TW201220518A - Method for fabricating solar cell - Google Patents

Method for fabricating solar cell Download PDF

Info

Publication number
TW201220518A
TW201220518A TW099139183A TW99139183A TW201220518A TW 201220518 A TW201220518 A TW 201220518A TW 099139183 A TW099139183 A TW 099139183A TW 99139183 A TW99139183 A TW 99139183A TW 201220518 A TW201220518 A TW 201220518A
Authority
TW
Taiwan
Prior art keywords
solar cell
substrate
layer
cell manufacturing
forming
Prior art date
Application number
TW099139183A
Other languages
Chinese (zh)
Other versions
TWI459575B (en
Inventor
teng-yu Wang
Ching-Hsi Lin
Chia-Liang Sun
Wei-Lun Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099139183A priority Critical patent/TWI459575B/en
Publication of TW201220518A publication Critical patent/TW201220518A/en
Application granted granted Critical
Publication of TWI459575B publication Critical patent/TWI459575B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method for fabricating a solar cell is provided. The method includes performing a nanoetching on a first surface of a crystalline silicon substrate to form a plurality of nanopores thereon. An impurity gettering process is performed on the first surface of the crystalline silicon substrate having the plurality of nanopores thereon while removing the plurality of nanopores. A texturing process is performed on the first surface of the crystalline silicon substrate after the gettering process and an emitter layer is formed under the first surface of the crystalline silicon substrate by thermal diffusion. An antireflection layer and a first electrode layer are successively formed on the emitter layer while a second electrode layer is formed on a second surface opposite to the first surface of the crystalline silicon.

Description

201220518 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種太陽能電池技術’特別是有關於 一種使用奈米钱刻(nanoetching )之太陽能電池製造方法。 【先前技術】 儘管目前太陽能僅佔全世界電力的一小部分,然而由 於有限的石化燃料以及石化燃料對於環境的負面影響,因 此驅使太陽能科技向上發展,並使太陽能電池快速成為可 行的化石化燃料替代品。 目前量產的太陽能電池主要可分為三類··以矽晶 (crystalline silicon, c-Si) 太陽能電池、聚光型太陽能電 池(Concentrator Photovoltaic )以及薄膜太陽能太陽能電 池(thin-film solar, TFS )。太陽能電池是目前的主流技術。 通常石夕晶太陽能電池以單晶(monocrystalline )或多晶 (multicrystalline )石夕晶圓製作且結構通常包括正面與背面 金屬電極所包夾的p-n接面。 為了提高太陽能電池的能量轉換效率,晶片内部的金 屬雜質含量必須低於一個標準值以下(例如,Ό.1 ppm/W)。 目前降低晶片内部的金屬雜質含量的方法一般多使雜質吸 雜(impurity gettering )方式來進行,而又以破吸雜 (phosphorus gettering)為最常用的一種吸雜方式。填吸雜 201220518 熱擴散而在梦晶表面形成高濃度的 移動至^ ’接者進仃適當的熱處理,使碎晶内的金屬雜質 移動至表面的磷吸雜層 最後,移除矽晶表面的磷吸雜 層而達到降低金屬雜質含量的目的。 ’、、:上述吸雜程序需要在高溫下進行且熱處理時間 增加猶”造成本。再者,上述㈣程序也不 二夕B日梦M材料’這是因為多晶梦晶圓在長晶過程中, 二質會在晶界處形成團狀物(ciu岭這些團狀物 進行高溫㈣程序之後,再次分解出金屬離子,進 而衫響太陽能電池的能量轉換效率。 卜對於11型太陽能電池而言,由於射極(emitter) :作做疋知用蝴擴散,其製程溫度高達 900°C以上,製 °^間也比p型太陽能電池巾採用磷擴散來的長,因此除 董· 4成本相較⑨之外,在進行高溫吸雜程序之後,相 會刀解更多的金屬離子而嚴重影響電池的能量轉換效 率〇 因此’有必要尋求一種新的太陽能電池製造方法’其 句維持或提升電池的能量轉換效率’同時降低製造成本。 【發明内容】 本發明一實施例提供一種太陽能電池製造方法,包 括k供一石夕晶(crystalline silicon,c-Si)基底,其具有一 201220518 第一表面及與第一表面相對的一第二表面;對梦晶基底的 第一表面進行一奈米钮刻,以在其上形成複數個奈米孔 洞;對具有奈米孔洞的矽晶基底的第一表面進行一雜質吸 雜處理’同時移除奈米孔洞;對吸雜後的矽晶基底的第一 表面進行一表面粗化(texturing)處理;藉由熱擴散在矽 晶基底的第一表面下方形成一射極層;在射極層上方形成 一抗反射層;以及在抗反射層上形成一第一電極層且在矽 晶基底的第二表面上形成一第二電極層。 本發明另一實施例提供一種太陽能電池製造方法,包 括:提供-石夕晶基底,其具有-第—表面及與第一表面相 對的-第二表面晶基底的第—表面進行—表面粗化 處理’以在其上形成複數個奈米孔洞;藉由熱擴散在石夕晶 基底的第一表面下方形成一射極層;在射極層上方形成一 抗反射層;以及在抗反射層上形成—第—電極層且在石夕晶 基底的第二表面上形成一第二電極層。 【實施方式】 以下說明本發明實施例之太陽能電池製造方法。然 而,可輕易了解本發明所提供的實施例伽於說明以特定 方法製作及使用本發明’並非用以侷限本發明的範圍。 第1A至1H11係繪示出根據本發明實施例之太陽能電 池製造方法剖面示意圖。請參照第_,提供一梦晶(e_si) 基底謂,例如—單晶石夕或多晶石夕基底/晶圓。在本實施例 中,石夕晶基底KK)可為含有_物的p㈣晶基底或n型 石夕晶基底。石夕晶緑ΗΚ^有—第一表面隱以及與第一 201220518 表面100a相對的一第二表面100b。此處,第一表面l〇〇a 為後續太陽能電池製造的一主動區(active area )。接著, 可利用氫氟酸(HF)或氫氯酸(HC1)對矽晶基底1〇〇進 行清洗。之後,將洗淨後的矽晶基底100的第一表面1〇〇a 浸泡於硝酸銀水溶液(未繪示)中,使銀粒子1〇1附著於 石夕晶基底1 〇〇的第—表面1 〇〇a上。在一實施例中,硝酸銀 水溶液包括由硝酸銀(AgN03 )、硝酸(HN〇3 )及水(H20 ) 所構成的混合液,且其體積比依序為1:160:10000。再者, • 硝酸銀水溶液的浸泡溫度及時間分別約為25°C及10分鐘。 請參照第1B圖,對第一表面l〇〇a附著銀粒子1〇1的 石夕晶基底1〇〇 (如第1A圖所示)進行奈米蝕刻 (nanoetching),以在矽晶基底1〇〇的第一表面100a上形 成複數個奈米孔洞l〇la。在一實施例中,可將矽晶基底1〇〇 浸泡於一酸性蝕刻溶液(未繪示)中以進行奈米蝕刻。舉 例來說’酸性蝕刻溶液包括硝酸、氫氟酸、氫氯酸、氟氨 • 酸(NHJ)或其組合與雙氧水(h2〇2)及水的混合物。在 — ^ 另一實施例中’可將矽晶基底100浸泡於一鹼性蝕刻溶液 (未繪示)中以進行奈米姓刻。舉例來說,驗性钱刻溶液 包括氫氧化鈉(NaOH)或氫氧化鉀(KOH)與水的混合物。 在本實施例中,利用由氫氟酸與雙氧水(Ηθ2)及水所構 成的酸性敍刻溶液進行奈米蝕刻,且體積比依序為 2:5:10。再者’酸性姓刻溶液的浸泡溫度及時間分別約為 25°C及10分鐘。之後,將矽晶基底ι〇〇洗淨後浸泡於硝酸 水溶液中,以移除銀粒子1〇1 (繪示於第i圖)。須注意 201220518 的是,矽晶基底100也可直接浸泡於酸性或鹼性蝕刻溶液 來進行奈米蝕刻’而無需額外浸泡於硝酸銀水溶液中。 請參照第1C至1D圖,在移除銀粒子1〇1之後,對具 有奈米孔洞101a的矽晶基底1〇〇的第一表面1〇〇a進行一 雜質吸雜處理,同時移除第一表面100a上的奈米孔洞 101a。舉例來說,對具有奈米孔洞101a的矽晶基底1〇〇的 第一表面100a進行磷擴散1〇2,製程溫度約為85〇t:並持 溫1小時,以在其中形成一磷擴散區1〇4 (或稱為吸雜區 或磷矽酸玻璃(phosphorous silicate glass,PSG)層),如 第ic圖所示。在本實施例中,由於奈米孔洞1〇la以及磷 擴散102所產生的雙重應力驅使下,位於矽晶基底1〇〇内 的雜質能快速向碟擴散區104内移動。相較於傳統的碟吸 雜而s ’有更多的雜質會被移入吸雜區内,進而降低石夕晶 基底100内的雜質。之後,可藉由濕蝕刻或乾蝕刻去除磷 擴散區104而同時移除磷擴散區ι〇4上的奈米孔洞1〇1&, 以形成大體上平坦的第一表面l〇〇c,如第1D圖所示。 請參照第1E圖,對吸雜後的矽晶基底ι〇〇的第一表面 100c進行一表面粗化(texturing)處理(或稱為織構蜮面/ 織質化),以降低矽晶基底100對於太陽光的反射。之後, 可利用氫氟酸或氫氣酸對矽晶基底100進行清洗。接著, 進行射極(emitter)層(即,p/n接面)的製做。舉例來說, 藉由熱擴散106在矽晶基底1〇〇的第一表面1〇〇(:下方形成 一射極層108。當矽晶基底1〇〇為P型時,可藉由三氣酸 难(P0C!3)進行熱擴散1〇6,而製程溫度約在8〇0°c至85〇£^ 201220518 的範圍。另外,杏 . 硼(册趣于教^夕曰^底100為n型時,可藉由三填化 的範圍。 ’’廣散106,而製程溫度約在9〇〇t至100(rc 請參照第]r 0 no,例如,氮仆圖’在射極層108上形成一抗反射層 基底於太^、氧切或氧魅,以進—步降低石夕晶 、八丨穷光的反射。 參第1H 11 ’可藉由習知微影及侧製程,對抗反 射層110進仃圖案化’以局部露出下方的射極層⑽,作 為,極接觸區。之後,可藉由網版印刷(贿enprinting) 广反射層11〇上形成與露出的射極層^ 接觸的第一電 極層112 ’且可同時在石夕晶基底1。。的第二表面1_上形 成第一電極層114。第一電極層H2及第二電極層114的 材,可包括IS或其他習用的電極材料。如此—來,可完成 本實施例之太陽能電池的製做,後續可依習知製程步 驟’進行燒結製程(sintering)及封裝製程。 .月 > 第3圖,其綠示出不同吸雜方式中吸雜時間 (mm)與少數載子(min〇rity咖#)壽命(⑻關係圖, f中圓點表示採用第1A至1D圖之吸雜方式,而方點表示 習知魏雜方式。由圖式可知,在相同的吸雜時間下, 相馨於習知吸雜方式,採用本實施例之㈣衫可具有較 載子可°p。換句話說’可有效降低5夕晶基底1〇0 ::雜貝。另-方面’由圖式可知’採用本實施例之吸雜 方式可縮短雜質吸雜處理的製程時間及/或降低雜質吸雜 處理的製程溫度而達到相同或優於於習知吸雜方式所達到 201220518 的吸雜效果,因此可降低熱製程所額外增加的製造成本, 並減緩多晶矽晶的晶界處所形成團狀物因高溫而再次分解 出金屬離子的情形。 第2A至2C圖係繪示出根據本發明另一實施例之太陽 能電池製造方法剖面示意圖,其中相同於第1A至1H圖的 部件係使用相同的標號並省略其說明。請參照第2A圖’ 提供一矽晶基底1〇〇,矽晶基底1〇〇具有一第一表面1〇〇a 以及與第一表面1〇〇a相對的一第二表面1〇〇b。對矽晶基 底100的第一表面100a進行一表面粗化處理(或稱為織構 絨面/織質化)^在本實施例中,表面粗化處理可相同或類 似於第1A至1B圖所示之奈米蝕刻步驟,以在矽晶基底1〇〇 的第一表面100a上形成複數個奈米孔洞1〇la。奈米孔洞 l〇la係用以降低矽晶基底100對於太陽光的反射。舉例來 說,如第1A圖所示之步驟,將洗淨後的矽晶基底1〇〇的 第一表面100a浸泡於硝酸銀水溶液中,使銀粒子1〇1附著 於石夕晶基底1GG的第—表面論上。接著,如第1β圖所 不之步驟’對第-表面1()〇a附著娘粒子1Q1的石夕晶基底 刚進行奈米姓刻’以形成奈米孔洞1〇la。之後,將銀粒 子101移除並對矽晶基底100進行清洗。 接著’進行射極層的製做。舉例來說,藉由熱擴散1〇6 在石夕晶基底100白勺第一表面100a下方形成一射極層1()8。 由於奈米孔洞1〇la增加了石夕晶基底1〇〇的第一表面 WOa的表面積,因此相較於沒有奈米孔洞1〇la的矽晶基底 的表面而言,在進行熱擴散丨〇6期間,可有較多磷離子或 10 201220518 棚離子進入矽晶基底100中。 請參照第2B圖,在射極層108上 以進一步降㈣晶基請對於太陽反射層"°, 請參照第2C圖,對抗反射層u 露出下方的射極層爾,作為電極接觸區。之後 網版印刷在抗反射層m上形成與露出的射極層⑽^ 的第一電極層112,且可同時在矽晶基底1〇〇的第二表面 100b上形成第一電極層1 μ ^如此一來,可完成本實施例201220518 VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell technology, and more particularly to a solar cell manufacturing method using nanoetching. [Prior Art] Although solar energy currently accounts for only a small part of the world's electricity, due to the negative impact of limited fossil fuels and fossil fuels on the environment, it drives solar technology upwards and makes solar cells a viable fossil fuel. substitute. Currently, mass-produced solar cells can be mainly classified into three types: crystalline silicon (c-Si) solar cells, concentrated solar cells (Concentrator Photovoltaic), and thin-film solar (TFS). . Solar cells are the current mainstream technology. Typically, Shihua solar cells are fabricated from monocrystalline or multicrystalline wafers and the structure typically includes p-n junctions sandwiched between front and back metal electrodes. In order to improve the energy conversion efficiency of the solar cell, the metal impurity content inside the wafer must be below a standard value (for example, Ό.1 ppm/W). At present, the method of reducing the content of metal impurities inside the wafer is generally carried out by means of impurity gettering, and phosphorus gettering is the most commonly used method of gettering. Filling in the heat of 201220518, the heat spreads and forms a high concentration on the surface of the dream crystal to move to the appropriate heat treatment, so that the metal impurities in the crushed crystal move to the surface of the phosphorus gettering layer, and finally remove the twinned surface. Phosphorus gettering layer to achieve the purpose of reducing the content of metal impurities. ',,: The above-mentioned gettering process needs to be carried out at a high temperature and the heat treatment time is increased. This is the case. In addition, the above (4) program is not a B-day dream M material. This is because the polycrystalline dream wafer is in the crystal growth process. In the middle, the two masses form a mass at the grain boundary (the cuclings are subjected to the high temperature (four) procedure, and then the metal ions are decomposed again, thereby absorbing the energy conversion efficiency of the solar cell. For the type 11 solar cell Because of the emitter (emitter): as a knowing with the butterfly diffusion, the process temperature is as high as 900 ° C or more, and the system is also longer than the p-type solar cell towel using phosphorus diffusion, so in addition to the Dong 4 cost phase Beyond 9, after the high-temperature gettering process, the phase will solve more metal ions and seriously affect the energy conversion efficiency of the battery. Therefore, it is necessary to find a new method for manufacturing solar cells. The energy conversion efficiency 'at the same time reduces the manufacturing cost. The first embodiment of the invention provides a solar cell manufacturing method, including k for a crystalline silicon, c- a Si substrate having a first surface of 201220518 and a second surface opposite to the first surface; and performing a nano button on the first surface of the crystal substrate to form a plurality of nanoholes thereon; The first surface of the twinned substrate having a nanopore is subjected to an impurity gettering process to simultaneously remove the nanopore; and a surface texturing process is performed on the first surface of the gettered twinned substrate; Thermal diffusion forms an emitter layer under the first surface of the twinned substrate; an anti-reflective layer is formed over the emitter layer; and a first electrode layer is formed on the anti-reflective layer and on the second surface of the twinned substrate Forming a second electrode layer. Another embodiment of the present invention provides a method for fabricating a solar cell, comprising: providing a lithography substrate having a -first surface and a second surface crystal substrate opposite to the first surface - surface-surface roughening treatment to form a plurality of nano-holes thereon; forming an emitter layer under the first surface of the base of the stellite substrate by thermal diffusion; forming an anti-reflective layer above the emitter layer ;as well as A first electrode layer is formed on the antireflection layer and a second electrode layer is formed on the second surface of the substrate. [Embodiment] Hereinafter, a solar cell manufacturing method according to an embodiment of the present invention will be described. The embodiments of the present invention are provided to illustrate the invention in a particular manner and are not intended to limit the scope of the invention. 1A to 1H11 are schematic cross-sectional views showing a method of fabricating a solar cell according to an embodiment of the present invention. Referring to paragraph _, a dream crystal (e_si) substrate is provided, for example, a single crystal or a polycrystalline substrate/wafer. In the present embodiment, the stellite substrate KK) may be a p(tetra) crystal containing an object. A base or n-type base crystal substrate. The first surface is hidden and a second surface 100b opposite the first 201220518 surface 100a. Here, the first surface 10a is an active area for subsequent solar cell fabrication. Next, the twinned substrate can be washed with hydrofluoric acid (HF) or hydrochloric acid (HC1). Thereafter, the first surface 1〇〇a of the washed twin substrate 100 is immersed in an aqueous solution of silver nitrate (not shown), and the silver particles 1〇1 are attached to the first surface 1 of the substrate. 〇〇a. In one embodiment, the aqueous silver nitrate solution comprises a mixture of silver nitrate (AgN03), nitric acid (HN〇3), and water (H20) in a volume ratio of 1:160:10000. Furthermore, • The soaking temperature and time of the silver nitrate aqueous solution are about 25 ° C and 10 minutes, respectively. Referring to FIG. 1B, the lithographic substrate 1 〇〇 (as shown in FIG. 1A) to which the first surface 10a is attached with the silver particles 1 〇 1 is subjected to nanoetching to form a twin crystal substrate 1 . A plurality of nanoholes l〇la are formed on the first surface 100a of the crucible. In one embodiment, the twinned substrate 1 can be immersed in an acidic etching solution (not shown) for nanoetching. For example, an acidic etching solution includes a mixture of nitric acid, hydrofluoric acid, hydrochloric acid, fluoroamine acid (NHJ) or a combination thereof with hydrogen peroxide (h2〇2) and water. In another embodiment, the twinned substrate 100 can be immersed in an alkaline etching solution (not shown) for nano-etching. For example, an illustrative solution includes a mixture of sodium hydroxide (NaOH) or potassium hydroxide (KOH) and water. In the present embodiment, nanoetching was carried out using an acidic etch solution consisting of hydrofluoric acid and hydrogen peroxide (??2) and water, and the volume ratio was 2:5:10. Furthermore, the soaking temperature and time of the acid solution were about 25 ° C and 10 minutes, respectively. Thereafter, the twinned substrate ι〇〇 was washed and immersed in an aqueous solution of nitric acid to remove silver particles 1〇1 (shown in Fig. i). It should be noted that in 201220518, the twin substrate 100 can also be directly immersed in an acidic or alkaline etching solution for nanoetching' without additional immersion in an aqueous solution of silver nitrate. Referring to FIGS. 1C to 1D, after removing the silver particles 1〇1, the first surface 1〇〇a of the twinned substrate 1〇〇 having the nanopore 101a is subjected to an impurity gettering treatment while removing the first A nanohole 101a on a surface 100a. For example, the first surface 100a of the twinned substrate 1A having the nanopore 101a is subjected to phosphorus diffusion 1〇2, the process temperature is about 85 〇t: and the temperature is maintained for 1 hour to form a phosphorus diffusion therein. Zone 1〇4 (or referred to as gettering zone or phosphorous silicate glass (PSG) layer) as shown in Figure ic. In the present embodiment, the impurities located in the twin substrate 1〇〇 are rapidly moved into the dish diffusion region 104 due to the double stress generated by the nanopore 1〇la and the phosphorus diffusion 102. Compared with the conventional dish doping, more impurities are moved into the gettering region, thereby reducing impurities in the lithospheric substrate 100. Thereafter, the phosphorus diffusion region 104 may be removed by wet etching or dry etching while removing the nanopore 1〇1 & on the phosphorus diffusion region ι 4 to form a substantially flat first surface 10c, such as Figure 1D shows. Referring to FIG. 1E, a surface texturing process (or texture kneading/texture) is performed on the first surface 100c of the gettered twinned substrate ι〇〇 to reduce the twinned substrate. 100 for the reflection of sunlight. Thereafter, the twinned substrate 100 can be cleaned using hydrofluoric acid or hydrogen acid. Next, an emitter layer (i.e., a p/n junction) is fabricated. For example, an emitter layer 108 is formed on the first surface 1 of the twinned substrate 1 by thermal diffusion 106. When the twinned substrate 1 is P-type, three gases can be used. Acid difficulty (P0C! 3) for thermal diffusion 1〇6, and the process temperature is in the range of 8〇0°c to 85〇£^ 201220518. In addition, apricot. Boron (book fun in teaching ^ 曰 曰 ^ bottom 100 In the case of n-type, it can be filled by three. ''Growth 106, and the process temperature is about 9〇〇t to 100 (rc, please refer to the second) r 0 no, for example, the nitrogen servant' in the emitter layer 108 forms an anti-reflection layer on the base of the ^ ^, oxygen cut or oxygen charm, in order to further reduce the reflection of Shi Xijing, gossip poor light. Reference 1H 11 ' can be by conventional lithography and side process, The anti-reflective layer 110 is patterned to partially expose the underlying emitter layer (10) as a pole contact region. Thereafter, the exposed emitter layer can be formed by screen printing on the wide reflective layer 11 ^ The first electrode layer 112' is in contact with the first electrode layer 114. The first electrode layer H2 and the second electrode layer 114 are formed on the second surface 1_. Including IS or other conventional electrode materials. Thus, the solar cell fabrication of the present embodiment can be completed, and the subsequent sintering process and packaging process can be performed according to the conventional process steps. .月> Figure 3 , the green color shows the gettering time (mm) and the minority carrier (min〇rity coffee #) life in different gettering modes ((8) relationship diagram, the dot in f indicates the use of the 1A to 1D map, and The square point indicates the conventional Wei miscellaneous method. It can be seen from the figure that under the same gettering time, the (4) shirt of the present embodiment can be compared with the carrier by the conventional gettering mode. In other words, the carrier can be more than the carrier. 'It can effectively reduce the 5 晶 crystal substrate 1 〇 0 :: miscellaneous shells. The other aspects - as shown in the figure, can be used to shorten the process time of impurity gettering treatment and / or reduce impurity gettering treatment. The process temperature is the same or better than the gettering effect of the conventional gettering mode of 201220518, thus reducing the additional manufacturing cost of the hot process and slowing the formation of agglomerates at the grain boundaries of the polycrystalline twins due to high temperatures. Decomposition of metal ions again 2A to 2C are cross-sectional views showing a method of manufacturing a solar cell according to another embodiment of the present invention, wherein components identical to those of FIGS. 1A to 1H are denoted by the same reference numerals and their description will be omitted. Please refer to FIG. 2A' Providing a twin crystal substrate 1 , the twin crystal substrate 1 has a first surface 1 〇〇 a and a second surface 1 〇〇 b opposite to the first surface 1 〇〇 a. The first surface 100a is subjected to a surface roughening treatment (or referred to as textured pile/texture). In this embodiment, the surface roughening treatment may be the same or similar to the nanoetching shown in FIGS. 1A to 1B. In the step, a plurality of nanoholes 1〇1a are formed on the first surface 100a of the twin substrate 1〇〇. The nano-holes l〇la are used to reduce the reflection of the twinned substrate 100 against sunlight. For example, as shown in FIG. 1A, the first surface 100a of the cleaned twin substrate 1 浸泡 is immersed in an aqueous solution of silver nitrate, and the silver particles 1〇1 are attached to the first layer of the SG substrate 1GG. - Surface theory. Next, as shown in the step 1β, the step of the first surface 1() 〇a adheres to the base of the mother particle 1Q1, and the nano quartz hole is immediately formed to form the nanopore 1〇la. Thereafter, the silver particles 101 are removed and the twinned substrate 100 is cleaned. Then, the fabrication of the emitter layer is performed. For example, an emitter layer 1 () 8 is formed under the first surface 100a of the lithography substrate 100 by thermal diffusion 1〇6. Since the nanopore 1〇la increases the surface area of the first surface WOa of the base of the lithium substrate, thermal diffusion is performed compared to the surface of the twinned substrate without the nanopores 1〇la. During the 6th period, more phosphorus ions or 10 201220518 shed ions may enter the twin substrate 100. Please refer to FIG. 2B, and further reduce the (four) crystal base on the emitter layer 108. For the solar reflective layer, please refer to FIG. 2C, and the antireflection layer u is exposed to the lower emitter layer as the electrode contact region. Then, the first electrode layer 112 of the exposed emitter layer (10) is formed on the anti-reflective layer m by screen printing, and the first electrode layer 1 μ ^ can be simultaneously formed on the second surface 100b of the twin substrate 1〇〇. In this way, the embodiment can be completed.

之太陽能電池200的製做,後續可依習知製程步驟,進行 燒結製程及封裝製程。The fabrication of the solar cell 200 can be followed by a conventional process step to perform a sintering process and a packaging process.

請參照第4圖,其繪示出不同射極層製做方式中熱擴 散溫度(°C)與片電阻(Ω/口)關係圖,其中圓點表示採 用第2A圖之射極層製做方式,而方點表示採用習知射極 層製做方式。由圖式可知,在相同的熱擴散溫度下,相較 於習知射極層製做方式,採用本實施例之吸雜方式可具有 較低的片電阻值。也就是說,相較於習知射極層製做方式, 採用本實施例之射極層製做方式可在較低的熱擴散溫度下 達到元件製做所要求的片電阻值。因此,採用本實施例之 射極層製做方式,除了可降低熱製程所額外增加的製造成 本,並且可減缓多晶矽晶的晶界處所形成團狀物因高溫而 再次分解出金屬離子的情形。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何所屬技術領域中具有通常知識者,在不 脫離本發明之精神和範圍内,當可作更動與潤飾,因此本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 201220518 【圖式簡單說明】 第1A至1H圖係繪示出根據本發明實施例之太陽能電 池製造方法剖面示意圖; 第2A至2C圖係繪示出根據本發明另一實施例之太陽 能電池製造方法剖面示意圖; 第3圖係繪示出吸雜時間與少數載子壽命之關係圖; 及 第4圖係繪示出熱擴散溫度與片電阻之關係圖。 【主要元件符號說明】 100〜砍晶基底, 100a、100c〜第一表面; 100b〜第二表面; 101 ~銀粒子; 101a〜奈米孔洞; 102〜磷擴散; 104〜磷擴散區; 106〜熱擴散; 108〜射極層; 110〜抗反射層; 112〜第一電極層; 114〜第二電極層; 200〜太陽能電池。 12Please refer to Fig. 4, which shows the relationship between the thermal diffusion temperature (°C) and the sheet resistance (Ω/port) in different emitter layer fabrication methods, where the dots indicate the use of the emitter layer of Figure 2A. The way, while the square point means the way of using the conventional emitter layer. As can be seen from the figure, at the same thermal diffusion temperature, the gettering mode of this embodiment can have a lower sheet resistance value than the conventional emitter layer manufacturing method. That is to say, compared with the conventional emitter layer fabrication method, the emitter layer fabrication method of the present embodiment can achieve the sheet resistance value required for component fabrication at a lower thermal diffusion temperature. Therefore, the emitter layer manufacturing method of the present embodiment can reduce the manufacturing cost additionally increased by the thermal process, and can slow down the formation of the metal ions by the high temperature of the agglomerates formed at the grain boundaries of the polycrystalline twins. . Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. 201220518 [Simplified Schematic Description] FIGS. 1A to 1H are schematic cross-sectional views showing a solar cell manufacturing method according to an embodiment of the present invention; FIGS. 2A to 2C are diagrams showing a solar cell manufacturing method according to another embodiment of the present invention; Schematic diagram of the cross section; Fig. 3 is a graph showing the relationship between the gettering time and the minority carrier lifetime; and Fig. 4 is a graph showing the relationship between the thermal diffusion temperature and the sheet resistance. [Main component symbol description] 100~ chopped crystal substrate, 100a, 100c~first surface; 100b~second surface; 101~silver particles; 101a~nano hole; 102~phosphorus diffusion; 104~phosphorus diffusion zone; 106~ Thermal diffusion; 108~emitter layer; 110~antireflection layer; 112~first electrode layer; 114~second electrode layer; 200~solar cell. 12

Claims (1)

201220518 七、申請專利範圍: 1. 一種太陽能電池製造方法,包括: 提供一矽晶基底,其具有一第一表面及與該第一表面 相對的一第二表面; 對該石夕晶基底的該第一表面進行一奈米钱刻,以在其 上形成複數個奈米孔洞; 對具有該等奈米孔洞的該矽晶基底的該第一表面進行 一雜質吸雜處理,同時移除該等奈米孔洞; Φ 對吸雜後的該石夕晶基底的該第一表面進行一表面粗化 處理; 藉由熱擴散在該矽晶基底的該第一表面下方形成一射 極層; 在該射極層上方形成一抗反射層;以及 在該抗反射層上形成一第一電極層且在該矽晶基底的 該第二表面上形成一第二電極層。 2. 如申請專利範圍第1項所述之太陽能電池製造方 • 法,其中該矽晶基底為單晶矽基底或多晶矽基底。 3. 如申請專利範圍第1項所述之太陽能電池製造方 法,其中以一酸性或驗性独刻溶液進行該奈米姓刻。 4. 如申請專利範圍第3項所述之太陽能電池製造方 法,其中該酸性蝕刻溶液包括硝酸、氫氟酸、氫氯酸、氟 氨酸或其組合與雙氧水及水的混合物。 5. 如申請專利範圍第3項所述之太陽能電池製造方 法,其中該鹼性蝕刻溶液包括氫氧化鈉或氫氧化鉀與水的 混合物。 13 201220518 、.如申請專利範圍第1項所述之太陽能電池製造方 、' 更匕括在進行該奈米敍刻之前,將該石夕晶基底浸泡於 硝酸銀水溶液中。 7.如申請專利範圍帛1項所述之太陽能電池製造方 法,其令該雜質吸雜處理步驟包括: 對該具有該等奈米孔洞的該石夕晶基底的該第一表面進 行碟擴散處理’以在其中形成一磷擴散區;以及 去除該磷擴散區,而同時移除該等奈米孔洞。 8·如申請專利範圍第】項所述之太陽能電池製造方 ^而^該射極層藉由以三氣酸璘或三漠㈣進行該熱擴 1了專利乾圍第1項所述之太陽能電池製造方 、、中該抗反射層包括氮化石夕、氧化石夕或氧化!呂。 10.如申π專利圍第丨項所述之太陽能電池梦造方 7 /、中藉由網版印觀形成該第-電極層及該第I電極 包括: 一表面及與該第一表面 11. 一種太陽能電池製造方法, 知供一石夕晶基底,其具有一第 相對的一第二表面; 對該矽晶基底的該第一表面進行一 在其上形成複數個奈米孔洞; 表面粗化處理、, 以 極層 藉由熱擴散在該矽晶基底的該第 —表面下方形成一射 在該射極層上方形成—抗反射層;以及 14 201220518 在該抗反射層上形成一第一電極層且在該石夕晶基底的 該第二表面上形成一第二電極層。 12. 如申請專利範圍第Π項所述之太陽能電池製造方 法,其中該石夕晶基底為单晶石夕基底或多晶珍基底。 13. 如申請專利範圍第11項所述之太陽能電池製造方 法,其中以一酸性或鹼性蝕刻溶液進行該表面粗化處理。 14. 如申請專利範圍第13項所述之太陽能電池製造方 法,其中該酸性蝕刻溶液包括以及由硝酸、氫氟酸、氫氯 φ 酸、氟氨酸或其組合與雙氧水及水的混合液。 15. 如申請專利範圍第13項所述之太陽能電池製造方 法,其中該鹼性蝕刻溶液包括氩氧化鈉或氫氧化鉀與水的 混合物。 16. 如申請專利範圍第11項所述之太陽能電池製造方 法,更包括在進行該表面粗化處理之前,將該矽晶基底浸 泡於硝酸銀水溶液中。 17. 如申請專利範圍第11項所述之太陽能電池製造方 • 法,其中該射極層藉由以三氯酸磷或三溴化硼進行該熱擴 散而形成。 18. 如申請專利範圍第11項所述之太陽能電池製造方 法,其中該抗反射層包括氮化矽、氧化矽或氧化鋁。 19. 如申請專利範圍第11項所述之太陽能電池製造方 法,其中藉由網版印刷法形成該第一電極層及該第二電極 層。 15201220518 VII. Patent application scope: 1. A method for manufacturing a solar cell, comprising: providing a twin crystal substrate having a first surface and a second surface opposite to the first surface; The first surface is subjected to a nanometer engraving to form a plurality of nanopores thereon; and the first surface of the twinned substrate having the nanopores is subjected to an impurity gettering treatment while removing the same Nano-hole; Φ performing a surface roughening treatment on the first surface of the getter base after the gettering; forming an emitter layer under the first surface of the twin substrate by thermal diffusion; Forming an anti-reflective layer over the emitter layer; and forming a first electrode layer on the anti-reflective layer and forming a second electrode layer on the second surface of the twin crystal substrate. 2. The solar cell manufacturing method according to claim 1, wherein the twin crystal substrate is a single crystal germanium substrate or a polycrystalline germanium substrate. 3. The solar cell manufacturing method according to claim 1, wherein the nano-inscription is performed with an acidic or test-only solution. 4. The solar cell manufacturing method of claim 3, wherein the acidic etching solution comprises a mixture of nitric acid, hydrofluoric acid, hydrochloric acid, fluoro acid or a combination thereof and hydrogen peroxide and water. 5. The solar cell manufacturing method of claim 3, wherein the alkaline etching solution comprises sodium hydroxide or a mixture of potassium hydroxide and water. 13 201220518. The solar cell manufacturer described in claim 1 is further immersed in a silver nitrate aqueous solution before the nano-synthesis is performed. 7. The solar cell manufacturing method according to claim 1, wherein the impurity gettering treatment step comprises: performing a dish diffusion treatment on the first surface of the lithospheric substrate having the nanoholes; 'To form a phosphorus diffusion region therein; and to remove the phosphorus diffusion region while simultaneously removing the nanopores. 8. The solar cell manufacturing method as described in the scope of the patent application section [^] The emitter layer is thermally expanded by the gasification of the gas, or by the third gas (four). The battery manufacturer, the anti-reflection layer includes nitrite, oxidized stone or oxidation! Lu. 10. The solar cell module of the present invention, wherein the first electrode layer and the first electrode are formed by screen printing, comprising: a surface and the first surface 11 A method for manufacturing a solar cell, comprising: a diametrical crystal substrate having a first opposing second surface; forming a plurality of nanopores on the first surface of the twinned substrate; surface roughening Processing, forming, by the thermal layer, under the first surface of the twin crystal substrate by thermal diffusion, forming an anti-reflection layer over the emitter layer; and 14 201220518 forming a first electrode on the anti-reflection layer And forming a second electrode layer on the second surface of the base. 12. The method of fabricating a solar cell according to the above aspect of the invention, wherein the substrate is a single crystal substrate or a polycrystalline substrate. 13. The solar cell manufacturing method according to claim 11, wherein the surface roughening treatment is performed with an acidic or alkaline etching solution. 14. The solar cell manufacturing method of claim 13, wherein the acidic etching solution comprises and a mixture of nitric acid, hydrofluoric acid, hydrochlorofluoric acid, fluorone or a combination thereof with hydrogen peroxide and water. 15. The solar cell manufacturing method of claim 13, wherein the alkaline etching solution comprises sodium argon oxide or a mixture of potassium hydroxide and water. 16. The solar cell manufacturing method of claim 11, further comprising soaking the twinned substrate in an aqueous solution of silver nitrate prior to performing the surface roughening treatment. 17. The solar cell manufacturing method according to claim 11, wherein the emitter layer is formed by performing the thermal diffusion with phosphorus trichloride or boron tribromide. 18. The solar cell manufacturing method of claim 11, wherein the antireflection layer comprises tantalum nitride, hafnium oxide or aluminum oxide. 19. The solar cell manufacturing method according to claim 11, wherein the first electrode layer and the second electrode layer are formed by a screen printing method. 15
TW099139183A 2010-11-15 2010-11-15 Method for fabricating solar cell TWI459575B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099139183A TWI459575B (en) 2010-11-15 2010-11-15 Method for fabricating solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099139183A TWI459575B (en) 2010-11-15 2010-11-15 Method for fabricating solar cell

Publications (2)

Publication Number Publication Date
TW201220518A true TW201220518A (en) 2012-05-16
TWI459575B TWI459575B (en) 2014-11-01

Family

ID=46553168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099139183A TWI459575B (en) 2010-11-15 2010-11-15 Method for fabricating solar cell

Country Status (1)

Country Link
TW (1) TWI459575B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935645A (en) * 2019-02-27 2019-06-25 镇江仁德新能源科技有限公司 A kind of efficient volume production preparation method of the black silicon wafer of dry method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4434455B2 (en) * 2000-08-30 2010-03-17 信越半導体株式会社 Method for manufacturing solar battery cell
JP4358527B2 (en) * 2003-01-31 2009-11-04 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4319006B2 (en) * 2003-10-23 2009-08-26 シャープ株式会社 Method for manufacturing solar battery cell
TWI414646B (en) * 2009-04-27 2013-11-11 Aurotek Corp Method for manufacturing silicon substrate with periodical structure for solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935645A (en) * 2019-02-27 2019-06-25 镇江仁德新能源科技有限公司 A kind of efficient volume production preparation method of the black silicon wafer of dry method

Also Published As

Publication number Publication date
TWI459575B (en) 2014-11-01

Similar Documents

Publication Publication Date Title
McCann et al. A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates
Chu et al. A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers
JP5940519B2 (en) Method for producing n + pp + type or p + nn + type structure on silicon wafer
US8377734B2 (en) Method for manufacturing solar battery cell
JP2004193350A (en) Solar battery cell and its manufacturing method
CN105489671A (en) N-type double-sided solar cell and preparation method thereof
CN105576083A (en) N-type double-side solar cell based on APCVD technology and preparation method thereof
JP2016532320A (en) Epitaxial silicon solar cell with moisture barrier
CN109545880A (en) A kind of monocrystalline silicon base class inverted pyramid suede structure back passivating solar battery and preparation method thereof
TWI401810B (en) Solar cell
JPWO2014174613A1 (en) Manufacturing method of solar cell
CN113948611A (en) P-type IBC battery, preparation method and assembly thereof, and photovoltaic system
JP6144778B2 (en) Manufacturing method of solar cell
Aurang et al. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
WO2012176839A1 (en) Method for manufacturing rear face electrode type solar battery
CN106796964B (en) The manufacturing method of solar battery and solar battery
JP2013225619A (en) Method of manufacturing wafer for solar battery, and method of manufacturing solar battery cell
US20170025561A1 (en) Manufacturing method of solar cell and solar cell
Duerinckx et al. Large‐area epitaxial silicon solar cells based on industrial screen‐printing processes
CN103367526B (en) A kind of manufacture method of rear side local contact silicon solar cell
CN112812776A (en) Corrosive liquid and preparation method and application thereof
JP2012256713A (en) Manufacturing method of solar cell
TW201220518A (en) Method for fabricating solar cell
CN111276569B (en) Battery manufacturing method for enhancing PERC back passivation effect
TW200818526A (en) Method for forming a solar cell