TW201218322A - Semiconductor package structure and manufacturing method thereof - Google Patents
Semiconductor package structure and manufacturing method thereof Download PDFInfo
- Publication number
- TW201218322A TW201218322A TW100105268A TW100105268A TW201218322A TW 201218322 A TW201218322 A TW 201218322A TW 100105268 A TW100105268 A TW 100105268A TW 100105268 A TW100105268 A TW 100105268A TW 201218322 A TW201218322 A TW 201218322A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- substrate
- patterned
- disposed
- dielectric layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04105—Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/12105—Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/19—Manufacturing methods of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73267—Layer and HDI connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8312—Aligning
- H01L2224/83136—Aligning involving guiding structures, e.g. spacers or supporting members
- H01L2224/83138—Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
- H01L2224/8314—Guiding structures outside the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83192—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/922—Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
- H01L2224/9222—Sequential connecting processes
- H01L2224/92242—Sequential connecting processes the first connecting process involving a layer connector
- H01L2224/92244—Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
201218322 ASEK23 8 5- l-NEW-FINAL-TW-20110217 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體元件及其製作方法,且 特別是有關於一種半導體封裝結構及其製作方法。 【先前技術】 晶片封裝的目的在於保護裸露的晶片、降低 點的密度及提供晶;^賴散熱。f見㈣ 片透過打線接合(wire bonding )或瓚曰拉人, 曰 u , ^ 或復晶接合(flip chb bondmg)等对而絲至—難餘 _ 點可電性連接至封裝載板。因此ϋ上的接 由封裝載板重新配置,以符合下—的为佈可藉 點分佈。 Τ I級的外部元件的接 【發明内容】 結構,用以封裝晶片。 結構的製作方法,用以201218322 ASEK23 8 5- l-NEW-FINAL-TW-20110217 VI. Field of the Invention: The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor package structure and Production Method. [Prior Art] The purpose of the chip package is to protect the exposed wafer, reduce the density of dots, and provide crystals; f See (4) The piece is wire-bonded or pulled, 曰 u , ^ or flip-bonded (flip chb bondmg), etc., to the point - the _ point can be electrically connected to the package carrier. Therefore, the package on the board is reconfigured to match the distribution of the next. ΤI-level external component connection [Summary] Structure for packaging a wafer. Structure manufacturing method for
本發明提供一種半導體封裳 本發明提供一種半導體封裝 製作上述之半導體封裝結構。 本發明提出-種半導體封裝 -環狀阻擋體、一黏著層、」、匕括-基板、 一重佈線路結構。基板且有—=、—第—介電層以及 於基板的上表面上,1中面。環狀阻擔體配置 置凹穴。黏著層配置;容體,定義出-容 穴内,且具有遠離基板之上 阳片配置於容置凹 主動面上的多個接墊,:,的—主動面以及配置於 妾塾其令晶片透過勒著層而固定於基 201218322 ASEK2385-1-NEW-FINAL-TW-20110217 板上。第一介電層配置於基板的上表面上且環繞晶片。 重佈線路結構配置於第一㈡介電層上,且包括至少一圖 案化導電層,其中圖案化導電層與晶片的接塾電性連接。 晶 ,本發明另提出-種半導體封裝結構的製作方法,其 中製作方法包括下述步驟。提供_基板及多個環狀阻播 體。基板具有一上表面,而環狀阻擔體形成在上表面上, 士每一環狀阻擋體與基板定義出一容置凹穴。形成一黏 著層於每一容置凹穴内。配置—晶片於每一容置凹穴 内’其中每-晶 >;透過黏著層而蚊於基板上,且每一 晶片具有遠離基板之上表_—主動面以及配置於主動 面上的多個接墊。配置一第一介電層於基板的上表面 上’其中第-介電層環繞晶片,且第—介電層遠離基板 之上表面的-表面與晶月的主動面實質上切齊(或低於 片主動面)。形成一重佈線路結構於第一㈡介電層上, ,中重佈線路結構包括至少—圖案化導電層,且圖案化 V電層與晶片的接塾電性連接。 基於上述,當晶片透過黏著層而配置於基板上時, 本發明^環狀阻髓可有效限制晶片相對於基板的水 ^舌動fcU。因此’晶片與基板之間的對位精準度可提 回,而半導體封裝結構的製程良率也可提高。 f讓本發明之上述特徵和優點能更明顯易懂,下文 特舉實施例,並配合所附圖式作詳細說明如下。 實施方式】 圖1A為本發明之一實施例之一種半導體封裝結構 201218322 ASEK2385'! -NEW-FINAL-TW-20110217 的剖面示意圖。圖1B為圖!八之半導體 阻擔體的俯視示意圖。請參考圖1A與圖’、構之%狀 例中,半導體封裝結構⑽包括一基板u〇、實施 體二-銅層125、-黏著層13〇、-晶片14:二且: 電層152及一重佈線路結構2〇〇。 減ΐ=fr 12。環狀阻擋體i2〇a配置 ,基板m的上表面112上,其中環狀阻撞體】施料The present invention provides a semiconductor package. The present invention provides a semiconductor package for fabricating the above semiconductor package structure. The present invention proposes a semiconductor package - an annular barrier, an adhesive layer, a substrate, a substrate, and a repeating wiring structure. The substrate has a —=, — a first dielectric layer and an upper surface of the substrate, and a middle surface. The annular resist body is arranged to be recessed. The adhesive layer is disposed in the cavity, and has a plurality of pads disposed on the receiving concave active surface away from the substrate, and the active surface is disposed on the substrate Pull the layer and fix it on the base 201218322 ASEK2385-1-NEW-FINAL-TW-20110217. The first dielectric layer is disposed on the upper surface of the substrate and surrounds the wafer. The redistribution line structure is disposed on the first (di) dielectric layer and includes at least one patterned conductive layer, wherein the patterned conductive layer is electrically connected to the interface of the wafer. The present invention further proposes a method of fabricating a semiconductor package structure, wherein the fabrication method comprises the following steps. A _ substrate and a plurality of ring-shaped blocking bodies are provided. The substrate has an upper surface, and the annular resist is formed on the upper surface, and each of the annular barrier defines a receiving recess with the substrate. An adhesive layer is formed in each of the receiving pockets. Disposing a wafer in each of the accommodating pockets, wherein each of the crystals passes through the adhesive layer and is mosquito-repellent on the substrate, and each of the wafers has a surface away from the substrate and a plurality of surfaces disposed on the active surface Pads. Configuring a first dielectric layer on the upper surface of the substrate, wherein the first dielectric layer surrounds the wafer, and the surface of the first dielectric layer away from the upper surface of the substrate is substantially aligned with the active surface of the crystal moon (or low) On the active side of the film). Forming a redistribution line structure on the first (di) dielectric layer, the medium redistribution line structure includes at least a patterned conductive layer, and the patterned V electrical layer is electrically connected to the interface of the wafer. Based on the above, when the wafer is disposed on the substrate through the adhesive layer, the ring-shaped nucleus of the present invention can effectively limit the water-flip force fcU of the wafer relative to the substrate. Therefore, the alignment accuracy between the wafer and the substrate can be improved, and the process yield of the semiconductor package structure can be improved. The above features and advantages of the present invention will become more apparent from the following description. 1A is a schematic cross-sectional view of a semiconductor package structure 201218322 ASEK2385'! -NEW-FINAL-TW-20110217 according to an embodiment of the present invention. Figure 1B is a picture! A schematic view of the block of the semiconductor of the eight. Referring to FIG. 1A and FIG. 1 , the semiconductor package structure (10) includes a substrate u, an implementation body two-copper layer 125, an adhesion layer 13A, a wafer 14: two: an electrical layer 152 and A repeating line structure 2〇〇. Decrease = fr 12. The annular blocking body i2〇a is disposed on the upper surface 112 of the substrate m, wherein the annular blocking body is applied
板110定義出-容置凹穴122a,環狀阻擔體12如實質= 為-封閉的框形環狀阻撞體,如圖1B所示。銅層125配 置於基板110相對於上表面112的一下表面114上。符 著層130酉己置於基板110的上表面112上,且部分勒著 層130位於容置凹穴既内。晶片140透過黏著層130 而固定於基板no上。晶片14G具有遠離基板11〇之上 表面112的一主動面142以及配置於主動面142上的多 個接墊144。 m第w電層丨52配置於基板110的上表面112上且 ¥繞晶片140。在本實施例中,半導體封裝結構1〇〇更包 括一導電層154、156,其中這些導電層154、156分別位 於第-介電層152的相對兩側表面上,且這些導電層 154、156與第一介電層152可視為一塾高結構層。其中, 此塾高結構層遠離基板11Q之上表面ιι2的—表面(意 即導電層154遠離第—介電層152的表面)低於或實質 上%與W Μ0Μ動面142’且此塾高結構層可透過黏 者層130而固定於基板11()的上表面μ上。在另一未 繪不的實施例中,塾高結構層亦可僅為一介電層,其中 201218322 A〇c.ivzj85-l-lSrEW-FINAL-TW-20110217 此介電層的材質例如是含有玻纖的樹脂或無含破纖的樹 脂,其例如是ABF樹脂或ABF-like樹脂。其中,當介電 層的材質為含有玻纖的樹脂時,可有效提高封裝的強度 及其均勻性。 重佈線路結構200配置於導電層154上。在本實施 例中,重佈線路結構200包括至少一第二介電層21〇 (圖 1A中僅繪示一個)、至少一圖案化導電層220 (圖1A 中僅缘示一個)以及一防鋅層230。第二介電層21〇配置 於位於第一介電層152上的導電層154上與晶片14〇上, 其中第二介電層210具有多個第一開口 212,而這些第一 開口 212分別暴露出晶片140的這些接塾144。圖案化導 電層220配置於第二介電層210上,其中圖案化導電層 220透過這些第一開口 212與晶片140的這些接墊144電 性連接。防銲層230配置於圖案化導電層22〇上,且具 有多個第二開口 232,其中這些第二開口 232暴露出部分 圖案化導電層220,且這些第二開口 232所暴露出的部分 圖案化導電層220可定義出多個接點234,用以作為與一 外部電路(未繪示)電性連接的接點。 在此必須說明的是,本發明並不限定重佈線路結構 2〇〇的形悲,雖然此處所提及的重佈線路結構2〇〇具體化 疋由一個第二介電層21〇、一個圖案化導電層22〇以及一 個防銲層230所構成的疊層結構。但,於其他實施例中, 重佈線路結構200亦可是由一個防銲層23〇以及多個交 替堆疊之第二介電層210及圖案化導電層22〇所組成之 堆疊結構,其中這些第二介電層21〇與圖案化導電層22〇 201218322 ASitiK^i85-l-NEW-FINAL-TW-20110217 位於防銲層230與基板lio之間,且這些圖案化導電層 220可透過多個導電連接結構(未繪示),例如是導電通 孔,而彼此電性連接。因此,圖1A所繪示之重佈線路結 構200僅為舉例說明,並不以此為限。 在本實施例中’基板110例如是一含有玻纖的樹脂 基板。環狀阻擋體120a的材質可包括金屬、焊料或樹脂, 其中金屬例如是銅。再者,環狀阻擋體12〇a的高度可介 於20微米至1〇〇微米之間,較佳地,是介於3〇微米至 # 70微米之間’而環狀阻擋體120a的寬度可介於1〇〇微米 至3000微米之間。此外’雖然此處所提及的半導體封裝 結構100具有銅層125,但於其他實施例中,半導體封裝 結構100亦可不具有銅層125。簡言之,本實施例之半導 體封裝結構100僅為舉例說明,並不以此為限。 §曰曰片140透過黏著層130而配置於基板上時, 裱狀阻擋體120a可有效限制晶片14〇相對於基板11〇的 水平活動範圍。因此,晶片14〇與基板11〇之間的對位 鲁 精準度可提高。 ^然而,本發明並不限定環狀阻擋體120a的結構設 计,雖然此處所提及的環狀阻擋體12〇&具體化為一封閉 的框形環狀阻舰’但已知的其他能賴_定位效果 的結構設計’仍屬於本㈣可採㈣技術方案,不脫離 本發明所欲保護的範圍。 一舉例來說,請參考圖2A,環狀阻擔體例如為 一具有至少一缺口 124b (圖2A中繪示四個缺口 ^扑) 的矩形環狀阻擔體,其中這些缺口 1施分別位於矩形環 201218322 l-NEW-FINAL-TW-20110217 ASfcK2385- 狀阻擔體的四個側邊S1。 U ^是’請參考圖2B,環狀阻擔體隱例如為一 缺口 12如(圖2B 會示八個缺口 124C)的 大阻擋體,其中矩形環狀阻擔體的每—側邊Μ皆 具有兩個缺口 124c。 或者疋,5月參考圖2C,環狀阻播體例如為一 具有^ 缺口 124d (圖2C情示八個缺σ 124d)的 ,形衣狀阻擋體’其中矩形環狀阻擔體的這些缺口 124d 位於^環狀阻擋體的四個側邊S3與四個角落c處。 =本實施例之環狀阻擔體12% (或⑽c、md)為 :故些缺口 l24b (或124e、124d)的矩形環狀阻擋體 邠刀黏著層130受到晶片14〇的擠壓而可延伸至缺 (或124c、124d)内’以使晶片⑽能平整地配 ,於谷置凹穴心内,意即晶片⑽之主動面M2可維 一以下將以另一實施例配合圖3A至圖3K來詳細說明 一半導體封裝結構100a的製作方法。 固3A至圖3K以剖面繪示本發明一實施例之半導體 封裝結構的製作方法。請參考圖3A,首先,提供一基板 110、多個環狀阻擋體12〇a (圖3八中皆僅繪示一個)以 及銅層125。基板no具有一上表面112以及一相對於 上表面112的下表面Π4,而環狀阻擋體12〇a形成在基 板11〇的上表面112上,銅層125配置於基板丨川的下 表面114上。其中,環狀阻擔體i2〇a與基板11〇可定義 出办置凹穴122a。在此,環狀阻擋體i20a實質上為一 201218322 ASEK23 85-1 -NEW-FINAL-TW-20110217 封閉的環狀阻擋體,如圖IB所示。 當然,於其他實施例中,請參考圖2A至圖2C,環 狀阻擋體120b、120b、120c亦可為具有至少一缺口 124b 〜124d的矩形環狀阻擋體,其中這些缺口 124b〜124d至 少位於環狀阻擋體12〇b、120b、120c的側邊SI、S2、S3 或角洛C處,在此並不加以限制。 本實施例中’基板110的形狀例如是矩形,意即基 板110並非是具有特定尺寸限制之晶圓,其中基板110The plate 110 defines a receiving pocket 122a, such as a substantially closed-closed frame-shaped annular blocking body, as shown in Figure 1B. The copper layer 125 is disposed on the lower surface 114 of the substrate 110 relative to the upper surface 112. The layer 130 is placed on the upper surface 112 of the substrate 110, and a portion of the tensile layer 130 is located within the receiving recess. The wafer 140 is fixed to the substrate no via the adhesive layer 130. The wafer 14G has an active surface 142 away from the upper surface 112 of the substrate 11 and a plurality of pads 144 disposed on the active surface 142. The mth electrical layer 52 is disposed on the upper surface 112 of the substrate 110 and is wound around the wafer 140. In this embodiment, the semiconductor package structure 1 further includes a conductive layer 154, 156, wherein the conductive layers 154, 156 are respectively located on opposite side surfaces of the first dielectric layer 152, and the conductive layers 154, 156 The first dielectric layer 152 can be viewed as a high structural layer. Wherein, the surface of the germanium high structure layer away from the surface of the upper surface of the substrate 11Q (that is, the surface of the conductive layer 154 away from the first dielectric layer 152) is lower than or substantially intrinsic with the W Μ0 tilting surface 142 ′ and is higher The structural layer can be fixed to the upper surface μ of the substrate 11 () through the adhesive layer 130. In another embodiment, the germanium high structural layer may also be only a dielectric layer, wherein 201218322 A〇c.ivzj85-l-lSrEW-FINAL-TW-20110217 the material of the dielectric layer is, for example, A glass fiber resin or a fiber containing no fiber, which is, for example, an ABF resin or an ABF-like resin. Among them, when the material of the dielectric layer is a resin containing glass fiber, the strength and uniformity of the package can be effectively improved. The redistribution line structure 200 is disposed on the conductive layer 154. In this embodiment, the redistribution line structure 200 includes at least one second dielectric layer 21A (only one is shown in FIG. 1A), at least one patterned conductive layer 220 (only one of which is shown in FIG. 1A), and an Zinc layer 230. The second dielectric layer 21 is disposed on the conductive layer 154 on the first dielectric layer 152 and on the wafer 14 , wherein the second dielectric layer 210 has a plurality of first openings 212 , and the first openings 212 respectively These ports 144 of the wafer 140 are exposed. The patterned conductive layer 220 is disposed on the second dielectric layer 210, wherein the patterned conductive layer 220 is electrically connected to the pads 144 of the wafer 140 through the first openings 212. The solder resist layer 230 is disposed on the patterned conductive layer 22 , and has a plurality of second openings 232 , wherein the second openings 232 expose a portion of the patterned conductive layer 220 , and a portion of the patterns of the second openings 232 are exposed. The conductive layer 220 can define a plurality of contacts 234 for use as contacts for electrical connection to an external circuit (not shown). It should be noted here that the present invention does not limit the shape of the redistribution line structure 2,, although the redistribution line structure 2 此处 described herein is embodied by a second dielectric layer 21〇, A laminated structure of a patterned conductive layer 22A and a solder resist layer 230. However, in other embodiments, the redistribution wiring structure 200 may also be a stacked structure composed of a solder resist layer 23 〇 and a plurality of alternately stacked second dielectric layers 210 and patterned conductive layers 22 , The second dielectric layer 21〇 and the patterned conductive layer 22〇201218322 ASitiK^i85-l-NEW-FINAL-TW-20110217 are located between the solder resist layer 230 and the substrate lio, and the patterned conductive layer 220 can transmit a plurality of conductive layers. Connection structures (not shown), such as conductive vias, are electrically connected to each other. Therefore, the redistribution circuit structure 200 illustrated in FIG. 1A is for illustrative purposes only and is not limited thereto. In the present embodiment, the substrate 110 is, for example, a resin substrate containing glass fibers. The material of the annular barrier 120a may include metal, solder or resin, wherein the metal is, for example, copper. Furthermore, the height of the annular barrier 12a may be between 20 micrometers and 1 micrometer, preferably between 3 micrometers and #70 micrometers, and the width of the annular barrier body 120a. It can range from 1 μm to 3000 μm. Further, although the semiconductor package structure 100 referred to herein has the copper layer 125, in other embodiments, the semiconductor package structure 100 may not have the copper layer 125. In short, the semiconductor package structure 100 of the present embodiment is merely illustrative and not limited thereto. When the cymbal sheet 140 is disposed on the substrate through the adhesive layer 130, the dam-shaped barrier 120a can effectively limit the horizontal range of motion of the wafer 14 〇 relative to the substrate 11 。. Therefore, the alignment accuracy between the wafer 14A and the substrate 11A can be improved. However, the present invention does not limit the structural design of the annular barrier 120a, although the annular barrier 12〇& referred to herein is embodied as a closed frame-shaped annular barrier 'but known Other structural designs that can rely on the locating effect are still within the scope of this (four) pleasing (four) technical solution without departing from the scope of the invention. For example, referring to FIG. 2A, the annular resisting body is, for example, a rectangular annular resist having at least one notch 124b (four notches shown in FIG. 2A), wherein the notches 1 are respectively located Rectangular ring 201218322 l-NEW-FINAL-TW-20110217 ASfcK2385- Four sides S1 of the resistive body. U ^ is 'Please refer to FIG. 2B . The annular resist body is, for example, a large barrier such as a notch 12 (the eight notches 124C are shown in FIG. 2B ), wherein each side of the rectangular annular resist is There are two notches 124c. Alternatively, in May, referring to FIG. 2C, the annular blocking body is, for example, a notch 124d (FIG. 2C shows eight missing σ 124d), and the shape-like blocking body 'the gap of the rectangular annular resisting body 124d is located at four sides S3 and four corners c of the annular barrier. The annular resist body 12% (or (10) c, md) of the present embodiment is such that the rectangular annular barrier squeegee adhesive layer 130 of the notches l24b (or 124e, 124d) is pressed by the wafer 14 而. Extending into the deficiencies (or 124c, 124d) to enable the wafer (10) to be evenly disposed in the valley of the valley, meaning that the active surface M2 of the wafer (10) can be used in conjunction with FIG. 3A in another embodiment. FIG. 3K illustrates in detail a method of fabricating a semiconductor package structure 100a. The solid 3A to FIG. 3K are cross-sectional views showing a method of fabricating a semiconductor package structure according to an embodiment of the present invention. Referring to FIG. 3A, first, a substrate 110, a plurality of annular barriers 12a (only one of which is shown in FIG. 3), and a copper layer 125 are provided. The substrate no has an upper surface 112 and a lower surface Π4 with respect to the upper surface 112, and the annular barrier 12〇a is formed on the upper surface 112 of the substrate 11〇, and the copper layer 125 is disposed on the lower surface 114 of the substrate on. Wherein, the annular resist body i2〇a and the substrate 11A define a recess 122a. Here, the annular barrier body i20a is substantially a 201218322 ASEK23 85-1 -NEW-FINAL-TW-20110217 closed annular barrier, as shown in FIG. Of course, in other embodiments, referring to FIG. 2A to FIG. 2C, the annular barriers 120b, 120b, and 120c may also be rectangular annular barriers having at least one cutouts 124b to 124d, wherein the cutouts 124b to 124d are located at least. The sides SI, S2, S3 or the corners C of the annular barriers 12〇b, 120b, 120c are not limited herein. The shape of the substrate 110 in this embodiment is, for example, a rectangle, that is, the substrate 110 is not a wafer having a specific size limitation, wherein the substrate 110
例如是一含有玻纖的樹脂基板。環狀阻擋體120a的材質 了包括金屬、焊料或樹脂,其中金屬例如是銅。此外, 在本實施例中’環狀阻擋體12〇a的高度可介於2〇微米 至100微米之間,較佳地,是介於30微米至70微米之 間,而環狀阻擋體120a的寬度可介於100微米至3000 微米之間。 接著,請參考圖3B,形成一黏著層13〇於基板11〇 的上表面112上’其中部分黏著層13〇位於容置凹穴122a 内此外,黏著層13〇的材質例如是環氧樹脂(卬⑽…。 在此必須說明的是,本發明並不限定黏著層13〇位 置’雖然此處所提及的黏著層13〇具體化為位於基板ιι〇 的上表面112上,意即位於容置凹穴122a ::電㈣所欲放置的位置上。但,於其他未以 =:例中’黏者層13〇亦可僅配置於容置凹穴必内。 此’圖3B所綠示之黏著層π〇的位置僅為舉例說 並不以此為限。 接著,請參考圖3C,配置一晶片140於容置凹穴U2a 201218322 ASEK2385-1-NEW-FINAL-TW-20110217 内,其中晶片140是透過黏著層130而固定於基板11〇 上。洋細來說,晶片14〇具有遠離基板11〇之上表面m 的-主動面142以及配置於主動面142上的多個接塾 144。特別是,由3C +可得知,本實施例之環狀阻擔 體120a可限制晶片14〇相對於基板11〇的水平活動範 圍,意即晶片140的部分側邊會承靠或位於環狀阻擋體 120a與基板11〇所構成之容置凹穴122a中。 當本實施例之環狀阻擋體120b (或12〇c、12〇d)為 具有這些缺口 124b (或124c、124d)矩形環狀阻擋體(見 於圖2A至圖2C)時,部分黏著層130可延伸至缺口 12牝 (或124c、124d)内,以使晶片140能平整地配置於容 置凹穴122a内。因此,晶片14〇之主動面142相對於基 板110可維持水平,這有利於後續製程。 接著,請參考圖3D,配置一第一介電層152於基板 110的上表面112上,其中第一介電層152環繞晶片14〇, 且第一介電層152遠離基板11〇之上表面112的一表面 與晶片140的主動面142實質上切齊(或低於晶片主動 面)。接著,於第一介電層152的相對兩側表面上分別配 置導電層154、156,其中這些導電層154、156與第一介 電層152可視為一塾高結構層,而此整高結構層可透過 黏著層130而固定於基板110的上表面112上。在另一 貫施例中,請參考圖4A,墊高結構層亦可僅為一第一介 電層150,其中第一介電層150的材質例如是含有玻纖的 樹脂或無含玻纖的樹脂,其例如是ABF樹脂或ABF-like '月曰。當第一介電層150的材質為含有玻纖的樹脂時, 201218322 ASEK2385-1-NEW-FINAL-TW-20110217 可有效提高封裝的強度及其均勻性。 接著,形成一重佈線路結構200a (見於圖3J)於導 電層154上。在本實施例中,形成重佈線路結構2〇〇a的 步驟如圖3E至圖31所示。首先,請參考圖3E,配置一 第二介電層210於墊高結構層(即第一介電層152上的 導電層154上)與晶片140的主動表面M2上。當然, 於圖4B中,第二介電層210可直接配置於介電層150與 晶片140的主動表面142上。然後,在於第二介電層21〇 鲁 上形成夕個暴疼出晶片140之這些接塾144的第一開口 212,其中這些第一開口 212的形成方式例如是透過雷射 鑽孔或曝光成孔(”ph〇t〇 via”)’而第二介電層210的材 質例如是背膠銅箔(resin coated COpper)、樹脂、 ABF-like樹脂、感光型樹脂或prepreg樹脂。 接著,請參考圖3F,形成一電鍍種子層225於第二 介電層210上以及這些第一開口 212内。 接著,請參考圖3G,形成一圖案化光阻層228於電 • 鍍種子層225上,其中圖案化光阻層228暴露出部分位 於這些第-開口 212内以及第二介電層21〇上的電鑛種 子層225。 接著,請參考圖3H,以圖案化光阻層228為一電鍍 罩幕進行-電鑛製程,以電鍍一圖案化導電層22〇於圖 案化光阻層228所暴露出的部分電锻種子層225上。圖 ^導電層220透過這些第—開口 212與晶片14〇的這 ^接塾144電性連接。之後’移除圖案化光阻層228及 ”下方之部分電鍍種子層225,以暴露出部分第二介電層 11 201218322 ASEK23 85-1-师 W-FINAL-TW-2011〇217 210。 電声圖J31,形成—防銲層230於圖案化導 以;、楚叫層230覆蓋部分圖案化導電層220 及^ ;|電層21Q。在本實施例中 232,且這些第二開口232暴‘部分圖 势作導電層 至此,A致完成重佈線路結構200a的 最後For example, it is a resin substrate containing glass fiber. The material of the annular barrier 120a includes metal, solder or resin, wherein the metal is, for example, copper. Further, in the present embodiment, the height of the 'annular barrier body 12〇a may be between 2 μm and 100 μm, preferably between 30 μm and 70 μm, and the annular barrier 120a The width can range from 100 microns to 3000 microns. Next, referring to FIG. 3B, an adhesive layer 13 is formed on the upper surface 112 of the substrate 11', wherein a portion of the adhesive layer 13 is located in the receiving recess 122a. Further, the adhesive layer 13 is made of epoxy resin.卬(10).... It must be noted herein that the present invention does not limit the position of the adhesive layer 13〇' although the adhesive layer 13〇 mentioned herein is embodied as being located on the upper surface 112 of the substrate ιι, meaning Place the recess 122a::Electrical (4) where it is to be placed. However, in other cases where the 'adhesive layer 13' can be placed in the recessed pocket, it can only be placed in the recess. This is shown in Figure 3B. The position of the adhesive layer π 仅为 is only limited by way of example. Next, referring to FIG. 3C , a wafer 140 is disposed in the receiving pocket U2a 201218322 ASEK2385-1-NEW-FINAL-TW-20110217, wherein The wafer 140 is fixed to the substrate 11 through the adhesive layer 130. The wafer 14 has an active surface 142 away from the upper surface m of the substrate 11 and a plurality of interfaces 144 disposed on the active surface 142. In particular, it can be known from 3C + that the annular resist body 120a of the present embodiment can limit the wafer 14〇. For the horizontal range of motion of the substrate 11 , it is meant that a portion of the side of the wafer 140 will bear or be located in the receiving recess 122a formed by the annular barrier 120a and the substrate 11〇. 120b (or 12〇c, 12〇d) is a rectangular annular barrier having these notches 124b (or 124c, 124d) (see Figures 2A-2C), the partial adhesive layer 130 can extend to the notch 12牝 (or 124c) 124d), so that the wafer 140 can be disposed flatly in the accommodating recess 122a. Therefore, the active surface 142 of the wafer 14 can be maintained horizontal relative to the substrate 110, which is advantageous for subsequent processes. Next, please refer to FIG. 3D. A first dielectric layer 152 is disposed on the upper surface 112 of the substrate 110, wherein the first dielectric layer 152 surrounds the wafer 14 and the first dielectric layer 152 is away from a surface and a wafer of the upper surface 112 of the substrate 11 The active surface 142 of the 140 is substantially aligned (or lower than the active surface of the wafer). Next, conductive layers 154, 156 are disposed on opposite side surfaces of the first dielectric layer 152, respectively, wherein the conductive layers 154, 156 and A dielectric layer 152 can be viewed as a high structural layer, and the entire high structure The adhesion layer 130 can be fixed on the upper surface 112 of the substrate 110. In another embodiment, please refer to FIG. 4A, the pad structure layer can also be only a first dielectric layer 150, wherein the first dielectric layer The material of 150 is, for example, a glass fiber-containing resin or a glass fiber-free resin, which is, for example, ABF resin or ABF-like 'moon 曰. When the first dielectric layer 150 is made of a glass fiber-containing resin, 201218322 ASEK2385 -1-NEW-FINAL-TW-20110217 can effectively improve the strength and uniformity of the package. Next, a redistribution wiring structure 200a (see Fig. 3J) is formed on the conductive layer 154. In the present embodiment, the steps of forming the redistribution line structure 2A are as shown in Figs. 3E to 31. First, referring to FIG. 3E, a second dielectric layer 210 is disposed on the pad structure layer (ie, the conductive layer 154 on the first dielectric layer 152) and the active surface M2 of the wafer 140. Of course, in FIG. 4B, the second dielectric layer 210 can be disposed directly on the dielectric layer 150 and the active surface 142 of the wafer 140. Then, a first opening 212 of the tabs 144 of the wafer 140 is formed on the second dielectric layer 21, wherein the first openings 212 are formed by, for example, laser drilling or exposure. The material of the second dielectric layer 210 is, for example, a resin coated COpper, a resin, an ABF-like resin, a photosensitive resin or a prepreg resin. Next, referring to FIG. 3F, a plating seed layer 225 is formed on the second dielectric layer 210 and in the first openings 212. Next, referring to FIG. 3G, a patterned photoresist layer 228 is formed on the electroplated seed layer 225, wherein the exposed photoresist layer 228 is partially exposed in the first opening 212 and the second dielectric layer 21 The electric ore seed layer 225. Next, referring to FIG. 3H, the patterned photoresist layer 228 is used as a plating mask to perform an electro-minening process to plate a patterned conductive layer 22 to expose a portion of the electro-forged seed layer exposed by the patterned photoresist layer 228. 225. The conductive layer 220 is electrically connected to the via 144 of the wafer 14 through the first opening 212. A portion of the plating seed layer 225 under the patterned photoresist layer 228 and below is then removed to expose a portion of the second dielectric layer 11 201218322 ASEK23 85-1-WW-FINAL-TW-2011〇217 210. Figure J31, forming - the solder resist layer 230 is patterned, and the portion 230 is covered with a portion of the patterned conductive layer 220 and the electrical layer 21Q. In this embodiment, 232, and the second openings 232 are violent' Part of the figure acts as a conductive layer to this point, and A completes the last of the redistributed line structure 200a.
_時參考圖31與圖3 j,沿著多條切割線[ 來進行-JF體化製程’以形成多個半導體封裝結構論 ^圖3J中僅缘示一個)。至此,大致完成半導體封裝結 構100a的製作。 當然,請參考圖3K,為了增加半導體封裝結構i〇〇a 的應用性,亦可於進行單體化製程之前,先分別形成多 個銲球250於防銲層23〇之這些第二開口 232所暴露出 部分圖案化導電層22G上’意即這些接點234,以使這些 銲球250直接接觸圖案化導電層22〇。而後,再進行單& 化製程,而形成多個半導體封裝結構1〇〇b (圖3K中僅Referring to FIG. 31 and FIG. 3j, a plurality of dicing lines are performed [to perform a -JF bulking process] to form a plurality of semiconductor package structures. FIG. 3J only shows one). Thus far, the fabrication of the semiconductor package structure 100a is substantially completed. Of course, referring to FIG. 3K, in order to increase the applicability of the semiconductor package structure i〇〇a, a plurality of solder balls 250 may be separately formed in the second openings 232 of the solder resist layer 23 before the singulation process. The portions of the patterned conductive layer 22G are exposed to mean the contacts 234 such that the solder balls 250 directly contact the patterned conductive layer 22A. Then, a single & process is performed to form a plurality of semiconductor package structures 1b (only in FIG. 3K)
綠示一個)。此外,雖然此處所提及的半導體封裝結構 100a、100b具有位於基板11〇之下表面114上的銅層 125 ’但於其他實施例中’半導體封裝結構100a、l〇〇b 亦可不具有銅層125,意即可於進行單體化製程後,移除 鋼層125,以暴露出基板的下表面114。簡言之,本實施 例之半導體封裝結構1〇〇a、1〇〇b僅為舉例說明,並不以 此為限。 此外’以下將利用二個實施例來說明半導體封裝結 £ 12 201218322 ASEK2385-1-NEW-FINAL-TW-20110217 構的製作方法之應用。必須說明的是,下述實施例沿用 前述實施例的元件標號與部分内容,其中採用相同的標 號來表示相同或近似的元件,並且省略了相同技術内容 的說明。關於省略部分的說明可參考前述實施例’下述 實施例不再重複贅述。 圖5A至圖5K以剖面繪示本發明另〆實施例之半導 體封裝結構的製作方法。請參考圖5A,首先,提供一基 板110以及二銅層125a、125b。基板110具有一上表面 # 112以及一相對於上表面112的下表面114,而這些銅層 125a、125b分別配置於基板11〇的上表面112與下表面 114 上。 接著,請參考圖5B,形成至少一貫穿基板11〇的導 電通孔結構160 (圖5B僅示意地繪示兩個),其中這些 導電通孔結構160連接基板110的上表面112與下表面 114。接著,形成至少一第一接墊162(圖5B僅示意地繪 示兩個)以及一圖案化線路層164於基板110的上表面 φ 112上,以及形成至少一第二接墊166 (圖5B僅示意地 繪示兩個)於基板110的下表面114上。 在本實施例中,這些導電通孔結構160可透過機械 鑽孔及電鍍通孔(PTH)的方式所形成。這些第一接墊 162與這些第二接墊166可分別透過圖案化這些銅層 125a、125b的方式所形成。此外,這些第一接墊162與 這些第二接墊166分別連接這些導電通孔結構160。 接著,請再參考圖5B,形成至少一環狀阻擋體12〇a 於基板110的上表面112上’其中環狀阻擔體i2〇a與基 13 201218322 j 85-1 -NEW-FINAL-TW-20110217 板110可疋義出一容置凹穴122a。這些環狀阻擒體12〇a 可透過圖,案化銅層125a的方式所形成。在此,環狀阻擋 體120a實質上為一封閉的環狀阻擔體,如圖1B所示, 但並不以此為限。Green shows one). In addition, although the semiconductor package structures 100a, 100b referred to herein have a copper layer 125' located on the lower surface 114 of the substrate 11'b, in other embodiments, the 'semiconductor package structures 100a, 100b may not have copper. Layer 125, which is intended to remove the steel layer 125 after the singulation process, exposes the lower surface 114 of the substrate. In short, the semiconductor package structures 1a, 1b of the present embodiment are merely illustrative and are not limited thereto. Further, the following two embodiments will be used to explain the application of the fabrication method of the semiconductor package junction 12 12 201218322 ASEK2385-1-NEW-FINAL-TW-20110217. It is to be noted that the following embodiments use the same reference numerals and parts in the foregoing embodiments, and the same reference numerals are used to refer to the same or similar elements, and the description of the same technical content is omitted. The description of the omitted portions can be referred to the foregoing embodiment. The following embodiments will not be repeated. 5A to 5K are cross-sectional views showing a method of fabricating a semiconductor package structure according to another embodiment of the present invention. Referring to Figure 5A, first, a substrate 110 and two copper layers 125a, 125b are provided. The substrate 110 has an upper surface #112 and a lower surface 114 opposite to the upper surface 112, and the copper layers 125a, 125b are disposed on the upper surface 112 and the lower surface 114 of the substrate 11A, respectively. Next, referring to FIG. 5B, at least one conductive via structure 160 is formed through the substrate 11A (only two are schematically shown in FIG. 5B), wherein the conductive via structures 160 connect the upper surface 112 and the lower surface 114 of the substrate 110. . Next, at least one first pad 162 (only two are schematically shown in FIG. 5B) and a patterned circuit layer 164 are formed on the upper surface φ 112 of the substrate 110, and at least one second pad 166 is formed (FIG. 5B). Only two are shown schematically on the lower surface 114 of the substrate 110. In this embodiment, the conductive via structures 160 are formed by mechanical drilling and plated through holes (PTH). The first pads 162 and the second pads 166 are formed by patterning the copper layers 125a, 125b, respectively. In addition, the first pads 162 and the second pads 166 are respectively connected to the conductive via structures 160. Next, referring again to FIG. 5B, at least one annular barrier 12a is formed on the upper surface 112 of the substrate 110. [The annular resistive body i2〇a and the base 13 201218322 j 85-1 -NEW-FINAL-TW The -20110217 plate 110 can define a receiving pocket 122a. These annular dams 12a can be formed by patterning the copper layer 125a. Here, the annular barrier 120a is substantially a closed annular resist, as shown in FIG. 1B, but is not limited thereto.
接著,請參考圖5C,形成至少一導電柱168 (圖5C =僅示意地繪示二個)於這些第一接墊162 ±,而這些 V電柱168的材質例如是銅。在本實施例中,這些導電 柱168可藉由微影形成電鍍罩幕並搭配電鍍的方式所形 成。 接著,請參考圖5D,形成一黏著層13〇於基板ιι〇 的上表面112上,其中部分黏著層130位於容置凹穴i22a 内。更具體來說,黏著層13〇是位於容置凹穴122a内以 及後,圖5E所示之第一介電層152所欲放置的位置上, 且黏著層m更填充於第-齡162、環狀阻擋體i2〇a 與圖f化線路層164之間。接著,配置-晶片.140於容 置凹穴122a内,其中晶片14〇是透過黏著層13〇而固定 於基板U〇上,其中晶# 140具有遠離基板110之上表 面112的主動面142以及配置於主動面142上的多個 f ΪΓ4。特別是,由s 5D中可得知,本實施例之環狀 μ i i2〇a可限制晶片140相對於基板no的水平活動 =圍〜170曰片丨4〇的部分側邊會承靠或位於環狀阻播 體12〇'與基板110所構成之容置凹穴122a中。 接著,請參考圖5E,配置一環繞晶片140的第一介 電層152=及二導電層154、156於基板—的上表面ιΐ2 上,其中与些導電層B4、156分別位於第一介電層152 201218322 ASEK2385-1-NEW-FINAL-TW-20110217 的相對兩側表面上,且這些導電層154、156與第〆介電 層丨52可視為一墊高結構層,而此墊高結構層町透過黏 著層130而固定於基板丨1〇的上表面U2上。於配置此 塾高結構層於基板110上前,形成至少一貫穿第一介電 層152與這些導電層154、156的貫孔152a (圖5E中僅 示意地繪示二個)。 接著’請參考圖5F,這些導電柱168分別配置於這 些貫孔152a内,且此墊高結構層更可透過一貼附薄膜132 等 而固定於部分黏著層130、部分第一接墊162、環狀阻擋 體120a以及圖案化線路層ι64上。 接著’形成一重佈線路結構200a,(見於圖5J)於導 電層154上。在本實施例中,形成重佈線路結構2〇〇a,的 步驟如圖5F至圖5J所示。首先,請參考圖5F,配置一 第二介電層21〇a於墊高結構層(即第一介電層152上的 導電層154上)與晶片140的主動表面142上。然後, 在於第二介電層210a上形成多個暴露出晶片140之這些 • 接塾144以及這些導電柱I68的第一開口 212a。 接著’請參考圖5G,形成一電鍍種子層225於第二 介電層21〇a上以及這些第一開口 212a内。 接著,請參考圖5H,形成一圖案化光阻層228於電 鑛種子層225上’其中圖案化光阻層228暴露出部分位 於這些第1 口 212a内以及第二介電層21〇a上的 子層225。 ★接著,請參考圖51,以圖案化光阻層228為一電鍍 罩幕進行電鍍製程,以電錢一圖案化導電層220於圖 15 201218322 Αδϋ^ζ j 85-1 -NEW-FINAL-T W-20110217 案化光阻層228所暴露出的部分電鍍種子層225上。圖 案化導電層220透過這些第一開口 212a内的電鑛種子層 225與晶片140的這些接墊144以及這些導電柱168電性 連接。之後,移除圖案化光阻層228及其下方之部分電 锻種子層225 ’以暴露出部分第二介電層21〇a。 然後,凊參考圖5J,形成一防鮮層230於圖案化導 電層220上,其中防銲層23〇覆蓋部分圖案化導電層22〇 以及部分第二介電層210a。在本實施例中,防銲層23〇 具有多個第二開口 232,且這些第二開口 232暴露出部分 圖案化導電層220。至此,大致完成重佈線路結構2〇〇a, 的製作。最後,凊再參考圖5J,沿著多條切割線l來進 行一單體化製程,以形成多個半導體封裝結構1〇〇a,。至 此,大致完成半導體封裝結構1〇〇a,的製作。 當然’凊參考圖5K,為了增加半導體封裝結構i〇〇a, 的應用性,亦可於進行單體化製程之後,分別形成多個 銲球250於防銲層230之這些第二開口 232所暴露出部 分圖案化導電層220上,意即這些接點234,以使這些銲 球250直接接觸圖案化導電層22〇。也就是說,半導體封 裝結構100b’可以透過這些銲球25〇與外部電路(未繪示) 電性連接。 由於本實施例具有貫穿基板110的導電通孔結構 160以及配置於墊高圖案結構層(意即第一介電層152以 及這些導電層154、156)之貫孔152a中的導電柱168, 其中重佈線路結構2〇〇a,的圖案化導電層220電性連接晶 片140的這些接墊144與這些導電柱168,且這些導電柱 201218322 ASbK.2 J 85-1 -NEW-FINAL-TW-20110217 168透過這些第一接墊162與這些導電通孔結構16〇及這 些第二接墊166電性連接。 因此,晶片140運作時所產生的熱可透過金屬材質 之圖案化導電層220、這些導電柱168、這些第一接墊 162、這些導電通孔結構16〇以及這些第二接墊166而傳 遞至外界,可提升整體半導體封裝結構1〇〇a,的散熱效 能。此外,由於半導體封裝結構1〇〇a,具有這些第二接墊 166,因此半導體封裝結構1〇〇a,可透過這些第二接墊166 • 與外部電路(未繪示)電性連接,進而增加其應用性。 圖6A至圖6K以剖面繪示本發明又一實施例之半導 體封褒結構的製作方法。請參考圖Μ,首先,提供一基 板no以及二銅層125a' 125b。基板11〇具有一上表面 112以及一相對於上表面112的下表面丨μ,而這些銅層 125a、i25b分別配置於基板11〇的上表面112與下表面 114 上。 接著’請參考圖6B,形成至少-環狀阻擒體120a • 於基板110的上表面112上,其中環狀阻擔體1施與基 板可疋義出一容置凹穴122a。這些環狀阻播體⑽a J透過® *化銅層125a的方式所形成。在此,環狀阻擔 、|2〇a貝吳上為-封_環狀阻播體,如圖ΐβ所示, 但亚不以此為限。接著,圖案化這些銅層125a、125b以 =基板110的上表面112形成一第一圖案化線路層 a’以及於基板UG的下表面ιΐ4上形成—第二圖案 ,路層164b’其中第-圖案化線路層祕暴露出基板 的。P刀上表面112,而第二圖案化線路層16扑暴露 17 201218322 ASEK2385-1-NEW-FINAL-TW-20110217 出基板110的部分下表面114。 接著’凊參考圖6C ’形成一黏著層130於基板11〇 的上表面112上’其中黏著層130位於容置凹穴122a内。 接著’請參考圖6D,配置一晶片140於容置凹穴122a 内’其中晶片140是透過黏著層丨3〇而固定於基板u〇 上。詳細來說,晶片14〇具有遠離基板n0之上表面U2 的一主動面142以及配置於主動面142上的多個接墊 144。特別是,由圖6D中可得知,本實施例之環狀阻擋 體120a可限制晶片140相對於基板11〇的水平活動範 圍’意即晶片140的部分側邊會承靠或位於環狀阻擋體 120a與基板11〇所構成之容置凹穴122a中。 接著’請參考圖6E,配置一第一介電層15〇於基板 110的上表面112上’其中第一介電層15〇環繞晶片i4〇 且覆盘環狀阻擋體12〇a以及第一圖案化線路層i64a。第 w電層150运離基板11〇之上表面112的一表面與晶 片140的主動面142實質上切齊(或低於晶片主動面)。於 此’第一介電層15〇的材質例如是含有玻纖的樹脂或無 含玻纖的樹脂’其例如是ABF樹脂或ABF-like樹脂。當 第一介電層150的材質為含有玻纖的樹脂時,可有效提 南其均勻性及強度。 接著,形成一重佈線路結構200b (見於圖6J)於第 一介電層150上。在本實施例中,形成重佈線路結構2〇〇b 的步驟如圖6F至圖6J所示。首先,請參考圖6F,配置 一第二介電層210b於第一介電層150與晶片140的主動 表面142上。然後,於第二介電層2l〇b上形成多個暴露 201218322 AStK2385-l-NEW-FINAL-TW-20ll〇217 出Γ片之這些接塾144的第一開口 212b,以及形成 至v _貝牙第二介電層2i〇b、第一介電層15〇、基板11〇 與第-圖案化線路層164b的貫孔s(圖6F卞示意地繪示 兩個)二其中形成這些貫孔S的方法包括雷射鑽孔法。 -八接著,請參考圖6G,形成一電鍍種子層225a於第 一川電層210b上、這些第一開口 212b内、這些貫孔s 的内壁上、第二圖案化線路層164b以及第二圖案化線路 層164b所暴露出之基板11〇的部分下表面I"。 # 接著,請參考圖6H,形成一第一圖案化光阻層228a 於位於第二介電層210b上的部分電鍍種子層225a上, 以及形成一第二圖案化光阻層228b於位於第二圖案化線 路層164b以及第一圖案化線路層164b所暴露出之基板 110的部分下表面114上的部分電鍍種子層225a上。其 中,第一圖案化光阻層228a暴露出部分位於這些第一開 口 212b内以及第二介電層21〇b上的電錢種子層225a。 接著,請參考圖61,以第一圖案化光阻層228a為一 φ 電鍍罩幕進行一電鍍製程,以電鍍一圖案化導電層22〇 於苐圖案化光阻層228a所暴露出的部分電鍵種子層 225a上以及電鍍至少一導電通孔結構16〇b(圖61中僅示 思地纟會示兩個)於這些貫孔S内。圖案化導電層220透 過這些弟一開口 212b與晶片140的這些接墊144電性連 接,而這些導電通孔結構160b連接圖案化導電層22〇與 第二圖案化線路層164b。之後,移除第一圖案化光阻層 228a及其下方之部分電鍍種子層225a,以暴露出部分第 一介電層210b。同時,移除第二圖案化光阻層228b及其 19 201218322 j 85-1 -NEW-FINAL-TW-20110217 下方的部分電鍍種子層225a,以暴露出第二圖案化線路 層164b及其所暴露出之基板u〇的部分下表面⑴。 然後,請參考圖6J,形成一防銲層23〇於圖案化導 電層220上’其中防銲層23〇覆蓋部分圖案化導電層 以及部分第二介電層21〇b。在本實施例中,防鮮層现 具有多個第二開口 232,且這些第二開口加暴露出部分 圖案化導電層220。至此,大致完成重佈線路 · 。。最後,請再參考圖61,沿著多條娜線L來進行一 單體化製程,以形成多個半導體封裝結構1〇〇a,,。至此, 大致完成半導體封裝結構100a,,的製作。 當然,請參考圖6K’為了增加半導體封裝結構1〇〇a,, 的應用性,亦可於進行單體化伽之後,形成多個鲜球 250於防銲層230之這些第二開口 232所暴露出部分圖案 化導電層220上,意即這些接點234上,以使這些銲球 250直接接觸圖案化導電層22〇。也就是說,半導體封裝 結構loob’’可以透過這些銲球250與外部電路(未繪示^ 由於本實施例具有貫穿第二介電層210b、第—介電 層150、基板11〇以及第二圖案化線路層16牝的導電= 孔結構160b,其中重佈線路結構2〇〇b的圖案化導電層 220電性連接晶片14〇的這些接墊144。因此,晶片 運作時所產生的熱可透過金屬材質之圖案化導電層 220、這些導電通孔結構16〇b以及這些第二圖案化線路 層164b而快速傳遞至外界,可提升整體半導體封裝結構 201218322 ASEK23 85-1 -NEW-FINAL-TW-20110217 low (或半導體封裝結構1G%,,)的散熱效能。此外, t半導體封裝結構胸,,(或半導體封裝結構刚b”) Γηη些第f:圖案化線路層⑽,因此半導體封裝結構 a或半導體封裝結構1〇%,,)可透過這些第二圖案 與外部電路(未1會示)電性連接,進而增 木蘇ϋ所述’當晶片透過黏著層*配置於基板上時, 由環狀阻擋體可有效限制晶片相對於基板的水 J耗圍。因此,晶片與基板之間的對位精準度可提 :’因而半導體封裝結構的製程良率也可提高。此外, 2明讓部分«層受到晶片擠壓而可延伸至環狀阻擔 肢、缺口内,以使晶片能平整地配置於容置凹穴内。另 外’本發明可採用無特定尺寸限制的基板,故可直接採 用般製作線路基板的設備,而無需採用到晶圓級钟 備,因而降低成本。 、°又 ^雖然本發明已以實施例揭露如上,然其並非用以限 定本發明,任何所屬技術領域中具有通常知識者,在^ Ζ離本發明之精神和範圍内’當可作些許之更動與門 】者=發明之保護範圍當視後附之申請專利範圍所; 【圖式簡單說明】 的剖導體封裝結構 圖1B為圖1A之半導體封裝結構4狀阻擋體的俯 21 201218322Next, referring to FIG. 5C, at least one conductive pillar 168 (FIG. 5C = only two schematically shown) is formed on the first pads 162 ±, and the material of the V pillars 168 is, for example, copper. In this embodiment, the conductive posts 168 can be formed by lithography forming a plating mask and by electroplating. Next, referring to FIG. 5D, an adhesive layer 13 is formed on the upper surface 112 of the substrate ι, wherein a portion of the adhesive layer 130 is located in the accommodating recess i22a. More specifically, the adhesive layer 13 is located in the accommodating recess 122a and behind, the first dielectric layer 152 shown in FIG. 5E is placed, and the adhesive layer m is further filled with the first age 162. The annular barrier i2〇a is between the annular barrier layer 164 and the patterned circuit layer 164. Next, the wafer-140 is disposed in the receiving cavity 122a, wherein the wafer 14 is fixed to the substrate U through the adhesive layer 13 , wherein the crystal # 140 has an active surface 142 away from the upper surface 112 of the substrate 110 and A plurality of f ΪΓ 4 disposed on the active surface 142. In particular, it can be seen from s 5D that the ring μ i i2 〇 a of the present embodiment can limit the horizontal movement of the wafer 140 relative to the substrate no = the side of the 〜 曰 170 丨 〇 〇 〇 〇 〇 会 或It is located in the receiving recess 122a formed by the annular blocking body 12'' and the substrate 110. Next, referring to FIG. 5E, a first dielectric layer 152= and two conductive layers 154 and 156 surrounding the wafer 140 are disposed on the upper surface ι2 of the substrate, wherein the conductive layers B4 and 156 are respectively located on the first dielectric. The opposite sides of the layer 152 201218322 ASEK2385-1-NEW-FINAL-TW-20110217, and the conductive layers 154, 156 and the second dielectric layer 丨 52 can be regarded as a high structural layer, and the high structural layer The town is fixed to the upper surface U2 of the substrate 1 through the adhesive layer 130. Before the high structural layer is disposed on the substrate 110, at least one through hole 152a (only two are schematically shown in FIG. 5E) penetrating through the first dielectric layer 152 and the conductive layers 154, 156 is formed. Then, please refer to FIG. 5F. The conductive pillars 168 are respectively disposed in the through holes 152a, and the high structural layer is fixed to the partial adhesive layer 130 and the partial first pads 162 through a bonding film 132 or the like. The annular barrier 120a and the patterned wiring layer ι64. Next, a redistribution wiring structure 200a (see Fig. 5J) is formed on the conductive layer 154. In the present embodiment, the steps of forming the redistribution line structure 2〇〇a are as shown in Figs. 5F to 5J. First, referring to FIG. 5F, a second dielectric layer 21A is disposed on the active structure layer 142 of the pad 140 on the pad structure layer (ie, the conductive layer 154 on the first dielectric layer 152). Then, a plurality of the contacts 144 exposing the wafer 140 and the first openings 212a of the conductive posts I68 are formed on the second dielectric layer 210a. Next, please refer to FIG. 5G to form a plating seed layer 225 on the second dielectric layer 21A and the first openings 212a. Next, referring to FIG. 5H, a patterned photoresist layer 228 is formed on the electric ore seed layer 225, wherein the exposed portion of the patterned photoresist layer 228 is located in the first port 212a and the second dielectric layer 21A. Sublayer 225. ★ Next, please refer to FIG. 51, the electroplating process is performed by patterning the photoresist layer 228 as a plating mask, and the conductive layer 220 is patterned by the electric money. FIG. 15 201218322 Αδϋ^ζ j 85-1 -NEW-FINAL-T The W-20110217 is patterned on the partially plated seed layer 225 exposed by the photoresist layer 228. The patterned conductive layer 220 is electrically connected to the pads 144 of the wafer 140 and the conductive pillars 168 through the electrodeposited seed layer 225 in the first openings 212a. Thereafter, the patterned photoresist layer 228 and a portion of the forged seed layer 225' under it are removed to expose a portion of the second dielectric layer 21A. Then, referring to FIG. 5J, a anti-friction layer 230 is formed on the patterned conductive layer 220, wherein the solder resist layer 23 covers a portion of the patterned conductive layer 22A and a portion of the second dielectric layer 210a. In the present embodiment, the solder resist layer 23 has a plurality of second openings 232, and the second openings 232 expose a portion of the patterned conductive layer 220. At this point, the production of the redistribution line structure 2〇〇a is substantially completed. Finally, referring to Fig. 5J, a singulation process is performed along the plurality of dicing lines 1 to form a plurality of semiconductor package structures 1a. Thus, the fabrication of the semiconductor package structure 1a is substantially completed. Of course, referring to FIG. 5K, in order to increase the applicability of the semiconductor package structure i〇〇a, a plurality of solder balls 250 may be respectively formed on the second openings 232 of the solder resist layer 230 after the singulation process. The portions of the patterned conductive layer 220, that is, the contacts 234, are exposed such that the solder balls 250 directly contact the patterned conductive layer 22A. That is, the semiconductor package structure 100b' can be electrically connected to an external circuit (not shown) through the solder balls 25'. Since the present embodiment has a conductive via structure 160 penetrating through the substrate 110 and a conductive pillar 168 disposed in the via hole 152a of the pad pattern structure layer (that is, the first dielectric layer 152 and the conductive layers 154, 156), wherein The patterned conductive layer 220 is electrically connected to the pads 144 of the wafer 140 and the conductive pillars 168, and the conductive pillars 201218322 ASbK.2 J 85-1 -NEW-FINAL-TW- 20110217 168 is electrically connected to the conductive via structures 16 and the second pads 166 through the first pads 162. Therefore, the heat generated by the operation of the wafer 140 can be transmitted to the patterned conductive layer 220 of the metal material, the conductive pillars 168, the first pads 162, the conductive via structures 16 and the second pads 166 to The outside world can improve the heat dissipation performance of the overall semiconductor package structure 1〇〇a. In addition, since the semiconductor package structure 1a has these second pads 166, the semiconductor package structure 〇〇a can pass through the second pads 166 and be electrically connected to an external circuit (not shown). Increase its applicability. 6A to 6K are cross-sectional views showing a method of fabricating a semiconductor package structure according to still another embodiment of the present invention. Referring to the figure, first, a substrate no and a two-copper layer 125a' 125b are provided. The substrate 11A has an upper surface 112 and a lower surface 丨μ with respect to the upper surface 112, and the copper layers 125a, i25b are disposed on the upper surface 112 and the lower surface 114 of the substrate 11A, respectively. Next, referring to FIG. 6B, at least the annular barrier body 120a is formed on the upper surface 112 of the substrate 110, wherein the annular resist 1 is applied to the substrate to define a receiving recess 122a. These annular hindering bodies (10) a J are formed by the method of forming the copper layer 125a. Here, the ring-shaped resistance, |2〇a beiwu is a - sealing_ring blocking body, as shown in Figure ΐβ, but not limited to this. Then, the copper layers 125a, 125b are patterned to form a first patterned circuit layer a' on the upper surface 112 of the substrate 110 and a second pattern on the lower surface ι4 of the substrate UG. The patterned circuit layer reveals the substrate. The upper surface 112 of the substrate 110 is exposed by the second patterned circuit layer 16 and the second patterned circuit layer 16 is exposed to 17 201218322 ASEK2385-1-NEW-FINAL-TW-20110217. Next, an adhesive layer 130 is formed on the upper surface 112 of the substrate 11' with reference to Fig. 6C' in which the adhesive layer 130 is located in the receiving recess 122a. Next, referring to FIG. 6D, a wafer 140 is disposed in the receiving recess 122a. The wafer 140 is fixed to the substrate u through the adhesive layer. In detail, the wafer 14 has an active surface 142 away from the upper surface U2 of the substrate n0 and a plurality of pads 144 disposed on the active surface 142. In particular, as can be seen from FIG. 6D, the annular barrier 120a of the present embodiment can limit the horizontal range of motion of the wafer 140 relative to the substrate 11', meaning that part of the sides of the wafer 140 will bear or be placed in a ring-shaped barrier. The body 120a and the substrate 11 are formed in the receiving pockets 122a. Next, referring to FIG. 6E, a first dielectric layer 15 is disposed on the upper surface 112 of the substrate 110. The first dielectric layer 15 surrounds the wafer i4 and covers the annular barrier 12a and the first The circuit layer i64a is patterned. A surface of the w-th electrical layer 150 transported away from the upper surface 112 of the substrate 11 is substantially aligned with (or below the active surface of the wafer) the active surface 142 of the wafer 140. The material of the first dielectric layer 15A is, for example, a glass-containing resin or a glass-free resin, which is, for example, an ABF resin or an ABF-like resin. When the material of the first dielectric layer 150 is a resin containing glass fiber, the uniformity and strength can be effectively improved. Next, a redistribution wiring structure 200b (see Fig. 6J) is formed on the first dielectric layer 150. In the present embodiment, the steps of forming the redistribution line structure 2〇〇b are as shown in Figs. 6F to 6J. First, referring to FIG. 6F, a second dielectric layer 210b is disposed on the first dielectric layer 150 and the active surface 142 of the wafer 140. Then, a plurality of first openings 212b exposing the interfaces 144 of the 201218322 AStK2385-l-NEW-FINAL-TW-2011〇217 exiting film are formed on the second dielectric layer 21b, and formed to v_bay a second dielectric layer 2i〇b, a first dielectric layer 15〇, a substrate 11〇 and a through hole s of the first patterned circuit layer 164b (two are schematically shown in FIG. 6F ), wherein the through holes are formed The method of S includes a laser drilling method. -8, please refer to FIG. 6G, forming a plating seed layer 225a on the first Sichuan electric layer 210b, the first openings 212b, the inner walls of the through holes s, the second patterned circuit layer 164b and the second pattern. A portion of the lower surface I" of the substrate 11A exposed by the wiring layer 164b. # Next, please refer to FIG. 6H, forming a first patterned photoresist layer 228a on a portion of the plating seed layer 225a on the second dielectric layer 210b, and forming a second patterned photoresist layer 228b in the second The patterned wiring layer 164b and the partially patterned seed layer 225a on a portion of the lower surface 114 of the substrate 110 exposed by the first patterned wiring layer 164b. The first patterned photoresist layer 228a exposes the electric money seed layer 225a partially located in the first openings 212b and on the second dielectric layer 21b. Next, referring to FIG. 61, an electroplating process is performed on the first patterned photoresist layer 228a for a φ plating mask to plate a portion of the conductive layer 22 to be exposed by the patterned photoresist layer 228a. The seed layer 225a is plated with at least one conductive via structure 16〇b (only two of the schematic layers are shown in FIG. 61). The patterned conductive layer 220 is electrically connected to the pads 144 of the wafer 140 through the openings 212b, and the conductive via structures 160b connect the patterned conductive layer 22 and the second patterned circuit layer 164b. Thereafter, the first patterned photoresist layer 228a and a portion of the plating seed layer 225a thereunder are removed to expose a portion of the first dielectric layer 210b. At the same time, the second patterned photoresist layer 228b and its partially plated seed layer 225a under 19 201218322 j 85-1 -NEW-FINAL-TW-20110217 are removed to expose the second patterned circuit layer 164b and its exposure. Part of the lower surface (1) of the substrate u〇. Then, referring to FIG. 6J, a solder resist layer 23 is formed on the patterned conductive layer 220, wherein the solder resist layer 23 covers a portion of the patterned conductive layer and a portion of the second dielectric layer 21b. In this embodiment, the anti-friction layer now has a plurality of second openings 232, and these second openings add a portion of the patterned conductive layer 220. At this point, the re-distribution line is roughly completed. . Finally, referring again to Fig. 61, a singulation process is performed along a plurality of nano lines L to form a plurality of semiconductor package structures 1a, . So far, the fabrication of the semiconductor package structure 100a has been substantially completed. Of course, referring to FIG. 6K', in order to increase the applicability of the semiconductor package structure 1a, a plurality of fresh balls 250 may be formed in the second openings 232 of the solder resist layer 230 after the singulation is performed. The portions of the patterned conductive layer 220, that is, the contacts 234, are exposed such that the solder balls 250 directly contact the patterned conductive layer 22A. That is, the semiconductor package structure loob'' can pass through the solder balls 250 and external circuits (not shown) because the present embodiment has through the second dielectric layer 210b, the first dielectric layer 150, the substrate 11 and the second The conductive circuit layer 160b of the patterned wiring layer 16牝, wherein the patterned conductive layer 220 of the redistributed wiring structure 2〇〇b is electrically connected to the pads 144 of the wafer 14〇. Therefore, the heat generated during the operation of the wafer can be The conductive semiconductor layer 220, the conductive via structures 16Bb, and the second patterned circuit layers 164b are quickly transferred to the outside, thereby improving the overall semiconductor package structure 201218322 ASEK23 85-1 -NEW-FINAL-TW -20110217 low (or semiconductor package structure 1G%,,) heat dissipation performance. In addition, t semiconductor package structure chest, (or semiconductor package structure just b") 第n some f: patterned circuit layer (10), so the semiconductor package structure a or a semiconductor package structure 〇%,,) can be electrically connected to an external circuit (not shown) through the second pattern, thereby increasing the size of the wafer when the wafer is disposed through the adhesive layer* In the upper case, the annular barrier can effectively limit the water consumption of the wafer relative to the substrate. Therefore, the alignment accuracy between the wafer and the substrate can be improved: 'The manufacturing yield of the semiconductor package structure can also be improved. 2, the portion «layer is pressed by the wafer to extend into the annular resisting limb and the notch, so that the wafer can be disposed flatly in the receiving cavity. In addition, the present invention can adopt a substrate without specific size limitation. Therefore, the device for fabricating the circuit substrate can be directly used without using the wafer-level clock, thereby reducing the cost. The present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. Those of ordinary skill in the art, in the spirit and scope of the present invention, should be able to make a few changes and the scope of the invention. The scope of protection of the invention is attached to the scope of the patent application; The sectional conductor package structure FIG. 1B is the semiconductor package structure of FIG. 1A.
AbHK2385-l-NEW-FINAL-TW-20110217 視示意圖。 圖2A至圖2C為本發明之多個不同實施例之環狀阻 擋體的俯視示意圖。 圖3A至圖3K以剖面繒'示本發明一實施例之半導體 封裝結構的製作方法。 圖4A至圖4B以剖面繪示本發明一實施例之局部半 導體封裝結構的製作方法。 圖5A至圖5K以剖面繪示本發明另一實施例之半導 體封裝結構的製作方法。 圖6A至圖6K以剖面繪示本發明又一實施例之半導 體封裝結構的製作方法。 100、100a、i〇〇b、100a,、100b,、100a,’、100 【主要元件符號說明】 半導體封裝結構 110 ·基板 114:下表面 122a :容置凹穴 125、125a、125b :銅層 132 .貼附薄膜 142 ·主動面 150、152 .第一介電層 154 ' 156 :導電層 楫 162 :第一接墊 112 :上表面 120a〜120d:環狀阻擋體 124b〜124d:缺口 鲁 130 :黏著層 140 ·晶片 144 :接墊 152、S :貫孔 160、160b :導電通孔結 164 :圖案化線路層AbHK2385-l-NEW-FINAL-TW-20110217 View schematic. 2A through 2C are top plan views of annular resist members of various embodiments of the present invention. 3A to 3K are cross-sectional views showing a method of fabricating a semiconductor package structure according to an embodiment of the present invention. 4A-4B are cross-sectional views showing a method of fabricating a partial semiconductor package structure in accordance with an embodiment of the present invention. 5A to 5K are cross-sectional views showing a method of fabricating a semiconductor package structure according to another embodiment of the present invention. 6A to 6K are cross-sectional views showing a method of fabricating a semiconductor package structure according to still another embodiment of the present invention. 100, 100a, i〇〇b, 100a, 100b, 100a, ', 100 [Description of main component symbols] Semiconductor package structure 110. Substrate 114: Lower surface 122a: accommodating recesses 125, 125a, 125b: copper layer 132. Attaching film 142 · Active surface 150, 152. First dielectric layer 154 ' 156 : Conductive layer 楫 162 : First pad 112 : Upper surface 120 a 〜 120 d : Annular blocking body 124 b ~ 124 d : Notch 鲁 130 : Adhesive layer 140 · Wafer 144 : pads 152 , S : through holes 160 , 160b : conductive via junction 164 : patterned circuit layer
22 S 201218322 ASEK2385-1-NEW-FINAL-TW-20110217 164a :第一圖案化線路層 164b:第二圖案化線路 層 166 :第二接墊 168 :導電柱 200、200a、200a’、200b :重佈線路結構 210、210a :第二介電層 212、212a :第一開口 220 :圖案化導電層 225、225a :電鍍種子層 228 :圖案化光阻層 228a :第一圖案化光阻 230 :防銲層 234 :接點 S1〜S3 :側邊 L :切割線22 S 201218322 ASEK2385-1-NEW-FINAL-TW-20110217 164a: first patterned circuit layer 164b: second patterned circuit layer 166: second pad 168: conductive pillars 200, 200a, 200a', 200b: heavy The wiring structure 210, 210a: the second dielectric layer 212, 212a: the first opening 220: the patterned conductive layer 225, 225a: the plating seed layer 228: the patterned photoresist layer 228a: the first patterned photoresist 230: Solder layer 234: Contact S1~S3: Side L: Cutting line
228b :第二圖案化光阻層 232 :第二開口 250 :銲球 C :角落228b: second patterned photoresist layer 232: second opening 250: solder ball C: corner
23twenty three
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100105268A TWI490986B (en) | 2010-10-22 | 2011-02-17 | Semiconductor package structure and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99136127 | 2010-10-22 | ||
TW100105268A TWI490986B (en) | 2010-10-22 | 2011-02-17 | Semiconductor package structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201218322A true TW201218322A (en) | 2012-05-01 |
TWI490986B TWI490986B (en) | 2015-07-01 |
Family
ID=46552474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100105268A TWI490986B (en) | 2010-10-22 | 2011-02-17 | Semiconductor package structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI490986B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103021984A (en) * | 2013-01-04 | 2013-04-03 | 日月光半导体制造股份有限公司 | Wafer level package structure and manufacturing method thereof |
TWI579990B (en) * | 2014-04-21 | 2017-04-21 | Qi Ding Technology Qinhuangdao Co Ltd | Chip package subatrate, chip package structure and method for manufacturing the chip package substrate and the chip package structure |
CN113506783A (en) * | 2021-06-29 | 2021-10-15 | 日月光半导体制造股份有限公司 | Semiconductor structure and method of making the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10629540B2 (en) * | 2017-09-27 | 2020-04-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI237885B (en) * | 2004-10-22 | 2005-08-11 | Phoenix Prec Technology Corp | Semiconductor device having carrier embedded with chip and method for fabricating the same |
TW201003870A (en) * | 2008-07-11 | 2010-01-16 | Phoenix Prec Technology Corp | Printed circuit board having semiconductor component embeded therein and method of fabricating the same |
TWI413223B (en) * | 2008-09-02 | 2013-10-21 | Unimicron Technology Corp | Package substrate having semiconductor component embedded therein and fabrication method thereof |
TWI419275B (en) * | 2009-03-25 | 2013-12-11 | Unimicron Technology Corp | Package substrate structure and its preparation method |
-
2011
- 2011-02-17 TW TW100105268A patent/TWI490986B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103021984A (en) * | 2013-01-04 | 2013-04-03 | 日月光半导体制造股份有限公司 | Wafer level package structure and manufacturing method thereof |
TWI579990B (en) * | 2014-04-21 | 2017-04-21 | Qi Ding Technology Qinhuangdao Co Ltd | Chip package subatrate, chip package structure and method for manufacturing the chip package substrate and the chip package structure |
CN113506783A (en) * | 2021-06-29 | 2021-10-15 | 日月光半导体制造股份有限公司 | Semiconductor structure and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
TWI490986B (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100572737B1 (en) | Semiconductor device and manufacturing method | |
US7517789B2 (en) | Solder bumps in flip-chip technologies | |
TWI674635B (en) | Multi-die package comprising unit specific alignment? and unit specific routing | |
US10748840B2 (en) | Chip-size, double side connection package and method for manufacturing the same | |
TW201220450A (en) | Wafer level semiconductor package and manufacturing methods thereof | |
EP3475977A1 (en) | Wafer level package and method | |
CN102142405B (en) | Semiconductor package structure and manufacturing method thereof | |
TW201019438A (en) | Structure and process of embedded chip package | |
US11450620B2 (en) | Innovative fan-out panel level package (FOPLP) warpage control | |
TW201143002A (en) | Semiconductor structure and method of forming semiconductor device | |
US10522447B2 (en) | Chip package and a wafer level package | |
TWI387064B (en) | Semiconductor package substrate structure and manufacturing method thereof | |
TW201349399A (en) | Interposed substrate and manufacturing method thereof | |
TW200941689A (en) | Semiconductor device and manufacturing method thereof | |
TW201218322A (en) | Semiconductor package structure and manufacturing method thereof | |
JP3945380B2 (en) | Semiconductor device and manufacturing method thereof | |
CN103456715B (en) | Intermediary substrate and manufacturing method thereof | |
US11984378B2 (en) | Semiconductor package structure and method for forming the same | |
TW200941665A (en) | Semiconductor device and manufacturing method thereof | |
TW201126666A (en) | Semiconductor device including semiconductor construct installed on base plate, and manufacturing method of the same | |
US8258009B2 (en) | Circuit substrate and manufacturing method thereof and package structure and manufacturing method thereof | |
JP2012033624A (en) | Wafer level package structure and manufacturing method of the same | |
TW201214640A (en) | Semiconductor device and manufacturing method thereof | |
TW201131720A (en) | Semiconductor package with single sided substrate design and manufacturing methods thereof | |
CN101937901A (en) | Circuit substrate and manufacturing method and packaging structure thereof |