TW201217647A - System and method for measuring pressure applied by a piezo-electric pump - Google Patents

System and method for measuring pressure applied by a piezo-electric pump Download PDF

Info

Publication number
TW201217647A
TW201217647A TW100128415A TW100128415A TW201217647A TW 201217647 A TW201217647 A TW 201217647A TW 100128415 A TW100128415 A TW 100128415A TW 100128415 A TW100128415 A TW 100128415A TW 201217647 A TW201217647 A TW 201217647A
Authority
TW
Taiwan
Prior art keywords
actuator
pump
cavity
pressure
displacement
Prior art date
Application number
TW100128415A
Other languages
Chinese (zh)
Inventor
Aidan Marcus Tout
Christopher Brian Locke
Original Assignee
Kci Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kci Licensing Inc filed Critical Kci Licensing Inc
Publication of TW201217647A publication Critical patent/TW201217647A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/03Pressure in the compression chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A system and method for measuring the pressure provided by a disc pump is disclosed. The disc pump comprises an actuator mounted within the disc pump on a flexible skirt that allows the actuator to oscillate for generating air flow through the cavity of the pump and allows the actuator to be displaced with increasing pressure to a load. The actuator moves from a rest position when air begins flowing through the cavity to a biased position when the load is fully pressurized or depressurized depending on the direction of fluid flow through the cavity. The pump further comprises a sensor which measures the displacement of the actuator at any position between the rest position and the biased position as fluid begins flowing through the cavity to pressurize or depressurize the load. The pressure being delivered by the disc pump is determined as a function of the displacement of the actuator.

Description

201217647 六、發明說明: 【發明所屬之技術領域】 本發明之說明性實施例大體上係關於一種用於流體之 系’且更具體言之,係關於一種抽汲腔在形狀上為實質上 橢圓形之泵,其具有端壁及一側壁,其中一致動器安置於 該等端壁之間。本發明之說明性實施例更具體言之係關於 一種盤泵’其具有一安裝於致動器中之閥及/或安裝於端 壁中之一者中之一額外閥。 本申請案主張2010年8月9曰申請之美國臨時申請案第 61/371,954號之權利,且該案在此被以引用的方式併入。 【先前技術】 在封閉之空腔中產生高振幅壓力振盪已在熱聲學及泵型 壓縮器之領域中受到顯著關注。非線性聲學之新近發展已 允許產生具有比先前認為可能之振幅高的振幅的壓力波。 已知使用聲共振來達成自界定之入口及出口之流體抽 没。可使用在一端具有聲驅動器之橢圓形空腔來達成此, 該聲驅動器驅動聲駐波。在此橢圓形空腔中,聲壓力波具 有有限振幅。已使用不同橫截面空腔(諸如,錐體、喇叭 型錐體、球狀物)來達成高振幅壓力振盪,藉此顯著增加 抽汲效應。在此等高振幅波中,具有能量耗散之非線性機 制得以抑制。然而,直到最近才在徑向壓力振盪被激勵之 盤开)空腔内使用咼振幅聲共振。作為w〇 2〇〇6/1丨1775公開 之國際專利申請案第?(;:17(:^2〇〇6/〇〇1487號揭示一種具有 —貫質上盤形空腔之泵,該盤形空腔具有一高縱橫比,亦 158107.doc 201217647 即’空腔之半徑對空腔之高度的比率。 此泵具有一實質上橢圓形空腔,該空腔包含藉由端壁而 封閉於每一端之一側壁。該泵亦包含一致動器,該致動器 驅動该等端壁中之任一者以在實質上垂直於經驅動之端壁 之表面的方向上振堡。將經驅動之端壁之運動的空間分佈 描述為與空腔内之流體壓力振盪之空間分佈匹配(在本文 中被描述為模式匹配之狀態)。當泵為模式匹配型時,由 致動器對空腔中之流體所作之功跨越經驅動之端壁表面而 Ο 相長地相加,藉此增強空腔中之壓力振盪之振幅且傳遞高 的泵效率❶模式匹配型泵之效率取決於經驅動之端壁與側 壁之間的界面。需要藉由以下方法來維持此泵之效率:使 界面結構化使得該界面不減小或消震經驅動之端壁之運 動,藉此減輕空腔内之流體壓力振盪之振幅的任何減少。 上文所描述之泵之致動器引起經驅動之端壁在實質上垂 直於端壁或實質上平行於橢圓形空腔之縱向軸線的方向上 ❹ 之振盈運動(位移振盪」)(在下文中被稱為空腔内經驅動 之端壁之「軸向振盪」)。經驅動之端壁之軸向振盪產生 流體在空腔内的實質上成比例之「壓力振盪」,從而產生 徑向壓力分佈,其近似於如在國際專利申請案第PCT/ GB2006/001487號(其以引用之方式併入本文中)中描述的 第一種類之貝塞爾(Bessei)函數之徑向壓力分佈,此等振 盪在下文中被稱為空腔内的流體壓力之「徑向振盪」。致 動器與側壁之間的經驅動之端壁之一部分提供與泵之側壁 的界面,其減小位移振盪之消震以減輕在空腔内的壓力振 158107.doc 201217647 盪之任何減少,彼部分在下文中被稱為「祿部」,如在以 引用的方式併入本文中之美國專利申請案第12/477,594號 中更特定地描述。裙部之說明性實施例與經驅動之端壁之 周邊部分在操作上相關聯以減少位移振盡之消震。 此等泵亦需要用於控制穿過菜之流體流動的一或多個 閥’且更具體言之’能夠在高頻率下操作之闕。對於多種 應用而言,習知閥通常在低於500 Hz之較低頻率下摔作。 舉例而言,許多習知壓縮器通常在50沿或6〇 Ηζτ操作。 此項技術中已知之線性共振壓縮器在15〇取與35〇 Hz之間 操作。然而,包括醫療裝置之許多攜帶型電子裝置需要在 大小上相對小且在操作期間安靜的用於傳遞正或負壓力之 果,以便提供離散療法。為達成此等目標,此等泵必須在 非常高的頻率下操作,從而需要能夠在約20 kHz及更高頻 率下操作之閥。為在此等高頻率下操作,%必須回應於可 經整流以產生穿過泵之淨流體流動的高頻率振㈣力。 在以引用之方式併入本文中之國際專利申請案第PCT/ GB2009/嶋14號中更特定地描述了此閥。可將閥安置於 第-孔隙或第二孔隙中,或安置於兩個孔隙中,以用於控 制穿過泵之流體流動。每—閥包含m具有大體 上垂直地延伸穿過其之孔隙,及第二板,其亦具有大體上 垂直地延伸穿過其之孔隙’其中第二板之孔隙實質上自第 -板之孔隙偏移。該閥進一步包含安置於第一板與第二板 之間的-侧壁,其中該側壁封閉於第一板及第二板之周邊 周圍以在第-板與第二板之間形成與第—板及第二板之孔 i5S\07.doc 201217647 隙流體連通的空腔。該閥進一步包含安置於第一板盥第二 板之間且可在第-板與第二板之間移動的一瓣,其中該閥 瓣具有實質上自第-板之孔隙偏移且實質上與第二板之孔 隙對準的孔隙。該閥瓣回應於跨越閥之流體差壓方向的改 變而在第一板與第二板之間被激發。 【發明内容】201217647 VI. Description of the Invention: [Technical Field of the Invention] Illustrative embodiments of the present invention generally relate to a system for fluids and, more particularly, to a twitch chamber that is substantially elliptical in shape A pump having an end wall and a side wall, wherein an actuator is disposed between the end walls. An illustrative embodiment of the invention is more particularly directed to a disc pump having an additional valve mounted in one of the valve and/or one of the end walls. The present application claims the benefit of U.S. Provisional Application Serial No. 61/371,954, filed on Aug. [Prior Art] The generation of high amplitude pressure oscillations in a closed cavity has received significant attention in the field of thermoacoustic and pump type compressors. Recent developments in nonlinear acoustics have allowed the generation of pressure waves having amplitudes higher than previously thought possible amplitudes. It is known to use acoustic resonance to achieve fluid extraction of self-defined inlets and outlets. This can be achieved using an elliptical cavity with an acoustic driver at one end that drives the acoustic standing wave. In this elliptical cavity, the acoustic pressure wave has a finite amplitude. Different cross-sectional cavities (such as cones, horn cones, spheres) have been used to achieve high amplitude pressure oscillations, thereby significantly increasing the twitch effect. In such high amplitude waves, a nonlinear mechanism with energy dissipation is suppressed. However, until recently, the amplitude acoustic resonance was used in the cavity in which the radial pressure oscillation was excited. As an international patent application filed as w〇 2〇〇6/1丨1775? (;: 17(:^2〇〇6/〇〇1487 discloses a pump having a permeate upper disc cavity having a high aspect ratio, also 158107.doc 201217647 ie 'cavity The ratio of the radius to the height of the cavity. The pump has a substantially elliptical cavity comprising a side wall closed to each end by an end wall. The pump also includes an actuator, the actuator Driving any of the end walls to vibrate in a direction substantially perpendicular to the surface of the driven end wall. The spatial distribution of the motion of the driven end wall is described as oscillating with fluid pressure within the cavity Spatial distribution matching (described herein as a state of pattern matching). When the pump is a pattern matching type, the work done by the actuator on the fluid in the cavity spans the surface of the driven end wall. Adding, thereby increasing the amplitude of the pressure oscillations in the cavity and delivering high pump efficiency. The efficiency of the pattern matching pump depends on the interface between the driven end wall and the side wall. This pump needs to be maintained by the following method Efficiency: structuring the interface so that the interface is not reduced Small or damped movement of the driven end wall thereby relieving any reduction in the amplitude of the fluid pressure oscillations within the cavity. The actuator of the pump described above causes the driven end wall to be substantially perpendicular to the end The wall or the vibrational motion (displacement oscillation) of the ❹ in a direction substantially parallel to the longitudinal axis of the elliptical cavity (hereinafter referred to as the "axial oscillation" of the driven end wall in the cavity). The axial oscillation of the end wall produces a substantially proportional "pressure oscillation" of the fluid within the cavity, thereby creating a radial pressure distribution, which is similar to that in International Patent Application No. PCT/GB2006/001487 (which is The radial pressure distribution of the first type of Besseli function described in this document is incorporated herein by reference to the "radial oscillation" of the fluid pressure within the cavity. Portion of the driven end wall between the actuator and the side wall provides an interface with the sidewall of the pump that reduces the shock absorption of the displacement oscillation to relieve any pressure reduction in the cavity 158107.doc 201217647 Below It is described in more detail in U.S. Patent Application Serial No. 12/477,594, the entire disclosure of which is incorporated herein by reference. It is operationally associated to reduce the vibration of the displacement of the vibration. These pumps also require one or more valves for controlling the flow of fluid through the dish and, more specifically, the ability to operate at high frequencies. For a variety of applications, conventional valves typically fall at lower frequencies below 500 Hz. For example, many conventional compressors typically operate at 50 or 6 Torr. Linear resonances are known in the art. The compressor operates between 15 and 35 Hz. However, many portable electronic devices including medical devices need to be used to deliver positive or negative pressure in a relatively small size and quiet during operation to provide discrete therapy. To achieve these goals, these pumps must operate at very high frequencies, requiring valves that can operate at approximately 20 kHz and higher frequencies. To operate at these high frequencies, % must respond to a high frequency vibration (four) force that can be rectified to produce a net fluid flow through the pump. This valve is more specifically described in International Patent Application No. PCT/GB2009/嶋14, which is incorporated herein by reference. The valve can be placed in the first or second aperture or in both apertures for controlling fluid flow through the pump. Each valve includes m having an aperture extending generally perpendicularly therethrough, and a second plate having an aperture extending substantially perpendicularly therethrough, wherein the aperture of the second plate is substantially from the aperture of the first plate Offset. The valve further includes a side wall disposed between the first plate and the second plate, wherein the side wall is enclosed around the periphery of the first plate and the second plate to form a first portion between the first plate and the second plate Hole in the plate and the second plate i5S\07.doc 201217647 The cavity in which the gap is fluidly connected. The valve further includes a lobes disposed between the first plate and the second plate and movable between the first plate and the second plate, wherein the valve flap has a substantially offset from the pore of the first plate and substantially An aperture aligned with the aperture of the second plate. The flap is energized between the first plate and the second plate in response to a change in the direction of fluid differential pressure across the valve. [Summary of the Invention]

在解決可包括盤泵或微果之組織治療系統之測量及控制 問題中,彳利用纟發明之原s來測量正由盤泵產生之壓力 以較有效且經濟地控制盤泵之操作。盤泵包括一致動器, 其在空腔内振動以產生徑向壓力波以提供用於施加至負載 或組織部位的減壓’如上文所描述。可使用一或多個感測 器測量致動器之位移。可回應於致動器之測量到之位移而 判定正由盤泵產生以用於組織部位之壓力。可調整用於致 動器之驅動信號以控制致動器之操作及因此之位移以在組 織部位處達成所要壓力。 種盤泵之一實施例包括一盤泵外殼、裙部、致動器、 感測器及電子冑路。該裙部較至該#果外殼以支樓該致 動器,且可為足夠可撓以允許該致動器振動之任何材料。 該致動器與該裙部面向一相對底板以在該盤泵内形成一空 腔,其中產生徑向壓力波。該致動器可具有一第一表面及 一第二表面,且直接或間接地耦接至該裙部。該感測器可 定位於該空腔外部以感測該致動器相對於該盤泵外殼之一 位置’其對應於正提供之壓力。-電子電路可與該感測器 通信,且經組態以計算當啟動該致動器時隨該致動器相對 158107.doc 201217647 於該盤栗外殼之該位置而變的由該盤泵提供之壓力。 在另一實施例中’一泵體包含一實質上橢圓形側壁,其 在一端由一基底壁且在另一端由一對内部板封閉以在該泵 體内形成一用於含有一流體之空腔,其中鄰近該空腔的該 等内部板中之一第—者包括一中心部分及一周邊部分。該 栗進一步包含一由端板形成之致動器,其中該等内部板中 之第二者與該第一内部板之該中心部分在操作上相關聯以 引起一振m位移運動,藉此回應於當在使用中時正施加至 該致動器之一驅動信號而在該空腔内產生該流體之徑向壓 力振盪。該泵亦包含一可撓性地連接於該側壁與該第一内 部板之该周邊部分之間的裙部,以促進該振盪位移運動。 該泵亦包含:一第一孔隙,其延伸穿過該致動器以使流體 能夠流過該空腔;及一第二孔隙,其延伸穿過該基底壁以 使流體能夠流過該空腔。一閥安置於該第一孔隙及該第二 孔隙中之至少一者中,且經調適以准許該流體在實質上一 方向上流過該空腔以在流體開始流過該空腔時對一負載加 壓或減壓,藉此使該致動器隨著增大之壓力及該裙部之撓 曲而朝向該基底壁自一休止位置移動至一偏向位置。該泵 進一步包含一感測器,其安裝於該空腔外部相對於該泵體 之固疋位置中’用於測罝當流體開始流過該空腔以對該 負載加壓或減壓時在處於該休止位置與該偏向位置之間的 任何位置處的該致動器之位移。 一種用於控制一盤泵之方法包括使用一驅動信號驅動一 盤泵之一外殼内的一致動器。該致動器藉由可撓之裙部安 158107.doc 201217647 裝於該盤泵内。當該致動器回應於該驅動信號而振動時, 在一負載中產生之壓力增大,同時氣流自一自由流動狀態 降低至一失速狀態。由該盤泵在該負载中累積之該壓力可 由一感測器測量’該壓力隨當該壓力迫使該致動器遠離該 休止位置(在該裙部隨著該致動器自其固定位置朝向該偏 向位置撓曲時)時該致動器自該自由流動狀態中之—休止 位置至該失速狀態中之一偏向位置的位移而變。由於該致 動器在該盤泵之空腔内產生徑向壓力波,因此此感測器較 〇 佳地定位於該盤泵之該空腔外部,使得其不干擾該盤泵自 身之操作。 說明性實施例之其他目標、特徵及優點揭示於本文中且 將參看接下來之圖式及詳細描述而變得顯而易見。 【實施方式】 以下參看以引用之方式併入本文中之隨附圖式來詳細描 述本發明之說明性實施例。 圖1A及圖1B為根據說明性實施例的說明性盤泵1 〇 〇之橫 〇 截面圖之說明。如所展示,盤泵100可包括具有實質上橢 圓形形狀之泵外殼102,其包括在一端處由基底壁ι〇3封閉 且在另一端由附接至電路板108或其他基板以支撐栗外殼 102之支腿105安裝之橢圓形壁101。橢圓形壁1〇ι、支腿 105及基底壁103—起形成泵外殼1〇2。泵1〇〇進一步包含一 對盤形内部板114、115,其由貼附至泵體之橢圓形壁1〇1 的環形裙部130支撐於泵1〇〇内。橢圓形壁1〇ι、基底壁 103、内部板114及%形裙部130之内表面在栗1〇〇内形成空 158107.doc 201217647 腔116。空腔u 6之内表面包含侧壁118,其為橢圓形壁 之内部表面之在一端處由端壁12〇封閉的第一部分,其中 端壁120為端板103之内表面,且端壁122包含内部板Hi之 内表面及裙部130之第一側。端壁122因此包含對應於内部 板Η 4之内部表面的中心部分及對應於環形裙部丨3 〇之内部 表面的周邊部分。 雖然泵100及其組件在形狀上為實質上橢圓形,但本文 中揭不之特定實施例為圓形、橢圓形形狀。在圖1Α及圖 1B中展示之實施例中,將端壁⑶展示為截頭圓雜形表 面,但亦可為大體上平坦的且與端壁122平行。泵體之其 底壁103及橢圓形壁101可由包括(但不限於)金屬、陶究: 玻璃或塑膠(包括(但不限於)射出模製塑膠)之任何合適的 剛性材料形成。 σ ' 泵100之内部板114、115一起形成與端壁122(其為空腔 U6之内表面中的一者)之中心部分在操作上相關聯之致動 器刚。内部板114、115中之一者必須由壓電材料形成, 壓電材料可包括回應於施加之電信號而展現應變之任何♦ 活性材料’諸如’電致伸縮或磁致伸縮材料。舉例而+屯 在-較佳實施例中,内部板115由回應於施加之電信‘ 展現應變之壓電材料形成,亦即,活性内部板。内部板 114、115中之另一者較佳地擁有類似於活性内部板之 硬度’且可由壓電材料或電非活性材料(諸如,金 幻形成。在此較佳實施例中,内部板U4擁有類似於 内部板U5之彎曲硬度,且由電非活性材料(諸如,金 158107.doc -10- 201217647 陶瓷)形成,亦即,惰性内部板。當活性内部板丨i 5由電流 激勵時,活性内部板115在相對於空腔116之縱向軸線的徑 向方向上膨脹及收縮,使内部板114、U5彎曲,藉此誘發 其各別端壁122在實質上垂直於端壁122之方向上軸向偏轉 (見圖2A)。 在未圖示之其他實施例中,取決於泵100之特定設計及 定向’裙部130可自頂表面或底表面支撐内部板114、U5 中之任一者(不管是活性或是惰性内部板)。在另一實施例 中,致動器140可由與内部板114、115中之僅一者成力傳 輸關係的裝置(諸如,機械、磁性或靜電裝置)替換,其中 内部板可形成為由此裝置(未圖示)按如上文所描述相同的 方式驅動至振盈的電非活性或被動材料層。 泵100進一步包含自空腔116延伸至泵1〇〇之外部的至少 兩個孔隙,其中該等孔隙中之至少一者含有閥以控制流體 穿過孔隙之流量。雖然孔隙可位於空腔丨16中致動器140產 生壓差(如以下更詳細地描述)之任何位置處,但泵1〇〇之一 較佳貫施例包含位於基底壁10 3之大致中心處且延伸穿過 基底壁103之孔隙126。孔隙126含有至少一端閥。在一較 佳貫施例中,孔隙126含有一閥128,其調節流體在如由箭 頭指示之一方向上的流量。因此,對於此實施例’閥丨28 充當用於泵之入口閥。 泵100進一步包含自空腔116穿過致動器14〇之至少一孔 隙’其中該等孔隙中之至少一者含有閥以控制流體穿過該 孔隙之流量。雖然此等孔隙可位於致動器14〇上自空腔i i 6 158107.doc 11 201217647 之致動器140產生壓差的任何位置(如下更詳細地描述)處, 但泵1〇〇之一實施例包含位於内部板U4、i 15之大致中心 處且延伸穿過内部板114' U5之單一孔隙131。孔隙131含 有致動器閥132,其調節流體在自空腔116之一方向(如由 箭頭指示)上的流量,使得致動器閥132充當自空腔116之 出口閥。如以下更詳細地描述,藉由補充入口閥128之操 作’致動器閥132增強泵1〇〇之輸出。 本文中描述的空腔116之尺寸應較佳地滿足關於空腔116 之间度(h)與半徑(Γ)(其為自空腔丨丨6之縱向軸線至側壁1 i 8 之距離)之間的關係的某些不等性。此等式子如下: r/h>1.2 ;且 h2/r>4x 10_1()公尺。 在本發明之一實施例中’當在空腔丨丨6内之流體為氣體 時’空腔半徑對空腔高度之比率(r/h)處於約1〇與約5〇之 間。在此實例中,空腔i 16之容積可小於約1〇 m卜另外, h /r之比率較佳地處於在約1〇·6與約1〇·7公尺之間的範圍 内’其中工作流體為氣體(如與液體相對比)。 另外’本文中揭示之空腔u 6應較佳地滿足與空腔半才 ⑴及操作頻率(f)(其為致動器14〇藉以振動以產生端壁12 之軸向位移的頻率)有關之以下不等性。該不等式如下: jAl<r.k0(cf) ^ ~ - 2^f [式子1 ] 其中聲音在空腔116内之工作流體中的速度(c)之範圍可處 於約115 m/s之慢速度(Cs)與等於約丨^⑼m/s之快速度(Cf) 158107.doc •12· 201217647 之間(如在以上式子中所表達),。為常數…=3叫。致 動器14G之振蓋運動之頻率較佳地約等於空腔中的徑向 塵力振盪之最低共振頻率,但可在彼值之2〇%内。空腔ιΐ6 中的徑向壓力振盘之最低共振頻率較佳地大於約5〇〇 Hz。 .耗較佳地’本t中揭示之空腔i 16應個別滿足以上識 狀不等性’但空腔116之相對尺寸不應限於具有相同高 度及半徑之空腔。舉例而言,空腔116可具有需要產生不 肖頻率回應之不同半徑或高度之稱微不同的形狀,使得空 〇 腔116按所要的方式共振以產生自栗丨⑻之最佳輸出。 在操作中,果1〇〇可充當鄰近出口闕132的正麼力源以對 負載(未圖示)加壓,或充當鄰近入口間128的負塵力源或減 塵源以對負載150減壓(如由箭頭說明)。如所展示,泵⑽ 之入口與負載150流體連通,使得泵1〇〇充當鄰近入口閥 128的負壓力源或減遷源。負載15()可為將負壓力用於治療 之組織治療系統。如本文中使用的術語「減壓」大體上指 〇 代小於泵100所位於之環境壓力的壓力。儘管術語「真 工」及負壓力」可用以描述減壓,但實際壓力減少可顯 著小於通常與完全真空相關聯之壓力減少。壓力在其為計 不壓力之意義上為「負」,亦即’壓力被減小為低於環境 大氣壓力。除非另有指示,否則本文中所陳述之壓力值為 計示壓力。對減壓之增大的參考通常指代絕對壓力之減 小’而減壓之減小通常指代絕對壓力之增大。 圖2A展不說明空腔11 6之經驅動之端壁丨22之軸向振盪的 可能位移分佈。實彎曲線及箭頭表示經驅動之端壁122在 158107.doc •13- 201217647 一時間點的位移’且虛彎曲線表示一半循環後的經驅動之 立而壁122之位移。如此圖及其他圖中所展示之位移經誇 示。由於未將致動器140剛性地安裝於其周邊,而是藉由 環形裙部130懸掛,因此致動器14〇在其基諧模式中關於其 質〜自由振盡。在此基諧模式中,致動器i 4〇之位移振盡 之振幅在位於經驅動之端壁122之中心與側壁118之間的環 形位移波節42處實質上為零。在端壁122上之其他點處的 位移振盪之振幅大於零,如由垂直箭頭表示。中心位移波 腹43存在於致動器M0之中心附近,且周邊位移波腹43,存 在於致動器140之周邊附近。在一半循環後,中心位移波 腹43由虛曲線表示。 圖2B展示說明由圖2A中展示之軸向位移振盪引起的在 空腔116内之壓力振盪之可能壓力振盪分佈。實曲線及箭 頭表示在一時間點之壓力。在此模式及較高階模式下,壓 力振盪之振幅具有在空腔116之中心附近的正中心壓力波 腹45及在空腔116之側壁118附近的周邊壓力波腹。壓力 振盡之振幅在中心壓力波腹45與周邊壓力波腹45,之間的環In solving the measurement and control problems of tissue treatment systems that may include disc pumps or micro-fruits, the original s of the invention is used to measure the pressure being generated by the disc pump to more efficiently and economically control the operation of the disc pump. The disc pump includes an actuator that vibrates within the cavity to create a radial pressure wave to provide a reduced pressure for application to a load or tissue site' as described above. The displacement of the actuator can be measured using one or more sensors. The pressure being generated by the disc pump for the tissue site can be determined in response to the measured displacement of the actuator. The drive signal for the actuator can be adjusted to control the operation of the actuator and thus the displacement to achieve the desired pressure at the tissue site. One embodiment of a disc pump includes a disc pump housing, a skirt, an actuator, a sensor, and an electronic circuit. The skirt is attached to the actuator as compared to the outer casing and may be any material that is sufficiently flexible to allow the actuator to vibrate. The actuator and the skirt face an opposite bottom plate to define a cavity in the disc pump wherein radial pressure waves are generated. The actuator can have a first surface and a second surface and is coupled directly or indirectly to the skirt. The sensor can be positioned outside of the cavity to sense a position of the actuator relative to one of the disk pump housings which corresponds to the pressure being provided. An electronic circuit is communicable with the sensor and configured to calculate by the disk pump as the actuator is activated relative to the position of the actuator housing 158107.doc 201217647 when the actuator is activated The pressure. In another embodiment, a pump body includes a substantially elliptical side wall that is closed at one end by a base wall and at the other end by a pair of inner plates to form a space for containing a fluid in the pump body. a cavity, wherein one of the inner panels adjacent to the cavity includes a central portion and a peripheral portion. The pump further includes an actuator formed by an end plate, wherein a second one of the inner plates is operatively associated with the central portion of the first inner plate to cause a vibrational m displacement movement, thereby responding A radial pressure oscillation of the fluid is created within the cavity when a drive signal is being applied to the actuator while in use. The pump also includes a skirt flexibly coupled between the sidewall and the peripheral portion of the first inner panel to facilitate the oscillatory displacement motion. The pump also includes a first aperture extending through the actuator to enable fluid to flow through the cavity, and a second aperture extending through the base wall to enable fluid to flow through the cavity . A valve is disposed in at least one of the first aperture and the second aperture and adapted to permit the fluid to flow through the cavity in substantially one direction to load a load as the fluid begins to flow through the cavity Pressurizing or depressurizing, thereby causing the actuator to move from a rest position to a biased position toward the base wall with increased pressure and deflection of the skirt. The pump further includes a sensor mounted in a solid position relative to the pump body outside the cavity for sensing when the fluid begins to flow through the cavity to pressurize or depressurize the load The displacement of the actuator at any position between the rest position and the deflected position. A method for controlling a pump includes driving a actuator within a housing of a disk using a drive signal. The actuator is mounted in the disc pump by a flexible skirt 158107.doc 201217647. When the actuator vibrates in response to the drive signal, the pressure generated in a load increases while the air flow decreases from a free-flowing state to a stalled state. The pressure accumulated by the disc pump in the load can be measured by a sensor as the pressure forces the actuator away from the rest position (the skirt is oriented with the actuator from its fixed position) When the deflection position is deflected, the actuator changes from the rest position in the free-flow state to the displacement position in one of the stall states. Since the actuator produces a radial pressure wave within the cavity of the disc pump, the sensor is preferably positioned externally of the cavity of the disc pump such that it does not interfere with the operation of the disc pump itself. Other objects, features and advantages of the illustrative embodiments will be apparent from the description and appended claims. [Embodiment] The illustrative embodiments of the present invention are described in detail below with reference to the accompanying drawings. 1A and 1B are illustrations of cross-sectional views of an illustrative disc pump 1 〇 根据, in accordance with an illustrative embodiment. As shown, the disc pump 100 can include a pump housing 102 having a substantially elliptical shape that includes a base wall ι 3 at one end and a circuit board 108 or other substrate at the other end to support the chest shell The elliptical wall 101 of the leg 105 of the 102 is mounted. The elliptical wall 1〇, the leg 105 and the base wall 103 together form the pump casing 1〇2. The pump 1 further includes a pair of disc-shaped inner plates 114, 115 supported by the annular skirt 130 attached to the elliptical wall 1 〇 1 of the pump body. The inner surfaces of the elliptical wall 1〇, the base wall 103, the inner panel 114, and the %-shaped skirt 130 form a cavity 158107.doc 201217647 in the chestnut 1〇〇. The inner surface of the cavity u 6 includes a side wall 118 which is a first portion of the inner surface of the elliptical wall that is closed at one end by the end wall 12, wherein the end wall 120 is the inner surface of the end plate 103 and the end wall 122 The inner surface of the inner panel Hi and the first side of the skirt 130 are included. The end wall 122 thus includes a central portion corresponding to the inner surface of the inner panel 4 and a peripheral portion corresponding to the inner surface of the annular skirt 丨3 。. While the pump 100 and its components are substantially elliptical in shape, the particular embodiment disclosed herein is a circular, elliptical shape. In the embodiment shown in Figures 1 and 1B, the end wall (3) is shown as a truncated circular shaped surface, but may also be substantially flat and parallel to the end wall 122. The bottom wall 103 and elliptical wall 101 of the pump body may be formed from any suitable rigid material including, but not limited to, metal, ceramic: glass or plastic including, but not limited to, injection molded plastic. The inner plates 114, 115 of the s' pump 100 together form an actuator gang that is operatively associated with the central portion of the end wall 122 which is one of the inner surfaces of the cavity U6. One of the inner plates 114, 115 must be formed of a piezoelectric material, which may include any ♦ active material such as an electrostrictive or magnetostrictive material that exhibits strain in response to an applied electrical signal. By way of example, in the preferred embodiment, the inner panel 115 is formed of a piezoelectric material that exhibits strain in response to the applied telecommunications, that is, an active inner panel. The other of the inner plates 114, 115 preferably has a hardness similar to that of the active inner panel and may be formed of a piezoelectric material or an electrically inactive material such as a gold illusion. In the preferred embodiment, the inner panel U4 It has a bending hardness similar to that of the inner panel U5 and is formed of an electrically inactive material such as gold 158107.doc -10- 201217647 ceramic, that is, an inert inner panel. When the active inner panel 丨i 5 is excited by current, The active inner panel 115 expands and contracts in a radial direction relative to the longitudinal axis of the cavity 116, causing the inner panels 114, U5 to flex, thereby inducing their respective end walls 122 in a direction substantially perpendicular to the end wall 122. Axial deflection (see Figure 2A). In other embodiments not shown, depending on the particular design and orientation of the pump 100, the skirt 130 can support either of the inner plates 114, U5 from the top or bottom surface. (Whether it is an active or inert inner panel.) In another embodiment, the actuator 140 can be a device (such as a mechanical, magnetic or electrostatic device) that is in force transmission relationship with only one of the inner plates 114, 115. Replacement, where the inner panel is shapeable The device is driven to a vibrating electrically inactive or passive material layer in the same manner as described above. The pump 100 further includes at least two extending from the cavity 116 to the exterior of the pump 1〇〇. An aperture, wherein at least one of the apertures contains a valve to control the flow of fluid through the aperture. Although the aperture may be located at any location in the cavity bore 16 where the actuator 140 produces a pressure differential (as described in more detail below) Preferably, one of the preferred embodiments of the pump includes an aperture 126 located substantially at the center of the base wall 103 and extending through the base wall 103. The aperture 126 includes at least one end valve. In a preferred embodiment, The aperture 126 includes a valve 128 that regulates the flow of fluid in one of the directions as indicated by the arrows. Thus, for this embodiment the valve dam 28 acts as an inlet valve for the pump. The pump 100 further includes a passage from the cavity 116. At least one aperture of the actuator 14' wherein at least one of the apertures contains a valve to control the flow of fluid through the aperture. Although such apertures may be located on the actuator 14 from the cavity ii 6 158107.doc 11 201217647 The actuator 140 produces any position of the pressure differential (described in more detail below), but one embodiment of the pump 1 includes a single center located at approximately the center of the inner plates U4, i15 and extending through the inner plate 114' U5 The aperture 131. The aperture 131 contains an actuator valve 132 that regulates the flow of fluid in one direction from one of the cavities 116 (as indicated by the arrows) such that the actuator valve 132 acts as an outlet valve from the cavity 116. As described in more detail, the output of the pump 1 is enhanced by supplementing the operation of the inlet valve 128 to the actuator valve 132. The dimensions of the cavity 116 described herein should preferably satisfy the degree of relationship between the cavities 116 (h) There is some inequality with the relationship between the radius (Γ) which is the distance from the longitudinal axis of the cavity 丨丨6 to the side wall 1 i 8 . This equation is as follows: r/h>1.2; and h2/r>4x 10_1() meters. In one embodiment of the invention 'when the fluid in the cavity 6 is a gas, the ratio of the cavity radius to the cavity height (r/h) is between about 1 Torr and about 5 Torr. In this example, the volume of the cavity i 16 may be less than about 1 μm. In addition, the ratio of h /r is preferably in the range between about 1 〇 6 and about 1 〇 7 meters. The working fluid is a gas (as opposed to a liquid). Further, the cavity u 6 disclosed herein should preferably be satisfied with the cavity half (1) and the operating frequency (f) which is the frequency at which the actuator 14 is vibrated to generate the axial displacement of the end wall 12. The following inequalities. The inequality is as follows: jAl<r.k0(cf) ^ ~ - 2^f [Expression 1] wherein the velocity (c) of the sound in the working fluid in the cavity 116 can be in the range of about 115 m/s. The velocity (Cs) is equal to the fastness (Cf) of 丨^(9) m/s (Cf) 158107.doc •12· 201217647 (as expressed in the above formula). Called as a constant...=3. The frequency of the vibrating motion of the actuator 14G is preferably approximately equal to the lowest resonant frequency of the radial dust oscillations in the cavity, but may be within 2% of the value. The lowest resonant frequency of the radial pressure ring in cavity ι6 is preferably greater than about 5 Hz. Preferably, the cavities i 16 disclosed in this section should individually satisfy the above identities of identity ‘, but the relative dimensions of the cavities 116 should not be limited to cavities having the same height and radius. For example, the cavity 116 can have a slightly different shape that requires different radii or heights that respond to the undesired frequency response such that the cavity 116 resonates in a desired manner to produce an optimal output from the chestnut (8). In operation, it may act as a positive source of force adjacent to the outlet port 132 to pressurize the load (not shown) or act as a negative dust source or dust source adjacent the inlet 128 to reduce the load 150 Pressure (as indicated by the arrow). As shown, the inlet of the pump (10) is in fluid communication with the load 150 such that the pump 1〇〇 acts as a source of negative pressure or a source of reversal adjacent to the inlet valve 128. Load 15() can be a tissue treatment system that uses negative pressure for treatment. The term "reduced pressure" as used herein generally refers to a pressure that is less than the ambient pressure at which the pump 100 is located. Although the terms "real" and negative pressure can be used to describe decompression, the actual pressure reduction can be significantly less than the pressure reduction typically associated with full vacuum. The pressure is "negative" in the sense that it is not stressful, that is, the pressure is reduced to below ambient atmospheric pressure. Unless otherwise indicated, the pressure values stated herein are the gauge pressures. Reference to an increase in decompression generally refers to a decrease in absolute pressure, and a decrease in decompression generally refers to an increase in absolute pressure. Figure 2A does not illustrate the possible displacement distribution of the axial oscillation of the driven end wall 22 of the cavity 116. The solid bend lines and arrows indicate the displacement of the driven end wall 122 at a point in time of 158107.doc •13-201217647 and the dashed line represents the displacement of the driven wall 122 after half of the cycle. The displacements shown in this and other figures are exaggerated. Since the actuator 140 is not rigidly mounted to its periphery, but is suspended by the annular skirt 130, the actuator 14 is free to vibrate in its fundamental mode. In this fundamental mode, the amplitude of the displacement of the actuator i 4 实质上 is substantially zero at the annular displacement node 42 between the center of the driven end wall 122 and the sidewall 118. The amplitude of the displacement oscillation at other points on the end wall 122 is greater than zero, as indicated by the vertical arrows. The center displacement wave belly 43 exists near the center of the actuator M0, and the peripheral displacement antinode 43 exists near the periphery of the actuator 140. After half the cycle, the center displacement belly 43 is represented by a dashed curve. Figure 2B shows a possible pressure oscillation distribution illustrating the pressure oscillations within the cavity 116 caused by the axial displacement oscillations shown in Figure 2A. The solid curve and the arrow indicate the pressure at a point in time. In this mode and the higher order mode, the amplitude of the pressure oscillation has a positive central pressure belly 45 near the center of the cavity 116 and a peripheral pressure antinode near the sidewall 118 of the cavity 116. The amplitude of the vibration oscillation is between the center pressure antinode 45 and the peripheral pressure antinode 45.

内的流體之「徑向壓力振盪 i,且因此將被稱為空腔j j 6 (如與致動器140之軸向位移 158107.doc -14- 201217647 振靈區別)。 進一步參看圖2A及圖2B,可看出,致動器14〇的軸向位 移振盪之振幅之徑向相依性(致動器140之「模態」)近似於 第一種類之貝塞爾函數,以便更緊密地匹配空腔116中的 . 所要的壓力振盪之振幅之徑向相依性(壓力振盪之「模 態」)。其他對稱及不對稱函數亦可用以在空腔11 6内產生 壓力振盪。在任何情況下,藉由不在其周邊剛性地安裝致 動器140且允許其關於其質心較自由地振動,位移振盈之 〇 模態實質上匹配在空腔116中的壓力振盪之模態,因此達 成模態匹配’或更簡單地,模式匹配。儘管模式匹配在此 方面可能並非始終完美’但致動器14〇之軸向位移振盈及 空腔116中之對應壓力振盪跨越致動器ι4〇之整個表面而具 有實質上相同之相對相位’其中空腔116中的壓力振盪之 環形壓力波節44之徑向位置與致動器140的軸向位移振盪 之環形位移波節42之徑向位置實質上一致。 當致動器140關於其質心振動時,環形位移波節42之徑 向位置將在致動器140在如圖2 A中所說明之其基譜彎i曲模 式中振動時必要地位於致動器14〇之半徑内部。因此,為 - 確保環形位移波節42與環形壓力波節44 一致,致動器之半 - 徑(raet)應較佳大於環形壓力波節44之半徑以使模式匹配最 佳化。再次假定,空腔1丨6中的壓力振盪近似於第一種類 之貝塞爾函數,環形壓力波節料之半徑將大致為自端壁 122之中心至側壁U8的半徑(亦即,空腔ιΐ6之半徑 (「r」))之0.63。因此,致動器14〇之半徑(ract)應較佳地滿 I58107.doc •15· 201217647 足以下不等性:ray〇.63r。 衣形裙。P130可為可撓性膜,其藉由回應於如由在周邊 位移波腹43處之位移展示的致動器14〇之振動而臂曲及伸 展使致動益140之邊緣如上文所描述較自由地移動。藉 由提供致動器140與杲_之橢圓形壁1()1之間的低機械^ 抗支撐’可撓性膜克服了側壁】i 8對致動器刚之潛在消震 效應藉此減少了在致動器14〇之周邊位移波腹Μ,處的轴 向振盈之消震。基本上,可撓性膜使正自致動器14〇轉移 至,壁m的能量最小化,其令可撓性膜之外周邊邊緣保 持實質上靜止。因此,環形位移波節42將保持實質上與環 形壓力波節44對準,以便維持泵1〇〇之模式匹配條件。'因 此"’至驅動之^壁1之軸向位移振盪繼續有效率地產生 自中心壓力波腹45、47至在側壁丨丨8處之周邊壓力波腹 45’、47’的在空腔116内之壓力之振盪,如在圖⑼中所展 >]\ ° 當致動器140回應於驅動信號而振動時,在負載15〇中產 生之壓力增大,同時氣流從自由流動狀態降低至失速狀 態。由盤泵100在負載150中堆積之壓力可由感測器測量’ 其係依據致動器140自如圖1A中所展示的自由流動狀態中 之休止位置13 6至該壓力迫使致動器} 4〇離開休止位置(裙 部130隨著致動器140自其在側壁1 〇 1處之固定位置朝向偏 向位置13 8撓曲)達到如圖1B辛所展示的失速狀態中之偏向 位置138的位移0y)。由於致動器14〇在盤泵1〇〇之空腔116 内產生徑向壓力波,因此此感測器較佳地定位於盤泵1〇〇 \5Sl07.doc •16· 201217647 之空腔116外,使得其不致干擾盤泵ι〇〇之操作。 圖3為安裝於電路板1〇8上以面向致動器ι4〇且測量盤栗 1 0 0之致動器14 0之位移的感測器3 3 1之放大圖。感測器3 3 1 包括用於在測量致動器140之位移(δγ)時使用之光傳輸器 332及光接收器334。光傳輸器332傳達可為可見或不可見 光譜中之光波之光信號335。光信號335經反射出致動器 140的内部板115之表面’使得反射之信號由光接收器334 接收,而與如圖4中展示的致動器140之位移(δγ)無關。當 〇 致動器140處於休止位置136中時,第一反射之信號340在 如圖3及圖4中展示之位置處撞擊光接收器334 ^當致動器 140自休止位置136移位至偏向位置138時,取決於致動器 140之位移(δγ),第一反射之信號340由對應的反射之位移 (δχ)對應地移位成為第二反射之信號342。基本上,撞擊光 接收器334的反射之信號之影像遵循自休止位置136至完全 偏向位置138之路徑’如在圖4中所展示。反射之位移(δχ) 與致動器140之位移(δγ)成比例,致動器140之位移(sy)為 〇 , 由如上文所描述的盤泵100提供之壓力之函數。 在一實施例中,光傳輸器332可為雷射、發光二極體 (LED)、垂直空腔表面發射型雷射(VCSEL)或發光元件。 光傳輸器332可定位於電路板108上,且經定向以將光信號 335反射出致動器140之内部板115的任何點,只要第一反 射信號340及第二反射信號342仍可由光感測器334接收及 測量即可。然而’當致動器140在基諧模式中振盪以產生 氣流(如在圖2A中描述及展示)時,致動器140的位移振盪 158107.doc 17 201217647 之振幅可在經產生之任何環形位移波節42處實質上為零。 對應地,如亦描述,在沿著致動器14〇之其他點處的位移 振盪之振幅大於零。因此,光傳輸器332應經定位及定向 使得光信號335自靠近環形位移波節42之位置反射,以使 致動器140的高頻率振盪之效應最小化且較準確地測量當 致動器140自休止位置136較緩慢地移動至偏向位置138時 致動器140之位移(5y)。 在一實施例中,光感測器334可包括形成感測器陣列之 多個像素。光感測器334可經組態以感測在一或多個波長 處的一或多個反射之光束之位置。結果,光接收器334可 經組態以感測在第一反射之信號34〇與第二反射之信號342 之間的反射之位移(δχ)。光接收器334可經組態以藉由光接 收器334之各別像素將由光接收器334感測的反射之信號 340及342轉換成電信號。反射之位移(δχ)可經即時測量或 計算,或利用指定取樣頻率以判定致動器14〇相對於泵外 殼102之位置。在一實施例中,將致動器14〇之位置計算為 在給定時間週期上之平均或均等位置。光接收器334之像 素可經定大小以提供額外敏感性以偵測致動器14〇之相對 小的位私(δγ),以更好地監視正由盤泵丨〇〇提供之壓力使 得其可經即時地控制。 可根據本發明之原理利用計算致動器丨4 〇之位移的替代 方法。應理解’判定致動器14〇之位移可相對於泵外殼 中之任何其他固定位置元件來實現。雖然大體上實質上成 比例,但反射之位移(Sx)可等於致動器14〇之位移(sy)乘以 158107.doc •18- 201217647 按比例調整因&,其中按比例調整因數可為基於盤泵ι〇〇 之泵外殼102之組態或其他對準因素之預定值。結果,可 藉由以下步驟來判定在盤泵1〇〇之空腔116内的減壓:感測 致動器140之位移(δ7),而不需要直接測量提供至負載之壓 力但對於測量由(例如)減㈣統中的^ Q提供之壓力為 體積過大且昂貴之壓力感測器。說明性實施例使泵外殼 102内的空間之利用最佳化,而不干擾在盤泵1〇〇之空腔 116内產生之壓力振盪。 圖5為根據另一說明性實施例的展示處於偏向位置丨3 8中 之致動器140的盤泵1〇〇之另一示意性橫截面圖其包括用 於測量致動器140之位移的另一感測器之假想圖(assumed_ in view)。感測器為超音波收發器546,其傳輸超音波548 以基於由致動器140反射且由超音波收發器M6接收之超音 波548判定致動器140之位置。為了簡單起見’未展示回波 至超音波收發器546之超音波。超音波收發器546可將關於 致動器140之位移(δγ)的原始測量結果或經處理之資料發送 至包括(例如)處理器之一或多個電子裝置,以判定由此泵 100產生之減壓及其他操作特性。 關於圖6,展示用於測量盤泵1〇〇中的致動器14〇之位移 (δΥ)之繞射光柵602。繞射光柵6〇2可附接至致動器14〇或與 致動器140整合。舉例而言,繞射光柵6〇2可為在盤泵之製 造期間藉由黏著劑或其他緊固構件附接至致動器14〇之反 射性光學元件。如所展示,傳輸器6〇7將多光譜光信號6〇8 傳輸至繞射光栅602上。繞射光柵602將多光譜光信號608 158107.doc -19, 201217647 繞射成具有不同波長λΐ、λ2、λ3及λ4之若干光束。光束之 波長λ 1、λ2、λ3及λ4由感測器陣列61 CM貞測。在一實施例 中,感測器陣列610可包括多個像素612、614、616及 618。感測器陣列61 0之像素612、614、616及61 8亦可被稱 為像素陣列。或者’感測器陣列610可為單一感測器或像 素元件,諸如,像素614。傳輸器607及感測器陣列610可 連接至電路板108或泵外殼102之任何其他固定位置元件以 確保操作期間之穩定性。 在操作中,傳輸器607可為光產生電路或元件,其將呈 多光3普光信號之形式的多光譜光信號608傳輸至繞射光柵 上。繞射光柵602可為具有規則圖案之光學組件,其將多 光譜光信號608之光繞射成若干光束λΐ、λ2、λ3及λ4,且 在不同方向上反射光束’如在圖6中所展示。如此項技術 中已知,繞射光柵602可包括在繞射光柵之光柵内的溝槽 或刻線’其經組態以在致動器14〇之常規操作及位移期間 在感測器陣列610上繞射λΐ、λ2、λ3及λ4。 感測器陣列610基於由像素612、614、61 6及618中之一 或夕者接收之一或多個波長判定致動器140之位移。舉例 而言,如圖6中所展示’在像素612、614、616及618上的 波長λΐ、λ2、;^及人4之分散可對應於致動器“ο與電路板 1 08之間的最大位移。當致動器14〇朝向外殼體移動(亦 即’至空腔中)時,像素612_618可偵測波長u、λ2、入3及 λ4中之一或多者。在一實施例中,來自感測器陣列61〇之 測量結果可指示致動器140之位移。舉例而言,若由像素 158107.doc •20- 201217647 8偵測到λ3及λ4兩者’則位移可為2 mm,其指示用於在 減壓傳遞系統之空腔中產生所要壓力之最佳位移。由像素 612、614、616及018中之每一者偵測的波長^、λ2、人3及 λ4可指示精確位移,或可提供用以計算位移之資料。在一 替代實施例中,感測器可為單一像素,其經組態以感測在 多光碏光k號608中之光波長,使得當致動器14〇移動時, 由感測器感測之波長指示致動器相對於外殼之位置。在又 一實施例中,具有具已知尺寸之單一單元的光感測器可定 〇 位於由光感測器感測的某一光譜(或完全任何光)之最佳位 置處,且若感測到,則可作出果正產生在某一容限範圍中 之壓力的判定。 關於圖7,展示用於測量盤栗1〇〇中的致動器14〇之位移 (δγ)之磁性感測器702。可為霍爾效應或類似 感測器之磁性感測器702安裝至電路板1〇8或泵外殼ι〇2。 導體706可安裝至致動器14〇。導體7〇6可為金屬性、磁性 或能夠提供藉由磁性感測器7〇2之磁性感測的其他者。磁 性感測器702測量磁性感測器7〇2與導體7〇6之間的磁場 710。磁性感測器702可經校準或組態以測量產生磁場7ι〇 的改變之電場,以判定磁性感測器7〇2與導體雇之間的位 移。 參看圖8,展示說明性盤栗系統8〇〇之方塊圖,該盤泵系 統800包括諸如以上描述之盤泵1〇〇的盤泵及用於測量及控 制由盤泵100產生之壓力的感測器(諸如,包括光傳輸^ 332及光接收器334之光感測器331)。應理解,如上文所二 158107.doc -21- 201217647 r 述之其他感測器亦可用作盤果系統8〇〇之部分。㈣系統 _亦包含用以對盤㈣統_供電之電池謝。盤聚系統 綱之凡件互連,且經由導線、路徑、跡線、引線及其他 傳導兀件通j5。盤栗系統8GG亦可包括處理器刚及驅動器 8〇8 ’其中處理器804經調適以與驅動器8〇8通信,包括將 控制信號806傳達至驅動器咖。驅動器咖產生驅動信號 0其對盤泵100令之致動器(諸如,如上文所描述之致 動器_給予能量。致動器140可包括壓電組件,其在被 、、口予此里時產生在盤泵100之空腔内的流體之徑向壓力振 盪,從而使穿過空腔之流體流對負載加壓或減壓(如上文 所描述)。處理器804可經組態以將照明信號812提供至光 傳輸Is 332 ’以用於藉由諸如由致動器⑷反射至光接收器 334之光束335的光束照明致動器M〇(如由以上亦描述之反 射之仏號340、342說明)。當反射之信號34〇、μ?撞擊光 接收器334時,光接收器334將對應於致動器14〇之位移 的位移彳§號814提供至處理器8〇4。處理器8〇4經組態以計 算隨如由位移信號8丨4表示的致動器14〇之位移(0)而變的 在負載處由泵100產生之壓力。在一實施例中,處理器8〇4 可經組悲以平均複數個反射之信號34〇、3 42以判定隨時間 k去的致動器14 〇之平均位移。在又一實施例中,處理器 804可利用位移信號814作為回饋來調整控制信號8〇6及對 應驅動信號810,以用於調節在負載處之壓力。 處理器804、驅動器808及盤泵系統8〇〇之其他控制電路 可被稱為電子電路。處理器8〇4可為經啟用以控制盤泵1〇〇 158107.doc -22- 201217647 之功能性的電路或邏輯。處理器804可充當或包含微處理 器、數位信號處理器、特殊應用積體電路(ASIC)、中央處 理單元、數位邏輯或適合於進行以下操作的其他裝置:控 制包括一或多個硬體及軟體元件之電子裝置,執行軟體、 指令、程式及應用程式,轉換及處理信號及資訊,及執行 其他相關任務。處理器804可為單一晶片或與其他計算或 通信元件整合。在一實施例中,處理器8〇4可包括記憶體 或與記憶體通信。該記憶體可為經組態以健存用於在梢後 Ο 時間隨後擷取或存取之資料的硬體元件、裝置或記錄媒 體。記憶體可為呈隨機存取記憶體、快取記憶體或適合於 儲存資料、指令及資訊之其他小型化儲存媒體之形式的靜 恶或動態記憶體。在一替代實施例中,電子電路可為類比 電路,其經組態以執行用於測量壓力及控制盤泵1〇〇之空 腔中的致動器140之位移(如上文所描述)之相同或類似功能 性。 盤泵系統800亦可包括RF收發器82〇,其用於經由自灯 收發器820傳輸及由RF收發器82〇接收之無線信號822及824 來傳達關於盤泵系統800之效能的資訊及資料,包括(例如) 當前壓力測量結果、致動器14〇之實際位移(§y)及電池8〇2 之當前壽命。RF收發器820可為通信介面,其利用無線 電、紅外線或其他有線或無線信號與一或多個外部裝置通 信。RF收發器820可利用藍芽、醫卜WiMAX或其他通信 標準或專屬通信系統。關於更特定用途,RF收發器82〇可 將信號822發送至儲存壓力讀數資料庫之計算裝置以供醫 158107.doc -23· 201217647 療專業人員參考。該計算裝置可為可内部執行處理或進一 步將資訊傳達至用於處理資訊及資料之中央或遠端電腦的 電腦、行動裝置或醫療設備裝置。類似地,RF收發器820 可接收信號824,以用於基於致動器140之運動在外部調節 由盤泵100在負載處產生之壓力。 驅動器808為對致動器14〇給予能量且控制致動器14〇之 電路。舉例而言,驅動器808可為用於產生作為驅動信號 810之部分的特定波形之高功率電晶體、放大器、橋接器 及/或渡波器。此波形可由處理器8〇4及驅動器808組態以 提供使致動器140在頻率⑴下按振盪運動振動之驅動信號 810,如以上更詳細地描述。致動器14〇之振盪位移運動回 應於驅動信號810而在泵1〇〇之空腔内產生流體之徑向壓力 振盪’從而在負載處產生壓力。 在另貫知例中’盤栗系統800可包括用於向使用者顯 不資訊之使用者介面。使用者介面可包括用於將資訊資 料或4唬提供給使用者的顯示器、音訊介面或觸覺介面。 舉例而言,小型LED螢幕可顯示由盤泵1〇〇施加之壓力。 使用者介面亦可包括按鈕、撥盤、旋鈕或用於調整盤泵之 效能(且特定言之,所產生之減壓)的其他電或機械介面。 舉例而言,可藉由調整旋鈕或為使用者介面之部分的其他 控制元件來增大或減小壓力。 亦揭示一種用於測量對負載之由泵產生之壓力的方法。 該泵包括安裝於泵内在形成泵内之空腔的可撓性裙部上之 致動器。可撓性裙部允許致動器振|以便產生穿過栗之空 158107.doc •24- 201217647 腔的氣流,The "radial pressure oscillation i of the fluid inside, and therefore will be referred to as cavity jj 6 (as distinguished from the axial displacement of actuator 140 158107.doc -14 - 201217647). See Figure 2A and Figure for further 2B, it can be seen that the radial dependence of the amplitude of the axial displacement oscillation of the actuator 14 (the "modal" of the actuator 140) approximates the Bessel function of the first type to more closely match The radial dependence of the amplitude of the desired pressure oscillation in cavity 116 (the "modal" of the pressure oscillation). Other symmetrical and asymmetrical functions can also be used to create pressure oscillations within the cavity 116. In any event, by not rigidly mounting the actuator 140 at its periphery and allowing it to vibrate relatively freely about its center of mass, the mode of displacement oscillation substantially matches the mode of pressure oscillations in the cavity 116. , thus achieving a modal match 'or more simply, pattern matching. Although the pattern matching may not always be perfect in this respect, the axial displacement oscillation of the actuator 14 and the corresponding pressure oscillation in the cavity 116 have substantially the same relative phase across the entire surface of the actuator ι4〇. The radial position of the annular pressure node 44 in which the pressure oscillates in the cavity 116 is substantially coincident with the radial position of the annular displacement node 42 of the axial displacement oscillation of the actuator 140. When the actuator 140 vibrates about its center of mass, the radial position of the annular displacement node 42 will necessarily lie when the actuator 140 vibrates in its base curve bend mode as illustrated in Figure 2A. The radius of the actuator 14 is inside. Therefore, to ensure that the annular displacement node 42 coincides with the annular pressure node 44, the radius of the actuator should preferably be greater than the radius of the annular pressure node 44 to optimize pattern matching. Assume again that the pressure oscillations in the cavity 1丨6 approximate the Bessel function of the first type, and the radius of the annular pressure wave material will be approximately the radius from the center of the end wall 122 to the side wall U8 (ie, the cavity The radius of ιΐ6 ("r") is 0.63. Therefore, the radius of the actuator 14 should preferably be better than I58107.doc •15·201217647 is sufficient for the inequality: ray〇.63r. Dress-shaped skirt. P130 can be a flexible film that is deflected and stretched in response to vibrations of the actuator 14 as shown by displacement at the peripheral displacement antinode 43 such that the edge of the actuation benefit 140 is as described above. Move freely. By providing a low mechanical resistance between the actuator 140 and the elliptical wall 1 () 1 of the 杲_, the 'flexible film overcomes the side wall' i 8 pairs of the actuator's potential shock absorbing effect thereby reducing The displacement of the axial vibration at the periphery of the actuator 14 is dissipated. Basically, the flexible film transfers the energy from the actuator 14 to minimize the energy of the wall m, which keeps the outer peripheral edge of the flexible film substantially stationary. Thus, the annular displacement node 42 will remain substantially aligned with the annular pressure node 44 to maintain the pattern matching condition of the pump 1〇〇. 'Therefore, the axial displacement oscillation to the wall 1 of the drive continues to be efficiently generated from the center pressure antinodes 45, 47 to the peripheral pressure antinode 45', 47' at the side wall 丨丨 8 in the cavity The oscillation of the pressure within 116, as shown in Fig. (9), when the actuator 140 vibrates in response to the drive signal, the pressure generated in the load 15 增大 increases, and the air flow decreases from the free flow state. To the stall state. The pressure accumulated by the disc pump 100 in the load 150 can be measured by the sensor 'based on the actuator 140 from the rest position 13 6 in the free-flow state as shown in Figure 1A to the pressure forcing the actuator} Leaving the rest position (the skirt 130 flexes as the actuator 140 flexes from its fixed position at the side wall 1 〇 1 toward the deflected position 13 8) to a displacement 0y of the deflected position 138 in the stall condition as shown in FIG. 1B. ). Since the actuator 14 generates a radial pressure wave in the cavity 116 of the disc pump 1 此, the sensor is preferably positioned in the cavity 116 of the disc pump 1〇〇\5Sl07.doc •16·201217647 In addition, it does not interfere with the operation of the disc pump. 3 is an enlarged view of the sensor 331 mounted on the circuit board 1A8 to face the actuator ι4 and measure the displacement of the actuator 110 of the coil 100. The sensor 3 3 1 includes an optical transmitter 332 and a light receiver 334 for use in measuring the displacement (δγ) of the actuator 140. Optical transmitter 332 communicates an optical signal 335 that can be a light wave in the visible or invisible spectrum. The optical signal 335 is reflected off the surface of the inner plate 115 of the actuator 140 such that the reflected signal is received by the light receiver 334 regardless of the displacement (δ γ) of the actuator 140 as shown in FIG. When the 〇 actuator 140 is in the rest position 136, the first reflected signal 340 strikes the light receiver 334 at the position shown in Figures 3 and 4. When the actuator 140 is displaced from the rest position 136 to the bias At position 138, depending on the displacement (δγ) of the actuator 140, the first reflected signal 340 is correspondingly displaced by the corresponding reflected displacement (δχ) into a second reflected signal 342. Basically, the image of the reflected signal impinging on the light receiver 334 follows the path from the rest position 136 to the fully deflected position 138 as shown in FIG. The displacement of the reflection (δχ) is proportional to the displacement (δγ) of the actuator 140, and the displacement (sy) of the actuator 140 is 〇 as a function of the pressure provided by the disc pump 100 as described above. In an embodiment, the optical transmitter 332 can be a laser, a light emitting diode (LED), a vertical cavity surface emitting laser (VCSEL), or a light emitting element. The optical transmitter 332 can be positioned on the circuit board 108 and oriented to reflect the optical signal 335 out of any point of the inner panel 115 of the actuator 140 as long as the first reflected signal 340 and the second reflected signal 342 are still sensible by light. The detector 334 can receive and measure. However, when the actuator 140 oscillates in the fundamental mode to generate an air flow (as depicted and shown in FIG. 2A), the amplitude of the displacement of the actuator 140 158107.doc 17 201217647 can be any circular displacement produced. The node 42 is substantially zero. Correspondingly, as also described, the amplitude of the displacement oscillation at other points along the actuator 14 is greater than zero. Accordingly, the optical transmitter 332 should be positioned and oriented such that the optical signal 335 is reflected from a location near the annular displacement node 42 to minimize the effects of high frequency oscillations of the actuator 140 and to accurately measure when the actuator 140 The displacement (5y) of the actuator 140 when the rest position 136 moves slowly to the deflected position 138. In an embodiment, light sensor 334 can include a plurality of pixels that form a sensor array. Light sensor 334 can be configured to sense the position of one or more reflected beams at one or more wavelengths. As a result, the light receiver 334 can be configured to sense the displacement (δχ) of the reflection between the first reflected signal 34〇 and the second reflected signal 342. The optical receiver 334 can be configured to convert the reflected signals 340 and 342 sensed by the optical receiver 334 into electrical signals by respective pixels of the optical receiver 334. The displacement of the reflection (δχ) can be measured or calculated instantaneously, or the specified sampling frequency can be utilized to determine the position of the actuator 14〇 relative to the pump casing 102. In one embodiment, the position of the actuator 14 is calculated as an average or equal position over a given period of time. The pixels of the light receiver 334 can be sized to provide additional sensitivity to detect the relatively small bit (δ gamma) of the actuator 14 以 to better monitor the pressure being supplied by the disk pump so that it It can be controlled on the fly. An alternative method of calculating the displacement of the actuator 丨4 利用 can be utilized in accordance with the principles of the present invention. It should be understood that the determination of the displacement of the actuator 14 can be accomplished relative to any other fixed position element in the pump housing. Although substantially proportional, the displacement (Sx) of the reflection can be equal to the displacement of the actuator 14 (sy) multiplied by 158107.doc • 18- 201217647 proportionally adjusted by &, where the scaling factor can be A predetermined value based on the configuration of the pump housing 102 or other alignment factors of the disc pump. As a result, the decompression in the cavity 116 of the disc pump 1 can be determined by the following steps: sensing the displacement (δ7) of the actuator 140 without directly measuring the pressure supplied to the load but for measuring The pressure provided by (for example) minus (4) is an oversized and expensive pressure sensor. The illustrative embodiment optimizes the utilization of the space within the pump housing 102 without disturbing the pressure oscillations generated within the cavity 116 of the disc pump 1 . FIG. 5 is another schematic cross-sectional view of the disc pump 1 展示 showing the actuator 140 in the deflected position 丨 38, including the displacement for measuring the actuator 140, in accordance with another illustrative embodiment. Another sensor's imaginary map (assumed_ in view). The sensor is an ultrasonic transceiver 546 that transmits an ultrasonic wave 548 to determine the position of the actuator 140 based on the ultrasonic wave 548 reflected by the actuator 140 and received by the ultrasonic transceiver M6. For the sake of simplicity, the echoes to the ultrasonic transceiver 546 are not shown. The ultrasonic transceiver 546 can transmit raw measurements or processed data regarding the displacement (δγ) of the actuator 140 to one or more electronic devices including, for example, a processor to determine that the pump 100 is thereby generated. Decompression and other operating characteristics. With respect to Figure 6, a diffraction grating 602 for measuring the displacement (δ Υ) of the actuator 14 盘 in the disc pump 1 展示 is shown. The diffraction grating 6〇2 can be attached to or integrated with the actuator 14A. For example, the diffraction grating 6〇2 can be a reflective optical element that is attached to the actuator 14 by an adhesive or other fastening member during manufacture of the disc pump. As shown, the transmitter 6〇7 transmits the multispectral optical signal 6〇8 to the diffraction grating 602. The diffraction grating 602 diffracts the multispectral optical signals 608 158107.doc -19, 201217647 into light beams having different wavelengths λ ΐ, λ 2 , λ 3 , and λ 4 . The wavelengths λ 1 , λ2, λ3 and λ4 of the beam are measured by the sensor array 61 CM. In an embodiment, sensor array 610 can include a plurality of pixels 612, 614, 616, and 618. The pixels 612, 614, 616, and 61 8 of the sensor array 61 0 may also be referred to as pixel arrays. Alternatively, sensor array 610 can be a single sensor or pixel element, such as pixel 614. Transmitter 607 and sensor array 610 can be coupled to circuit board 108 or any other fixed position component of pump housing 102 to ensure stability during operation. In operation, transmitter 607 can be a light generating circuit or component that transmits a multi-spectral optical signal 608 in the form of a multi-light 3 Pu-op signal to the diffraction grating. The diffraction grating 602 can be an optical component having a regular pattern that diffracts the light of the multi-spectral optical signal 608 into a plurality of beams λ ΐ, λ 2 , λ 3 , and λ 4 and reflects the light beams in different directions as shown in FIG. 6 . As is known in the art, the diffraction grating 602 can include grooves or scribe lines within the grating of the diffraction grating that are configured to be in the sensor array 610 during normal operation and displacement of the actuator 14A. The upper diffraction λ ΐ, λ2, λ3 and λ4. The sensor array 610 determines the displacement of the actuator 140 based on one or more wavelengths received by one or more of the pixels 612, 614, 61 6 and 618. For example, the dispersion of the wavelengths λ ΐ, λ 2 , ; and the person 4 on the pixels 612, 614, 616, and 618 as shown in FIG. 6 may correspond to the relationship between the actuator "o and the circuit board 108". Maximum displacement. When the actuator 14 is moved toward the outer casing (ie, into the cavity), the pixel 612_618 can detect one or more of the wavelengths u, λ2, 3, and λ4. In an embodiment The measurement result from the sensor array 61 can indicate the displacement of the actuator 140. For example, if both λ3 and λ4 are detected by the pixel 158107.doc • 20-201217647 8 the displacement can be 2 mm. , which indicates the optimum displacement for generating the desired pressure in the cavity of the reduced pressure delivery system. The wavelengths ^, λ2, 3, and λ4 detected by each of the pixels 612, 614, 616, and 018 may indicate Accurate displacement, or data available to calculate displacement. In an alternate embodiment, the sensor can be a single pixel configured to sense the wavelength of light in the multi-optic k-number 608 such that The wavelength sensed by the sensor indicates the position of the actuator relative to the housing as the actuator 14 moves. In yet another implementation A light sensor having a single unit of known size can be positioned at an optimal position of a certain spectrum (or any light) sensed by the light sensor, and if sensed, A determination is made that the pressure is being generated within a certain tolerance range. With respect to Figure 7, a magnetic sensor 702 for measuring the displacement (δγ) of the actuator 14〇 in the chestnut 1〇〇 is shown. A Hall effect or similar sensor magnetic sensor 702 is mounted to the circuit board 1〇8 or pump housing 〇2. The conductor 706 can be mounted to the actuator 14. The conductor 7〇6 can be metallic, magnetic or Others capable of providing magnetic sensing by the magnetic sensor 7〇2. The magnetic sensor 702 measures the magnetic field 710 between the magnetic sensor 7〇2 and the conductor 7〇6. The magnetic sensor 702 can pass Calibrating or configuring to measure the changing electric field that produces the magnetic field 7ι〇 to determine the displacement between the magnetic sensor 7〇2 and the conductor. Referring to Figure 8, a block diagram of an illustrative conical system 8〇〇 is shown. The disc pump system 800 includes a disc pump such as the disc pump 1 described above and is used for measurement and control by the disc pump 100. a sensor of the pressure (such as the light sensor 331 including the optical transmission 332 and the light receiver 334). It should be understood that other sensors as described in the above 158107.doc -21-201217647 r may also be used. It is used as part of the disc system. (4) The system_ also contains the battery for the power supply of the disc (four) system. The unit of the disc gathering system is interconnected, and through wires, paths, traces, leads and others. The conductive element passes through j5. The chestnut system 8GG can also include a processor just as well as the driver 8'8' wherein the processor 804 is adapted to communicate with the driver 8A, including communicating the control signal 806 to the driver. The driver coffee generates a drive signal 0 which energizes the actuator of the disc pump 100, such as the actuator _ as described above. The actuator 140 may include a piezoelectric component that is in the quilt The radial pressure of the fluid within the cavity of the disc pump 100 is oscillated such that the fluid flow through the cavity pressurizes or depressurizes the load (as described above). The processor 804 can be configured to Illumination signal 812 is provided to optical transmission Is 332' for illumination of actuator M(R) by a beam such as beam 335 that is reflected by actuator (4) to light receiver 334 (as reflected by nickname 340, also described above) 342.) When the reflected signal 34〇, μ? strikes the light receiver 334, the light receiver 334 provides a displacement § 814 corresponding to the displacement of the actuator 14〇 to the processor 8〇4. The device 8〇4 is configured to calculate the pressure generated by the pump 100 at the load as a function of the displacement (0) of the actuator 14〇 as represented by the displacement signal 8丨4. In one embodiment, the processor 8〇4 can be averaged by a group of reflected signals 34〇, 3 42 to determine the actuation with time k 14 平均 average displacement. In yet another embodiment, the processor 804 can utilize the displacement signal 814 as feedback to adjust the control signal 〇6 and the corresponding drive signal 810 for adjusting the pressure at the load. The driver 808 and other control circuits of the disk pump system 8 can be referred to as electronic circuits. The processor 8〇4 can be a circuit or logic that is enabled to control the functionality of the disk pump 1〇〇158107.doc -22- 201217647 The processor 804 can function as or include a microprocessor, a digital signal processor, an application specific integrated circuit (ASIC), a central processing unit, digital logic, or other device suitable for: controlling one or more hardware And the electronics of the software components, executing software, instructions, programs and applications, converting and processing signals and information, and performing other related tasks. The processor 804 can be a single chip or integrated with other computing or communication components. The processor 8〇4 may include or be in communication with a memory. The memory may be configured to be used for subsequent capture or access at a later time. The hardware component, device or recording medium of the data. The memory may be a static or dynamic memory in the form of random access memory, cache memory or other miniaturized storage medium suitable for storing data, instructions and information. In an alternate embodiment, the electronic circuit can be an analog circuit configured to perform displacement (as described above) for measuring pressure and controlling the actuator 140 in the cavity of the disc pump 1〇〇 The same or similar functionality. The disc pump system 800 can also include an RF transceiver 82A for communicating with the disc pump system 800 via wireless signals 822 and 824 transmitted from the light transceiver 820 and received by the RF transceiver 82A. Information and information on performance, including, for example, current pressure measurements, actual displacement of actuator 14 (§ y), and current life of battery 8〇2. The RF transceiver 820 can be a communication interface that communicates with one or more external devices using radio, infrared or other wired or wireless signals. The RF transceiver 820 can utilize Bluetooth, WiMAX or other communication standards or proprietary communication systems. For more specific uses, the RF transceiver 82 can send a signal 822 to a computing device that stores a library of pressure readings for medical use. 158107.doc -23. The computing device can be a computer, mobile device or medical device that can perform processing internally or further communicate information to a central or remote computer for processing information and data. Similarly, RF transceiver 820 can receive signal 824 for externally regulating the pressure generated by disk pump 100 at the load based on the motion of actuator 140. Driver 808 is a circuit that energizes actuator 14A and controls actuator 14A. For example, driver 808 can be a high power transistor, amplifier, bridge, and/or ferrite for generating a particular waveform as part of drive signal 810. This waveform may be configured by processor 8〇4 and driver 808 to provide a drive signal 810 that causes actuator 140 to vibrate at an oscillating motion at frequency (1), as described in more detail above. The oscillating displacement motion of the actuator 14 is responsive to the drive signal 810 to create a radial pressure oscillation of the fluid within the cavity of the pump 1 从而 to create a pressure at the load. In another example, the discard system 800 can include a user interface for displaying information to the user. The user interface can include a display, audio interface or tactile interface for providing information or information to the user. For example, a small LED screen can display the pressure applied by the disc pump 1〇〇. The user interface may also include buttons, dials, knobs or other electrical or mechanical interfaces for adjusting the performance of the disc pump (and in particular, the resulting decompression). For example, the pressure can be increased or decreased by adjusting the knob or other control element for a portion of the user interface. A method for measuring the pressure generated by a pump for a load is also disclosed. The pump includes an actuator mounted in the pump on a flexible skirt forming a cavity in the pump. The flexible skirt allows the actuator to vibrate to create airflow through the cavity of the chestnut 158107.doc •24- 201217647

移動至偏向位置時致動器之位移。 僅向壓力振盪。該方法進 腔以使致動器藉由在負載 :性來適應)而自休止位置 。該方法亦包含基於致動 器之位移計算在負載處之麗力。 更特疋σ之,參看圖9,展示用於測量及控制由盤泵產 Ο 生之壓力的說明性程序9〇〇之流程圖。程序_開始於步驟 902,在步驟902處,可藉由驅動信號驅動在盤泵之外殼内 的致動器。致動器可由壓電致動器或裝置驅動。致動器可 、’’!驅動以產生用於在組織部位處施加之減壓。舉例而言, 盤系可直接或間接地與由敷巾覆蓋之組織部位通信,如此 項技術中所理解。在步驟9〇4處,當致動器由於負載内之 壓力增大而自休止位置移動至偏向位置時,可感測致動器 Θ 之位移。在一實施例中,當盤泵經撤銷啟動或無動力時, 出現休止位置,且當負載内之壓力處於最大值時,達到偏 向位置。致動器之位移及負載之對應壓力在此等兩個位置 之間變化。驅動信號可由盤泵之處理器、驅動器或控制邏 輯組態、塑形或以其他方式產生以用於控制致動器之操作 及正施加至負載之對應壓力。 在步驟906處,可判定隨致動器之感測之位移而變的正 由盤泵產生之壓力。在一實施例中,可藉由在盤泵之外殼 與致動器之間反射或折射光信號來判定位移。類似地,可 158107.doc -25- 201217647 矛J用超g波、射頻、磁性^ ^ ^ ^ ^ ^ ^ ^ ^ 器组合來到4 X丹他尤m或傳輪器及接收 器,·且口來判疋致動器之 ^ ^ . ri m 双動°°之位移可指示正由盤 系產生X用於負載壓 杜以其於“ 及/或類比電子器 件以基於負载(諸如, 聽作為組件之組織治療系統) ° ”因素、損失及其他特性來判定在 加之壓力。雷早哭AU ω , ^ 電子益件可利用任何數目個靜態 法、函數或感測測量结果來判定懕六—止勒异 〜 』置、口禾求判疋壓力。在步驟908處,回 應於判疋正由盤泵傳遞之塵力,調整驅動信號以控制致動 器之位移。驅動信號可回應於自測量致動器之位移之一或 多個感測器接收的回饋信號之測量結果而產生。在一實施 例中,可增大驅動信號之振幅以增大由盤泵產生且對應地 傳達至組織部位之減屋。類似地,可修改驅動信號之振幅 或形狀以驅動盤果之致動器以用於減小或維持在負載處之 壓力。 說明性實施例提供低成本系統,其用於藉由解譯由盤果 中之感測器提供之資料來間接地監視由盤泵產生之麼力, 該感測器測量當致動器自休止位置移動至偏向位置時致動 器相對於盤泵内之固定位置組件之位移。應理解,感測器 或其任何組件(諸如,光感測器之光傳輸器)可直接連接至 致動器,以用於藉由將光信號反射出泵外殼或盤泵上之任 何其他固定位置來測量位移。說明性實施例減少了用以監 視正由盤泵產生之壓力的設備、空間及成本,該壓力超出 利用直接感測在負載處之由泵產生之壓力的習知壓力感測 器及監視器而可用之壓力。 158107.doc -26- 201217647 先前詳細描述為用於實施本發明的少數實施例中之一 者,且並不意欲在範嘴上為限制性。熟習此項技術者將立 即預想到在不同於詳細描述之領域之領域中的用於實施本 發明之方法及變化。下財請專利範圍㈣更特定地揭示 的本發明之許多實施例。 【圖式簡單說明】 _為根據第—㈣性實_的騎崎4於休止位 置中之致動器的第一盤泵之示意性橫截面圖;The displacement of the actuator when moving to the deflected position. Only oscillate to pressure. The method enters the cavity to cause the actuator to rest in position by being adapted to the load. The method also includes calculating the Lili at the load based on the displacement of the actuator. More specifically, see Fig. 9, which shows a flow chart of an illustrative procedure for measuring and controlling the pressure generated by the disc pump. The routine_ begins at step 902, where an actuator within the housing of the disc pump can be driven by a drive signal. The actuator can be driven by a piezoelectric actuator or device. The actuator can be '' driven to create a reduced pressure for application at the tissue site. For example, the disc can communicate directly or indirectly with the tissue site covered by the wipe, as understood in this technique. At step 9〇4, the displacement of the actuator 可 can be sensed when the actuator moves from the rest position to the deflected position due to an increase in pressure within the load. In one embodiment, the rest position occurs when the disc pump is deactivated or unpowered, and the bias position is reached when the pressure within the load is at a maximum. The displacement of the actuator and the corresponding pressure of the load vary between these two positions. The drive signal can be configured, shaped, or otherwise generated by the processor, driver or control logic of the disc pump for controlling the operation of the actuator and the corresponding pressure being applied to the load. At step 906, the pressure being generated by the disc pump as a function of the sensed displacement of the actuator can be determined. In one embodiment, the displacement can be determined by reflecting or refracting an optical signal between the outer casing of the disc pump and the actuator. Similarly, 158107.doc -25- 201217647 Spear J uses the combination of super g wave, radio frequency, magnetic ^ ^ ^ ^ ^ ^ ^ ^ to come to 4 X Dantayu m or the wheel and receiver, and The displacement of the actuator ^ ^ . ri m ° ° can indicate that the X is being used by the disk to load the voltage with the " and / or analog electronics based on the load (such as listening The component's tissue treatment system) ° "factors, losses and other characteristics to determine the pressure. Lei early crying AU ω , ^ Electronic benefits can use any number of static methods, functions or sensing measurements to determine the six-stop-and-for-threshold. At step 908, a response is made to determine the dust force being transmitted by the disc pump, and the drive signal is adjusted to control the displacement of the actuator. The drive signal may be generated in response to a measurement of one of the displacements of the self-measuring actuator or a feedback signal received by the plurality of sensors. In one embodiment, the amplitude of the drive signal can be increased to increase the reduced house generated by the disc pump and correspondingly communicated to the tissue site. Similarly, the amplitude or shape of the drive signal can be modified to drive the actuator of the disc for reducing or maintaining the pressure at the load. The illustrative embodiments provide a low cost system for indirectly monitoring the force generated by the disc pump by interpreting the information provided by the sensors in the disc, the sensor measuring when the actuator is at rest The displacement of the actuator relative to the fixed position assembly within the disc pump when the position is moved to the deflected position. It should be understood that the sensor or any component thereof, such as an optical transmitter of a light sensor, can be directly coupled to the actuator for use by reflecting the light signal out of the pump housing or any other fixture on the disc pump. Position to measure displacement. The illustrative embodiments reduce equipment, space, and cost for monitoring the pressure being generated by the disc pump that exceeds conventional pressure sensors and monitors that utilize direct sensing of the pressure generated by the pump at the load. The pressure available. 158107.doc -26- 201217647 was previously described in detail as one of the few embodiments for carrying out the invention and is not intended to be limiting. Those skilled in the art will immediately envision a method and variations for carrying out the invention in the field of the field. Many embodiments of the invention are disclosed more specifically in the scope of the patent (4). [Simple description of the drawing] _ is a schematic cross-sectional view of the first pump of the actuator in the rest position according to the fourth-fourth real

圖叫根據第—說明性實施例的展示處於偏向位置中之 致動器的第一盤泵之示意性橫截面圖; 圖2A為用於第之致動器之基㈣曲模式的轴向位 移振盪之曲線圖; 圖2B為回應於在圖2A中展示之彎曲模式的在第—盤泵 之空腔内的流體之壓力振盪之曲線圖; 圖3為根據第一說明性實施例的用於測量第—盤泵之致 動器之位移的第一感測器之放大圖; 圖4為指示當處於休止位置及偏向位置中時的致動器之 位置的第一感測器之說明性接收器之示意圖; 圖5為根據第二說明性實施例的具有經展示處於偏向位 置中之致動器的盤泵之示意性橫截面圖,纟包括用於測量 致動器之位移的第二感測器之放大圖; 圖6為用於測量在盤泵中的致動器之位移的包括繞射光 柵之第三說明性感測器; ⑦ 圖7為用於測量在盤泵中的致動器之位移的包括磁性元 158107.doc -27- 201217647 件之第四說明性感測器; 圖8為用於測量及控制由盤泵產生之減壓的盤泵之說明 性電路之方塊圖;及 圖9為用於控制由盤泵產生之壓力的說明性程序之流程 圖0 【主要元件符號說明】 42 環形位移波節 43 中心位移波腹 43' 周邊位移波復 44 環形壓力波節 45 中心壓力波凝 45, 周邊壓力波腹 47 中心壓力波賤_ 47' 周邊壓力波賤^ 100 盤泵 101 橢圓形壁 102 泵外殼 103 基底壁 105 支腿 108 電路板 114 内部板 115 内部板 116 空腔 118 側壁 158107.doc '28. 201217647Figure 2A is a schematic cross-sectional view of a first disc pump showing an actuator in a deflected position in accordance with a first illustrative embodiment; Figure 2A is an axial displacement of a base (four) curved mode for a third actuator FIG. 2B is a graph of pressure oscillations of fluid in a cavity of a first disk pump in response to the bending mode shown in FIG. 2A; FIG. 3 is for use in accordance with the first illustrative embodiment An enlarged view of the first sensor that measures the displacement of the actuator of the first disk pump; Figure 4 is an illustrative reception of the first sensor indicating the position of the actuator when in the rest position and in the deflected position Figure 5 is a schematic cross-sectional view of a disc pump having an actuator shown in a deflected position, including a second sense for measuring displacement of the actuator, in accordance with a second illustrative embodiment Figure 6 is a third illustrative sensor including a diffraction grating for measuring the displacement of an actuator in a disc pump; 7 Figure 7 is an actuator for measuring in a disc pump The displacement includes the fourth element of the magnetic element 158107.doc -27- 201217647 Figure 8 is a block diagram of an illustrative circuit for measuring and controlling a reduced pressure pump generated by a disk pump; and Figure 9 is a flow chart of an illustrative process for controlling the pressure generated by the disk pump 0 [Description of main component symbols] 42 Circular displacement wave node 43 Center displacement antinode 43' Peripheral displacement wave complex 44 Annular pressure wave node 45 Center pressure wave condensation 45, Peripheral pressure antinode 47 Central pressure wave 贱 47' Peripheral pressure wave贱^ 100 disk pump 101 elliptical wall 102 pump housing 103 base wall 105 leg 108 circuit board 114 inner plate 115 inner plate 116 cavity 118 side wall 158107.doc '28. 201217647

120 端壁 122 端壁 126 孔隙 128 閥 130 裙部 131 孔隙 132 致動器閥 136 休止位置 138 偏向位置 140 致動器 150 負載 331 光感測器 332 光傳輸器 334 光接收器/光感測器 335 光信號/光束 340 第一反射之信號 342 第二反射之信號 546 超音波收發器 548 超音波 602 繞射光柵 607 傳輸器 608 多光譜光信號 610 感測器陣列 612 像素 158107.doc -29- 像素 像素 像素 磁性感測器 導體 磁場 盤泵系統 電池 處理器 控制信號 驅動器 驅動信號 照明信號 位移信號 RF收發器 無線信號 無線信號 -30-120 End wall 122 End wall 126 Pore 128 Valve 130 Skirt 131 Pore 132 Actuator valve 136 Rest position 138 Offset position 140 Actuator 150 Load 331 Light sensor 332 Light transmitter 334 Light receiver / light sensor 335 optical signal/beam 340 first reflected signal 342 second reflected signal 546 ultrasonic transceiver 548 ultrasonic 602 diffraction grating 607 transmitter 608 multispectral optical signal 610 sensor array 612 pixel 158107.doc -29- Pixel pixel pixel magnetic sensor conductor magnetic field disk pump system battery processor control signal driver drive signal illumination signal displacement signal RF transceiver wireless signal wireless signal -30-

Claims (1)

201217647 七、申請專利範圍: 1. 一種泵,其包含: 一泵體,其具有一實質上橢圓形側壁,其在一端由一 基底壁且在另一端由一對内部板封閉以在該泵體内形成 一用於容納一流體之空腔,其中鄰近該空腔的該等内部 板中之一第一者包括一中心部分及一周邊部分; 一由諸端板形成之致動器,其中該等内部板中之第二 者與該第一内部板之該中心部分在操作上相關聯以引起 Ο 一振盪位移運動,藉此回應於在使用中時施加至該致動 器之一驅動信號而在該空腔内產生該流體之徑向壓力振 盪; 一裙部,其可撓性地連接於該側壁與該第一内部板之 該周邊部分之間,以促進該振盪位移運動; 一第一孔隙,其延伸穿過該致動器以使流體能夠流過 該空腔; 一第二孔隙,其延伸穿過該基底壁以使流體能夠流過 〇 該空腔; 一閥,其安置於該第一孔隙及該第二孔隙中之至少一 者中,且經調適以准許該流體在實質上一方向上流過該 空腔以在流體開始流過該空腔時對一負載加壓或減壓, 藉此使該致動器隨著增大之壓力及該裙部之撓曲而朝向 該基底壁自一休止位置移動至一偏向位置;及, 一感測器,其安裝於該空腔外部相對於該泵體之一固 定位置中,用於測量當流體開始流過該空腔以對該負載 158107.doc 201217647 向位置之間的任 加壓或減壓時在處於該休止位置與該偏 何位置處的該致動器之位移。 2. 3. 4. 5. 6. 如租求項1之泵,其中自該空腔之 辟认w Π釉線延伸至該側 J的该空腔之半徑(r)對該空腔之該 大於或等於K2。 〜度W的比率 如請求項2之栗,其中該空腔之該高度(h)與該空腔之該 半徑(r)進一步藉由以下式子而相關: h2/r>4xl〇_1(3公尺。 如請求項2之栗’其中該致動器驅動與其相關聯之該第 一内部板以引起在一頻率⑺下之該振盪運動。 如請求項4之泵’其中該致動器驅動該第—内部板以引 起該振盪位移運動,其中該半徑(r)藉由以下式子與該頻 率(f)相關: ~ j^s 2πί <r<^£t 2π£ 115 m/s, 其中cs= cr=1970 m/s,且 1^0=3.8 3 o 如請求項4之泵,其中該等徑向壓力振盪之最低共振頻 率大於約500 Hz。 7'如請求項4之泵,其中該頻率(f)大致等於該等徑向壓力 振盪之該最低共振頻率。 8. 如請求項4之泵,其中該頻率⑴在該等徑向壓力振盪之 該最低共振頻率之20%内。 9. 如明求項1之泵,其中該第一内部板之該振盡位移運動 158107.doc 201217647 模態匹配該等徑向壓力振盪。 10.如請求項1毛, 部為-可撓性膜。 .士-月求項10之泵,其中該可 12.如請求⑽之系 、係由塑膠形成。 mm與1〇夕門 撓性膜之環形寬度處於約〇.5 .賴之間,且該可撓性膜之厚度小於約200微 术0 13·如請求項1〇之泵, 14.如請求項13之泵, 瓜瓜與1』mm之間 米0 〇 其中該可撓性膜係由金屬形成。 其中可撓性膜之該環形寬度處於約0.5 ’且該可撓性獏之該厚度小於約20微 〆月求項2之系’其#當在該空腔中使用之該流體為一 氣體夺’該比率處於約10與約5 〇之間。 16·如明求項2之泵’其中該空腔之容積小於約10 nU。 17·如凊求項2之泵,其中該致動器之半徑大於或等於 0.63(r) 〇 18. 如請求項17之泵,其中該致動器之該半徑小於或等於該 空腔之該半徑(r)。 19. 如請求項1之泵,其中該致動器之該第二内部板包含— 壓電組件。 20·如凊求項丨之泵,其中該致動器之該第二内部板包含— 磁致伸縮組件。 21.如請求項1之泵’其進一步包含一電子電路,該電子電 路與該感測器通信且經組態以計算隨該致動器之該位移 而變的在該負載處之該壓力。 158107.doc 201217647 22·如請求項21之泵,其中該電子電路經進一步組態以計算 在該負載處之該壓力之改變速率。 23. 如凊求項i之泵,其中該感測器為一光感測器,該光感 測器經組態以照明該致動器且測量該致動器之該位移。 24. 如請求項23之泵,其中該光感測器照明該致動器之該振 盪位移運動之一環形位移波節。 25. 如請求項23之泵,其中該光感測器包含一光傳輸器及一 光接收器。 26. 如請求項25之泵,其中該光傳輸器包括一藉由一光束照 明該致動器之發光二極體,且其中該光接收器包括像素 元件之一光感測器陣列,該等像素元件感測在該光束之 反射對應於當該致動器自該休止位置移動至該偏向位置 時該致動器之該位移而沿著該像素元件陣列移動時的該 等反射。 27. 如請求項25之泵,其進一步包含一電子電路,該電子電 路與該光接收器通信且經組態以計算隨該致動器之該位 移而變的在該負載處之該壓力。 28. 如請求項23之泵’其中該光感測器包含:一照明源,其 用於提供一具有一多頻率光譜之光束;—繞射光柵,其 安置於該致動器上用於將該光束反射為在該多頻率光譜 内之不同波長下的複數個經反射之光束;及一光接收 器,其用於接收該等經反射之光束,其中之每—者對鹿 於當該致動器自該休止位置移動至該偏向位置時該致動 器之一不同位移。 158107.doc 201217647 請求項1之果’其中該感測器為一磁性感測器。 如求項1之栗,其中該感測器為一 RF感測器。 31. —種用於測量由一泵產生以用於一負載之壓力的方法, 該泵具有一安裝於該泵内一可撓性裙部上之致動器,該 可撓性裙部允許該致動器振盪以用於產生穿過該泵之一 空腔的氣流,且允許該致動器隨著對該負載之增大之壓 力而移位,該方法包含: 驅動該致動器以使該致動器之一振盪位移運動產生在 〇 該空腔内的流體之徑向壓力振盪; 測量當流體開始流過該空腔從而使該致動器隨著在該 負載處之增大之壓力及該裙部之撓曲而自一休止位置移 動至一偏向位置時該致動器的位移;及 基於該致動器之該位移計算在該負載處之該壓力。 32. —種盤栗,其包含 一致動器’其由一可撓性裙部安裝至一泵體,該致動 器經組態以藉由按一振盪位移運動振動產生穿過該泵體 ◎ 之氣流以在一負載中建置壓力,及 一感測器,其經組態以感測當該壓力在該負栽内建置 時該致動器之位置,使得可確定該壓力。 33. 如請求項32之盤泵,其中 該泵體具有一側壁,該側壁在一端由一基底壁且 另 一端由一對内部板封閉以在該泵體内形成一用於容納— 流體之空腔’其中鄰近該空腔的該等内部板中 一 一弟一 者包括一中心部分及一周邊部分; 158107.doc 201217647 該致動器由諸端板形成,其中該等内部板中之第二者 與該第一内部板之該中心部分在操作上相關聯以回應於 當在使用中時施加至該致動器之一驅動信號而引起該振 盪位移運動; 該裙部連接於該側壁與該第—内部板之該周邊部分之 間’以促進該振盪位移運動; 第孔隙延伸穿過該致動器以使流體能夠流過該空 腔; 一第二孔隙延伸穿過該基底壁以使流體能夠流過該空 腔; 該盤泵進一步包含一閥,該閥安置於該第一孔隙及該 第孔隙中之至少一者中,且經調適以准許該流體在實 質上一方向上流過該空腔以在流體開始流過該空腔時對 該負載加壓或減壓,藉此使該致動器隨著增大之壓力及 該裙部之撓曲而朝向該基底壁自—休止位置移動至一偏 向位置;及, 該感測器安裝於該空腔外相對於該泵體之一固定位置 中〇 34. 35. 36. 如β求項32之泵,其中該感測器為一光感測器,該光感 測器經紐態以照明該致動器且测量該致動器之該位置。 如叫求項34之泵,其中該光感測器照明該致動器之該振 盪位移運動之一環形位移波節。 月求項3 5之菜,其中该光感測器包含一光傳輸器及一 光接收器。 158107.doc 201217647 37. 38. Ο 39. 40. 〇 41. 42. 43. 昭 如請求項36之栗,其中該光傳輸器包括—藉由—光束^ 明該致動器之發光二極體’且其中該光接收器包括像素 元件之—域測H陣列,料像素元㈣測在該光束之 反射對應於當該致動器自該休止位置移動至該偏向位置 時該致動器之該位移m該像素元件陣列移動時的該 等反射。 μ 如請求項36之泵,其進-步包含-電子電路,該電子電 路與該光接收器通信且經組態以計算隨該致動器之該位 置而變的在該負載處之該壓力。 如凊求項34之泵,其中該光感測器包含:一照明源,其 用於提供—具有一多頻率光譜之光束;一繞射光栅,其 女置於該致動器上用於將該光束反射為在該多頻率光譜 内之不同波長下的複數個經反射之光束;及—光接收 器’其用於接收該等經反射之光束,其中之每—者對應 於該致動器之一不同位置。 如請求項32之泵,其中該感測器為一磁性感測器。 如請求項32之泵,其中該感測器為一 RF感測器。 如請求項32之泵’其中該感測器為一超音波感測器。 如明求項32之泵’其中在該負載處之該壓力係隨該致動 器之經感測部分之平均位置而變來計算。 158107.doc201217647 VII. Patent Application Range: 1. A pump comprising: a pump body having a substantially elliptical side wall closed at one end by a base wall and at the other end by a pair of inner plates for the pump body Forming a cavity for accommodating a fluid, wherein a first one of the inner plates adjacent to the cavity includes a central portion and a peripheral portion; an actuator formed by the end plates, wherein the A second one of the inner plates is operatively associated with the central portion of the first inner panel to cause an oscillating displacement motion, thereby responding to a drive signal applied to the actuator when in use Generating a radial pressure oscillation of the fluid in the cavity; a skirt flexibly coupled between the sidewall and the peripheral portion of the first inner panel to facilitate the oscillatory displacement motion; a bore extending through the actuator to enable fluid to flow through the cavity; a second aperture extending through the base wall to enable fluid to flow through the cavity; a valve disposed thereon First aperture and the second In at least one of the apertures, and adapted to permit the fluid to flow through the cavity in substantially one direction to pressurize or depressurize a load as fluid begins to flow through the cavity, thereby causing the actuation The device moves from a rest position to a biased position toward the base wall with the increased pressure and the deflection of the skirt; and a sensor mounted to the outside of the cavity relative to the pump body In the fixed position, it is used to measure the actuation at the rest position and the position when the fluid begins to flow through the cavity to pressurize or decompress the load between the positions 158107.doc 201217647 Displacement of the device. 2. 3. 4. 5. 6. The pump of claim 1, wherein the radius (r) of the cavity extending from the cavity of the cavity to the side J is Greater than or equal to K2. The ratio of the degree W is as recited in claim 2, wherein the height (h) of the cavity and the radius (r) of the cavity are further related by the following formula: h2/r>4xl〇_1( 3 meters. As claimed in claim 2, wherein the actuator drives the first inner plate associated therewith to cause the oscillatory motion at a frequency (7). The pump of claim 4 wherein the actuator Driving the first inner plate to cause the oscillation displacement movement, wherein the radius (r) is related to the frequency (f) by the following formula: ~ j^s 2πί <r<^£t 2π£ 115 m/s Where cs = cr = 1970 m/s, and 1^0 = 3.8 3 o The pump of claim 4, wherein the lowest resonant frequency of the radial pressure oscillations is greater than about 500 Hz. 7 'The pump of claim 4 Wherein the frequency (f) is substantially equal to the lowest resonant frequency of the radial pressure oscillations. 8. The pump of claim 4, wherein the frequency (1) is within 20% of the lowest resonant frequency of the radial pressure oscillations 9. The pump of claim 1, wherein the first internal plate has the oscillating displacement motion 158107.doc 201217647 modally matches the radial pressures Oscillation 10. If the request item 1 is a hair, the part is a flexible film. The pump of the item-monthly item 10, wherein the unit can be formed by plastic, as in the request (10). mm and 1 〇 门The flexible film has an annular width of between about 5.5 Å, and the thickness of the flexible film is less than about 200 microsurgery. 0 13 · The pump of claim 1 , 14. The pump of claim 13 , melon Between the melon and the 1 mm, wherein the flexible film is formed of a metal, wherein the annular width of the flexible film is about 0.5 ′ and the thickness of the flexible 小于 is less than about 20 micro 〆 Item 2 is 'the # when the fluid used in the cavity is a gas. The ratio is between about 10 and about 5 。. 16. The pump of the item 2, wherein the volume of the cavity The pump of claim 2, wherein the radius of the actuator is greater than or equal to 0.63 (r) 〇 18. The pump of claim 17, wherein the radius of the actuator is less than or equal to The radius (r) of the cavity. 19. The pump of claim 1, wherein the second inner plate of the actuator comprises a piezoelectric component. The second inner plate of the actuator comprises a magnetostrictive component. 21. The pump of claim 1 further comprising an electronic circuit in communication with the sensor and configured to calculate The pressure at the load is varied by the displacement of the actuator. 158107.doc 201217647. The pump of claim 21, wherein the electronic circuit is further configured to calculate a rate of change of the pressure at the load . 23. The pump of claim i, wherein the sensor is a light sensor configured to illuminate the actuator and measure the displacement of the actuator. 24. The pump of claim 23, wherein the light sensor illuminates one of the oscillating displacement motions of the actuator. 25. The pump of claim 23, wherein the light sensor comprises an optical transmitter and a light receiver. 26. The pump of claim 25, wherein the optical transmitter comprises a light emitting diode that illuminates the actuator by a light beam, and wherein the light receiver comprises a light sensor array of pixel elements, such The pixel element senses that the reflection at the beam corresponds to the reflection of the displacement of the actuator as it moves along the array of pixel elements as the actuator moves from the rest position to the biased position. 27. The pump of claim 25, further comprising an electronic circuit in communication with the optical receiver and configured to calculate the pressure at the load as a function of the displacement of the actuator. 28. The pump of claim 23, wherein the light sensor comprises: an illumination source for providing a light beam having a plurality of frequency spectra; a diffraction grating disposed on the actuator for The beam is reflected as a plurality of reflected beams at different wavelengths within the multi-frequency spectrum; and an optical receiver is configured to receive the reflected beams, each of which is to the deer One of the actuators is displaced differently when the actuator moves from the rest position to the deflected position. 158107.doc 201217647 The result of claim 1 wherein the sensor is a magnetic sensor. For example, the sensor 1 is a RF sensor. 31. A method for measuring pressure generated by a pump for use in a load, the pump having an actuator mounted to a flexible skirt within the pump, the flexible skirt permitting An actuator oscillates for generating a flow of gas through a cavity of the pump and allowing the actuator to be displaced with increasing pressure on the load, the method comprising: driving the actuator to cause the One of the oscillating displacement movements of the actuator produces a radial pressure oscillation of the fluid within the cavity; measuring the pressure at which the fluid begins to flow through the cavity such that the actuator increases with the load and The displacement of the actuator when the skirt is flexed from a rest position to a biased position; and the pressure at the load is calculated based on the displacement of the actuator. 32. A chestnut comprising an actuator mounted to a pump body by a flexible skirt, the actuator being configured to pass through the pump body by motion vibrations in an oscillating displacement ◎ The airflow establishes pressure in a load, and a sensor configured to sense the position of the actuator when the pressure is built within the load such that the pressure can be determined. 33. The disk pump of claim 32, wherein the pump body has a side wall that is closed at one end by a base wall and at the other end by a pair of inner plates to form a space for accommodation in the pump body. a cavity in which one of the inner plates adjacent to the cavity includes a central portion and a peripheral portion; 158107.doc 201217647 The actuator is formed by end plates, wherein the second of the inner plates The central portion of the first inner panel is operatively associated with the oscillating displacement motion in response to a drive signal applied to the actuator when in use; the skirt is coupled to the sidewall and the Interacting between the peripheral portions of the first inner panel to promote the oscillatory displacement movement; the first aperture extends through the actuator to enable fluid to flow through the cavity; a second aperture extends through the base wall to cause fluid Capable of flowing through the cavity; the disc pump further comprising a valve disposed in at least one of the first aperture and the first aperture and adapted to permit the fluid to flow in a substantially upward direction The chamber pressurizes or depressurizes the load as it begins to flow through the cavity, thereby causing the actuator to move toward the base wall from the rest position as the pressure increases and the skirt flexes The sensor is mounted on the outside of the cavity with respect to a fixed position of the pump body 34. 35. 36. The pump of β, wherein the sensor is a light sensation a detector that passes the state to illuminate the actuator and measure the position of the actuator. The pump of claim 34, wherein the light sensor illuminates one of the oscillating displacement motions of the actuator. The dish of item 3 5, wherein the light sensor comprises an optical transmitter and a light receiver. 158107.doc 201217647 37. 38. Ο 39. 40. 〇41. 42. 43. As claimed in claim 36, wherein the optical transmitter comprises - by means of a beam of light - illuminating the actuator 'and wherein the light receiver comprises a pixel element H-array, and the pixel element (4) measures that the reflection of the beam corresponds to the actuator when the actuator moves from the rest position to the deflected position Displacement m the reflections as the array of pixel elements moves. μ, as in the pump of claim 36, further comprising - an electronic circuit in communication with the optical receiver and configured to calculate the pressure at the load as a function of the position of the actuator . The pump of claim 34, wherein the light sensor comprises: an illumination source for providing a beam having a multi-frequency spectrum; a diffraction grating disposed on the actuator for The beam is reflected as a plurality of reflected beams at different wavelengths within the multi-frequency spectrum; and a light receiver is configured to receive the reflected beams, each of which corresponds to the actuator One of the different locations. The pump of claim 32, wherein the sensor is a magnetic sensor. The pump of claim 32, wherein the sensor is an RF sensor. The pump of claim 32 wherein the sensor is an ultrasonic sensor. The pump of claim 32 wherein the pressure at the load is calculated as a function of the average position of the sensed portion of the actuator. 158107.doc
TW100128415A 2010-08-09 2011-08-09 System and method for measuring pressure applied by a piezo-electric pump TW201217647A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37195410P 2010-08-09 2010-08-09

Publications (1)

Publication Number Publication Date
TW201217647A true TW201217647A (en) 2012-05-01

Family

ID=44651931

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128415A TW201217647A (en) 2010-08-09 2011-08-09 System and method for measuring pressure applied by a piezo-electric pump

Country Status (8)

Country Link
US (1) US20120034109A1 (en)
EP (1) EP2603699A1 (en)
JP (1) JP2013536358A (en)
CN (1) CN103026066A (en)
AU (1) AU2011289658A1 (en)
CA (1) CA2805102A1 (en)
TW (1) TW201217647A (en)
WO (1) WO2012021412A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI681120B (en) * 2018-05-21 2020-01-01 研能科技股份有限公司 Micro gas driving apparatus

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257876B (en) 2005-09-07 2012-07-04 泰科保健集团有限合伙公司 Self contained wound dressing apparatus
CN101257938A (en) 2005-09-07 2008-09-03 泰科保健集团有限合伙公司 Wound dressing with vacuum reservoir
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
CA2604623C (en) 2006-09-28 2018-10-30 Tyco Healthcare Group Lp Portable wound therapy system
CA2705898C (en) 2007-11-21 2020-08-25 Smith & Nephew Plc Wound dressing
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
JP2015513027A (en) * 2012-02-10 2015-04-30 ケーシーアイ ライセンシング インコーポレイテッド System and method for monitoring a disk pump system using RFID
AU2013216984A1 (en) * 2012-02-10 2014-07-24 Kci Licensing, Inc. Systems and methods for electrochemical detection in a disc pump
AU2013216967A1 (en) 2012-02-10 2014-08-28 Kci Licensing, Inc. Systems and methods for monitoring reduced pressure supplied by a disc pump system
US9051931B2 (en) 2012-02-10 2015-06-09 Kci Licensing, Inc. Systems and methods for regulating the temperature of a disc pump system
WO2013130255A1 (en) * 2012-02-29 2013-09-06 Kci Licensing, Inc. Systems and methods for supplying reduced pressure and measuring flow using a disc pump system
CN107260399B (en) 2012-03-12 2022-02-22 史密夫及内修公开有限公司 Wound dressing apparatus for reduced pressure wound therapy
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
US9752565B2 (en) 2012-07-05 2017-09-05 Kci Licensing, Inc. Systems and methods for supplying reduced pressure using a disc pump with electrostatic actuation
CN103967759A (en) * 2014-05-18 2014-08-06 辽宁工程技术大学 Ultrasonic water pump with built-in piezoelectric plate
US10682446B2 (en) 2014-12-22 2020-06-16 Smith & Nephew Plc Dressing status detection for negative pressure wound therapy
EP3288508B1 (en) 2015-04-27 2020-01-08 Smith & Nephew plc Reduced pressure apparatuses
US10132706B2 (en) * 2015-09-28 2018-11-20 Apple Inc. Waterproof barometric sensor in an electronic device
US10466047B2 (en) * 2015-09-30 2019-11-05 Apple Inc. Barometric sensor integration in a water resistant electronic device
CN105240252B (en) * 2015-10-08 2018-03-02 广东奥迪威传感科技股份有限公司 A kind of piezoelectric micromotor air pump structure
CA3016484A1 (en) 2016-03-07 2017-09-14 Smith & Nephew Plc Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing
EP3448451B1 (en) 2016-04-26 2021-12-08 Smith & Nephew plc Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
EP3452129B1 (en) 2016-05-03 2022-03-23 Smith & Nephew plc Negative pressure wound therapy device activation and control
CN109069711A (en) 2016-05-03 2018-12-21 史密夫及内修公开有限公司 System and method for driving negative pressure source in negative pressure treatment system
CA3038206A1 (en) 2016-05-03 2017-11-09 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
AU2017315129B2 (en) 2016-08-25 2022-10-27 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
WO2018060417A1 (en) 2016-09-30 2018-04-05 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
JP2020511180A (en) 2016-12-12 2020-04-16 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Pressure wound therapy status display via external device
JP7361606B2 (en) 2017-03-08 2023-10-16 スミス アンド ネフュー ピーエルシー Control of negative pressure wound therapy devices in the presence of fault conditions
SG11201910129SA (en) 2017-05-09 2019-11-28 Smith & Nephew Redundant controls for negative pressure wound therapy systems
TWI667189B (en) 2017-08-31 2019-08-01 研能科技股份有限公司 Microelectromechanical fluid control device
CN109424519B (en) * 2017-08-31 2021-03-12 研能科技股份有限公司 Micro-electromechanical fluid control device
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
SG11202001900UA (en) 2017-09-13 2020-04-29 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
CN109590032B (en) * 2017-09-30 2021-09-07 研能科技股份有限公司 Control method of fluid device
TWI650284B (en) 2017-09-30 2019-02-11 Microjet Technology Co., Ltd Controlling method of fliud device
US11497653B2 (en) 2017-11-01 2022-11-15 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
GB201718072D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
EP3604876B2 (en) 2018-08-03 2024-04-03 SISTO Armaturen S.A. Membrane diagnosis via air interface
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
GB201907716D0 (en) 2019-05-31 2019-07-17 Smith & Nephew Systems and methods for extending operational time of negative pressure wound treatment apparatuses
JP7278548B2 (en) * 2020-03-05 2023-05-22 新東工業株式会社 gas measuring instrument
DE102020209593B4 (en) 2020-07-30 2022-02-17 Festo Se & Co. Kg fluid device
DE102020209594B3 (en) 2020-07-30 2021-12-30 Festo Se & Co. Kg Fluid device
US11956611B2 (en) * 2020-09-24 2024-04-09 Apple Inc. Barometric vent stack-up design to improve water performance
CN117189554B (en) * 2023-09-13 2024-05-28 深圳白边精密科技有限公司 Acoustic pressure pump, working method and application equipment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000038762A1 (en) * 1998-12-24 2000-07-06 Biosafe S.A. Blood separation system particularly for concentrating hematopoietic stem cells
CN1269637C (en) * 2000-09-18 2006-08-16 帕尔技术有限责任公司 Piezoelectric actuator and pump using same
DE10202996A1 (en) * 2002-01-26 2003-08-14 Eppendorf Ag Piezoelectrically controllable microfluidic actuators
JP4241177B2 (en) * 2003-05-09 2009-03-18 セイコーエプソン株式会社 Liquid ejector
JP4678135B2 (en) 2003-06-17 2011-04-27 セイコーエプソン株式会社 pump
JP2005112155A (en) * 2003-10-08 2005-04-28 Hitachi Ltd Suspension device
WO2005046443A2 (en) * 2003-11-07 2005-05-26 Georgia Tech Research Corporation Combination catheter devices, methods, and systems
US7435942B2 (en) * 2004-12-02 2008-10-14 Cypress Semiconductor Corporation Signal processing method for optical sensors
GB0508194D0 (en) * 2005-04-22 2005-06-01 The Technology Partnership Plc Pump
US7608984B2 (en) * 2006-05-15 2009-10-27 Adaptivenergy, Llc Motion amplification using piezoelectric element
US7797757B2 (en) * 2006-08-15 2010-09-14 Georgia Tech Research Corporation Cantilevers with integrated actuators for probe microscopy
US20090153629A1 (en) * 2007-12-18 2009-06-18 Seiko Epson Corporation Liquid supplying device and liquid ejecting apparatus
JP5205957B2 (en) * 2007-12-27 2013-06-05 ソニー株式会社 Piezoelectric pump, cooling device and electronic device
SE532405C2 (en) * 2008-05-02 2010-01-12 Johan Stenberg Pump system and method for determining a pressure value
US7938797B2 (en) * 2008-05-05 2011-05-10 Asante Solutions, Inc. Infusion pump system
US8821134B2 (en) * 2009-06-03 2014-09-02 The Technology Partnership Plc Fluid disc pump
US8371829B2 (en) * 2010-02-03 2013-02-12 Kci Licensing, Inc. Fluid disc pump with square-wave driver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI681120B (en) * 2018-05-21 2020-01-01 研能科技股份有限公司 Micro gas driving apparatus
US11754200B2 (en) 2018-05-21 2023-09-12 Microjet Technology Co., Ltd. Miniature transportation device

Also Published As

Publication number Publication date
EP2603699A1 (en) 2013-06-19
AU2011289658A1 (en) 2013-01-10
JP2013536358A (en) 2013-09-19
WO2012021412A1 (en) 2012-02-16
US20120034109A1 (en) 2012-02-09
CN103026066A (en) 2013-04-03
CA2805102A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
TW201217647A (en) System and method for measuring pressure applied by a piezo-electric pump
AU2016273958B2 (en) Systems and methods for supplying reduced pressure and measuring flow using a disc pump system
US9234518B2 (en) Systems and methods for monitoring reduced pressure supplied by a disc pump system
AU2013286714B2 (en) Systems and methods for regulating the resonant frequency of a disc pump cavity
US9422934B2 (en) Systems and methods for monitoring a disc pump system using RFID
JP6870030B2 (en) Systems, devices, and methods that provide tactile effects for a limited duration
JP2012217012A (en) Electronic apparatus