TW201213979A - Backlight for a display - Google Patents

Backlight for a display Download PDF

Info

Publication number
TW201213979A
TW201213979A TW100128235A TW100128235A TW201213979A TW 201213979 A TW201213979 A TW 201213979A TW 100128235 A TW100128235 A TW 100128235A TW 100128235 A TW100128235 A TW 100128235A TW 201213979 A TW201213979 A TW 201213979A
Authority
TW
Taiwan
Prior art keywords
light
backlight
elongated
guides
group
Prior art date
Application number
TW100128235A
Other languages
Chinese (zh)
Inventor
Erno Hermanus Antonius Langendijk
Gabriel-Eugen Onac
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201213979A publication Critical patent/TW201213979A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A backlight for a display comprises a group of elongated light guides (209, 211, 213) arranged to illuminate an elongated strip (203) of the display. Each of the elongated light guides (209, 211, 213) comprises a light in-coupling for receiving light and at least one light out-coupling (217, 219, 221) for radiating light where the light out-couplings (217, 219, 221) have a restricted extension in a longitudinal direction of the elongated light guides (209, 211, 213). Each of the plurality of light sources (215) are arranged to feed light to a light in-coupling of one of the plurality of elongated light guides (209, 211, 213). The light out-couplings (217, 219, 221) for the elongated light guides (209, 211, 213) have different offsets along the longitudinal direction of the elongated strip. The approach may allow a two-dimensional segmentation of the backlight using substantially one dimensional light guides thereby providing a local dimming backlight based on edge illuminating light sources. Thus, low complexity, cost and display depth can be achieved.

Description

201213979 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於一顯示器之背光,且特定而言 (但非排他地)係關於一種用於一液晶顯示器(lcd)之背 光。 【先前技術】 在過去十年中,平板顯示器在幾乎所有應用(包含如電 腦監視器、電視等)中已幾乎完全取代了傳統陰極射線管 (CRT)顯示器。 一流行類型之平板顯示器係背光顯示器,其中由可變及 y控制光衰減層產生及調變―背光以提供所期望影像。此 等類型之顯示器之一典型實例係LCD顯示器,其中使用具 有可個別控制之像素元件之__液晶層根據欲呈現之影像來 調變一背光。 然而,包含LCD顯示器之諸多背光顯示器之一問題係其 往往提供相對不良的反差比且進—步地往往係相對電力低 效。 為解決此等缺點,已提出使用背光強度之一可變控制。 特定而言,已提出使用局域背光調光,其中可相依於區域 之影像特性個別地控制背光之不同段。舉例而言,可藉由 自政佈於顯不器之區域上方之發光二極體(led)產生一背 光來達成局域調光。 然而,儘管此等局域調光背光解決方案可改良反差且減 電力4耗,但其往彺需要顯示器之一實質實施深度或厚 157611.doc 201213979 度。另外,此等基於LED之背光往往係相對昂貴的且難以 製造。因此存在具有越來越少leD以便減小顯示器之成本 之一趨勢。此對通常隨LED間距縮放(在直射光組態中)之 顯示器之厚度具有一直接影響。 為達成極薄顯示器,已提出邊緣背光解決方案,其中背 光係由邊緣安裝之光源產生,該等邊緣安裝之光源將光注 射至將光分佈於顯示區域上方之一平面光學元件中。此等 解决方案可k供極薄背光(例如,約1 mm),藉此允許製造 極薄顯示器。然而,該等解決方案確實不允許局域背光調 光且因此遭受與習用背光顯示器相關聯之缺點。 因此,一改良之顯示器背光解決方案將係有利的,且特 定而言,允許增加之靈活性、減小之深度、改良之局域調 光/控制/調適、減小之電力消耗、改良之反差、減小之成 本、促進之實施及/或改良之效能之一解決方案將係有利 的。 【發明内容】 因此,本發明尋求單個地或以任一組合來較佳地減輕、 緩和或消除上文所提及之缺點中之一或多者。 根據本發明之一態樣,提供用於一顯示器之一背光,該 者光包括·一群組細長光導,其經配置以照明該顯示器之 細長條帶,該群組細長光導中之每一光導包括用於接收 光之一光輸入耦合件及用於輻射光之至少一個光輸出耦合 件,β玄至少一個光輸出耦合件在該光導之一縱向方向上具 有一觉限延伸;複數個光源,該複數個光源中之每一者經 157611.doc 201213979 配置以將光饋送至該群組細長光導中之一個光導之一光輸 入耦合件;其中該群組細長光導中之至少一個光導之一光 輸出耦合件沿該細長條帶之一縱向方向相對於該群組細長 光導中之至少另一個光導之一光輸出耦合件偏移。 本發明在諸多實施例中可允許改良之及/或促進之背 光。特定而言’在諸多情況中’該方法可允許促進之實施 及/或減小之成本。該方法可允許極薄背光且因此允許薄 顯不。 特定而言’在諸多實施例中,本發明可允許具有局域背 光控制之低成本及薄背光顯示器,藉此允許增加之反差及 減小之電力消耗。 該方法可允許實質上一維光導提供一二維背光分段,從 而允許僅藉由控制一光源來個別地控制每一段。該等光導 可係(例如)自廉價透明塑膠製造之簡單、低成本光導。 細長條帶可係平行於由該等細長光導中之至少某些光導 形成之—平面之一矩形平面。該條帶之長度可實質上長於 δ亥條帶之寬度,例如該條帶之長度可係其寬度之不小於 2、4或1G倍長。該群组光導可具有對應於該條帶之寬度之 組合寬度或可(例如)係實質上較狹窄的。 該群組之細長光導可經配置實質上平行於彼此且可實 於該條帶。該等細長光導可具有相同長度或判 Η長度。 一光導之光輸入輕合件可位於在言亥《導之—。 如’可將一光輸出耦合件 八 σ件作為一(元全或部分)塗漆表面 157611.doc 201213979 ^ 粗糙化表面區段(藉由(例如)噴沙或雷射燒蝕之方式 進行)一楔形形狀、—反射傾斜中途末端、—微型結構 光學局域腐蝕圖案(可能具有梯度指數)等中之一者而 生。 i 光輸出輕合件可特㈣對應於—光輸出麵合區域。光輸 入耦合件可特定地對應於光導之一輸入耦合小面或側面广 在諸多實施例中,光輸出耦合件在縱向方向上之延伸係 不大於在彼方向上之顯示器作用區域尺寸之 10%或甚至5。/。。 在諸多實施例中,不小於進入一光導之光之7〇%、 80%、90%或甚至95%經由光輸出耦合件出射光。 在某些實施例中’光導可特定地係一空心光管。 該顯示器(區域)可劃分成複數個細長條帶(其(例如)可係 水平或垂直條帶)。與偏移光輸出耦合件組合之此一方法 可提供具有可個別控制之背光之-二維背光分段。細長條 帶中之每一者之背光可由一群組細長光導提供。該等細長 光導群組可(例如)係提供實質上相同背光分段之實質上相 同配置。 在某些實施例中,該群組細長光導之光輸出耦合件經配 置以在縱向方向上實質上均勻地照明該條帶。在某些實施 例中,該群組光導可進一步經配置以在垂直於該縱向方向 之一方向上實質上均勻地照明該條帶。一均勻照明可特定 地係其中最大背光強度變化小於20%或在某些情況中甚至 10%之照明。 157611.doc 201213979 根據本發明之一可選特徵,該群組細長光導包括在垂直 於該條帶之一方向上相對於彼此偏移之至少兩個重疊光導 層。 在諸多實施例中’此可提供—高效配置且允許較精細縱 向背光分段同時維持該條帶之一低寬度。 該條帶可界定顯示器之一平面且該兩個層之配置可在於 垂直於該平面之方向上至該表面之不同距離處。 根據本發明之一可選特徵,該至少兩個層中之至少一第 一層經配置以穿過該至少兩個層中之至少一第二層輻射用 於顯示器之背光。 在諸多實施例中,此可提供一改良之效能及/或促進之 實施。 在某些實施方案中,該等光導可經配置使得來自一個層 之光輸出耦合件之光至少部分地穿過另一層之光導之間的 間隙投射。 在某些實施方案中,該等光導可經配置使得來自一個層 之光輸出耦合件之光至少部分地穿過另一層之光導投射。 根據本發明之一可選特徵,複數個光源中之至少一個光 源係具有一可變色彩光譜之一可變光源。 在諸多貫施例中,此可提供改良之效能,同時允許一低 複雜性及通常低成本實施方案。該方法可提供背光之一改 良之局域調適。特定而言,該背光可經調適以反映局域色 衫特性,同時仍維持低成本、高反差、高電力效率、薄尺 寸等。 157611.doc 201213979 根據本發明之-可選特徵,可變光源包括複數個不同色 彩之子光源,且與該可變光源相關聯之該群組細長光導中 之-光導經配置以混合來自該等不同色彩之子光源之光輸 出。 在諸多實施例中,此可提供改良之效能同時允許-低複 雜性及通常一低成本實施方案。不同色彩之子光源可(例 如)係分離光源(諸如不同色彩之LED)或可係經配置以提供 複數個不同光譜之單個光源。不同色彩灰子光源可包括一 白色子光源。 根據本發明之一可選特徵,該群組細長光導中之光導中 之至㉟力導具有沿縱向彳向相對於光輸入麵合件具有 不同偏移之光輸出耦合件。 在諸多實施例中此可提供一特別有利實施方案,且可 (例如)簡化光導之安裝及固定且可在顯示器之縱向方向上 提供一均勻照明。 根據本發明之一可選特徵,該群組細長光導中之至少一 第一光導包括至少兩個光輸出耦合件。 在諸多實施例中此可係特別有利的。舉例而言,在諸多 實施例中’其可增加沿水平方向之背光段之有效數目。 根據本發明之一可選特徵,該第一光導包括兩個光輸入 耦合件且該複數個光源包括用於該至少兩個光輸入耦合件 中之一第一者之一第一光源及用於該至少兩個光輸入耦合 件中之一第二者之一第二光源。 在諸多實施例中,此可係特別有利的。舉例而言,在諸 157611.doc 201213979 多實施例中,其可增加沿水平方向之背光段之有效數目, 同時提供用於個別地控制每一段之背光之一低複雜性方法 (例如使用較少組件 光輸入耦合件可特定地對應於細長光導之相反端且兩個 光源可位於光導之相反端處。此可(例如)藉由減小在輸送 期間由光吸收或不需要之散射引起之差(在具有相對於輸 入耦合件之不同偏移之段之間)來改良均勻性。 根據本發明之一可選特徵,背光進一步包括一驅動器, 該驅動器用於個別地控制該第一光源及該第二光源以為與 該兩個光輸出耦合件之一第一者相關聯之條帶之一第一背 光段及與該兩個光輸出耦合件之一第二者相關聯之條帶之 一第一背光段提供個別背光控制。 在諸多情況中,此可提供改良之效能。 根據本發明之-可選特徵,該第一光導包括在兩個光輸 出耦合件之間之一光通量衰減區段。 此可允許由兩個光輸出耦合件形成之背光段之間之改良 之分離。特定而言,其可減小兩個段之間之串擾且可(例 如)允許針對每一段達成一增加之背光動態範圍。 該光通量衰減區段可係光導之一組成部分或可係提供該 光通量衰減之一單獨特徵。具體而t ’該光通量衰減區段 可係經配置以吸收、反射或輪出耦合自光導之一個或兩個 方向到達該區段之光的一區段。 根據本發明之-可選特徵,背光進一步包括用於個別地 驅動該複數個光源以提供局域背光控制之一驅動器。 1576Jl.doc .10· 201213979 此可提供改良之效能。兮, Μ 此4局域背光控制允許不同地設定 該條帶之不同段之背光。 根據本發明之一可選特徵,該群組細長光導中之至少一 個光導係一可控制弁道 ^ 控制先導,該可控制光導經配置以回應於一 號來控制來自至少-個光輸出竊合件之-光輸出。 在諸多情況中’此可提供額外靈活性及改良之效能。該 可控制光導之控制功能性可(例如)係光導之—組成部分或 可係(例如)包括輸出耦合光之—可變衰減之一光輸出耦合 件配置之部分。 根據本發明之—可選特徵,該條帶包括每光輸出輕合件 不多於10000個像素。 本發明可允許以低複雜性、成本等提供一精細粒度背光 分段。 根據本發明之一可選特徵,該群組細長光導中之至少一 個光導之一光輸出耦合件具有不小於該群組細長光導中之 該至一個光導之一最大橫截面尺寸之兩倍之一延伸。 此可允許在縱向方向上在一大間隔上之一經延伸及分佈 之光輸出耦合件,從而導致在縱向方向上之一更均勻背 光0 根據本發明之一態樣,提供一顯示器,該顯示器包括: 一光調變層;一群組細長光導,其經配置以照明該.光調變 層之一細長條帶,該群組細長光導中之每一光導包括用於 接收光之一光輸入耦合件及用於輻射光之至少一個光輪出 搞合件’該至少一個光輸出耦合件在該光導之一縱向方向 157611.doc •11· 201213979 上具有一受限延伸;複數個光源,該複數個光源中之每一 者經配置以將光饋送至該群組細長光導中之一個光導之一 光輸入麵合件;其中該群組細長光導甲之至少一個光導之 光輸出麵合件沿該細長條帶之一縱向方向相對於該群組 細長光導中之至少另一個光導之一光輸出耦合件偏移。 參照下文中所闡述之實施例將闡明且明瞭本發明之此等 及其他態樣、特徵及優點。 【實施方式】 將參照各圖式僅藉由實例之方式闡述本發明之實施例, 在各圖式中。 以下說明著重於應用於一背光式LCD顯示器之本發明之 實施例。然而,將瞭解,本發明並不限於此應甩,而是可 應用於使用背光之諸多其他顯示器。 圖1圖解說明根據本發明之某些實施例之一背光顯示器 之一貫例。該背光顯示器包括一背光101,背光1〇1產生朝 向一光調變層103投射之光。光調變層1〇3包括可個別地控 制以提供來自背光101之光之一可變衰減之通常大數目個 圖像元件。因此,光調變層103包括形成該顯示器之個別 像素之可控制光衰減元件。為清楚及簡潔起見,圖丨僅圖 解說明月光101及光§周變元件1〇3 ’但將瞭解,實際顯示器 可包括諸如光擴散層、反射層、保護螢幕等額外層。 圖1之顯示器包括一接收器1〇5,接收器1〇5接收包括用 於欲由該顯示器再現之一影像之影像資料之一影像信號。 舉例而言,輸入信號可係包括欲顯示之影像之一時間序列 157611.doc •12- 201213979 之一視訊信號。 接收器105耦合至一背光控制器107及一 LCD控制器 109 °如下文中將闡述’背光101經配置以提供可個別地控 制之複數個背光段。因此’在不同的背光段中可不同地設 疋該背光’藉此允許該背光之局域控制以便將該背光調適 至影像之局部性之特定影像特性。 背光控制器107耦合至背光1 〇丨且經配置以產生控制不同 背光段中之每一者之照度位準之一驅動信號。作為一低複 雜性實例,背光101可係一白色背光,其中每一段之一強 度係根據輸入信號判定,亦即其中將光強度設定至最小強 度值,對於一完全開啟LCD元件(光調變層ι〇3之LCD元 件)’該最小強度值將導致來自顯示器之對應於由彼段之 影像資料指示之最大強度之一光輸出。 背光控制器107進一步耦合至LCD控制器109,LCD控制 器109耦合至光調變層103。[CD控制器109產生用於對應 於顯示器之每一像素之光調變層1〇3之每一 LCD元件之驅 動仏號。可特定地判定用於一既定像素之驅動信號,使得 LCD元件之光衰減導致入射於該LCD元件上之背光衰減以 提供針對該像素之影像資料值之適當光輸出。 因此,LCD元件之衰減之設定相依於背光位準。在簡單 實施例中,LCD控制器109可僅假定一 lcd元件上之入射 光係由該LCD元件所屬於之背光段提供之背光。然而,在 諸多貫際貫施方案中’不同背光段之間之串擾可係顯著的 且LCD控制器109可在判定適當衰減位準之前判定自複數 1576Il.doc •13- 201213979 個背光段入射於LCD元件上之背光之總量。 圖2圖解說明根據本發明之某些實施例之一實例性顯示 器之一視圖。該視圖對應於該顯示器之一前視圖,其中前 面層(包含光調變層103)係透明的使得背光1〇1係可見的。 在該實例中,顯示區域2〇1劃分成不同背光區域。特定而 吕’顯示區域201劃分成細長條帶2〇3、2〇5、2〇7 0在圖2 之實例中,顯示區域201劃分成三個條帶2〇3、2〇5、2〇7, 但將瞭解,在其他實施例中可使用更多或更少條帶。實際 上,在某些實施例中,可僅使用可覆蓋整個顯示區域之一 個條帶。 該等條帶中之每一者藉由一群組細長光導2〇9、211、 213所形成之一背光照明。在該實例中,每一條帶由呈一 相同配置之一相同群組光導照明。因此,以下說明將著重 於第一條帶203之背光照明。 圖2之實例圖解說明正由三個細長光導2〇9、211、213提 供之第一條帶203之背光照明,但將瞭解,在其他實施例 中可將更少或更多光導用於每一條帶。 光導209、211、213包括經配置以接收入射光之一光輸 入耦合件。在該實例中,該光輸入耦合件僅係可自一光源 215接收光的該光導之一端小面。 舉例而5 ’光源21 5可係將光輻射至光導209之端中之一 LED。在圖2之實例中,每一光導2〇9、211、213僅與位於 光導209 ' 211、2U之一個端處之一單個光源215相關聯。 然而’在其他實施例中,每一光導2〇9、211、213可與一 157611.doc -14· 201213979 個以上光源相關聯。例如,在圖2之實例中,一 LED可位 於光導209、211、213中之一或多者之每一端處,使得自 光導之兩個端將光饋送至光導中。在諸多情況中,此可提 供一更均質光分佈及對光輸出耦合件沿光導之位置之一減 小之敏感性。 在該貫例中,舉例而言,光導可係透明塑膠光導,其由 於該光導之邊緣處之全内反射(TIR)而將光維持於其内。 此等透明塑膠材料之實例係聚甲基丙烯酸甲酯(pMMA)或 聚石厌酸酯(PC)。當光自空氣進入此一材料時,其經受一折 射過程且光束在該材料之臨界角(自法線至表面)内將係準 直的。對於PMMA,臨界角係大約42。。若側小面正交於 輸入耦合小面,則將一直滿足TIR條件(對於pMMA,光將 在大於臨界角之(例如)48。之一角度下照射於表面上)。 此外,光導中之每一者配置有一光輸出耦合件217、 219、221以用於自光導輸出耦合光。因此,在理想情形 下,來自光源215之所有光將經由光輸出耦合件217出射。 然而,在實際實施方案中,將瞭解由於各種缺陷可存在一 些光洩漏及光吸收。然而,在大多數實際實施例中,不小 於80%、90%或甚至95%之進入料之光經由一光輸出耦 合件217、219、221離開。 光輸出耦合件217、219、221沿縱向方向受限(亦即沿光 導之長度方向)且因此來自光導2〇9、211、213之光輻射限 於沿縱向方向之特定間隔。 光輸出耦合件沿光導之縱向方向之較佳延伸相依於個別 157611.doc -15· 201213979 實施例之特疋偏好及需要。然而,在諸多實施例中,每一 光輸出輕合件之延伸有利地係不多於條帶之長度(且因此 在特定情形下顯示區域201之寬度)之5〇%、3〇%、2〇%、 10%或甚至5%。 在該實例中,照明條帶203之該群組光導中之不同光導 209、211、213係不相同的但具有實質上相同尺寸(亦即實 質上相同橫截面及長度)。然而,光輸出耦合件217、 219、221沿縱向方向不同地定位。在圖2之實例中,第一 光導209具有實質上定中心於沿該光導之約六分之五處之 一光輸出耦合件217,第二光導211具有實質上在該光導之 中間之一光輸出耦合件219,且第三光導213具有實質上在 沿該光導之六分之一處之一光輸出耦合件221。 因此,不同光導209、211、213之光輸出耦合件217、 219、221沿細長條帶203之縱向方向相對於彼此偏移。例 如,第一光輸出耦合件217沿條帶203之縱向方向相對於第 二光輸出耦合件219(且相對於第三光輸出耦合件221)偏 移。因此,來自每一光導209、211、213之光在沿縱向條 帶方向之一不同位置處(亦即在圖2之實例中之不同水平位 置處)輻射。因此,每一光導2〇9、211、2 13為條帶2〇3之 一背光段提供背光且因此該方法允許該條帶劃分成複數個 不同背光段。與複數個條帶之使用組合之此方法提供一二 維背光分段。舉例而言’在圖2中,顯示區域劃分成九個 不同背光段。 此外’使用基本上係一維之極簡單及低成本光導達成此 15761I.doc -16- 201213979 一系統。另外,該方法使用光導之一低複雜性邊緣照明且 可實質上促進製造及減小成本。此外,由於背光係由通常 極低橫截面光導提供,因此可實施一極狹窄背光層,藉此 允許製造極薄顯示器。 另外,由於每一光導具有個別光源,諸如LED,因此可 容易地製造該顯示器。此允許個別地控制每一光導之光, 且由於每一光導對應於一個背光段(亦即,照明一有限區 域),因此該方法允許高效且容易地實施局域背光控制。 此外,儘管使用實質上一維光導及可能配置成一簡單一維 列之光源’但此個別背光控制係一二維背光控制。因此, 該方法允許使用一維功能元件之實質上改良之二維背光控 制。 在不同實施例中’可使用不同類型之光輸出耦合件。舉 例而言,在某些實施例中,可藉由以一白色色彩將光導之 表面之一部分塗漆來簡單地產生光輸出耦合件。此將導致 碰撞該表面之光被散射且部分地折射出光導而不是反射回 至其中。 一輸出耦合件結構之一 之一典型實例係上文所提及之白色油201213979 VI. Description of the Invention: [Technical Field] The present invention relates to a backlight for a display, and in particular, but not exclusively, to a backlight for a liquid crystal display (LCD). [Prior Art] In the past decade, flat panel displays have almost completely replaced conventional cathode ray tube (CRT) displays in almost all applications, including, for example, computer monitors, televisions, and the like. A popular type of flat panel display is a backlit display in which a variable and y control light attenuating layer is used to generate and modulate a "backlight" to provide a desired image. A typical example of such a type of display is an LCD display in which a liquid crystal layer having individually controllable pixel elements is used to modulate a backlight according to the image to be rendered. However, one of the many backlight displays that include LCD displays tends to provide relatively poor contrast ratios and is often inefficient relative to power. To address these shortcomings, variable control using one of the backlight intensities has been proposed. In particular, localized backlight dimming has been proposed in which different segments of the backlight can be individually controlled depending on the image characteristics of the region. For example, local dimming can be achieved by generating a backlight from a light-emitting diode above the area of the display. However, although these local dimming backlight solutions can improve contrast and reduce power consumption, they require a depth or thickness of one of the displays to be 157,611.doc 201213979 degrees. In addition, such LED-based backlights are often relatively expensive and difficult to manufacture. There is therefore a tendency to have fewer and fewer delDs in order to reduce the cost of the display. This pair has a direct impact on the thickness of the display, which typically scales with the LED spacing (in a direct light configuration). To achieve extremely thin displays, edge backlighting solutions have been proposed in which the backlighting is produced by edge mounted light sources that inject light into a planar optical element that is distributed over the display area. These solutions provide a very thin backlight (e.g., about 1 mm), which allows for the manufacture of very thin displays. However, such solutions do not allow localized backlight dimming and therefore suffer from the disadvantages associated with conventional backlit displays. Therefore, an improved display backlighting solution would be advantageous and, in particular, allow for increased flexibility, reduced depth, improved local dimming/control/adaptation, reduced power consumption, improved contrast One of the solutions to reduce the cost, promote implementation and/or improve the performance will be advantageous. SUMMARY OF THE INVENTION Accordingly, the Invention seeks to preferably mitigate, alleviate or eliminate one or more of the disadvantages mentioned above, individually or in any combination. In accordance with an aspect of the present invention, a backlight for a display is provided, the light comprising a group of elongated light guides configured to illuminate an elongated strip of the display, each of the group of elongated light guides The invention comprises a light input coupling member for receiving light and at least one light output coupling member for radiating light, wherein at least one light output coupling member has a threshold extension in a longitudinal direction of the light guide; a plurality of light sources, Each of the plurality of light sources is configured by 157611.doc 201213979 to feed light to one of the light guides of the group of elongated light guides; wherein at least one of the light guides of the group of elongated light guides The output coupling member is offset in a longitudinal direction of one of the elongated strips relative to one of the at least one other of the plurality of light guides of the group of elongated light guides. The present invention may allow for improved and/or promoted backlighting in various embodiments. In particular, 'in many cases' the method may allow for implementation and/or reduced cost. This method allows for an extremely thin backlight and thus allows for thinness. In particular, in many embodiments, the present invention may allow for a low cost and thin backlit display with local backlight control, thereby allowing for increased contrast and reduced power consumption. The method may allow a substantially one-dimensional light guide to provide a two-dimensional backlight segment, thereby allowing each segment to be individually controlled by controlling only one light source. Such light guides can be, for example, simple, low cost light guides made from inexpensive transparent plastic. The elongate strip may be parallel to a rectangular plane formed by at least some of the elongate light guides. The length of the strip may be substantially longer than the width of the δ strip, for example the length of the strip may be no less than 2, 4 or 1 G times the width. The group of light guides can have a combined width corresponding to the width of the strip or can be, for example, substantially narrower. The elongated light guides of the group can be configured to be substantially parallel to each other and can be actual to the strip. The elongated light guides can have the same length or length. A light guide light input light fitting can be located in Yanhai. For example, a light output coupling member can be used as a (all or part of) painted surface. 157611.doc 201213979 ^ Roughened surface section (by means of sandblasting or laser ablation) A wedge shape, a midway end of the reflection tilt, a micro-structured optical localized corrosion pattern (possibly with a gradient index), is produced. i light output light fittings can be specially (four) corresponding to the light output face area. The light input coupling member may specifically correspond to one of the light guide input coupling facets or sides. In many embodiments, the light output coupling member extends in the longitudinal direction by no more than 10% of the size of the display active area in the other direction or Even 5. /. . In many embodiments, not less than 7〇%, 80%, 90%, or even 95% of the light entering a light guide exits the light via the light output coupling. In some embodiments, the light guide can be specifically a hollow light pipe. The display (area) can be divided into a plurality of elongated strips (which, for example, can be horizontal or vertical strips). This method of combining with an offset light output coupling provides a two-dimensional backlight segment with individually controllable backlighting. The backlight of each of the elongated strips can be provided by a group of elongated light guides. The group of elongated light guides can, for example, provide substantially the same configuration of substantially identical backlight segments. In some embodiments, the light output coupling of the group of elongated light guides is configured to illuminate the strip substantially uniformly in the longitudinal direction. In some embodiments, the group of light guides can be further configured to substantially uniformly illuminate the strip in a direction perpendicular to the longitudinal direction. A uniform illumination may specifically be illumination in which the maximum backlight intensity variation is less than 20% or in some cases even 10%. 157611.doc 201213979 In accordance with an optional feature of the invention, the group of elongated light guides comprises at least two overlapping light guiding layers offset relative to one another in a direction perpendicular to one of the strips. In many embodiments, this can be provided - efficient configuration and allows for finer longitudinal backlight segments while maintaining one of the strips with a low width. The strip may define a plane of the display and the two layers may be arranged at different distances from the plane to the surface. In accordance with an optional feature of the invention, at least one of the at least two layers is configured to illuminate a backlight for the display through at least one of the at least two layers. In many embodiments, this may provide an improved performance and/or facilitate implementation. In some embodiments, the light guides can be configured such that light from the light output coupling of one layer projects at least partially through the gap between the light guides of the other layer. In some embodiments, the light guides can be configured such that light from the light output coupling of one layer projects at least partially through the light guide of the other layer. According to an optional feature of the invention, at least one of the plurality of light sources has a variable light source of a variable color spectrum. In many embodiments, this provides improved performance while allowing for a low complexity and generally low cost implementation. This method provides local adaptation of one of the backlights. In particular, the backlight can be adapted to reflect local color shirt characteristics while still maintaining low cost, high contrast, high power efficiency, thin size, and the like. 157611.doc 201213979 According to an optional feature of the invention, the variable light source comprises a plurality of sub-light sources of different colors, and wherein the light guides of the group of elongated light guides associated with the variable light source are configured to mix from the different The light output of the sub-source of color. In many embodiments, this can provide improved performance while allowing - low complexity and typically a low cost implementation. Sub-sources of different colors may, for example, be separate sources (such as LEDs of different colors) or may be configured to provide a single source of a plurality of different spectra. Different color ash sources can include a white sub-light source. In accordance with an optional feature of the invention, the 35 of the light guides in the group of elongated light guides have light output couplings having different offsets in the longitudinal direction relative to the light input face. This may provide a particularly advantageous embodiment in various embodiments and may, for example, simplify the mounting and securing of the light guide and provide a uniform illumination in the longitudinal direction of the display. According to an optional feature of the invention, at least one of the plurality of first light guides of the group of elongated light guides comprises at least two light output couplings. This can be particularly advantageous in many embodiments. For example, in various embodiments, it can increase the effective number of backlight segments in the horizontal direction. According to an optional feature of the invention, the first light guide comprises two light input couplings and the plurality of light sources comprises a first light source for one of the first one of the at least two light input couplings and a second source of one of the second of the at least two light input couplings. This may be particularly advantageous in many embodiments. For example, in various embodiments of 157611.doc 201213979, it may increase the effective number of backlight segments in the horizontal direction while providing a low complexity method for individually controlling each segment of the backlight (eg, using less The component light input coupling may specifically correspond to the opposite end of the elongated light guide and the two light sources may be located at opposite ends of the light guide. This may be, for example, by reducing the difference caused by light absorption or unwanted scattering during transport. According to an optional feature of the present invention, the backlight further includes a driver for individually controlling the first light source and the sound source (there is a difference between the segments having different offsets with respect to the input coupling member) The second light source is one of a strip associated with one of the strips associated with the first of the two light output couplings and a strip associated with the second of the two light output couplings A backlight segment provides individual backlight control. In many cases, this provides improved performance. According to an optional feature of the invention, the first light guide is included in two light output couplings One of the luminous flux attenuation sections. This may allow for improved separation between backlight segments formed by two light output couplings. In particular, it may reduce crosstalk between the two segments and may, for example, allow for An increased backlight dynamic range is achieved for each segment. The luminous flux attenuation section can be a component of the light guide or can provide a separate characteristic of the luminous flux attenuation. Specifically, the luminous flux attenuation section can be configured to absorb, Reflecting or rotating a segment of light coupled to the segment from one or both directions of the light guide. According to an optional feature of the invention, the backlight further includes means for individually driving the plurality of light sources to provide local backlight control A driver. 1576Jl.doc .10· 201213979 This provides improved performance.兮, Μ This 4-local backlight control allows different sets of backlights of the strip to be set differently. According to an optional feature of the invention, the group At least one of the set of elongated light guides can control the ramp control pilot, the controllable light guide configured to control at least one light output in response to the number one The light output of the stealing piece. In many cases 'this provides additional flexibility and improved performance. The controllability of the controllable light guide can, for example, be part of a light guide or can be, for example, include an output Coupling light - a portion of the variable attenuation optical output coupling configuration. According to an optional feature of the invention, the strip includes no more than 10,000 pixels per light output light fitting. The invention allows for low complexity Providing a fine-grained backlight segment, according to an optional feature of the invention, the light output coupling of at least one of the group of elongated light guides having no less than one of the group of elongated light guides One of two times the largest cross-sectional dimension of the light guide extends. This allows one of the longitudinally extending and distributed light output couplings at a large interval, resulting in a more uniform backlight in the longitudinal direction. In one aspect of the invention, a display is provided, the display comprising: a light modulation layer; a group of elongated light guides configured to illuminate the elongated strip of the light modulation layer Each of the group of elongated light guides includes one of a light input coupling for receiving light and at least one light wheel for engaging light. The at least one light output coupling is in a longitudinal direction of the light guide 157611 .doc • 11·201213979 having a limited extension; a plurality of light sources, each of the plurality of light sources configured to feed light to one of the light guides of one of the group of elongated light guides; Wherein the light output facepiece of the at least one light guide of the group of elongated light guides is offset in a longitudinal direction of one of the elongated strips relative to one of the at least one other of the plurality of light guides of the group of elongated light guides. These and other aspects, features and advantages of the present invention will be set forth in the <RTIgt; [Embodiment] Embodiments of the present invention will be described by way of example only with reference to the drawings in the drawings. The following description focuses on an embodiment of the invention applied to a backlit LCD display. However, it will be appreciated that the invention is not limited to this, but can be applied to many other displays that use backlights. 1 illustrates a consistent example of a backlit display in accordance with some embodiments of the present invention. The backlit display includes a backlight 101 that produces light that is projected toward a light modulation layer 103. The light modulation layer 1 〇 3 includes a generally large number of image elements that can be individually controlled to provide a variable attenuation of light from the backlight 101. Thus, the light modulation layer 103 includes controllable light attenuating elements that form individual pixels of the display. For the sake of clarity and brevity, the figure only illustrates the Moonlight 101 and the light §variation element 1〇3' but it will be appreciated that the actual display may include additional layers such as a light diffusing layer, a reflective layer, a protective screen, and the like. The display of Figure 1 includes a receiver 1 〇 5 that receives an image signal comprising image data for rendering an image of the image by the display. For example, the input signal may include one of the video signals of one of the images to be displayed 157611.doc •12- 201213979. Receiver 105 is coupled to a backlight controller 107 and an LCD controller 109. As will be explained below, backlight 310 is configured to provide a plurality of backlight segments that are individually controllable. Thus, the backlight can be differently disposed in different backlight segments, thereby allowing local control of the backlight to adapt the backlight to specific image characteristics of the locality of the image. A backlight controller 107 is coupled to the backlight 1 〇丨 and configured to generate a illuminance level one drive signal that controls each of the different backlight segments. As a low complexity example, the backlight 101 can be a white backlight, wherein one of the intensity of each segment is determined according to the input signal, that is, the light intensity is set to the minimum intensity value, for a fully open LCD component (light modulation layer The LCD component of ι〇3) 'this minimum intensity value will result in a light output from the display corresponding to one of the maximum intensities indicated by the image data of that segment. Backlight controller 107 is further coupled to LCD controller 109, which is coupled to optical modulation layer 103. The CD controller 109 generates a drive nickname for each of the LCD elements of the light modulation layer 1 〇 3 corresponding to each pixel of the display. The drive signal for a given pixel can be specifically determined such that light attenuation of the LCD component causes the backlight incident on the LCD component to attenuate to provide an appropriate light output for the image data value of the pixel. Therefore, the attenuation of the LCD element is set to depend on the backlight level. In a simple embodiment, LCD controller 109 may only assume that the incident light on a lcd component is the backlight provided by the backlight segment to which the LCD component belongs. However, crosstalk between different backlight segments can be significant in many intervening schemes and the LCD controller 109 can determine from the complex number 1576Il.doc •13-201213979 backlight segments before determining the appropriate attenuation level. The total amount of backlight on the LCD component. Figure 2 illustrates a view of an exemplary display in accordance with some embodiments of the present invention. This view corresponds to a front view of one of the displays, wherein the front layer (including the light modulation layer 103) is transparent such that the backlight 1〇 is visible. In this example, the display area 2〇1 is divided into different backlight areas. The specific display area 201 is divided into elongated strips 2〇3, 2〇5, 2〇70. In the example of Fig. 2, the display area 201 is divided into three strips 2〇3, 2〇5, 2〇. 7, but it will be appreciated that more or fewer strips may be used in other embodiments. In fact, in some embodiments, only one strip that covers the entire display area can be used. Each of the strips is backlit by a group of elongated light guides 2, 9, 211, 213. In this example, each strip is illuminated by the same group of light guides in one of the same configurations. Therefore, the following description will focus on the backlighting of the first strip 203. The example of Figure 2 illustrates the backlighting of the first strip 203 being provided by three elongated light guides 2, 9, 211, 213, but it will be appreciated that in other embodiments fewer or more light guides may be used for each A belt. Light guides 209, 211, 213 include a light input coupling configured to receive incident light. In this example, the light input coupling is only one of the light guides that can receive light from a light source 215. For example, the 5' light source 215 can radiate light to one of the ends of the light guide 209. In the example of Figure 2, each of the light guides 2, 9, 211, 213 is associated with only a single light source 215 located at one end of the light guides 209 ' 211, 2U. However, in other embodiments, each light guide 2 〇 9, 211, 213 can be associated with a 157611.doc -14·201213979 or more light sources. For example, in the example of Figure 2, an LED can be positioned at each of one or more of the light guides 209, 211, 213 such that light is fed into the light guide from both ends of the light guide. In many cases, this provides a more homogeneous light distribution and sensitivity to the reduction of the position of the light output coupling along the light guide. In this example, for example, the light guide can be a transparent plastic light guide that maintains light therein due to total internal reflection (TIR) at the edge of the light guide. Examples of such transparent plastic materials are polymethyl methacrylate (pMMA) or poly石 analate (PC). When light enters this material from air, it undergoes a refractive process and the beam will be collimated at a critical angle (from normal to surface) of the material. For PMMA, the critical angle is approximately 42. . If the side facets are orthogonal to the input coupling facets, the TIR condition will always be met (for pMMA, the light will illuminate the surface at an angle greater than the critical angle of, for example, 48). In addition, each of the light guides is provided with a light output coupling 217, 219, 221 for outputting the coupling light from the light guide. Thus, in an ideal situation, all of the light from source 215 will exit via light output coupling 217. However, in actual implementations, it will be appreciated that there may be some light leakage and light absorption due to various defects. However, in most practical embodiments, no less than 80%, 90%, or even 95% of the incoming light exits via a light output coupling 217, 219, 221. The light output coupling members 217, 219, 221 are limited in the longitudinal direction (i.e., along the length of the light guide) and thus the light radiation from the light guides 2, 9, 211, 213 is limited to a particular interval in the longitudinal direction. The preferred extension of the light output coupling member along the longitudinal direction of the light guide depends on the particular preferences and needs of the individual embodiments of the 157611.doc -15 201213979 embodiment. However, in various embodiments, the extension of each light output light fitting is advantageously no more than 5%, 3%, 2 of the length of the strip (and thus the width of the display area 201 in a particular situation). 〇%, 10% or even 5%. In this example, the different light guides 209, 211, 213 of the group of light guides of the illumination strip 203 are different but have substantially the same dimensions (i.e., substantially the same cross-section and length). However, the light output couplings 217, 219, 221 are positioned differently in the longitudinal direction. In the example of FIG. 2, the first light guide 209 has a light output coupling 217 that is substantially centered about five-fifths of the light guide, and the second light guide 211 has a light substantially in the middle of the light guide. The coupling member 219 is output, and the third light guide 213 has a light output coupling 221 substantially at one-sixth of the light guide. Thus, the light output couplings 217, 219, 221 of the different light guides 209, 211, 213 are offset relative to each other along the longitudinal direction of the elongated strip 203. For example, the first light output coupling 217 is offset relative to the second light output coupling 219 (and relative to the third light output coupling 221) in the longitudinal direction of the strip 203. Thus, light from each of the light guides 209, 211, 213 is radiated at a different location along one of the longitudinal strip directions (i.e., at different horizontal positions in the example of Figure 2). Thus, each light guide 2 〇 9, 211, 2 13 provides backlighting for one of the strips 2 〇 3 and thus the method allows the strip to be divided into a plurality of different backlight segments. This method of combining with the use of a plurality of strips provides a two dimensional backlight segment. For example, in Figure 2, the display area is divided into nine different backlight segments. In addition, this system of 15761I.doc -16-201213979 is achieved using a very simple and low-cost light guide that is basically one-dimensional. In addition, the method uses one of the light guides for low complexity edge illumination and can substantially facilitate manufacturing and reduce cost. Moreover, since the backlight is provided by a generally very low cross-section light guide, a very narrow backlight layer can be implemented, thereby allowing the fabrication of very thin displays. In addition, since each light guide has an individual light source, such as an LED, the display can be easily fabricated. This allows the light of each light guide to be individually controlled, and since each light guide corresponds to one backlight segment (i.e., a limited area of illumination), the method allows for efficient and easy implementation of local backlight control. In addition, although a substantially one-dimensional light guide and a light source that may be configured as a simple one-dimensional array are used, this individual backlight control is a two-dimensional backlight control. Thus, the method allows for substantially improved two-dimensional backlight control using one-dimensional functional elements. Different types of light output couplings can be used in different embodiments. For example, in some embodiments, the light output coupling can be simply produced by partially painting one of the surfaces of the light guide in a white color. This will cause the light colliding with the surface to be scattered and partially refracted out of the light guide rather than being reflected back into it. A typical example of one of the output coupling structures is the white oil mentioned above.

向之一更狹窄光分佈。 157611.doc -17· 201213979 在該實例中,光導可特定地係一透明塑膠元件,諸如聚 碳酸酯(PC)或聚甲基丙烯酸甲酯(pmma)。在其他實施例 中,舉例而言,光導可係一空心光導(一光管)。光導可通 常具有介於1 mm與2 cm之間之一最大橫截面尺寸。通常該 橫截面可有利地具有介於】mm2與2 cni2之間之_面積。 將瞭解,光輸出耦合件之尺寸可相依於個別實施例及設 計之特定偏好。在某些實施例中,光導之光輸出耦合件之 延伸可係光導之最大橫截面尺寸之至少兩倍。例如,對於 一正方形光導,光輸出耦合件之縱向延伸可係橫截面之對 角線之至少兩倍,且對於-圓形光導,光輸出麵合件之縱 向延伸可係橫截面之直徑之至少兩倍。 ,因此,在某些實施财,光輸出輕合件可係(例如)矩 形’該矩形沿縱向方向具有與可能沿垂直方向相比一更長 延伸。此-方法可提供局域輸出耗合之光之—改良之遮蔽 且可特定地提供背光段之一更均勻照明。 在圖2之實例中’細長光導係沿光導及條帶兩者之縱向 方向平行配置。然、而’將瞭解在其他實施例中,只要光輸 出麵合件之偏移在光導(中之至少某些光導)之間不同,則 光!不需要平行於彼此或平行於條帶而配置。此外,在某 —實施例巾A撐一條帶之光導中之某些光導可具有帶有 相同偏移之光輸出耦合件。舉例而言,在某些實施例中可 使用兩個光導來給—個背光段提供背光。 ::多實施例中’光導可經配置以在縱向方向上實質上 句明條帶。舉例而言,光輪出輕合件等間距地配置 157611.doc 201213979 使得其(例如與一擴散元件組合)達成跨越由光輸出耦合件 覆蓋之整個段及在由不同光輸出耦合件覆蓋之若干段之間 之一實質上均勻照明。在諸多實施例中,亦可在垂直於縱 向方向之方向上達成一實質上均勻照明。此可(例如)藉由 在光導與光調變層103之間包含一光擴散層或藉由產生一 發射圖案使得最終照明係均勻的(例如藉由光導之一臀曲 頂部表面之方式)來達成。一實質上均勻照明可特定地係 其中最大強度照明變化小於20%或甚至10%之照明。 在圖2之實例中,使用針對其光輸出耦合件沿光導不同 地定位之光導達成光輸出耦合件之不同偏移。然而,將瞭 解其他選項可用來達成不同偏移。舉例而言,在某些實施 例中,可使用相同光導但個別光導可經配置而相對於彼此 具有一偏移。在其他實施例十,此可(例如)藉由使用具有 不同長度之光導來達成。 在所闡述之系統中,背光因此包括由側光源及相關聯光 導形成之複數個實質上一維光發射器。該等光發射器中之 每一者包括至少一個光輸出耦合件(在一維方向上具有受 限延伸)。一維光源中之至少某些光源之光輸出耦合件沿 一維方向相對於彼此偏移。 可個別地控制s亥專側光源且該配置因此提供可僅藉由控 制該等側光源之光輸出來個別地控制之背光段之一二維陣 列。 該特定實例使用一長但薄且狹窄之光導組合邊緣光(側 面上之LED)與局域調光。進入光導之光由於全内反射而保 157611.doc -19· 201213979 留於該光導中。光導上之一輸出耦合結構調節背光之區域 中之光之輸由耦合。由於彼區域通常比led表面大得多, 因此更容易使總體背光均勻。光導一起形成可個別控制之 背光源之一栅格,就像由具有一 LED矩陣之一背光照亮之 一區域。 該方法可因此提供局域調光/背光控制之優點而同時允 許低成本、低複雜性實施、簡單背光控制,且尤其而仍允 許製造一極薄顯示器。 將瞭解,可個別控制之背光段之數目可相依於特定實施 例而變化。然而,該方法通常允許每一背光段對應於不多 於10000個像素或在諸多實施例中有利地不多於5000或甚 至1000個像素。因此,可將顯示區域劃分成若干條帶,其 中每光輸出耦合件存在不多於10000個像素(或在諸多實施 例中有利地不多於5000或甚至1000個像素)。此可提供改 良之局域背光控制,因此導致減小之電力消耗、增加之反 差等》 在某些實施例十,光導可配置成一單個實質上平面層。 然而,在某些實施例中此可係限制性的,乃因其可限制可 用於一既定大小之條帶之光導之數目。此可又限制光輸出 耦合件之數目且因此可限制將條帶縱向劃分成不同背光 段。 在某些實施例中,可藉由在垂直於條帶2〇3之平面(亦即 垂直於顯示表面)之方向上相對於彼此偏移之光導來解決 此等考量事項。因此可參照顯示區域(及因此背光傳播方 157611.doc •20- 201213979 向)將光導至少部分地放置於其他光導後面。 可將光導配置成在垂直於條帶之—方向上相對於彼此偏 之至少兩個重疊細長光導層。在某些情況中,一層可對 應於—單個光導但通常將包括實質上配置於相對於顯示器 正面/光調變層1〇3之相同深度處之複數個光導。 一舉例而5 ’ 一第_層光導可緊密地定位在一起以在一既 定深度處形成-實質上平面光導層。此層之光導可在條帶 之左半部中具有光輸出耦合件(使用圖2之實例性定向用於 參考)且可因此將條帶之左半部劃分成_背光段,其中N 係該第一層中之光導之數目。 在該第一層後面,—第二層光導可緊密地定位在一起以 亦形成f質上平面光導層。此第二層光導可在條帶之右 半。P中具有光輸出耦合件(為簡潔起見使用圖2之實例性定 向用於參考)且可因此將條帶之左半部劃分成頁個背光段, 其中M係該第一層中之光導之數目。通常,N及Μ可係相 同的且實際上在某些實施例中,該第一層及該第二層可使 用在該兩個層中僅沿相反方向轉動之實質上相同光導。 因此,該方法可允許將條帶水平分段成Μ+Ν個段,同時 維持對應於僅Ν(或Μ)個段之寬度之光導配置之一寬度。 面對此一配置之一考量事項係該第二層之光導必須穿過 該第一層投射其背光。在某些實施例中,來自該第二層之 輸出耦合件之光可至少部分地穿過該第一層之光導傳播, 且此可導致可使所提供背光之有效位置移位之折射及/或 繞射。在某些實施例中,可預先計算並補償此等位置移 157611.doc -21- 201213979 位。舉例而言’可移動光輸出耦合件之位置以導致在穿過 該第一層傳播之光學效應之後對該條帶之一期望區域之一 照明°另一選擇係或另外,可判定所照明區域之經修改位 置且可修改局域背光控制以基於彼區域中之影像特性,亦 即系統可僅使用背光段之經移位位置。 在某些實施例中’第一層之光導之間可存在間隙,且第 二層之光輸出耦合件可經配置以至少部分地穿過該第一層 之該等間隙傳播。實際上,在某些實施例中,光導可經配 置以具有增加光導之間之間隙之一形狀。圖3中展示此情 形之一實例,其中圖解說明一第一層之三個光導3〇1。光 導301在條帶之左側上具有光輸出耦合件3〇3且然後變窄至 一小得多之橫截面面積(同時維持相同長度以允許(例如)在 顯示器之兩端處固定)。光導3〇1之變窄提供實質上增加之 間隙,在該間隙中可定位一第二下伏層之光輸出耦合件 305。 在某些實施例中’光導可(例如)經配置以在垂直於條帶 之縱向方向之尺寸上具有一改變。舉例而言’光導可經配 置以在層之間具有一彎曲。舉例而言,輸送光之一光導之 若干區段可經配置以駐存於下層中,其中對應於光輸出耦 合件之區段經配置以更靠近於螢幕,亦即,可將光導配置 成經成形使得光導之輸送區段主要在下層中而對應於光輸 出耦合件之區段在上層或頂層中。 在某些實施例中,來自不同層之光導可以來自下層之光 將不需要穿過上層行進之一方式具有不同長度。舉例而 157611.doc •22· 201213979 處終止良乍圖3之光導301可僅被截斷且在錐體之開始 _ 光導亦可在其令僅利用一單個層之情況中具有 . 5長&amp;舉例而t ’較短光導可用以靠近於邊緣照明且 光導可用以較遠離邊緣照明(例如,季月向顯示器之中 或可月b朝向顯不器之另一邊緣卜因此,光導可係全異 —八有不同長度,舉例而言,該等不同長度可對應於特 疋光導之自邊緣至背光段及因此光輸出麵合件之距離。 某一貫施例中,光導之寬度/橫截面可沿個別光導變 】而。光導之橫截面區域針對對應於一光導之一 區丰又可與針對對應於一光輸送區段(亦即光輸出耗合件之 外)之一區段高。 體而5 ’ —相對狹窄光導(比如具有1 mm至2 mm之一 直徑)可在光輸出耦合件之特定點處變寬(比如至5 mm至10 直仏)。此可特定地將光導之大多數區段之狹窄實 體特杜與來自光輸出輕合件之一寬廣及較佳分散光輻射組 合。舉例而言’由於光導之薄區段可提供下層可穿過其照 明之顯著間隙,因此在某些多層配置中此可係有利的。 该方法在諸多單層實施方案中可亦係有利的。舉例而 光輸出輕合區段相對於輸送區段之變寬可允許其延伸 至刀配給具有一對應狹窄輸送區段之相鄰光導之空間中。 舉例而言,光導可配置成具有2 mm之一間距之一單個層。 每光導在輸送區段期間可具有1 mm之一直徑且在光輸 出耦合區段期間可具有3 mm之一直徑。因此,對於其中一 157611.doc -23- 201213979 第一光導具有一光輸出耦合件之一既定區段,相鄰光導具 有輸送區段且因此僅自間距中心延伸〇 5 mm。因此,3 mm之一空間可用於光導輸出耦合件。舉例而言,此增加 之光輸出耦合件尺寸可允許與該光輸出耦合件相關聯之整 個背光段之一較佳照明。 . 在某些實施例中,光源215可有利地係具有一可變色彩 輸出之光源》因此,替代僅提供一白色光輸出,光源21〇 可係彩色光源且可不僅在強度上可變,而且在所產生之色 彩輸出上亦可變。因此,光源可經控制以提供一可變光 譜。 舉例而s,此可係藉由包括複數個不同色彩之子光源之 光源來達成’其中子光源中之每一者之強度可個別地控 制。 因此,在某些實施例中,白色LED可由(例如)一三合一 RGB LED封裝或緊密地配置在一起之一R、G及b led封裝 來取代。 由於細長光導特別適用於色彩混合,因此此一方法可係 特別有利的。實際上’由於相對長鮮或光管,通常達成 一極高效色彩混合,從而導致來自光輸出耦合件之彩色光 輸出呈現為一單個彩色光源,即使入射光係由複數個不同 色彩之光源產生。 彩色光源之使用提供改良之局域背光調適。舉例而古, 其可允許調整背光之光譜以匹配由背光段支援之影像區域 中之主導色彩。.此可減小電力效率且增加影像品質。 157611.doc • 24 - 201213979 在先前實例中,每一光導已僅具有一個光輸出耦合件且 因此在光導與背光段之間已存在一直接對應。然而,在某 些實施例中,光導中之一或多者可有利地包括一個以上光 輸出輕合件。作為一簡單實例,複數個光導可(例如)用以 提供背光之一更均質照明或可(例如)允許一光導支援複數 個背光段。在某些實施例中,顯示器可包括用於兩個光輸 出耦合件之個別光源。 圖4中圖解說明此一光導配置之一實例。在該實例中, 一光導401包括在縱向方向上相對於彼此位移之一第一光 輸出耦合件及第二光輸出耦合件403、4〇5。光輸出耦合件 403、405可較佳地經設計以在其之間具有一相對大距離, 藉此減小自一個光輸出耦合件至另一個之光耦合。 此外配置包括配置於光導4〇1之每一端處(亦即光導 4〇1之相對端處)之一第一光源407及一第二光源4〇9。因 此,兩個光源407、409將光注射至光導4〇1之相反端中。 因此,第一光源407之光將首先到達第—光輸出耦合件4〇3 且此光之一實質部分將自第一光輸出耦合件4〇3輻射。類 似地,第二光源409之光將首先到達第二光輸出輕合件々Μ 且此光之一實質部分將自第二光輸出耦合件4〇5輻射。 此-方法可允許一改良之靈活性且特定而言可自每一光 導提供複數個背級,藉此允許針對相同數目個光導之較 小背光段。在諸多實際實施方案中,例如由於光導相對於 條帶之大小或由於諸如針對光導之固定或機械強度考量事 項之實際考量事項,用於每―條帶之光導之數目可係受限 15761 丨,doc -25- 201213979 而’藉由提供具有複數個光輸出耦合件及相關聯獨 立控制之光源之光導,水平段之數目不限於光導之數目而 反其了貫質上增加。例如,使用圖4之光導配置,針對 既疋數目之光導,水平段之數目可係兩倍。該方法可進一 步用以減小條帶之寬度(由於較少光導係必需的),藉此亦 允許每一段之一減小之垂直延伸。因此,顯示區域可劃分 成大數目個較小背光段,藉此允許改良之局域背光控制及 調適。 在此等實施例中’背光控制器1 〇7可因此經配置來以不 同方式驅動兩個光源407、409。此可允許兩個光輸出耦合 件之背光係不同的。然而,在標準光導中,由於吸收及光 沒漏係相對低’因此兩個光輸出耦合件403、405之間之光 學隔離可不係極高的。因此,兩個背光段之間之串擾可係 面的’且所得的所產生背光之間之相關性可相應地係相對 局的。 為減小背光段之間之相關性,可藉由在兩個光輸出耦合 件403、405之間包括一光通量衰減區段411之光導401來增 加兩個光輸出耦合件403、405之間之光學隔離。光通量衰 減區段411可因此增加光輸出耗合件之間之光學隔離且因 此增加獨立性並減小與光輸出耦合件相關聯之背光段之間 之相關性。 光通量衰減區段411可係一增加之吸收區段、一光反射 區段及一光輸出搞合區段中之至少一者。 舉例而言,光導可經產生以包括一區段411,區段411具 157611.doc -26- 201213979 有一增加之光吸收且因此使來自任一方向之光衰減。此一 增加之光吸收可(例如)藉由在光導材料中包含各種缺陷來 達成。在某些實施例中,光通量衰減區段411可特定地係 一光通量阻擋區段使得實質上防止來自區段411之一個側 之光到達另一側。舉例而言,此一阻擋區段可藉由將光導 之一區段著色/塗漆成實質上黑色來達成。 在某些實施例中可使用一光反射區段來提供改良之隔 離。舉例而言,可將一鏡材料整合於光導中以反射來自兩 個方向之光波。 在某些實施例中,光通量衰減區段411可由一光輸出耗 合件形成。舉例而言,一光輸出耦合件可藉由將光導表面 塗漆成一白色色彩來產生。在諸多實施例中,光輸出耦合 件應經配置以輻射光使得該光不到達光調變層1〇3且因此 不給光調變層103之照明作貢獻。舉例而言,光輸出麵合 件可經配置以將光輻射至顯示區域之背面或側面。 光通量衰減可由段之邊緣處之一楔形形狀形成。此將把 剩餘光擠出來。 在某些實施例中,光導中之一或多者可係一可控制光 導,其中來自光輸出耦合件之光輸出不僅由靜態特性及入 射光給出,而且亦動態地相依於光導之一可控制特性。 該等可控制特性可係光導之一組成特性或可由一外部或 内部定位之可控制元件提供。 舉例而言,在某些實施例中,一光衰減元件可定位於光 導之輸出耦合區域之前面。舉例而言,一 LCD元件可定位 157611.doc -27- 201213979 於此區域之前面,其中該LCD元件之不透明度可由一電信 號控.制。 作為另一實例,光導可包括可回應於施加一電或磁信號 來改變光學特性之一元件。 作為又一實例,光導可係包括一機電元件之一空心光 導。舉例而言’光導可包括可回應於一電或磁信號轉動之 一可機械移動之微型鏡。當轉動該微型鏡時,經由光輸出 耦合件反射出之光量可改變。 此等可控制特徵可允許一改良之背光控制且可(例如)允 許局域背光控制之增加之靈活性或動態範圍。 在圖2之實例中,針對所有光導,自光導之相同端注射 光。然而,在某些實施例中,可自最近端將光注射至輸出 耦合件。在諸多實施例中,此可減小光洩漏及吸收。實際 上’在某些實施例中,可自兩個端注射光。To a narrower light distribution. 157611.doc -17 201213979 In this example, the light guide can be specifically a transparent plastic component such as polycarbonate (PC) or polymethyl methacrylate (pmma). In other embodiments, for example, the light guide can be a hollow light guide (a light pipe). The light guide can typically have a maximum cross-sectional dimension of between 1 mm and 2 cm. Typically the cross section may advantageously have an area between [mm2] and 2cni2. It will be appreciated that the size of the light output coupling can be dependent on the particular preferences of the individual embodiments and designs. In some embodiments, the light output coupling of the light guide can extend at least twice the largest cross-sectional dimension of the light guide. For example, for a square light guide, the longitudinal extension of the light output coupling can be at least twice the diagonal of the cross section, and for a circular light guide, the longitudinal extension of the light output face can be at least the diameter of the cross section. double. Thus, in some implementations, the light output light fitting can be, for example, rectangular. The rectangle has a longer extension in the longitudinal direction than it is possible in the vertical direction. This method provides localized output-constrained light-improved masking and can specifically provide more uniform illumination of one of the backlight segments. In the example of Figure 2, the elongated light guide is arranged in parallel along the longitudinal direction of both the light guide and the strip. However, it will be understood that in other embodiments, as long as the offset of the light output facets differs between the light guides (at least some of the light guides), the light! need not be arranged parallel to each other or parallel to the strips. . In addition, some of the light guides in a light guide of a belt of an embodiment may have light output couplings with the same offset. For example, two light guides can be used in some embodiments to provide backlighting for one backlight segment. The &quot;lightguide&quot; can be configured to substantially recite a strip in the longitudinal direction. For example, the light-wheeling light fittings are arranged at equal intervals 157611.doc 201213979 such that they (for example in combination with a diffusing element) reach across the entire section covered by the light output coupling and in several sections covered by different light output couplings One of the illuminations is substantially uniform. In many embodiments, a substantially uniform illumination can also be achieved in a direction perpendicular to the longitudinal direction. This can be achieved, for example, by including a light diffusing layer between the lightguide and the light modulation layer 103 or by creating an emission pattern such that the final illumination is uniform (e.g., by bending the top surface of the light guide) Achieved. A substantially uniform illumination may be specifically illumination in which the maximum intensity illumination variation is less than 20% or even 10%. In the example of Figure 2, different offsets of the light output coupling are achieved using light guides that are positioned differently along the light guide for their light output couplings. However, other options are available to achieve different offsets. For example, in some embodiments, the same light guide can be used but individual light guides can be configured to have an offset relative to each other. In other embodiment ten, this can be achieved, for example, by using light guides having different lengths. In the system illustrated, the backlight thus includes a plurality of substantially one-dimensional light emitters formed by side light sources and associated light guides. Each of the light emitters includes at least one light output coupling (with a limited extension in one dimension). The light output couplings of at least some of the one-dimensional sources are offset relative to each other in a one-dimensional direction. The s-side source can be individually controlled and the configuration thus provides a two-dimensional array of backlight segments that can be individually controlled by only controlling the light output of the side sources. This particular example uses a long but thin and narrow light guide to combine edge light (LEDs on the side) with local dimming. The light entering the light guide is protected by total internal reflection. 157611.doc -19· 201213979 is left in the light guide. An output coupling structure on the light guide adjusts the coupling of light in the region of the backlight. Since the area is usually much larger than the led surface, it is easier to make the overall backlight uniform. The light guides together form a grid of individually controllable backlights, as in an area illuminated by a backlight having a matrix of LEDs. This approach can thus provide the advantages of local dimming/backlight control while allowing for low cost, low complexity implementation, simple backlight control, and in particular, still allows for the manufacture of a very thin display. It will be appreciated that the number of individually controllable backlight segments can vary depending on the particular embodiment. However, the method generally allows each backlight segment to correspond to no more than 10,000 pixels or advantageously no more than 5000 or even 1000 pixels in many embodiments. Thus, the display area can be divided into strips with no more than 10,000 pixels per light output coupling (or advantageously no more than 5000 or even 1000 pixels in many embodiments). This may provide improved local backlight control, thus resulting in reduced power consumption, increased contrast, etc. In some embodiments, the light guide may be configured as a single substantially planar layer. However, this may be limiting in certain embodiments as it may limit the number of light guides that may be used for a strip of a given size. This in turn limits the number of light output couplings and thus can limit the longitudinal division of the strips into different backlight segments. In some embodiments, such considerations can be addressed by a light guide that is offset relative to each other in a direction perpendicular to the plane of the strip 2〇3 (i.e., perpendicular to the display surface). Therefore, the light guide can be placed at least partially behind other light guides with reference to the display area (and thus the backlight propagation side 157611.doc • 20-201213979). The light guides can be configured to be at least two overlapping elongated light guiding layers that are offset relative to one another in a direction perpendicular to the strip. In some cases, one layer may correspond to a single light guide but will typically include a plurality of light guides disposed substantially at the same depth relative to the front/light modulation layer 1〇3 of the display. For example, a 5' layer of light guides can be closely positioned together to form a substantially planar light guide layer at a predetermined depth. The light guide of this layer may have a light output coupling in the left half of the strip (using the exemplary orientation of Figure 2 for reference) and may thus divide the left half of the strip into a _backlight segment, where N is the The number of light guides in the first layer. Behind the first layer, the second layer of light guides can be closely positioned together to also form an upper planar light guide layer. This second layer of light guides can be on the right half of the strip. P has a light output coupling (using the exemplary orientation of Figure 2 for reference for brevity) and may thus divide the left half of the strip into page backlight segments, where M is the light guide in the first layer The number. In general, N and Μ may be the same and in fact in some embodiments, the first layer and the second layer may be used in substantially the same light guide that rotates in opposite directions only in the two layers. Thus, the method may allow the strip to be horizontally segmented into Μ + Ν segments while maintaining a width corresponding to one of the light guide configurations of only the width of the Ν (or Μ) segments. One consideration for this configuration is that the light guide of the second layer must project its backlight through the first layer. In some embodiments, light from the output coupling of the second layer can propagate at least partially through the lightguide of the first layer, and this can result in a refraction that can shift the effective position of the provided backlight and/or Or diffracted. In some embodiments, these position shifts may be pre-computed and compensated for 157611.doc -21 - 201213979 bits. For example, 'the position of the movable light output coupling to cause illumination of one of the desired regions of one of the strips after the optical effect propagating through the first layer. Alternatively, or alternatively, the illuminated region can be determined The modified position and the local backlight control can be modified to be based on the image characteristics in the region, ie the system can only use the shifted position of the backlight segment. In some embodiments, there may be a gap between the light guides of the first layer, and the light output coupling of the second layer may be configured to propagate at least partially through the gaps of the first layer. In fact, in some embodiments, the light guide can be configured to have a shape that increases one of the gaps between the light guides. An example of this situation is shown in Figure 3, which illustrates three light guides 3〇1 of a first layer. Light guide 301 has light output couplings 3〇3 on the left side of the strip and then narrows to a much smaller cross-sectional area (while maintaining the same length to allow, for example, fixation at both ends of the display). The narrowing of the light guide 3〇1 provides a substantially increased gap in which a light output coupling 305 of a second underlying layer can be positioned. In some embodiments, the light guide can, for example, be configured to have a change in dimension perpendicular to the longitudinal direction of the strip. For example, the light guide can be configured to have a bend between the layers. For example, portions of a light guide that delivers light can be configured to reside in a lower layer, wherein a segment corresponding to the light output coupling is configured to be closer to the screen, that is, the light guide can be configured to Forming such that the transport section of the light guide is predominantly in the lower layer and the section corresponding to the light output coupling is in the upper or top layer. In some embodiments, light guides from different layers may have different lengths of light from the lower layer that would not need to travel through the upper layer. For example, 157611.doc •22·201213979 terminates the light guide 301. The light guide 301 of Figure 3 can only be truncated and at the beginning of the cone _ light guide can also be used in the case where it uses only a single layer. 5 long &amp; And t 'short light guide can be used to be close to the edge illumination and the light guide can be used to be farther away from the edge illumination (for example, the monsoon is in the display or the moon b is toward the other edge of the display, so the light guide can be completely different - Eight different lengths, for example, the different lengths may correspond to the distance from the edge of the special light guide to the backlight segment and thus the light output facepiece. In a consistent embodiment, the width/cross section of the light guide may be individual The cross-sectional area of the light guide is corresponding to a section corresponding to a light guide and may be higher than a section corresponding to a light transport section (ie, other than the light output consumable). '- A relatively narrow light guide (for example with a diameter of 1 mm to 2 mm) can be widened at a specific point of the light output coupling (eg to 5 mm to 10 mm). This can specifically cover most areas of the light guide. The narrow entity of Duan Du and the light from the light One of the light fittings is a combination of broad and preferred scattered light radiation. For example, 'because the thin section of the light guide provides a significant gap through which the lower layer can illuminate, this can be advantageous in certain multilayer configurations. The method may also be advantageous in a number of single layer embodiments. For example, the widening of the light output lightly coupled section relative to the transport section may allow it to extend to the knife to dispense a space of adjacent light guides having a corresponding narrow transport section. For example, the light guide can be configured as a single layer having a spacing of 2 mm. Each light guide can have a diameter of 1 mm during the transport section and can have a diameter of 3 mm during the light output coupling section. Thus, for one of the 157611.doc -23-201213979 first light guides having a given section of one of the light output couplings, the adjacent light guides have a transport section and thus extend only 〇5 mm from the center of the pitch. Therefore, 3 mm One of the spaces can be used for the light guide output coupling. For example, the increased light output coupling size can allow for better illumination of one of the entire backlight segments associated with the light output coupling. In an example, the light source 215 can advantageously have a light source with a variable color output. Thus, instead of providing only a white light output, the light source 21 can be a color light source and can be varied not only in intensity but also in color produced. The output can also be varied. Therefore, the light source can be controlled to provide a variable spectrum. For example, this can be achieved by a light source comprising a plurality of sub-light sources of different colors to achieve the intensity of each of the sub-light sources. It can be individually controlled. Thus, in some embodiments, the white LEDs can be replaced by, for example, a three-in-one RGB LED package or a closely packed one of the R, G, and b led packages. This method can be particularly advantageous in color mixing. In fact, due to the relatively long fresh light or light pipe, a very high efficiency color mixing is usually achieved, resulting in the color light output from the light output coupling appearing as a single color light source, even if the incident light is produced by a plurality of light sources of different colors. The use of a color light source provides improved localized backlighting. For example, it may allow adjustment of the spectrum of the backlight to match the dominant color in the image area supported by the backlight segment. This reduces power efficiency and increases image quality. 157611.doc • 24 - 201213979 In the previous example, each light guide had only one light output coupling and thus there was a direct correspondence between the light guide and the backlight segment. However, in some embodiments, one or more of the light guides may advantageously include more than one light output light fitting. As a simple example, a plurality of light guides can, for example, be used to provide a more homogeneous illumination of one of the backlights or can, for example, allow a light guide to support a plurality of backlight segments. In some embodiments, the display can include individual light sources for the two light output couplings. An example of such a light guide configuration is illustrated in FIG. In this example, a light guide 401 includes one of a first light output coupling and a second light output coupling 403, 4〇5 that are displaced relative to each other in the longitudinal direction. The light output couplings 403, 405 are preferably designed to have a relatively large distance therebetween, thereby reducing optical coupling from one light output coupling to another. Further, the configuration includes one of the first light source 407 and the second light source 4〇9 disposed at each end of the light guide 4〇1 (ie, at the opposite end of the light guide 〇1). Therefore, the two light sources 407, 409 inject light into opposite ends of the light guide 4〇1. Thus, the light of the first source 407 will first reach the first light output coupling 4〇3 and a substantial portion of this light will radiate from the first light output coupling 4〇3. Similarly, the light of the second source 409 will first reach the second light output coupling 々Μ and a substantial portion of this light will radiate from the second light output coupling 4〇5. This method allows for an improved flexibility and in particular provides a plurality of back stages from each light guide, thereby allowing for smaller backlight segments for the same number of light guides. In many practical implementations, the number of light guides for each strip may be limited to 15,761 例如, for example, due to the size of the light guide relative to the strip or due to practical considerations such as fixed or mechanical strength considerations for the light guide, Doc -25- 201213979 And by providing a light guide with a plurality of light output couplings and associated independently controlled light sources, the number of horizontal segments is not limited to the number of light guides but is inversely increased. For example, using the light guide configuration of Figure 4, the number of horizontal segments can be doubled for a number of light guides. The method can be further used to reduce the width of the strip (as needed for fewer light guides), thereby allowing one of each segment to be reduced in vertical extension. Thus, the display area can be divided into a large number of smaller backlight segments, thereby allowing for improved local backlight control and adaptation. In these embodiments the backlight controller 1 〇 7 can thus be configured to drive the two light sources 407, 409 in different ways. This allows the backlighting of the two light output couplings to be different. However, in a standard light guide, the optical isolation between the two light output couplings 403, 405 may not be extremely high due to the relatively low absorption and light leakage. Thus, the crosstalk between the two backlight segments can be pedestal&apos; and the resulting correlation between the resulting backlights can be correspondingly relative. To reduce the correlation between the backlight segments, the light output couplings 403, 405 can be added between the two light output couplings 403, 405 by including a light guide 401 between the two light output couplings 403, 405. Optically isolated. The light flux attenuating section 411 can thus increase the optical isolation between the light output consuming members and thus increase the independence and reduce the correlation between the backlight segments associated with the light output coupling. The luminous flux attenuation section 411 can be at least one of an increased absorption section, a light reflecting section, and a light output engaging section. For example, a light guide can be generated to include a section 411 having an increased absorption of light and thus attenuating light from either direction. This increased absorption of light can be achieved, for example, by including various defects in the photoconductive material. In some embodiments, the luminous flux attenuation section 411 can be specifically a light flux blocking section such that light from one side of the section 411 is substantially prevented from reaching the other side. For example, such a barrier segment can be achieved by coloring/painting a section of the light guide to be substantially black. A light reflecting section can be used in some embodiments to provide improved isolation. For example, a mirror material can be integrated into the light guide to reflect light waves from both directions. In some embodiments, the luminous flux attenuation section 411 can be formed from a light output consuming member. For example, a light output coupling can be created by painting the surface of the light guide into a white color. In many embodiments, the light output coupling should be configured to radiate light such that the light does not reach the light modulation layer 1〇3 and thus does not contribute to the illumination of the light modulation layer 103. For example, the light output facepiece can be configured to radiate light to the back or side of the display area. Luminous flux attenuation can be formed by a wedge shape at the edge of the segment. This will squeeze out the remaining light. In some embodiments, one or more of the light guides can be a controllable light guide, wherein the light output from the light output coupling is not only given by static characteristics and incident light, but is also dynamically dependent on one of the light guides. Control characteristics. The controllable characteristics may be one of the characteristics of the light guide or may be provided by an externally or internally positionable controllable element. For example, in some embodiments, a light attenuating element can be positioned in front of the output coupling region of the light guide. For example, an LCD component can be positioned 157611.doc -27-201213979 in front of this area, wherein the opacity of the LCD component can be controlled by an electronic signal. As another example, a light guide can include an element that can change optical characteristics in response to application of an electrical or magnetic signal. As a further example, the light guide can comprise a hollow light guide of an electromechanical component. For example, a light guide can include a mechanically movable micromirror that can be rotated in response to an electrical or magnetic signal. When the micromirror is rotated, the amount of light reflected by the light output coupling can be varied. These controllable features may allow for an improved backlight control and may, for example, allow for increased flexibility or dynamic range of local backlight control. In the example of Figure 2, light is injected from the same end of the light guide for all light guides. However, in some embodiments, light can be injected from the proximal end to the output coupling. In many embodiments, this reduces light leakage and absorption. In fact, in some embodiments, light can be injected from both ends.

件之一表面之一發光區域。特定而言, 可使用具有小於光 導之橫截面面積之一高效光輻射表面之一led。One of the surfaces of one of the light-emitting areas. In particular, one of the highly efficient light-radiating surfaces having a cross-sectional area smaller than the light guide can be used.

珂用π提供所闡述功能之適合構件之提及, 各之提及僅視為 ’而不是指示一 157611.doc •28· 201213979 嚴格邏輯或實體結構或組織。 本發明可以包含硬體、軟體、韌體或此等之任—組合之 任一適合形式實施。本發明可視情況至少部分地實施為在 一或多個資料處理器及/或數位信號處理器上運行之電腦 軟體。可以任—冑合方式在實體1、功能上及邏輯上實施 本發明之—實施例之元件及組件。實際上,該功能性可實 施,-單個單元中、複數個單元中或實施為其他功能單元 之部分1此’本發明可實施於—單個單元中或可在實體 上及功能上分佈於不同單元、電路與處理器之間。 儘管已結合某些實施例闡述了本發明,但本發明並不意 欲限於本文中所列舉之具體形式。而i,本發明之範疇僅 受隨附中請專利範圍限制。另外,儘管-特徵可看來為結 合特定實施例而闡㉛’但熟習此項技術者將認識到,可根 據本發明將所闡述之實施例之各種特徵加以組合。在申請 專利範圍中,術語「包括(comPrising)」並不排除其他元 件或步驟之存在。 ^ 此外,儘管個別地列出,但複數個構件、元件、電路或 方法步驟可由(例如)一單個電路、單元或處理器實施。另 外,儘管個別特徵可包含於不同請求項中,但此等特徵可 能有利地加以組合,且包含於不同請求項中並不暗示一特 徵組合係不可行的及/或不利的。同樣地,一特徵包含於 一個類別之請求項中並不暗示僅限於該類別,而是指示該 特徵視需要同等地適用於其他請求項類別。此外,請求項 中之特徵之次序並不暗示該等特徵在起作用時所必須遵循 157611.doc -29- 201213979 之任何特定次序,且特定而言 驟之次序並不暗示必 $法凊求項中之個別步 以任一適合-欠序來 人序執行該等步驟。而是’可 -㈣ 于該等步驟。此外,單數提及不排除 複數。因此,所提及之「 (fim)」、「第y ⑷」-㈣」、第- —(second)」等不排除一複數。申請專利範圍 中之參考符旒僅係作為—闡明實例而提供,不應解釋為以 任何方式限制中請專利_之範鳴。 【圖式簡單說明1 圖1圖解說明根據本發明之某些實施例之一背光顯示器 之一實例; 圖2圖解說明根據本發明之某些實施例之一實例性顯示 器之一視圖; 圖3圖解說明根據本發明之某些實施例之用於一顯示器 之光導之一層之一實例;及 圖4圖解說明根據本發明之竿政實施例之用於一顯示器 之一光導之一實例。 【主要元件符號說明】 101 背光 103 光調變層 105 接收器 107 背光控制器 109 液晶顯示器控制器 201 顯不區域 203 細長條帶 157611.doc -30· 細長條帶 細長條帶 細長光導 細長光導 細長光導 光源 光輸出麵合件 光輸出耦合件 光輸出柄合件 三個光導 光輸出搞合件 光輸出搞合件 光導 第一光輸出耦合件 第二光輸出耦合件 第一光源 第二光源 光通量衰減區段 -31 -References to π provide suitable components for the functions described, each reference being made only as ' instead of indicating a strict logical or physical structure or organization. The invention may be embodied in any suitable form including hardware, software, firmware or any combination of these. The invention may be implemented, at least in part, as a computer software running on one or more data processors and/or digital signal processors. The components and components of the present invention may be implemented in an entity 1, functionally and logically in a suitable manner. In fact, this functionality may be implemented, in a single unit, in a plurality of units, or as part of other functional units. The present invention may be implemented in a single unit or may be physically and functionally distributed across different units. Between the circuit and the processor. Although the invention has been described in connection with certain embodiments, the invention is not intended to While i, the scope of the invention is limited only by the scope of the patent application. In addition, although the features may be seen in conjunction with the specific embodiments, those skilled in the art will recognize that various features of the illustrated embodiments can be combined in accordance with the present invention. In the scope of the patent application, the term "comPrising" does not exclude the existence of other elements or steps. In addition, although individually listed, a plurality of components, elements, circuits or method steps may be implemented by, for example, a single circuit, unit or processor. In addition, although individual features may be included in different claims, such features may be advantageously combined, and inclusion in different claims does not imply that a particular combination is not feasible and/or disadvantageous. Similarly, the inclusion of a feature in a category of claim does not imply that it is limited to that category, but rather indicates that the feature applies equally to other claim categories as needed. In addition, the order of the features in the claims does not imply that the features must function in any particular order of 157611.doc -29-201213979, and the order of the particulars does not imply that the claim must be Each of the individual steps performs the steps in any suitable-under-order order. It is 'may-(d) in these steps. In addition, the singular reference does not exclude the plural. Therefore, the reference to "(fim)", "yy (4)"-(four)", - (second)", etc. does not exclude a plural. The reference symbols in the scope of application for patents are provided only as examples of clarification and should not be construed as limiting the patents in any way. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an example of a backlit display in accordance with some embodiments of the present invention; FIG. 2 illustrates a view of an exemplary display in accordance with some embodiments of the present invention; An example of one of the light guides for a display in accordance with certain embodiments of the present invention is illustrated; and Figure 4 illustrates an example of a light guide for a display in accordance with a financial embodiment of the present invention. [Main component symbol description] 101 Backlight 103 Light modulation layer 105 Receiver 107 Backlight controller 109 Liquid crystal display controller 201 Display area 203 Slender strip 157611.doc -30· Slim strips Slim strips Slim light guides Slim light guides Light guide light source light output surface fitting light output coupling light output handle assembly three light guide light output fitting light output fitting light guide first light output coupling member second light output coupling member first light source second light source light flux attenuation Section -31 -

Claims (1)

201213979 七、申請專利範圍: 1. 一種用於一顯示器之背光,其包括 一群組細長光導(209、211、213),其經配置以照明該 顯示器之一細長條帶(203),該群組細長光導(209、 • 211、213)中之每一光導包括用於接收光之一光輸入耦合 • 件及用於輻射光之至少一個光輸出耦合件(217、219、 221),該至少一個光輸出耦合件(217、219、221)在該光 導之一縱向方向上具有一受限延伸; 複數個光源(21 5) ’該複數個光源(21 5)中之每一者經 配置以將光饋送至該群組細長光導(2〇9、211、213)中之 一個光導之一光輸入耦合件; 其中該群組細長光導(2〇9、211、213)中之至少一個光 導之一光輸出耦合件沿該細長條帶之一縱向方向相對於 該群組細長光導(2〇9、211、213)中之至少另一個光導之 一光輸出耦合件偏移。 2. 如凊求項1之背光’其中該群組細長光導(2〇9、21 i、 213)包括在垂直於該條帶(2〇3)之一方向上相對於彼此偏 移之至少兩個重疊光導層。 • 3·如請求項2之背光,其中該至少兩個層中之至少一第一 . 層”至配置以穿過該至少兩個層中之至少一第二層輻射用 於該顯示器之背光。 4·如°月求項1或2之背光,其中該複數個光源(215)中之至少 個光源係具有一可變色彩光譜之一可變光源。 5·如睛求項4之背光’其中該可變光源包括複數個不同色 157611.doc 201213979 彩之子光源,且與該可變光源相關聯之該群組細長光導 (2〇9、211、213)中之一光導經配置以混合來自該等不同 色彩之子光源之光輸出。 6. 如請求項1或2之背光’其中該群組細長光導(209、211、 213)中之該等光導中之至少某些光導具有沿該縱向方向 相對於該光輸入耦合件具有不同偏移之光輸出耦合件 (217、219、221)。 7. 如請求項1或2之背光’其中該群組細長光導(2〇9、211、 213)中之至少一第一光導(4〇1)包括至少兩個光輸出耦合 件(403 、 405)。 8. 如請求項1之背光,其中該第一光導(4〇1)包括兩個光輸 入耦合件’且該複數個光源(215)包括用於該至少兩個光 輸入耦合件中之一第一者之一第一光源(4〇7)及用於該至 少兩個光輸入耦合件中之一第二者之一第二光源(4〇9)。 9. 如請求項7之背光,其中該第一光導(4〇1)包括兩個光輸 入耦合件,且該複數個光源(215)包括用於該至少兩個光 輸入耦合件中之一第一者之一第一光源(4〇7)及用於該至 少兩個光輸入耦合件中之一第二者之一第二光源(4〇9)。 10. 如請求項9之背光,其進一步包括一驅動器(1〇7),該驅 動器用於個別地控制該第一光源(4〇7)及該第二光源 (409)以為與該兩個光輸出耦合件(4〇3、4〇5)中之一第一 者(403)相關聯之該條帶(2G3)之―第—背光段及與該兩 個光輸出耦合件(403、4〇5)中之一第二者(4〇5)相關聯之 s亥條帶(203)之一第二背光段提供個別 背光控制。 1576U.doc 201213979 1如π求項7之背光,其中該第一光導(401)在該兩個光輸 出=合件(403、405)之間包括—光通量衰減區段。 I2.如味求項1之背光’其進一步包括一驅動器(107),該驅 動器用於個別地驅動該複數個光源(215)以提供局域背光 • 控制。 .I3.如請求項1之背光,其中該群組細長光導(209、211、 213)中之至少一個光導係一可控制光導,該可控制光導 、·至配置以回應於一控制信號控制來自至少一個光輸出搞 合件之一光輸出。 14.如凊求項1之背光,其中該條帶(2〇3)包括每光輸出耦合 件(217、219、221)不多於10000個像素。 15 ·如請求項i之背光,其中該群組細長光導(2〇9、2丨i、 213)中之至少一個光導之一光輸出耦合件具有不小於該 群組細長光導(209、211、2 13)中之該至少一個光導之一 最大橫截面尺寸之兩倍之一延伸。 16. —種顯示器,其包括: 一光調變層(103); 一群組細長光導(209、211、213),其經配置以照明該 • 光調變層(103)之一細長條帶(203),該群組細長光導 • (209、211、213)中之每一光導包括用於接收光之一光輸 入耦合件及用於輻射光之至少一個光輸出耦合件(217、 219、221 ),該至少一個光輸出耦合件(2i7、2!9、221) 在該光導之一縱向方向上具有一受限延伸; 複數個光源(215) ’該複數個光源(215)中之每一者經 157611.doc 201213979 配置以將光饋送至該群組細長光導(209、211、213)中之 一個光導之一光輸入耦合件; 其中該群組細長光導(209、211、213)中之至少一個光 導之一光輸出耦合件沿該細長條帶之一縱向方向相對於 該群組細長光導(209、211、213)中之至少另一個光導之 一光輸出耦合件偏移。 157611.doc201213979 VII. Patent Application Range: 1. A backlight for a display comprising a group of elongated light guides (209, 211, 213) configured to illuminate an elongated strip (203) of the display, the group Each of the set of elongated light guides (209, 211, 213) includes a light input coupling member for receiving light and at least one light output coupling member (217, 219, 221) for radiating light, the at least A light output coupling (217, 219, 221) has a limited extension in a longitudinal direction of the light guide; a plurality of light sources (21 5) 'each of the plurality of light sources (21 5) are configured Feeding light to one of the light guides of one of the group of elongated light guides (2〇9, 211, 213); wherein at least one of the group of elongated light guides (2〇9, 211, 213) A light output coupling member is offset in a longitudinal direction of one of the elongated strips relative to one of the at least one other of the plurality of light guides (2〇9, 211, 213). 2. The backlight of claim 1 wherein the group of elongated light guides (2〇9, 21 i, 213) comprises at least two offsets relative to one another in a direction perpendicular to one of the strips (2〇3) Overlay the light guide layer. 3. The backlight of claim 2, wherein at least one of the at least two layers is configured to radiate a backlight for the display through at least one of the at least two layers. 4. The backlight of claim 1 or 2, wherein at least one of the plurality of light sources (215) has a variable color source of a variable color spectrum. The variable light source includes a plurality of different colors 157611.doc 201213979 color child light source, and one of the group of elongated light guides (2〇9, 211, 213) associated with the variable light source is configured to be mixed from Light output of a sub-light source of a different color. 6. The backlight of claim 1 or 2 wherein at least some of the light guides of the group of elongated light guides (209, 211, 213) have a relative orientation along the longitudinal direction The light input coupling has different offset light output couplings (217, 219, 221). 7. The backlight of claim 1 or 2 wherein the group of elongated light guides (2〇9, 211, 213) At least one first light guide (4〇1) includes at least two light output couplings ( 403, 405) 8. The backlight of claim 1, wherein the first light guide (4〇1) comprises two light input couplings' and the plurality of light sources (215) comprise coupling for the at least two light inputs One of the first ones of the first light source (4〇7) and one of the second one of the at least two light input couplings (4〇9). a backlight of 7, wherein the first light guide (4〇1) comprises two light input couplings, and the plurality of light sources (215) comprise one of the first ones of the at least two light input couplings a light source (4〇7) and a second light source (4〇9) for one of the second of the at least two light input couplings. 10. The backlight of claim 9, further comprising a driver ( 1〇7), the driver is used for individually controlling the first light source (4〇7) and the second light source (409) to be one of the two light output coupling members (4〇3, 4〇5) a first-backlight segment of the strip (2G3) associated with the first one (403) and associated with one of the two light output couplings (403, 4〇5) (4〇5) s (203) One of the second backlight segments provides individual backlight control. 1576 U.doc 201213979 1 backlight as in π, wherein the first light guide (401) is in the two light outputs = (403, 405) Including - the light flux attenuation section. I2. The backlight of claim 1 further includes a driver (107) for individually driving the plurality of light sources (215) to provide local backlight control. I3. The backlight of claim 1, wherein at least one of the group of elongated light guides (209, 211, 213) is capable of controlling a light guide, the controllable light guide, to a configuration in response to a control signal control from at least A light output engages one of the light outputs. 14. The backlight of claim 1, wherein the strip (2〇3) comprises no more than 10,000 pixels per light output coupling (217, 219, 221). 15. The backlight of claim i, wherein the light output coupling of at least one of the group of elongated light guides (2〇9, 2丨i, 213) has not less than the group of elongated light guides (209, 211, 2) One of the largest cross-sectional dimensions of one of the at least one light guide extends. 16. A display comprising: a light modulation layer (103); a group of elongated light guides (209, 211, 213) configured to illuminate one of the elongated strips of the light modulation layer (103) (203), each of the group of elongated light guides (209, 211, 213) includes a light input coupling for receiving light and at least one light output coupling for radiating light (217, 219, 221) the at least one light output coupling (2i7, 2! 9, 221) has a limited extension in a longitudinal direction of the light guide; a plurality of light sources (215) 'each of the plurality of light sources (215) One is configured by 157611.doc 201213979 to feed light to one of the light guides of one of the group of elongated light guides (209, 211, 213); wherein the group of elongated light guides (209, 211, 213) One of the at least one light guide light output couplings is offset in a longitudinal direction of one of the elongated strips relative to one of the at least one other of the plurality of light guides (209, 211, 213). 157611.doc
TW100128235A 2010-08-11 2011-08-08 Backlight for a display TW201213979A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10172453 2010-08-11

Publications (1)

Publication Number Publication Date
TW201213979A true TW201213979A (en) 2012-04-01

Family

ID=44583230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128235A TW201213979A (en) 2010-08-11 2011-08-08 Backlight for a display

Country Status (2)

Country Link
TW (1) TW201213979A (en)
WO (1) WO2012020371A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1576571A1 (en) * 2002-12-18 2005-09-21 Koninklijke Philips Electronics N.V. Scrolling backlight device for lcd display panel
WO2007074784A1 (en) * 2005-12-27 2007-07-05 Matsushita Electric Industrial Co., Ltd. Planar lighting device and liquid crystal display device
WO2008045681A1 (en) * 2006-10-06 2008-04-17 3M Innovative Properties Company Backlight modules for autostereoscopic 3d display devices and scanning backlights for lcd devices
US7661862B2 (en) * 2006-12-07 2010-02-16 Skc Haas Display Films Co., Ltd. LCD display backlight using elongated illuminators
JP2009163902A (en) * 2007-12-28 2009-07-23 Hitachi Ltd Liquid crystal display
KR101493706B1 (en) * 2008-12-24 2015-02-16 엘지디스플레이 주식회사 Backlight unit for liquid crystal display device

Also Published As

Publication number Publication date
WO2012020371A2 (en) 2012-02-16
WO2012020371A3 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
US8120726B2 (en) Surface light source device and display
JP5738742B2 (en) Surface light source device
JP5011151B2 (en) Liquid crystal display equipment
JP4902566B2 (en) Surface illumination device and display device
JP5457440B2 (en) Lighting device with gradual injection
US8089583B2 (en) Light guide blade with color balancing structures and blue absorption compensation for large screen LED backlight unit
EP1865251A1 (en) Light conducting member, planar illuminator employing it, and rod-like illuminator
KR20080052502A (en) Lcd display backlight using elongated illuminators
JPWO2007086456A1 (en) Surface light source device and display device
WO2008062695A1 (en) Backlight and display
JP2009289701A (en) Lighting device, plane light source device, and liquid crystal display
US20110085351A1 (en) Illumination system, backlighting system and display device
JP2005539355A (en) Light emitting device having polarized radiation waveguide plate
EP2299161A1 (en) Planar light source device and display device
JP2010170897A (en) Edge light partial drive backlight unit, and liquid crystal display device
EP2115350B1 (en) Illumination system and display device
CN101846267B (en) Backlight module
JP2009176512A (en) Surface light source device and image display apparatus
JP2009140905A (en) Light guide plate and backlight
US20100109576A1 (en) General illumination system and an illuminaire
JP4555250B2 (en) Light guide plate and planar illumination device using the same
JP2010205565A (en) Light source module, and electronic equipment equipped with this module
JP2006134661A (en) Planar light source and liquid crystal display device using this
TW201213979A (en) Backlight for a display
JP5229041B2 (en) Illumination device and liquid crystal display device