切換開關(s )12 是以脈衝寬度調變(pulse_frequency width m〇dula_ tion,PWM)的工作模式’經由控制電路3發出的訊號之 相位0 n的信號為控制導通開關(^)開與關。 [0029] (3) —輸出控制模組11,連接於緣單電感元件與該參考電 Ο 壓切換開關(Sri) ’用以將輸入直流端2之直流電壓(VIN) 進行電壓轉換;該輸出控制模組11進一步包含第一脈衝 寬度調變裝置(PWM1)141、一電荷泵17與第二脈衝寬度 調變裝置(PWM2)142,輸出控制模組11 ;其中輸出控制 模組11也是以脈衝寬度調變的工作模式,經由控制電路3 發出相位0f、0丨的信號為分別控制第一脈衝寬度調變裝 置(PWM1)141與第二脈衝寬度調變裝置(PWM2)142。 [0030] 該第一脈衝寬度調變裝置(PWM1) 141係由第一開關(S1) 與第二開關(S2)所組成,經由該控制電路3發出訊號相位 099140461 表單編號A0101 第13頁/共35頁 0992070452-0 201223096Dongsheng MA published "4卩361" in IEEE J. Solid-State Circuits, Vol.38, No.1, Jan. 2003 (3〇- CCM/DCM SIMO Switching Converter With Freewheel Switching, circuit diagram as shown in Figure 2, let The voltage conversion circuit operates in a pseudo-continuous conduction mode (PCCM) and a discontinuous conduction mode (DCM) in a time-multiplexing control. Voltage conversion; in the second In the figure, the voltage conversion circuit also uses a forward-conducting switch ~ to form a virtual continuous conduction mode single-inductor multiple output (pCCM SIM〇) ^ When the inductor L is charged, in the first phase, the switch is turned off, The output switch Sa is turned on to discharge the inductor L, and the voltage v is output. When the inductor [charges 0 3 is completed, the next phase must be turned on, the output switch is turned on, and the inductor L is discharged to generate the voltage V〇b output; please refer to 3, through the phase and output of this circuit, the current I after the voltage conversion changes more smoothly, and the straight L / current Idc is relatively high, that is, after the conversion through this circuit The voltage can reduce the problem of crossover regulation and provide higher output current; however, during the forward conduction switch, the circuit does not perform voltage conversion, which wastes time and power; and the virtual continuous conduction mode single inductor multiple output ( In order to increase the number of outputs, the PCCM SIM0) circuit must lengthen the operation cycle, and the longer the operation cycle will make the output voltage ripple larger. This problem still needs to be solved. 099140461 Form No. A0101 Page 6 of 35 0992070452 SUMMARY OF THE INVENTION [0006] In view of the above-mentioned problems of the prior art, one of the objects of the present invention is to provide a single-inductor multiple-output DC converter with charge pump control to solve the single-inductance multiple output of the prior art. During the forward-conversion switch of the DC converter, the circuit does not perform voltage conversion, which wastes time and power. The single-inductor multi-output DC converter with charge pump control is composed of single-inductor multi-output DC conversion circuit and control circuit. The single-inductor multi-output DC conversion circuit is configured to input the voltage of the DC terminal (vIN). Through the control circuit, the pulse width modulation control is converted into voltages of the two sets of Ο output DC terminals, which are respectively the voltage of the first output DC terminal (Vy) and the voltage of the second output DC terminal (v^); The single-inductor multi-output DC conversion circuit includes: [0007] (1) A single-inductance component, connected to the input DC terminal, is composed of a conduction switch (Sf) and an inductor (L), the conduction switch (Sf And the inductor (L) is connected in parallel; the conduction switch is configured to control a frequency at which the input DC terminal is connected to the inductor, and to maintain a current flowing through the inductor; and the conduction switch (Sf) The single-inductor multi-output DC conversion circuit operates in a pseudo-continuous conduction mode (PCCM) and a discontinuous conduction mode (DCM), that is, when the output load current is a heavy load, The single-inductor multi-output DC conversion circuit operates in a virtual continuous conduction mode (PCCM); and at light loads, the single-inductor multi-output DC conversion circuit operates in a discontinuous conduction mode (DCM). [0008] (2) a reference voltage switching switch (S) connected in series between the single inductance element η and a reference voltage for making the voltage of the input DC terminal to the inductor 099140461 Form No. Α0101 Page 7 / Total 35 pages 0992070452-0 201223096 Charging, for some applications, the reference voltage can be a ground voltage or a reference voltage higher than the ground voltage; [0009] [0011] [0012] (7) - output control module, connected to The single-inductance component and the reference voltage switch (Sn) are used for voltage-converting the DC voltage input to the DC terminal and outputting to the first-output DC terminal and the second output DC terminal; a first pulse width modulation device (PWM1), a charge pump (charg pump) and a second pulse width modulation device (PWM2); wherein: the first pulse width modulation device (cut, including a first switch (') and a second switch (S2) 'control the first switch (sp and the second switch (\) via the phase of the control circuit, and output the voltage of the DC terminal of the wheel to the first An output DC terminal; the charge fruit' Including a charge storage device, the charge storage device may be a single-electric valley or a plurality of capacitors connected to the first pulse width modulation device (PWM1), the second output DC terminal, and the second pulse width modulation Variable device (PWM2) 'When the charge_storage device is discharged, it is used to output a voltage to the second-round DC terminal; further, the charge can further include a diode, which is set in the electromagnetic radiation (10) between the device and the second output DC terminal for preventing current backlash. The second pulse width modulation device (PWM2) includes a third switch (&) and a fourth switch (S4) via The control circuit sends a signal phase control (four) third open_3) and the fourth switch (\); when the inductor (L) discharges the first output DC terminal, simultaneously charges the charge pump; When the conduction switch (Sf) is turned on, the output of the DC terminal of the wheel is output to the 099140461 form number AOlOi page 8 / total 35 page 0992070452-0 201223096 second output DC terminal. Again, the first pulse width modulation device ( PWM1) and the second pulse width modulation device (PWM2), which can be used by the gold oxide half field The transistor MSOFET is constructed. [0013] The single-inductor multi-output DC converter with charge pump control of the present invention uses a freewhee 1 charge-pump control technique (FCPC) to increase the output but not The operation cycle is extended to solve the waste of the prior art using the forward switching time. 根据 [Face] According to another object of the present invention, a single inductor multiple output DC converter with charge pump control is proposed, similar to the foregoing, However, there are two charge pumps, and for the second charge pump, a corresponding third pulse width modulation device (PWM3) is provided for controlling the other DC output terminal; similarly, a third charge can be added. The pump is provided with a corresponding fourth pulse width modulation device (PWM4) for controlling the increased DC output. [0015] According to still another object of the present invention, a single inductor multiple output DC converter with charge pump control is provided, comprising a single inductor multiple output DC conversion circuit and a control circuit, the single inductor multiple output DC conversion circuit The voltage (vIN) of an input DC terminal is controlled by pulse width modulation by the control circuit to be converted into voltages of the N output DC terminals (V^, V%, ... V^), where N is even and greater than Equal to 4, wherein the single-inductor multi-output DC conversion circuit comprises: (1) a single inductor component connected to the input DC terminal, comprising a conduction switch (Sf) and an inductor (L), the conduction switch (Sf) The inductor (L) is connected in parallel; its function is as described above; 099140461 Form No. A0101 Page 9 / Total 35 Page 0992070452-0 [0016] 201223096 [0017] [0019] [0020] 099140461 (2) a reference electrical switch (S.) connected in series between the single electrical reducer and the reference voltage for charging the inductor (L) with the voltage of the input DC terminal, for some applications On, the reference voltage can be grounded or The reference voltage of the grounded electric house; (3) a plurality of output control modules, usually Ν/2, respectively connected to the single inductance component and the reference voltage switching switch (s), wherein each wheel is controlled The dragon group uses (4) to input the money Xuan Nuo ^ to convert the power to the output DC terminal; the output relay module further includes a first pulse width modulation device (pwM1), a charge pump and a first a second pulse width modulation device (PWM2); wherein: the first pulse width modulation device (PWM1) includes - a first switch (s) and a - second switch (s2) 'phase control of a signal via the control circuit The first switch (V and the second switch (V, the voltage of the input DC terminal is output to the first output DC terminal (ν〇ι); the charge pump includes - charge storage transfer; the electric storage device can The single capacitor or the plurality of capacitors are connected to the pulse width modulation device (PWM1), the second transducer DC scale, and the second pulse width modulation device (rain 2), when the charge storage device When discharging, for outputting a voltage to the second output DC terminal (V; Further, the charge pump may further include a diode disposed between the charge storage device and the second output DC terminal for preventing current backlash; the second pulse width modulation device (PWM2) a third switch (s) and a fourth switch (V, the phase of the signal is sent via the control circuit: the third switch (S) and the fourth acknowledge switch CS4), when the inductor α When the first output DC terminal is charged, the far-charge system is charged when the form number face is 10th; when the music page/35 pages Λ009Λ7Λ>ΐε9 201223096 [0021] Ο [0022] [0023] Ο [0024] When the conduction switch (Sf) is turned on, the voltage of the input DC terminal is output to the second output DC terminal. Further, the first pulse width modulation device (PWM1) and the second pulse width modulation device (PWM2) may be composed of a gold oxide half field effect crystal MSOFET. According to still another object of the present invention, a single inductor multiple output DC converter with charge pump control is provided, similar to the foregoing, but each of the output control modules of the plurality of output control modules may have two charge pumps. Or two or more, for the second charge pump, there is a corresponding third pulse width modulation device (PWM3) for controlling the other DC output terminal; similarly, a third charge pump can be added. There is a corresponding fourth pulse width modulation device (PWM4) for controlling the increased DC output. According to the present invention, a single-inductor multiple-output DC converter with charge pump control according to the present invention may have one or more of the following advantages: (1) The present invention has a single-inductance multiple-output DC converter with charge pump control. The charge pump of the output control module can increase the DC output by the charge storage device during the pulse width modulation of the forward conduction switch, thereby solving the conventional single inductor multiple output DC converter. During the conduction switch, the circuit does not perform voltage conversion, which wastes time and power. (2) The single-inductor multi-output DC converter of the present invention can increase the DC output by the charge storage device during the pulse width modulation of the forward-conducting switch by the charge pump of the output control module. The single-inductance DC converter that solves the prior art is in the pseudo-continuous conduction mode (PCCM). 099140461 Form No. A0101 Page 11 / Total 35 Page 0992070452-0 201223096 'Conversion of electric materials increases ^ number will be Recorded as (4), and the operating cycle becomes longer, the output voltage will be light and obvious. [Embodiment] [0027] [0027] Please refer to FIG. 4 for the charge of the invention. A schematic diagram of the circuit topology of the inductor-multiple-wheel-out converter. As shown in the figure, the single-electrode-heavy-output DC converter with electric material control of the present invention is composed of a single-inductance multi-wheel DC-output conversion circuit and a control circuit 3, and the voltage of the input DC terminal 2 is passed. The control circuit 3 is controlled by pulse width modulation and converted into voltages of the output DC terminals of the two groups, which are the voltage of the a-output DC terminal 151 (V〇i) and the voltage of the second output DC terminal 152 (v02), respectively. The voltage (%) of the first output DC terminal 151 and the voltage of the second output DC terminal 152 (V〇2); via this conversion, the voltage (vin) of the DC terminal 2 can be lowered-boosted or boosted-liter The voltage is converted into a voltage of the first output DC terminal 151 (V〇l) and a voltage of the second output DC terminal 152 (V〇2). The single inductor multi-output DC conversion circuit 1 includes a single inductor component 13, and a reference The voltage switching switch (Sn) 12 and the output control module 11 are configured to convert the voltage (v, N) of the input DC terminal 2 into the voltage of the first output DC terminal 151 of the DC-DC (dc-DC) (V〇 1) and the voltage of the second output DC terminal 152 (V〇2): (1) The single inductor element 13' is connected to the input DC terminal 2, consisting of a conduction switch (Sf) and an inductor (L), the conduction switch (Sf) and the inductor (L) are connected in parallel, and the phase of the signal sent by the receiving control circuit 3 must be f The turn-on switch (sf) is turned on and off, and is controlled by the turn-on switch (sf). 099140461 Form No. A0101 Page 12 / Total 35 Page 0992070452-0 201223096 The frequency at which the input DC terminal 2 is connected to the inductor (L) And to maintain the current flowing through the inductor (L) so that the current flowing through the inductor (L) = zero to a constant current range; the single inductor multi-output by the conduction switch (^) The DC conversion circuit i operates in a virtual continuous conduction mode (PCCM) and a discontinuous conduction mode (DCM), that is, when the output load current is a heavy load, the single inductance multi-output DC conversion circuit operates in a virtual continuous conduction mode ( PCCM); and at light load, the single-inductor multi-output DC conversion circuit 1 operates in discontinuous conduction mode (DCM). 〇_(2) Reference voltage switching switch (V12, connected in series to the single inductance element 13 and the reference voltage丨;; used to make the input DC terminal .2 voltage pair The inductor (L) is charged; for some applications, the reference voltage can be a ground voltage or a reference voltage of two ground voltages; the reference voltage switch (s) 12 is pulse width modulation (pulse_frequency width m〇dula_ tion, PWM mode of operation 'The signal of the phase 0 n of the signal sent via the control circuit 3 is the control on/off switch (^) on and off. [0029] (3) - the output control module 11 is connected to the edge single inductance element and The reference voltage switching switch (Sri) is configured to voltage-convert the DC voltage (VIN) of the input DC terminal 2; the output control module 11 further includes a first pulse width modulation device (PWM1) 141, a charge The pump 17 and the second pulse width modulation device (PWM2) 142 output the control module 11; wherein the output control module 11 is also in an operation mode in which the pulse width is modulated, and the signal of the phase 0f and 0丨 is sent via the control circuit 3 as The first pulse width modulation device (PWM1) 141 and the second pulse width modulation device (PWM2) 142 are separately controlled. [0030] The first pulse width modulation device (PWM1) 141 is composed of a first switch (S1) and a second switch (S2), and the signal phase 099140461 is sent via the control circuit 3. Form No. A0101 Page 13 / Total 35 pages 0992070452-0 201223096

一開關(S 2)開與關,以 &早電感元件13之電壓輸出至第—輸 命出直流端151以電容(:丨與負載電容 為V〇i ’以下第二輸出直流端152等A switch (S 2) is turned on and off, and the voltage of the early inductor element 13 is output to the first output terminal 151 with a capacitance (: 丨 and the load capacitance is V〇i ' below the second output DC terminal 152, etc.

存裝置(cx)可為單一電 電荷儲存裝置(cx)所組成,電荷儲 電容或多個電容所構成,係連接於 該第-脈衝寬度調變裝置⑽1)141、該第二輸出直流 端152與該第二脈衝寬度調變裝置(pwM2)142,當該電荷 儲存裝置(cx)放電時,用以對該第二輸出直流端152輪出 電壓(V〇2);更進一步,該電荷泵17可再包含一個二極體 ’係設置於該電荷儲麵置(v與該第二輪出直流端152 之間,用以防止電流逆衝。 [0032]該第二脈衝寬度調變裝置(pWM2)142,包含一第三開關 (Sg)與一第四開關(sp,經由該控制電路3發出訊號之相 位別控制該第三開關(&)與該第四開關(^) ;當該電感器(L)對該第一輸出直流端151放電時,同時 對該電荷泵17充電;當該導通開關(Sf)導通時,將該輸 入直流端2之電壓經由單電感元件13輸出至該第二輸出直 流端152之電壓(V〇2)。又,該第一脈衝寬度調變裝置 (PWM1)141與第二脈衝寬度調變裝置(pWM2)142,可由 金氧半場效電晶體MS0FET或其他半導體元件所構成,不 為所限。第4圖之電路圖,僅為本實施例之電路拓樸示 意圖’實際的電路構成不以圖示的電子元件之組合為限 099140461 表單編號AOiOi 第14頁/共35頁 0992070452-0 201223096 [0033] Ο [0034] ❹ 請參考第5圖,第5圖係為本實施例之脈衝寬度調變時間 區段與輸出電流關係之示意圖,控制電路3在一個週期時 間1\内發出0 、0 ,與0 f相位的訊號,控制參考電壓切 換開關12、第一脈衝寬度調變裝置(PWMl )141、第二脈 衝寬度調變裝置(PWM2) 142與單電感元件13所對應之開 關,將輸入直流端2之電壓(VIN)轉換為直流-直流 (DC-DC)的第一輸出直流端151之電壓(Vy)與第二輸出 直流端152之電壓(VQ2);在第5圖中,通過電感器(L) 的電流Ii/輸出電流),可維持較昔知技術更高的直流電 流L 。由本實施例,本具電荷泵控制之單電感多重輸出 dc 直流轉換器使用了順向導通電荷果控制技術(freewheel charge-pump control technique, FCPC),達到增 加輸出但不會拉長操作週期,解決了先前技術使用順向 導通開關時間與功率的浪費。 對於不同的應用,如同本實施例,輸出控制模組11除包 含第一脈衝寬度調#裝置(P1M1) 141與第二脈衝頻寬調 變裝置(PWM2)142之外,更包含二組或二組以上的電荷 泵17,對於第二個電荷泵17,設有對應的第三脈衝寬度 調變裝置(PWM3),用以控制第三個直流輸出端的輸出電 壓;同理,可再增設第三個電荷泵,設有對應的第四脈 衝寬度調變裝置(PWM4),用以控制第四個直流輸出端的 電壓;藉此可以更進一步節省了順向導通開關時間。 請參閱第6圖係為本發明之具電荷泵控制之單電感多重輸 出直流轉換器第二實施例之電路拓樸示意圖。如圖所示 ,與第一實施例相較,係於單電感多輸出直流轉換電路1 099140461 表單編號A0101 第15頁/共35頁 0992070452-0 [0035] 201223096 中,相同於第一輸出控制模組ιη增加一第二輪出控制模 且11 2由第一輸出控制模組111將輸入直流端2之電壓 (V〖N)轉換為直流-直流(DC-DC)的第一輸出直流端151之 電壓(V〇i)與第二輸出直流端152之電壓(v〇2)、由第二輸 出控制模組11 2將輸入直流端2之電壓(VIN)轉換為直流_ 直流(DC-DC)的第三輸出直流端U3之電壓(v )與第四 輸出直流端154之電壓(V )。 04 [0036] [0037] [0038] 本實施例中,具電荷泵控制之單電感多重輸出直流轉換 器,係包含一單電感多輸出直流轉換電路丨與—控制電路 3 亥早電感多輸出直流轉換.電路1係將一輪入直流端2之 電壓(VIN)經由該控制電路3發出0n、0丨、02、…與0 相位的訊號,以脈衝寬度調變控制,輸出以轉換為N個輸 出直流端之電壓(V〇i,V〇2,…V〇N),其中N為偶數且大於 等於4,在第6圖中僅繪示N=4之單電感多重輸出直流轉換 器電路拓樸圖。以下僅以N = 4為說明,但不以此為限。該 單電感多輸出直流轉換電路1包含: - -: ; · .'4... :. :' (〇單電感元件13,連峯於摔翁八直流端2,包含一導 通開關(Sf)與一電感器(l),該導通開關(Sf)與該電感器 (L)係以並聯連接;其作用如第一實施例所述,在此不再 贅述。 (2)參考電壓切換開關(Sj12,串聯連接於該單電感 元件13與參考電壓之間,用以使該輸入直流端2之電壓 (Vin)對該電感器(L)充電,對於某些運用上,參考電壓 可為接地電壓或高於接地電壓的參考電壓。 099140461 表單編號A0101 第16頁/共35頁 0992070452-0 201223096 [0039] Ο ❹ [0040] (3)複數個輸出控制模組通常可為Ν/2個,在本實施 例第6圖情示二個輪出控制模組,為第_輪出控制只模 組m與第二輪出控制模組112,複數個輸出控制模組分 別連接於4單電感;^件13與該參考㈣切換開關(S )12 ’其中每-個輸出控制模組用以將輪入直流端2之直n流電 壓(VIN)進行電壓轉換後輸出至二個輸出直流#,該第— 輸出直流端與該第二輸出直流端;該每_個輸出控制模 組進一步包含一第一脈衝寬度調變裝置(PWM1)、一電荷 泵與一第二脈衝寬度調變裝置(PWM2),如第6圖所示之 第一輸出控制模組U1控制第一輸出直流端151之輸出電 壓(v01)與第二輸出直流端152之輪出電壓(v );該每一 個輸出控制模組進一步包含二個脈衝寬度調變裝置(第一 脈衝寬度調變裝置(PWM1)與第二脈衝寬度調變裝置 (PWM2))與一電荷泵;如第6圖所示,第一輸出控制模 組ill包含第一脈衝寬度調變裝置(PWM1)141、第二脈衝 寬度調變裝置(PWM2)142與一第一電掎泵171,第二輸出 控制模組112也包含赛—脈衝寬度調變裝置(在此為便於 說明,第一脈衝寬度調變裝置則標示為第三脈衝寬度調 變裝置(PWM3)143)、第二脈衝寬度調變裝置(在此為便 於說明,第二脈衝寬度調變裝置則標示為第四脈衝寬度 調變裝置(PWM4)144)與一第三電荷泵173。 第一脈衝寬度調變装置(PWM1)141,包含一第一開關 (1)與一第二開關(S2),經由該控制電路3發出相位 的訊號控制該第一開關(sp與該第二開關(S2),將該輸 入直流端2之電壓(VIN)輸出至該第一輸出直流端151之輸 099140461 表單編號A0101 第17頁/共35頁 0992070452-0The storage device (cx) may be composed of a single electric charge storage device (cx), a charge storage capacitor or a plurality of capacitors connected to the first pulse width modulation device (10) 1) 141 and the second output DC terminal 152. And the second pulse width modulation device (pwM2) 142, when the charge storage device (cx) is discharged, for discharging the voltage (V〇2) to the second output DC terminal 152; further, the charge pump 17 may further include a diode' disposed between the charge storage surface (v and the second round DC terminal 152 for preventing current backlash. [0032] the second pulse width modulation device ( a pWM2) 142, comprising a third switch (Sg) and a fourth switch (sp), the third switch (&) and the fourth switch (^) are controlled by the phase of the signal sent by the control circuit 3; When the inductor (L) discharges the first output DC terminal 151, the charge pump 17 is simultaneously charged; when the conduction switch (Sf) is turned on, the voltage of the input DC terminal 2 is output to the DC inductor 13 The voltage of the second output DC terminal 152 (V〇2). In addition, the first pulse width modulation device (P The WM1) 141 and the second pulse width modulation device (pWM2) 142 may be formed by a metal oxide half field effect transistor MSOFET or other semiconductor components, and are not limited thereto. The circuit diagram of FIG. 4 is only the circuit extension of the embodiment.朴图' The actual circuit configuration is not limited to the combination of the illustrated electronic components. 099140461 Form No. AOiOi Page 14/35 pages 0992070452-0 201223096 [0033] Ο [0034] ❹ Refer to Figure 5, Figure 5 For the relationship between the pulse width modulation time section and the output current of the embodiment, the control circuit 3 sends a signal of 0, 0, and 0 f phase within a cycle time 1\, and controls the reference voltage switching switch 12, A pulse width modulation device (PWM1) 141, a second pulse width modulation device (PWM2) 142 and a switch corresponding to the single inductance element 13 convert the voltage (VIN) of the input DC terminal 2 into DC-DC (DC- The voltage (Vy) of the first output DC terminal 151 of DC) and the voltage (VQ2) of the second output DC terminal 152; in Figure 5, the current Ii/output current through the inductor (L) can be maintained. The higher DC current L is known from the technology. For example, the single-inductor multi-output dc-to-DC converter with charge pump control uses a freewheel charge-pump control technique (FCPC) to increase the output without lengthening the operation cycle. The prior art uses the pass-through switching time and power waste. For different applications, as in this embodiment, the output control module 11 includes a first pulse width modulation device (P1M1) 141 and a second pulse bandwidth modulation device. In addition to (PWM2) 142, two or more sets of charge pumps 17 are further included, and for the second charge pump 17, a corresponding third pulse width modulation means (PWM3) is provided for controlling the third direct current. The output voltage of the output terminal; similarly, a third charge pump can be added, and a corresponding fourth pulse width modulation device (PWM4) is provided for controlling the voltage of the fourth DC output terminal; thereby further saving Follow the switch time. Please refer to FIG. 6 for a circuit topology diagram of a second embodiment of a single-inductor multiple output DC converter with charge pump control according to the present invention. As shown in the figure, compared with the first embodiment, it is the same as the first output control mode in the single-inductor multi-output DC conversion circuit 1 099140461 Form No. A0101, page 15 / 35 pages 0992070452-0 [0035] 201223096 The group ιη adds a second round-out control mode and 11 2 converts the voltage of the input DC terminal 2 (V 〖N) into a DC-DC (DC-DC) first output DC terminal 151 by the first output control module 111. The voltage (V〇i) and the voltage of the second output DC terminal 152 (v〇2), the second output control module 11 2 converts the voltage (VIN) of the input DC terminal 2 into DC_DC (DC-DC) The voltage (v) of the third output DC terminal U3 and the voltage (V) of the fourth output DC terminal 154. [0038] [0038] In this embodiment, a single-inductor multiple-output DC converter with charge pump control includes a single-inductor multi-output DC conversion circuit and a control circuit 3 The circuit 1 converts the voltage (VIN) of one round of the DC terminal 2 through the control circuit 3 to send signals of 0n, 0丨, 02, ..., and 0 phase, and is controlled by pulse width modulation, and the output is converted into N outputs. The voltage at the DC terminal (V〇i, V〇2, ...V〇N), where N is an even number and greater than or equal to 4, and only the N=4 single-inductor multiple-output DC converter circuit topology is shown in FIG. Figure. The following is only a description of N = 4, but not limited to this. The single-inductor multi-output DC conversion circuit 1 comprises: - -: ; · .'4... :. :' (〇 single inductance element 13, connected to the peak of the DC terminal 2, including a conduction switch (Sf) And an inductor (1), the conduction switch (Sf) and the inductor (L) are connected in parallel; the function is as described in the first embodiment, and will not be described herein. (2) Reference voltage switching switch ( Sj12 is connected in series between the single inductor element 13 and a reference voltage for charging the inductor (L) by the voltage (Vin) of the input DC terminal 2. For some applications, the reference voltage may be a ground voltage. Or a reference voltage higher than the ground voltage. 099140461 Form No. A0101 Page 16 / Total 35 Page 0992070452-0 201223096 [0039] Ο ❹ [0040] (3) A plurality of output control modules can usually be Ν/2, in In the sixth embodiment of the present invention, two wheel-out control modules are shown, which are the first module m and the second wheel-out control module 112, and the plurality of output control modules are respectively connected to four single inductors; The device 13 and the reference (four) switch (S) 12' each of which is used to control the direct current of the DC terminal 2 Voltage (VIN) is voltage-converted and output to two output DCs, the first output DC terminal and the second output DC terminal; the each output control module further includes a first pulse width modulation device (PWM1) a charge pump and a second pulse width modulation device (PWM2), as shown in FIG. 6, the first output control module U1 controls the output voltage (v01) of the first output DC terminal 151 and the second output DC The output voltage of the terminal 152 (v); each of the output control modules further includes two pulse width modulation devices (a first pulse width modulation device (PWM1) and a second pulse width modulation device (PWM2)) a charge pump; as shown in FIG. 6, the first output control module ill includes a first pulse width modulation device (PWM1) 141, a second pulse width modulation device (PWM2) 142, and a first power pump 171. The second output control module 112 also includes a match-pulse width modulation device (the first pulse width modulation device is labeled as the third pulse width modulation device (PWM3) 143 for convenience of explanation) and the second pulse. Width modulation device (here for convenience, The second pulse width modulation device is labeled as a fourth pulse width modulation device (PWM4) 144) and a third charge pump 173. The first pulse width modulation device (PWM1) 141 includes a first switch (1) and a second switch (S2), the phase switch is controlled by the control circuit 3 to control the first switch (sp and the second switch (S2), and the voltage (VIN) of the input DC terminal 2 is output to the first output DC terminal 151 input 099140461 Form number A0101 Page 17 / Total 35 page 0992070452-0

201223096 出電壓(V201223096 Output voltage (V

OKOK

[0041] [0042] [0043] 該第一電荷泵171,包含一電荷儲存裝置((;χ),電荷儲存 裝置可為單一電容或多個電容所構成,係連接於第一脈 衝寬度調變裝置(PWM1)141、第二輸出直流端與該第二 脈衝寬度調變裝置(PWM2)142,當該電荷儲存裝置(c ) 放電時,用以對該第二輸出直流端152輸出電壓( 、 027, 更進一步,該第一電荷泵可再包含一個二極體,係設置 於該電荷儲存裝置(cx)與該第二輸出直流端152之間,用 以防止電流逆衝。 該第二脈衝寬度調變裝置(PWM2)i42,包含一第三開關 (S3)與一第四開關(sp ’經由該控制電路3發出相位必。 與的訊號控制該第三開關(S3)與該第四開關(54);當 s玄電感器(L )對該第一輸出直流端151放電時,同時對該 第一電荷泵171充電;當該導通開關(sf)12導通時,將該 輸入直流端2之電壓輸出至轉第二輪出直流端丨52。又, 該第一脈衝寬度調變裝置與第二脈衝寬度調 變裝置(PWM2)142,可由臺氧半脅效電晶體^^(^1'所構 成。 第二輸出控制模組112包含第三脈衝寬度調變裝置 (PWM3)143、第四脈衝寬度調變裝置(PWM4)144與一第 三電荷泵173。第三脈衝寬度調變裝置(PWM3)143,包含 一第五開關(S 5)與一第六開關(S δ),經由該控制電路3發 出相位φ 2的訊號控制該第五開關(s5)與該第六開關(s6) ,將該輸入直流端2之電壓(VIN)輸出至該第三輸出直流 端153之輸出電壓(VQ3)。 099140461 表單編號AOiOl 第18頁/共35頁 0992070452-0 201223096 [0044] [0045] Ο [0046][0043] The first charge pump 171 includes a charge storage device ((χ), the charge storage device may be a single capacitor or a plurality of capacitors, connected to the first pulse width modulation The device (PWM1) 141, the second output DC terminal and the second pulse width modulation device (PWM2) 142 are configured to output a voltage to the second output DC terminal 152 when the charge storage device (c) is discharged ( 027. Further, the first charge pump may further include a diode disposed between the charge storage device (cx) and the second output DC terminal 152 to prevent current backlash. The width modulation device (PWM2) i42 includes a third switch (S3) and a fourth switch (sp' is sent out via the control circuit 3. The signal is controlled to control the third switch (S3) and the fourth switch. (54); when the s-shaped inductor (L) discharges the first output DC terminal 151, simultaneously charging the first charge pump 171; when the conduction switch (sf) 12 is turned on, the input DC terminal 2 The voltage is output to the second round of the output DC terminal 丨 52. Again, the first pulse The degree modulation device and the second pulse width modulation device (PWM2) 142 may be composed of an oxygen partial half-effect transistor ^^'. The second output control module 112 includes a third pulse width modulation device ( PWM3) 143, fourth pulse width modulation device (PWM4) 144 and a third charge pump 173. The third pulse width modulation device (PWM3) 143 includes a fifth switch (S 5) and a sixth switch ( S δ), the signal outputting the phase φ 2 via the control circuit 3 controls the fifth switch (s5) and the sixth switch (s6), and outputs the voltage (VIN) of the input DC terminal 2 to the third output DC Output voltage of terminal 153 (VQ3) 099140461 Form number AOiOl Page 18 of 35 0992070452-0 201223096 [0044] [0046] [0046]

GG

[0047] 099140461 該第三電荷泵173 ’包含一電荷儲存裝置(〜),係連接於 第三脈衝寬度調變裝置(PWM3)143、第四輸出直流端與 該第四脈衝寬度調變裝置(PWM4)144,當該電荷儲存裝 置(Cy)放電時,用以對該第四輸出直流端】54輸出電壓 (V〇4)。 該第四脈衝寬度調變裝置(PWM4)144 ’包含一第七開關 (s?)與一第八開關(S8),經由該控制電路3發出相位必 與0f2的訊號控制該第七開關以了)與該第八開關(s ) ;2 當該電感器(L)對該第三輸出直流端ί53放電時,同時對 該第三電荷泵173充電;當該導通開關(5丨)12導通時將 该輸入直流端2之電壓輸出至該第四輸出直流端ι54。 (4) Ν/2個分壓器,在本實施例為2個分壓器,分別 為第一分壓器161及第三分壓器163,第一分壓器161用 以將第一輸出直流端151的輸出電壓(ν〇ι )分壓輸出電壓 後迴授至該控制電路3,第三分壓器163用以將第三輸出 直流端153的輸出電壓(V〇3)分壓輸出電壓後迴授至該控 制電路3 ;控制電路3可依第一輸出直流端151的輸出電壓 (V〇1)與第三輸出直流端153的輸出電壓(Vn<J)進行控制之 U u 計算。 請參考第7與8圖,第7圖係為本實施例之具電荷泵控制之 單電感多重輸出直流轉換器之開關控制信號及輸出電流 的相位圖、第8圖為脈衝寬度調變時間區段與輸出電流關 係之示意圖;第7圖中,於週期T中,在階段I,控制電 路3輸出訊號相位為4 n之高電位可將參考電壓切換開關 (S )導通;在階段Π,控制電路3輸出訊號相位為(^之 η η 表單編號Α0101 第19頁/共35頁 0992070452-0 201223096 低電位可將參考電壓切換開關(sn)不導通、輸出訊號相 位為0ι之高電位可將第一開關(sp、第二開關(s2)與第 四開關(S4)導通 [0048] [0049] 在阳^又111,控制電路3輸出訊號相位為' "η之高電 位,將單電感元件之順向導通開關(Sf)與第三開關(sp ‘通對於第一輸出控制模組11 2的控制,在週期中的 後半週期,在階段IV,控制電路3輸出訊號相位為^之 高電位可將參考電壓切換開關(sn)導通;在階段V,控制 電路3輸出訊號相位為$。之低電位可將參考電壓切換開 關(SJ不導通、輪出訊號相位為必2之高電位可將第五開 關(Ss)、第六開關(36)與第八開關(sp導通。接著在階 段VI,控制電路3輸出訊號相位為0 f之高電位將 順向導通開關(Sf)與第七開關(S?)導通;至此完成一個 週期的控制使輸入直流端2的電壓(Vin)輸出至第一輸出 直流端151、第二輸出直流端152、第三輸出直流端153 及第四輸出直流端154。請參誇案,在一個週期\中 ,通過電感器(L)的電流~(輪出電流),可維持較昔知技 術更高的直流電流I 。 dc 單電感多輸出直流轉換電路1之各開關的操作序列如第9 圖所不,於週期Ts中,在階段I,控制電路3輸出訊號相 位為0n之高電位可將參考電壓切換開關(Sj導通,此時 輸入直流端2對單電感元件13之電感器(L)充電。在階段 Ιί,控制電路3輸出訊號相位為0之低電位可將來考電 壓切換開關(sn)不導通、輸出訊號相位為0丨之高電位可 將第一開關(S丨)、第二開關(S )與第四開關(s )導通, 4 099140461 表單編號A0101 苐20頁/共35頁 0992070452-0 201223096 此時電感器⑴放電,產生升壓於第—輸出直流端i5i輸 出^m(vqi),亚且同時對電荷儲存裝置(y充電。在階 段III,控制電路3輪出訊號相位為^、、之高電位, 將單電感it件之順向導通開關(ν與第三開關(s )導通 ’此時因第三開關(S3)導通,而將電荷儲存裝置(3cx)的 下板電餘G(G為接地電壓,對於不同的應用則為參x考電 壓)變為V ,故上板電壓從v v οι升堡至VIN十,產生一升 壓輸出至第二輸出直流端152之電壓。在階段Ιν, 控制電路3輸出訊號相位為^之高電位可將參考電廢切[0047] 099140461 The third charge pump 173' includes a charge storage device (~) connected to the third pulse width modulation device (PWM3) 143, the fourth output DC terminal and the fourth pulse width modulation device ( PWM4) 144, when the charge storage device (Cy) is discharged, is used to output a voltage (V〇4) to the fourth output DC terminal. The fourth pulse width modulation device (PWM4) 144' includes a seventh switch (s?) and an eighth switch (S8). The control circuit 3 sends a signal with a phase of 0f2 to control the seventh switch. And the eighth switch (s); 2 when the inductor (L) discharges the third output DC terminal ί53, simultaneously charging the third charge pump 173; when the conduction switch (5丨) 12 is turned on The voltage of the input DC terminal 2 is output to the fourth output DC terminal ι54. (4) Ν/2 voltage dividers, in this embodiment, two voltage dividers, respectively a first voltage divider 161 and a third voltage divider 163, the first voltage divider 161 is used to output the first output The output voltage (ν〇ι) of the DC terminal 151 is divided and outputted to the control circuit 3, and the third voltage divider 163 is used to divide and output the output voltage (V〇3) of the third output DC terminal 153. The voltage is then fed back to the control circuit 3; the control circuit 3 can calculate the U u according to the output voltage (V〇1) of the first output DC terminal 151 and the output voltage (Vn<J) of the third output DC terminal 153. . Please refer to FIGS. 7 and 8. FIG. 7 is a phase diagram of the switching control signal and output current of the single-inductor multiple-output DC converter with charge pump control according to the embodiment, and FIG. 8 is a pulse width modulation time zone. Schematic diagram of the relationship between the segment and the output current; in Fig. 7, in the period T, in the phase I, the control circuit 3 outputs a high potential of the signal phase of 4 n to turn on the reference voltage switching switch (S); Circuit 3 output signal phase is (^ηηη Form number Α0101 Page 19/35 pages 0992070452-0 201223096 Low potential can turn the reference voltage switch (sn) non-conducting, output signal phase is 0 ̄ high potential can be A switch (sp, the second switch (s2) and the fourth switch (S4) are turned on [0048] [0049] In the positive and further 111, the control circuit 3 outputs a signal phase with a high potential of ' " η, a single inductor element The control switch (Sf) and the third switch (sp' control the first output control module 11 2, in the second half of the cycle, in the phase IV, the control circuit 3 outputs the signal phase to the high potential Reference voltage switch (sn) In phase V, the control circuit 3 outputs a signal phase of $. The low potential can switch the reference voltage (SJ is non-conducting, the phase of the signal is 2 must be high, and the fifth switch (Ss), sixth The switch (36) is turned on with the eighth switch (sp. Then, in phase VI, the control circuit 3 outputs a signal whose phase is 0 f, and the conduction switch (Sf) and the seventh switch (S?) are turned on; thus completing one The period control causes the voltage (Vin) of the input DC terminal 2 to be output to the first output DC terminal 151, the second output DC terminal 152, the third output DC terminal 153, and the fourth output DC terminal 154. Please refer to the case, in a In the cycle \, the current through the inductor (L) ~ (round current) can maintain a higher DC current I than the prior art. The operation sequence of each switch of the dc single-inductor multi-output DC conversion circuit 1 is ninth. In the period Ts, in the phase I, the control circuit 3 outputs a high potential of the signal phase of 0n to switch the reference voltage switch (Sj is turned on, at this time, the input DC terminal 2 is connected to the inductor of the single inductance element 13 (L) Charging. In stage Ιί, control circuit 3 loses The low phase of the signal phase is 0. The voltage switch (sn) is not turned on, and the output signal phase is 0 高. The first switch (S丨), the second switch (S) and the fourth switch (s) ) Conduction, 4 099140461 Form No. A0101 苐 20 pages / Total 35 pages 0992070452-0 201223096 At this time, the inductor (1) is discharged, generating a boost at the output-output DC terminal i5i output ^m(vqi), and at the same time for the charge storage device (y charging. In phase III, the control circuit 3 rotates the signal phase to a high potential, and the single-inductor is turned on (the ν and the third switch (s) are turned on' at this time because of the third switch (S3) is turned on, and the lower plate of the charge storage device (3cx) is G (G is the ground voltage, and for different applications, the voltage is V), so the upper plate voltage is from vv οι VIN ten produces a boost output to the voltage of the second output DC terminal 152. In the phase Ιν, the control circuit 3 outputs a signal phase with a high potential of ^, which can cut the reference power.

換開關(sn)導通’此時輸入直流端2對單電感元件13之電 感器(L)充電。在階段V,控制電路3輸出訊號相位為$ 〇 之低電位可將參考電壓切換„(、)不導通、輸出訊號η 相位為必2之高電位可將第五開關(^)、第六開關(^)與 第八開關(Ss)導通,將電感器(L)的能量放電到第三輸出 直流端153之電壓(v03)與電荷儲存裝董(cY)。接著在階 段VI,控制電路3輸出訊號相位為0(、0)2之高電位將 順向導通開關(sf)與第七開關(s7)導通,此時第七開關 (S7)導通而將電荷儲存裝置(CY)的下板電壓從〇(〇為接地 電壓,對於不同的應用則為參考電壓)升壓為,上板 電壓從V03升壓為VIN + V03 ’產生一升壓的第四輸出直流端 154之輸出電壓(V〇4)。重複上述六個階段,此單電感多 輸出直流轉換電路1可以產生四組輸出電壓。由此,由本 實施例’此單電感多重輸出直流轉換器使用了順向導通 電荷泵控制技術(freewheel charge-pump control technique,FCPC),在虛連續導通模式(PCCM)與不連 續導通模式(DCM)以複相位控制(time-multiplexing 099140461 表單編號A0101 第21頁/共35頁 0992070452-0 201223096 control)進行電壓換,呈 的父越穩壓與提 、載電流能力’且增加輸出數目並減少能量的 、奋解決了先前技術使用順向導通開關時間的浪費。 本貝知例中,若欲更增加輸出直流端之輸出,可在第 一輸出控制模組⑴設有二個或二個以上的電荷泵,如增 加第二電荷泵Π2 (未於圖上繪示),並設有對應的第五 脈衝寬度調變裝置(則5),用以控制第五輸出直流端(未 於圖上繪示);同理’可在第二輸出控制模組U2再增設 第四電荷果m(未於圖上繪示),並設有對應的第六脈衝 寬度凋臭裝置(PWM6),用以控制第六輸出直流端(未於圖 上緣示)。 [0050] [0051] 請參閱第1G®,第_係為本發明之具電荷㈣制之單 電感多重輸出直流轉換器第三實施例之電路拓樸示意圖 ,其架構及運作方式如同第二實施例,在此不再贅述。 但在單電感多輸出直流轉換電路1之分壓器如下所述: (4) N個分壓器,在本實施例為4_分壓器,分別為 第一分壓器161、第二分壓器162'第三分壓器163及第 四分壓器164;第一分壓器16丨用以將第一輸出直流端 151的輸出電壓(ν〇ι)分壓輸出電壓後迴授至該控制電路3 ,第二分壓器162用以將第二輸出直流端152的輸出電壓 (V〇2)分壓輸出電壓後迴授至該控制電路3 ;第三分壓器 163用以將第三輸出直流端丨53的輸出電壓(v〇3)分壓輸出 電壓後迴授至該控制電路3 ;第四分壓器164用以將第四 輸出直流端154的輸出電壓(V。)分壓輸出電壓後迴授至 04 該控制電路3 ;控制電路3可依第一輸出直流端151的輪出 099140461 表單編號A0101 第22頁/共35頁 099207045^-0 201223096 電壓(V^)、第二輸出直流端152的輸出電壓(V%)、第三 輸出直流端153的輸出電壓(V%)與第四輸出直流端154 的輸出電壓(Vn/t)進行控制之計算。 04 [0052] [0053] ΟThe switch (sn) is turned on. At this time, the input DC terminal 2 charges the inductor (L) of the single inductance element 13. In phase V, the control circuit 3 outputs a signal phase with a low potential of $ 可 to switch the reference voltage „(,) non-conducting, the output signal η phase is 2 high potential, the fifth switch (^), the sixth switch (^) is turned on with the eighth switch (Ss), discharging the energy of the inductor (L) to the voltage (v03) of the third output DC terminal 153 and the charge storage device (cY). Then in the phase VI, the control circuit 3 The high level of the output signal phase is 0 (, 0) 2, the forward switch (sf) and the seventh switch (s7) are turned on, and the seventh switch (S7) is turned on to turn off the lower plate of the charge storage device (CY). The voltage is boosted from 〇 (〇 is the ground voltage, which is the reference voltage for different applications), and the upper plate voltage is boosted from V03 to VIN + V03 ' produces a boosted output voltage of the fourth output DC terminal 154 (V 〇4). Repeating the above six stages, the single-inductor multi-output DC conversion circuit 1 can generate four sets of output voltages. Thus, the single-inductor multiple-output DC converter of the present embodiment uses the forward-pass charge pump control technique. (freewheel charge-pump control technique, FCPC), in virtual Continuous conduction mode (PCCM) and discontinuous conduction mode (DCM) are voltage-changed with complex phase control (time-multiplexing 099140461 Form No. A0101 Page 21/35 pages 0992070452-0 201223096 control). Lifting and carrying current capability' and increasing the number of outputs and reducing energy solve the waste of the prior art using the forward-switching switching time. In this example, if you want to increase the output of the output DC terminal, you can use the first output. The control module (1) is provided with two or more charge pumps, such as adding a second charge pump Π 2 (not shown), and is provided with a corresponding fifth pulse width modulation device (5). To control the fifth output DC terminal (not shown in the figure); the same reason can be added to the second output control module U2 to add a fourth charge fruit m (not shown in the figure), and has a corresponding A six-pulse width scenting device (PWM6) for controlling the sixth output DC terminal (not shown on the upper edge of the figure) [0050] [0051] Please refer to the 1G®, the _ is a charge (four) system of the present invention Single inductor multiple output DC converter of the third embodiment The schematic diagram of the road topology is similar to that of the second embodiment, and will not be described here. However, the voltage divider of the single-inductor multi-output DC conversion circuit 1 is as follows: (4) N voltage dividers, This embodiment is a 4_ voltage divider, which is a first voltage divider 161, a second voltage divider 162', a third voltage divider 163 and a fourth voltage divider 164; the first voltage divider 16 is used to The output voltage (ν〇ι) of the first output DC terminal 151 is divided and outputted to the control circuit 3, and the second voltage divider 162 is used to output the output voltage of the second output DC terminal 152 (V〇2). The voltage divider output voltage is fed back to the control circuit 3; the third voltage divider 163 is used to divide the output voltage (v〇3) of the third output DC terminal 丨53 and output the voltage to the control circuit 3; The fourth voltage divider 164 is used to output the output voltage of the fourth output DC terminal 154 (V. The voltage is output to the control circuit 3; the control circuit 3 can be rotated according to the first output DC terminal 151. 099140461 Form No. A0101 Page 22/35 pages 099207045^-0 201223096 Voltage (V^) The output voltage (V%) of the second output DC terminal 152, the output voltage (V%) of the third output DC terminal 153, and the output voltage (Vn/t) of the fourth output DC terminal 154 are controlled. 04 [0053] 005

以上所述僅為舉例性,而非為限制性者。任何未脫離本 發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 第1圖係為先前技術之單電感多重輸出電壓轉換電路示意 圖, 第2圖係為另一種先前技術之單電感多重輸出電壓轉換電 路示意圖; 第3圖係為第2圖之開關控制信號及輸出電流的相位圖; 第4圖係為本發明之具電荷泵控制之單電感多重輸出直流 轉換器第一實施例之電路拓樸示意圖; 第5圖係為本發明之具電荷泵控制之單電感多重輸出直流 轉換器第一實施例之脈衝寬度調變時間區段與輸出電流 關係之示意圖; 第6圖係為本發明之具電荷泵控制之單電感多重輸出直流 轉換器第二實施例之電路拓樸示意圖; 第7圖係為本發明之具電荷泵控制之單電感多重輸出直流 轉換器第二實施例之開關控制信號及輸出電流的相位圖 9 第8圖係為本發明之具電荷泵控制之單電感多重輸出直流 轉換器第二實施例之脈衝寬度調變時間區段與輸出電流 關係之示意圖; 099140461 表單編號A0101 第23頁/共35頁 0992070452-0 201223096 第9圖係為本發明之具電荷泵控制之單電感多重輸出直流 轉換器第二實施例之脈衝寬度調變各開關的相位以電路 說明的控制過程示意圖;以及 第10圖係為本發明之具電荷泵控制之單電感多重輸出直 流轉換器第三實施例之電路拓樸示意圖。 【主要元件符號說明】 [0054] 1 :單電感多輸出直流轉換電路; 2:輸入直流端; 3 :控制電路; 10 :昔知單電感多重輸出電壓轉換電路; 11 :輸出控制模組 111 :第一輸出控制模組; 112 :第二輸出控制模組; 12 :參考電壓切換開關; 13 :單電感元件; 141 :第一脈衝寬度調變裝置; 142 :第二脈衝寬度調變裝置; 143 :第三脈衝寬度調變裝置; 144 :第四脈衝寬度調變裝置: 1 51 :第一輸出直流端; 1 5 2 :第二輸出直流端; 1 5 3 :第三輸出直流端; 154 :第四輸出直流端; 161 :第一分壓器; 162 :第二分壓器; 099140461 163 :第三分壓器; 表單編號A0101 第24頁/共35頁 0992070452-0 201223096 164 :第四分壓器; 1 7 :電荷泵; 171 :第一電荷泵;以及 173 :第三電荷泵。 〇 099140461 表單編號A0101 第25頁/共35頁 0992070452-0The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a single inductor multiple output voltage conversion circuit of the prior art, and FIG. 2 is a schematic diagram of another prior art single inductor multiple output voltage conversion circuit; FIG. 3 is a second diagram The phase diagram of the switch control signal and the output current; FIG. 4 is a schematic diagram of the circuit of the first embodiment of the single-inductor multi-output DC converter with charge pump control of the present invention; FIG. 5 is a diagram of the present invention A schematic diagram of the relationship between the pulse width modulation time section and the output current of the single-inductance multiple-output DC converter of the charge pump control; FIG. 6 is a single-inductor multiple-output DC converter with charge pump control according to the present invention. The schematic diagram of the circuit topology of the second embodiment; FIG. 7 is a phase diagram of the switching control signal and the output current of the second embodiment of the single-inductor multiple-output DC converter with charge pump control of the present invention. FIG. 8 is a diagram Schematic diagram of the relationship between the pulse width modulation time section and the output current of the second embodiment of the single-inductor multiple output DC converter with charge pump control of the present invention Fig. 999140461 Form No. A0101 Page 23/35 Page 0992070452-0 201223096 Fig. 9 is a phase of the pulse width modulation switch of the second embodiment of the present invention with a charge pump controlled single inductor multiple output DC converter A schematic diagram of the control process illustrated by the circuit; and FIG. 10 is a schematic diagram of the circuit of the third embodiment of the single-inductor multi-output DC converter with charge pump control of the present invention. [Main component symbol description] [0054] 1: Single-inductor multi-output DC conversion circuit; 2: Input DC terminal; 3: Control circuit; 10: Single-inductor multiple-output voltage conversion circuit; 11: Output control module 111: a first output control module; 112: a second output control module; 12: a reference voltage switch; 13: a single inductor element; 141: a first pulse width modulation device; 142: a second pulse width modulation device; : third pulse width modulation device; 144: fourth pulse width modulation device: 1 51 : first output DC terminal; 1 5 2 : second output DC terminal; 1 5 3 : third output DC terminal; Fourth output DC terminal; 161: first voltage divider; 162: second voltage divider; 099140461 163: third voltage divider; form number A0101 page 24/total 35 page 0992070452-0 201223096 164: fourth point Pressure vessel; 1 7 : charge pump; 171: first charge pump; and 173: third charge pump. 〇 099140461 Form No. A0101 Page 25 of 35 0992070452-0

Claims (1)

201223096 七、申請專利範圍: 1 . 一種具電荷泵控制之單電感多重輸出直流轉換器,係包含 一單電感多輸出直流轉換電路與一控制電路,該單電感多 輸出直流轉換電路係將一輸入直流端之電壓經由該控制電 路以脈衝寬度調變控制,以轉換為一第一輸出直流端之電 壓與一第-二輸出直流端之電壓;其中該單電感多輸出直 流轉換電路包含: 一單電感元件,連接於該輸入直流端,包含一導通開關與 一電感器,該導通開關與該電感器係以並聯連接;該導通 開關用以控制該輸入直流端連接至該電感器的頻率,並用 以維持流經該電感β的電流,, 一參考電壓切換開關,串聯連接於該單電感元件與參考電 壓之間,用以使該輸入直流端之電壓對該電感器充電; 一輸出控制模組,連接於該單電感元件與該參考電壓切換 開關,用以將該輸入直流端之直流電壓進行電壓轉換後輸 出至該第一輸出直流端與該第二輸出直流端;該輸出控制 模組進一步包含一第一脈衝寬度調變袭置、一電荷泵與一 第二脈衝寬度調變裝置,其中: 該第一脈衝寬度調變裝置,包含一第一開關與一第二開關 ,經由該控制電路發出訊號之相位控制該第一開關與該第 二開關,將該輸入直流端之電壓輸出至該第一輸出直流端 該電荷泵,包含一電荷儲存裝置,係連接於該第一脈衝寬 度調變裝置、該第二輸出直流端與該第二脈衝寬度調變裝 置,當該電荷儲存裝置放電時,用以對該第二輸出直流端 099140461 表單編號Α0101 第26頁/共35頁 0992070452-0 201223096 輸出電壓; 該第二脈衝寬度調變裝置,包含一第三開關與一第四開關 ,經由該控制電路發出訊號之相位控制該第三開關與該第 四開關;當該電感器對該第一輸出直流端放電時,同時對 該電荷果充電,當該導通開關導通時*將該輸入直流端之 電壓輸出至該第二輸出直流端。 2 .如申請專利範圍第1項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該參考電壓切換開關,係串聯連接 於該單電感元件與接地之間。 3.如申請專利範圍第1項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該電荷泵進一步包含一二極體,係 設置於該電荷儲存裝置與該第二輸出直流端之間,用以防 止該第二輸出直流端之電流逆衝。 4 .如申請專利範圍第1項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該電荷泵為二個或二個以上,並設 有對應該等電荷泵的脈衝寬度調變裝置。 5 .如申請專利範圍第1項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該電荷泵之該電荷儲存裝置為電容 所構成。 6 .如申請專利範圍第1項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該第一脈衝寬度調變裝置與該第二 脈衝寬度調變裝置,係由一個或複數個金氧半場效電晶體 所構成。 7 . —種具電荷泵控制之單電感多重輸出直流轉換器,係包含 一單電感多輸出直流轉換電路與一控制電路,該單電感多 輸出直流轉換電路係將一輸入直流端之電壓經由該控制電 099140461 表單編號A0101 第27頁/共35頁 0992070452-0 201223096 路以脈衝寬度調變控制,以轉換為N個輸出直流端之電壓 ,其中N為偶數且大於等於4,其中該單電感多輸出直流轉 換電路包含: 一單電感元件,連接於該輸入直流端,包含一導通開關與 一電感器,該導通開關與該電感器係以並聯連接;該導通 開關用以控制該輪入直流端連接至該電感器的頻率,並用 以維持流經該電感器的電流; 一參考電壓切換開關,串聯連接於該單電感元件與參考電 壓之間,用以使該輸入直流端之電壓對該電感器充電; 複數個輸出控制模組,連接於該單電感元件與該參考電壓 切換開關,其中每一個輸出控制模組用以將該輸入直流端 之直流電壓進行電壓轉換後輸出至二個輸出直流端,該二 個輸出直流端為一第一輸出直流端與一第二輸出直流端; 該每一個輸出控制模組進一步包含一第一脈衝寬度調變裝 置、一電荷泵與一第二脈衝寬度調變裝置,其中: 該第一脈衝寬度調變裝置,包含一第一開關與一第二開關 ,經由該控制電路發出訊號之相位控制該第一開關與該第 二開關,將該輸入直流端之電壓輸出至該第一輸出直流端 該電荷泵,包含一電荷儲存裝置,係連接於該第一脈衝寬 度調變裝置、該第二輸出直流端與該第二脈衝寬度調變裝 置,當該電荷儲存裝置放電時,用以對該第二輸出直流端 輸出電壓; 該第二脈衝寬度調變裝置,包含一第三開關與一第四開關 ,經由該控制電路發出訊號之相位控制該第三開關與該第 四開關;當該電感器對該第一輸出直流端放電時,同時對 099140461 表單編號A0101 第28頁/共35頁 0992070452-0 201223096 該電荷果充電,當該導通開關導通時’將該輸入直流端之 電壓輸出至該第二輸出直流端。 8 .如申請專利範圍第7項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該參考電壓切換開關,係串聯連接 於該單電感元件與接地之間。 9 .如申請專利範圍第7項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該電荷泵進一步包含一二極體,係 設置於該電荷儲存裝置與對應的輸出直流端之間,用以防 止該輸出直流端之電流逆衝。 10 .如申請專利範圍第7項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該電荷泵為二個或二個以上,並設 有對應該等電荷泵的脈衝寬度調變裝置。 11 .如申請專利範圍第7項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該單電感多重輸出直流轉換器進一 步包含N/2個分壓器,該分壓器連接於對應的輸出直流端 ,用以將對應之輸出直流端分流輸出電壓後迴授至該控制 電路。 12 .如申請專利範圍第7項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該單電感多重輸出直流轉換器進一 步包含N個分壓器,該分壓器連接於每一個輸出直流端, 用以將對應之輸出直流端分流輸出電壓迴授至該控制電路 〇 13 .如申請專利範圍第7項所述之具電荷泵控制之單電感多重 輸出直流轉換器,其中該電荷泵之該電荷儲存裝置為電容 所構成。 14 .如申請專利範圍第7項所述之具電荷泵控制之單電感多重 099140461 表單編號A0101 第29頁/共35頁 0992070452-0 201223096 輸出直流轉換器,其中該第一脈衝寬度調變裝置與該第二 脈衝寬度調變裝置,係由一個或複數個金氧半場效電晶體 所構成。 099140461 表單編號ΑϋΙΟΙ 第30頁/共35頁 0992070452-0201223096 VII. Patent application scope: 1. A single-inductor multi-output DC converter with charge pump control, comprising a single-inductor multi-output DC conversion circuit and a control circuit, the single-inductance multi-output DC conversion circuit is an input The voltage of the DC terminal is controlled by pulse width modulation by the control circuit to be converted into a voltage of a first output DC terminal and a voltage of a first-to-second output DC terminal; wherein the single-inductance multi-output DC conversion circuit comprises: An inductive component, coupled to the input DC terminal, includes a turn-on switch and an inductor, the turn-on switch and the inductor are connected in parallel; the turn-on switch is configured to control a frequency at which the input DC terminal is connected to the inductor, and To maintain a current flowing through the inductor β, a reference voltage switching switch is connected in series between the single inductor component and the reference voltage for charging the inductor with the voltage of the input DC terminal; an output control module Connected to the single inductor component and the reference voltage switch to input the DC voltage of the input DC terminal The voltage conversion is output to the first output DC terminal and the second output DC terminal; the output control module further includes a first pulse width modulation attack, a charge pump and a second pulse width modulation device, wherein The first pulse width modulation device includes a first switch and a second switch, and the phase of the signal is sent through the control circuit to control the first switch and the second switch, and the voltage of the input DC terminal is output to the The first output DC terminal of the charge pump includes a charge storage device coupled to the first pulse width modulation device, the second output DC terminal and the second pulse width modulation device, when the charge storage device is discharged For outputting the second output DC terminal 099140461 form Α0101 page 26/35 page 0992070452-0 201223096; the second pulse width modulation device includes a third switch and a fourth switch The phase of the signal sent by the control circuit controls the third switch and the fourth switch; when the inductor discharges the first output DC terminal, simultaneously If charge charging when the switch is turned on is turned on * The DC output terminal of the input voltage to the second DC output terminal. 2. The single-inductor multi-output DC converter with charge pump control according to claim 1, wherein the reference voltage switching switch is connected in series between the single inductor element and ground. 3. The single-inductor multiple-output DC converter with charge pump control according to claim 1, wherein the charge pump further comprises a diode disposed on the charge storage device and the second output DC terminal. Between, to prevent the current backlash of the second output DC terminal. 4. The single-inductor multi-output DC converter with charge pump control according to claim 1, wherein the charge pump is two or more and has a pulse width modulation corresponding to the charge pump. Device. 5. The single-inductor multi-output DC converter with charge pump control according to claim 1, wherein the charge storage device of the charge pump is a capacitor. 6. The single-inductor multiple-output DC converter with charge pump control according to claim 1, wherein the first pulse width modulation device and the second pulse width modulation device are one or more The gold oxide half field effect transistor is composed. 7. A single-inductor multiple-output DC converter with charge pump control, comprising a single-inductor multi-output DC conversion circuit and a control circuit, wherein the single-inductor multi-output DC conversion circuit passes a voltage of an input DC terminal Control electric 099140461 Form No. A0101 Page 27 / Total 35 page 0992070452-0 201223096 The road is controlled by pulse width modulation to convert to the voltage of N output DC terminals, where N is even and greater than or equal to 4, where the single inductance is more The output DC conversion circuit comprises: a single inductance component connected to the input DC terminal, comprising a conduction switch and an inductor, the conduction switch and the inductor being connected in parallel; the conduction switch is used for controlling the DC input end of the wheel a frequency connected to the inductor and used to maintain a current flowing through the inductor; a reference voltage switching switch connected in series between the single inductor component and a reference voltage for causing the voltage of the input DC terminal to the inductor Charging; a plurality of output control modules connected to the single inductive component and the reference voltage switch, each of which The output control module is configured to perform voltage conversion on the DC voltage of the input DC terminal and output the output to the two output DC terminals, where the two output DC terminals are a first output DC terminal and a second output DC terminal; The output control module further includes a first pulse width modulation device, a charge pump and a second pulse width modulation device, wherein: the first pulse width modulation device comprises a first switch and a second switch, The first switch and the second switch are controlled by the phase of the signal sent by the control circuit, and the voltage of the input DC terminal is output to the first output DC terminal, and the charge pump includes a charge storage device connected to the first a pulse width modulation device, the second output DC terminal and the second pulse width modulation device, when the charge storage device is discharged, for outputting a voltage to the second output DC terminal; the second pulse width modulation device a third switch and a fourth switch, the phase of the signal is sent via the control circuit to control the third switch and the fourth switch; when the inductor pair When the first output DC terminal is discharged, the charge is charged to 099140461 Form No. A0101, page 28/35 pages 0992070452-0 201223096, and the voltage of the input DC terminal is output to the second output when the conduction switch is turned on. DC terminal. 8. The single-inductor multi-output DC converter with charge pump control according to claim 7, wherein the reference voltage switching switch is connected in series between the single inductor element and ground. 9. The single-inductor multiple-output DC converter with charge pump control according to claim 7, wherein the charge pump further comprises a diode disposed on the charge storage device and the corresponding output DC terminal. In order to prevent the current backlash of the output DC terminal. 10. The single-inductor multiple-output DC converter with charge pump control according to claim 7, wherein the charge pump is two or more and has a pulse width modulation corresponding to the charge pump. Device. 11. The single-inductor multiple-output DC converter with charge pump control according to claim 7, wherein the single-inductor multiple-output DC converter further comprises N/2 voltage dividers, the voltage divider being connected to The corresponding output DC terminal is used for shunting the output voltage of the corresponding output DC terminal and feeding it back to the control circuit. 12. The single-inductor multi-output DC converter with charge pump control according to claim 7, wherein the single-inductor multiple-output DC converter further comprises N voltage dividers, each of which is connected to each The output DC terminal is configured to return the corresponding output DC end shunt output voltage to the control circuit 〇13. The single-inductor multi-output DC converter with charge pump control according to claim 7 of the patent scope, wherein the electric charge The charge storage device of the pump is composed of a capacitor. 14. Single-inductor multiple 099140461 with charge pump control as described in claim 7 of the scope of the patent application. Form No. A0101 Page 29/35 pages 0992070452-0 201223096 Output DC converter, wherein the first pulse width modulation device The second pulse width modulation device is composed of one or a plurality of gold oxide half field effect transistors. 099140461 Form Number ΑϋΙΟΙ Page 30 of 35 0992070452-0
TW99140461A 2010-11-23 2010-11-23 Freewheel charge-pump controlled single-inductor multiple-output dc-dc converter TWI411210B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99140461A TWI411210B (en) 2010-11-23 2010-11-23 Freewheel charge-pump controlled single-inductor multiple-output dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99140461A TWI411210B (en) 2010-11-23 2010-11-23 Freewheel charge-pump controlled single-inductor multiple-output dc-dc converter

Publications (2)

Publication Number Publication Date
TW201223096A true TW201223096A (en) 2012-06-01
TWI411210B TWI411210B (en) 2013-10-01

Family

ID=46725406

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99140461A TWI411210B (en) 2010-11-23 2010-11-23 Freewheel charge-pump controlled single-inductor multiple-output dc-dc converter

Country Status (1)

Country Link
TW (1) TWI411210B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929066A (en) * 2014-04-30 2014-07-16 杨飏 Wide-range single-inductor multiple-output converter
EP4266565A1 (en) * 2022-04-22 2023-10-25 Nexperia B.V. Inductor-less power converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222352B1 (en) * 1999-05-06 2001-04-24 Fairchild Semiconductor Corporation Multiple voltage output buck converter with a single inductor
US7432614B2 (en) * 2003-01-17 2008-10-07 Hong Kong University Of Science And Technology Single-inductor multiple-output switching converters in PCCM with freewheel switching
JP2007509598A (en) * 2003-10-21 2007-04-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Voltage converter
TW200826451A (en) * 2006-12-13 2008-06-16 Tpo Displays Corp DC-DC converter circuit and plat panel display incorporating the same
US20100039080A1 (en) * 2008-08-12 2010-02-18 Toko, Inc. Single-inductor buck-boost converter with positive and negative outputs
TWI385908B (en) * 2009-03-13 2013-02-11 Richtek Technology Corp Single inductance multi - output power converter and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929066A (en) * 2014-04-30 2014-07-16 杨飏 Wide-range single-inductor multiple-output converter
EP4266565A1 (en) * 2022-04-22 2023-10-25 Nexperia B.V. Inductor-less power converter
NL2031660B1 (en) * 2022-04-22 2023-11-07 Nowi Energy B V Inductor-less power converter

Also Published As

Publication number Publication date
TWI411210B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
Shanthi et al. Non-isolated n-stage high step-up DC-DC converter for low voltage DC source integration
EP3537585B1 (en) Switched-capacitor converter with interleaved half bridges
Rajaei et al. A dual inductor high step-up DC/DC converter based on the Cockcroft–Walton multiplier
Qian et al. A switched-capacitor DC–DC converter with high voltage gain and reduced component rating and count
Rosas-Caro et al. A family of DC-DC multiplier converters
CN107517003B (en) Output-floating-input parallel high-gain Boost conversion circuit and switching method
US12003175B2 (en) Hybrid converter with reduced inductor loss
US20130039102A1 (en) Voltage boosting device and voltage boosting circuit
Torrico-Bascopé et al. A generalized high voltage gain boost converter based on three-state switching cell
CN103178711A (en) Buck-boost direct-current converting circuit
Porselvi et al. A novel single switch high gain dc-dc converter
CN109617407B (en) Boost type series-parallel full-resonance switch capacitor converter
Ahmed et al. Comprehensive analysis and design of a switched‐inductor type low inductance‐requirement DC‐DC buck‐boost converter for low power applications
Gupta et al. Novel hybrid high gain converter: Combination of cuk and buck-boost structures with switched inductor for dc microgrid
KR101412352B1 (en) Dc-dc convert
CN211296564U (en) Step-up DC-DC converter with continuous input and output currents
Axelrod et al. Cockroft-Walton voltage multiplier combined with switched-coupled-inductor boost converter
TW201223096A (en) Freewheel charge-pump controlled single-inductor multiple-output DC-DC converter
CN211296566U (en) Boost DC-DC converter
CN211791276U (en) Cascaded step-down DC-DC converter
CN203522541U (en) Improved H bridge buck-boost DC converter
Choudhury et al. Modelling of a high step up DC—DC converter based on Boost-flyback-switched capacitor
Kim et al. A novel negative-output high step-up ratio DC-DC converter based on switched-inductor cell
Spiazzi et al. Step-up dc-dc converters combining basic topologies with charge pump
Mathew et al. A Four Level Interleaved Boost Converter with a Voltage Multiplier for High Voltage Applications

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees