JP2006134661A - Planar light source and liquid crystal display device using this - Google Patents

Planar light source and liquid crystal display device using this Download PDF

Info

Publication number
JP2006134661A
JP2006134661A JP2004320947A JP2004320947A JP2006134661A JP 2006134661 A JP2006134661 A JP 2006134661A JP 2004320947 A JP2004320947 A JP 2004320947A JP 2004320947 A JP2004320947 A JP 2004320947A JP 2006134661 A JP2006134661 A JP 2006134661A
Authority
JP
Japan
Prior art keywords
light source
light
guide plate
light guide
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320947A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004320947A priority Critical patent/JP2006134661A/en
Publication of JP2006134661A publication Critical patent/JP2006134661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar light source capable of obtaining uniform illumination light even if using a point light source element as a light source, having high illuminance, capable of realizing reduction of size and weight of a device by reducing an invalid area in a light guide plate, and being applicable to a light guide system provided with a scattering means in an emitting surface of the light guide plate, and to provide a liquid crystal display device using this. <P>SOLUTION: A light source part 10 has a plurality of point light source elements 2 arranged along an incidence plane 1a of the light guide plate 1. The light guide plate 1 transmits light introduced from the incidence plane 1a to the entire surface while totally reflecting it between facing principal surfaces and changes the light path with a light path modification member provided in the inside to emit flat light from the emitting surface 1b. A value of d/p which is a quotient of the distance d between the point light source elements 2 and the incidence plane 1a of the light guide plate 1 divided by an arrangement interval p of the point light source elements 2 is 0.2 or more and less than 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、面状光源およびこれを用いた液晶表示装置に関し、より特定的には、光源部からの入射光を導光板の内部に導入して、導光板の主面から面状の光を放出する面状光源およびこれを用いた液晶表示装置に関する。   The present invention relates to a planar light source and a liquid crystal display device using the planar light source. More specifically, incident light from a light source unit is introduced into a light guide plate, and planar light is emitted from the main surface of the light guide plate. The present invention relates to a planar light source that emits light and a liquid crystal display device using the same.

パーソナルコンピュータのモニター、テレビ受像機、および携帯電話等には、画像表示が可能な液晶表示装置(液晶ディスプレイ)が用いられている。液晶表示装置は、薄型かつ軽量であり、しかも、近年の製造技術の進展によって価格の低減や高画質化が図られていることから、急速に普及している。   Liquid crystal display devices (liquid crystal displays) capable of displaying images are used for personal computer monitors, television receivers, mobile phones, and the like. Liquid crystal display devices are thin and light, and are rapidly spreading because of the recent reduction in price and higher image quality due to progress in manufacturing technology.

液晶表示装置は、それ自体は非自発光であるため、液晶パネルの背面側にバックライトと呼ばれる光源を備えた透過型液晶表示装置が一般的に用いられている。透過型液晶表示装置では、光源からの照明光を液晶パネルによって空間変調することにより画像を形成する。バックライトには、様々な種類のものがあるが、導光板の側部から光を導入し、均一な面光源に変換させるエッジライト型のバックライトは、薄型化や小型化に適しているため広く用いられている。エッジライト型のバックライトの光源には、一般に、線状光源である冷陰極管(以下、CCFLと称す)が用いられていたが、近年、発光効率の高い発光ダイオード(以下、LEDと称す)の開発に伴って、LEDの利用要求が高まっている。   Since the liquid crystal display device itself is non-self-luminous, a transmissive liquid crystal display device having a light source called a backlight on the back side of the liquid crystal panel is generally used. In a transmissive liquid crystal display device, an image is formed by spatially modulating illumination light from a light source with a liquid crystal panel. There are various types of backlights, but edge-lighted backlights that introduce light from the side of the light guide plate and convert it into a uniform surface light source are suitable for thinning and miniaturization. Widely used. In general, a cold cathode tube (hereinafter referred to as CCFL), which is a linear light source, has been used as a light source of an edge light type backlight, but in recent years, a light emitting diode (hereinafter referred to as an LED) having high luminous efficiency. With the development of, demands for using LEDs are increasing.

図8は、光源としてLEDを用いたエッジライト型バックライトとして用いられる面状光源の構成を示し、図8(a)は、面状光源を側面から見たときの断面図であり、図8(b)は、面状光源の平面図である。図8(a)および図8(b)において、面状光源70は、導光板1と光源部10とを備える。光源部10は、導光板1の側部に配置されており、光源としてのLED2、基板3、および反射板4を有する。なお、図8(b)では、反射板4の図示は省略している。   8 shows a configuration of a planar light source used as an edge light type backlight using an LED as a light source, and FIG. 8A is a cross-sectional view of the planar light source as viewed from the side. (B) is a top view of a planar light source. 8A and 8B, the planar light source 70 includes the light guide plate 1 and the light source unit 10. The light source part 10 is arrange | positioned at the side part of the light-guide plate 1, and has LED2, the board | substrate 3, and the reflecting plate 4 as a light source. In addition, illustration of the reflecting plate 4 is abbreviate | omitted in FIG.8 (b).

導光板1は、ポリカーボネート樹脂やメタクリル樹脂等の透明で屈折率の大きな樹脂により形成されており、側部に入射面1aを、対向する主面の一方の側に出射面1bを有する。光源部10は、複数のLED2を有し、これらのLED2は、入射面1aに沿って基板3の上に等間隔に実装されている。LED2および基板3は、反射率の高い白色樹脂シート等で構成された反射板4で覆われている。   The light guide plate 1 is made of a transparent resin having a large refractive index, such as polycarbonate resin or methacrylic resin, and has an incident surface 1a on the side and an output surface 1b on one side of the opposing main surface. The light source unit 10 includes a plurality of LEDs 2, and these LEDs 2 are mounted on the substrate 3 at equal intervals along the incident surface 1a. The LED 2 and the substrate 3 are covered with a reflector 4 made of a white resin sheet or the like having a high reflectance.

上記のように構成された面状光源70では、導光板1の入射面1aから導入された入射光は、図8(a)において矢印で示すように、対向する主面間を全反射を繰り返しながら伝播する。このとき、出射面1bと対向する面には、特定の密度分布や大きさを有する拡散反射層や反射用溝等を形成して、反射面1cとするのが一般的である。このような構成とすることにより、伝播する光を効率良く出射面1bから出射することができる。また、反射面1cに設けられる拡散反射層や反射用溝等の形状や密度分布等を適宜設定することにより、液晶表示装置のバックライトとして用いたときに、液晶パネルの全面にわたってほぼ均一な照明光を与えることができる。さらに、光源部10には、多数のLED2を配置して導光板1の入射面1aに直接光を導入するよう構成されているため、液晶表示装置のバックライトして利用できるだけの発光量を得ることができる。   In the planar light source 70 configured as described above, incident light introduced from the incident surface 1a of the light guide plate 1 repeatedly undergoes total reflection between opposing main surfaces as indicated by arrows in FIG. Propagate while. At this time, it is general to form a reflection surface 1c by forming a diffuse reflection layer, a reflection groove, or the like having a specific density distribution or size on the surface facing the emission surface 1b. By setting it as such a structure, the propagating light can be efficiently radiate | emitted from the output surface 1b. In addition, by appropriately setting the shape, density distribution, etc. of the diffuse reflection layer and the reflection grooves provided on the reflection surface 1c, substantially uniform illumination over the entire surface of the liquid crystal panel when used as a backlight of a liquid crystal display device Can give light. Further, since the light source unit 10 is configured to arrange a large number of LEDs 2 and directly introduce light into the incident surface 1a of the light guide plate 1, a light emission amount that can be used as a backlight of the liquid crystal display device is obtained. be able to.

ただし、点光源であるLED2を用いてバックライトを構成すると、入射面近傍に明暗のムラを生じやすく、図8(b)に示すように、導光板1の入射面1aにおいて、LED2と対向する位置にある入射面1aは明るくなるものの、隣接するLED2間において暗部5が発生する傾向にある。そこで、このような暗部5を解消し、有効照明領域では実使用に問題が生じない程度の照明光の均一性を確保できるように、以下のような各種の方法が提案されている。   However, if the backlight is configured by using the LED 2 that is a point light source, unevenness in brightness and darkness is likely to occur in the vicinity of the incident surface, and the LED 2 is opposed to the LED 2 on the incident surface 1a of the light guide plate 1 as shown in FIG. Although the incident surface 1a at the position is bright, the dark portion 5 tends to be generated between the adjacent LEDs 2. Therefore, various methods as described below have been proposed so as to eliminate such dark portions 5 and ensure the uniformity of illumination light to such an extent that no problem occurs in actual use in the effective illumination region.

すなわち、導光板1の入射面1aにプリズムアレイ等の拡散要素を形成する方法(例えば、特許文献1)や、導光板1の入射面1a付近においてLED2に対向する部分に空孔を形成する方法(例えば、特許文献2)等が提案されている。また、導光板1の入射面1aに沿った方向への光拡散を促進する方法として、導光板1の入射面1aから一定の距離を、均一化のための空間として使用する方法(例えば特許文献3)等が提案されている。
特開平10−199316号公報 特開2000−149635号公報 特開平9−34371号公報
That is, a method of forming a diffusing element such as a prism array on the incident surface 1a of the light guide plate 1 (for example, Patent Document 1), or a method of forming a hole in a portion facing the LED 2 in the vicinity of the incident surface 1a of the light guide plate 1 (For example, patent document 2) etc. are proposed. Further, as a method of promoting light diffusion in the direction along the incident surface 1a of the light guide plate 1, a method of using a certain distance from the incident surface 1a of the light guide plate 1 as a space for uniformization (for example, Patent Documents). 3) etc. have been proposed.
JP 10-199316 A JP 2000-149635 A JP-A-9-34371

しかしながら、上記のように導光板1に拡散要素や空孔を形成する方法では、導光板1の内部に一定の無効領域が発生することを前提としているため、光源としてCCFLを用いた液晶表示装置に比べて導光板1が大きく、しかも重くなり、装置の小型化が妨げられるという問題があった。   However, since the method of forming the diffusing element or the hole in the light guide plate 1 as described above is based on the premise that a certain invalid area is generated inside the light guide plate 1, a liquid crystal display device using CCFL as a light source Compared to the above, there is a problem that the light guide plate 1 is larger and heavier and hinders downsizing of the apparatus.

また、導光板1の入射面1aにプリズムやレンチキュラレンズなどの拡散要素を設ける方法は、導光板1の出射面1bおよびその裏面が平坦である従来の導光方式ではある程度の効果があるもの、導光板1の出射面1bまたはその裏面のいずれかに、入射面1aと垂直な方向を長手方向とするプリズムを形成した導光方式では、ほとんど効果を発揮しないという問題がある。これは、導光板1に形成されたプリズムの作用によって、プリズム延伸方向と直行する方向への光の伝播方向が抑制されるためと考えられる。また、近年では、導光板1に直接にプリズムを形成する導光方式が主流となりつつある。この導光方式は、プリズムの延伸方向と直交する方向に光を集光して正面輝度を向上する効果があり、導光板1の出射面1bに設置されるプリズムシートを1枚削減できるが、導光板1に設けられたプリズムが光ガイドとなって横方向の光の伝播が阻害されるため、十分な照明光の均一性を確保できるものではない。   Further, the method of providing a diffusing element such as a prism or a lenticular lens on the incident surface 1a of the light guide plate 1 has a certain effect in the conventional light guide method in which the output surface 1b of the light guide plate 1 and the back surface thereof are flat. There is a problem in that the light guide method in which a prism whose longitudinal direction is perpendicular to the incident surface 1a is formed on either the exit surface 1b or the back surface of the light guide plate 1 has little effect. This is presumably because the propagation direction of light in the direction orthogonal to the prism extending direction is suppressed by the action of the prism formed on the light guide plate 1. In recent years, a light guide system in which a prism is directly formed on the light guide plate 1 is becoming mainstream. This light guide method has the effect of concentrating light in a direction perpendicular to the direction of extension of the prism to improve the front brightness, and can reduce one prism sheet installed on the light exit surface 1b of the light guide plate 1, Since the prism provided on the light guide plate 1 serves as a light guide and the propagation of light in the lateral direction is hindered, sufficient uniformity of illumination light cannot be ensured.

さらに、導光板1の入射面1aから一定の距離を均一化のための空間として使用する方法では、ある程度の照明光の均一性は得られるものの、未だ十分と言えるだけの照明光の均一性を確保できるものではない。   Furthermore, the method of using a certain distance from the incident surface 1a of the light guide plate 1 as a space for homogenization can obtain a certain degree of illumination light uniformity, but still provides sufficient illumination light uniformity. It cannot be secured.

それ故に、本発明の目的は、光源として点状光源素子を用いても均一な照明光が得られ、照度が高く、導光板内の無効領域を低減して装置の小型化と軽量化とが実現でき、しかも導光板の出射面に拡散手段を設けた導光方式にも適用できる面状光源及びこれを用いた液晶表示装置を提供することである。   Therefore, the object of the present invention is to obtain uniform illumination light even when a point light source element is used as a light source, high illuminance, and reducing the ineffective area in the light guide plate, thereby reducing the size and weight of the device. Another object of the present invention is to provide a planar light source that can be realized and can also be applied to a light guide method in which a diffusing means is provided on the exit surface of a light guide plate, and a liquid crystal display device using the same.

本発明は、面状光源に向けられており、この面状光源は、複数の点状光源素子を有する光源部と、光源部と対向する入射面から光を導入し、導入した光を対向する主面間で全反射させながら全面に伝播させるとともに、内部に設けられた光路変更部材によって光路を変更させることにより、出射面から面状の光を出射する導光板とを備える。   The present invention is directed to a planar light source. The planar light source introduces light from a light source unit having a plurality of point light source elements and an incident surface facing the light source unit, and opposes the introduced light. A light guide plate that emits planar light from the light exit surface by propagating to the entire surface while being totally reflected between the main surfaces and changing the light path by an optical path changing member provided inside.

ここで、本発明の面状光源の特徴は、点状光源素子と導光板の入射面との距離dを点状光源素子の配列間隔pで除した値であるd/pは、0.2以上1未満である点にある。このような構成であると、複数の点状光源素子を光源として用いても均一な照明光が得られ、導光板内の無効領域を低減して装置の小型化と軽量化とが実現できる。   Here, the surface light source of the present invention is characterized in that d / p, which is a value obtained by dividing the distance d between the point light source element and the incident surface of the light guide plate by the arrangement interval p of the point light source elements, is 0.2. This is in the point of being less than 1. With such a configuration, uniform illumination light can be obtained even when a plurality of point light source elements are used as the light source, and the ineffective area in the light guide plate can be reduced, and the apparatus can be reduced in size and weight.

本発明において複数の点状光源素子は、等間隔で配列されていてもよく、あるいは、少なくとも一部において不等な間隔で配列されていても良い。後者の場合は、配列間隔pは、隣接する点状光源素子間において最大の配列間隔となる。   In the present invention, the plurality of point light source elements may be arranged at equal intervals, or at least partially arranged at unequal intervals. In the latter case, the arrangement interval p is the maximum arrangement interval between adjacent point light source elements.

また、導光板の主面のいずれか一方には、入射面と垂直な方向を長手方向として入射面と平行な方向に周期構造を有する構造体を含むようにしても良い。このような導光方式においても、導光板には十分に均一化された状態の光が入射するため、導光板の内部において光の横伝播が無くても照明光の均一性が損なわれることがなく、好適に使用できる。   Moreover, you may make it include in any one of the main surfaces of a light-guide plate the structure which has a periodic structure in the direction parallel to an incident surface by making a direction perpendicular | vertical to an incident surface into a longitudinal direction. Even in such a light guide system, light in a sufficiently uniform state is incident on the light guide plate, so that the uniformity of illumination light may be impaired even if there is no lateral propagation of light inside the light guide plate. And can be suitably used.

点状光源素子は、発光ダイオードあることが好ましい。発光効率の高い発光ダイオードを用いることで、高い照度が得られる。   The point light source element is preferably a light emitting diode. By using a light emitting diode with high luminous efficiency, high illuminance can be obtained.

また、本発明は、液晶表示装置にも向けられている。この液晶表示装置は、一対のガラス基板間に液晶が封入された液晶パネルと、液晶パネルの背面側に配置されたバックライトとを備える。バックライトは、複数の点状光源素子を有する光源部と、光源部と対向する入射面から光を導入し、導入した光を対向する主面間で全反射させながら全面に伝播させるとともに、内部に設けられた光路変更部材によって光路を変更させることにより、出射面から面状の光を出射する導光板とを備える。   The present invention is also directed to a liquid crystal display device. The liquid crystal display device includes a liquid crystal panel in which liquid crystal is sealed between a pair of glass substrates, and a backlight disposed on the back side of the liquid crystal panel. The backlight introduces light from a light source unit having a plurality of point light source elements and an incident surface facing the light source unit, and propagates the introduced light to the entire surface while totally reflecting between the opposing main surfaces. And a light guide plate that emits planar light from the exit surface by changing the optical path by the optical path changing member provided in.

ここで、本発明の液晶表示装置の特徴は、点状光源素子と導光板の入射面との距離dを点状光源素子の配列間隔pで除した値であるd/pが0.2以上1未満となるように設定された面状光源をバックライトとして用いる点にある。このような構成であると、バックライトを構成する面状光源は、導光板内の無効領域を低減して装置の小型化および軽量化が図れるため、液晶表示装置全体としての小型化および軽量化が実現できる。また、バックライトは、液晶パネルに均一な照明光を与えることができるため、表示特性の良い液晶表示装置が得られる。   Here, the liquid crystal display device of the present invention is characterized in that d / p, which is a value obtained by dividing the distance d between the point light source element and the incident surface of the light guide plate by the arrangement interval p of the point light source elements, is 0.2 or more. A planar light source set to be less than 1 is used as a backlight. With such a configuration, the planar light source constituting the backlight can reduce the ineffective area in the light guide plate and reduce the size and weight of the device. Therefore, the liquid crystal display device as a whole can be reduced in size and weight. Can be realized. In addition, since the backlight can give uniform illumination light to the liquid crystal panel, a liquid crystal display device with good display characteristics can be obtained.

以上のように本発明の面状光源によれば、光源部と導光板との間隔および光源部を構成する光源の配列ピッチを適切な値とすることで、複数の点状光源素子を光源として用いても、照明光の不均一性を緩和した状態で光を導光板に導くことができ、これにより導光板の入射端近傍の明暗を緩和して、均一で照度の高い発光が可能となる。また、導光板の無効領域を低減できるため、装置の小型化と軽量化とが実現できる。したがって、本発明の面状光源をバックライトとして用いた液晶表示装置は、表示特性が良く、小型で軽量なものとすることができる。   As described above, according to the planar light source of the present invention, by setting the interval between the light source unit and the light guide plate and the arrangement pitch of the light sources constituting the light source unit to appropriate values, a plurality of point light source elements can be used as the light source. Even if it is used, light can be guided to the light guide plate in a state in which the non-uniformity of the illumination light is mitigated, thereby reducing light and darkness near the incident end of the light guide plate, and making it possible to emit light with uniform and high illuminance. . In addition, since the ineffective area of the light guide plate can be reduced, the apparatus can be reduced in size and weight. Therefore, the liquid crystal display device using the planar light source of the present invention as a backlight has good display characteristics, and can be small and lightweight.

(第1の実施形態)
以下に、本発明の第1の実施形態に係る面状光源について説明する。図1は、本実施形態に係る面状光源の構成を示し、図1(a)は、面状光源を側面からみたときの断面図であり、図1(b)は、面状光源の平面図である。図1(a)および(b)において、面状光源15は、光源部10と導光板1とを備える。
(First embodiment)
The planar light source according to the first embodiment of the present invention will be described below. FIG. 1 shows a configuration of a planar light source according to the present embodiment, FIG. 1 (a) is a cross-sectional view of the planar light source viewed from the side, and FIG. 1 (b) is a plan view of the planar light source. FIG. 1A and 1B, the planar light source 15 includes a light source unit 10 and a light guide plate 1.

光源部10は、点状光源素子であるLED2、基板3、および反射板4を有する。LED2は、複数用いられており、後述するように導光板1の入射面1aに沿って配列間隔pを持って基板3の上に実装されている。反射板4は、反射率の高い白色樹脂シート等で構成されており、LED2からの光を効率的に導光板1に導くために、LED2および基板3を囲むように構成されている。なお、図1(b)では、反射板4の図示は省略している。このような構成を有する光源部10は、導光板1の側面側に配置されている。   The light source unit 10 includes an LED 2 that is a point light source element, a substrate 3, and a reflection plate 4. A plurality of LEDs 2 are used, and are mounted on the substrate 3 with an arrangement interval p along the incident surface 1a of the light guide plate 1 as will be described later. The reflection plate 4 is made of a white resin sheet or the like having a high reflectance, and is configured to surround the LED 2 and the substrate 3 in order to efficiently guide light from the LED 2 to the light guide plate 1. In addition, illustration of the reflecting plate 4 is abbreviate | omitted in FIG.1 (b). The light source unit 10 having such a configuration is disposed on the side surface side of the light guide plate 1.

導光板1は、ポリカーボネート樹脂やメタクリル樹脂等の透明で屈折率の大きな樹脂により形成される。導光板1は、一方の側面に光の入射面1aを有し、内部には光路変更部材(図示せず)を有する。そして、図1(a)において矢印で示すように、入射面1aから入射した光を出射面1bと反射面1cとの間で全反射させながら導光板1内部の全面に伝播すると共に、光路変更部材によって光路変更させることにより、伝播させた光を出射面1bから出射させて面状の発光をする。光路変更部材としては、例えば、主面に形成された所定のパターンを有する溝部や凹凸等の散乱パターンや、拡散シート拡散材等が挙げられる。また、導光板1の入射面1aはLED2が実装された基板3と対向する位置にあり、各LED2と導光板1の入射面1aとの距離は全て一定の間隔dとなっている。   The light guide plate 1 is formed of a transparent resin having a large refractive index, such as polycarbonate resin or methacrylic resin. The light guide plate 1 has a light incident surface 1a on one side surface and an optical path changing member (not shown) inside. Then, as indicated by an arrow in FIG. 1A, the light incident from the incident surface 1a propagates to the entire surface of the light guide plate 1 while being totally reflected between the exit surface 1b and the reflecting surface 1c, and the optical path is changed. By changing the optical path by the member, the propagated light is emitted from the emission surface 1b to emit planar light. Examples of the optical path changing member include a scattering pattern such as a groove portion and unevenness having a predetermined pattern formed on the main surface, a diffusion sheet diffusion material, and the like. In addition, the incident surface 1a of the light guide plate 1 is at a position facing the substrate 3 on which the LEDs 2 are mounted, and the distance between each LED 2 and the incident surface 1a of the light guide plate 1 is a constant distance d.

本実施形態に係る特徴部分は、LED2と導光板1のとの距離dおよびLED2の配列間隔pを適切な値に設定した点にある。以下、LED2と導光板1との距離dを「光源−導光板間距離d」と称し、LED2の配列間隔pを「光源ピッチp」と称す。ここで、光源ピッチpについて、より具体的に説明する。図2は、LED2を基板3に実装した状態を示す平面図である。複数のLED2は、全て等間隔で配列されていても良く、あるいは、少なくとも一部において等間隔でない状態で配列されていても良い。後者の場合には、光源ピッチpは、最大の配列間隔となる。具体例を挙げて説明すると、図2(a)に示すように、全てのLED2が等間隔で配列された状態であれば、隣接するLED2間の距離は全て一定であるため、光源ピッチpはp1となる。また、図2(b)に示すように、複数のLED2において異なった間隔(p2およびp3)で配列された状態のときには、光源ピッチpは、最大の配列間隔であるp2となる。また、図2(c)に示すように、LED2が複数列に配列された状態のときには、光源ピッチpは、各行の間隔p4および各列の間隔p5を考慮して、最大の配列間隔であるp4が光源ピッチとなる。   The characteristic part according to the present embodiment is that the distance d between the LED 2 and the light guide plate 1 and the arrangement interval p of the LEDs 2 are set to appropriate values. Hereinafter, the distance d between the LED 2 and the light guide plate 1 is referred to as “light source-light guide plate distance d”, and the arrangement interval p of the LEDs 2 is referred to as “light source pitch p”. Here, the light source pitch p will be described more specifically. FIG. 2 is a plan view showing a state where the LED 2 is mounted on the substrate 3. The plurality of LEDs 2 may all be arranged at equal intervals, or at least partially arranged in a state where they are not equally spaced. In the latter case, the light source pitch p is the maximum arrangement interval. To explain with a specific example, as shown in FIG. 2A, if all the LEDs 2 are arranged at equal intervals, the distance between the adjacent LEDs 2 is all constant. p1. As shown in FIG. 2B, when the plurality of LEDs 2 are arranged at different intervals (p2 and p3), the light source pitch p is p2 which is the maximum arrangement interval. As shown in FIG. 2C, when the LEDs 2 are arranged in a plurality of columns, the light source pitch p is the maximum arrangement interval in consideration of the interval p4 between the rows and the interval p5 between the columns. p4 is the light source pitch.

本実施形態においては、上記のように定義された光源−導光板間距離dおよび光源ピッチpを、次のような値に設定する。すなわち、光源−導光板間距離dを光源ピッチpで除した値であるd/pを、0.2以上1未満に設定する。換言すると、光源−導光板間距離dを、光源ピッチpの0.2倍以上1倍未満の範囲に設定する。光源−導光板間距離dと光源ピッチpとの間にこのような関係が成り立つことで、発光効率の高いLED2を複数用いて光源としても、光源からの光を、不均一性を緩和した状態で導光板1に光を導入できる。これにより導光板1の入射面1aの近傍における明暗を緩和することができ、高い照度で均一な照明光が実現できる。また、あらかじめ光を均一化した上で導光板1に導入することで、上記従来例のように導光板1の内部で光の均一化を図る場合に較べて、より小さい空間で同等の効果を得ることができ、装置の小型化および軽量化が実現できる。   In the present embodiment, the light source-light guide plate distance d and the light source pitch p defined as described above are set to the following values. That is, d / p, which is a value obtained by dividing the distance d between the light source and the light guide plate by the light source pitch p, is set to 0.2 or more and less than 1. In other words, the distance d between the light source and the light guide plate is set in a range of 0.2 times or more and less than 1 time the light source pitch p. Since such a relationship is established between the distance d between the light source and the light guide plate and the light source pitch p, even when a plurality of LEDs 2 having high luminous efficiency are used as the light source, the light from the light source is reduced in non-uniformity. Thus, light can be introduced into the light guide plate 1. Thereby, the brightness and darkness in the vicinity of the incident surface 1a of the light guide plate 1 can be reduced, and uniform illumination light can be realized with high illuminance. In addition, by introducing the light into the light guide plate 1 after making the light uniform in advance, the same effect can be obtained in a smaller space as compared with the case where the light is made uniform inside the light guide plate 1 as in the conventional example. Thus, the apparatus can be reduced in size and weight.

なお、光源−導光板間距離dを光源ピッチpで除した値であるd/pが0.2未満であると、導光板1の入射面1aの近傍に顕著な明暗が生じてしまう。このような面状光源としては、従来例として説明した図8に示す面状光源70が相当する。一方、光源−導光板間距離dを光源ピッチpで除した値であるd/pが1を超えると、入射面1aの近傍における明暗は解消されるものの、光源部10と導光板1との間に不要な無効空間を作ることとなり、装置の小型化や軽量化が妨げられる。したがって、本実施形態においては、光源−導光板間距離dを光源ピッチpで除した値であるd/pが、0.2以上0.8未満であることがより好ましく、0.5〜0.8の範囲であることがさらに好ましい。   When d / p, which is a value obtained by dividing the distance d between the light source and the light guide plate by the light source pitch p, is less than 0.2, significant light and darkness occurs in the vicinity of the incident surface 1a of the light guide plate 1. As such a planar light source, the planar light source 70 shown in FIG. On the other hand, when d / p, which is a value obtained by dividing the distance d between the light source and the light guide plate by a light source pitch p, exceeds 1, the brightness in the vicinity of the incident surface 1a is eliminated, but the light source unit 10 and the light guide plate 1 Unnecessary invalid spaces are created between them, which hinders downsizing and weight reduction of the device. Therefore, in this embodiment, it is more preferable that d / p, which is a value obtained by dividing the distance d between the light source and the light guide plate by the light source pitch p, is 0.2 or more and less than 0.8, 0.5 to 0 More preferably, it is in the range of .8.

以下に、このような効果が得られる理由についてより詳細に説明する。まず、導光板1に導入する前の光の均一化を図る方が、導光板1の内部で光の均一化を図るといも効率が良い理由について説明する。図3は、空気中から導光板1に入射する入射光の軌跡を示す模式図である。図3において、入射光a1は、屈折率n1が1である空気中から、屈折率n2が1.5である導光板1に向けて、入射面1aとほぼ平行に近い状態で入射している。ここで、導光板1に入射した入射光a2が、入射面1aの法線Sから取り得るθ2の最大角θmaxは、下記(1)式より約41.8°と求められる。したがって、θ2は、41.8°未満となる。   Hereinafter, the reason why such an effect is obtained will be described in more detail. First, the reason why it is more efficient to make the light uniform before being introduced into the light guide plate 1 is to make the light uniform inside the light guide plate 1 will be described. FIG. 3 is a schematic diagram showing a locus of incident light incident on the light guide plate 1 from the air. In FIG. 3, the incident light a1 is incident from the air having a refractive index n1 of 1 toward the light guide plate 1 having a refractive index n2 of 1.5 in a state almost parallel to the incident surface 1a. . Here, the maximum angle θmax of θ2 that the incident light a2 incident on the light guide plate 1 can take from the normal S of the incident surface 1a is obtained as about 41.8 ° from the following equation (1). Therefore, θ2 is less than 41.8 °.

Figure 2006134661
Figure 2006134661

これに対し、空気中から導光板1に向かう入射光a1が入射面1aの法線Sから取り得るθ1の最大角θmaxは、ほぼ90°に近く、明らかにθ2よりも大きい。光の均一化の為には、導光板1の入射面1aに水平方向の光拡散が得られることが有効であることから、上記した例であれば、導光板1の入射面1aの法線Sからの角度が大きな空気中の方が、法線Sからの角度が小さい導光板1の内部よりも、光の均一化効率が大きい事を意味する。   On the other hand, the maximum angle θmax of θ1 that the incident light a1 traveling from the air toward the light guide plate 1 can take from the normal S of the incident surface 1a is close to approximately 90 °, and is clearly larger than θ2. In order to make the light uniform, it is effective to obtain light diffusion in the horizontal direction on the incident surface 1a of the light guide plate 1. Therefore, in the above example, the normal line of the incident surface 1a of the light guide plate 1 is used. It means that in the air having a larger angle from S, the light homogenization efficiency is larger than the inside of the light guide plate 1 having a small angle from the normal S.

本実施形態に係る面状光源15は、上述のように導光板1に導入する前の光の均一化を図っているので、上記従来例のように導光板1の内部で光の均一化を図る面状光源に較べてより高い光の均一化効率が得られる。これにより、より小さい空間で同等の効果を得ることが可能となり、装置の小型化と軽量化とが実現できる。   Since the planar light source 15 according to the present embodiment aims to equalize the light before being introduced into the light guide plate 1 as described above, the light is uniformed inside the light guide plate 1 as in the above-described conventional example. Compared with the planar light source to be achieved, higher light uniformity efficiency can be obtained. As a result, the same effect can be obtained in a smaller space, and the apparatus can be reduced in size and weight.

また、本実施形態に係る面状光源15は、導光板1の主面のいずれか一方の面に、入射面1aと垂直な方向を長手方向として入射面1aと平行な方向に周期的な構造を有する構造体を含んでいても良い。このような構造体は、入射光を収束させる働きを有するものであり、具体的には、複数のプリズム、より好ましくは微細な複数のプリズムが一定の周期構造で配列されたプリズムアレイやプリズムシート等が挙げられる。このような導光方式を採用することで、面状光源15の正面輝度をより一層向上させることができる。また、本実施形態に係る面状光源15は、導光板1に導入前の光の均一化を図っているため、このような導光方式を採用しても拡散部材の延伸方向と直行する方向への光の伝播方向が抑制されて光の均一化効率が妨げられることはない。   In addition, the planar light source 15 according to the present embodiment has a periodic structure on one of the main surfaces of the light guide plate 1 in a direction parallel to the incident surface 1a with the direction perpendicular to the incident surface 1a as a longitudinal direction. The structure which has can be included. Such a structure has a function of converging incident light, and specifically, a prism array or a prism sheet in which a plurality of prisms, more preferably a plurality of fine prisms are arranged in a fixed periodic structure. Etc. By adopting such a light guide method, the front luminance of the planar light source 15 can be further improved. In addition, since the planar light source 15 according to the present embodiment is intended to make the light before introduction into the light guide plate 1 uniform, the direction orthogonal to the extending direction of the diffusing member even if such a light guide method is adopted. The direction of light propagation to the light is suppressed, and the light homogenization efficiency is not hindered.

なお、従来例で説明した面状光源70のように、導光板1の内部で光の均一化を図る方法においても、導光板1の入射面1aにプリズム等の構造体を設けることでθ2はθmax以上の角度の成分が生じるため、光の均一化効率を高めることは可能である。しかしながら、従来の面状光源70は、導光板1の出射面1bまたは裏面1cにプリズムを形成して正面輝度を高める導光方式を採用すると、導光板1内での入射面方向の光伝播が抑制されてしまう。したがって、従来の面状光源70では、入射面1aにプリズム等の構造体を設けても、本実施形態の面状光源15ように光の均一化効率を高めることはできない。   Note that, even in the method of making the light uniform inside the light guide plate 1 like the planar light source 70 described in the conventional example, θ2 can be obtained by providing a structure such as a prism on the incident surface 1a of the light guide plate 1. Since a component having an angle equal to or larger than θmax is generated, it is possible to improve the light uniformity efficiency. However, if the conventional planar light source 70 employs a light guide method in which a prism is formed on the exit surface 1b or the back surface 1c of the light guide plate 1 to increase the front luminance, light propagation in the incident surface direction within the light guide plate 1 is prevented. It will be suppressed. Therefore, in the conventional planar light source 70, even if a structure such as a prism is provided on the incident surface 1a, the light uniformization efficiency cannot be increased as in the planar light source 15 of the present embodiment.

次に、光源−導光板間距離dと光源ピッチpとを規定した理由について説明する。まず、導光板1の入射面1aにおける照明状態を算出し、LED2との位置関係との関連を調べた。図4は、導光板1の入射面1aにおける照明状態を算出するための模式図である。図4において、直線L1は、LED2が配列された位置を示し、直線L2は、導光板1の入射面1aを表す。直線L1と直線L2との距離は、dで表される。直線L1上に配置された点K1〜K4は、等しい光度を有するLED2を模式的に表したものであり、それぞれ一定の間隔pで配置されている。点Mは、照度状態を検討するための算出地点であり、直線L2上にある。   Next, the reason for defining the light source-light guide plate distance d and the light source pitch p will be described. First, the illumination state on the incident surface 1a of the light guide plate 1 was calculated, and the relationship with the positional relationship with the LED 2 was examined. FIG. 4 is a schematic diagram for calculating the illumination state on the incident surface 1 a of the light guide plate 1. In FIG. 4, the straight line L <b> 1 indicates the position where the LEDs 2 are arranged, and the straight line L <b> 2 represents the incident surface 1 a of the light guide plate 1. The distance between the straight line L1 and the straight line L2 is represented by d. Points K1 to K4 arranged on the straight line L1 schematically represent the LEDs 2 having the same luminous intensity, and are arranged at a constant interval p. A point M is a calculation point for examining the illuminance state, and is on the straight line L2.

なお、実際の光源配列では、4個よりも多数の点状光源を用いるのが一般的であるが、本実施形態に係る面状光源15では、d/pが比較的小さな場合を想定しているため、算出地点Mから遠い位置にある光源の影響は小さい。したがって、算出位置Mから遠い位置にある光源の影響を無視しても定量的な見通しを得るには十分であることから、ここでは算出位置Mの近傍にある4個の光源K1〜K4を例に挙げて説明する。また、各点の照度を、第2の光源K2に対抗するポイント(より厳密にはK2を通りL1に垂直な直線とL2との交点)からの距離xの関数として表示する。   In an actual light source arrangement, it is common to use more than four point light sources. However, in the planar light source 15 according to the present embodiment, it is assumed that d / p is relatively small. Therefore, the influence of the light source located far from the calculation point M is small. Therefore, even if the influence of the light source located far from the calculation position M is ignored, it is sufficient to obtain a quantitative prospect. Here, four light sources K1 to K4 near the calculation position M are taken as an example. Will be described. Also, the illuminance at each point is displayed as a function of the distance x from the point that opposes the second light source K2 (more precisely, the intersection of L2 with a straight line passing through K2 and perpendicular to L1).

算出位置Mにおける照度は、各光源K1〜K4からの照度S1〜S4の和で表され、各照度S1〜S4は、算出位置Mと各光源K1〜K4との距離および算出位置Mから各光源K1〜K4を望む角度θ1〜θ4に依存する。まず、算出位置Mから各光源K1〜K4を望む角度θ1〜θ4は、下記(2)〜(5)式で表される。下記(2)〜(5)式において、xは、算出位置Mと第2の光源K2に対向する点Sとの距離である。点Sは、より具体的には、K2を通り、直線L1に対して垂直な直線が直線L2と交差する点である。

Figure 2006134661
The illuminance at the calculated position M is represented by the sum of the illuminances S1 to S4 from the light sources K1 to K4. The illuminances S1 to S4 are calculated based on the distance between the calculated position M and the light sources K1 to K4 and the calculated position M. K1 to K4 depend on the desired angles θ1 to θ4. First, angles θ1 to θ4 at which the light sources K1 to K4 are desired from the calculated position M are expressed by the following equations (2) to (5). In the following formulas (2) to (5), x is the distance between the calculated position M and the point S facing the second light source K2. More specifically, the point S is a point passing through K2 and perpendicular to the straight line L1 intersecting the straight line L2.
Figure 2006134661

算出位置Mにおける各光源K1〜K4からの照度S1〜S4は、直線L2に沿った面状での照度を対象にしているので、垂直入射を基準にし、この基準から角度θの傾きを持った照度は、cos(θ)に比例する。また、一般に照度は光源からの距離の2乗に反比例して小さくなるが、図4においては、図1に示すように、反射板1cによって一方向の伝播を拘束された状態を前提にしているため、照度S1〜S4は、各光源からの距離T1〜T4に反比例する。ここで、各光源からの距離T1〜T4は、先に定義したdと角度θによって、T1=d/cos(θ1),T2=d/cos(θ2),T3=d/cos(θ3),T4=d/cos(θ4)と表すことができる。従って、距離のファクターに関しても、照度S1はcos(θ1)に、照度S2はcos(θ2)に、照度S3はcos(θ3)に、照度S4はcos(θ4)にそれぞれ比例し、結局照度はcos(θ1)〜cos(θ4)の2乗に比例する。これにより、比例乗数をAとすると、照度S1〜S4は下記(6)〜(9)式で表される。   The illuminances S1 to S4 from the light sources K1 to K4 at the calculation position M are intended for illuminance in a planar shape along the straight line L2, and therefore, the vertical incidence is used as a reference, and the inclination is an angle θ from this reference. The illuminance is proportional to cos (θ). In general, the illuminance decreases in inverse proportion to the square of the distance from the light source. However, in FIG. 4, as shown in FIG. 1, it is assumed that propagation in one direction is restricted by the reflector 1c. Therefore, the illuminances S1 to S4 are inversely proportional to the distances T1 to T4 from each light source. Here, the distances T1 to T4 from the respective light sources are defined by T1 = d / cos (θ1), T2 = d / cos (θ2), T3 = d / cos (θ3), depending on d and angle θ defined above. It can be expressed as T4 = d / cos (θ4). Accordingly, the illuminance S1 is proportional to cos (θ1), the illuminance S2 is proportional to cos (θ2), the illuminance S3 is proportional to cos (θ3), and the illuminance S4 is proportional to cos (θ4). It is proportional to the square of cos (θ1) to cos (θ4). Thereby, when a proportional multiplier is set to A, illumination intensity S1-S4 is represented by following (6)-(9) Formula.

Figure 2006134661
Figure 2006134661

したがって、上記(2)〜(5)式にxおよびpを代入してθ1〜θ4を算出し、得られた値を上記(6)〜(9)式に代入してS1〜S4を算出し、S1〜S4の和をとることにより、算出地点Mにおける照度が得られる。   Accordingly, θ1 to θ4 are calculated by substituting x and p into the above equations (2) to (5), and S1 to S4 are calculated by substituting the obtained values into the above equations (6) to (9). The illuminance at the calculation point M is obtained by taking the sum of S1 to S4.

図5は、算出地点Mにおける、入射位置と相対照度との関係を示すグラフであり、直線L1と直線L2との距離dを光源ピッチpで除した値であるd/pを、0.1、0.2、0.3、0.4、0.6、0.8、および1.0の7個に変化させて、それぞれの状態での照度分布を算出した結果を示す。なお、算出地点Mへの光の入射位置は、x/pで表され、相対照度は、d/pの各設定における最大照度で規格化した照度である。   FIG. 5 is a graph showing the relationship between the incident position and the relative illuminance at the calculation point M, where d / p, which is a value obtained by dividing the distance d between the straight line L1 and the straight line L2 by the light source pitch p, is 0.1. , 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0, and the illuminance distribution in each state is calculated. In addition, the incident position of the light to the calculation point M is represented by x / p, and the relative illuminance is illuminance normalized by the maximum illuminance in each setting of d / p.

図5において、各グラフは、光源と算出地点Mとが対向しているx/p=0およびx/p=1の地点では、相対照度は最大となり、x/p=0〜x/p=1の地点では、x/p=0.5の地点で相対照度が最小となるような下に凸の曲線を描いている。また、各グラフは、d/pの値が小さいほど曲率が大きく、d/pの値が大きくなるにつれ緩やかな曲率となり、d/p=1ではほぼ直線に近づいている。   In FIG. 5, each graph shows that the relative illuminance is maximum at a point where x / p = 0 and x / p = 1 where the light source and the calculation point M face each other, and x / p = 0 to x / p = At the point 1, a downwardly convex curve is drawn so that the relative illuminance is minimum at the point x / p = 0.5. Each graph has a larger curvature as the d / p value is smaller, and a gentle curvature as the d / p value is larger.

図6は、図5における計算結果を照度比(最大照度/最小照度)と、光源−導光板間距離dを光源ピッチpで除した値であるd/pとの関係で示したものである。図6において、d/pが0.1のときには、照度比は約12倍ときわめて大きいが、d/pが0.2になると照度比は3.5倍まで急激に低下し、d/pが0.3になると照度比は2倍まで低下している。これにより、d/pが0.1から増加するにつれて照度比が急激に低下する傾向にあることが明らかである。また、目視での評価を併せて実行したところ、照度比が3.5倍以下となったd/pが0.2より大きい状態では、導光板1の入射面1aにおける暗部の解消に顕著な効果が確認され、d/pが、0.3より大きい状態では、導光板1の入射面1aにおける明暗パターンは、ほとんど認識できないレベルになる事が確認された。   FIG. 6 shows the calculation result in FIG. 5 in relation to the illuminance ratio (maximum illuminance / minimum illuminance) and d / p which is a value obtained by dividing the distance d between the light source and the light guide plate by the light source pitch p. . In FIG. 6, when d / p is 0.1, the illuminance ratio is extremely large, approximately 12 times. However, when d / p becomes 0.2, the illuminance ratio rapidly decreases to 3.5 times, and d / p When the value becomes 0.3, the illuminance ratio decreases to twice. As a result, it is clear that the illuminance ratio tends to rapidly decrease as d / p increases from 0.1. Moreover, when visual evaluation was also performed, in the state where d / p where the illuminance ratio was 3.5 times or less was larger than 0.2, the dark portion on the incident surface 1a of the light guide plate 1 was remarkably eliminated. The effect was confirmed, and when d / p was larger than 0.3, it was confirmed that the light / dark pattern on the incident surface 1a of the light guide plate 1 was at a level that could hardly be recognized.

(第2の実施形態)
図7は、本発明の第2の実施形態に係る液晶表示装置の構成を示す側面図である。図7において、液晶表示装置60は、液晶パネル50およびバックライト55を備える。バックライト55は、第1の実施形態で説明した面状光源15と同様の構成を有する。
(Second Embodiment)
FIG. 7 is a side view showing the configuration of the liquid crystal display device according to the second embodiment of the present invention. In FIG. 7, the liquid crystal display device 60 includes a liquid crystal panel 50 and a backlight 55. The backlight 55 has the same configuration as the planar light source 15 described in the first embodiment.

液晶パネル50は、ここでは図示されていないが、一対のガラス基板の間に液晶を封入した液晶セル、偏光板、カラーフィルタ等で構成される。バックライト55として働く面状光源15は、導光板1の出射面1bが液晶パネル50の背面側となるように配置される。バックライト55と液晶パネル50との間には、プリズムシート、偏光反射フィルム、および拡散フィルムなどの光学シートを挿入することにより、照明光の指向性を強くして正面方向の輝度を高めることができるだけでなく、液晶パネルを透過する偏光成分を増加して輝度を高めることができ、さらには、拡散により微細なムラやモアレなどを軽減できるなどといった効果が期待できる。   Although not shown here, the liquid crystal panel 50 includes a liquid crystal cell in which liquid crystal is sealed between a pair of glass substrates, a polarizing plate, a color filter, and the like. The planar light source 15 serving as the backlight 55 is disposed so that the light exit surface 1 b of the light guide plate 1 is on the back side of the liquid crystal panel 50. By inserting an optical sheet such as a prism sheet, a polarizing reflection film, and a diffusion film between the backlight 55 and the liquid crystal panel 50, the directivity of the illumination light can be strengthened and the luminance in the front direction can be increased. In addition to this, it is possible to increase the polarization component transmitted through the liquid crystal panel to increase the brightness, and further to expect effects such as reduction of fine unevenness and moire due to diffusion.

上記のように構成された液晶表示装置60は、上述のようにバックライト55としての面状光源15の小型化が図れるので、液晶表示装置60全体としての小型化が実現できる。また、面状光源15は、小型化されていても、均一で明るい光を供給できるので、表示特性の良い液晶表示装置60が実現できる。   Since the liquid crystal display device 60 configured as described above can reduce the size of the planar light source 15 as the backlight 55 as described above, the liquid crystal display device 60 as a whole can be reduced in size. Further, even if the planar light source 15 is downsized, it can supply uniform and bright light, so that the liquid crystal display device 60 with good display characteristics can be realized.

なお、上記各実施形態では、点状光源素子としてLED2を例に挙げて説明したが、本発明はこれに限定されるものではなく、半導体レーザ等の点状光源素子も適用可能である。   In each of the above-described embodiments, the LED 2 is described as an example of the point light source element. However, the present invention is not limited to this, and a point light source element such as a semiconductor laser is also applicable.

本発明の面状光源はこれを用いた液晶表示装置は、導光板に光の均一化のための空間や構造を設けることなく、しかも、複数の点光源を用いながら均一で高輝度な発光が可能であるため、装置の小型化が図れるという特徴を有するので、液晶表示装置のバックライト等に好適に使用できる。   The surface light source of the present invention is a liquid crystal display device using the same, and does not provide a space or structure for uniformizing light on the light guide plate, and can emit light with uniform and high luminance while using a plurality of point light sources. Therefore, since the device can be downsized, it can be suitably used for a backlight of a liquid crystal display device.

本発明の第1の実施形態に係る面状光源の構成を示す断面図および平面図Sectional drawing and top view which show the structure of the planar light source which concerns on the 1st Embodiment of this invention 同実施形態に係るLEDの実装状態を示す平面図The top view which shows the mounting state of LED which concerns on the same embodiment 空気層から導光板に入射する光の軌跡を示す図The figure which shows the locus | trajectory of the light which injects into a light-guide plate from an air layer 導光板の入射面における照明状態を算出するための模式図Schematic diagram for calculating the illumination state on the incident surface of the light guide plate 照度分布を算出した結果を示すグラフGraph showing the result of calculating the illuminance distribution 明暗比(最大照度/最小照度)を算出した結果を示すグラフA graph showing the result of calculating the light / dark ratio (maximum illuminance / minimum illuminance) 本発明の第2の実施形態に係る液晶表示装置の側面図Side view of the liquid crystal display device according to the second embodiment of the present invention. 従来の面状光源の構成を示す断面図および平面図Sectional view and plan view showing the configuration of a conventional planar light source

符号の説明Explanation of symbols

1 導光板
1a 入射面
1b 出射面
1c 反射面
2 LED
3 基板
4 反射板
10 光源部
15 面状光源
50 液晶パネル
55 バックライト
60 液晶表示装置
DESCRIPTION OF SYMBOLS 1 Light guide plate 1a Incident surface 1b Output surface 1c Reflective surface 2 LED
3 Substrate 4 Reflecting plate 10 Light source unit 15 Planar light source 50 Liquid crystal panel 55 Backlight 60 Liquid crystal display device

Claims (6)

複数の点状光源素子を有する光源部と、
前記光源部と対向する入射面から光を導入し、導入した光を対向する主面間で全反射させながら全面に伝播させるとともに、内部に設けられた光路変更部材によって光路を変更させることにより、前記出射面から面状の光を出射する導光板とを備え、
前記点状光源素子と前記導光板の入射面との距離dを当該点状光源素子の配列間隔pで除した値であるd/pは、0.2以上1未満であることを特徴とする、面状光源。
A light source unit having a plurality of point light source elements;
By introducing light from the incident surface facing the light source unit and propagating the introduced light to the entire surface while totally reflecting between the opposed principal surfaces, and changing the optical path by an optical path changing member provided inside, A light guide plate for emitting planar light from the emission surface,
D / p, which is a value obtained by dividing the distance d between the point light source element and the incident surface of the light guide plate by the arrangement interval p of the point light source elements, is 0.2 or more and less than 1. , Planar light source.
複数の前記点状光源素子は、等間隔で配列されていることを特徴とする、請求項1に記載の面状光源。   The planar light source according to claim 1, wherein the plurality of point light source elements are arranged at equal intervals. 複数の前記点状光源素子は、少なくとも一部において不等な間隔で配列されており、前記配列間隔pは、隣接する点状光源素子間において最大の配列間隔であることを特徴とする、請求項1に記載の面状光源。   The plurality of point light source elements are arranged at unequal intervals at least in part, and the arrangement interval p is the maximum arrangement interval between adjacent point light source elements. Item 2. A planar light source according to Item 1. 前記導光板の主面のいずれか一方には、前記入射面と垂直な方向を長手方向として前記入射面と平行な方向に周期構造を有する構造体を含むことを特徴とする、請求項1に記載の面状光源。   2. The structure according to claim 1, wherein one of the main surfaces of the light guide plate includes a structure having a periodic structure in a direction parallel to the incident surface with a direction perpendicular to the incident surface as a longitudinal direction. The surface light source described. 前記点状光源素子は、発光ダイオードあることを特徴とする請求項1に記載の面状光源。   The planar light source according to claim 1, wherein the point light source element is a light emitting diode. 一対のガラス基板間に液晶が封入された液晶パネルと、
前記液晶パネルの背面側に配置されたバックライトとを備え、
前記バックライトは、
複数の点状光源素子を有する光源部と、
前記光源部と対向する入射面から光を導入し、導入した光を対向する主面間で全反射させながら全面に伝播させるとともに、内部に設けられた光路変更部材によって光路を変更させることにより、前記出射面から面状の光を出射する導光板とを備え、
前記点状光源素子と前記導光板の入射面との距離dを当該点状光源素子の配列間隔pで除した値であるd/pが0.2以上1未満となるように設定された面状光源であることを特徴とする、液晶表示装置。

A liquid crystal panel in which liquid crystal is sealed between a pair of glass substrates;
A backlight disposed on the back side of the liquid crystal panel,
The backlight is
A light source unit having a plurality of point light source elements;
By introducing light from the incident surface facing the light source unit and propagating the introduced light to the entire surface while totally reflecting between the opposed principal surfaces, and changing the optical path by an optical path changing member provided inside, A light guide plate for emitting planar light from the emission surface,
A surface set so that d / p, which is a value obtained by dividing a distance d between the point light source element and the incident surface of the light guide plate by an arrangement interval p of the point light source elements, is 0.2 or more and less than 1. A liquid crystal display device characterized by being a light source.

JP2004320947A 2004-11-04 2004-11-04 Planar light source and liquid crystal display device using this Pending JP2006134661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320947A JP2006134661A (en) 2004-11-04 2004-11-04 Planar light source and liquid crystal display device using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320947A JP2006134661A (en) 2004-11-04 2004-11-04 Planar light source and liquid crystal display device using this

Publications (1)

Publication Number Publication Date
JP2006134661A true JP2006134661A (en) 2006-05-25

Family

ID=36728008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320947A Pending JP2006134661A (en) 2004-11-04 2004-11-04 Planar light source and liquid crystal display device using this

Country Status (1)

Country Link
JP (1) JP2006134661A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022149A2 (en) 2006-08-14 2008-02-21 Ixys Corporation Video and content controlled backlight
US7484877B2 (en) 2006-05-12 2009-02-03 Epson Imaging Devices Corporation Light emitting device and liquid crystal device
JP2009210954A (en) * 2008-03-06 2009-09-17 Hitachi Displays Ltd Liquid crystal display
JP2009260174A (en) * 2008-04-21 2009-11-05 Sharp Corp Light-emitting device, backlight device, and liquid crystal display device
US8054412B2 (en) 2006-02-28 2011-11-08 Panasonic Corporation Liquid crystal display device and liquid crystal display system
EP2466350A1 (en) * 2010-12-17 2012-06-20 Samsung LED Co., Ltd. LED light source module and display apparatus including the same
US8228461B2 (en) 2006-11-06 2012-07-24 Panasonic Corporation Liquid crystal display device
WO2013054483A1 (en) * 2011-10-11 2013-04-18 パナソニック株式会社 Light-emission device, and illumination device using same
JP2013527605A (en) * 2010-04-27 2013-06-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device and manufacturing method of optoelectronic device
US8596850B2 (en) 2009-04-13 2013-12-03 JVC Kenwood Corporation Backlight device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054412B2 (en) 2006-02-28 2011-11-08 Panasonic Corporation Liquid crystal display device and liquid crystal display system
US7484877B2 (en) 2006-05-12 2009-02-03 Epson Imaging Devices Corporation Light emitting device and liquid crystal device
US8471791B2 (en) 2006-08-14 2013-06-25 Ixys Corporation Video and content controlled backlight
EP2074613A4 (en) * 2006-08-14 2011-03-09 Ixys Corp Video and content controlled backlight
EP2074613A2 (en) * 2006-08-14 2009-07-01 Ixys Corporation Video and content controlled backlight
WO2008022149A2 (en) 2006-08-14 2008-02-21 Ixys Corporation Video and content controlled backlight
US9355580B2 (en) 2006-08-14 2016-05-31 Ixys Corporation Video and content controlled backlight
US8228461B2 (en) 2006-11-06 2012-07-24 Panasonic Corporation Liquid crystal display device
JP2009210954A (en) * 2008-03-06 2009-09-17 Hitachi Displays Ltd Liquid crystal display
JP2009260174A (en) * 2008-04-21 2009-11-05 Sharp Corp Light-emitting device, backlight device, and liquid crystal display device
US8807818B2 (en) 2009-04-13 2014-08-19 JVC Kenwood Corporation Backlight device
US9389357B2 (en) 2009-04-13 2016-07-12 JVC Kenwood Corporation Backlight device
US8596850B2 (en) 2009-04-13 2013-12-03 JVC Kenwood Corporation Backlight device
JP2013527605A (en) * 2010-04-27 2013-06-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic device and manufacturing method of optoelectronic device
US8965148B2 (en) 2010-04-27 2015-02-24 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
EP2466350A1 (en) * 2010-12-17 2012-06-20 Samsung LED Co., Ltd. LED light source module and display apparatus including the same
US8602626B2 (en) 2010-12-17 2013-12-10 Samsung Electronics Co., Ltd. LED light source module and display apparatus including the same
CN103797593A (en) * 2011-10-11 2014-05-14 松下电器产业株式会社 Light-emission device, and illumination device using same
US9070831B2 (en) 2011-10-11 2015-06-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device each having variable distances between pairs of electrode pads with respect to Zener diodes and lighting apparatus using the same
JP5236843B1 (en) * 2011-10-11 2013-07-17 パナソニック株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
WO2013054483A1 (en) * 2011-10-11 2013-04-18 パナソニック株式会社 Light-emission device, and illumination device using same

Similar Documents

Publication Publication Date Title
US7400817B2 (en) Light guide member and backlight unit including light guide member and methods of fabricating light guide members and backlight units
JP4185721B2 (en) Illumination device and liquid crystal display device
TWI299422B (en)
EP1876388B1 (en) Light guide member and backlight unit including light guide member
JP5738742B2 (en) Surface light source device
US8029180B2 (en) Light unit, backlight, frontlight, and display device
JP5130434B2 (en) Light guide plate and display device using the same
KR20080062086A (en) Light cube and flat light unit and liquid crystal display device including the same
JP2007066555A (en) Surface light source and liquid crystal display device
US20080007970A1 (en) Backlight unit of a liquid crystal display device
JP2004302067A (en) Light guide plate, lighting device, and liquid crystal display device
JP2010170897A (en) Edge light partial drive backlight unit, and liquid crystal display device
JP2005108676A (en) Backlight device using light emitting diode
EP1876480B1 (en) Backlight unit of a liquid crystal display device
JP2009176512A (en) Surface light source device and image display apparatus
JP2006134661A (en) Planar light source and liquid crystal display device using this
US20140313772A1 (en) Illumination device, and display device provided therewith
JP4585989B2 (en) Backlight, liquid crystal display element
JP2010108601A (en) Planar light source and liquid crystal display
JP2009140905A (en) Light guide plate and backlight
JP5339773B2 (en) Liquid crystal display
JP4555250B2 (en) Light guide plate and planar illumination device using the same
JP2004171870A (en) Lighting system and liquid crystal display device
KR102030412B1 (en) Light guide plate having rounded polyggon pattern and liquid cyrstal display device having thereof
JP2007059168A (en) Backlight