TW201216489A - Solar modules with structured synthetic layer on the front side - Google Patents

Solar modules with structured synthetic layer on the front side Download PDF

Info

Publication number
TW201216489A
TW201216489A TW100122111A TW100122111A TW201216489A TW 201216489 A TW201216489 A TW 201216489A TW 100122111 A TW100122111 A TW 100122111A TW 100122111 A TW100122111 A TW 100122111A TW 201216489 A TW201216489 A TW 201216489A
Authority
TW
Taiwan
Prior art keywords
layer
inert
front side
solar
solar cell
Prior art date
Application number
TW100122111A
Other languages
Chinese (zh)
Inventor
Gunther Stollwerck
Rafael Oser
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Publication of TW201216489A publication Critical patent/TW201216489A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention concerns solar modules which contain, on the front side, a synthetic layer, which is structured so that the sunlight which strikes it is directed from the inactive areas onto the active solar cell.

Description

201216489 六、發明說明: 【發明所屬之技術領域] 本發明係關於在正面含有合成層的太陽能模組,其 結構使得照射它的陽光能從情性區域引導到活性太陽 能電池。 【先前技術】 太陽能模組的結構通常包含透明玻璃或合成面板 或合成薄膜在正面、乙烯乙酸乙婦醋(EVA)或熱可塑 性聚氣醋(TPU)的透明熱炫黏濁層,其中太陽能電池 可被嵌入,以及通常白色的後化合物薄膜。 *從JP-A2005-277187,在正面與背面由類似聚合物 薄膜所組成的太陽能模組係為已知,該後薄膜係為白 色。该聚合物係為聚碳酸酯、聚乙婦、或聚對苯二曱酸 乙二酯。不過,該正面並沒有被架構。 從EP-A 1 070 354,封裝以聚碳酸氟聚化物化合物 薄膜的太陽能模組係為已知。此薄膜也沒有被架構。 從 Duisburg 的 SunWare Solartechnik Produktions-GmbHundCo.KG公司,具有一結構化覆蓋 薄膜於正面的太陽能模組長期可在商業上買到。不過, 該結構並不適合太陽能電池接點,該薄膜反而可被架構 當作一同質平面。 從 WO_A 2008/152300 與 WO-A 00/5111670,太陽 能模組的結構化玻璃正面係為已知,該結構會造成更高 3 201216489 的光透射。此結構也不適用於太陽能電池接點,以致於 不受控制的光線能夠落在活性太陽能電池表面與不透 明接點上。 從JP-A 10-335689,整個太陽能模組固定在地板上 的V型反射溝係為已知。在此,光線也會非選擇性地落 到太陽能電池與接點上。 從DE-A 43 37 128,太陽能模組的合成正面係為已 知,其係包含用來減少反射的微角錐結構。在此,光線 也非選擇性地落在太陽能電池與接點上。 在科學文獻中(Konzentratorsolarzellen aus Galliumarsenid:Modul- und Tandemairwendungen (石申化 鎵的集中器太陽能電池:模組與串聯應用),U.Blieske, VDI_Verlag,1995,第37頁),用於集中器太陽能電池的 結構性合成外罩亦為已知。這些係為所謂的、、稜柱形外 罩夕。它們係為薄凸透鏡薄膜,其係會被黏膠在集中器 太陽能電池上,以引導光線遠離接點而到活性太陽能電 池表面上。不過,這些薄膜並非風化穩定,以致於它們 無法被黏膠到太陽能模組的外面。同樣地,只有具有平 行接點之太陽能電池的太陽能模組可被黏膠到具有此 線性雙凸透鏡結構的薄膜。201216489 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a solar module comprising a synthetic layer on the front side, the structure of which allows sunlight that illuminates it to be directed from an emotional region to an active solar cell. [Prior Art] The structure of a solar module usually comprises a transparent glass or a synthetic panel or a synthetic film on the front side, a transparent turbid layer of ethylene vinegar vinegar (EVA) or a thermoplastic urethane (TPU), wherein the solar cell It can be embedded, as well as a normally white post-compound film. * From JP-A 2005-277187, a solar module consisting of a polymer-like film on the front and back is known, and the film is white. The polymer is polycarbonate, polyethylene, or polyethylene terephthalate. However, this aspect has not been structured. From EP-A 1 070 354, solar module systems encapsulating films of polyfluorocarbonate compound films are known. This film is also not structured. From SunWare Solartechnik Produktions-GmbHund Co. KG of Duisburg, a solar module with a structured cover film on the front side has long been commercially available. However, the structure is not suitable for solar cell contacts, but the film can instead be framed as a homogeneous plane. From WO_A 2008/152300 and WO-A 00/5111670, the structured glass front of the solar module is known, which results in a higher light transmission of 201216489. This structure also does not apply to solar cell contacts, so that uncontrolled light can fall on the surface of the active solar cell and the opaque contacts. From JP-A 10-335689, a V-shaped reflecting channel in which the entire solar module is fixed to the floor is known. Here, light also falls non-selectively onto the solar cells and contacts. From DE-A 43 37 128, the synthetic front side of a solar module is known, which comprises a micro-pyramid structure for reducing reflection. Here, the light also falls non-selectively on the solar cell and the contacts. In the scientific literature (Konzentratorsolarzellen aus Galliumarsenid: Modul- und Tandemairwendungen (Shishenhua gallium concentrator solar cells: module and series applications), U.Blieske, VDI_Verlag, 1995, p. 37), for concentrator solar cells Structural synthetic covers are also known. These are so-called, prismatic outer covers. They are thin convex lens films that are glued to the concentrator solar cells to direct light away from the contacts onto the active solar cell surface. However, these films are not weather stable so that they cannot be glued to the outside of the solar module. Similarly, only solar modules with solar cells with parallel contacts can be glued to a film having this linear lenticular structure.

同樣地’從 CN-A 102510565 ( CN 200910030083.8),在太陽能電池上的正面雙凸透鏡薄 膜係為已知,其係會將光線集中到活性太陽能電池表面 上。不過,雙凸結構的缺點係由於透鏡的焦距,使陽光 ⑧ 201216489 能夠被引導到非常遠離接點的太陽能電池上,其係會造 成額外的串聯電阻耗損。 在US-A 2006/37639中’其係說明將光線引導到太 陽能模組的稜鏡組合。在此’陽光也不會被選擇性地弓丨 導到活性太陽能電池表面上’但會相等地到接點與太陽 能電池上。 【發明内容】 本發明之目的因此係為將例如呈合成薄膜或塗漆 層形式的合成層架構在太陽能模組正面,其係呈入射陽 光沒有落到惰性區域上的此種方式,例如接點或惰性空 間,但卻選擇性地被引導到緊鄰惰性區域的活性太陽二 電池表面上。這會增加太陽能模組的電力。該合成臈^ 塗漆層亦為風化穩定。 ^令人驚訝地,本目的係在一太陽能模組中得到,其 含至少一個透明合成層在正面以及一或更多個太 陽此電池’其係具有惰性區域在正面,例如接點或 空間,較佳地集中器接點與接觸指一藉由在正面包含v 型^痕的透明合成層,且在太陽能電池的惰性區域上有 型壓痕’以致於每一壓痕能夠被排列在惰性區域 本發明因此提供一太陽能模組,其係包含 一至少一透明合成層在正面 一一或更多個太陽能電池,在太陽能電池正面或者 5 201216489 在各別太陽能電池之間會有惰性區域, 其特徵係為,在正面的透明合成層包含¥型壓痕, 在太陽能電池的惰性區域上會有此一 v型壓痕,以致於 每一壓痕能夠被排列在惰性區域上中央。 【實施方式】 在本發明前後文中,、、正面#應該被理解為太陽能 模組的正面’其係面對太陽輻射。 V型壓痕可被排列在全部或僅僅部份的惰性區域 上。在太陽能模組中的接點可被分為集中器接點與接觸 指,該集中器接點通常會比主要接點更寬,1該接觸指 則疋更乍的-人要接點。圖2顯示在線性接點之情形中, 集中器接點與接觸指排列情形的實例。不過,因為還有 許多其他可_集中轉點與接觸浦列,故此表示不 應該被當作具有聞Ί這雜料常是在太陽能電池 正面。假如陽光照在這些接點的話,其係不會轉換成能 量。在惰性區域為接點的情形中,ν型壓痕較佳地會被 排列在母集中器接點上。在較佳實施例中,此ν型壓 痕亦可進-步被排列在全部或部份的接觸指上。在晶狀 太陽能電池與薄膜太陽能電池兩者中,惰性空間會發生 於各別太雜電池Μ。假如陽統獻陽㈣組的這 些部份的話,其係亦可不會轉換成能量。在其他較佳實 施例中,假如接點與惰性空間兩者皆存在的話—除了在 集中器接點上與接觸指上的V型壓痕以外,假如有的 ⑧ 6 201216489 話,v型壓痕亦可被排列在各 賺。具有晶狀太陽能電 險能電池正面具有接點並在太陽 、、㊉《在太 J間:者。具有薄膜太陽能電池的 在太陽能電池之間具有惰性空間。在 、、、、通吊僅僅 例中,其中太陽能電池在正面不具;明::些實施 該太陽能模組僅僅在太陽能電池之有祕=地, V型壓痕每,會被排列在㈣有 這些惰性空間上。 m也之間的 在本發明的前後文中,、、v__痕,,以 ;=2剖面之綱尖端兩者均為圓形的那些 二v μ 4與1B)。於疋’ V型壓痕較佳地應被理 :為二:構邊側以固定梯度彼此實質遠離的那些壓 中’取決於生產’由於在該邊側與尖端上 的圓=固定梯度的偏離可以多達該邊側長度的2〇 %,較佳地多達10%來呈現。在邊側具有固定梯度之 理想V結構的圓化以及因此的偏離,其係可較佳由以下 所說明的生產方法來產生,例如藉㈣或其它壓印來引 進該結構。在本發明的上下文中,其中該些邊側具有連 續曲率’亦即,以固定改變梯度而彼此遠離的那些屢 痕’例如在凸透鏡之各別透鏡結構之間的壓痕,其係 不應該被理解為V-型塵痕。 在本發明的前後文中,名詞、、惰性區域〃包括入射 陽光不會被轉換成能量的那些太陽能模組區域。在本發 201216489 明的上下文中,惰性區域包括,以及附著到太陽能電池 正面的接點,譬如集中器接點與接觸指,在兩晶狀太陽 能之情形中存在於各別太陽能電池之間以及特別在薄 膜太陽能電池情形中存在於各別太陽能電池之間的惰 性空間。 在根據本發明所設計之太陽能模組的較佳實施例 中,在太陽能模組正面的惰性區域係為具有長度χ與寬 度y的線性區域,且V-型壓痕係為具有長度x與最大寬 度(V的最大開口)$丫的v_型溝,該v_型溝係呈在v 型溝之v剖面中的最深點是在適當線性區域上寬度中 點(y/2)的此種方式而被排列在線性接點上。較佳地, V-型溝的最大寬度會小於或等於〇 95 · y,特別較佳地 小於或等於0.9 · y。非常特別較佳地,v型溝的最大寬 度則具有0.6 · y至〇.9 · y的值。 在根據本發明所設計之太陽能模組的特別較佳^ 施例令,在太陽能電池正面的接點以及/或者在太陽貪 電池之間的惰性區域係為線性接點 ,寬度y的惰性空間,且v•型壓痕則是 =大寬度(V的最大開口)^的v-型溝,V型溝係i 型溝之V剖面巾的最深點是在適當祕接點與^ 二二間上寬度之中點(y/2)的此種方式被排列在-=點以及/或者惰性空間上,佳地,V_型溝的最太 寬度小於^等於0.95.y,特別較佳地小於或等於 .y。非常特別較佳地,V雜的最大寬度則具有 ⑧ 8 0.6 · y 至 0.9 · y 的值。 在根據本發明所設計之太陽能模組的進一步較佳 實施例中,在太陽能模組正面上的惰性區域係為具有直 徑z的油點狀惰性區域,且v_型壓痕係為具有最大錐體 直徑S z的錐形壓痕,該錐形壓痕係以錐體尖端被排列 在適當油點狀區域之中點的此種方式而被排列在油點 狀區域上。較佳地,該錐體的最大直徑係小於或等於 0.95 · z’特別較佳地小於或等於〇 9 . z。非常特別較佳 地’該錐體的最大直徑會具有〇 6 · z至〇 9 · z的值。 在根據本發明所設計之太陽能模組的進一步特別 較佳實施例中,在太陽能單元正面上的惰性區域係為具 有直徑z的油點狀惰性區域,且型壓痕係為具有最大 錐體直徑Sz的錐形壓痕,該錐形壓痕係以錐體尖端被 排列在適當油點狀接點之中點的此種方式而被排列在 油點狀接點上。較佳地,該錐體的最大直徑係小於或等 於0.95 · z ’特別較佳地小於或等於〇 9 · z。非常特別 較佳地,該錐體的最大直徑會具有〇 6 · z至〇 9 · z的 值。 在進一步較佳實施例中,根據本發明所設計的太陽 能模組會具有線性惰性區域與油點狀惰性區域兩者。線 性惰性區域係為線性接點以及/或者線性惰性空間,且 油點狀惰性區域係為油點狀接點與/或油點狀惰性空 間,但較佳地為油點狀接點。 同樣較佳地,V型壓痕的V剖面在線性惰性區域的 201216489 情形中具有小於y/2的深度,或者在油點狀惰性區域的 情形中具有小於Z/2的深度。 根據本發明所設計之在太陽能模組正面的透明合 成層,其係較佳地為合成薄膜、合成面板或塗漆層。較 佳地,在根據本發明所設計之在太陽能模組正面的透明 合成層係為單層或多層合成層,其係包含聚碳酸酯 (polycarbonate)、聚氣醋(polyurethane)、聚曱基丙稀 酸曱酉旨(polymethyl methacrylate )、聚對苯二曱酸乙二 酯(polyethylene terephthalate )、聚氟乙稀(polyvinyl fluoride )、聚偏氟乙婦(polyvinylidenefluoride )、聚乙 婦四氟乙烯(polyethylene tetrafluoroethylene )、或包括 它們的混合物。就透明合成層在正面的情形中,可使用 合成薄膜或合成面板,較佳地為合成薄膜,在較佳實施 例中,其係為包含聚碳酸酯(polycarbonate )、聚氟乙 烯(polyvinyl fluoride )、聚偏氟乙稀 (polyvinylidenefluoride)者,較佳地為包含聚碳酸酯 者。就透明合成層在正面的情形中,可使用塗漆層, 在較佳實施例中的塗漆係為包含聚氨酯者。 根據本發明所設計之在太陽能模組正面的透明合 成層較佳地具有折射係數丨.3至1.7,特別較佳地在1>3 與1.6之間。 較佳地’根據本發明所設計之在太陽能模組正面的 透明合成層’其係可藉由熟習該項技術者所已知的添加 物而被裝置成風化穩定。除了別的以外,該添加物包括 201216489 务'外光吸收劑、水解穩定劑與熱穩定劑。 在根據本發明所設計之在太陽能模組正面的透明 合成層較佳具有厚度50μιη至5mmc)在透明合成層係由 合成薄膜所製成的情形中,其係較佳具有厚度1〇〇至 ΙΟΟΟμηι,較佳從1〇〇至6〇〇μπ^在透明合成層係由合 成面板所製成的情形中,其係較佳具有超過ΙΟΟΟμιη的 厚度,較佳2至4mm。在透明合成層係為塗漆層的情 形中,其係較佳具有小於5〇〇μιη的厚度,較佳為5〇至 400μιη。 根據本發明所設計的太陽能模組係為非彈性或彈 性太陽能模組。 該太陽能電池較佳地被嵌入於在至少一透明合成 材料之至少一層中的太陽能模組内。太陽能電池嵌入其 中的至少一透明合成材料層,較佳地具有熱熔特性。就 此層而言,乙烯乙酸乙烯酯(EVA )、熱塑性聚氨酯 (TPU)、聚乙烯丁醛(PVB)或矽氧橡膠可能可較佳 當作適當的合成材料。用於嵌入太陽能電池的層通常具 有厚度100至ΙΟΟΟμιη,較佳地從200至700μπι。 用於嵌入太陽能電池之層較佳地具有折射係數1.3 至1.7 ’特別較佳地在13與16之間。 單晶或多晶矽太陽能電池或薄膜太陽能電池均可 能可當作太陽能電池。較佳地,根據本發明所設計的太 陽能模組包含數個不同的太陽能電池。 根據本發明所設計的太陽能模組同樣具有後方邊 201216489 界。此後方邊界係由熟習該項技術者所已知。它們可包 含薄膜或面板,較佳地為合成薄膜或合成面板。後方邊 界係被染或塗以白色或黑色。在特定實施例中,後方邊 界大部分為白色的後方化合物薄膜或聚氟乙烯 (polyvinyl fluoride )以及聚對苯二曱酸乙二酯(pet )。 此化合物薄膜例如係被說明於WO-A 90/06849。它們係 由PET核心組成,其係被疊層在具有PVF層的兩側上。 PET充當做一昂貴但卻並非風化穩定的支撐物,然而, PVF層則會產生風化保護。較佳地,無聚氟乙烯的聚對 笨二酸乙二酯或聚對苯二甲酸乙二酯混合物或聚碳 酸酯混合物係有可能。 根據本發明所設計的太陽能模組亦可具有剖面框 架。其係為金屬、較佳為!g或較佳抗風化合成材料。例 如,其係可被使絲在運送、處理與組裝期間内保護正 面合成面板、合成薄膜或塗漆層並且固定並使太陽能模 組硬化。 根據本發明所⑦計的無玻璃域能模組,其係以根 據本發明的結構化透明合成層而根據本發明地被封裝 在面對太陽側(正面),其係例如呈合成面板、合成薄 膜或塗漆層形式。如在不具有此有目的放置結構之傳統 太陽能模組的情料,陽衫會落在活性太陽能電池表 面與惰性區域兩者上’例如接點與/或惰性空間,但卻 達到由遠離惰性區域且在活性太陽能電池表面上之正 面之有目的放置結構化所引導的非常大範圍。以此方 ⑧ 12 201216489 式,太陽能電池的性能可明顯增加。假如惰性區域是接 點的話,光線則會藉由有目的放置結構化而被有利地引 導遠離接點,其係呈被較佳引導到直接相鄰接點之活性 太陽能電池表面上的此種方式,以致於能夠避免額外的 串聯電阻。 根據本發明所設計的太陽能模組可以不同方式來 產生,其係取決於是否該透明合成層是由合成薄膜或面 板所生產者或塗漆層。不過,適當生產方法所共有的係 為首先在正面具有透明合成層的磨光結構(假如需要的 話,其係尚未硬化)以及具有相應惰性區域(例如接點 與/或惰性空間)的永久放置太陽能電池,其係會在太 陽能模組中生產,且同時或隨後,該結構化可被有目的 地放置在正面透明合成層内的這些惰性區域上。此產生 太陽能模組的方法並沒有從截至目前為止的文獻所得 知。 本發明因此亦同樣提供一種根據本發明所設計之 產生太陽能模組的方法,其特徵係為可生產以下的層排 列並隨後將之堆疊: a) 正面至少一透明合成面板或合成薄膜 b) 至少一透明合成材料薄膜,以用來嵌入該太陽 能電池 c) 太陽能電池,在該太陽能電池正面與/或該太陽 能電池之間有惰性區域 d) 至少一單層或多層後薄膜或面板, 13 201216489 其係特徵為在疊層製程期間内或以後,藉由献壓印 製程,呈每—個壓痕皆在適當惰性區域中央的此種方 式’v型祕會被放置人正面由透明合成面板或合成薄 膜所得到的透明合成層内。 取決於所使用的合成材料,疊層製程會發生在1〇〇 至200°C的溫度,較佳地12〇至18(rc,特別較佳地13〇 至160°c,非常特別較佳地130至150。(:。 較佳地’為了將太陽能電池嵌入到該層排列内,根 據b)所設計的至少一透明合成材料薄膜則會被放置在 太陽能電池以上,且根據b)所設計的至少—其他透明 合成材料薄膜則會被放置在太陽能電池以下。 使用於熱壓印的衝頭會被設為目標,亦即其位置使 得它/它們能夠精確地適用於相關惰性區域上,例如太 陽能電池的接點以及/或者太陽能電池之間的惰性空 間。 本發明同樣提供一種根據本發明所設計之生產太 陽能模組的方法,其特徵係為可生產以下的層排列: a) 正面至少一尚未固化的透明塗漆層 b) 至少一透明合成材料的嵌入層 c) 太陽能電池,在該太陽能電池正面與/或該太陽 能電池之間會有惰性區域 d) 至少一單層或多層後薄膜或面板’ 其特徵係為在尚未固化的塗漆層内,藉由一晶粒, V型壓痕可被放在塗漆層中,以致於每一壓痕是在適當 201216489 固化區域上的中央,在有晶粒的情形下,該塗漆則會被 在進一步較佳實施例中,該晶粒係呈比起在v_型壓 痕之間’該塗漆在v_型祕區域+具有更高層厚度的此 種形式(見® 4)。、、在V_型壓痕區域中〃表達式應該被 理解為意味著此更高層厚度發生在V·型壓痕本身區域 中(但卻再度具有推論出的適當V-型壓痕)以及在v_ 型壓痕的緊鄰環境中兩者。根據本發明所設計方法的本 實施例是有利的,其係特別針對在正面的透明合成層呈 塗漆形式的情形,因為尤其是整體上通常具有較薄層厚 度的塗漆係可被得到,其係單就成本因素來看是較佳 的。由於在V-型壓痕區域中更高的層厚度,不僅在v_ 型壓痕之間(亦即,事實上在惰性區域之間),還有在 十月性區域上,該塗漆的電絕緣效果(其取決於厚度)合 被確保。 θ 在本發明的上下文中’該塗漆可被熱固化或藉由紫 外光輻射。 9 ' 被放置在未固化塗漆中的晶粒會被設為目標,亦即 其位置使得它/它們能夠精確地適用於相關.隋性區域以 上’例如適當太陽能電池的接點以及/或者太陽能電池 之間的惰性空間。 / 較佳地,也在此情形t,為了將太陽能電池嵌入於 該層排列内,至少一層根據b)的透明合成材料會被放 置在太陽能電池以上,以及至少一其他層根據b)的透 15 201216489 明合成材料會被放置在太陽能電池以下。 根據本發明所設計方法的優點係為,藉由使用可互 相匹配以致於它們能夠精確適用於在各別太陽能電池 正面或之間之惰性區域航向的晶粒,在惰性區域上V 形壓痕的目標對準則會發生。相較於預先製造、預先架 構的平面薄膜,此所提供的優點係為,在太陽能電池排 列情形中的不規則性(既使只有一小種)可在根據本發 明所設計的版本中被考慮在内,然而在預先製造、預先 架構之平面薄膜的情形中,光線可被隨機偏斜到惰性區 域或活性太陽能電池表面上,且在至少有利的情形中, 其係甚至從活性太陽能電池表面到惰性區域上。 較佳地’因此’就每一各別太陽能電池而言,各別 被調整的晶粒(或ram)可被使用。 熱壓印與熱固化塗漆或藉由結構化晶粒來使用紫 外光輻射的方法,其係原則上為熟習該項技術者所已 知0 實例: 根據本發明所設計的太陽能模組會被模擬,其係具 有以下結構: • 在正面的透明合成薄膜(覆蓋薄膜),其係 具有厚度〇.5mm以及折射係數丨% • 用來嵌入太陽能電池的透明合成層,包括接 點(嵌入薄膜),其係具有厚度〇.5mm以及 折射係數1.5 201216489 • 矽太陽能電池’面積為156x156mm,其係在 正面具有寬度2mm、長度i56mm、以及高 度0.15mm的三個平行線性集中器接點 該計算係使用Optis公司的光線追蹤軟體 Speos2007 來進行。 首先,可模擬有多少功率落在具有未架構覆蓋薄膜 以及在太陽能電池上不具有任何接點的太陽能電池上。 然後,可模擬有多少功率落在具有未架構覆蓋 ;=陽二電池1具有三個上述集中器接點的太陽 ' 接者,可模擬有多少功率落在具有根據本挤 明所使用之結構化覆蓋薄臈以及在太陽能電池上具^ 一個上述集中器接點的太陽能電池上。在每 的比例係以對集中器接點所遮蔽厶率的 總結於表壓痕的不同寬度而言’該結果會被 示份模擬結構的截面會被圖表式顯 一個集中2嵌入薄膜,3覆蓋薄膜,4任 博爾的寬度。在 厚度相同的深卜岭被精確設定成與覆蓋薄膜 表1 : 45。以下輻射所得 能g的例 -—_ 的比例 201216489 0mm 0% 0% 1.4mm 33% 16% 1.6mm 48°/〇 15% 1.74mm 61% 74% 2.0mm 24% 12% 根據此,在藉由集中器接點之整個表面金屬化大約 3.8%之太陽能電池的情形中,可達到就垂直光輻射情 形而言多達大約2.3%的性能增加。 令人驚課地,其係亦可顯示出,最大性能的增加係 由比接點本身更窄的V-型壓痕來得到。 此外,由於本發明,具有較寬接點的太陽能電池可 被提供,以致於能夠減少該串聯電阻的耗損,且由於根 據本發明所設計的結構化正面,較高的陰影遮蔽可藉由 較寬接點而被相應地補償。相應性能的增加也可以此方 式來得到。 【圖式簡單說明】 圖1A顯示在透明合成層3中具有理想V刳面與最 大寬度6之V型壓痕5的模範概要代表圖式。 圖1B顯示在透明合成層3中具有V剖面中圓邊緣 與圓尖端以及最大寬度6之V型壓痕5的模範概要代表 圖式。 圖2顯示就線性接點的情形而言,太陽能電池(1) 201216489 中之集中器接點(3)與接觸指(2)的模範排列情形。 圖3顯示例如一部份層架構的概要截面,其係可被 包括在根據本發明所設計的太陽能模組中,在此1代表 在正面具有接點4的太陽能電池,2代表具有接點之太 陽能電池被嵌入於内的透明合成層(嵌入層),3代表 在正面的透明合成層,5代表V型壓痕,且6代表V-型壓痕的寬度。 圖4顯示例如一部份層架構的概要截面,其係可被 包括在根據本發明所設計的另一太陽能模組中,在此1 代表在正面具有接點4的太陽能電池,2代表具有接點 之太陽能電池被嵌入於内的透明合成層(嵌入層),3 代表在正面的透明合成層,5代表V型壓痕,且7代表 在V型壓痕左邊與右邊的升起部份。 後續實例之目的係為本發明的模範說明,而且它們 不應該被當作具有限制性。 【主要元件符號說明】 1太陽能電池 2嵌入薄膜 3覆蓋薄膜 4集中器接點 5 V型壓痕 6 V型壓痕的寬度 7 V型壓痕左邊與右邊的升起部份Similarly, from CN-A 102510565 (CN 200910030083.8), a front lenticular lens film on a solar cell is known which concentrates light onto the surface of an active solar cell. However, the disadvantage of the lenticular structure is that due to the focal length of the lens, the sunlight 8 201216489 can be directed to a solar cell that is very far from the junction, which can cause additional series resistance losses. In US-A 2006/37639, it is directed to a combination of rays that direct light to a solar module. Here, the sunlight will not be selectively deflected onto the surface of the active solar cell, but will be equally connected to the solar cell. SUMMARY OF THE INVENTION The object of the present invention is therefore to construct a composite layer, for example in the form of a synthetic film or a lacquer layer, on the front side of a solar module, in such a way that incident sunlight does not fall onto the inert region, such as a joint. Or an inert space, but is selectively directed onto the surface of the active solar cell next to the inert zone. This will increase the power of the solar module. The synthetic 臈^ paint layer is also weather stable. ^ Surprisingly, the object is obtained in a solar module comprising at least one transparent synthetic layer on the front side and one or more suns. The battery has an inert area on the front side, such as a joint or space, Preferably, the concentrator contacts and the contact fingers are formed by a transparent composite layer containing a v-shaped mark on the front surface and having a pattern indentation on the inert region of the solar cell such that each indentation can be arranged in the inert region The present invention therefore provides a solar module comprising at least one transparent composite layer on the front side of one or more solar cells, on the front side of the solar cell or 5 201216489 there is an inert region between the individual solar cells, characterized The transparent synthetic layer on the front side contains a ¥-type indentation, and this v-shaped indentation is present on the inert region of the solar cell, so that each indentation can be arranged in the center of the inert region. [Embodiment] In the context of the present invention, "front" should be understood as the front side of the solar module, which faces the solar radiation. The V-shaped indentations can be arranged on all or only a portion of the inert region. The contacts in the solar module can be divided into concentrator contacts and contact fingers, which are typically wider than the main contacts, 1 which is more ambiguous - the person is to be contacted. Figure 2 shows an example of the arrangement of concentrator contacts and contact fingers in the case of linear contacts. However, because there are many other _ concentrating points and contacts, it is said that it should not be regarded as having a smell. This is often on the front of solar cells. If the sun shines on these joints, it will not be converted into energy. In the case where the inert region is a contact, the v-type indentations are preferably arranged on the contact of the mother concentrator. In the preferred embodiment, the v-shaped embossments may be further arranged on all or part of the contact fingers. In both crystalline solar cells and thin film solar cells, inert spaces can occur in individual batteries. If these parts of the Yangyang Xianyang (4) group are not converted into energy. In other preferred embodiments, if both the contact and the inert space are present - except for the V-shaped indentation on the concentrator contact and the contact finger, if there is a 6 6 201216489, the v-type indentation Can also be arranged in each earned. The solar cell with a crystalline solar energy battery has a contact on the front side and is in the sun, and ten in the J: A thin film solar cell has an inert space between the solar cells. In the case of , , , and hoisting, the solar cells are not on the front side; Ming:: Some solar modules are implemented in the solar cell only, and the V-type indentations are arranged in (4) On the inert space. Between m and s in the context of the present invention, , v__ marks, and the tips of the ;=2 profile are both circular, two v μ 4 and 1B). The V-type indentation should preferably be treated as: two: those in the side of the side with the fixed gradient being substantially distant from each other, 'depending on the production' due to the deviation of the circle on the side from the tip = fixed gradient It can be presented as much as 2%, preferably as much as 10% of the length of the side. The rounding of the ideal V structure with a fixed gradient on the side and hence the deviation can be preferably produced by the production method described below, for example by (4) or other imprinting. In the context of the present invention, wherein the sides have a continuous curvature 'that is, those repeated marks that are fixed away from each other by a fixed gradient, such as indentations between the respective lens structures of the convex lenses, should not be Understood as V-type dust marks. In the context of the present invention, the noun, the inert region 〃 includes those solar module regions where incident sunlight is not converted into energy. In the context of the present invention, in the context of 201216489, the inert zone comprises, and the contacts attached to the front side of the solar cell, such as concentrator contacts and contact fingers, between the respective solar cells in the case of two crystalline solar energy and In the case of thin film solar cells, there is an inert space between the individual solar cells. In a preferred embodiment of the solar module designed in accordance with the present invention, the inert region on the front side of the solar module is a linear region having a length χ and a width y, and the V-type indentation has a length x and a maximum Width (maximum opening of V) $ 丫 v_-type groove, the v_-type groove is the deepest point in the v-section of the v-shaped groove is the width midpoint (y/2) on the appropriate linear region The way is arranged on the linear joint. Preferably, the V-shaped groove has a maximum width which is less than or equal to 〇 95 · y, particularly preferably less than or equal to 0.9 · y. Very particularly preferably, the maximum width of the v-groove has a value of 0.6 · y to 〇.9 · y. In a particularly preferred embodiment of the solar module designed in accordance with the present invention, the contact between the front surface of the solar cell and/or the inert region between the solar cells is a linear contact, an inert space of width y, And the v• type indentation is the v-shaped groove of the large width (the maximum opening of V), and the deepest point of the V profile of the V-shaped groove i-shaped groove is at the appropriate contact point and ^22 The manner of the midpoint of the width (y/2) is arranged in the -= point and/or the inert space. Preferably, the maximum width of the V_-type groove is less than ^ equal to 0.95.y, particularly preferably less than or Equal to .y. Very particularly preferably, the maximum width of the V is a value of 8 8 0.6 · y to 0.9 · y. In a further preferred embodiment of the solar module designed according to the present invention, the inert region on the front surface of the solar module is an oil-like inert region having a diameter z, and the v_-type indentation has a maximum cone A tapered indentation of the body diameter S z , which is arranged on the oil dot-like region in such a manner that the tip end of the cone is arranged at a point in the appropriate oil dot-like region. Preferably, the maximum diameter of the cone is less than or equal to 0.95 · z', particularly preferably less than or equal to 〇 9. z. Very particularly preferably the largest diameter of the cone will have a value of 〇 6 · z to 〇 9 · z. In a further particularly preferred embodiment of the solar module according to the invention, the inert region on the front side of the solar unit is an oil-like inert region having a diameter z, and the indentation is the largest cone diameter A tapered indentation of Sz, which is arranged on the oil dot joint in such a manner that the tip of the cone is arranged at a point in the appropriate oil spot joint. Preferably, the maximum diameter of the cone is less than or equal to 0.95 · z ', particularly preferably less than or equal to 〇 9 · z. Very particularly preferably, the maximum diameter of the cone will have a value of 〇 6 · z to 〇 9 · z. In a further preferred embodiment, a solar module designed in accordance with the present invention will have both a linear inert zone and an oil spotted inert zone. The linear inert regions are linear contacts and/or linear inert spaces, and the oil dot inert regions are oil dot contacts and/or oil dot inert spaces, but are preferably oil dot contacts. Also preferably, the V-profile of the V-type indentation has a depth of less than y/2 in the case of the 201216489 linear inert zone or a depth of less than Z/2 in the case of the oil-like inert zone. The transparent composite layer on the front side of the solar module designed in accordance with the present invention is preferably a synthetic film, a composite panel or a lacquer layer. Preferably, the transparent synthetic layer on the front side of the solar module designed according to the present invention is a single layer or a plurality of synthetic layers, which comprises polycarbonate, polyurethane, polyacrylamide. Polymethyl methacrylate, polyethylene terephthalate, polyvinyl fluoride, polyvinylidenefluoride, polyethylene Tetrafluoroethylene ), or a mixture thereof. In the case where the transparent synthetic layer is on the front side, a synthetic film or a synthetic panel, preferably a synthetic film, in the preferred embodiment, a polycarbonate or a polyvinyl fluoride may be used. Polyvinylidenefluoride, preferably comprising polycarbonate. In the case where the transparent synthetic layer is on the front side, a lacquer layer may be used, and in the preferred embodiment, the lacquer system is a polyurethane-containing one. The transparent composite layer designed on the front side of the solar module according to the present invention preferably has a refractive index of 丨.3 to 1.7, particularly preferably between 1>3 and 1.6. Preferably, the transparent composite layer on the front side of the solar module designed in accordance with the present invention can be weathered and stabilized by additives known to those skilled in the art. The additives include, among other things, the 201216489 'external light absorber, hydrolysis stabilizer and heat stabilizer. The transparent synthetic layer on the front side of the solar module designed according to the present invention preferably has a thickness of 50 μm to 5 mm c). In the case where the transparent synthetic layer is made of a synthetic film, it preferably has a thickness of 1 〇〇 to ΙΟΟΟμηι. Preferably, from 1 〇〇 to 6 〇〇 μπ^, in the case where the transparent synthetic layer is made of a synthetic panel, it preferably has a thickness exceeding ΙΟΟΟμηη, preferably 2 to 4 mm. In the case where the transparent synthetic layer is a lacquer layer, it preferably has a thickness of less than 5 μm, preferably 5 Å to 400 μm. The solar module designed in accordance with the present invention is a non-elastic or resilient solar module. The solar cell is preferably embedded in a solar module in at least one of the at least one transparent composite material. At least one layer of transparent synthetic material in which the solar cell is embedded preferably has a hot melt characteristic. As the layer, ethylene vinyl acetate (EVA), thermoplastic polyurethane (TPU), polyvinyl butyral (PVB) or silicone rubber may be preferably used as a suitable synthetic material. The layer for embedding the solar cell usually has a thickness of 100 to ΙΟΟΟμηη, preferably from 200 to 700 μm. The layer for embedding the solar cell preferably has a refractive index of 1.3 to 1.7', particularly preferably between 13 and 16. Single crystal or polycrystalline solar cells or thin film solar cells can be used as solar cells. Preferably, the solar module designed in accordance with the present invention comprises a plurality of different solar cells. The solar module designed in accordance with the present invention also has a rear edge of 201216489. This rear boundary is known to those skilled in the art. They may comprise a film or panel, preferably a synthetic film or a composite panel. The rear boundary is dyed or painted white or black. In a particular embodiment, the rear boundary is mostly a white rear compound film or polyvinyl fluoride and polyethylene terephthalate (pet). This compound film is described, for example, in WO-A 90/06849. They consist of a PET core that is laminated on both sides with a PVF layer. PET acts as an expensive but not weathering stable support, however, the PVF layer creates weathering protection. Preferably, a polyvinyl fluoride-free polyethylene terephthalate or polyethylene terephthalate mixture or a polycarbonate mixture is possible. The solar module designed in accordance with the present invention may also have a cross-sectional frame. It is made of metal, preferably! g or better weather resistant synthetic material. For example, it can be used to protect the front composite panel, synthetic film or lacquer layer during transport, handling and assembly and to secure and harden the solar module. A glass-free energy module according to the invention, which is encapsulated on the sun facing side (front side) according to the invention in a structured transparent composite layer according to the invention, for example in the form of a composite panel, synthetic Film or painted layer. For example, in the case of a conventional solar module that does not have this purposeful placement structure, the sunloof will fall on both the active solar cell surface and the inert zone 'eg contact and/or inert space, but reach away from the inert zone And on the surface of the active solar cell, the front side has a very large range guided by the purposeful placement of the structure. With this type of 8 12 201216489, the performance of solar cells can be significantly increased. If the inert region is a contact, the light is advantageously directed away from the joint by purposeful placement structuring in such a way that it is preferably directed onto the surface of the active solar cell directly adjacent to the contact. So that additional series resistance can be avoided. The solar module designed in accordance with the present invention can be produced in a variety of ways depending on whether the transparent composite layer is produced by a synthetic film or panel or a painted layer. However, what is common to a suitable production method is a polishing structure that first has a transparent synthetic layer on the front side (if it is not yet hardened if necessary) and a permanent placement of solar energy with corresponding inert areas (such as joints and/or inert spaces). The cells, which are produced in the solar module, and simultaneously or subsequently, can be purposefully placed on these inert areas within the front transparent composite layer. This method of producing solar modules has not been known from the literature so far. The invention therefore also provides a method of producing a solar module according to the invention, characterized in that the following layer arrangement can be produced and subsequently stacked: a) at least one transparent composite panel or synthetic film on the front side b) a transparent synthetic material film for embedding the solar cell c) a solar cell having an inert region between the front side of the solar cell and/or the solar cell d) at least one single or multiple layers of back film or panel, 13 201216489 The feature is that during the lamination process or after, by the pressure-printing process, each indentation is in the center of the appropriate inert zone. The v-type will be placed on the front side by a transparent composite panel or composite. The film is obtained in a transparent synthetic layer. Depending on the synthetic material used, the lamination process can take place at temperatures from 1 Torr to 200 ° C, preferably from 12 18 to 18 (rc, particularly preferably from 13 160 to 160 ° C, very particularly preferably 130 to 150. (: Preferably, at least one transparent synthetic material film designed to embed the solar cell into the layer arrangement according to b) is placed above the solar cell and designed according to b) At least - other transparent synthetic film will be placed below the solar cell. The punches used for hot stamping are targeted, i.e., positioned such that they can be accurately applied to the relevant inert areas, such as the junction of the solar cell and/or the inert space between the solar cells. The invention likewise provides a method for producing a solar module according to the invention, characterized in that the following layer arrangement is produced: a) at least one uncured transparent lacquer layer on the front side b) at least one transparent synthetic material embedded Layer c) a solar cell having an inert region between the front side of the solar cell and/or the solar cell d) at least one single or multiple layers of post film or panel 'characterized within the lacquer layer that has not yet been cured, From a grain, the V-shaped indentation can be placed in the lacquer layer so that each indentation is centered on the appropriate 201216489 curing zone, and in the case of grains, the lacquer will be further In a preferred embodiment, the grain is in such a form that the coating has a higher layer thickness in the v-type region than in the v-type indentation (see ® 4). 〃 expression in the V_-type indentation area should be understood to mean that this higher layer thickness occurs in the V-type indentation itself (but again with the inferred appropriate V-type indentation) and The v_ type indentation is in close proximity to both of the environments. This embodiment of the method according to the invention is advantageous, in particular for the case where the transparent synthetic layer on the front side is painted, since in particular a painting system which generally has a thinner layer thickness as a whole, can be obtained, Its line is better in terms of cost. Due to the higher layer thickness in the V-type indentation area, not only between the v-type indentations (ie, actually between the inert regions), but also in the October region, the painted electricity The insulation effect (which depends on the thickness) is ensured. θ In the context of the present invention, the lacquer can be thermally cured or irradiated by ultraviolet light. 9 'The grain placed in the uncured paint will be set as the target, ie its position so that it/they can be precisely applied to the relevant 隋-区域 area above 'for example solar cell contacts and/or solar energy An inert space between the batteries. / preferably, also in this case t, in order to embed the solar cell in the layer arrangement, at least one layer of transparent synthetic material according to b) will be placed above the solar cell, and at least one other layer according to b) 201216489 Ming synthetic materials will be placed below solar cells. An advantage of the method designed according to the invention is that V-shaped indentations on the inert region are achieved by using grains that are mutually matched so that they can be accurately applied to the heading of the inert regions on the front or between the respective solar cells. Target alignment will occur. Compared to pre-fabricated, pre-architected planar films, this provides the advantage that irregularities in the case of solar cell arrays (even if only one) can be considered in the version designed according to the invention. Internally, however, in the case of pre-fabricated, pre-architected planar films, the light can be randomly deflected onto the inert zone or active solar cell surface, and in at least advantageous cases, even from the active solar cell surface to On the inert zone. Preferably, the individual sized grains (or rams) can be used for each individual solar cell. Hot embossing and heat curing lacquering or by means of structured granules using ultraviolet radiation, which are in principle known to those skilled in the art. 0 Example: A solar module designed according to the invention will be The simulation has the following structure: • Transparent synthetic film (cover film) on the front side with a thickness of 〇5 mm and a refractive index 丨% • Transparent composite layer for embedding solar cells, including joints (embedded film) It has a thickness of 〇.5mm and a refractive index of 1.5 201216489 • 矽 solar cell 'area 156x156mm, which is three parallel linear concentrator contacts with a width of 2mm, a length of i56mm, and a height of 0.15mm on the front side. Optis' ray tracing software Speos2007 comes with it. First, it is possible to simulate how much power falls on a solar cell with an unframed cover film and no contacts on the solar cell. Then, it can simulate how much power falls on the unstructured coverage; = the solar receiver with the three concentrator contacts, can simulate how much power falls on the structured coverage used according to the extrusion A thin crucible and a solar cell having a concentrator contact on the solar cell. In each proportion, the ratio of the occlusion rate of the concentrator contacts is summarized in the different widths of the gauge indentations. The result will be shown in the graph. The cross section of the simulated structure will be graphically displayed in a set 2 embedded in the film, 3 covered Film, 4 bor width. The deep ridges of the same thickness are precisely set to cover the film with Table 1:45. The following example of the radiation energy g--_201216489 0mm 0% 0% 1.4mm 33% 16% 1.6mm 48°/〇15% 1.74mm 61% 74% 2.0mm 24% 12% According to this, In the case where the entire surface of the concentrator contacts is metallized by about 3.8% of the solar cells, an increase in performance of up to about 2.3% in the case of vertical light radiation can be achieved. It is also surprising that the system can also show that the maximum performance increase is obtained by a V-type indentation that is narrower than the joint itself. Furthermore, due to the present invention, a solar cell having a wider contact can be provided such that the loss of the series resistance can be reduced, and due to the structured front surface designed in accordance with the present invention, higher shadow shading can be made wider The joint is compensated accordingly. The corresponding increase in performance can also be obtained in this way. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A shows an exemplary schematic representation of a V-shaped indentation 5 having a desired V-face and a maximum width 6 in a transparent composite layer 3. Fig. 1B shows an exemplary schematic representation of a V-shaped indentation 5 having a rounded edge and a rounded tip in the V section and a maximum width of 6 in the transparent composite layer 3. Figure 2 shows the exemplary arrangement of the concentrator contacts (3) and the contact fingers (2) in the solar cell (1) 201216489 for the case of linear contacts. Figure 3 shows a schematic cross-section of, for example, a partial layer structure, which can be included in a solar module designed in accordance with the present invention, where 1 represents a solar cell having contacts 4 on the front side and 2 represents a contact point. The solar cell is embedded in a transparent synthetic layer (embedded layer), 3 represents a transparent synthetic layer on the front side, 5 represents a V-shaped indentation, and 6 represents the width of the V-type indentation. Figure 4 shows a schematic cross-section of, for example, a partial layer architecture, which may be included in another solar module designed in accordance with the present invention, where 1 represents a solar cell having contacts 4 on the front side and 2 represents a connection The point solar cell is embedded in a transparent synthetic layer (embedded layer), 3 represents a transparent synthetic layer on the front side, 5 represents a V-shaped indentation, and 7 represents a raised portion to the left and right of the V-shaped indentation. The following examples are intended to be exemplary of the invention and they should not be considered as limiting. [Main component symbol description] 1 solar cell 2 embedded film 3 cover film 4 concentrator contact 5 V-type indentation 6 V-type indentation width 7 V-type indentation left and right raised portion

Claims (1)

201216489 七 申請專利範圍: i 一種太陽能模組,包含: -在正面的至少一個透明合成層 -一個或更多個太陽能電池,在該太陽能電池正面 或該各別太陽能電池之間具有惰性區域, 其特徵在於在正面的該透明合成層包含乂_型 壓痕,在該惰性區域上有此一 v型壓痕,使得每— 壓痕均能夠被排列在該惰性區域中央。 2.如申請專利範圍第1項之太陽能模組,其中該惰性 區域係為在該太陽能電池正面的接點以及/或者在 該太陽能電池之間的惰性空間。 3·如申請專利範圍第1或2項之太陽能模組,其中該 惰性區域係為具有長度X與寬度y的線性區域,且 3亥V-型壓痕係為具有長度χ且最大寬度(v的最 大開口)Sy的V-型溝,該V_型溝係以在v_型溝 之V剖面的最深點是在適當線性惰性區域上寬度 中點(y/2)的此種方式被排列在該線性惰性區域 上。 如申請專利範圍第3項之太陽能模組,其中¥_型 溝的最大寬度小於或等於0.95 · y,較佳小於或裳 於〇.9.y,特別較佳具有值〇.6”至〇9·/ 20 201216489 .如申請專利範圍第1或2項之太陽能模組,盆中該 惰性區域係為直徑z的油點狀接點,且v•型壓μ 係為錐體最大直徑^的錐形壓痕,該錐形壓痕;系 呈該錐體尖端被排列在適當油點狀惰性區域中點 的此種方式而被排列在油點狀惰性區域上。 6. 如申請專利範圍第5項之太陽能模組,其中該錐體 的最大直徑小於或等於0.95 · ζ,較佳小於或等於 〇·9 · ζ ’特別較佳具有〇.6 · ζ至〇 9 · ζ的值。 7. 如申請專利範圍第1至6項之至少一項的太陽能模 組,其中在正面的透明合成層係為合成薄膜、合成 面板或塗漆層。 8·如申請專利範圍第1至7項之至少一項的太陽能模 組,其中在正面之透明合成層會被裝置以為風化穩 定。 9’如申請專利範圍第1至8項之至少一項的太陽能模 組,其中V型結構的V剖面在線性惰性區域中具 有小於y/2的深度,或者在油點狀惰性區域的情形 中具有小於z/2的深度。 21 201216489 10. 如申請專利範圍第1至9項之至少一項的太陽能模 組,其中在正面的透明合成層係為單層或多層合成 層,其係包含聚碳酸酯(polycarbonate)、聚曱基 丙稀酸曱醋(polymethyl methacrylate )、聚對苯二 甲酸乙二醋(polyethylene terephthalate )、聚 II 乙 稀(polyvinyl fluoride)、聚偏氟乙烯 (polyvinylidenefluoride)、聚乙晞四氟乙烯 (polyethylene tetrafluoroethylene)、聚氨酋旨 (polyurethane)或包括它們的混合物。 11. 一種生產如申請專利範圍第1至10項之至少一項 之太陽能模組的方法,其特徵在於可生產以下的層 排列並隨後將之堆疊: a) 正面至少一個透明合成面板或合成薄膜 b) 至少一個透明合成材料薄膜 c) 太陽能電池,在該太陽能電池正面與/或該太陽 能電池之間會有惰性區域 d) 至少一個單層或多層後薄膜或面板, 其中在疊層製程期間内或以後,藉由熱壓印製程, 呈每一個壓痕皆在適當惰性區域中央的此種方 式’V型壓痕會被放置入正面由透明合成面板或合 成薄膜所組成的透明合成層内。 ⑧ 22 201216489 12·如申請專利範圍第10項之方法,其中該疊層製程 發生於溫度100至200°C,較佳地120至180°C, 特別較佳地130至160°C,相當特別較佳地no至 150〇C。 13. —種生產如申請專利範圍第丨至9項之至少一項之 太陽能模組的方法,其特徵在於可生產以下的層排 列: a) 正面至少一個透明塗漆層 b) 至少一個透明合成材料嵌入層 c) 太陽能電池,在該太陽能電池正面與/或該太陽 能電池之間會有惰性區域 (〇至少一個單層或多層後薄膜或面板 ,其特徵係為在尚未固化的塗漆層内,藉由晶粒, V-型壓痕會被放置在塗漆層中,使得每一壓痕皆在 適©惰性區域上的中央,在有晶粒的情形下,該塗 漆會被固化。 从如申請專利範圍第13項之方法,其中該塗漆會被 熱或藉由紫外光輻射被固化。 K如申請專利範圍第13或14項之方法,其中該晶粒 係呈比起在V-型壓痕之間的區域中,該塗漆在v_ 型壓痕區域中具有更高的層厚度的此種形式。 23201216489 Seven patent application scope: i A solar module comprising: - at least one transparent composite layer on the front side - one or more solar cells, having an inert region between the front surface of the solar cell or the respective solar cells, The transparent composite layer on the front side comprises a 乂-type indentation on the inert area such that each of the indentations can be arranged in the center of the inert area. 2. The solar module of claim 1, wherein the inert zone is a junction on the front side of the solar cell and/or an inert space between the solar cells. 3. The solar module of claim 1 or 2, wherein the inert region is a linear region having a length X and a width y, and the 3 Hz V-type indentation has a length χ and a maximum width (v The largest opening) of the V-shaped groove of Sy, the V_-type groove is arranged in such a way that the deepest point of the V-profile of the v-type groove is the midpoint of the width (y/2) on the appropriate linear inert region On this linearly inert area. The solar module of claim 3, wherein the maximum width of the _-type groove is less than or equal to 0.95 · y, preferably less than or equal to 〇.9.y, particularly preferably having a value of 〇.6" to 〇 9·/ 20 201216489. For the solar module of claim 1 or 2, the inert zone in the basin is a dot-point contact of diameter z, and the v•-type pressure μ is the maximum diameter of the cone ^ a tapered indentation, which is arranged on the oil-like inert region in such a manner that the tip of the cone is arranged at a midpoint in an appropriate oil-like inert region. The solar module of the fifth item, wherein the maximum diameter of the cone is less than or equal to 0.95 · ζ, preferably less than or equal to 〇·9 · ζ ' particularly preferably having a value of 〇.6 · ζ to 〇9 · 。. A solar module according to at least one of claims 1 to 6, wherein the transparent synthetic layer on the front side is a synthetic film, a synthetic panel or a lacquer layer. 8. As claimed in claims 1 to 7. At least one solar module in which a transparent composite layer on the front side is to be weathered A solar module according to at least one of claims 1 to 8, wherein the V-profile of the V-shaped structure has a depth of less than y/2 in the linear inert region, or in the oil-like inert region In the case of a solar module according to at least one of the claims 1 to 9, wherein the transparent synthetic layer on the front side is a single layer or a multilayer composite layer, Including polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyvinyl fluoride, polyvinylidenefluoride Polyethylene tetrafluoroethylene, polyurethane or a mixture thereof. 11. A method of producing a solar module according to at least one of claims 1 to 10, It is characterized in that the following layer arrangements can be produced and subsequently stacked: a) at least one transparent composite panel or synthetic film on the front side b) at least one transparent composite Film c) a solar cell having an inert region between the front side of the solar cell and/or the solar cell d) at least one single or multiple layers of back film or panel, wherein during or after the lamination process, by heat The imprint process, in such a way that each indentation is in the center of the appropriate inert zone, is placed in a transparent composite layer consisting of a transparent composite panel or a synthetic film. The method of claim 10, wherein the lamination process occurs at a temperature of 100 to 200 ° C, preferably 120 to 180 ° C, particularly preferably 130 to 160 ° C, which is quite special. Preferably no to 150 〇C. 13. A method of producing a solar module according to at least one of claims ninth to 9th, characterized in that the following layer arrangement is produced: a) at least one clear lacquer layer on the front side b) at least one transparent compositing Material embedding layer c) a solar cell having an inert region between the front side of the solar cell and/or the solar cell (at least one single or multi-layer back film or panel characterized by an uncured lacquer layer By means of the dies, V-type indentations are placed in the lacquer layer so that each indentation is centered on the appropriate inert zone, and in the case of granules, the lacquer is cured. The method of claim 13, wherein the lacquer is cured by heat or by ultraviolet radiation. K. The method of claim 13 or 14, wherein the grain is compared to V In the region between the -type indentations, the paint has this form of higher layer thickness in the v_type indentation area.
TW100122111A 2010-06-25 2011-06-24 Solar modules with structured synthetic layer on the front side TW201216489A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10167265 2010-06-25

Publications (1)

Publication Number Publication Date
TW201216489A true TW201216489A (en) 2012-04-16

Family

ID=43413688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100122111A TW201216489A (en) 2010-06-25 2011-06-24 Solar modules with structured synthetic layer on the front side

Country Status (2)

Country Link
TW (1) TW201216489A (en)
WO (1) WO2011161051A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010713B (en) 2013-02-25 2020-10-27 沙特基础工业全球技术有限公司 Photovoltaic module assembly
CN103400881B (en) * 2013-07-09 2016-04-20 赛维Ldk太阳能高科技(南昌)有限公司 The method for packing of photovoltaic module and photovoltaic module

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053327A (en) * 1975-09-24 1977-10-11 Communications Satellite Corporation Light concentrating solar cell cover
US4379202A (en) * 1981-06-26 1983-04-05 Mobil Solar Energy Corporation Solar cells
US4711972A (en) * 1985-07-05 1987-12-08 Entech, Inc. Photovoltaic cell cover for use with a primary optical concentrator in a solar energy collector
AT393103B (en) 1988-12-21 1991-08-26 Isovolta METHOD FOR PRODUCING A COMPOSITE FILM STABLE AGAINST UV RADIATION, AND THE USE THEREOF
DE4337128A1 (en) 1993-11-01 1995-05-04 Deutsche Aerospace Photovoltaic solar generator
JPH10335689A (en) 1997-06-02 1998-12-18 Toyota Motor Corp Solar cell device
DE19814652A1 (en) 1998-04-01 1999-10-07 Bayer Ag Photovoltaic modules with composite films
DZ3380A1 (en) 2002-09-21 2005-06-18 Bachir Hihi METHOD FOR INCREASING THE OUTPUT POWER OF PHOTOVOLTAIC CELLS
JP2005277187A (en) 2004-03-25 2005-10-06 Sharp Corp Solar battery module
FR2870007B1 (en) 2004-05-10 2006-07-14 Saint Gobain TRANSPARENT SHEET TEXTURED WITH INCLINED PYRAMIDAL PATTERNS
FR2916901B1 (en) * 2007-05-31 2009-07-17 Saint Gobain PROCESS FOR OBTAINING A TEXTURE SUBSTRATE FOR A PHOTOVOLTAIC PANEL
CN101510565A (en) 2009-04-01 2009-08-19 苏州大学 Solar cell synergistic film
KR100934358B1 (en) * 2009-07-28 2009-12-30 (주) 비제이파워 A prism glass structure for enhancing the performance of sollar cell module

Also Published As

Publication number Publication date
WO2011161051A2 (en) 2011-12-29
WO2011161051A3 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
CN107845697B (en) Adhesive for light redirecting films
JP5176268B2 (en) Solar cell module
US20180040757A1 (en) Light redirecting film useful with solar modules
US20080223433A1 (en) Solar Module with a Stiffening Layer
US20140036486A1 (en) Solar lighting system
EP3895219B1 (en) Photovoltaic module
US20160172518A1 (en) Reflective microstructured films with microstructures having curved surfaces, for use in solar modules
TW201216489A (en) Solar modules with structured synthetic layer on the front side
US20130306132A1 (en) Solar photoelectrical module and fabrication thereof
JP2010074057A (en) Solar cell backside sheet and solar cell module using the same
US20180062010A1 (en) Arc-bending translucent assembly, use and method for manufacturing thereof
US20180006178A1 (en) Solar cell module
JPH04116987A (en) Manufacture of solar cell module
CN210443575U (en) Anti-glare photovoltaic module
CN211542697U (en) Transparent sheet
KR101417397B1 (en) Back sheet for a solarcell having a controlled reflective property and module using the same
JP2007165485A (en) Manufacturing method for solar power generation module
JP2014132615A (en) Solar cell module
KR20120043592A (en) Dye-sensitized solar cell for concentrating solar energy
WO2008114685A1 (en) Method for manufacturing solar cell and solar cell
US8969716B2 (en) Photovoltaic device and method for producing a concentrator lens system
CN112567280A (en) Light redirecting films with stray light mitigation properties for solar modules
JP2007273737A (en) Rear-surface protective sheet for solar cell, and solar cell module
KR102478448B1 (en) Flexible solar module, texturing method of the same, and texturing equipment of the same
JP2005259952A (en) Solar cell module