TW201219760A - Circuits, methods, sub-systems and systems including adaptive analog subtraction for light sensing - Google Patents
Circuits, methods, sub-systems and systems including adaptive analog subtraction for light sensing Download PDFInfo
- Publication number
- TW201219760A TW201219760A TW100129715A TW100129715A TW201219760A TW 201219760 A TW201219760 A TW 201219760A TW 100129715 A TW100129715 A TW 100129715A TW 100129715 A TW100129715 A TW 100129715A TW 201219760 A TW201219760 A TW 201219760A
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- digital
- subsystem
- version
- circuit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000003044 adaptive effect Effects 0.000 title abstract description 3
- 238000012937 correction Methods 0.000 claims abstract description 32
- 238000012360 testing method Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 2
- 230000003362 replicative effect Effects 0.000 claims 1
- 230000004044 response Effects 0.000 description 24
- 230000003595 spectral effect Effects 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 4
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 101710096660 Probable acetoacetate decarboxylase 2 Proteins 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 108091022873 acetoacetate decarboxylase Proteins 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06G—ANALOGUE COMPUTERS
- G06G7/00—Devices in which the computing operation is performed by varying electric or magnetic quantities
- G06G7/12—Arrangements for performing computing operations, e.g. operational amplifiers
- G06G7/14—Arrangements for performing computing operations, e.g. operational amplifiers for addition or subtraction
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/14—Detecting light within display terminals, e.g. using a single or a plurality of photosensors
- G09G2360/144—Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Amplifiers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
201219760 六、發明說明: 【發明所屬之技術領域】 本發明的實施例一般涉及包含適應性類比減法的用於 光感測的電路、方法、子系統和系統。這些實施例尤爲有 益於減少和較好地消除與用來執行類比減法的例如電流铲 的類比電路關聯的失配誤差。 & & 【先前技術】 光積測器可用作環境光感測器(ALS),例如用作顯示器 的節能光感測器、用於控制諸如行動電話和膝上電腦之: 的便攜設備中的背《'以及用於許多其他類型的亮度 測量和管理。作爲更具體的示例’可將環境光感測器用作 控制顯*器和/或小鍵盤背光的裝置,藉著偵測明亮和 的環境光狀況來降低顯示系統的總功耗並延長液晶顯^ UCD)的壽命。沒有環境光感測器的話,LCD顯示器; 先控制通常手動地完成,藉此t周圍環境變得更亮時 將增加LCD的強度。在使用環境錢測器的情況下, 可將LCD亮度調整至他們的偏好,並隨著周 調整顯示器亮度以使顯示器在同-可感知亮度位準上看起 來二二使得電池壽命延長、用戶眼睛疲勞減少、並使 寿》延長。同樣’在沒有環境光感測器的情 鍵盤背光的控制非常依賴於用戶和軟體。例如,可藉著觸 發器或計時器使小鍵盤背光打開H)秒,其中觸發器= 按下小鍵盤觸發。藉著使用環境光感測器 = 當周圍環境暗淡時被導通,這將導致更m201219760 VI. Description of the Invention: [Technical Field of the Invention] Embodiments of the present invention generally relate to circuits, methods, subsystems and systems for optical sensing that include adaptive analog subtraction. These embodiments are particularly advantageous for reducing and better eliminating mismatch errors associated with analog circuits such as current shovel used to perform analog subtraction. && [Prior Art] The illuminator can be used as an ambient light sensor (ALS), for example, as an energy-saving light sensor for displays, for controlling mobile devices such as mobile phones and laptops: The back of the '' and for many other types of brightness measurement and management. As a more specific example, an ambient light sensor can be used as a device for controlling the display and/or keypad backlight to reduce the total power consumption of the display system and extend the liquid crystal display by detecting bright and ambient light conditions. UCD) life expectancy. Without an ambient light sensor, the LCD display; the first control is usually done manually, whereby the ambient temperature becomes brighter and the LCD's intensity is increased. In the case of an environmental money detector, the brightness of the LCD can be adjusted to their preference, and the brightness of the display can be adjusted with the week to make the display look at the same-perceived brightness level, resulting in extended battery life, the user's eyes. Reduce fatigue and extend life. Similarly, in the absence of ambient light sensors, the control of the keyboard backlight is very dependent on the user and the software. For example, the keypad backlight can be turned on by a trigger or timer for H) seconds, where the trigger = press the keypad trigger. By using ambient light sensor = when the surrounding environment is dim, it will be turned on, which will result in more m
4 S 201219760 了實現更好的環境光感測,環境光感測器較好地 人眼響應的光譜響應,而且1 八有接近 r & /、有極佳的紅外雜訊抑制。 【發明内容】 利 在以下詳細描述中,參考了構成詳細描述的 在其中作爲解說示出若干且體 。刀並 丁八體霄細例的附圖。應當理解, 可採用其他實施例並且可作 J作出機械和電子方面的改變。 =不應以限定的意義來理解以下詳細說明。在下面的描 迷:,將使用相同的數字或附圖標記來貫穿全文地表示相 同部件或要素。另外,元件符幸 ^ 仵掎唬的第一個數字標識該附圖 標記首次出現的附圖。 圖1A不出裸光偵測器的示例性光譜響應(即沒有任何 光:響應成形)’該光譜響應具有大約3〇〇nm至大約11〇〇· 的範圍,其峰值響應大約在65〇nm。圖ib示出人眼的血型 光譜響應’該光譜響應具有大約彻一大約7〇〇nm :範 圍,其峰值響應大約在55〇nm。如從圖【A和1B所能看出 的那樣,將7F例性光债測器(pD)用作環境光感測器(als)的 問題在於,該示例性pD既偵測到可見光又偵測到從大約 開始的例如紅外光的不可見光。相反地,從圖ib可 以注意到,人眼不會偵測到高於大約7〇〇nm的光,並因此 不偵測到紅外光。因此,PD的響應與人眼的響應具有顯著 區別,尤其是當藉著産生大量紅外光的白熾燈產生光時。 如果PD被用作ALS以例如調整背光等,則它將提供顯著 低於最佳調整的調整。 將PD用作ALS的另一問題在於,即使沒有光入射到 201219760 PD上時’ PD也會產生相對小的電流。該電流——經常被稱 爲暗電流或漏電流--由於之後由大電場掃描的器件的空 乏區内的電子和電洞的隨機熱産生而引起。當存在非常低 亮度的光時’該漏電流或暗電流也會不利地影響PE)輸出。 圖2示出可用來嘗試産生具有與圖所示的典型人眼 光谱響應類似的光譜響應的電流的示例電路2〇〇 ^參見圖 2,第一光偵測器(PD1)和第二光偵測器(PD2)圖示爲接收散 射的環境光,假定它是包括環境可見光和環境紅外光兩者 的環境光。PD 1被配置(例如藉著用紅光濾光器覆蓋它)以産 生指示環境紅外光的第一電流1卜因此,η也可表達爲Iir, 其中Iir是指示環境紅外光的電流。PD2被配置(例如藉著用 綠光渡光器覆蓋它)以產生指示環境可見光和環境紅外光兩 者的第二電流12。因此,12也可表示爲ivis + ,其中Ivis 是指示環境可見光的電流,而Iir是指示環境紅外光的電 流。在附圖中,每個光偵測器PD 1、PD2 —般圖示和描述爲 單個PD。然而,每個PD實際上可實現爲一 PD陣列。換句 話說,PD 1可包括一個或多個光偵測器,而PD2可包括一 個或多個另外的光偵測器》 電流鏡202複製電流11以在減法節點(Nsub)從電流12 減去11的複製版本,以產生主要指示環境可見光的電流 13。較好地,電流鏡202的增益爲1 (即等於丨),因此電流 鏡2 0 2精確地複製電流Π。然而,由於電流鏡中電晶體的 失配(例如由於製造差異引起的電晶體Μ1和M2的失配), 電流鏡202的增益爲1 +△,這使得由電流鏡202產生的複 201219760 製電流爲II *(1 + △) >其中△(也稱爲“Delta”)是電流鏡 202的失配誤差。換句話說,,13 = 12 — π*(1+ /\) = (Ivis + Iir) - Iir*(l + Δ ) = Ivis + Iir - Iir + Iir* Δ = Ivis + Iir* △。由於希望使13 := lvis,因此希望使△ = 〇。 類比電流13或由類比至數位轉換器(ADC)212産生的其 數位版本可用來調整系統或子系統的參數或功能。例如, 類比電流13或其數位版本可用來調整顯示器的亮度。然 而,如可從前面的說明中理解的那樣,失配誤差△不利地 影響到電流13的精度,並因此不利地影響到這些調整的功 效和有用性》 嘗試去除失配誤差△的一種方法是使用包括斬波電路 的電流鏡’如將要參照《 3描述的那樣。參見圖3a中的電 路300 ’其中示出包含斬波電路3Q4的電流鏡斯。接收具 有斬波頻率(fCH0P)的斬波(CH〇p)信號的斬波電路3〇4將電 流失配△調製至斬波頻率,並使電流鏡的增益爲△,如 可從圖3B和圖3C理解的那樣。更具體地,圖3b是電流 II的頻率内容的示圖’而圖3C是由電流鏡3〇2產生的複製 電流的頻率内容的示圖。了面參照圖5A和圖5B 闡述的電流13的頻率内容也類似於圖3C。 … '1 q吗六不ίβ作爲在 值+…之間交替的方波的CH0P信號。儘管如下所述地 可使用其他斬波信號’然、而除非另有聲明,否則爲簡單起 見,假定使用圖3D所示的CH〇p信號。 .電流鏡加複製電流Π,以在減法節點㈣從電流12 7 201219760 減去π的複製版本以産生主要指示環境可見光的電流13。 如前面提到的,由於斬波電路304,由電流鏡3〇2産生的複 製電流爲Ι”(1±Δ)’其中△(也稱爲“Delta”)是電流鏡3〇2 的失配誤差。由電流鏡302産生的複製電流的另一種表達 方式是Ι1+Π*Δ*(-1)λΝ,其中...w 。在減法 節點(Nsub)從電流12減去該複製電流,以産生電流i3 = 12 - Il*(l +/- A) = Ivis-fIir - Iir+/- Πγ*Δ = Ivis + /- Iir* △。電流13的另一表達方式是I3 = I2 _ + △ *(_1)ΛΝ) ’ 其中 N=〇,l,2,3 …〇〇。由於 I2 = ivis + Iir 且 ^ = Iir,因此 13 可表達成 I3 = (Ivis + Iir) _ + △ ό'ν) =1仏+ 1^^*(_1)作,其中心〇,1,2,3..,。假設在+ 1和 -1之間交替的兩相CHOP信號,在這些等式中,Ν在CH〇p 信號的每個週期遞增兩次,N在兩相CH〇p信號的每個相位 遞增一次。 再次參見圖3A’電流13圖示爲被提供給ADC 212,採 用該ADC 212將類比電流信號13轉化成數位信號。然而, 由於電流鏡3 02的不理想失配誤差△,ADC 2丨2的動態範 圍減小’藉此減小包含電路3〇〇的光學子系統的靈敏度。 圖3E是藉著從由一個或多個光偵測器(PD2)産生的第 二電流12中減去由圖3 A中的電流鏡産.生的第一電流的複 製版本從而產生的圖3A中的第三信號13的示例性時序 圖。換句話說’圖3示出電流ivis ± Iir* △的示例,該電 流也可表不爲Ivis + Iir* △ ♦(•◦λν。圖3E的時序圖示出電 流鏡302的失配誤差△如何限制了 adC 212的動態範圍,4 S 201219760 For better ambient light sensing, the ambient light sensor has better spectral response of the human eye response, and the 1-8 has close to r & /, with excellent infrared noise suppression. BRIEF DESCRIPTION OF THE DRAWINGS In the following detailed description, reference to the claims The figure of the knife and the fine example. It should be understood that other embodiments may be utilized and that mechanical and electronic changes may be made. The following detailed description should not be construed in a limiting sense. In the following description, the same reference numerals will be used throughout the drawings. In addition, the first digit of the component symbolizes the first occurrence of the drawing. Figure 1A shows an exemplary spectral response of a bare photodetector (i.e., without any light: response shaping). The spectral response has a range of about 3 〇〇 nm to about 11 〇〇·, and its peak response is about 65 〇 nm. . Figure ib shows the blood type spectral response of the human eye. The spectral response has an approximate range of about 7 〇〇 nm: a peak response of about 55 〇 nm. As can be seen from the figures [A and 1B, the problem of using the 7F exemplary optical debt detector (pD) as an ambient light sensor (ALS) is that the exemplary pD detects both visible light and Detect. Invisible light such as infrared light from about the beginning is detected. Conversely, it can be noted from Figure ib that the human eye does not detect light above about 7 〇〇 nm and therefore does not detect infrared light. Therefore, the response of the PD is significantly different from the response of the human eye, especially when light is generated by an incandescent lamp that generates a large amount of infrared light. If the PD is used as an ALS to, for example, adjust the backlight, etc., it will provide an adjustment that is significantly lower than the optimal adjustment. Another problem with using PD as an ALS is that the PD produces a relatively small current even when no light is incident on the 201219760 PD. This current, often referred to as dark current or leakage current, is caused by the random heat generation of electrons and holes in the depletion region of the device that is subsequently scanned by the large electric field. When there is very low brightness light, the leakage current or dark current will also adversely affect the PE output. 2 illustrates an example circuit that can be used to attempt to generate a current having a spectral response similar to the typical human eye spectral response shown in FIG. 2, see FIG. 2, a first photodetector (PD1) and a second photodetector. The detector (PD2) is illustrated as receiving ambient light that is scattered, assuming it is ambient light that includes both ambient and ambient infrared light. PD 1 is configured (e.g., by covering it with a red light filter) to produce a first current indicative of ambient infrared light. Thus, η can also be expressed as Iir, where Iir is the current indicative of ambient infrared light. PD2 is configured (e.g., by overlaying it with a green light illuminator) to produce a second current 12 indicative of both ambient visible and ambient infrared light. Thus, 12 can also be expressed as ivis + , where Ivis is the current indicative of ambient visible light and Iir is the current indicative of ambient infrared light. In the figures, each photodetector PD 1, PD 2 is generally illustrated and described as a single PD. However, each PD can actually be implemented as a PD array. In other words, PD 1 may include one or more photodetectors, and PD2 may include one or more additional photodetectors. Current mirror 202 replicates current 11 to subtract from current 12 at the subtraction node (Nsub). A replicated version of 11 to produce a current 13 that primarily indicates ambient visible light. Preferably, the current mirror 202 has a gain of 1 (i.e., equal to 丨), so the current mirror 2 0 2 accurately replicates the current Π. However, due to the mismatch of the transistors in the current mirror (for example, the mismatch of the transistors Μ1 and M2 due to manufacturing variations), the gain of the current mirror 202 is 1 + Δ, which causes the complex 201219760 current generated by the current mirror 202. Is II *(1 + Δ) > where Δ (also referred to as "Delta") is the mismatch error of the current mirror 202. In other words, 13 = 12 — π*(1+ /\) = (Ivis + Iir) - Iir*(l + Δ ) = Ivis + Iir - Iir + Iir* Δ = Ivis + Iir* △. Since it is desirable to make 13 := lvis, it is desirable to make Δ = 〇. The analog current 13 or its digital version produced by analog to digital converter (ADC) 212 can be used to adjust the parameters or functions of the system or subsystem. For example, the analog current 13 or its digital version can be used to adjust the brightness of the display. However, as can be understood from the foregoing description, the mismatch error Δ adversely affects the accuracy of the current 13 and thus adversely affects the efficacy and usefulness of these adjustments. One way to attempt to remove the mismatch error Δ is Use a current mirror including a chopper circuit as will be described with reference to 3. Referring to circuit 300' in Fig. 3a, a current mirror including chopper circuit 3Q4 is shown. The chopper circuit 3〇4 receiving the chopping (CH〇p) signal having the chopping frequency (fCH0P) modulates the current mismatch Δ to the chopping frequency and makes the current mirror gain Δ, as can be seen from FIG. 3B and Figure 3C understands. More specifically, Fig. 3b is a diagram of the frequency content of the current II' and Fig. 3C is a diagram of the frequency content of the replica current generated by the current mirror 3〇2. The frequency content of the current 13 as explained with reference to Figures 5A and 5B is also similar to Figure 3C. ... '1 q? six not ίβ as the CH0P signal of the square wave alternating between the values +. Although other chopping signals can be used as described below, unless otherwise stated, it is assumed that the CH〇p signal shown in Fig. 3D is used for simplicity. The current mirror plus the replica current Π is used to subtract the replicated version of π from the current 12 7 201219760 at the subtraction node (4) to produce a current 13 that primarily indicates ambient visible light. As mentioned earlier, due to the chopper circuit 304, the replica current generated by the current mirror 3〇2 is Ι"(1±Δ)' where Δ (also referred to as "Delta") is a mismatch of the current mirror 3〇2 Error. Another way of expressing the replica current generated by current mirror 302 is Ι1+Π*Δ*(-1)λΝ, where...w. The replica current is subtracted from current 12 at the subtraction node (Nsub) to Generate current i3 = 12 - Il*(l +/- A) = Ivis-fIir - Iir+/- Πγ*Δ = Ivis + /- Iir* △. Another expression of current 13 is I3 = I2 _ + △ * (_1)ΛΝ) ' where N=〇,l,2,3 ...〇〇. Since I2 = ivis + Iir and ^ = Iir, 13 can be expressed as I3 = (Ivis + Iir) _ + △ ό'ν) =1仏+ 1^^*(_1), its center 〇,1,2,3..,.assuming two-phase CHOP signals alternating between +1 and -1, in these equations, Ν Each cycle of the CH〇p signal is incremented twice, and N is incremented once for each phase of the two-phase CH〇p signal. Referring again to Figure 3A, current 13 is shown as being supplied to ADC 212, which uses the analog current of ADC 212 The signal 13 is converted into a digital signal. However, due to the undesirable current mirror 03 The mismatch error Δ, the dynamic range of the ADC 2丨2 is reduced 'by thereby reducing the sensitivity of the optical subsystem containing the circuit 3〇〇. Figure 3E is generated by one or more photodetectors (PD2) An exemplary timing diagram of the third signal 13 of FIG. 3A resulting from the replicated version of the first current produced by the current mirror of FIG. 3A is subtracted from the second current 12. In other words, FIG. An example of the current ivis ± Iir* △, which can also be expressed as Ivis + Iir* △ ♦ (•◦λν. The timing diagram of Figure 3E shows how the mismatch error Δ of the current mirror 302 limits the dynamics of the adC 212 range,
S 201219760 該動態範圍依賴於提供給ADC212的參考電流(㈣。圖π 斤丁 l號的平均值(AVG)等於電流Ivis,mvis是指示環 境可見光的感興趣的電流。圖3E中所示的信號的峰值-峰值 振巾田疋2 △ *Ilr。如可從圖3E中理解的那樣,藉著使△= 圖3E所示的化號將等於電流ivis,並且ADC 212的動 態範圍將達到最大。 如同現在開始參照目4描述的那樣,本發明的實施例 使用失配校正電路來補償電流鏡的失配誤差△。更具體 地,可使用本發明的實施例來減小並較好地實質上消除電 流鏡的失配誤差△。 【實施方式】 參見圖4,子系統400包括失配校正電路42〇,該失配 校正電路420用來調整可調增益電流鏡4〇2的增益,以藉 此減小並較好地實質上消除電流鏡4〇2的失配誤差△。失 配校正電路420圖示爲包括振幅解調器422和數位濾波器 424。ADC 212的數位輸出,也稱資料信號,被提供給振幅 解調器422。同樣接收CHOP信號(或CHOP信號的複製或 恢復版本)的振幅解調器可實現爲單個乘法器,或實現爲包 絡偵測器’但不僅限於此。振幅解調器422本質上執行振 幅解調以藉著與失配誤差△成比例的值將斬波頻率下的音 調向下平移至DC。在該實施例中,CHOP信號是可用的, 並因此可供解調器42^使用。替代地,可使用鎖相回路 (PLL)、科斯塔斯回路(c〇stas loop)或一些其他載波信號恢 復電路從第三電流13再現或恢復CHOP信號,但不局限於 201219760 此。 由ADC 2 12輪出的資料信號它是第三電流π的數 位化版本—一包括數位取樣值(對於ADC212的每個取樣週 期),該數位取樣值是環境可見光的指示。然而,這些數位 取樣值由於失配誤差△在斬波頻率下向上和向下變化。由 於如前該13 =Ivis+/-Iir*△,這種情形發生。振幅解調器 422接收由ADC 212輸出的數位取樣值,接收CH〇p信號(或 CHOP信號的再現或恢復版本),並輸出由於失配誤差△在 基帶周圍向上和向下變化的經解調數位取樣值,經解調的 數位取樣值的平均值指示失配誤差△的量級。換種說法, 解調器422的輸出是包含與電流Ivis(@ △成比 例的數位取樣值的數位㈣。這些數絲樣值被提供給數 位濾波器424,該數位濾波器424可實現爲數位低通濾波器 (LPF)或數位積分器,但不僅限於此。數位濾波器424濾除 電流Ivis(@ fCH〇p)e這些數位濾波器例如可使用加減計數器 或數位加法器來實現,但不僅限於此。由數位濾波器 輸出的信號與失配誤差△的量級成比例,並根據本發明的 實施例,由數位濾波器424輸出的該信號被用來調整電流 鏡402的增益以使失配誤差△減小並較好地實質上消除失 吳差△。因此,數位濾波器424的輸出可稱爲調整(ADj) 信號。 圖4中使用的CHOP 4號可與結合圖3d描述的CHOP 信號相同《然而,由於圖3D所示的CH〇p信號的斬波頻率 (fCH0P)是恒定的,因此如果在電路附近的噪音源具有相似的 10 s 201219760 頻率,使用本發明的實施例校準失配誤差△的輸出可能受 到不利的影響。爲了克服該潛在問題,可使用擬隨機斬波 頻率’只# CHOP信號的平均值在一段時間實質上恒定(例 如實質上爲零)即可。爲了避免混疊,在由失配校正電路々Μ 執行校正的過程中,fCH〇p較好爲小於ADC 2 1 2的取樣率頻 率fs °例如’ fCH0P可等於込/2,但不僅限於此。 有利地,即使如果ADC 212過載,失配校正電路 也能執行其功能。例如,如果電路Iir(指示紅外光)高於ADc 滿量程,則ADC 212可能過載。更具體地,當2*Δ *Ir +卜。 > ADC滿量程時,ADC 2 12可能經歷過載。有利地,由於 失配杈正電路420計算頻域中的失配誤差,因此它不受該 ADC過載的影響。 根據具體實現,由數位濾波器424輸出的數位調整信 號(ADJdigital)可用來調整電流鏡402的增益,或者ADjdigitai 信號可首先藉著可選用的數位至類比轉換器(DAC) 426轉 化成類比調整信號(ADJanal()g),並且ADJanalQg可用來調整電 流鏡402的增益。使用高位準下的ADJ信號,不管是數位 信號還是類比信號,以藉著調整電流鏡4〇2的增益來減小 和較好地實質上消除失配誤差△。在某些實施例中,adj 信號可用來從本質上調整電流鏡402的電晶體Ml、M2的 一者或兩者的大小。這可藉著選擇地將電流鏡電路中的一 個或多個電晶體連接和/或斷開(即接通和/或切斷)來實現, 如參照圖7更詳細說明的那樣。在其他實施例中,可使用 ADJ信號以調整電流鏡中影響電流鏡增益的一個或多個電 201219760 壓。其他變例也是可能的並且在本發明的範圍之内。 爲了簡單’將電流鏡402圖示爲一簡單電流鏡,該巧 單電流鏡包括電晶體Ml和M2’電晶體Ml和M2的源極連 接於高電壓幹線,電晶體Ml和M2的閘極連接在_起然 而’要注意,電晶體Ml和M2中的至少一個可實現爲可選 擇地並聯連接的多個電晶體,如可從下面給出的圖7中理 解的那樣。另外,電流鏡402可不同於圖示的比該項技術 已知形式和/或比其更爲複雜,同時仍然落在本發明的範圍 内。例如,電流鏡可包括在電晶體M丨和M2的源極和電壓 幹線之間的負回授電阻器》作爲替代或附加,電流鏡可實 現爲Widlar電流鏡。其他變化也是可能的。此外,儘管在 附圖中,電流鏡402中的電晶體圖示爲PM〇s電晶體,然 而它們也可以是PNP雙極性接面(BJT)電晶體。替代地,電 流鏡内的電晶體可以是NM0S或NPN電晶體,在這種情形 下電流鏡可連接於例如地面的低電壓幹線(而不是高電壓幹 線)’並且光積測器可連接在高電壓幹線和電流鏡之間。 在圖3和圖4中,斬波電路304用來選擇性地一次將 電晶體Ml和M2中的一個以二極體方式連接(即將汲極和 閘極連接在一起),而另一個電晶體不以二極體方式連接。 以二極體方式連接的電晶體(Μ 1或M2)的連接在一起的汲 極和閘極藉著斬波電路;304連接於PD1的陽極,而以非二 極體方式連接的電晶體(M2或M1)的汲極藉著斬波電路3〇4 連接於PD2的陽極。在這些附圖中,斬波電路304被圖示 爲一簡單斬波電路’其包括四個開關,但可以是不同的和/ 12 201219760 或更複雜# 4項技術熟知的那樣,同時仍然^在本發 明的範圍内。 在圖4和其他附圖中,減法節點(Nsub)圖示爲位於電流 鏡402 #虛線邊界的外側,但它也可以是電流鏡術受重 視的4件。不管減法節點(Nsub)圖#爲在電流鏡術之内還 疋之外,電流鏡和減法節點可集體地視爲類比電路的示 例、,該類比電路被配置成複製第一電流以形成第一電流的 、工複製版本’亚從第二電流中減去第一電流的複製版本以 形成第三電流。 根據本發明前述的實施例’執行(分別由pDi和産 生的)電流!1和12的類比減法。或者可對電流πίσ i2(並行 獨立地或順序地)數位化並數位地執行減法。然而,因爲各 種原因’類比減法優於數位減法,,類比減法運算比 數位減法更快並需要更少的電路,,自比減法不受量 化雜訊的影響,該量化雜訊會對數位減法産生影響,並且 對産生自類比減法的電流(例如13)數位化的ad_如2 的動態範圍不需要具有像用來執行數位減法的一個或多個 ADC那樣大的動態範圍。’然而,優於電流鏡的失配誤差△, 使用電流鏡執行類比減法的可能發生問題。本文描述的本 發明的實施例能減小和較好地實質上消除失配誤差△。 ㈣參見® 4’失配校正電路似的元件可視爲減小和 較好地消除與_ 4〇2關聯的失配誤差△的回授回路的 一部分。就212也可視爲回授回路的_部分。該 路調整電流鏡術的增益以使斬波頻率處的失配 201219760 小,並較好地消除。爲了使回授回路的性能最大化,數位 渡波裔424車父好地具有有限j)C增益。 圖5A是示出在消除電流鏡的失配誤差前圖4所示的電 流13的頻率内容的示例性曲線圖。圖5B是示出在藉著失 配校正電路420消除電流鏡的失配誤差後圖4所示二電流 13的頻率内容的示例性曲線圖。注意在圖5b中,斬波頻= 處的電流的量級相比於圖5A被消除。 圖6A是示出調整(ADJ)信號如何一旦在時間q消除電 流鏡的失配誤差△就收敛在恒定水平的示例性曲線圖。圖 6B是示出PM 1如何在同一時間收敛至零的示例性曲 線圖。換句話㈣6八和6B示出失配誤差Λ在時間。 接近(並較好地等於)零。 如前面提到的,可藉著選擇地連接和/或斷開(即接通和 /或切斷)電流鏡電路中的-個或多個電晶體來調整電流鏡 4〇2的增益。如何完成這項工作的一個示例示出於圖7,圖 ::出-可調增益電流鏡702’該可調增益電流鏡7〇2是如 月’J 5亥的電流鏡4 0 2的示例性實現灸 貝兄。參見圖7,電晶體m2在 圖中實現爲並聯電晶體M2l_M2n排,其中的至少—些可選 擇地與電路接通和從電路斷開, 呵阀U本質上調整電晶體M2的 大小,藉此調整電流鏡術的增益。電晶體叫娘可以 =等加權的 '二進位加權的或以某些其他方式加權的。調 (ADJ)信號用來選擇地斷開和閉合開關,該開關選擇地將 與電晶體M2,並聯的電晶體叫佩中的—個或多個連接 和斷開。作爲替代或附加,電晶體Ml可類似地實現爲一排 14 δ 201219760 並聯的電日日胆也可具有一排可選電晶體,每個電晶體可 根據調整(ADJ)信號各自選擇地並聯連接於mi或M2,藉此 S周整電流鏡的增益。閲讀本說明書的熟習本技術人士將能 理解’其他I例也是可行的並落在本發明的範圍内。 如前面提到的,可使用調整(ADJ)信號來調整電流鏡内 影響電流鏡增益的—個或多個電壓。如何完成這項工作的 個不例不出於圖8,_ 8示出一可調增益電流鏡8〇2,該 可凋增ϋ電流鏡802是如前該的電流鏡4〇2的另一示例性 只現。參見圖8,電晶體Μ9和Μ丨丨工作在三極管模式(也 稱歐姆模式)’並因此充當可調電阻器。因此,可使用電晶 體Μ9和/或Mil調整電流鏡8〇2的電晶體Μι、Μ2的源極 處的電壓,以調整電流鏡802的增益。電流鏡8〇4和電晶 體Μ7、Μ8 a又疋電晶體Μ9的閘極處的電壓,並藉此設定電 晶體M9的電阻值,如此設定電晶體M1源極處的電壓。電 流源806和電晶體M10、M12設定電晶體Mn閘極處的電 壓,並藉此設定電晶體Μ11的電阻值,如此設定電晶體M2 源極處的電壓·。電流源806圖示爲可由調整(ADJ)信號調 整,藉此調整電流鏡8〇2的增益。作爲替代或附加,可藉 著δ周整(ADJ)#號來調整電流源804。其他變例也是可能的 並且在本發明的範圍之内。 回來簡略地參見圖4,根據—個實施例,(具有或不具 有ADC 212的)可調增益電流鏡4〇2可實現爲積體電路 (1C),也稱晶片。該晶片也包括接腳或其他連接器,用來連 接於PD1和PD2的光偵測器(如果pm和pD2是在晶片 15 201219760 外)。替代地’也可使PD1和PD2的光谓測器包含在與可調 增益電流鏡402所在的同一塊晶片上。 根據一個實施例,失配校正電路420位於晶片外部, 該晶片包括可調增益電流鏡402並在晶片的製造和製造後 測試期間使用以校準可調增益電流鏡402。在該實施例中, 一旦電流鏡402的增益被設定以實質上消除失配誤差△, 則可永久地設置熔絲或相等物。 替代地,失配校正電路420可實現在與可調增益電流 鏡4 0 2相同的晶片或晶片組上’並可連續地或選擇地使用 失配校正電路420以不時地更新調整(ADJ)信號從而補償由 於溫度變化以及電流鏡402内的電晶體和/或其他元件的老 化而引起的電路變化。例如,假設電流鏡402和失配校正 電路420是用於較大系統的子系統的一部分,那麼失配校 正電路420可用來在系統工作前(例如在系統或子系統上電 過程中)定期地或按需地調整電流鏡的增益。在週期地或按 需地使用失配校正電路42〇的情形下,該失配校正電路42〇 中斷系統的某些其他功能,也可在後臺運行,或當系統處 於休眠或待機模式時使用該失配校正電路420,但不僅限於 此。 圖9示出根據本發明一個實施例的用於電流鏡4〇2的 有選擇(例如上電)校準的示例性系統9〇〇。參見圖9,當校 準(CAL)〈°號爲低時,反校準(0ΧΕ)信號爲高,電晶體M3和 Μ 4截止’雷日躺a,厂< 电日日體M5和M6導通,且圖9的電路以與圖4 電路相同的方-V τ ,, 万式工作。然而,當校準(CAL)信號被設定爲高S 201219760 The dynamic range depends on the reference current supplied to the ADC 212 ((iv). The average value of the picture π 丁 l 1 (AVG) is equal to the current Ivis, mvis is the current of interest indicating the visible light of the environment. The signal shown in Figure 3E The peak-to-peak vibrating field 疋 2 Δ *Ilr. As can be understood from Figure 3E, by making Δ = the number shown in Figure 3E will be equal to the current ivis, and the dynamic range of the ADC 212 will be maximized. As described now with reference to item 4, embodiments of the present invention use a mismatch correction circuit to compensate for the mismatch error Δ of the current mirror. More specifically, embodiments of the present invention can be used to reduce and better substantially The mismatch error Δ of the current mirror is eliminated. [Embodiment] Referring to FIG. 4, the subsystem 400 includes a mismatch correction circuit 42 用来 for adjusting the gain of the adjustable gain current mirror 4 〇 2 to borrow This reduces and preferably substantially eliminates the mismatch error Δ of the current mirror 4〇 2. The mismatch correction circuit 420 is illustrated as including an amplitude demodulator 422 and a digital filter 424. The digital output of the ADC 212, also referred to as data Signal, is provided to The demodulator 422. The amplitude demodulator that also receives the CHOP signal (or the copied or recovered version of the CHOP signal) can be implemented as a single multiplier, or as an envelope detector 'but not limited to this. The amplitude demodulator 422 In essence, amplitude demodulation is performed to translate the pitch at the chopping frequency down to DC by a value proportional to the mismatch error Δ. In this embodiment, the CHOP signal is available and thus available to the demodulator Alternatively, the CHOP signal may be reproduced or restored from the third current 13 using a phase locked loop (PLL), a csstas loop, or some other carrier signal recovery circuit, but is not limited to 201219760. The data signal rotated by ADC 2 12 is a digitized version of the third current π - one including the digital sample value (for each sampling period of ADC 212), which is an indication of ambient visible light. However, these digits The sample value changes up and down at the chopping frequency due to the mismatch error Δ. This occurs due to 13 = Ivis +/- Iir * Δ as before. The amplitude demodulator 422 receives the digital samples output by the ADC 212. Receiving a CH〇p signal (or a reproduced or restored version of the CHOP signal) and outputting a demodulated digital sample value that varies upward and downward around the baseband due to a mismatch error Δ, the average of the demodulated digital sample values Indicating the magnitude of the mismatch error Δ. In other words, the output of the demodulator 422 is a digit (four) containing a digital sample value proportional to the current Ivis (@ Δ. These digital samples are provided to the digital filter 424, The digital filter 424 can be implemented as a digital low pass filter (LPF) or a digital integrator, but is not limited thereto. The digital filter 424 filters out the current Ivis (@ fCH 〇 p) e. These digital filters can use, for example, an up-down counter. Or a digital adder to implement, but not limited to this. The signal output by the digital filter is proportional to the magnitude of the mismatch error Δ, and according to an embodiment of the invention, the signal output by the digital filter 424 is used to adjust the gain of the current mirror 402 to cause a mismatch error Δ. The angstrom difference Δ is reduced and preferably substantially eliminated. Therefore, the output of the digital filter 424 can be referred to as an adjustment (ADj) signal. The CHOP No. 4 used in Fig. 4 can be the same as the CHOP signal described in connection with Fig. 3d. However, since the chopping frequency (fCH0P) of the CH〇p signal shown in Fig. 3D is constant, if a noise source is in the vicinity of the circuit With a similar 10 s 201219760 frequency, the output of the mismatch error Δ can be adversely affected using embodiments of the present invention. To overcome this potential problem, the average of the quasi-random chopping frequency 'only #CHOP signal can be used to be substantially constant over a period of time (e.g., substantially zero). In order to avoid aliasing, in the process of performing correction by the mismatch correction circuit 々Μ, fCH 〇p is preferably smaller than the sampling rate frequency fs ° of ADC 2 1 2, for example, 'fCH0P may be equal to 込/2, but is not limited thereto. Advantageously, the mismatch correction circuit can perform its function even if the ADC 212 is overloaded. For example, if circuit Iir (indicating infrared light) is above the ADc full scale, ADC 212 may be overloaded. More specifically, when 2*Δ*Ir+bu. > ADC 2 12 may experience an overload when the ADC is full scale. Advantageously, since the mismatch correction circuit 420 calculates the mismatch error in the frequency domain, it is not affected by the ADC overload. Depending on the implementation, the digital adjustment signal (ADJdigital) output by the digital filter 424 can be used to adjust the gain of the current mirror 402, or the ADjdigitai signal can first be converted to an analog adjustment signal by an optional digital to analog converter (DAC) 426. (ADJanal()g), and ADJanalQg can be used to adjust the gain of current mirror 402. The ADJ signal at a high level, whether digital or analog, is used to reduce and better substantially eliminate the mismatch error Δ by adjusting the gain of the current mirror 4〇2. In some embodiments, the adj signal can be used to substantially adjust the size of one or both of the transistors M1, M2 of the current mirror 402. This can be accomplished by selectively connecting and/or disconnecting (i.e., turning "on" and/or off) one or more of the transistors in the current mirror circuit, as explained in more detail with respect to FIG. In other embodiments, the ADJ signal can be used to adjust one or more electrical 201219760 voltages in the current mirror that affect the current mirror gain. Other variations are also possible and are within the scope of the invention. For simplicity, the current mirror 402 is illustrated as a simple current mirror comprising transistors M1 and M2'. The sources of the transistors M1 and M2 are connected to a high voltage mains, and the gates of the transistors M1 and M2 are connected. It is to be noted that at least one of the transistors M1 and M2 can be realized as a plurality of transistors which are selectively connected in parallel, as can be understood from FIG. 7 given below. Additionally, current mirror 402 may differ from and be more complex than the ones shown in the art and still fall within the scope of the present invention. For example, the current mirror can include a negative feedback resistor between the source of the transistors M丨 and M2 and the voltage rail. Alternatively, the current mirror can be implemented as a Widlar current mirror. Other changes are also possible. Further, although in the drawings, the transistors in the current mirror 402 are illustrated as PM〇s transistors, they may also be PNP bipolar junction (BJT) transistors. Alternatively, the transistor in the current mirror can be an NMOS or NPN transistor, in which case the current mirror can be connected to a low voltage rail such as a ground (rather than a high voltage rail) and the illuminator can be connected high. Between the voltage rail and the current mirror. In FIGS. 3 and 4, the chopper circuit 304 is used to selectively connect one of the transistors M1 and M2 in a diode manner (ie, connect the drain and the gate together), and the other transistor. Not connected in a diode. The diodes and gates of the transistors (Μ 1 or M2) connected in a diode are connected by a chopper circuit; 304 is connected to the anode of PD1, and the transistors are connected in a non-dipolar manner ( The drain of M2 or M1) is connected to the anode of PD2 by a chopper circuit 3〇4. In these figures, chopper circuit 304 is illustrated as a simple chopper circuit that includes four switches, but may be different and well known as / 12 201219760 or more complex, while still Within the scope of the invention. In Fig. 4 and other figures, the subtraction node (Nsub) is illustrated as being located outside the boundary of the current mirror 402 # dashed line, but it may also be 4 pieces of current mirror vision. The current mirror and the subtraction node may collectively be considered as an example of an analog circuit, the analog circuit being configured to replicate the first current to form the first, regardless of whether the subtraction node (Nsub) map # is within the current mirror. The current, work-replicated version 'Asia subtracts the replicated version of the first current from the second current to form a third current. The currents (respectively produced by pDi and generated) are performed according to the aforementioned embodiment of the present invention! Analogy subtraction of 1 and 12. Alternatively, the subtraction can be performed digitally and digitally on the current πίσ i2 (in parallel or sequentially). However, for various reasons, 'analog subtraction is superior to digital subtraction, analog subtraction is faster than digital subtraction and requires fewer circuits. Since the subtraction is not affected by quantization noise, the quantization noise will produce digital subtraction. The effect, and the dynamic range of ad_ such as 2 that digitizes the current (eg, 13) that produces the self-referred subtraction need not have as large a dynamic range as one or more ADCs used to perform digital subtraction. 'However, better than the mismatch error Δ of the current mirror, the possibility of performing analog subtraction using a current mirror may cause problems. Embodiments of the invention described herein are capable of reducing and better substantially eliminating the mismatch error Δ. (d) See the ® 4' mismatch correction circuit-like component as part of the feedback loop that reduces and better eliminates the mismatch error Δ associated with _ 4〇2. 212 can also be regarded as the _ part of the feedback loop. This way adjusts the gain of the current mirror so that the mismatch at the chopping frequency is small and well eliminated. In order to maximize the performance of the feedback loop, the digital transit 424 has a limited j) C gain. Fig. 5A is an exemplary graph showing the frequency content of the current 13 shown in Fig. 4 before the mismatch error of the current mirror is eliminated. Fig. 5B is an exemplary graph showing the frequency content of the two currents 13 shown in Fig. 4 after the mismatch error of the current mirror is eliminated by the mismatch correction circuit 420. Note that in Figure 5b, the magnitude of the current at the chopping frequency = is eliminated compared to Figure 5A. Fig. 6A is an exemplary graph showing how the adjustment (ADJ) signal converges to a constant level once the mismatch error Δ of the current mirror is cancelled at time q. Fig. 6B is an exemplary graph showing how PM 1 converges to zero at the same time. In other words (4) 6 and 6B show the mismatch error Λ in time. Close (and better equal to) zero. As previously mentioned, the gain of the current mirror 4〇2 can be adjusted by selectively connecting and/or disconnecting (i.e., turning on and/or cutting off) one or more transistors in the current mirror circuit. An example of how this can be done is shown in Figure 7, Figure: Out-Adjustable Gain Current Mirror 702 'The Adjustable Gain Current Mirror 7 〇 2 is an example of a current mirror 420 of the month 'J 5 hai Realize the moxibustion brother. Referring to Fig. 7, the transistor m2 is implemented as a parallel transistor M2l_M2n row, at least some of which are selectively connected to and disconnected from the circuit, and the valve U essentially adjusts the size of the transistor M2. Adjust the gain of current mirroring. The transistor called the mother can = equal weighted 'binary weighted or weighted in some other way. The ADJ signal is used to selectively open and close the switch, which selectively connects and disconnects the transistor in parallel with the transistor M2. Alternatively or additionally, the transistor M1 can be similarly implemented as a row of 14 δ 201219760. Parallel electric sun urchins can also have a row of optional transistors, each of which can be selectively connected in parallel according to an adjustment (ADJ) signal. At mi or M2, the gain of the current mirror is corrected by S. It will be appreciated by those skilled in the art from this disclosure that other examples are also possible and are within the scope of the invention. As mentioned earlier, an adjustment (ADJ) signal can be used to adjust one or more voltages in the current mirror that affect the current mirror gain. An example of how to accomplish this is not shown in Fig. 8, which shows an adjustable gain current mirror 8〇2, which is another of the current mirrors 4〇2 as before. The example is only present. Referring to Figure 8, the transistors Μ9 and Μ丨丨 operate in a triode mode (also called ohmic mode)' and thus act as a tunable resistor. Therefore, the voltage at the source of the transistors Μ1, Μ2 of the current mirror 8〇2 can be adjusted using the electric crystal Μ9 and/or Mil to adjust the gain of the current mirror 802. The current mirror 8〇4 and the transistors Μ7, Μ8a and 闸8 are at the gate of the transistor Μ9, and thereby the resistance value of the transistor M9 is set, thus setting the voltage at the source of the transistor M1. The current source 806 and the transistors M10, M12 set the voltage at the gate of the transistor Mn, and thereby set the resistance of the transistor ,11, thus setting the voltage at the source of the transistor M2. Current source 806 is illustrated as being adjustable by an adjustment (ADJ) signal, thereby adjusting the gain of current mirror 8〇2. Alternatively or additionally, current source 804 can be adjusted by the delta-round (ADJ) # number. Other variations are also possible and are within the scope of the invention. Referring back briefly to Figure 4, according to one embodiment, an adjustable gain current mirror 4〇2 (with or without ADC 212) can be implemented as an integrated circuit (1C), also referred to as a wafer. The wafer also includes pins or other connectors for connecting to the photodetectors of PD1 and PD2 (if pm and pD2 are on wafer 15 201219760). Alternatively, the optical detectors of PD1 and PD2 can also be included on the same wafer as the adjustable gain current mirror 402. According to one embodiment, mismatch correction circuit 420 is external to the wafer, which includes adjustable gain current mirror 402 and is used during wafer fabrication and post-manufacture testing to calibrate adjustable gain current mirror 402. In this embodiment, once the gain of the current mirror 402 is set to substantially eliminate the mismatch error Δ, the fuse or equivalent can be permanently set. Alternatively, the mismatch correction circuit 420 can be implemented on the same wafer or wafer set as the adjustable gain current mirror 420 ' and can use the mismatch correction circuit 420 continuously or selectively to update the adjustment (ADJ) from time to time. The signal thereby compensates for circuit variations due to temperature variations and aging of the transistors and/or other components within the current mirror 402. For example, assuming that current mirror 402 and mismatch correction circuit 420 are part of a subsystem for a larger system, mismatch correction circuit 420 can be used to periodically periodically before system operation (eg, during system or subsystem power up) Or adjust the gain of the current mirror as needed. In the event that the mismatch correction circuit 42 is used periodically or on demand, the mismatch correction circuit 42 interrupts some other functions of the system, can also be run in the background, or when the system is in the sleep or standby mode. The mismatch correction circuit 420 is, but not limited to, this. Figure 9 illustrates an exemplary system 9 for selective (e.g., power up) calibration of current mirrors 4〇2, in accordance with one embodiment of the present invention. Referring to Figure 9, when the calibration (CAL) <° is low, the inverse calibration (0ΧΕ) signal is high, the transistors M3 and Μ 4 are cut off, and the factory is < the electric day, the bodies M5 and M6 are turned on, And the circuit of Fig. 9 operates in the same manner as the circuit of Fig. 4 -V τ , . However, when the calibration (CAL) signal is set to high
16 S 201219760 _ 時,反校準(61)信號爲低,電晶體M3和]VI4導通,電晶體 M5和M6截止,這使得pd 1和PD2從電路的其餘部分斷開, 且電流源904、906(它們分別產生ICAL1和ical2)連接於pD1 和PD2所在的位置。較爲有利地,當使用電流源904、906 取代PD 1和PD2時’即使沒有光入射到pj) 1和PD2時,電 流鏡4 0 2的校準也會發生。 系統900可如下地工作: 1. 將CHOP信號的頻率(即fCH〇p)設定爲adc 212的取 樣率(fs)的一半或更低; 2. 將CAL設定爲高; 3 ·啓用校準電流ICALi和iCAL2 ; 4. 設定CHOP=l並測量ADC 212輸出處的資料取樣; 5. 設定CHOP=— 1並測量ADC 212輸出處的資料取樣; 6. 設定調整(ADJ)信號以減小當cHOP=l和當CJ〇P = 一 1時在ADC輸出處測得的資料取樣之間的差; 7. 重複步驟4-6直到CH〇P=l和CH0P=— 1時的資料取 樣相同爲止; 8. 將CAL設定爲低;以及 ,該常態可 9_將CHOP信號的頻率(即fcH〇p)設回至常態 能比ADC 212的取樣率(fs)更高。16 S 201219760 _, the inverse calibration (61) signal is low, transistors M3 and ]VI4 are turned on, and transistors M5 and M6 are turned off, which causes pd 1 and PD2 to be disconnected from the rest of the circuit, and current sources 904, 906 (They produce ICAL1 and ical2, respectively) are connected to the location where pD1 and PD2 are located. Advantageously, the calibration of the current mirror 420 occurs when the current sources 904, 906 are used in place of PD 1 and PD 2 'even when no light is incident on pj) 1 and PD2. System 900 can operate as follows: 1. Set the frequency of the CHOP signal (i.e., fCH 〇p) to half or less the sampling rate (fs) of adc 212; 2. set CAL to high; 3 - enable calibration current ICAI And iCAL2; 4. Set CHOP=l and measure the data sampling at the output of ADC 212; 5. Set CHOP=-1 and measure the data sampling at the output of ADC 212; 6. Set the adjustment (ADJ) signal to reduce when cHOP= l and the difference between the data samples measured at the ADC output when CJ〇P = one; 7. Repeat steps 4-6 until the data samples at CH〇P=l and CH0P=-1 are the same; Setting CAL low; and, the normal state 9_ sets the frequency of the CHOP signal (ie, fcH〇p) back to normal to be higher than the sampling rate (fs) of the ADC 212.
轉換,並儲存ADC 212Convert and store ADC 212
一開始保持爲高並完成ADC °例如藉著數位 212輸出處的資料取樣儲存在例如暫存器 CHOP丨5號保持爲低並完成第二次adC C 212輸出處的資料取樣。例如兹篓 17 201219760 減法電路將經過兩次轉換的儲存結果作比較。當取⑴ 的資料輸出獨立於(即等同於*管)⑽p信號的狀態時,失 配誤差△被消除。 .,圖10是用來概括根據本發明某些實施例的方法的高位 準流程圖。參見圓10,在步驟1〇〇2 ’例如藉著圖4中的電 流鏡術接受第-電流n和第二電流12。在步驟购,使 用類比電路來複製第一電流n以藉此產生第一電流的複製 版本(II+/_△),並從第二電流12減去第一電流的複製版本 以藉此產生第三電流13。在步驟1〇〇6,基於第三電流η的 數位版本產生調整(娜)信號,其中調整信號指示與類比電 路關聯的失配誤差△。在步驟1〇〇8,使用調整信號來 減小與類比電路關聯的失配誤差Δ。如前所述,類比電路 可包括電流鏡,並可在步驟1008使用該調整信號以調整電 流鏡的增益,藉此減小與類比電路關聯的失配誤差△。如 則所述,根據本發明的實施例,使用數位電路執行步驟 1006,更準確地說是使用圖4中的失配校正電路42〇。更具 體地,步驟1006可包括振幅解調第三電流的數位版本,以 藉此産生經數位解調的信號,並對經數位解調的信號作數 位濾波以藉此產生調整信號。根據特定實施例,第一電流 Π是環境紅外光的指示,第二電流12是環境可見光和環境 紅外光的指示,而第三電流是環境可見光和與失配誤差成 比例的一部分環境紅外光的指示。一旦使用調整信號消除 了失配誤差’則第三電流就是環境可見光的指示。 圖11示出可實現本發明的實施例的示例系統。根據本The sample is initially held high and the ADC is sampled by the data at the output of the digital 212, for example, stored in the register CHOP丨5 and kept at the second adC C 212 output. For example, 篓 17 201219760 The subtraction circuit compares the stored results of two conversions. When the data output of (1) is independent of (i.e., equivalent to * tube) the state of the (10) p signal, the mismatch error Δ is eliminated. Figure 10 is a high level flow chart for summarizing the method in accordance with some embodiments of the present invention. Referring to circle 10, the first current n and the second current 12 are received at step 1 〇〇 2 ', for example by current mirroring in FIG. At the step of the purchase, an analog circuit is used to replicate the first current n to thereby generate a replicated version of the first current (II+/_Δ) and subtract the copied version of the first current from the second current 12 to thereby generate a third Current 13. At step 〇〇6, an adjustment (na) signal is generated based on the digital version of the third current η, wherein the adjustment signal indicates a mismatch error Δ associated with the analog circuit. In step 1-8, the adjustment signal is used to reduce the mismatch error Δ associated with the analog circuit. As previously mentioned, the analog circuit can include a current mirror and can be used in step 1008 to adjust the gain of the current mirror, thereby reducing the mismatch error Δ associated with the analog circuit. As described, in accordance with an embodiment of the present invention, step 1006 is performed using a digital circuit, more specifically using the mismatch correction circuit 42A of FIG. More specifically, step 1006 can include amplitude demodulating a digital version of the third current to thereby generate a digitally demodulated signal and digitally filtering the digitally demodulated signal to thereby generate an adjustment signal. According to a particular embodiment, the first current Π is an indication of ambient infrared light, the second current 12 is an indication of ambient visible light and ambient infrared light, and the third current is ambient visible light and a portion of ambient infrared light proportional to the mismatch error Instructions. Once the mismatch error is eliminated using the adjustment signal, the third current is an indication of ambient visible light. Figure 11 illustrates an example system in which embodiments of the present invention may be implemented. According to this
18 S 201219760 發明的·^個貫施例,系έΑ 1 1 Λ J糸統u〇〇包括自動測試設備 (ΑΤΕ)1102,ATE 1102 包括雷饮 11Λ/1/ 枯電路1 1 〇4(例如積體電路),該電 路刚包括失配校正觉路42〇。目標電路ιι〇6(例如另一積 體電路)位於電路板1108上並柄合於電路11〇4。在一個方 面目私電路1106包括電流鏡電路402、ADC 212和/或 DAC 426。具體地說,藉著ATE 1102測試目標電路11〇6。 失配校正電路420可基於數位輸出信號偵測失配誤差並産 生調節(ADJ)信號,可採用該調節(adj)信號來校準目標電 路1106中的電流鏡電路4G2的增益並從輸出信號去除失配 誤差。在ATE 1102上實現失配校正電路42()可減少目標電 路1106上的硬體並因此降低複雜度和成本。 見在乡見圖12 ’圖]2示出根據本發明一個實施例的用 戶設備(UE)1200的方塊圖,言玄UE 12〇〇包括失配校正電路 420。UE 1200可以是用戶使用的任何常見消費者電子設 備例如仁不局限於,行動電話、個人數位助理(PDA)、膝 上電腦、個人電腦、媒體播放機、遊戲控制臺、媒體記錄 器、平板電腦、電視機等。UE1可包括用於控制所有板 上操作和過程的處理器12〇2。·記憶體12〇4可與處理器12〇2 連接以儲存資料以及由處理器12〇2執行的一個或多個應用 1206。通信元件12〇8可與處理器12〇2連接以利於與外部 系統作有線/無線通信。UE 12〇〇也可包括電池形式的電源 1226, s亥電源1226經由功率元件1228與外部電力系統 或充电δ又備連接。此外,[/〇介面丨2丨2被設置成與處理器 1202通#,以利於例如經由硬線連接的串列通信(例如 19 201219760 和 /或 IEEE 13 124)。 此外,經由揚聲器/麥克風元件1214提供音頻能力。另 夕,UE 1200可包括用於接納用戶識別模組⑻⑷⑵8的狹 槽介面1216。也提供勤體122〇以儲存啓動和/或運算資料 並將其提供給處理器m2e在一個方面,仙测可包括 顯示器121G’用於_示下載的内容和/或顯示與運作和使用 設備特徵相關聯的文字資訊。在一個示例中,顯示器mo 可以是觸控螢幕。UE 12〇〇也可包括影像榻取元件1222, 例如用於解碼經編碼的多媒體内容的相機和/或視頻解碼 器。在-個示例中,影像擷取元件1222可包括產生n和 12的PD1和PD2,其中n是環境紅外光的指示而i2是 環境可見光和環境紅外光的指示。 另外,UE 1200可包括增益可調電流鏡電路4〇2、adc 2 12以及失配校正電路42〇,該失配校正電路可包括如 前面更完整描述的諸多功能。根據一個實施例,ALS控制 元件1224可接收指示入射在UE 12〇〇的環境可見光的信 號,並基於該信號控制UE 12〇〇中的各元件。例如,als 控制元件1224可調整顯示器1212或背光的設定(例如亮度 控制、對比度等)、切斷電源1226、修正影像擷取元件1222 的參數(例如焦距、孔徑設定、光圈值、曝光時間等)。 再次參見圖4和前面描述的其他附圖,pDi可配置成產 生主要指示入射到PD1和PD2上的環境紅外光的電流^ , 而PD2可配置成産生主要指示入射到ΡΕΠ和Pd2上的環境 紅外光和環境可見光的電流12。爲此,pdi和PD2可由適18 S 201219760 Invented · ^ 施 施 , έΑ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 The circuit circuit) just includes the mismatch correction path 42〇. The target circuit ιι 6 (e.g., another integrated circuit) is located on the circuit board 1108 and shank to the circuit 11A4. In one aspect, the circuit 1106 includes a current mirror circuit 402, an ADC 212, and/or a DAC 426. Specifically, the target circuit 11〇6 is tested by the ATE 1102. The mismatch correction circuit 420 can detect the mismatch error and generate an adjustment (ADJ) signal based on the digital output signal, and the adjustment (adj) signal can be used to calibrate the gain of the current mirror circuit 4G2 in the target circuit 1106 and remove the loss from the output signal. With error. Implementing the mismatch correction circuit 42() on the ATE 1102 can reduce the hardware on the target circuit 1106 and thus reduce complexity and cost. See Figure 12' in Figure 2, which shows a block diagram of a User Equipment (UE) 1200, which includes a mismatch correction circuit 420, in accordance with one embodiment of the present invention. The UE 1200 can be any common consumer electronic device used by the user, such as, for example, a mobile phone, a personal digital assistant (PDA), a laptop, a personal computer, a media player, a game console, a media recorder, a tablet. , TV, etc. UE 1 may include a processor 12〇2 for controlling all onboard operations and processes. The memory 12〇4 can be coupled to the processor 12〇2 to store data and one or more applications 1206 executed by the processor 12〇2. Communication component 12A8 can be coupled to processor 12A2 for facilitating wired/wireless communication with external systems. The UE 12A may also include a power source 1226 in the form of a battery, which is further coupled to the external power system or charge δ via the power component 1228. In addition, [/〇 interface 丨2丨2 is set to communicate with processor 1202 to facilitate serial communication, such as via hardwired connections (e.g., 19 201219760 and/or IEEE 13 124). In addition, audio capabilities are provided via speaker/microphone component 1214. In addition, the UE 1200 can include a slot interface 1216 for receiving the subscriber identity module (8) (4) (2) 8. A workstation 122 is also provided to store boot and/or operational data and provide it to the processor m2e. In one aspect, the display may include a display 121G' for downloading content and/or display and operating and using device features. Associated text information. In one example, display mo can be a touch screen. The UE 12A may also include an image couching component 1222, such as a camera and/or video decoder for decoding the encoded multimedia content. In an example, image capture component 1222 can include PD1 and PD2 that produce n and 12, where n is an indication of ambient infrared light and i2 is an indication of ambient visible light and ambient infrared light. Additionally, the UE 1200 can include gain adjustable current mirror circuits 〇2, adc 2 12, and mismatch correction circuit 42A, which can include a number of functions as described more fully above. According to one embodiment, ALS control component 1224 can receive a signal indicative of ambient visible light incident on UE 12 and, based on the signal, control various elements in UE 12A. For example, the als control component 1224 can adjust the settings of the display 1212 or backlight (eg, brightness control, contrast, etc.), turn off the power 1226, and correct parameters of the image capture component 1222 (eg, focal length, aperture setting, aperture value, exposure time, etc.) . Referring again to FIG. 4 and the other figures previously described, pDi can be configured to generate a current that primarily indicates ambient infrared light incident on PD1 and PD2, while PD2 can be configured to generate an ambient infrared that primarily indicates incident on ΡΕΠ and Pd2. Light and ambient visible current 12 . To this end, pdi and PD2 can be adapted
20 S 201219760 當選色的濾光器覆蓋,例如分別用紅色和綠色濾光器覆 蓋。紅色濾光器是一種紅外吸收濾光器,而綠色濾光器提 供標準人眼光譜響應的第一近似,因爲綠色在人的視界内 占主要地位。然而,可使用附加和/或其他顏色的濾光器。 濾光器層相互層疊也是可行的。例如,構成pD2的光偵測 益可由綠色濾光器覆蓋’而構成PD1的光偵測器可由彼此 層疊的綠色濾光器和紅色濾光器覆蓋。又如,如在此併入 作為參考的標題爲“使用傳統CM0S影像感測器處理的環 k 光债測 l§ (Amblent Light Detectors Using Conventional CMOS Image Sensor Process)” 的美國專利 n〇 7,96〇,術中 描述的那樣,構成PD1的光㈣器可由綠色據光器覆蓋, 構成削的光债測器的第一子集可由綠色和紅色遽光器兩 者覆蓋,而構成PD2的光债測器的第二子集可由綠色和黑 色遽光器兩者覆蓋°此外’可使用替代和/或其他類型的渡 光器’例如反射濾光器,比如介電反射光學塗層濾光器。 本文描述的各填光器可設置在現售的光偵測器上,或 構造在與光伯測器所在的同一晶片上。再如,標題爲“具 有紅外抑制的光感測器(Light Sensors with Infrared SU:P::SSi〇n)”的美國專利N〇, u”,! i7中描述的光偵測器 可藉著用對於CMOS技術固有白勺一個或多個層(例如石夕化物 和/或多晶矽層)覆蓋有源光偵測器區域而産生主要指示紅 外光的电"IL。如117專利中描述的那樣,可在光偵測器製 造期間將氧化物層和/或氧化物井納入到光偵測器中,其中 這些層和/或井被設計成選擇地吸收紅外光或可見光或使之 21 201219760 通過。其他變例也是可能的並且在本發明的範圍之内。 本發明的某些實施例還針對産生主要指示光的目標波 長(例如可見光的波長)的電流的方法.換句話說,本發明的 實施例也針對提供具有目標光譜響應(例如與人眼相似的 響應)的感測器子系統的方法。另外,本發明的實施例也 針對使用前述感測器子系統的方法。 在前述實施例中,目標響應經常表述爲類似於觀察散 射光的典型人眼的響應β然而,並不是一定要這樣。例如, 其他目標響應可針對所産生的電流(13),其指示特定顏色的 光,例如紅、綠或藍。.這些感測器子系統可用於例如數位 相機、彩色掃描器、彩色影印機等。前面描述的實施例的 多個實例可例如同時(例如並行地)用於包括多個嚴格定義 的光譜響應的光譜儀中。本發明的實施例也可用於校準或 以其他方式控制發光元件(例如雷射二極體或發光二極 體),這些發光元件可用於光儲存子系統、接近偵測子系統 等内。 在前述實施例中,PD1經常描述爲配置成産生指示環境 紅外光的電流II,而PD2經常描述爲配置成産生指示環境 紅外光以及環境可見光的電流12。藉著從12減去η的複製 版本,所得到的電流13指示環境可見光,並因此,得到的 感測器子系統具有與典型人眼相似的光譜響應。在這些實 施例中,環境可見光被稱爲期望光,而環境紅外光被稱爲 不期望光。在這些實施例以及在其中作爲替代的目標光譜 響應的其他實施例中,電流12可從種屬上被視爲指示期望20 S 201219760 The color filter is covered, for example with red and green filters, respectively. The red filter is an infrared absorption filter, and the green filter provides a first approximation of the standard human eye spectral response, as green dominates the human horizon. However, additional and/or other color filters can be used. It is also possible to laminate the filter layers to each other. For example, the photodetection constituting pD2 may be covered by a green filter', and the photodetector constituting PD1 may be covered by a green filter and a red filter which are stacked one on another. For example, U.S. Patent No. 7,96, entitled "Amblent Light Detectors Using Conventional CMOS Image Sensor Process", which is incorporated herein by reference. 〇, as described in the art, the light (4) constituting the PD1 can be covered by the green light illuminator, and the first subset of the light dampers that are formed by the cut can be covered by both the green and red choppers, and the optical debt measurement of the PD2 is formed. The second subset of the devices may be covered by both green and black choppers. In addition, alternative and/or other types of illuminators may be used, such as reflective filters, such as dielectric reflective optical coating filters. Each of the fillers described herein can be placed on a commercially available photodetector or on the same wafer as the photodetector. For another example, the photodetector described in U.S. Patent No. 5, entitled "Light Sensors with Infrared SU: P::SSi〇n", can be described by i7. The active light detector region is covered with one or more layers inherent to CMOS technology (eg, a lithiated layer and/or a polysilicon layer) to produce an electrical "IL that primarily indicates infrared light. As described in the '117 patent Oxide layers and/or oxide wells may be incorporated into the photodetector during fabrication of the photodetector, wherein the layers and/or wells are designed to selectively absorb infrared light or visible light or pass 21 201219760. Other variations are also possible and within the scope of the invention. Certain embodiments of the invention are also directed to methods of generating a current that primarily indicates a target wavelength of light, such as the wavelength of visible light. In other words, implementation of the present invention Examples are also directed to methods of providing a sensor subsystem having a target spectral response (e.g., a response similar to that of a human eye). Additionally, embodiments of the present invention are also directed to methods of using the aforementioned sensor subsystems. In an example, the target response is often expressed as a response to a typical human eye that observes scattered light. However, this is not necessarily the case. For example, other target responses may be directed to the generated current (13), which indicates light of a particular color, For example, red, green or blue. These sensor subsystems can be used, for example, in digital cameras, color scanners, color photocopiers, etc. Multiple instances of the previously described embodiments can be used, for example, simultaneously (e.g., in parallel) for inclusion. A strictly defined spectrally responsive spectrometer. Embodiments of the invention may also be used to calibrate or otherwise control illuminating elements (e.g., laser diodes or light emitting diodes) that may be used in optical storage subsystems, Within the proximity detection subsystem, etc. In the foregoing embodiments, PD1 is often described as being configured to generate a current II indicative of ambient infrared light, while PD2 is often described as being configured to generate a current 12 indicative of ambient infrared light as well as ambient visible light. Subtracting the replicated version of η from 12, the resulting current 13 indicates ambient visible light, and thus, the resulting sensor subsystem has A typical human eye has a similar spectral response. In these embodiments, ambient visible light is referred to as desired light, while ambient infrared light is referred to as undesirable light. Other embodiments in these embodiments and in the alternative target spectral response therein In the current, the current 12 can be regarded as indicating the expectation from the species.
22 S 201219760 ’而電流11可.從種屬上視爲指示22 S 201219760 ' and the current 11 can be regarded as an indication from the species
PD2關聯的暗電流的第一階消除。 光和不期望光的電流, 望光的電流。藉著從I. 儘管以上已經描述了本發明的各個實施例,但應當理 T ’它們是作爲示例而非限定給出的。對相關領域技術人 員顯而易見的1 ’在不背離本發明的精神和範圍的情況下 可對本發明在形式和細節方面作出各種變化。 任何一個來限制 效物來限定。 本發明的寬度和範圍不應由上述示例性實施方式中的 而應當只根據所附申請專利範圍及其等 【圖式簡單說明】 圖1A示出沒有任何光譜響應成形的光偵測器的示例性 光譜響應。 圖1B示出人眼的典型光譜響應。 圖2示出一電路,其中使用電流鏡來複製由一個或多 個光偵測器產生的第一電流並從由一個或多個其他光偵測 器産生的第二電流減去複製的電流以産生可用作指示環境 光的彳§號的第三電流。 圖3A示出一類比電路,其中使用電流鏡(包括斬波電 路)來複製由一個或多個光偵測器産生的第一電流並從由一 個或多個其他光偵測器産生的第二電流減去複製的電流以 產生可用作指示環境光的信號的第三電流。 23 201219760 圖3B是示出在由圖3A的電流鏡複製前、由一個或多 個錢測器(PD1)產生的第—電流π的頻率内容的示例性 曲線圖。 , 是示出在由包含圖3Α的斬波電路的電流鏡複製 後由自或多個其他光4貞測器產生的第—電流㈣㈣ 容的示例性曲線圖。 圖D不出可用於驅動圖3Α的斬波電路的示例性斬波 信號。 a 示出圖3Α中的第二信號13的實例,該第三信號 13是❹從由—個或多個光偵測器(PD2)産生的第二電流12 中減去由圖3Α的電流鏡産生的第—電流^的複製版本而 產生的。 圖示出本發明一個實施例的電路,例如感測器子系 統’该電路可用來減小圖3Α中介紹的類比電路的失配誤差。 圖A疋不出在消除電流鏡失配誤差前圖4所示電流η 的頻率内容的示例曲線圖。 圖B疋示出在消除電流鏡失配誤差後圖4所示電流η 的頻率内容的示例曲線圖。 圖6A是示出調整(ADJ)信號如何—旦消除電流鏡的失 配誤差就收斂在恒定水平的示例性曲線圖。 圖6B疋不出由失配誤差引起的一部分電流在電流鏡的 失配誤差消除時如何收斂於零的示例性曲線圖。 圖7示出根據本發明一個實施例的圖4令介紹的可調 增益電流鏡的實現。The first order elimination of the dark current associated with PD2. The current of light and undesired light, the current of the light. By way of example, various embodiments of the invention have been described above, but they are intended to be given by way of example and not limitation. Various changes in form and detail may be made in the present invention without departing from the spirit and scope of the invention. Any one to limit the effect to limit. The breadth and scope of the present invention should not be taken from the above-described exemplary embodiments, but only in accordance with the scope of the accompanying claims, and the like. FIG. 1A shows an example of a photodetector without any spectral response shaping. Sexual spectral response. Figure 1B shows a typical spectral response of the human eye. 2 illustrates a circuit in which a current mirror is used to replicate a first current generated by one or more photodetectors and subtract the copied current from a second current generated by one or more other photodetectors. A third current that can be used as a 彳§ indicating ambient light is generated. 3A illustrates an analog circuit in which a current mirror (including a chopper circuit) is used to replicate a first current generated by one or more photodetectors and from a second generated by one or more other photodetectors The current is subtracted from the current to produce a third current that can be used as a signal indicative of ambient light. 23 201219760 FIG. 3B is an exemplary graph showing the frequency content of the first current π generated by one or more money detectors (PD1) before being copied by the current mirror of FIG. 3A. Is an exemplary graph showing the first-current (four) (four) capacitance produced by one or more other optical detectors after being copied by the current mirror including the chopper circuit of FIG. Figure D shows an exemplary chopping signal that can be used to drive the chopper circuit of Figure 3A. a shows an example of the second signal 13 in FIG. 3A, which is subtracted from the second current 12 generated by one or more photodetectors (PD2) by the current mirror of FIG. Generated by the generated copy of the first current ^. The circuit of one embodiment of the present invention is illustrated, such as a sensor subsystem </ RTI> which can be used to reduce the mismatch error of the analog circuit described in Figure 3A. Figure A shows an example plot of the frequency content of the current η shown in Figure 4 before the current mirror mismatch error is removed. Figure B is a graph showing an example of the frequency content of the current η shown in Figure 4 after eliminating the current mirror mismatch error. Fig. 6A is an exemplary graph showing how the adjustment (ADJ) signal converges to a constant level by eliminating the mismatch error of the current mirror. Figure 6B shows an exemplary graph of how a portion of the current caused by the mismatch error converges to zero when the mismatch error of the current mirror is removed. Figure 7 illustrates an implementation of the adjustable gain current mirror illustrated in Figure 4, in accordance with one embodiment of the present invention.
S 201219760 圖8示出根據本發明另一實施例的圖4中介紹 增益電流鏡的實現。 、 圖9不出根據本發明的電流鏡的可選校準的系統 圖10疋用來概括根據本發明實施例的方法的高位 程圖。 圖11不出可實現本發明的實施例的示例性系統。 圖12不出如何應用本發明的實施例以爲多種類型 戶設備提供精確的環境光感測。 【主要元件符號說明】 200 300 400 電路 202 204 電流鏡 212 類比至數位轉換器(ADC) 302 具有斬波電路的電流鏡 304 斬波電路 402, 702, 802具有斬波電路的可調增益電流鏡 420 失配校正電路 422 振幅解調器 424 數位濾波器 426 數位至類比轉換器(DAC) 804, 806, 904, 906 電流源 1002, 1004, 1006, 1008 方法步驟 1100 系統 1102 自動測試設備 (ATE) 1104 電路 可調 準流 的用 25 201219760 1106 目標電路 1108 電路板 1200 用戶設備(UE) 1202 處理器 1204 記憶體 1206 應用 1208 通信元件 1210 顯示器 1212 串列輸入/輸出(I/O)介面 1214 揚聲器/麥克風元件 1216 狹槽介面 1218 用戶識別模組 1220 韌體 1222 影像擷取元件 1224 環境光感測器(ALS)控制 1226 電源 1228 功率輸入/輸出(I/O)元件 ADJ 調整信號 CHOP (C) 斬波信號 fcHOP 斬波信號的頻率 11, 12, 13 電流 IcAL1, ICAL2 校準電流 Iir 指示環境紅外光的電流 Iref 參考電流 26 201219760S 201219760 FIG. 8 illustrates an implementation of the gain current mirror of FIG. 4 in accordance with another embodiment of the present invention. Figure 9 illustrates an alternative calibration system for a current mirror in accordance with the present invention. Figure 10A is a high level diagram for summarizing a method in accordance with an embodiment of the present invention. Figure 11 illustrates an exemplary system in which embodiments of the present invention may be implemented. Figure 12 illustrates how an embodiment of the present invention can be applied to provide accurate ambient light sensing for a variety of types of consumer devices. [Main component symbol description] 200 300 400 Circuit 202 204 Current mirror 212 Analog to digital converter (ADC) 302 Current mirror with chopper circuit 304 Chopper circuit 402, 702, 802 Adjustable gain current mirror with chopper circuit 420 Mismatch Correction Circuit 422 Amplitude Demodulator 424 Digital Filter 426 Digital to Analog Converter (DAC) 804, 806, 904, 906 Current Source 1002, 1004, 1006, 1008 Method Step 1100 System 1102 Automatic Test Equipment (ATE) 1104 Circuit Adjustable Quasi-current 25 201219760 1106 Target Circuit 1108 Circuit Board 1200 User Equipment (UE) 1202 Processor 1204 Memory 1206 Application 1208 Communication Element 1210 Display 1212 Serial Input/Output (I/O) Interface 1214 Speaker / Microphone Element 1216 Slot Interface 1218 User Identification Module 1220 Firmware 1222 Image Capture Element 1224 Ambient Light Sense (ALS) Control 1226 Power Supply 1228 Power Input/Output (I/O) Component ADJ Adjustment Signal CHOP (C) 斩Wave signal fcHOP chopping signal frequency 11, 12, 13 current IcAL1, ICAL2 calibration current Iir indicating ambient infrared light Current Iref Reference Current 26 201219760
Ivis 指示 Ml 至 M12 電晶 Nsub 減法 PD1, PD2 光偵 環境可見光的電流 體 節點 測器 27Ivis indicates Ml to M12 electro-crystal Nsub subtraction PD1, PD2 optical detection ambient visible current body node detector 27
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37663810P | 2010-08-24 | 2010-08-24 | |
US12/987,394 US8242430B2 (en) | 2010-08-24 | 2011-01-10 | Apparatuses and methods that reduce mismatch errors associated with analog subtractions used for light sensing |
US13/211,237 US8847139B2 (en) | 2010-08-24 | 2011-08-16 | Methods, sub-systems and systems that reduce a mismatch error associated with an analog circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201219760A true TW201219760A (en) | 2012-05-16 |
Family
ID=45943727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100129715A TW201219760A (en) | 2010-08-24 | 2011-08-19 | Circuits, methods, sub-systems and systems including adaptive analog subtraction for light sensing |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101754427B1 (en) |
CN (1) | CN102419204A (en) |
TW (1) | TW201219760A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9182276B2 (en) | 2013-07-31 | 2015-11-10 | Mitsumi Electric Co., Ltd. | Semiconductor integrated circuit for optical sensor |
TWI790633B (en) * | 2021-06-02 | 2023-01-21 | 神煜電子股份有限公司 | Photosensor device with temperature compensation |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109541347B (en) * | 2018-11-26 | 2020-11-06 | 国网冀北电力有限公司唐山供电公司 | Sensor for electric energy metering |
TWI717842B (en) * | 2019-09-18 | 2021-02-01 | 茂達電子股份有限公司 | Optical proximity sensor with digital correction circuit and digital correction method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7714265B2 (en) | 2005-09-30 | 2010-05-11 | Apple Inc. | Integrated proximity sensor and light sensor |
CN100444073C (en) | 2006-07-17 | 2008-12-17 | 北京中星微电子有限公司 | Automatic correcting current circuit and method |
US7928774B2 (en) | 2008-09-29 | 2011-04-19 | Infineon Technologies Ag | Adaptive drive signal adjustment for bridge EMI control |
US8242430B2 (en) | 2010-08-24 | 2012-08-14 | Intersil Americas Inc. | Apparatuses and methods that reduce mismatch errors associated with analog subtractions used for light sensing |
-
2011
- 2011-08-19 TW TW100129715A patent/TW201219760A/en unknown
- 2011-08-24 CN CN2011102539906A patent/CN102419204A/en active Pending
- 2011-08-24 KR KR1020110084546A patent/KR101754427B1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9182276B2 (en) | 2013-07-31 | 2015-11-10 | Mitsumi Electric Co., Ltd. | Semiconductor integrated circuit for optical sensor |
TWI790633B (en) * | 2021-06-02 | 2023-01-21 | 神煜電子股份有限公司 | Photosensor device with temperature compensation |
Also Published As
Publication number | Publication date |
---|---|
CN102419204A (en) | 2012-04-18 |
KR101754427B1 (en) | 2017-07-19 |
KR20120019405A (en) | 2012-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8242430B2 (en) | Apparatuses and methods that reduce mismatch errors associated with analog subtractions used for light sensing | |
JP5786254B2 (en) | Method and apparatus for controlling light emitting devices in a terminal device, and terminal device | |
US9310247B2 (en) | Dark current calibration for a photosensitive device | |
CN105744247B (en) | The method, apparatus of blank level adjustment and mobile equipment are carried out in a mobile device | |
US10764521B2 (en) | Image sensor and electronic device comprising the same | |
KR100578647B1 (en) | Method for integration of image sensor | |
US20120262571A1 (en) | Camera flash for improved color balance | |
TWI555402B (en) | Image processing system with on-chip test mode for column adcs | |
TW201219760A (en) | Circuits, methods, sub-systems and systems including adaptive analog subtraction for light sensing | |
US11860030B2 (en) | Methods and apparatuses for detecting ambient light illuminance and for computing correction coefficient and electronic device | |
US8144228B2 (en) | Image sensor having a ramp generator and method for calibrating a ramp slope value of a ramp signal | |
US20160224055A1 (en) | Abnormal clock rate detection in imaging sensor arrays | |
JP2018186491A (en) | Active pixel circuit for flight time system and operation method of the same | |
EP2423776B1 (en) | Circuits, methods, sub-systems and systems including adaptive analog subtraction for light sensing | |
JPH11317666A (en) | Digital automatic gain control circuit | |
US9280184B2 (en) | Device and method of adjusting electromagnetic radiation transmitted by an optical element | |
EP2833622B1 (en) | Diagnosis of the faulty state of a bolometric detection matrix | |
TWI380260B (en) | Ambient light detection system and related method | |
FR3116338A1 (en) | Method for measuring ambient luminosity and corresponding integrated device | |
FR2728074A1 (en) | Detection of electric power consumed by nonlinear load, such as computer peripheral device | |
JP2007281939A (en) | Receiver | |
Kłosowski et al. | A high-efficient measurement system with optimization feature for prototype CMOS image sensors | |
US8692915B2 (en) | Correlated double sampling device of image sensor and method thereof | |
CA2779012C (en) | Device and method of adjusting electromagnetic radiation transmitted by an optical element | |
US20240267006A1 (en) | High flux detection and imaging using capacitor transimpedance amplifier (ctia)-based unit cells in imaging devices |