TW201222864A - Light-emitting diode chip and the manufacturing method thereof - Google Patents

Light-emitting diode chip and the manufacturing method thereof Download PDF

Info

Publication number
TW201222864A
TW201222864A TW99139469A TW99139469A TW201222864A TW 201222864 A TW201222864 A TW 201222864A TW 99139469 A TW99139469 A TW 99139469A TW 99139469 A TW99139469 A TW 99139469A TW 201222864 A TW201222864 A TW 201222864A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
substrate
fabricating
wafer
Prior art date
Application number
TW99139469A
Other languages
Chinese (zh)
Other versions
TWI435471B (en
Inventor
Chen Ou
Chun-Chang Chen
Win-Jim Su
Pei-Shan Fang
Wan-Jung Lee
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW99139469A priority Critical patent/TWI435471B/en
Publication of TW201222864A publication Critical patent/TW201222864A/en
Application granted granted Critical
Publication of TWI435471B publication Critical patent/TWI435471B/en

Links

Abstract

A manufacturing method of light-emitting diode chip is disclosed. The method includes steps of providing an LED wafer; forming a plurality of hiding scribing lines in the LED wafer by using Stealth Dicing laser; and providing a roller unit to press and grind on a working surface of the LED wafer, so as to separate the LED wafer into a plurality of LED chips along the plurality of the hiding scribing lines.

Description

201222864 六、發明說明: 【發明所屬之技術領域】 於4ΪΓ系種發光二極體之製程,更詳言之,係有關 尤一極體晶圓之分割技術。 【先前技術】 發光二極體是以晶圓(wafel>)形式進行Μ成長,遙晶成長6 畢以後則需進行切割製程以形成晶粒(chip)。 ' 。傳統發光二極體晶圓分割為晶粒之技術係先自發光二極體晶 圓-侧表面上形成兩組彼此互捕直之蝴線,接著於發光二極 體aa圓之$側表面以劈刀對準兩方向垂直線同時進行劈裂,使 得晶圓沿著切崎織 1而分軸複數晶粒。 又 述#刀在進行劈辦’必須精準地對準糊朗位置,狹 ^光二極體晶_呈半透明而不倾另—側對位,加上不^ 不=切割或是雷射切割所形成的切割線均十分窄小,因心: 的對準每-切割線。又,發光二極體晶圓尺寸 體曰圓4时,近年來又由4叶演進至6时,而當發光二極 日日尺寸越大時’劈刀更難以同時對準所有的切割線。 另-ΙϋΓ!1線軸於發光二極體晶®之—側,而劈刀由 損及於丁 w刀離之後各晶粒的側面往往呈嚴重傾斜,因而 、X —極體晶粒之發光面積。賴可藉 =晶::=?問題,然而如此-來會耗費許多= 發光二極體成切割線所構成的燒結面若觸及到 體曰曰粒之蟲曰曰層,會縣晶層造成嚴重的傷害而影響發 201222864 λ-L· 、方, 无效率。 【發明内容】 本發明提出一種發光二極體晶粒之製法,步驟包括:提供一 一極體aa圓,利用一隱藏切割(Stealth Dicing )雷射於發光二 極體晶圓中形成複數隱藏切齡;提供—滾壓單元,_滾壓單 兀於發光二極體晶圓之—作用面上進行滾壓,使發光三極體晶圓 ~著複數切#遞分離成複触j發光二極體晶粒。 本發明亦提出一種發光二極體晶粒,包括-上表面;下表面; 複數側面,其中各側面包括有—位於上表面及下表關的裂痕起 始區;自裂痕起始區延伸至上表面之―第―職;以及自裂痕起 始區延伸至下表面且藉㈣痕起始區與第—織區隔之—第二裂 痕。 【實施方式】 依本發明之發光二極體晶粒之製法之第一實施例,如圖!所 不’係先提供-發光二極體晶圓謂使其固定於一承載平台搬 上,其中發光二極體晶圓100包括一遠離承載平台2〇2之表面為 作用面100a。發光二極體晶圓1〇〇與承載平台2〇2間可選擇性 地具有一軟墊2〇1。 如圖2A所示’提供一隱藏切割(Stealth Didng)雷射單元如*, 藉由隱藏切割雷射單元2G4可於發光二極體晶圓觸中形成複數 隱藏切割線102。復參閱圖2B,沿第2A圖之A_A,斷面所示,所 201222864 述隱藏切割線102包括複數彼此平行之第一切割線1〇4以及垂直 於第一切割線104且彼此平行之複數第二切割線1〇6。 如圖3A及圖3B所示,提供一滾壓單元206,其具有滚輪部 206a以及壓桿部206b。滾輪部206a係供抵壓於發光二極體晶圓 1〇〇之作用面l〇〇a,壓桿部206b可對滾輪部2〇6a施壓且驅使滾 輪部206a移動’使得滾輪部206a可於發光二極體晶圓1〇〇之作 用面100a上滾動,且於滾動過程中產生壓力而使得發光二極體晶 籲圓100内部的隱藏切割線受力而往上下表面方向產生裂痕。如圖 3A所不’調整發光二極體晶圓励之方向,以令滾壓單元胤驅 動滾輪部2G6a_直於第-蝴線1G4之杨進行滾壓,如圖3B 所示’接著調整發光二極體晶K 100之方向,以令滾壓單元2〇6 驅動滾輪部206a以垂直於第二切割線1〇6之方向進行滾壓,使第 一切割線K)4及第二切割線106 _至發光二極體晶目觸之上 下表面,藉此使發光二極體晶圓刚分離成複數發光二極體晶粒。 #發光二極體晶圓100除了可利用上述兩次賴之方式分離成複數 發光二極體晶粒外,亦可藉由調整發光二極體晶圓漏之角度, 使滾壓單元206之滾輪部206a平行於第一切割線1〇4與第二切割 線鄕所構成的四方形之對角方向進行一次滾壓或來回反覆之滾 壓。發光二極體晶圓刚之作用面1〇〇a上可鋪設一金屬薄片2〇3 以增加滾壓單元206施壓於發光二極體晶圓卿時之力矩。此外, 於滾壓過程中亦可配合震動或超音波等機制讀進發光二極體晶 圓刚分離成發光二極體晶粒。發光二極體晶圓卿可包括一基 5 201222864 板101以及形成於基板101上之發光疊層103。基板1〇1可為藍寶 石(Sapphire)基板、石夕(Silicone)基板、碳化石夕(Sic)基板、 氮化鎵(GaN)基板、或神化鎵(GaAs)基板,而發光叠層1〇3 之材料係包含至少一種元素選自於由鋁(A1)、鎵(Ga)、銦(In)、氮 (N)、破(P)及砷(As)所構成之群組,例如為A1GaInp、AiN、GaN、 AlGaN、InGaN A AlInGaN等之半導體化合物。發光二極體晶圓 100可具有90_250#2之厚度,第一切割線1〇4及第二切割線1〇6 之所在位置係錄絲101巾,蝴麵端雜佳祕分別絲 板101之上下兩表面大致等距。依發光二極體晶圓1〇〇之不同厚 度,第-切割線104及第二切割線1〇6之兩端點亦可分別與發光 二極體晶圓100之上下兩表面相距約為20〜115μιη。 請參關4 ’藉由上述製程分離而成之發光二極體晶粒働 包括-上表面4G2、下表面4〇4以及複數側面。各側面可 包括-位於上表面402與下表面4〇4間的裂痕起始區彻、自裂痕 起始區410延伸至上表面4〇2之u痕412、以及自裂痕起始 區410延伸至下表面404之一第工裂痕仙其中裂痕起始區仙、 第-裂痕412及第二裂痕414中至少二者不平行。裂痕起始區彻 係由前述位於發光二極體晶圓中的隱藏蝴線所形成,而由於隱 藏切割線位於發光二極體晶圓中,因此#發光二極體日日日圓受壓後 所分離而成的發光二極體晶粒彻於側面_會形成裂痕起始區 410’以及被裂痕起始區410所區隔開之第一裂痕412及第二裂痕 414 ’可減少侧面406的傾斜度。 又 201222864 發光二極體晶粒400包括基板401以及發光疊層403,其中基 板401可為一藍寶石(Sapphire)基板、矽(Silicone)基板、碳化 石夕(SiC)基板、氮化鎵(GaN)基板、或珅化鎵(GaAs)基板, 而發光疊層403之材料係包含至少一種元素選自於由鋁(A1)、鎵 (Ga)、銦⑽、氮(N)、磷(P)及砷(As)所構成之群組,例如為 AlGalnP、AIN、GaN、AlGaN、InGaN 或 AlInGaN 等之半導體化 合物。發光二極體晶圓400之厚度大約為90〜250μιη。側面406可 φ 具有一基板401之區域及一發光疊層403之區域,裂痕起始區41〇 可位於側面406之基板401之區域中,其端點較佳地與上表面4〇2 及下表面404大致等距。 圖5Α及圖5Β係顯示本發明發光二極體晶粒之製法之第二實 施例。首先提供一承載平台202以承載一發光二極體晶圓5〇〇、一 隱藏切割(Stealth Dicing)雷射單元2〇4、及一滾壓單元2〇6,其 中承載平台202與發光二極體晶圓5〇〇間可選擇性地設有一軟墊 • 201。本實施例之發光二極體晶圓50〇中同一位置的垂直方向上可 藉由隱藏切割雷射單元2〇4形成有複數間隔排列之隱藏切割線, 如圖5A之第一切割線504及與圖5A視角垂直之圖58之第二切 u丨線506’可視發光二極體晶圓的厚度來決定所需之隱藏切割 線列數。滾壓單元206具有滾輪部2〇6a以及壓桿部2〇6b。滾輪部 2〇6a係供抵壓於發光二極體晶圓5〇〇之作用面驗,壓桿部如% 可對滾輪部2〇6a施壓且驅使滚輪部施移動,使得滾輪部2〇6a 可於發光二極體晶H 5GG之糊面篇上滚動,於滾動過程中 201222864 產生壓力祕得發光二極體細· ___麟受力而往 上下表面方向產生出裂痕。如圖5A所示,可調整發光二極體晶圓 5〇〇之方向’以令滾壓單元206 .驅動滾輪部2〇知卩垂直於第一切 割線504之方向進行滾壓’如圖3B所示,接著可調整發光二極體 晶圓500之方向’以令滾壓單元服驅動滾輪部遍卩垂直於第 二切割線506之方向進行滾壓’使第一切割線及第二切割線 5〇6延伸至縣二極體晶圓湖之上下表面,藉此使發光二極體晶 圓500为離成複數發光二極體晶粒。發光二極體晶圓漏除了可 利用上述兩次滚壓之方式分離成複數發光二極體晶粒外,亦可藉 由调整發光二極體晶圓500之角度’使滾壓單元2〇6之滾輪部2〇6& 平行於第切割線504與第二切割線506所構成的四方形之對角 方向進行一次滾壓或來回反覆之滾壓。發光二極體晶圓5〇〇之作 用面500a上可鋪設一金屬薄片203以增加滾壓單元206施壓於發 光一極體晶圓500時之力矩。此外,於滾壓過程中亦可配合震動 或超音波等機制以促進發光二極體晶圓500分離成發光二極體晶 粒。發光二極體晶圓500可包括一基板501以及形成於基板501 上之發光疊層503。基板501可為藍寶石(Sapphire)基板、矽 (Silicone)基板、碳化矽(SiC)基板、氮化鎵(GaN)基板、或 石申化鎵(GaAs)基板,而發光疊層503之材料係包含至少一種元 素選自於由鋁(A1)、鎵(Ga)、銦(In)、氮(N)、磷(P)及砷(As)所構成 之群組’例如為 AlGalnP、AIN、GaN、AlGaN、InGaN 或 AlInGaN 等之半導體化合物。發光二極體晶圓500之厚度大約為 201222864 90-250师’第-切割線5〇4及第二切割線5〇6之所在位置可位於 基板501 +。複數列之第一切割線5〇4或第二切割線娜其最靠 近上下表面之端點所串連形成之邊緣較佳地可分別與發光二極體 晶圓500之上下兩表面大致等距。具體而言,複數列之第一切割 線5〇4或第二切割線5〇6整體可具有约2〇〜5_之高度,而形成 於不同厚度之發光二極體晶圓中時,兩邊緣可與發光二極體 晶圓500之上下兩表面相距約為2〇〜115叫。 • 請參閱圖6,藉由上述製程分離而成之發光二極體晶粒6〇〇 包括·一上表面602、下表面604以及複數側面6〇6 ;各側面6〇6 包括一裂痕起始區610、自裂痕起始區61〇延伸至上表面6〇2之一 第裂痕612、以及自裂痕起始區610延伸至下表面604之一第二 裂痕614,其中裂痕起始區⑽、第一裂痕612及第二裂痕614中 至少二者不平行。每一裂痕起始區61〇係由前述位於發光二極體 晶圓中的複數間隔排列之隱藏切割線所形成而呈凹凸狀,而由於 # 隱藏切割線係位於發光二極體晶圓中,因此當發光二極體晶圓受 壓後所分離而成的發光二極體晶粒會產生位於側面6〇6上之 裂痕起始區610,以及被裂痕起始區61〇所區隔之第一裂痕612 及第二裂痕614 ’可減少側面6〇6的傾斜度。 發光二極體晶粒600可具有基板601以及發光疊層6〇3,其中 基板601可為一藍寶石(Sapphire)基板、矽(Silicone)基板、碳 化石夕(SiC)基板、氛化鎵(GaN)基板或坤化鎵(GaAs)基板, 而發光疊層603之材料係包含至少一種元素選自於由鋁(A1)、鎵 201222864 (Ga)、銦⑽、氮⑼、磷(P)及砷(As)所構成之群組,例如為201222864 VI. Description of the Invention: [Technical Fields of the Invention] The process of the four-layered light-emitting diode is, in more detail, related to the segmentation technology of the special-polar wafer. [Prior Art] The light-emitting diode is grown in the form of a wafer (wafel>), and after the crystal growth is completed, a cutting process is required to form a chip. ' . The technique of dividing a conventional light-emitting diode wafer into a crystal grain is to form two sets of mutually complementary straight lines on the side surface of the self-luminous diode wafer, and then on the side surface of the light-emitting diode aa circle. The knife is aligned with the vertical line in both directions while splitting, so that the wafer is divided into a plurality of grains along the cutting edge. It is also stated that the #刀 is in the process of doing the work must be precisely aligned with the position of the paste, the narrow photodiode crystal _ is translucent without tilting the other side - side alignment, plus no ^ no = cutting or laser cutting The cutting lines formed are very narrow and small, due to the alignment of the per-cut line. Moreover, when the size of the light-emitting diode wafer is 4, it has evolved from 4 to 6 in recent years, and when the size of the light-emitting diode is larger, it is more difficult for the file to be aligned with all the cutting lines at the same time. Another - ΙϋΓ! 1 spool is on the side of the LED body, and the flank of the dies is often severely inclined after being damaged by the knives. Therefore, the illuminating area of the X-pole dies . Lai can borrow = crystal::=? problem, however, it will cost a lot of = the luminescent surface formed by the illuminating diode into the cutting line, if it touches the worm layer of the body granule, the county layer will cause serious damage. The damage affects the issue 201222864 λ-L·, Fang, inefficiency. SUMMARY OF THE INVENTION The present invention provides a method for fabricating a light-emitting diode die. The method includes the steps of: providing a polar body aa circle, and forming a complex hidden cut in a light-emitting diode wafer by using a Stealth Dicing laser. Age-providing-rolling unit, _rolling single-rolling on the action surface of the LED wafer, so that the light-emitting diode wafer is separated into multiple layers Body grain. The invention also provides a light-emitting diode die comprising: an upper surface; a lower surface; a plurality of sides, wherein each side comprises: a crack initiation region located on the upper surface and the lower surface; extending from the crack initiation region to the upper surface The first position; and the second crack from the crack initiation zone to the lower surface and by the (four) mark initiation zone and the first weaving zone. [Embodiment] A first embodiment of a method for fabricating a light-emitting diode according to the present invention is shown in the figure! The light-emitting diode wafer 100 is fixed to a load-bearing platform, and the light-emitting diode wafer 100 includes a surface away from the load-bearing platform 2〇2 as an active surface 100a. The light-emitting diode wafer 1 〇〇 and the carrying platform 2 〇 2 may optionally have a cushion 2 〇 1 . As shown in FIG. 2A, a Stealth Didng laser unit such as * is provided, and a plurality of hidden cut lines 102 can be formed in the light-emitting diode wafer by hiding the cut laser unit 2G4. Referring to FIG. 2B, along AA of FIG. 2A, as shown in the cross section, the hidden cut line 102 of 201222864 includes a plurality of first cutting lines 1〇4 parallel to each other and a plurality of parallel lines perpendicular to the first cutting line 104 and parallel to each other. The second cutting line is 1〇6. As shown in Figs. 3A and 3B, a rolling unit 206 having a roller portion 206a and a pressing portion 206b is provided. The roller portion 206a is configured to be pressed against the action surface 10a of the light-emitting diode wafer 1b, and the presser portion 206b can press the roller portion 2A6a and drive the roller portion 206a to move so that the roller portion 206a can be The light is applied to the active surface 100a of the light-emitting diode wafer 1b, and a pressure is generated during the rolling process, so that the hidden cutting line inside the light-emitting diode wafer 100 is forced to generate a crack in the direction of the upper and lower surfaces. As shown in FIG. 3A, the direction of the LED excitation is adjusted so that the rolling unit 胤 drives the roller portion 2G6a_ to press the yang of the first butterfly line 1G4, as shown in FIG. 3B. The direction of the diode K 100 is such that the rolling unit 2〇6 drives the roller portion 206a to roll in a direction perpendicular to the second cutting line 1〇6, so that the first cutting line K)4 and the second cutting line 106 _ to the light-emitting diode crystal touches the upper and lower surfaces, whereby the light-emitting diode wafer is just separated into a plurality of light-emitting diode crystal grains. The light-emitting diode wafer 100 can be separated into a plurality of light-emitting diode crystals by using the above-mentioned two methods. The roller of the rolling unit 206 can also be adjusted by adjusting the angle of the light-emitting diode wafer leakage. The portion 206a is rolled or rolled back and forth in parallel with the diagonal direction of the square formed by the first cutting line 1〇4 and the second cutting line 。. A metal foil 2〇3 may be laid on the active surface 1〇〇a of the LED wafer to increase the moment when the rolling unit 206 is pressed against the LED wafer. In addition, during the rolling process, the light-emitting diode crystals can be separated into the light-emitting diode crystal grains by a mechanism such as vibration or ultrasonic. The light-emitting diode wafer may include a base 5 201222864 board 101 and a light-emitting stack 103 formed on the substrate 101. The substrate 1〇1 may be a sapphire substrate, a Silicone substrate, a Sic substrate, a gallium nitride (GaN) substrate, or a gallium arsenide (GaAs) substrate, and the light emitting laminate 1〇3 The material comprises at least one element selected from the group consisting of aluminum (A1), gallium (Ga), indium (In), nitrogen (N), broken (P), and arsenic (As), such as A1GaInp, A semiconductor compound of AiN, GaN, AlGaN, InGaN A AlInGaN or the like. The light-emitting diode wafer 100 may have a thickness of 90_250#2, and the position of the first cutting line 1〇4 and the second cutting line 1〇6 is recorded by the silk 101 towel, and the butterfly end is mixed with the silk plate 101. The upper and lower surfaces are approximately equidistant. The two ends of the first cutting line 104 and the second cutting line 1〇6 may also be spaced apart from the upper and lower surfaces of the LED wafer 100 by about 20 according to different thicknesses of the LED substrate. ~115μιη. Please refer to the light-emitting diode chip 分离 which is separated by the above process, including the upper surface 4G2, the lower surface 4〇4, and the plurality of sides. Each side surface may include a crack initiation region between the upper surface 402 and the lower surface 4〇4, a u mark 412 extending from the crack initiation region 410 to the upper surface 4〇2, and extending from the crack initiation region 410 to the lower portion. At least one of the surface cracks 404, at least two of the crack initiation zone, the first crack, and the second crack 414 are not parallel. The crack initiation region is formed by the aforementioned hidden butterfly line in the light-emitting diode wafer, and since the hidden cut line is located in the light-emitting diode wafer, the #光光体日日日圆压The separated light-emitting diode crystal grains are formed on the side surface _ which will form the crack initiation region 410' and the first crack 412 and the second crack 414' separated by the crack initiation region 410 to reduce the inclination of the side surface 406 degree. 201222864 The LED die 400 includes a substrate 401 and a light emitting laminate 403. The substrate 401 can be a sapphire substrate, a Silicone substrate, a carbon carbide (SiC) substrate, or gallium nitride (GaN). a substrate, or a gallium antimonide (GaAs) substrate, wherein the material of the light-emitting layer 403 comprises at least one element selected from the group consisting of aluminum (Al), gallium (Ga), indium (10), nitrogen (N), phosphorus (P), and A group composed of arsenic (As) is, for example, a semiconductor compound such as AlGalnP, AIN, GaN, AlGaN, InGaN, or AlInGaN. The thickness of the LED wafer 400 is approximately 90 to 250 μm. The side surface 406 can have a region of a substrate 401 and a region of a light-emitting layer 403. The crack initiation region 41 can be located in the region of the substrate 401 of the side surface 406, and the end point thereof is preferably the upper surface 4〇2 and the lower surface. Surface 404 is substantially equidistant. Fig. 5A and Fig. 5 show a second embodiment of the method for producing the light-emitting diode crystal grains of the present invention. Firstly, a carrying platform 202 is provided to carry a light-emitting diode wafer 5〇〇, a Stealth Dicing laser unit 2〇4, and a rolling unit 2〇6, wherein the carrying platform 202 and the light-emitting diode A padded pad 201 can optionally be provided between the body wafers. In the vertical direction of the same position in the light-emitting diode wafer 50 of the embodiment, the hidden cutting line can be formed by the hidden cutting laser unit 2〇4, such as the first cutting line 504 of FIG. 5A and The second cut line 506' of FIG. 58 perpendicular to the view of FIG. 5A can determine the number of hidden cut lines required for the thickness of the light emitting diode wafer. The rolling unit 206 has a roller portion 2〇6a and a pressing portion 2〇6b. The roller portion 2〇6a is pressed against the action surface of the light-emitting diode wafer 5〇〇, and the pressure bar portion can press the roller portion 2〇6a and drive the roller portion to move, so that the roller portion 2〇 6a can be rolled on the paste surface of the light-emitting diode crystal H 5GG. During the rolling process, 201222864 generates pressure and the light-emitting diode is fine. ___ Lin is forced to generate cracks in the direction of the upper and lower surfaces. As shown in FIG. 5A, the direction of the light-emitting diode wafer 5' can be adjusted to cause the rolling unit 206 to drive the roller portion 2 to roll in a direction perpendicular to the first cutting line 504. As shown, the direction of the light-emitting diode wafer 500 can be adjusted to cause the rolling unit to drive the roller portion to roll in a direction perpendicular to the second cutting line 506. The first cutting line and the second cutting line are formed. The 〇6 extends to the upper surface above the county diode wafer lake, thereby causing the luminescent diode wafer 500 to be separated into a plurality of luminescent diode dies. The light-emitting diode wafer can be separated into a plurality of light-emitting diode crystals by the above-mentioned two-rolling method, and the rolling unit 2〇6 can also be adjusted by adjusting the angle of the light-emitting diode wafer 500. The roller portion 2 〇 6 & is rolled in a direction perpendicular to the diagonal direction of the square formed by the first cutting line 504 and the second cutting line 506, or rolled back and forth. A metal foil 203 can be placed on the surface 500a of the LED wafer to increase the moment when the rolling unit 206 is pressed against the light-emitting one-pole wafer 500. In addition, a mechanism such as vibration or ultrasonic can be used in the rolling process to promote separation of the light-emitting diode wafer 500 into light-emitting diode crystal grains. The LED wafer 500 can include a substrate 501 and a light emitting stack 503 formed on the substrate 501. The substrate 501 may be a sapphire substrate, a Silicone substrate, a tantalum carbide (SiC) substrate, a gallium nitride (GaN) substrate, or a gallium arsenide (GaAs) substrate, and the material of the light emitting layer 503 includes At least one element is selected from the group consisting of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), phosphorus (P), and arsenic (As), such as AlGalnP, AIN, GaN, A semiconductor compound such as AlGaN, InGaN, or AlInGaN. The thickness of the LED wafer 500 is approximately 201222864. The position of the 90-250 division 'the first cutting line 5〇4 and the second cutting line 5〇6 can be located on the substrate 501+. The edges formed by the first cutting line 5〇4 or the second cutting line of the plurality of columns closest to the end points of the upper and lower surfaces are preferably substantially equidistant from the upper and lower surfaces of the LED wafer 500, respectively. . Specifically, the first cutting line 5〇4 or the second cutting line 5〇6 of the plurality of columns may have a height of about 2〇~5_ as a whole, and when formed in different thicknesses of the LED wafer, two The edge may be spaced apart from the upper and lower surfaces of the LED wafer 500 by about 2 〇 to 115 Å. • Referring to FIG. 6, the light-emitting diode die 6〇〇 separated by the above process includes an upper surface 602, a lower surface 604, and a plurality of sides 6〇6; each side surface 6〇6 includes a crack initiation. a region 610 extending from the crack initiation region 61〇 to a top crack 612 of the upper surface 6〇2 and a second crack 614 extending from the crack initiation region 610 to the lower surface 604, wherein the crack initiation region (10), first At least two of the crack 612 and the second crack 614 are not parallel. Each of the crack initiation regions 61 is formed in a concave-convex shape by the plurality of hidden cut lines arranged in the light-emitting diode wafer, and since the #hidden cut line is located in the light-emitting diode wafer, Therefore, the light-emitting diode crystal grains separated after the light-emitting diode wafer is pressed generate a crack initiation region 610 on the side surface 6〇6, and are separated by the crack initiation region 61〇. A crack 612 and a second crack 614' reduce the inclination of the side 6〇6. The light emitting diode die 600 may have a substrate 601 and a light emitting laminate 6〇3, wherein the substrate 601 may be a sapphire substrate, a Silicone substrate, a carbon carbide (SiC) substrate, or a gallium nitride (GaN). a substrate or a gallium arsenide (GaAs) substrate, and the material of the light-emitting layer 603 comprises at least one element selected from the group consisting of aluminum (A1), gallium 201222864 (Ga), indium (10), nitrogen (9), phosphorus (P), and arsenic. a group formed by (As), for example

AlGalnP、AIN、GaN、AlGaN、InGaN 或 AlInGaN 等之半導體化 合物。發光二極體晶粒600之厚度大約為90〜250μηι。側面6〇6可 具有一基板601之區域及一發光疊層603之區域,裂痕起始區61〇 可位於側面之基板601之區域中,其端點較佳地與上表面6〇2及 下表面604大致等距。 本發明所列舉之各實施例僅用以說明本發明,並非用以限制 本發明之範圍,何人對本發明所作之任何顯而易知之修挪或變 更皆不脫離本發明之精神與範圍。 【圖式簡單說明】 圖1至圖3B係顯示本發明發光m粒之製法之第一實施 例; 圖4係顯示本發明之發光二極體晶粒之第一實施例; 圖5A及圖5B係顯示本發明發光二極體晶粒之製法之第一會 施例;以及 圖6係顯示本發明之發光二極體晶粒之第二實施例。 【主要元件符號說明】 100、 500發光二極體晶圓 100a、500a作用面 101、 501 基板 102隱藏切割線 201222864 103、 503發光疊層 104、 504第一切割線 106、506第二切割線 200晶粒分離系統 201軟墊 202承載平台 203金屬薄片 204隱藏切割雷射單元 206滾壓單元 206a滾輪部 206b壓桿部 400、 600發光二極體晶粒 401、 601 基板 402、 602上表面 403、 603發光疊層 404、 604下表面 406、606 側面 410、610裂痕起始區 412、612第一裂痕 414、614第二裂痕 11A semiconductor compound of AlGalnP, AIN, GaN, AlGaN, InGaN or AlInGaN. The thickness of the light emitting diode die 600 is approximately 90 to 250 μm. The side surface 6〇6 may have a region of the substrate 601 and a region of the light-emitting layer 603. The crack initiation region 61〇 may be located in the region of the substrate 601 on the side, and the end point thereof is preferably the upper surface 6〇2 and the lower surface. Surface 604 is substantially equidistant. The present invention is intended to be illustrative of the invention, and is not intended to limit the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 3B are diagrams showing a first embodiment of a method for producing a light-emitting m grain of the present invention; FIG. 4 is a view showing a first embodiment of a light-emitting diode grain of the present invention; FIG. 5A and FIG. A first embodiment of the method for producing a light-emitting diode of the present invention; and FIG. 6 shows a second embodiment of the light-emitting diode of the present invention. [Main component symbol description] 100, 500 LED wafer 100a, 500a active surface 101, 501 substrate 102 hidden cutting line 201222864 103, 503 light emitting laminate 104, 504 first cutting line 106, 506 second cutting line 200 The die separation system 201 pad 202 carries the platform 203 metal foil 204 hidden cutting laser unit 206 rolling unit 206a roller portion 206b pressure bar portion 400, 600 light emitting diode die 401, 601 substrate 402, 602 upper surface 403, 603 light-emitting laminates 404, 604 lower surface 406, 606 sides 410, 610 crack initiation regions 412, 612 first cracks 414, 614 second cracks 11

Claims (1)

201222864 七、申請專利範圍: 1· 一種發光二極體晶粒之製法,其步驟包括: 提供一發光二極體晶圓’該發光二極體晶圓具有一作用面; 利用一隱藏切割(Stealth Dicing)雷射於該發光二極體晶圓中 形成複數隱藏切割線; • 提供一滾壓單元’利用該滾壓單元於該發光二極體晶圓之該作 用面上進行滾壓’使該發光二極體晶圓沿著該些複數切割線分 離成複數個發光二極體晶粒。 2. 如申請專利範圍第1項所述發光二極體晶粒之製法,其中該 發光二極體晶圓包括一基板、以及形成於該基板上之一發光蟲 層。 3. 如申請專利範圍第2項所述發光二極體晶粒之製法,其中該 些隱藏切割線係形成於該基板中。 4. 如申睛專利範圍第2項所述發光二極體晶粒之製法,其中該 發光二極體晶圓具有上下兩表面,各該些隱藏切割線之兩端點 係分別與該上下兩表面等距。 5. 如申請專利範圍第2項所述發光二極體晶粒之製法,其中該 基板係一藍寶石(Sapphire)基板、矽(silic〇ne)基板、碳化 12 201222864 石夕(SiC)基板、氮化鎵(GaN)基板或坤化鎵(GaAs)基板。 6.如申請專利範圍第2項所述發光二極體晶粒之製法,其中該 發光疊層之材料係包含至少一種元素選自於由鋁(A1)、鎵(Ga)、 銦(In)、氮(N)、磷(P)及石申(As)所構成之群組。 7·如申請專利範圍第1項所述發光二極體晶粒之製法,其中該 φ 些隱藏切割線係以一或多列形式排列。 8. 如申請專利範圍第1項或第7項所述發光二極體晶粒之製 法,其中該些複數隱藏切割線包括複數彼此平行之第一切割 線、以及與該些第一方向切割線垂直交錯之複數第二切割線。 9. 如申請專利範圍第8項所述發光二極體晶粒之製法,其中該 • 滾壓單元係分別以垂直於該第一方向切割線及該第二方向切割 線進行一次之滚壓。 10. 如申請專利範圍第8項所述發光二極體晶粒之製法,其中該 滾壓單元係以平行於該第一切割線與該第二切割線所構成的四 方形之對角方向進行至少一次之滾壓。 11·—種發光二極體晶粒,係包括: 13 201222864 一上表面; 一下表面;以及 複數側面; 其中各該些側面包括-裂痕起始區位於該上表面及下表面之 間、自該裂痕起始區延伸至該上表面之一第一裂痕、以及㈣ 裂痕起始區延伸至該下表面轉歸痕起純與該第—裂麵 隔之一第二祕,其中痕起始區、該第及該第I裂 痕中至少二者不平行。 、 12. 如申請專利細第u項所述之發光二極體晶粒,其中該發 光二極體晶粒之厚度介於90〜250μτι間。 13. 如申請專利範圍第u項所述之發光二極體晶粒,其中該裂 痕起始區之兩端點係分別與該上表面及該下表面大致等距。 14. 如申請專利範圍第u項所述之發光二極體晶粒,其中該發 光一極體晶粒包括一基板以及形成於該基板上之一發光叠;, 而各該些側面具有一基板之區域及一發光疊層之區域。 15·如申請專利範圍第14項所述之發光二極體晶粒,其中該裂 痕起始區係位於該基板之區域中。 201222864 16.如申請專利範圍第11項所述之發光二極體晶粒,其中該裂 痕起始區係呈凹凸狀。201222864 VII. Patent application scope: 1. A method for manufacturing a light-emitting diode die, the steps comprising: providing a light-emitting diode wafer having an active surface; utilizing a hidden cut (Stealth) Dicing) forming a plurality of hidden cut lines in the light-emitting diode wafer; • providing a rolling unit 'using the rolling unit to roll on the active surface of the light-emitting diode wafer' The light emitting diode wafer is separated into a plurality of light emitting diode crystal grains along the plurality of cutting lines. 2. The method of fabricating a light-emitting diode according to claim 1, wherein the light-emitting diode wafer comprises a substrate and a light-emitting layer formed on the substrate. 3. The method of fabricating a light-emitting diode according to claim 2, wherein the hidden cut lines are formed in the substrate. 4. The method for fabricating a light-emitting diode according to claim 2, wherein the light-emitting diode wafer has upper and lower surfaces, and the two ends of the hidden cut lines are respectively separated from the upper and lower sides. The surface is equidistant. 5. The method for fabricating a light-emitting diode according to claim 2, wherein the substrate is a sapphire substrate, a silicon germanium substrate, a carbonized 12 201222864 SiC substrate, and a nitrogen Gallium (GaN) substrate or gallium arsenide (GaAs) substrate. 6. The method of fabricating a light-emitting diode according to claim 2, wherein the material of the light-emitting layer comprises at least one element selected from the group consisting of aluminum (Al), gallium (Ga), and indium (In). , a group consisting of nitrogen (N), phosphorus (P), and Ashen (As). 7. The method of fabricating a light-emitting diode according to claim 1, wherein the hidden cut lines are arranged in one or more columns. 8. The method of fabricating a light-emitting diode according to claim 1 or 7, wherein the plurality of hidden cut lines comprise a plurality of first cut lines parallel to each other, and the first direction cut lines A plurality of second cutting lines that are vertically interlaced. 9. The method of fabricating a light-emitting diode according to claim 8, wherein the rolling unit is rolled once in a line perpendicular to the first direction cutting line and the second direction cutting line. 10. The method of fabricating a light-emitting diode according to claim 8, wherein the rolling unit is performed in a diagonal direction parallel to a square formed by the first cutting line and the second cutting line. Rolling at least once. 11·—Light-emitting diode crystal grains, including: 13 201222864 an upper surface; a lower surface; and a plurality of sides; wherein each of the sides includes a crack initiation region between the upper surface and the lower surface, a crack initiation region extending to one of the first surface of the upper surface, and (iv) a fracture initiation region extending to the lower surface of the origin and a second secret of the first fracture surface, wherein the trace initiation region, At least two of the first and the first fissures are not parallel. 12. The light-emitting diode die according to the above-mentioned patent application, wherein the thickness of the light-emitting diode die is between 90 and 250 μτι. 13. The luminescent diode die according to claim 5, wherein the two ends of the crack initiation region are substantially equidistant from the upper surface and the lower surface, respectively. 14. The light-emitting diode die according to claim 5, wherein the light-emitting diode die comprises a substrate and a light-emitting stack formed on the substrate; and each of the sides has a substrate The area and the area of a light-emitting laminate. The luminescent diode dies of claim 14, wherein the cleavage initiation region is located in a region of the substrate. The light-emitting diode crystal grain of claim 11, wherein the crack initiation region is concave-convex. 1515
TW99139469A 2010-11-16 2010-11-16 Light-emitting diode chip and the manufacturing method thereof TWI435471B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99139469A TWI435471B (en) 2010-11-16 2010-11-16 Light-emitting diode chip and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99139469A TWI435471B (en) 2010-11-16 2010-11-16 Light-emitting diode chip and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201222864A true TW201222864A (en) 2012-06-01
TWI435471B TWI435471B (en) 2014-04-21

Family

ID=46725346

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99139469A TWI435471B (en) 2010-11-16 2010-11-16 Light-emitting diode chip and the manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI435471B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811602A (en) * 2012-11-09 2014-05-21 上海蓝光科技有限公司 GaN-base LED chip making method
TWI583019B (en) * 2015-02-17 2017-05-11 新世紀光電股份有限公司 Light emitting diode and manufacturing method thereof
US9728672B2 (en) 2015-02-17 2017-08-08 Genesis Photonics Inc. Light emitting diode and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625854B2 (en) * 2015-10-06 2019-12-25 株式会社ディスコ Optical device wafer processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811602A (en) * 2012-11-09 2014-05-21 上海蓝光科技有限公司 GaN-base LED chip making method
TWI583019B (en) * 2015-02-17 2017-05-11 新世紀光電股份有限公司 Light emitting diode and manufacturing method thereof
US9728672B2 (en) 2015-02-17 2017-08-08 Genesis Photonics Inc. Light emitting diode and manufacturing method thereof
US10177272B2 (en) 2015-07-23 2019-01-08 Genesis Photonics Inc. Light-emitting diode and a method for manufacturing the same

Also Published As

Publication number Publication date
TWI435471B (en) 2014-04-21

Similar Documents

Publication Publication Date Title
TWI427827B (en) Manufacturing method of semiconductor light emitting element
TWI455345B (en) Light emitting diode having vertical topology and method of making the same
TWI564947B (en) Semiconductor component manufacturing method
TW200849670A (en) Process for producing compound semiconductor device and compound semiconductor device
KR101509834B1 (en) Semiconductor light emitting element and method for manufacturing the same
TWI327340B (en) Production method for semiconductor device
TWI644346B (en) Group III nitride compound substrate and its manufacturing method, and group III nitride semiconductor device manufacturing method
TWI442462B (en) Semiconductor light - emitting chip and substrate processing methods
JP2008527731A5 (en)
TW200945626A (en) Group-III nitride epitaxial layer on silicon substrate
KR101454821B1 (en) Crystalline film, device, and production methods for crystalline film and device
EP2544219A1 (en) Single crystal substrate with multilayer film, production method for single crystal substrate with multilayer film, and device production method
KR20070025975A (en) Nitride semiconductor device and method of manufacturing the same
TW201139022A (en) Laser processing method and laser processing apparatus
TW200618432A (en) Semiconductor device and semiconductor device manufacturing method
TW200524180A (en) Light-emitting semiconductor device, manufacturing method thereof, and electrode forming method
TW200945416A (en) Method of fabricating photoelectric device of III-nitride based semiconductor and structure thereof
TW201222864A (en) Light-emitting diode chip and the manufacturing method thereof
TW201133938A (en) Semiconductor light emitting device with curvature control layer
JP2910811B2 (en) Gallium nitride based compound semiconductor wafer cutting method
US20120319138A1 (en) Semiconductor light emitting device
JP2013247362A (en) Method for manufacturing thin film bonded substrate for semiconductor element
JP4594707B2 (en) Semiconductor chip manufacturing method
CN107230611A (en) Group III-nitride process for producing crystal and RAMO4Substrate
CN102593270B (en) LED die and manufacturing method thereof