TW201213617A - Electrolysis process - Google Patents

Electrolysis process Download PDF

Info

Publication number
TW201213617A
TW201213617A TW100126571A TW100126571A TW201213617A TW 201213617 A TW201213617 A TW 201213617A TW 100126571 A TW100126571 A TW 100126571A TW 100126571 A TW100126571 A TW 100126571A TW 201213617 A TW201213617 A TW 201213617A
Authority
TW
Taiwan
Prior art keywords
brine
acid
equal
stripping
treatment
Prior art date
Application number
TW100126571A
Other languages
Chinese (zh)
Other versions
TWI521098B (en
Inventor
Patrick Gilbeau
Bruno Fouchet
Original Assignee
Solvay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay filed Critical Solvay
Publication of TW201213617A publication Critical patent/TW201213617A/en
Application granted granted Critical
Publication of TWI521098B publication Critical patent/TWI521098B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/38Steam distillation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/14Purification
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Electrolysis process in which the anode compartment of an electrolytic cell is fed with at least one brine which has been subjected to a stripping treatment in the presence of at least one stripping agent at a pH less than or equal to the pH of the anode compartment of the electrolytic cell, said brine comprising at least one organic compound before the treatment.

Description

201213617 六、發明說明: - 本申請要求2010年8月2日提交的法國專利申請號 ' 1 05 63 60的權益,將該申請的內容藉由引用結合在此。 若任何藉由引用結合在此的專利案、專利申請案以及 公開物中的揭露內容與本說明書相衝突的程度至它可能使 一術語不清楚,則本說明書案應該優先。 【發明所屬之技術領域】 本發明涉及一種電解方法。更確切地說本發明涉及對 被一有機化合物污染、並旨在對一電解槽的陽極室進料的 一鹽水進行電解的方法。 【先前技術】 以SOLVAY SA的名義提交的國際申請WO 200 8/15 2043 揭露了包含一種鹽以及至少一種羧酸的水性組合物作爲電 解反應中的反應物的用途。然而一種羧酸的存在仍然是電 解槽的陽極室中的問題來源,例如像起泡和溫度變化。 【發明內容】 本發明的目的係藉由提供一種電解方法來克服該等問 題,該方法使之有可能避免上述缺點。 • 爲此目的,本發明首先涉及一種電解方法,其中對一 ‘ 電解槽的陽極室供送至少一種鹽水’該鹽水已經在至少一 種汽提劑的存在下在小於或等於該電解槽的陽極室PH的 -5- 201213617 —個pH下經受了一汽提處理,該鹽水在該處理之前包括 至少一種有機化合物。 在這種情況下,該電解製程和汽提處理可以位於同一 工業場所或者位於不同的工業場所。在這兩個方案中,電 解製程和汽提處理可以由同一法律實體或兩個不同的法律 實體來操作。 爲了相同的目的,本發明還涉及一種電解方法,該方 法包括: (a) 供應包括至少一種有機化合物的一鹽水; (b) 在至少一種汽提劑的存在下對該來自(a)的鹽水 進行至少一個汽提處理以獲得一汽提過的鹽水; (c) 對一電解槽的陽極室供送該來自(b)的汽提過的 鹽水; 並且其中該來自(b)的汽提處理係在小於或等於 來自(c)的電解槽的陽極室pH的一 pH下進行。 本發明的必要特徵之一在於進行該汽提處理的pH値 〇 藉由對一個電解槽的陽極室供送一已經在小於或等於 該陽極室pH的一pH下進行了至少一個汽提處理的鹽水 ,沒有觀察到電解槽性能的退化。這個槽的槽電壓和操作 溫度保持不變。這具有以下效果:保持該槽的生產力恆定 並且防止生產能力損失、並且還保持電流效率恆定而不產 生補充的陽極過電壓,陽極過電壓係單位電力消耗增加的 —來源。 -6 - 201213617 在根據本發明的方法中,術語“鹽水”應理解爲係指 包含至少一種鹽的一水性組合物。該鹽可以是一有機鹽、 一無機鹽或兩者的一混合物。無機鹽係較佳的。一無機鹽 係其構成性陰離子和陽離子不包含碳氫鍵的一種鹽。該無 機鹽可以選自以下各項組成之組:金屬氯化物類、金屬硫 酸鹽類、金屬硫酸氫鹽類、金屬氫氧化物類、金屬碳酸鹽 類、金屬碳酸氫鹽類、金屬磷酸鹽類、金屬磷酸氫鹽類、 金屬硼酸鹽類以及其至少兩種的混合物。鹼金屬和鹼土金 屬的氯化物係較佳的。鈉和鉀的氯化物係更佳的,並且氯 化鈉係非常特別佳的。 該鹽水的鹽含量總體上是大於或等於5 g鹽/kg鹽水 ,經常是大於或等於10 g/kg,時常是大於或等於20 g/kg ,通常是大於或等於30 g/kg,較佳的是大於或等於50 g/kg’更佳的是大於或等於1〇〇 g/kg,甚至更佳的是大於 或等於140 g/kg,還更佳的是大於或等於160 g/kg,並且 非常特別佳的是大於或等於200 g/kg。這個鹽含量常規地 是小於或等於在該電解方法的操作溫度下、特別是在該電 解槽的陽極室的操作溫度下以g/kg表示的該鹽的溶解度 的値,較佳的是小於或等於所述鹽的溶解度的値減少20 g/kg,並且更佳的是小於或等於所述鹽的溶解度的値減少 5 0 g/kg。其鹽含量習常地是小於或等於270 g鹽/kg鹽水 ,較佳的是小於或等於250 g/kg並且非常特別佳的是小於 或等於230 g/kg。 氯化鈉含量大於或等於140 g/kg鹽水並且小於210 201213617 g/kg的一鹽水係非常特別合適的。 氯化鈉含量大於或等於220 g/kg的一鹽水也是非常特 別合適的。 在根據本發明的方法中,該有機化合物可以是選自以 下各項組成之組.脂肪族化合物、芳香族化合物或其至少 兩種的混合物。該等化合物可以可隨意地包含至少一個選 自以下各項組成之組的雜原子:鹵素,較佳的是氟、氯、 溴以及碘’硫族元素’較佳的是氧或硫,氮,磷以及其至 少兩種的混合物。該雜原子較佳的是氧。 該有機化合物可以是如在SOLVAY(Soci6t0 Anonyme [公司是匿名的])名下的國際申請WO 2009/095429中所描 述的’該申請的內容、更確切地說是從第2頁第16行至 第3頁第1 1行的段落藉由引用結合在此。 這種有機化合物較佳的是一種羧酸。這種羧酸可以在 汽提處理之則以酸(質子化的)的形式或以該酸衍生物的形 式存在於該鹽水中。這種羧酸的衍生物一般在以下各項組 成之組中找到:羧酸鹽類、羧酸酯類、腈類、醯胺類以及 其至少兩種的混合物。該羧酸較佳的是以酸(質子化的)的 形式、以羧酸鹽的形式或兩者的混合物的形式存在。該羧 酸可以是單羧酸或多元羧酸,並且較佳的是一種單羧酸。 該羧酸較佳的是碳原子數目大於或等於4並且小於或等於 32的單羧酸,適宜地其碳原子數目係大於或等於4並且小 於或等於30,特別是大於或等於4並且小於或等於20並 且尤其是大於或等於6並且小於或等於20»分子中包含不 -8 - 201213617 多於兩個的氧原子的單羧酸也是合適的。這種單羧酸較佳 的是一種脂肪酸。藉由脂肪酸旨在表示選自以下各項組成 之組的酸:丁酸、己酸、戊酸、辛酸、庚酸、壬酸、癸酸 、——烷酸、月桂酸、十三烷酸、肉豆蔻酸、十五烷酸、 棕櫚酸、十七烷酸、硬脂酸、十九烷酸、花生酸、二十一 烷酸、山嵛酸、二十三烷酸、廿四烷酸、二十五烷酸、二 十六烷酸、二十七烷酸、褐煤酸、二十九烷酸'蜂花酸、 三十一烷酸、三十二烷酸、1〇-十一烯酸、肉豆蔻烯酸、 棕櫚油酸、芫荽油酸、十八碳烯酸、油酸、反油酸、鳕油 酸、芥酸、巴西烯酸、神經酸、亞油酸、反亞麻油酸、廢 式,/腐式,展式-9,12,15 -十八碳三烯酸、亞麻酸、α -桐油酸 、β -桐油酸、花生四烯酸、鰹魚酸以及其至少兩者的混合 物。 該單羧酸更優先地選自以下各項組成之組:丁酸、戊 酸、己酸、庚酸、辛酸、壬酸、癸酸、十一烷酸、月桂酸 、十三烷酸、肉豆蔻酸、十五烷酸、棕櫚酸、十七烷酸、 硬脂酸、十九烷酸、花生酸、二十一烷酸、山窬酸、二十 三烷酸、廿四烷酸、二十五烷酸、二十六烷酸、二十七烷 酸、褐煤酸、二十九烷酸、蜂花酸、三十一烷酸、三十二 烷酸以及其至少兩種的混合物。 該單羧酸更優先地選自以下各項組成之組:丁酸、戊 酸、己酸、庚酸、辛酸、壬酸、癸酸、十一烷酸、月桂酸 、十三烷酸、肉豆蔻酸、十五烷酸、棕櫚酸、十七烷酸、 硬脂酸、十九烷酸、花生酸以及其至少兩種的混合物。 -9 - 201213617 該單羧酸還更優先地是選自以下各項組成之組:丁酸 、戊酸、己酸、辛酸、癸酸、月桂酸、肉豆寇酸、棕櫚酸 、硬脂酸以及其至少兩種的混合物。 該單羧酸還更加優先地是選自以下各項組成之組:月 桂酸、棕櫚酸、硬脂酸以及其至少兩種的混合物。 該單羧酸同樣優先選自以下各項組成之組:癸酸、月 桂酸、十三烷酸、肉豆蔻酸、十五烷酸、棕櫚酸、十七烷 酸、硬脂酸以及其至少兩種的混合物。 該單羧酸同樣優先選自以下各項組成之組:丁酸、戊 酸以及其混合物。 一種選自以下各項組成之組的單羧酸也是合適的: 10 -十一烯酸、肉豆蔻烯酸、棕櫚油酸、芫荽油酸、十八 碳烯酸、油酸、反油酸、鳕油酸、芥酸、巴西烯酸、神經 酸、亞油酸、反亞麻油酸、/原式,/潛式,/潛式-9,12,15 -十八 碳三烯酸、亞麻酸、α -桐油酸、β -桐油酸、花生四烯酸、 鰾魚酸以及其至少兩者的混合物。 該單羧酸最優先選自以下各項組成之組:丁酸、戊酸 以及其混合物。 在根據本發明的方法中,在汽提處理之前該鹽水中有 機化合物的含量以g碳/kg鹽水表示是總體上大於或等於 0.005 g/kg,較佳的是大於或等於〇.〇1 g/kg,仍更佳的是 大於或等於0.05 g/kg,還更佳的是大於或等於0.1 g/kg, 更加較佳的是大於或等於0· 5 g/kg,還更佳的是大於或等 於0.7 5 g/kg,仍更佳的是大於或等於1 g/kg,並且最佳的 -10- 201213617 是大於或等於2.5 g/kg。該含量總體上是小於或等於20 g/kg鹽水’較佳的是小於或等於1〇 g/kg,並且更佳的是 小於或等於5 g/kg。 在根據本發明的方法中,該鹽水可以來自產生含有 一有機化合物的鹽水的任何過程。此類過程的例子係製造 環氧化物的過程,特別是環氧乙烷,環氧丙烷、環氧丁烷 或環氧氯丙烷;製造一環氧化物衍生物的過程,特別是環 氧樹脂;製造氯化的有機產物的過程,特別是1,2-二氯乙 烷;製造單異氰酸酯和多異氰酸酯的過程,特別是4,4’-二苯甲撐二異氰酸酯(MDI),甲苯二異氰酸酯(TDI)或六伸 甲基-1,6-二異氰酸酯(HDI);以及製造聚碳酸酯(特別是 2,2-雙(4-羥苯基)丙烷聚碳酸酯(雙酚A聚碳酸酯))的過程 。這種鹽水可以是來自至少兩個以上過程的鹽水的組合。 一環氧化物(特別是環氧氯丙烷以及環氧樹脂)的衍生物可 以是如在SOLVAY(Soci6t6 Anonyme)名下的國際申請WO 2008/ 1 5 2044中所描述的,該申請的內容、更確切地是從 第13頁第22行至第44頁第8行的段落藉由引用結合在 此。 在根據本發明的方法中,這種鹽水較佳的是來自製造 環氧氯丙烷的過程、製造環氧樹脂的過程、製造1,2-二氯 乙烷的過程、製造雙酚A聚碳酸酯的過程或來自該等過程 中至少兩種的組合,並且更佳的是來自製造環氧氯丙烷的 過程、製造環氧樹脂的過程、製造1,2-二氯乙烷的過程或 該等過程中至少兩種的組合。 -11 - 201213617 在根據本發明的方法中,該鹽水還更佳的是來自製造 環氧氯丙烷的過程,仍然更佳的是來自藉由二氯丙醇的脫 氯化氫作用而製造環氧氯丙烷的過程’並且非常特別優地 是選來自如下的藉由二氯丙醇的脫氯化氫作用而製造環氧 氯丙烷的過程:其中至少一部分二氯丙醇係由甘油獲得並 且其中所述甘油的至少一個分量係一種天然甘油’即’由 可再生的原料獲得的甘油。該天然甘油係如在SOLVAY( Soci6t6 Anonyme)名下的國際申請 WO 2006/100312中所描 述的,將該申請的內容、更確切地是從第4頁第22行至 第5頁第24行的段落藉由引用結合在此。在這種情況下 ,在該鹽水中存在的有機化合物較佳的是選自以下各項組 成之組的一種單羧酸:丁酸、戊酸、己酸、庚酸、辛酸、 壬酸、癸酸、十一烷酸、月桂酸、十三烷酸、肉豆蔻酸、 十五烷酸、棕櫚酸、十七烷酸、硬脂酸、十九烷酸、花生 酸以及其至少兩種的混合物。在這種情況下,該鹽水可以 包含至少一種其他的選自以下各項組成之組的有機化合物 :丙酮、丙烯醛、2-丁酮、異丙醇、3-甲氧基-1,2-環氧丙 烷、環戊酮、環氧氯丙烷、氯丙酮、羥丙酮(丙酮醇)、具 有經驗化學式C6H120的化合物、1,2,3-三氯丙烷、2,3-環 氧-1-丙醇(縮水甘油)、2-氯-2-丙烯-1-醇、厲式-3-氯-2-丙 烯-卜醇、1-甲氧基-3-氯丙烷-2-醇、3-氯-1-丙烷-1-醇、反 式-3-氯-2-丙烯-1-醇、具有經驗化學式C6H802的化合物 、具有經驗化學式C6H120C122的化合物、具有經驗化學式 C6HIQ02C12的化合物、1,3-二氯-2-丙醇、具有經驗化學式 -12- 201213617 C9HiG02的化合物、2,3-二氯-1-丙醇、苯酚、甘油、1-氯-2,3-丙二醇、2-氯-1,3-丙二醇,環狀二甘油類、甘油醛、 甲醛、乙醛、丙醛、丁醛、乙酸、丙酸、甲酸、乙醇酸、 草酸、乳酸、以及其至少兩種的混合物。 用於製備該環氧樹脂、二氯丙醇和環氧氯丙烷的方法 可以是如在SOLVAY名下提交的以下國際申請中所揭露的 :W02005/054167、W02006/10031 1、W02006/100312、 W02006/1 003 1 3 、 W02006/1 003 1 4 、 W02006/1 003 1 5 、 W02006/1 003 1 6 、 W02006/1 003 1 7 、 W02006/1 06 1 5 3 、 2007054505 、 WO 2006/ 1 003 1 8 、 W02006/1003 19 、 W02006/1 00320、WO 2006/106 1 54、WO 2 0 0 6/1 0 6 1 5 5、WO 2007/ 1 443 3 5、WO 2008/1 07468、WO 2008/1 0 1 866、WO 2008/1 45729 ' WO 2008/1 1 0588 ' WO 2008/1 52045、WO 2008/1 52043、WO 2009/000773、WO 2009/043796、WO 2009/1 2 1 85 3、WO 2008/1 52044、WO 2009/077528、WO 2010/066660、WO 201 0/029039 and WO 201 0/0291 53,將 其內容藉由引用結合在此。在根據本發明的方法中,術語 “汽提”應理解爲係指藉由使用一氣體、一純的材料的蒸 氣或其混合物(汽提劑)進行夾帶來分離一物質,這種汽提 劑溶解或不溶解所說物質。 在根據本發明的方法中,所述汽提劑係選自以下各項 組成之組:空氣、氧氣耗盡的空氣、氮氣、氧氣、氯氣、 氯化氫、水蒸汽(steam)、二氧化碳以及其至少兩種的混合 物。水蒸汽、空氣以及氧氣耗盡的空氣係較佳的汽提劑, -13- 201213617 並且水蒸汽係更佳的汽提劑》水蒸汽與氧氣耗盡的空氣% 混合物也可能是合適的。 當該汽提劑包含水蒸汽時,可以將其在汽提處理的過 程中加入該鹽水中或者它可以從鹽水中產生,或它的一部 分可以在汽提處理的過程中加入鹽水中或者它的另一部分 可以從該鹽水產生。從鹽水中產生這種汽提劑係非常合適 的。當將該汽提劑以一部分或以整體加入鹽水中時,所述 部分或整體可以是任何來源的。具體地,當該鹽水至少部 分地是來自製造環氧氯丙烷的過程時,該汽提劑可以來自 該製造環氧氯丙烷的過程中的任何步驟,具體是來自從甘 油生產—氯丙醇的迢個步驟。在這種情況下,蒸氣(vapour) 係在對來自該二氯丙醇製造設備的該等流束進行冷卻和/ 或冷凝的步驟中產生。 在根據本發明的方法中,該汽提處理在—汽提區中進 行。表述“汽提區”應理解爲係指在其中鹽水與汽提劑相 接觸的這個區域。 在根據本發明的方法中,當該汽提劑係水蒸汽時,進 行該汽提處理的溫度一般是大於或等於1(TC,經常是大於 或等於30 °C,時常是大於或等於40 °C並且更特別地是大 於或等於60。(:,特別是大於或等於8(TC,並且非常特別 地是大於或等於90X:。該溫度一般是小於或等於2〇(rc, U吊疋小於或等於160C ’時常是小於或等於,更 特別地是小於或等於120°C並且尤其是小於或等於1〇〇t -14- 201213617 在根據本發明的方法中,當該汽提劑係選自空氣、氧 氣耗盡的空氣、氮氣、氧氣、氯氣、氯化氫、二氧化碳以 及其至少兩種的混合物所組成的組中時,並且特別是當該 汽提劑係空氣或貧氧的空氣時,汽提區中鹽水的溫度總體 上是大於或等於10 °C,經常是大於或等於30 °C,時常是 大於或等於40°C並且更確切地是大於或等於60°C。該汽 提區中的溫度總體上是小於或等於1 〇〇 t,經常是小於或 等於90 °C,時常小於或等於85°C並且更特別地是小於或 等於8 0 °C。在這種情況下,汽提區中鹽水的溫度總體上是 取決於汽提劑的流速,並且1 5 °C與3 5 °C之間的溫度範圍 係合適的,只要該汽提劑的流速足夠高。 在根據本發明的方法中,該汽提處理的溫度通常就是 汽提區中鹽水的溫度。 在根據本發明的方法中,該汽提處理一般是在大於或 等於50毫巴絕對値的壓力下進行,該壓力經常是大於或 等於100毫巴絕對値,時常是大於或等於2 00毫巴絕對値 ’更特別地是大於或等於500毫巴絕對値並且尤其是大於 或等於6 00毫巴絕對値。該壓力一般是小於或等於5巴絕 對値,經常是小於或等於3巴絕對値,時常是小於或等於 2巴絕對値,更特別地是小於或等於1. 5巴絕對値並且尤 其是小於或等於1.3巴絕對値。大於或等於0.7巴絕對値 並且小於或等於1.2巴絕對値的壓力是非常合適的。 在根據本發明的方法中,該汽提處理的pH較佳的是 比該電解槽的陽極室的pH低出至少0.1個pH單位,更佳 -15- 201213617 的是至少0.5個pH單位,甚至更佳的是至少!個pH單位 ’仍然更佳的是至少2個pH單位,並且更特別佳的是低 至少2.5個pH單位。該pH總體上是比該電解槽的陽極室 的pH低出最多5個PH單位,並且較佳的是低出最多4 個pH單位。 在根據本發明的方法中,該電解槽的陽極室的pH總 體上是小於或等於7,經常是小於或等於6,時常是小於 或等於5並且特別是小於或等於4.5。該電解槽的陽極室 的pH總體上是大於或等於丨,經常是大於或等於2,並且 時常是大於或等於2.5。4.2±0.5的pH是非常合適的。 在根據本發明的方法中,該汽提處理的pH總體上是 小於或等於6 · 5,經常是小於或等於5,時常是小於或等 於3並且特別是小於或等於2.5。該汽提處理的pH總體上 是大於或等於〇,經常是大於或等於0.5,時常是大於或 等於1並且特別是大於或等於1.5。 在根據本發明的方法中,該汽提處理的pH通常是該 汽提區中鹽水的pH。 pH可以藉由不同的手段來測量。使用PH敏感的電極 進行測量是非常合適的。此種電極應該在汽提處理之前的 鹽水中並且在汽提條件下的汽提介質中是穩定的並且不應 該污染該鹽水。用於pH測量的玻璃電極係非常合適的。 在 Ullmann 的 Encyclopedia of Industrial Chemistry, ®2005,Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ]0.1 002/1 43 56007.el9_e01,pp. 8-15 中給出 了此類電極的 -16- 201213617 例子。可以使用的電極的例子有METTLER TOLEDO®所供應 的 405-DPAS-SC-K85 型號的電極或 ENDRESS + HAUSER®所 供應的Ceragel CPS71以及Orbisint CPS11型號的電極。 電解槽的陽極室的pH可以在供送給該陽極室的鹽水 中測量或可以在原位在電解條件下的陽極室中的鹽水中測 量或可以離位地在從供送給陽極室的鹽水中抽出的樣品上 、或者在從該陽極室中抽出並且被置於對於確保該pH測 量設備的良好使用壽命而言適當的一溫度和壓力下的樣品 上進行測量。該電解槽的陽極室的pH較佳的是在原位在 電解條件下的陽極室中進行測量。 該汽提處理的pH可以在原位在汽提處理之前的鹽水 中測量或在汽提條件下的汽提介質中的鹽水中測量或離位 地在從汽提處理之前的鹽水中抽出的樣品上或在從該汽提 介質中抽出的並被置於對於確保該pH測量設備的良好使 用壽命而言適當的一溫度和壓力下的一鹽水樣品上進行測 量〇 對於離位元測量,適當的溫度和壓力的例子的2 5 °C 的溫度和1巴的壓力。可以確定溫度和壓力對鹽水pH的 影響以建立一相關性,例如在2 5 °C和1巴下的鹽水的pH 與汽提區的中或在電解槽的陽極室中的溫度和壓力下該鹽 水的pH之間的相關性。 總體上’該汽提處理的以及該電解槽陽極室的pH的 測量手段可以不相同。它們經常是相同的。時常使用相同 類型的pH敏感的電極。 -17- 201213617 總體上’汽提處理的以及電解槽陽極室的pH的測量 條件可以不相同。時地,該電解槽的陽極室的pH係在該 陽極室的運行條件下測量的並且該汽提處理的pH係在該 處理的運行條件下測量的。 在根據本發明的方法一第一實施方式中,該鹽水的 pH在該汽提處理之前被帶到所希望的値並且它在該處理 過程中自然地保持在這個値。 在根據本發明的方法的一第二實施方式中,該鹽水的 pH在汽提處理之前被帶到所希望的値並且它在該處理過 程中自然地改變而同時在汽提處理過程中保持在較佳的 pH範圍內。 在根據本發明的方法一第三實施方式中,該鹽水的 pH在汽提處理之前被帶到所希望的値並且它在該汽提處 理過程中保持在這個値。 在根據本發明的方法一第四實施方式中,該鹽水的 pH被帶到所希望的値並且它在該汽提處理過程中保持在 這個値。 在根據本發明的方法的一第五實施方式中,該鹽水的 pH被帶到所希望的値並且它在該汽提處理過程中自然地 改變而同時在該汽提處理過程中保持在較佳的pH範圍內 〇 該第一實施方式以及第二實施方式係較佳的。 在根據本發明的方法中,較佳的是對進行汽提處理所 在的pH進行控制 18- 201213617 在根據本發明的方法中,可以控制該pH並將其保持 在所希望的範圍內。更特別地在根據本發明的方法的第三 以及第四實施方式中使用這個程式。 爲了將pH維持在所希望的範圍內,測量pH並且必 要時進行調節。 該pH可以連續地或週期性地進行測量。在後者的情 況下,這種測量一般是以足以在該汽提處理持續時間的至 少80%內(經常是在該持續時間的至少90%內,時常是該 持續時間的至少95%內並且特別是該持續時間的至少 99%)將pH維持在所希望的PH範圍內的一頻率來進行。 可以藉由加入一酸化合物或者藉由加入一鹼性化合物 將pH調節和/或維持在所選的範圍內。無機的酸和鹼係較 佳的。氣態的和/或水溶液中的氯化氫係一更佳的酸化合 物。固體的和/或水溶液和/或水性懸浮液中的氫氧化鈉係 一更佳的鹼性化合物,氫氧化鈉的水溶液係非常特別佳的 e 該pH能以自動的模式或以非自動的模式進行調節。較 佳的是使用一種自動模式,其中pH的控制係以一以控制回 路的名稱已知的閉合回路進行。在Ullmann的Encyclopedia of Industrial Chemistry, ® 2005, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1 0.1 002/1 43 5 6 00 7. e 1 9_e0 1,pp.24-27 中描 述了此類控制回路。可以使用的自動的pH控制以及調節儀 器的一例子係 PROMINENT® DULCOMETER®系統類型的 PHD。 -19- 201213617 在根據本發明的方法中,該汽提處理可以按一連續模 式或分批模式進行。表述“連續模式”應理解爲係指如下 的模式:其中該鹽水和汽提劑在覆蓋該汽提處理持續時間 的至少50%(較佳的是該持續時間的至少90%並且更佳的 是該持續時間的至少95%)的一時間段內以一不間斷的方 式供送給一汽提區。該汽提處理的持續時間係在鹽水與汽 提劑進行接觸的時刻與這種接觸被中斷的時刻之間經過的 時間。表述“分批模式”應理解爲係指任何其他的運行模 式。該汽提處理較佳的是以一種連續模式進行。 在根據本發明的方法中,當該汽提處理連續地進行時 ’該汽提劑和鹽水可以並流地或逆流地或橫向流地供送給 該汽提區。汽提區的逆流式進料係較佳的。 在根據本發明的方法中,當該汽提處理連續進行時, 汽提劑或鹽水的流束的運動方向可以是豎直的或水平的, 或對於鹽水流束係豎直的而對於汽提劑流束係水平的,或 對於鹽水流束係水平的而對於汽提劑流束係豎直的。這兩 個流束的豎直的運動方向係較佳的。 在根據本發明的方法中,在汽提處理過程中引入的汽 提劑的總量與有待被汽提的鹽水的量之間的重量比率總體 上是大於或等於0.01,時常是大於或等於0.02,經常是大 於或等於0·05並且特別是大於或等於〇.〇7。這個重量比 總體上是小於或等於5 0,時常是小於或等於1 〇,經常是 小於或等於1並且特別是小於或等於〇. 5。 在根據本發明的方法中,當該汽提劑係水蒸汽,並且 -20- 201213617 當該汽提處理係在一供送有鹽水以及豎直並且逆流地循環 的汽提劑的汽提區中以一連續模式進行時,以kg水蒸汽/ 小時表示的上升水蒸汽的流速(V)與以kg鹽水/小時表示的 下降鹽水的流速(W)之比(τ)較佳的是符合以下公式: T = a.[l/(KW-1)]· {l+(Xw/XF)[Kw(q-l)-l]} 其中: a係大於或等於0.9、較佳的是大於或等於0.95並且更佳 的是大於或等於0.98並且是小於或等於5、較佳的是小於 或等於4、更佳的是小於或等於2.5並且非常特別佳的是 小於或等於2 ; K\v = (P有极物/ P)C1/S有機物)td(M有機物/ V η水); q=l + [CPlf*tf-CP1F*tF]]/(AHvap)tf ; 係該鹽水中所含的有機化合物的蒸氣壓; p係該系統的總壓力; s*®%係以g碳/1鹽水表示的該有機化合物在鹽水中的溶 解度; Μ * ® 係以g碳/mol有機化合物表示的有機化合物的莫耳 質量; v a *係以Ι/mol計的該鹽水的莫耳體積;201213617 VI. Description of the Invention: - This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the disclosure of In the event that any of the disclosures of the patents, patent applications, and publications cited herein are inconsistent with the specification to the extent that it may make the term unclear, the present specification should be preferred. TECHNICAL FIELD OF THE INVENTION The present invention relates to an electrolysis method. More specifically, the invention relates to a method of electrolyzing a brine contaminated with an organic compound and intended to feed the anode compartment of an electrolysis cell. [Prior Art] International application WO 200 8/15 2043, filed in the name of SOLVAY SA, discloses the use of an aqueous composition comprising a salt and at least one carboxylic acid as a reactant in an electrolysis reaction. However, the presence of a carboxylic acid remains a source of problems in the anode compartment of the electrolysis cell, such as, for example, foaming and temperature changes. SUMMARY OF THE INVENTION The object of the present invention is to overcome such problems by providing an electrolytic method which makes it possible to avoid the above disadvantages. • For this purpose, the invention first relates to an electrolysis process in which at least one brine is supplied to an anode chamber of an electrolysis cell. The brine has been in the presence of at least one stripping agent at an anode chamber of less than or equal to the cell PH-5 - 201213617 - subjected to a stripping treatment at a pH, the brine comprising at least one organic compound prior to the treatment. In this case, the electrolysis process and the stripping process can be located in the same industrial location or in different industrial locations. In both scenarios, the electrolysis process and the stripping process can be operated by the same legal entity or by two different legal entities. For the same purpose, the invention also relates to an electrolysis process comprising: (a) supplying a brine comprising at least one organic compound; (b) treating the brine from (a) in the presence of at least one stripping agent Performing at least one stripping treatment to obtain a stripped brine; (c) supplying the stripped brine from (b) to an anode chamber of an electrolytic cell; and wherein the stripping treatment system from (b) It is carried out at a pH less than or equal to the pH of the anode chamber of the electrolytic cell from (c). One of the essential features of the present invention is that the pH of the stripping treatment is carried out by supplying at least one stripping treatment to the anode chamber of one electrolytic cell at a pH less than or equal to the pH of the anode chamber. In the brine, no degradation in the performance of the cell was observed. The tank voltage and operating temperature of this tank remain unchanged. This has the effect of keeping the productivity of the tank constant and preventing loss of throughput, and also keeping the current efficiency constant without creating a supplemental anode overvoltage, which is the source of increased power consumption per unit. -6 - 201213617 In the method according to the invention, the term "saline" is understood to mean an aqueous composition comprising at least one salt. The salt can be an organic salt, an inorganic salt or a mixture of the two. Inorganic salts are preferred. An inorganic salt is a salt in which the constitutive anion and the cation do not contain a carbon-hydrogen bond. The inorganic salt may be selected from the group consisting of metal chlorides, metal sulfates, metal hydrogen sulfates, metal hydroxides, metal carbonates, metal hydrogencarbonates, metal phosphates. , metal hydrogen phosphates, metal borates, and mixtures of at least two thereof. The alkali metal and alkaline earth metal chlorides are preferred. Sodium and potassium chlorides are preferred, and sodium chloride is very particularly preferred. The salt content of the brine is generally greater than or equal to 5 g salt per kg of saline, often greater than or equal to 10 g/kg, often greater than or equal to 20 g/kg, usually greater than or equal to 30 g/kg, preferably It is greater than or equal to 50 g/kg', more preferably greater than or equal to 1 〇〇g/kg, even more preferably greater than or equal to 140 g/kg, and even more preferably greater than or equal to 160 g/kg, And very particularly good is greater than or equal to 200 g / kg. This salt content is conventionally less than or equal to the solubility of the salt expressed in g/kg at the operating temperature of the electrolysis process, particularly at the operating temperature of the anode compartment of the cell, preferably less than or The enthalpy equal to the solubility of the salt is reduced by 20 g/kg, and more preferably the enthalpy of less than or equal to the solubility of the salt is reduced by 50 g/kg. The salt content is conventionally less than or equal to 270 g salt/kg saline, preferably less than or equal to 250 g/kg and very particularly preferably less than or equal to 230 g/kg. A brine system having a sodium chloride content greater than or equal to 140 g/kg brine and less than 210 201213617 g/kg is very particularly suitable. A brine having a sodium chloride content of greater than or equal to 220 g/kg is also very suitable. In the method according to the present invention, the organic compound may be selected from the group consisting of an aliphatic compound, an aromatic compound or a mixture of at least two thereof. The compounds may optionally contain at least one hetero atom selected from the group consisting of halogen, preferably fluorine, chlorine, bromine and iodine 'chalcogen', preferably oxygen or sulfur, nitrogen, Phosphorus and a mixture of at least two thereof. The hetero atom is preferably oxygen. The organic compound may be the content of the application as described in the international application WO 2009/095429 in the name of SOLVAY (Soci 6t0 Anonyme [company is anonymous]), more specifically from page 2, line 16 to The paragraphs on line 1 of line 1 are hereby incorporated by reference. This organic compound is preferably a carboxylic acid. This carboxylic acid may be present in the brine in the form of an acid (protonated) or in the form of the acid derivative in a stripping treatment. Derivatives of such carboxylic acids are generally found in the group consisting of carboxylates, carboxylates, nitriles, guanamines, and mixtures of at least two thereof. The carboxylic acid is preferably present in the form of an acid (protonated), in the form of a carboxylate or a mixture of the two. The carboxylic acid may be a monocarboxylic acid or a polycarboxylic acid, and is preferably a monocarboxylic acid. The carboxylic acid is preferably a monocarboxylic acid having a number of carbon atoms greater than or equal to 4 and less than or equal to 32, suitably having a number of carbon atoms greater than or equal to 4 and less than or equal to 30, particularly greater than or equal to 4 and less than or Monocarboxylic acids equal to 20 and especially greater than or equal to 6 and less than or equal to 20» in the molecule comprising not more than -8 - 201213617 more than two oxygen atoms are also suitable. The monocarboxylic acid is preferably a fatty acid. By acid, the acid is intended to mean an acid selected from the group consisting of butyric acid, caproic acid, valeric acid, caprylic acid, heptanoic acid, capric acid, capric acid, alkanoic acid, lauric acid, tridecanoic acid, Myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, behenic acid, becosic acid, decanoic acid, Heptacosanoic acid, hexadecanoic acid, heptacosanoic acid, montanic acid, octadecanoic acid 'bee, acid, tridecanoic acid, tridecanoic acid, 1 -undecenoic acid , myristic acid, palmitoleic acid, oleic acid, octadecenoic acid, oleic acid, oleic acid, oleic acid, erucic acid, ebutyric acid, nervonic acid, linoleic acid, anti-linolenic acid, Waste, / rot, exhibit -9,12,15 - octadecatrienoic acid, linolenic acid, alpha-ternic acid, beta-ternicol, arachidonic acid, salmon acid, and at least two of them mixture. The monocarboxylic acid is more preferably selected from the group consisting of butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, capric acid, capric acid, undecanoic acid, lauric acid, tridecanoic acid, meat. Myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, behenic acid, becosic acid, decanoic acid, two Pentadecanoic acid, hexadecanoic acid, heptacosanoic acid, montanic acid, octadecanoic acid, melamine acid, tridecanoic acid, tridecanoic acid, and mixtures of at least two thereof. The monocarboxylic acid is more preferably selected from the group consisting of butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, capric acid, capric acid, undecanoic acid, lauric acid, tridecanoic acid, meat. Myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanoic acid, arachidic acid, and mixtures of at least two thereof. -9 - 201213617 The monocarboxylic acid is more preferably selected from the group consisting of butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid. And a mixture of at least two thereof. The monocarboxylic acid is also more preferably a group selected from the group consisting of lauric acid, palmitic acid, stearic acid, and a mixture of at least two thereof. The monocarboxylic acid is also preferably selected from the group consisting of citric acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, and at least two thereof. Kind of mixture. The monocarboxylic acid is likewise preferably selected from the group consisting of butyric acid, valeric acid and mixtures thereof. A monocarboxylic acid selected from the group consisting of 10 - undecylenic acid, myristoleic acid, palmitoleic acid, oleic acid, octadecenoic acid, oleic acid, oleic acid, Linoleic acid, erucic acid, ebutyric acid, nervonic acid, linoleic acid, anti-linoleic acid, / prototype, / submersible, / latent -9,12,15 - octadecatrienoic acid, linolenic acid And a mixture of α-tricoleic acid, β-ternic acid, arachidonic acid, salmon acid, and at least two thereof. The monocarboxylic acid is most preferably selected from the group consisting of butyric acid, valeric acid, and mixtures thereof. In the process according to the invention, the content of the organic compound in the brine prior to the stripping treatment is generally greater than or equal to 0.005 g/kg, preferably greater than or equal to 〇.〇1 g, expressed as g carbon/kg brine. /kg, still more preferably greater than or equal to 0.05 g/kg, still more preferably greater than or equal to 0.1 g/kg, more preferably greater than or equal to 0.5 g/kg, and even more preferably greater than Or equal to 0.7 5 g/kg, still more preferably greater than or equal to 1 g/kg, and the best -10- 201213617 is greater than or equal to 2.5 g/kg. The content is generally less than or equal to 20 g/kg of saline', preferably less than or equal to 1 g/kg, and more preferably less than or equal to 5 g/kg. In the process according to the invention, the brine can be derived from any process that produces brine containing an organic compound. Examples of such processes are processes for the manufacture of epoxides, in particular ethylene oxide, propylene oxide, butylene oxide or epichlorohydrin; processes for the production of an epoxide derivative, in particular epoxy resins; Process for the chlorination of organic products, in particular 1,2-dichloroethane; the process for the production of monoisocyanates and polyisocyanates, in particular 4,4'-diphenylmethylene diisocyanate (MDI), toluene diisocyanate (TDI) Or hexamethyl-1,6-diisocyanate (HDI); and the manufacture of polycarbonate (especially 2,2-bis(4-hydroxyphenyl)propane polycarbonate (bisphenol A polycarbonate)) the process of. This brine can be a combination of brines from at least two processes. Derivatives of an epoxide (especially epichlorohydrin and epoxy resin) may be as described in international application WO 2008/1 5 2044 in the name of SOLVAY (Soci 6t6 Anonyme), the content of which is more precise The paragraph from the thirteenth line on page 13 to the eighth line on page 44 is hereby incorporated by reference. In the process according to the invention, the brine is preferably from the process of producing epichlorohydrin, the process of making an epoxy resin, the process of producing 1,2-dichloroethane, the manufacture of bisphenol A polycarbonate. Process or a combination of at least two of these processes, and more preferably a process from the manufacture of epichlorohydrin, a process for making an epoxy resin, a process for producing 1,2-dichloroethane or the like A combination of at least two of them. -11 - 201213617 In the process according to the invention, the brine is also more preferably from the process of producing epichlorohydrin, still more preferably from the production of epichlorohydrin by dehydrochlorination of dichloropropanol. Process and very particularly advantageous is the process of producing epichlorohydrin by dehydrochlorination of dichloropropanol from which at least a portion of the dichloropropanol is obtained from glycerol and wherein at least the glycerol is One component is a natural glycerin 'i' that is derived from renewable raw materials. The natural glycerin is as described in the international application WO 2006/100312 in the name of SOLVAY (Soci 6t6 Anonyme), the content of which is, more precisely, from page 4, line 22 to page 5, line 24. The paragraphs are hereby incorporated by reference. In this case, the organic compound present in the brine is preferably a monocarboxylic acid selected from the group consisting of butyric acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, decanoic acid, hydrazine. Acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanic acid, arachidic acid, and mixtures of at least two thereof . In this case, the brine may comprise at least one other organic compound selected from the group consisting of acetone, acrolein, 2-butanone, isopropanol, 3-methoxy-1,2- Propylene oxide, cyclopentanone, epichlorohydrin, chloroacetone, hydroxyacetone (acetone), a compound of empirical formula C6H120, 1,2,3-trichloropropane, 2,3-epoxy-1-propene Alcohol (glycidol), 2-chloro-2-propen-1-ol, succinyl-3-chloro-2-propenyl-i-ol, 1-methoxy-3-chloropropan-2-ol, 3-chloro -1-propan-1-ol, trans-3-chloro-2-propen-1-ol, a compound having the empirical formula C6H802, a compound having the empirical formula C6H120C122, a compound having the empirical formula C6HIQ02C12, 1,3-two Chloro-2-propanol, a compound of empirical formula -12-201213617 C9HiG02, 2,3-dichloro-1-propanol, phenol, glycerol, 1-chloro-2,3-propanediol, 2-chloro-1, 3-propanediol, cyclic diglycerols, glyceraldehyde, formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, acetic acid, propionic acid, formic acid, glycolic acid, oxalic acid, lactic acid, and mixtures of at least two thereof. The process for preparing the epoxy resin, dichloropropanol and epichlorohydrin may be as disclosed in the following international application filed under the name of SOLVAY: W02005/054167, W02006/10031 1, W02006/100312, W02006/ 1 003 1 3 , W02006/1 003 1 4 , W02006/1 003 1 5 , W02006/1 003 1 6 , W02006/1 003 1 7 , W02006/1 06 1 5 3 , 2007054505 , WO 2006/ 1 003 1 8 W02006/1003 19 , W02006/1 00320, WO 2006/106 1 54 , WO 2 0 0 6/1 0 6 1 5 5, WO 2007/ 1 443 3 5, WO 2008/1 07468, WO 2008/1 0 1 866, WO 2008/1 45729 'WO 2008/1 1 0588 'WO 2008/1 52045, WO 2008/1 52043, WO 2009/000773, WO 2009/043796, WO 2009/1 2 1 85 3, WO 2008/ 1 52044, WO 2009/077528, WO 2010/066660, WO 201 0/029039 and WO 201 0/0291, the contents of each of which are incorporated herein by reference. In the method according to the invention, the term "stripping" is understood to mean the separation of a substance by means of a gas, a vapor of a pure material or a mixture thereof (stripping agent), which is a stripping agent. Dissolve or dissolve the substance. In the method according to the present invention, the stripping agent is selected from the group consisting of air, oxygen depleted air, nitrogen, oxygen, chlorine, hydrogen chloride, steam, carbon dioxide, and at least two thereof. Kind of mixture. Water vapor, air, and oxygen depleted air are preferred stripping agents, and a mixture of water vapor and oxygen depleted air may also be suitable. When the stripping agent contains water vapor, it may be added to the brine during the stripping process or it may be produced from the brine, or a portion thereof may be added to the brine during the stripping process or its Another part can be produced from the brine. It is very suitable to produce such a stripping agent from brine. When the stripping agent is added to the brine in a portion or in a whole, the portion or the whole may be of any origin. In particular, when the brine is at least partially from the process of producing epichlorohydrin, the stripping agent can be derived from any step in the process of producing epichlorohydrin, specifically from the production of glycerol - chloropropanol. Take a step. In this case, vapour is produced in the step of cooling and/or condensing the streams from the dichlorohydrin manufacturing plant. In the process according to the invention, the stripping treatment is carried out in a stripping zone. The expression "stripping zone" is understood to mean the zone in which the brine is in contact with the stripping agent. In the method according to the invention, when the stripping agent is water vapor, the temperature at which the stripping treatment is carried out is generally greater than or equal to 1 (TC, often greater than or equal to 30 °C, often greater than or equal to 40 °). C and more particularly greater than or equal to 60. (:, especially greater than or equal to 8 (TC, and very particularly greater than or equal to 90X:. The temperature is generally less than or equal to 2 〇 (rc, U 疋 less than Or equal to 160C' is often less than or equal to, more particularly less than or equal to 120 ° C and especially less than or equal to 1 〇〇 t -14 - 201213617 In the method according to the invention, when the stripping agent is selected from Stripping in the group consisting of air, oxygen depleted air, nitrogen, oxygen, chlorine, hydrogen chloride, carbon dioxide, and mixtures of at least two thereof, and especially when the stripping agent is air or oxygen depleted air The temperature of the brine in the zone is generally greater than or equal to 10 ° C, often greater than or equal to 30 ° C, often greater than or equal to 40 ° C and more specifically greater than or equal to 60 ° C. The temperature is generally less than or equal to 1 〇〇t, often less than or equal to 90 ° C, often less than or equal to 85 ° C and more particularly less than or equal to 80 ° C. In this case, the temperature of the brine in the stripping zone is generally Depending on the flow rate of the stripping agent, and a temperature range between 15 ° C and 35 ° C is suitable as long as the flow rate of the stripping agent is sufficiently high. In the method according to the invention, the stripping treatment The temperature is usually the temperature of the brine in the stripping zone. In the process according to the invention, the stripping treatment is generally carried out at a pressure greater than or equal to 50 mbar absolute, which is often greater than or equal to 100 mbar absolute.値, often greater than or equal to 200 mbar absolute 値 'more specifically greater than or equal to 500 mbar absolute 値 and especially greater than or equal to 600 mbar absolute 値. The pressure is generally less than or equal to 5 bar absolute 値, often less than or equal to 3 bar absolute enthalpy, often less than or equal to 2 bar absolute enthalpy, more particularly less than or equal to 1.5 bar absolute enthalpy and especially less than or equal to 1.3 bar absolute enthalpy. greater than or equal to 0.7 bar Absolutely 値 and less than A pressure equal to 1.2 bar absolute is very suitable. In the process according to the invention, the pH of the stripping treatment is preferably at least 0.1 pH units lower than the pH of the anode compartment of the cell, more preferably - 15-201213617 is at least 0.5 pH units, even more preferably at least! pH units are still more preferably at least 2 pH units, and more particularly preferably at least 2.5 pH units lower. The pH overall It is at most 5 pH units lower than the pH of the anode chamber of the cell, and preferably is at most 4 pH units lower. In the method according to the invention, the pH of the anode chamber of the cell is generally Less than or equal to 7, often less than or equal to 6, often less than or equal to 5 and especially less than or equal to 4.5. The pH of the anode compartment of the cell is generally greater than or equal to 丨, often greater than or equal to 2, and often greater than or equal to 2.5. The pH of 4.2 ± 0.5 is very suitable. In the process according to the invention, the pH of the stripping treatment is generally less than or equal to 6.5, often less than or equal to 5, often less than or equal to 3 and especially less than or equal to 2.5. The pH of the stripping treatment is generally greater than or equal to 〇, often greater than or equal to 0.5, often greater than or equal to 1 and especially greater than or equal to 1.5. In the process according to the invention, the pH of the stripping treatment is generally the pH of the brine in the stripping zone. The pH can be measured by different means. Measurements using pH sensitive electrodes are very suitable. Such an electrode should be stable in the brine prior to the stripping treatment and in the stripping medium under stripping conditions and should not contaminate the brine. Glass electrodes for pH measurement are very suitable. Such electrodes are given in Ullmann's Encyclopedia of Industrial Chemistry, ® 2005, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ] 0.1 002/1 43 56007.el9_e01, pp. 8-15. example. Examples of electrodes that can be used are electrodes of the 405-DPAS-SC-K85 model supplied by METTLER TOLEDO® or electrodes of the Ceragel CPS71 and Orbisint CPS11 models supplied by ENDRESS + HAUSER®. The pH of the anode compartment of the electrolysis cell can be measured in the brine supplied to the anode compartment or can be measured in situ in the brine in the anode compartment under electrolysis conditions or can be removed from the brine supplied to the anode compartment The sample taken from the sample is taken or measured on a sample that is withdrawn from the anode chamber and placed at a temperature and pressure that is appropriate to ensure a good service life of the pH measuring device. The pH of the anode compartment of the cell is preferably measured in situ in an anode compartment under electrolysis conditions. The pH of the stripping treatment may be measured in situ in the brine prior to the stripping treatment or in the brine in the stripping medium under stripping conditions or in a sample taken from the brine prior to the stripping treatment. Measured on or on a brine sample taken from the stripping medium and placed at a temperature and pressure appropriate to ensure a good service life of the pH measuring device. Examples of temperature and pressure are temperatures of 2 5 ° C and pressures of 1 bar. The effect of temperature and pressure on the pH of the brine can be determined to establish a correlation, such as the pH of the brine at 25 ° C and 1 bar and the temperature and pressure in the stripping zone or in the anode compartment of the cell. Correlation between the pH of the brine. In general, the measurement means of the stripping treatment and the pH of the anode chamber of the electrolytic cell may be different. They are often the same. The same type of pH sensitive electrode is often used. -17- 201213617 In general, the measurement conditions of the stripping treatment and the pH of the anode chamber of the electrolytic cell may be different. At the time, the pH of the anode compartment of the cell was measured under the operating conditions of the anode compartment and the pH of the stripping treatment was measured under the operating conditions of the treatment. In a first embodiment of the method according to the invention, the pH of the brine is brought to the desired crucible prior to the stripping treatment and it naturally remains in this crucible during the treatment. In a second embodiment of the method according to the invention, the pH of the brine is brought to the desired helium prior to the stripping treatment and it naturally changes during the treatment while remaining in the stripping process A preferred pH range. In a third embodiment of the process according to the invention, the pH of the brine is brought to the desired helium prior to the stripping treatment and it remains in this crucible during the stripping process. In a fourth embodiment of the method according to the invention, the pH of the brine is brought to the desired enthalpy and it remains in this enthalpy during the stripping process. In a fifth embodiment of the method according to the invention, the pH of the brine is brought to the desired enthalpy and it naturally changes during the stripping process while remaining better during the stripping process The first embodiment and the second embodiment are preferred in the pH range. In the process according to the invention, it is preferred to control the pH at which the stripping treatment is carried out. 18-201213617 In the process according to the invention, the pH can be controlled and maintained within the desired range. More particularly, this program is used in the third and fourth embodiments of the method according to the invention. In order to maintain the pH within the desired range, the pH is measured and adjusted as necessary. This pH can be measured continuously or periodically. In the latter case, such measurements are generally sufficient to be within at least 80% of the duration of the stripping treatment (often within at least 90% of the duration, often at least 95% of the duration and particularly It is at least 99% of the duration) to maintain the pH at a frequency within the desired pH range. The pH can be adjusted and/or maintained within the selected range by the addition of an acid compound or by the addition of a basic compound. Inorganic acids and bases are preferred. The hydrogen chloride in the gaseous and/or aqueous solution is a better acid compound. The sodium hydroxide in the solid and/or aqueous solution and/or aqueous suspension is a better basic compound, and the aqueous solution of sodium hydroxide is very particularly excellent. The pH can be in an automatic mode or in a non-automatic mode. Make adjustments. It is preferred to use an automatic mode in which the control of the pH is performed in a closed loop known by the name of the control loop. Such control is described in Ullmann's Encyclopedia of Industrial Chemistry, ® 2005, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1 0.1 002/1 43 5 6 00 7. e 1 9_e0 1, pp. 24-27 Loop. An example of an automatic pH control and adjustment instrument that can be used is the PHD of the PROMINENT® DULCOMETER® system type. -19- 201213617 In the method according to the invention, the stripping treatment can be carried out in a continuous mode or in a batch mode. The expression "continuous mode" is understood to mean a mode in which the brine and stripping agent cover at least 50% of the duration of the stripping treatment (preferably at least 90% of the duration and more preferably A period of at least 95% of the duration is supplied to a stripping zone in an uninterrupted manner. The duration of the stripping treatment is the time elapsed between the moment the brine is contacted with the stripping agent and the moment the contact is interrupted. The expression "batch mode" is understood to mean any other mode of operation. The stripping treatment is preferably carried out in a continuous mode. In the process according to the invention, the stripping agent and brine may be supplied to the stripping zone in parallel or countercurrently or laterally as the stripping process is continuously carried out. Countercurrent feed to the stripping zone is preferred. In the method according to the invention, when the stripping treatment is continuously carried out, the direction of movement of the stripper or brine stream may be vertical or horizontal, or for the brine stream system being vertical and for stripping The flux stream is horizontal, or horizontal to the brine stream, and is vertical to the stripper stream. The vertical direction of motion of the two streams is preferred. In the process according to the invention, the weight ratio between the total amount of stripping agent introduced during the stripping treatment and the amount of brine to be stripped is generally greater than or equal to 0.01, often greater than or equal to 0.02. , often greater than or equal to 0. 05 and especially greater than or equal to 〇.〇7. This weight ratio is generally less than or equal to 50, and is often less than or equal to 1 〇, often less than or equal to 1 and especially less than or equal to 〇. In the process according to the invention, when the stripping agent is water vapour, and -20-201213617, the stripping treatment is carried out in a stripping zone fed with brine and a stripping agent which is circulated vertically and countercurrently When operating in a continuous mode, the ratio (τ) of the rising water vapor flow rate (V) expressed in kg of steam per hour to the flow rate (W) of the descending brine expressed in kg of brine per hour is preferably in accordance with the following formula : T = a.[l/(KW-1)]· {l+(Xw/XF)[Kw(ql)-l]} where: a is greater than or equal to 0.9, preferably greater than or equal to 0.95 and more Preferably, it is greater than or equal to 0.98 and is less than or equal to 5, preferably less than or equal to 4, more preferably less than or equal to 2.5 and very particularly preferably less than or equal to 2; K\v = (P has a pole / P) C1/S organics) td (M organics / V η water); q = l + [CPlf*tf-CP1F*tF]] / (AHvap) tf ; is the vapor of the organic compound contained in the brine Pressure; p is the total pressure of the system; s*®% is the solubility of the organic compound in brine expressed as g carbon / 1 brine; Μ * ® is the molar of the organic compound expressed in g carbon / mol organic compound quality a quantity; v a * is the molar volume of the brine in Ι / mol;

Xw係以g碳/kg鹽水表示的在該汽提區底部的鹽水的有機 化合物含量;Xw is the organic compound content of the brine at the bottom of the stripping zone expressed in g carbon/kg brine;

Xf係以g碳/kg鹽水表示的進入該汽提區頂部的鹽水的有 機化合物含量; CPIf係以k】/(kg鹽水.K)表示的在該鹽水入口溫度tf下進 -21 - 201213617 入該汽提區頂部的鹽水的比熱; CPlf係以kJ/(kg鹽水.K)表示的在該鹽水出口溫度tF下離 開該汽提區底部的鹽水的比熱;並且 (△Hvap)tf係以k】/kg蒸氣表示的在該鹽水入口溫度tf下水 的汽化潛熱。 在根據本發明的方法中,該汽提處理總體上在一汽提 區中進行並且該汽提區可以包括任何類型的設備或設備組 合’例如在 “Perry’s Chemical Engineers’ Handbook " 1 997年第7版第14節中描述的那些。 在根據本發明的方法的一具體的實施方式中,該汽提 區包括至少一個汽提柱。 在這個具體實施方式的一第一方面,該汽提區包括一 單獨的汽提柱。 在這個具體實施方式的一第二方面,該汽提區包括多 於一個的單獨的汽提柱。 在這個第二方面的第一變體中,對該等柱串聯式地供 送鹽水以及汽提劑。 在這個第二方面的第二變體中,對該等柱並聯式地供 送鹽水並且串聯式地供送汽提劑。 在這個第二方面的第三變體中,對該等柱並聯式地供 送鹽水以及汽提劑。 當該汽提區包括一單獨的汽提柱時,以上發展的公式 係非常合適的。 在其中進行汽提處理的設備總體上是由經得起該等汽 -22- 201213617 提條件的一材料製成或覆蓋的。這種材料可以選自以下各 項組成之組:碳鋼類、不鏽鋼類、搪瓷鋼類、壓鋼類、鈦 、鈦合金類以及鎳合金類、聚合物類、使用樹脂(例如環 氧樹脂和酚醛樹脂)的塗料類、以及其至少兩種的組合。 聚合物可以是:例如聚烯烴類,如聚丙烯以及聚乙烯;氯 化的聚合物,如聚氯乙烯和氯化聚氯乙烯:氟化的聚合物 ,如全氟化的聚合物’例如像聚四氟乙烯;四氟乙烯與六 氟丙烯的共聚物;以及聚(全氟丙基乙烯醚),如部分氟化 的聚合物,例如像聚偏二氟乙烯以及乙烯與氯三氟乙烯的 共聚物;含硫的聚合物,如聚碾類以及多硫化物類,特別 是芳香族的。該等聚合物可以以本體或燒嵌的形式或作爲 塗層來使用。這種材料優先選自鈦以及鈦合金類組成的組 ,並且更優先選自鈦合金類組成的組。該等鈦合金優先選 自含有鈦及鈀,鈦及釕’或鈦、鎳及鉬的合金。包含鈦及 鈀或鈦及釕的合金係更佳的並且包含鈦及鈀的那些係非常 特別佳的。 在根據本發明的方法中,汽提處理之後,總體上回收 了至少兩個分量。該第一分量包括該汽提劑以及在該汽提 處理之前的鹽水中初始存在的有機化合物的一第一部分。 該第二分量包括鹽水以及在該汽提處理之前鹽水中存在的 有機化合物的一第二部分。 在根據本發明的方法中,進行該汽提處理的條件係使 得在汽提處理之後所獲得的第一分量中存在的有機化合物 的量値總體上是大於或等於汽提處理之前的鹽水中存在的 -23- 201213617 有機化合物量値的90%,較佳的是大於或等於95%,更佳 的是大於或等於99%,仍然更佳的是大於或等於99.9%並 且非常特別佳的是大於或等於9 9.9 9 %。 在根據本發明的方法中,以g碳/kg第二分量表示的 該第二分量中有機化合物的含量是總體上小於5 g碳/kg 第二分量’較佳的是小於或等於1 g/kg,更佳的是小於或 等於0.5 g/kg,甚至更佳的是小於或等於〇.1 g/kg,仍然 更佳的是小於或等於0.05 g/kg並且還更佳的是小於或等 於〇·〇1 g/kg。該含量總體上是大於或等於0.0001 g碳/kg 第二分量。 在根據本發明的方法中,當該有機化合物係碳原子數 目大於或等於4.並且小於或等於20的一種單羧酸(該羧酸 優先選自以下各項組成之組:丁酸、戊酸、己酸、辛酸、 癸酸、月桂酸、肉豆寇酸、棕櫚酸、硬脂酸以及其至少兩 種的混合物)時,以g碳/kg第二分量表示的該第二分量中 的酸含量總體上是小於5 g碳/kg第二分量,較佳的是小 於或等於1 g/kg’更佳的是小於或等於〇.5 g/kg,甚至更 佳的是小於或等於0.1 g/kg,仍然更佳的是小於或等於 〇·〇5 g/kg並且還更佳的是小於或等於o.oi g/kg。該含量 總體上是大於或等於0.0001 g碳/kg第二分量。在這種情 況下,以g碳/kg第二分量表示的該第二分量中的丁酸含 量總體上是小於〇.5g碳/kg第二分量並且較佳的是小於或 等於0.1 g/kg。在這種情況下,以g碳/kg第二分量表示 的該第二分量中的纈草酸(戊酸)含量總體上是小於0.1 g -24- 201213617 碳/kg第二分量、較佳的是小於或等於〇 〇2 g/kg並且更佳 的是小於或等於0.01 g/kg。在這種情況下,以g碳/kg第 二分量表示的該第二分量中的羊油酸(己酸)含量總體上是 小於〇_1 g碳/kg第二分量,較佳的是小於或等於002 g/kg並且更佳的是小於或等於〇.〇1 g/kg。在這種情況下 ’以g碳/kg第—分量表不的該第二分量中的羊脂酸(辛酸 )含量總體上是小於0.01 g碳/kg第二分量並且較佳的是小 於或等於〇_〇〇5 g/kg。在這種情況下,以g碳/kg第二分 量表示的該第二分量中的羊蠟酸(癸酸)含量總體上是小於 0.015 g碳/kg第二分量並且較佳的是小於或等於〇〇1〇 g/kg。在這種情況下’以g碳/kg第二分量表示的該第二分 量中的月桂酸(十二烷酸)含量總體上是小於〇.005 g碳/kg 第二分量並且較佳的是小於或等於0.002 g/kg。 在根據本發明的方法中,當該有機化合物係碳原子數 目大於或等於4並且小於或等於20的一種單羧酸(該羧酸 優先選自以下各項組成之組:丁酸、戊酸、己酸、辛酸、 癸酸、月桂酸、肉豆寇酸、棕櫚酸、硬脂酸以及其至少兩 種的混合物)時,根據本發明的對鹽水的處理使之有可能 將所述酸的含量減小到使得它們不會破壞在其中使用該鹽 水的電解過程的該等値。這種作用係料想不到的。的確, 不論該等酸在其離解的(鹼性的)與未離解的(酸性的)形式 之間的分配如何,並且因此不論進行該汽提處理時的pH 如何’藉由汽提劑夾帶對未離解的(酸)形式的去除應該使 該酸的解離平衡朝酸形式偏移並且因此引起汽提劑對其的 -25- 201213617 完全去除。 在根據本發明的方法中,可以使該汽提處理之 的第一分量經受任何後續處理。這種處理可以選自 項組成之組:蒸餾、蒸發、汽提、液液提取、液液 、液固相分離、吸附、吸收、完全或部分冷凝、固 其至少兩種的任何組合。這種後續處理總體上是旨 第一部分中回收在該後續處理之前的第一分量中存 部分有機化合物,並且於一第二部分中回收在該後 之前的第一分量中存在的大部分汽提劑。該第二部 再循環到該汽提處理中或該汽提處理的上游。 第一種較佳的後續處理由液液相分離操作組成 是當該汽提劑包括水蒸汽時。這種分離總體上產生 一個有機相(該有機相構成了所述第一部分),並且 至少一個水相(該水相構成了所述第二部分)。這種 操作可以是一沉降操作、一聚結操作或其組合。當 化合物係選自丁酸、戊酸、己酸、辛酸、癸酸、月 肉豆寇酸、棕櫚酸、硬脂酸以及其至少兩種的混合 的組中時,可以有利地將一酸的無機化合物加入該 量中。該酸化合物可以在該液液相分離操作之前矛 程之中加入。無機酸係較佳的酸類無機化合物。氣 /或水溶液中的氯化氫係一更佳的酸化合物。酸的 係使得在該液液分離操作結束時獲得的水相的PH 是小於或等於4,較佳的是小於或等於3並且更佳 於或等於2。這個酸加入量是使得在液液分離操作 後獲得 以下各 相分離 化以及 在於一 在的大 續處理 分可以 ,特別 了至少 獲得了 相分離 該有機 桂酸、 物組成 第一分 口 /或過 態的和 加入量 總體上 的是小 結束時 -26- 201213617 獲得的水相的pH總體上是大於或等於0.5並且較佳的是 大於或等於1。進行該等沉降以及聚結操作的溫度總體上 是小於或等於90°C,較佳的是小於或等於80°C並且更佳 的是小於或等於70°C。進行該等沉降以及聚結操作的溫度 總體上是大於或等於10 °C,較佳的是大於或等於2 5 °C, 更佳的是大於或等於35 °C並且非常特別佳的是大於或等於 5 0。〇。 第二種較佳的後續處理由一液液提取操作組成,特別 是當該有機化合物係選自丁酸、戊酸、己酸、辛酸、癸酸 、月桂酸、肉豆寇酸、棕櫚酸、硬脂酸以及其至少兩種的 混合物所組成的組中時。這種分離總體上產生了至少一個 有機相(該有機相構成了所述第一部分),並且獲得了至少 —個水相(該水相構成了所述第二部分)。 可以將產生自該液液提取操作的有機相送至一高溫氧 化單元。該液液提取操作進行的溫度和p Η係如以上對於 該液液相分離處理所描述的。 當該後續處理係一液液相分離操作、液液提取操作或 其組合時,可以將該有機相的至少一個部分再循環到該汽 提處理的上游或下游。具體地,當該鹽水係來自製造環氧 氯丙烷的過程、較佳的是來自藉由二氯丙醇的脫氯化氫作 用製造環氧氯丙烷的過程、並且非常特別佳的是來自如下 的藉由二氯丙醇脫氯化氫作用而製造環氧氯丙烷的過程( 在該過程中至少一部分二氯丙醇係由甘油獲得並且其中所 述甘油的至少一個分量係一種天然的甘油)時,可以將該 -27- 201213617 有機相的所述部分再循環到該等製造過程的任一個中,特 別是再循環到從甘油製造二氯丙醇的過程中。當該單羧酸 係選自丁酸、戊酸、己酸、辛酸、癸酸、月桂酸'肉豆寇 酸、棕櫚酸、硬脂酸以及其至少兩種的混合物所組成的組 中時,這個方案係非常合適的。 在根據本發明的方法中,汽提處理之後獲得的第一分 量可以再循環到該汽提處理的上游或下游。例如可以將它 送至一高溫氧化處理中。後者的處理在該汽提劑係選自空 氣、氧氣耗盡的空氣、氮氣、氧氣、氯氣、水蒸汽、二氧 化碳以及其至少兩種的混合物所組成的組中的情況下是非 常合適的。 在根據本發明的方法中,可以使汽提處理之後獲得的 第二分量在加入電解槽的陽極室之前經受任何後續處理。 這種處理可以是選自以下各項組成之組:熱調節、稀釋、 濃縮、蒸餾、蒸發、沉降、聚結、液液提取、過濾、結晶 、吸附、氧化、還原、中和、錯合、沉灑以及加鹽操作以 及其至少兩種的組合。該等處理係如在SOLVAY(Soci6t6 Anonyme)的申請WO 2008/152043(將該申請的內容、更確 切地說是從第11頁第13行至第29頁第7行的段落藉由 引用結合在此)、以及SOLVAY(Soci6t6 Anonyme)的申請 WO 2009/095429(將該申請的內容、更確切地說是從第1 頁第24行至第27頁第26行的段落藉由引用結合在此)中 所描述的。 根據本發明的方法一般包括至少一個除該汽提操作之 -28- 201213617 外的選自以下各項組成之組的操作:稀釋、濃縮、蒸餾、 蒸發、液/液提取、過濾、結晶、吸附 '氧化、還原、中 和、錯合、沉澱、好氧細菌處理、厭氧細菌處理、以及其 至少兩種的組合。 在根據本發明的方法中,該鹽水因此可以在該汽提處 理之前在小於或等於該電解槽陽極室的pH的—pH下經 受至少一個操作。這種處理可以是選自以下各項組成之組 :稀釋、濃縮、蒸餾、蒸發、沉降、聚結、液液提取、過 濾、結晶、吸附、氧化、還原、中和、錯合、和沉澱操作 以及其至少兩種的組合。該等處理係如在SOLVAY( Soci6t6 Anonyme)的申請 WO 2008/ 1 52043 (將該申請的內 容、更確切地說是從第11頁第13行至第29頁第7行的 段落藉由引用結合在此)、以及SOLVAY(Soci0t6 Anonyme) 的申請WO 2009/095429(將該申請的內容、更確切地說是 從第1頁第24行至第27頁第26行的段落藉由引用結合 在此)中所描述的。 在根據本發明的方法另一具體實施方式中,該鹽水係 來自藉由環氧氯丙烷與一種單醇和/或多元醇之間的反應 而製造環氧氯丙.院的一衍生物(特別是環氧樹脂)的過程中 ’其中該環氧氯丙烷係藉由二氯丙醇的脫氯化氫作用獲得 的,該二氯丙醇的至少一個部分係從甘油獲得,並且其中 所述甘油的至少一個分量係天然甘油。在這個實施方式中 ,該鹽水包含環氧氯丙烷和/或二氯丙醇並且所述鹽水經 受了一個處理,該處理旨在于根據本發明的方法的汽提處 -29- 201213617 理之前一方面回收該鹽水中所含的環氧氯丙烷和/或二氯 丙醇的大部分並且另一方面回收一環氧氯丙烷被耗盡的鹽 水。 在根據本發明的方法的又一具體實施方式中,該鹽水 係來自藉由二氯丙醇與一種單醇和/或多元醇之間的反應 而製造環氧樹脂的過程,其中該二氯丙醇的至少一部分係 從甘油獲得的,並且其中所述甘油的至少一個分量係天然 甘油。在這個實施方式中,該鹽水包含環氧氯丙烷和/或 二氯丙醇並且所述鹽水經受了一個處理,該處理旨在于根 據本發明的方法的汽提處理之前一方面回收該鹽水中所包 含的環氧氯丙烷和/或二氯丙醇的大部分並且另一方面回 收一種環氧氯丙烷耗盡的鹽水。 在以上這三個實施方式中,該鹽水一般包含至少一種 除環氧氯丙烷或二氯丙醇之外的有機化合物。該有機化合 物經常是一種單羧酸並且時常是選自以下各項組成之組的 一種羧酸:丁酸、戊酸、己酸、辛酸、癸酸、月桂酸、肉 豆寇酸、棕櫚酸、硬脂酸以及其至少兩種的混合物。 在該等實施方式的一第一變體中,接著使該環氧氯丙 烷和/或二氯丙醇被耗盡的鹽水在根據本發明的方法的汽 提處理之前經受一氧化處理。 在該等實施方式的一第二變體中,使該環氧氯丙院和 /或二氯丙醇被耗盡的鹽水經受根據本發明的方法的汽提 處理,並且接著使產生自所述汽提處理的鹽水在供送給該 電解槽陽極室之前經受一氧化處理。 -30 - 201213617 在該等實施方式的一第三變體中,將該環氧氯丙烷和 /或二氯丙醇被耗盡的鹽水進行酸化並且然後經受一沉降 操作。該操作使之有可能在根據本發明的汽提處理之前分 離出該鹽水中所含的酸的至少一個部分。 在根據本發明的方法中,該電解槽可以是一種氯-鹼 電解的汞槽或隔膜槽或薄膜槽。該等電解類型可以是如在 SOLVAY(Soci6t6 Anonyme)名下的國際申請 2008/1 52043 中所 描述,將該申請的內容、更確切地說是從第31頁第18行 至第37頁第13行的段落藉由引用結合在此。該電解槽較 佳的是一種氯-鹼電解的薄膜槽。 在根據本發明的方法中,該電解槽較佳的是係一種 氯-鹼電解的薄膜槽,並且該鹽水係來自製造環氧氯丙烷 的製程、仍然更佳的是來自如下的藉由二氯丙醇的脫氯化 氫作用而製造環氧氯丙烷的過程:在該過程中至少一部分 的二氯丙醇係由甘油獲得的並且其中所述甘油的至少一個 分量係由一種可再生的原料獲得的。 在根據本發明的方法中,該電解槽較佳的是一種氯-鹼電解的汞槽或隔膜槽或薄膜槽,並且其中該鹽水係來自 一選自以下各項組成之組中的過程:環氧氯丙烷的製造、 環氧氯丙烷衍生物的製造、1,2-二氯乙烷的製造、聚碳酸 酯的製造以及其至少兩種的組合。 【實施方式】 以下實例旨在闡述本發明而非限制它。 -31 - 201213617 實例ι(根據本發明) (a) 將包含17% g/g的NaCl以及對應於69 mg/1 TOC (總有機碳)的己酸的500.4 g水性鹽水置於一個一升的圓 底燒瓶中,該燒瓶頂上蓋有一連接到傾斜的冷凝器上的玻 璃蒸餾頭,該冷凝器係用於排出並且冷凝在試驗過程中放 出的蒸氣。該圓底燒瓶以及蒸餾頭裝備有一熱電偶套管加 一熱電偶。藉由加入濃鹽酸將鹽水的pH調節到在25 °C測 量爲2.0的値。將鹽水加熱到接近於大氣壓下的沸點(105 °C )的一溫度並且藉由浸沒在該鹽水中的毛細管以恆定的 流速引入水蒸汽。在26 min內注入50 g的水蒸汽之後, 該鹽水包含17 tng/1的 T0C並且其pH在環境溫度下測 量爲2.1 1。 (b) 該電解試驗在0.6升的電解槽中進行,該電解槽 包括一具有陽極的陽極室以及一具有陰極的陰極隔室,它 們藉由一薄膜分開。該陽極係由覆蓋有一電化學塗層的鈦 構成。該陰極係由覆蓋有一電化學塗層的鎳製成。該薄膜 係 Asahi Glass Company 的 Flemion F8020 類型的薄膜。 向該陰極隔室中連續供送一含3 2% g/g NaOH水性組合物 。對該陽極室供送含18% NaCl以及對應於18 mg/1 TOC 的己酸的一水性組合物。陽極室的pH爲4。在陽極與陰 極之間施加4 kA/m2電極的電流密度。將該槽保持在85 °C 並且它在1巴絕對値的壓力下運行》所測得的槽電壓與在 一參比試驗中測量的係實際上相同的,該參比試驗係在相 -32- 201213617 同條件下但用含有18%的NaCl而無己酸的水性組合 送給陽極室中,來進行的。 實例2(並非根據本發明) (a) 將包含17% g/g的NaCl以及對應於82 mg/1 (總有機碳)的己酸的496.7 g水性鹽水置於一個一升 底燒瓶中,該燒瓶頂上蓋有一連接到傾斜的冷凝器上 璃蒸餾頭,該冷凝器係用於排出並且冷凝在試驗過程 出的蒸氣。該圓底燒瓶以及蒸餾頭裝備有一熱電偶套 一熱電偶。藉由加入1 N鹽酸將該鹽水的pH調節到: °C測量爲5.5的値。將鹽水加熱到接近於大氣壓下的 (1 05 t )的一溫度並且藉由浸沒在該鹽水中的毛細管以 的流速引入水蒸汽。藉由規則地加入1 N的鹽酸將鹽 pH保持在其初始値。在26miri內注入50 g的水蒸汽 ,該鹽水包含54mg/l的TOC並且其pH係5.4。 (b) 根據在試驗1中所描述的條件進行一電解試 點b的不同之處在於供送給該陽極室的水性組合物 18% g/g的NaCl構成並且包含對應於55 mg/1 TOC的 。陽極室的pH爲4。所測得的槽電壓比在~參比試 測得的高出20 mV,該參比試驗係在相同條件下但用 1 8 % g/g的N aC 1而無己酸的水性組合物供送給陽極室 進行的。 物供 TOC 的圓 的玻 中放 管加 ί 25 沸點 恆定 水的 之後 驗, 係由 己酸 驗中 含有 中來 -33-Xf is the organic compound content of the brine entering the top of the stripping zone expressed by g carbon/kg brine; CPIf is represented by k]/(kg brine.K) at the brine inlet temperature tf into the period - 21 - 201213617 The specific heat of the brine at the top of the stripping zone; CPlf is the specific heat of the brine leaving the bottom of the stripping zone at the brine outlet temperature tF, expressed as kJ/(kg brine.K); and (ΔHvap)tf is k ??? / kg vapor indicates the latent heat of vaporization of water at the brine inlet temperature tf. In the process according to the invention, the stripping treatment is generally carried out in a stripping zone and the stripping zone may comprise any type of equipment or combination of equipment 'for example, in "Perry's Chemical Engineers' Handbook " In a specific embodiment of the method according to the invention, the stripping zone comprises at least one stripping column. In a first aspect of this embodiment, the stripping zone comprises A separate stripping column. In a second aspect of this embodiment, the stripping zone comprises more than one separate stripping column. In a first variant of this second aspect, the columns are connected in series The brine and the stripping agent are supplied in a second embodiment. In a second variant of this second aspect, the columns are supplied in parallel with brine and the stripping agent is supplied in series. In the variant, the columns are supplied with brine and a stripping agent in parallel. The above developed formula is very suitable when the stripping zone comprises a separate stripping column. It is made or covered by a material that can withstand the conditions of the steam--22-201213617. This material can be selected from the group consisting of carbon steel, stainless steel, enamel steel, and pressure. Steels, titanium, titanium alloys and nickel alloys, polymers, coatings using resins such as epoxy resins and phenolic resins, and combinations of at least two thereof. The polymers may be, for example, polyolefins. Such as polypropylene and polyethylene; chlorinated polymers such as polyvinyl chloride and chlorinated polyvinyl chloride: fluorinated polymers, such as perfluorinated polymers 'such as polytetrafluoroethylene; tetrafluoroethylene and six a copolymer of fluoropropene; and a poly(perfluoropropyl vinyl ether) such as a partially fluorinated polymer such as, for example, polyvinylidene fluoride and a copolymer of ethylene and chlorotrifluoroethylene; a sulfur-containing polymer such as Agglomerates and polysulfides, especially aromatic. These polymers may be used in bulk or in a fired form or as a coating. Such materials are preferably selected from the group consisting of titanium and titanium alloys, and More preferred to be selected from titanium alloys The titanium alloy is preferably selected from the group consisting of titanium and palladium, titanium and tantalum or alloys of titanium, nickel and molybdenum. Alloys comprising titanium and palladium or titanium and niobium are more preferred and include titanium and palladium. Very particularly preferred. In the process according to the invention, after the stripping treatment, at least two components are generally recovered. The first component comprises the stripping agent and the initial presence in the brine prior to the stripping treatment. a first portion of the organic compound. The second component comprises brine and a second portion of the organic compound present in the brine prior to the stripping treatment. In the method according to the invention, the conditions for performing the stripping treatment are such that The amount of the organic compound present in the first component obtained after the stripping treatment is generally greater than or equal to 90%, preferably greater than, the amount of the organic compound -23-201213617 present in the brine prior to the stripping treatment. Or equal to 95%, more preferably greater than or equal to 99%, still more preferably greater than or equal to 99.9% and very particularly preferably greater than or equal to 99.99%. In the method according to the invention, the content of the organic compound in the second component, expressed as g carbon/kg second component, is generally less than 5 g carbon/kg second component 'preferably less than or equal to 1 g/ Kg, more preferably less than or equal to 0.5 g/kg, even more preferably less than or equal to 0.1 g/kg, still more preferably less than or equal to 0.05 g/kg and still more preferably less than or equal to 〇·〇1 g/kg. This content is generally greater than or equal to 0.0001 g carbon/kg second component. In the method according to the present invention, when the organic compound is a monocarboxylic acid having a number of carbon atoms greater than or equal to 4. and less than or equal to 20 (the carboxylic acid is preferably selected from the group consisting of butyric acid, valeric acid a citric acid, caprylic acid, citric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and a mixture of at least two thereof, the acid in the second component expressed as g carbon/kg second component The content is generally less than 5 g carbon/kg second component, preferably less than or equal to 1 g/kg', more preferably less than or equal to 〇5 g/kg, even more preferably less than or equal to 0.1 g. /kg, still more preferably less than or equal to 〇·〇5 g/kg and still more preferably less than or equal to o.oi g/kg. This content is generally greater than or equal to 0.0001 g carbon/kg second component. In this case, the butyric acid content in the second component expressed in terms of g carbon/kg second component is generally less than 〇.5 g carbon/kg second component and preferably less than or equal to 0.1 g/kg. . In this case, the shikimic acid (valeric acid) content in the second component expressed as g carbon/kg second component is generally less than 0.1 g -24 - 201213617 carbon / kg second component, preferably Less than or equal to 〇〇2 g/kg and more preferably less than or equal to 0.01 g/kg. In this case, the content of the linoleic acid (hexanoic acid) in the second component expressed as the second component of g carbon/kg is generally less than 〇_1 g carbon/kg second component, preferably less than Or equal to 002 g/kg and more preferably less than or equal to 〇.〇1 g/kg. In this case, the content of the fatty acid (octanoic acid) in the second component, which is not expressed in g carbon/kg fraction, is generally less than 0.01 g carbon/kg second component and preferably less than or equal to 〇_〇〇5 g/kg. In this case, the content of the salicylic acid (tannic acid) in the second component expressed in terms of g carbon/kg second component is generally less than 0.015 g carbon/kg second component and preferably less than or equal to 〇〇1〇g/kg. In this case, the lauric acid (dodecanoic acid) content in the second component expressed by the second component of g carbon/kg is generally less than 005.005 g carbon/kg second component and preferably Less than or equal to 0.002 g/kg. In the method according to the present invention, when the organic compound is a monocarboxylic acid having a number of carbon atoms of 4 or more and 20 or less (the carboxylic acid is preferably selected from the group consisting of butyric acid, valeric acid, When hexanoic acid, octanoic acid, citric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and a mixture of at least two thereof, the treatment of the brine according to the present invention makes it possible to content the acid The reduction is such that they do not destroy the defects of the electrolysis process in which the brine is used. This effect is unexpected. Indeed, regardless of the distribution of the acid between its dissociated (alkaline) and undissociated (acidic) forms, and therefore regardless of the pH at which the stripping treatment is carried out, 'by the stripping agent entrainment pair The removal of the undissociated (acid) form should shift the dissociation equilibrium of the acid towards the acid form and thus cause the stripping agent to completely remove -25-201213617. In the method according to the invention, the first component of the stripping process can be subjected to any subsequent processing. This treatment may be selected from the group consisting of distillation, evaporation, stripping, liquid-liquid extraction, liquid-liquid, liquid-solid phase separation, adsorption, absorption, complete or partial condensation, and any combination of at least two. This subsequent treatment is generally directed to recovering a portion of the organic compound in the first component prior to the subsequent treatment in the first portion, and recovering most of the stripping present in the first component prior to the subsequent portion in a second portion. Agent. This second portion is recycled to the stripping process or upstream of the stripping process. The first preferred subsequent treatment consists of a liquid phase separation operation when the stripping agent comprises water vapor. This separation generally produces an organic phase (the organic phase constitutes the first portion) and at least one aqueous phase (the aqueous phase constitutes the second portion). This operation can be a settling operation, a coalescing operation, or a combination thereof. When the compound is selected from the group consisting of butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, palmitic acid, stearic acid, and a mixture of at least two thereof, it may be advantageous to use an acid. An inorganic compound is added to the amount. The acid compound can be added during the liquid phase separation operation. An inorganic acid is preferably an acid inorganic compound. Hydrogen chloride in a gas/or aqueous solution is a better acid compound. The acid system is such that the pH of the aqueous phase obtained at the end of the liquid-liquid separation operation is less than or equal to 4, preferably less than or equal to 3 and more preferably equal to or equal to 2. The amount of acid added is such that after the liquid-liquid separation operation, the following phases are separated and a large continuous treatment component can be obtained, in particular, at least phase separation of the organic cinnamic acid is obtained, and the first component of the composition is/or The state and amount of addition are generally small at the end of -26-201213617. The pH of the aqueous phase obtained is generally greater than or equal to 0.5 and preferably greater than or equal to 1. The temperature at which the sedimentation and coalescence operations are carried out is generally less than or equal to 90 ° C, preferably less than or equal to 80 ° C and more preferably less than or equal to 70 ° C. The temperature at which the sedimentation and coalescence operations are carried out is generally greater than or equal to 10 ° C, preferably greater than or equal to 25 ° C, more preferably greater than or equal to 35 ° C and very particularly preferably greater than or Equal to 5 0. Hey. The second preferred subsequent treatment consists of a liquid-liquid extraction operation, in particular when the organic compound is selected from the group consisting of butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, When stearic acid and a mixture of at least two thereof are combined. This separation generally produces at least one organic phase (the organic phase constitutes the first portion) and at least one aqueous phase is obtained (the aqueous phase constitutes the second portion). The organic phase resulting from the liquid-liquid extraction operation can be sent to a high temperature oxidation unit. The temperature and p 进行 carried out by the liquid-liquid extraction operation are as described above for the liquid-liquid phase separation treatment. When the subsequent treatment is a liquid phase separation operation, a liquid-liquid extraction operation, or a combination thereof, at least a portion of the organic phase may be recycled to the upstream or downstream of the stripping treatment. Specifically, when the brine is derived from the process of producing epichlorohydrin, preferably from the process of producing epichlorohydrin by dehydrochlorination of dichlorohydrin, and very particularly preferably from a process for producing epichlorohydrin by dehydrochlorination of dichloropropanol (in which at least a portion of dichloropropanol is obtained from glycerol and wherein at least one component of the glycerin is a natural glycerin) -27- 201213617 The portion of the organic phase is recycled to any of the manufacturing processes, particularly to the process of producing dichlorohydrin from glycerol. When the monocarboxylic acid is selected from the group consisting of butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid 'myristic acid, palmitic acid, stearic acid, and a mixture of at least two thereof, This program is very suitable. In the process according to the invention, the first component obtained after the stripping treatment can be recycled to the upstream or downstream of the stripping treatment. For example, it can be sent to a high temperature oxidation process. The latter treatment is very suitable in the case where the stripping agent is selected from the group consisting of air, oxygen depleted air, nitrogen, oxygen, chlorine, water vapor, carbon dioxide, and a mixture of at least two thereof. In the process according to the invention, the second component obtained after the stripping treatment can be subjected to any subsequent treatment before being added to the anode compartment of the electrolytic cell. The treatment may be selected from the group consisting of: thermal conditioning, dilution, concentration, distillation, evaporation, sedimentation, coalescence, liquid-liquid extraction, filtration, crystallization, adsorption, oxidation, reduction, neutralization, mismatch, Sprinkling and salting operations and combinations of at least two thereof. Such treatments are as described in SOLVAY (Soci 6t6 Anonyme) application WO 2008/152043 (the content of this application, more specifically from the 11th page, line 13 to page 29, line 7) is incorporated by reference. This application, and SOLVAY (Soci 6t6 Anonyme) application WO 2009/095429 (the contents of this application, more specifically from the first page, line 24 to page 27, line 26, by reference herein) Described in the article. The process according to the invention generally comprises at least one operation selected from the group consisting of: -28-201213617 of the stripping operation: dilution, concentration, distillation, evaporation, liquid/liquid extraction, filtration, crystallization, adsorption. 'Oxidation, reduction, neutralization, mismatch, precipitation, aerobic bacterial treatment, anaerobic bacterial treatment, and combinations of at least two thereof. In the process according to the invention, the brine can thus be subjected to at least one operation at a pH of less than or equal to the pH of the anode compartment of the cell prior to the stripping treatment. This treatment may be selected from the group consisting of dilution, concentration, distillation, evaporation, sedimentation, coalescence, liquid-liquid extraction, filtration, crystallization, adsorption, oxidation, reduction, neutralization, mismatch, and precipitation operations. And a combination of at least two thereof. Such treatments are as described in SOLVAY (Soci 6t6 Anonyme) application WO 2008/ 1 52043 (the contents of this application, more specifically from the 11th page 13th to the 29th page, the 7th line, by reference In this application, and SOLVAY (Soci0t6 Anonyme) application WO 2009/095429 (the content of this application, more specifically from the first page, line 24 to page 27, line 26, is incorporated herein by reference. ) described in ). In another embodiment of the process according to the invention, the brine is derived from a reaction between epichlorohydrin and a monol and/or polyol to produce a derivative of the epichlorohydrin (especially In the process of epoxy resin] wherein the epichlorohydrin is obtained by dehydrochlorination of dichlorohydrin, at least one portion of the dichlorohydrin is obtained from glycerol, and wherein at least one of the glycerol The component is natural glycerin. In this embodiment, the brine comprises epichlorohydrin and/or dichloropropanol and the brine is subjected to a treatment which is intended to be carried out prior to the stripping of the method according to the invention -29-201213617 A majority of the epichlorohydrin and/or dichloropropanol contained in the brine is recovered and on the other hand an epichlorohydrin depleted brine is recovered. In a further embodiment of the method according to the invention, the brine is derived from a process for producing an epoxy resin by reaction between dichlorohydrin and a monol and/or polyol, wherein the dichloropropanol At least a portion of the glycerin is obtained from glycerol, and wherein at least one component of the glycerin is natural glycerin. In this embodiment, the brine comprises epichlorohydrin and/or dichloropropanol and the brine is subjected to a treatment which is intended to recover the brine in one aspect prior to the stripping treatment of the process according to the invention. Most of the epichlorohydrin and/or dichloropropanol contained and on the other hand recovers an epichlorohydrin depleted brine. In the above three embodiments, the brine generally comprises at least one organic compound other than epichlorohydrin or dichloropropanol. The organic compound is often a monocarboxylic acid and is often a carboxylic acid selected from the group consisting of butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, Stearic acid and a mixture of at least two thereof. In a first variant of these embodiments, the dehydrated brine of the epichlorohydrin and/or dichlorohydrin is subsequently subjected to a oxidative treatment prior to the stripping treatment of the process according to the invention. In a second variant of the embodiments, the epichlorohydrin and/or dichlorohydrin depleted brine is subjected to a stripping treatment according to the method of the invention and then produced from said The stripped brine is subjected to an oxidation treatment prior to being supplied to the anode chamber of the cell. -30 - 201213617 In a third variant of these embodiments, the epichlorohydrin and/or dichlorohydrin depleted brine is acidified and then subjected to a settling operation. This operation makes it possible to separate at least a portion of the acid contained in the brine prior to the stripping treatment according to the present invention. In the process according to the invention, the electrolysis cell can be a chlor-alkali electrolysis mercury bath or a membrane tank or a membrane tank. The type of electrolysis may be as described in International Application No. 2008/1 52043 in the name of SOLVAY (Soci 6t6 Anonyme), the content of the application, more specifically from page 18, line 18 to page 37, item 13. The paragraphs of the lines are hereby incorporated by reference. Preferably, the cell is a chlor-alkali electrolyzed membrane cell. In the method according to the present invention, the electrolytic cell is preferably a chloro-alkali electrolytic membrane tank, and the brine is derived from a process for producing epichlorohydrin, and still more preferably from the following by dichloro Process for the production of epichlorohydrin by dehydrochlorination of propanol: at least a portion of the dichloropropanol is obtained from glycerol in the process and wherein at least one component of the glycerol is obtained from a renewable feedstock. In the method according to the present invention, the electrolytic cell is preferably a chlor-alkali electrolyzed mercury bath or a membrane tank or a membrane tank, and wherein the brine is derived from a process selected from the group consisting of: Production of oxychloropropane, production of epichlorohydrin derivatives, production of 1,2-dichloroethane, production of polycarbonate, and combinations of at least two thereof. [Embodiment] The following examples are intended to illustrate the invention and not to limit it. -31 - 201213617 Example ι (according to the invention) (a) 500.4 g of aqueous brine containing 17% g/g NaCl and hexanoic acid corresponding to 69 mg/1 TOC (total organic carbon) in one liter In a round bottom flask, the flask was capped with a glass distillation head attached to a sloping condenser for discharging and condensing the vapor evolved during the test. The round bottom flask and the distillation head were equipped with a thermowell and a thermocouple. The pH of the brine was adjusted to a enthalpy of 2.0 at 25 °C by the addition of concentrated hydrochloric acid. The brine was heated to a temperature close to the boiling point (105 °C) at atmospheric pressure and water vapor was introduced at a constant flow rate by a capillary immersed in the brine. After injecting 50 g of water vapor in 26 min, the brine contained 17 tng/1 of T0C and its pH was measured at ambient temperature of 2.1 1 . (b) The electrolysis test was carried out in a 0.6 liter electrolytic cell comprising an anode chamber having an anode and a cathode compartment having a cathode separated by a membrane. The anode is composed of titanium covered with an electrochemical coating. The cathode is made of nickel covered with an electrochemical coating. The film is a Flemion F8020 type film from Asahi Glass Company. An aqueous composition containing 32% g/g NaOH was continuously supplied to the cathode compartment. An aqueous composition containing 18% NaCl and hexanoic acid corresponding to 18 mg/1 TOC was supplied to the anode chamber. The pH of the anode compartment was 4. A current density of 4 kA/m2 electrode was applied between the anode and the cathode. The tank voltage measured by maintaining the tank at 85 ° C and operating at a pressure of 1 bar absolute enthalpy was virtually identical to the one measured in a reference test. The reference test was in phase -32 - 201213617 Under the same conditions, but with an aqueous combination containing 18% NaCl without hexanoic acid, it is sent to the anode chamber. Example 2 (not according to the invention) (a) 496.7 g of aqueous brine containing 17% g/g NaCl and hexanoic acid corresponding to 82 mg/1 (total organic carbon) was placed in a one liter bottom flask, The top of the flask was capped with a sloping condenser glazing head which was used to vent and condense the vapor from the test. The round bottom flask and the distillation head were equipped with a thermocouple sleeve and a thermocouple. The pH of the brine was adjusted by adding 1 N hydrochloric acid to a enthalpy of 5.5 as measured at °C. The brine was heated to a temperature close to atmospheric pressure (1 05 t ) and water vapor was introduced at a flow rate by a capillary immersed in the brine. The salt pH was maintained at its initial enthalpy by the regular addition of 1 N hydrochloric acid. 50 g of water vapor was injected into the 26 miri, which contained 54 mg/l of TOC and had a pH of 5.4. (b) An electrolysis pilot b was carried out according to the conditions described in Test 1, except that the aqueous composition supplied to the anode chamber was composed of 18% g/g of NaCl and contained corresponding to 55 mg/1 TOC. . The pH of the anode compartment was 4. The measured cell voltage was 20 mV higher than that measured by the ~ reference test, which was supplied under the same conditions but with 1 8 % g/g of NaC1 without hexanoic acid. To the anode chamber. The round glass in the TOC is added to the ί 25 boiling point constant water after the test, which is contained in the hexanoic acid test. -33-

Claims (1)

201213617 七、申請專利範圍: 1. 一種電解方法,其中對一電解槽的陽極室供送至少 一種鹽水,該鹽水在至少一種汽提劑的存在下在小於或等 於該電解槽的陽極室的pH的一 pH下經受了一汽提處理 ,該鹽水在該處理之前包括至少一種有機化合物。 2. —種電解方法,包括: (a) 供應包括至少一種有機化合物的一鹽水; (b) 在至少一種汽提劑的存在下對該來自(a)的鹽水 進行至少一個汽提處理以獲得一汽提過的鹽水; (c) 對一電解槽的陽極室供送來自(b)的該汽提過的 鹽水; 並且其中來自(b)的該汽提處理係在小於或等於來自(c)的 電解槽的陽極室的pH的一pH下進行。 3. 如申請專利範圍第1或2項之方法,其中該鹽水在 該汽提處理之前包含至少一種氯化鈉’其含量大於或等於 140 g NaCl/kg 鹽水。 4 ·如申請專利範圍第1或2項之方法,其中該有機化 合物係碳原子數目大於或等於4並且小於或等於2〇的— 種單羧酸。 5. 如申請專利範圍第1或2項之方法,其中該單羧酸 係~脂肪酸。 6. 如申請專利範圍第1或2項之方法’其中該有機化 合物係碳原子數目大於6並且小於或等於20的一種單羧 酸。 -34 - 201213617 7.如申請專利範圍第1或2項之方法,其中該單殘酸 係選自以下各項組成之組:丁酸、戊酸、己酸、辛酸、癸 酸、月桂酸、肉豆寇酸、棕櫚酸、硬脂酸以及其至少兩種 之混合物。 8·如申請專利範圍第1或2項之方法,其中在該汽提 處理之前該鹽水中有機化合物的含量以g碳/kg鹽水表示 係大於或等於0.005 g/kg並且小於或等於20 g/kg。 9. 如申請專利範圍第8項之方法,其中在該汽提處理 之前該鹽水中有機化合物的含量以g碳/kg鹽水表示係大 於或等於0.75 g/kg。 10. 如申請專利範圍第1或2項之方法,其中該汽提 處理的pH係比該電解槽的陽極.室的pH低出至少0.1個 pH單位。 11. 如申請專利範圍第1或2項之方法,其中該汽提 劑係選自以下各項組成之組:空氣、氧氣耗盡的空氣、氮 氣 '氧氣、氯氣、氯化氫、水蒸汽、二氧化碳以及其至少 兩種之混合物。 1 2 .如申請專利範圍第1 1項之方法,其中該汽提劑係 水蒸汽,並且該汽提處理係在一汽提區中以一連續的模式 進行,對該汽提區供送有鹽水以及豎直且逆流地循環的汽 提劑,以kg水蒸汽/小時表示的上升水蒸汽的流速(v)與以 kg鹽水/小時表示的下降鹽水的流速(w)之比(τ)符合以下 公式: τ = α.[ 1 / (Kw -1 )] {l+(Xw/XF)[Kw(q-l)-l]} -35- 201213617 其中: α係大於或等於0.9並且小於或等於5; KW = (P有描物/ p)(i/s有描物)td(M有描物/ V s水); q=l+[Cplf*tf-Cp1F*tF)]/(AHvap)tf ; 係該鹽水中所含的有機化合物的蒸氣壓; P係該系統的總壓力; S有係以g碳/1鹽水表示的該有機化合物在鹽水中的溶 解度; Μ * ®物係以g碳/mol有機化合物表示的該有機化合物的莫 耳質量: V a *係以l/m〇l計的該鹽水莫耳體積; Xw係以g碳/kg鹽水表示的在該汽提區底部的鹽水的有機 化合物含量; Xf係以g碳/kg鹽水表示的進入該汽提區頂部的鹽水的有 機化合物含量; CPlf係以kJ/(kg鹽水·κ)表示的在該鹽水入口溫度tf下進 入該汽提區頂部的鹽水的比熱; cPIf係以k]/(kg鹽水·Κ)表示的在該鹽水出口溫度tF下離 開該汽提區底部的鹽水的比熱;並且 (△Hvap)tf係以kJ/kg蒸氣表示的在該鹽水入口溫度tf下水 的汽化潛熱。 1 3 .如申請專利範圍第1或2項之方法,包括至少一 個除該汽提操作之外的選自以下各項組成之組的操作:稀 釋、濃縮、蒸餾、蒸發、液液提取、過濾、結晶、吸附、 -36- 201213617 氧化、還原'中和、錯合、沉澱、好氧細菌處理、厭氧細 菌處理'加鹽以及其至少兩種的組合。 14. 如申請專利範圍第1或2項之方法,其中該電解 槽係—種氯-鹼電解的汞槽或隔膜槽或薄膜槽,並且其中 該鹽水係來自一選自以下各項組成之組的製程:環氧氯丙 院的製造、環氧氯丙烷衍生物的製造、1,2-二氯乙烷的製 造'聚碳酸酯的製造以及其至少兩種的組合。 15. 如申請專利範圍第14項之方法,其中該電解槽係 一氯-鹼電解的薄膜槽,並且其中該鹽水係來自一製造環 氧氯丙烷的製程。 1 6 .如申請專利範圍第1 5項之方法,其中該鹽水係來 自藉由二氯丙醇的脫氯化氫作用製造環氧氯丙烷之製程, 在該製程中至少一部分的二氯丙醇係由甘油獲得並且至少 一個分量的該甘油係由可再生的原料獲得。 -37- 201213617 四 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明:無 201213617 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無201213617 VII. Patent application scope: 1. An electrolysis method, wherein at least one brine is supplied to an anode chamber of an electrolytic cell, and the brine is at a pH less than or equal to an anode chamber of the electrolytic cell in the presence of at least one stripping agent. At a pH, it is subjected to a stripping treatment which includes at least one organic compound prior to the treatment. 2. An electrolytic method comprising: (a) supplying a brine comprising at least one organic compound; (b) subjecting the brine from (a) to at least one stripping treatment in the presence of at least one stripping agent to obtain a stripped brine; (c) feeding the stripped brine from (b) to an anode chamber of an electrolysis cell; and wherein the stripping treatment from (b) is less than or equal to (c) The pH of the anode chamber of the electrolytic cell is carried out at a pH of one. 3. The method of claim 1 or 2, wherein the brine comprises at least one sodium chloride at a level greater than or equal to 140 g NaCl/kg brine prior to the stripping treatment. 4. The method of claim 1 or 2, wherein the organic compound is a monocarboxylic acid having a number of carbon atoms greater than or equal to 4 and less than or equal to 2 Å. 5. The method of claim 1 or 2, wherein the monocarboxylic acid is a fatty acid. 6. The method of claim 1 or 2 wherein the organic compound is a monocarboxylic acid having a number of carbon atoms greater than 6 and less than or equal to 20. 7. The method of claim 1 or 2, wherein the single residual acid is selected from the group consisting of butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, Myristic acid, palmitic acid, stearic acid, and mixtures of at least two thereof. 8. The method of claim 1 or 2, wherein the content of the organic compound in the brine prior to the stripping treatment is greater than or equal to 0.005 g/kg and less than or equal to 20 g/g expressed as g carbon/kg brine. Kg. 9. The method of claim 8, wherein the content of the organic compound in the brine prior to the stripping treatment is greater than or equal to 0.75 g/kg expressed as g carbon/kg brine. 10. The method of claim 1 or 2, wherein the pH of the stripping treatment is at least 0.1 pH units lower than the pH of the anode chamber of the electrolytic cell. 11. The method of claim 1 or 2, wherein the stripping agent is selected from the group consisting of air, oxygen depleted air, nitrogen 'oxygen, chlorine, hydrogen chloride, water vapor, carbon dioxide, and a mixture of at least two of them. The method of claim 11, wherein the stripping agent is water vapor, and the stripping treatment is carried out in a continuous mode in a stripping zone, and the stripping zone is supplied with brine. And a stripping agent that circulates vertically and countercurrently, the ratio of the flow rate (v) of the rising water vapor expressed in kg of steam per hour to the flow rate (w) of the descending brine expressed in kg of brine per hour (τ) meets the following Formula: τ = α.[ 1 / (Kw -1 )] {l+(Xw/XF)[Kw(ql)-l]} -35- 201213617 where: α is greater than or equal to 0.9 and less than or equal to 5; KW = (P has a trace / p) (i/s has a trace) td (M has a trace / V s water); q = l + [Cplf * tf - Cp1F * tF)] / (AHvap) tf; The vapor pressure of the organic compound contained in the brine; P is the total pressure of the system; S has the solubility of the organic compound in brine expressed as g carbon / 1 brine; Μ * ® is based on g carbon / mol organic The molar mass of the organic compound represented by the compound: V a * is the salt volume of the brine in 1/m〇l; Xw is the organic compound of the brine at the bottom of the stripping zone expressed in g carbon/kg brine Content; Xf The organic compound content of the brine entering the top of the stripping zone in g carbon/kg brine; CPlf is the brine entering the top of the stripping zone at the brine inlet temperature tf expressed in kJ/(kg brine·κ) Specific heat; cPIf is the specific heat of the brine leaving the bottom of the stripping zone at the brine outlet temperature tF expressed in k]/(kg brine·Κ); and (ΔHvap)tf is expressed in kJ/kg vapor. The latent heat of vaporization of the water at the brine inlet temperature tf. 13. The method of claim 1 or 2, comprising at least one operation selected from the group consisting of: dilution, concentration, distillation, evaporation, liquid-liquid extraction, filtration , crystallization, adsorption, -36-201213617 oxidation, reduction 'neutralization, mismatch, precipitation, aerobic bacteria treatment, anaerobic bacterial treatment' plus salt and a combination of at least two thereof. 14. The method of claim 1 or 2, wherein the electrolytic cell is a mercury-alkali-electrolyzed mercury bath or a membrane tank or a membrane tank, and wherein the brine is from a group selected from the group consisting of Process: manufacture of epichlorohydrin, manufacture of epichlorohydrin derivatives, manufacture of 1,2-dichloroethane, manufacture of polycarbonate, and combinations of at least two thereof. 15. The method of claim 14, wherein the electrolytic cell is a membrane tank of chlor-alkali electrolysis, and wherein the brine is derived from a process for producing epichlorohydrin. The method of claim 15, wherein the brine is derived from a process for producing epichlorohydrin by dehydrochlorination of dichloropropanol, wherein at least a portion of the dichloropropanol is used in the process. Glycerol is obtained and at least one component of the glycerol is obtained from a renewable raw material. -37- 201213617 Four designated representatives: (1) The representative representative of the case is: None (2) The symbol of the representative figure is a simple description: No 201213617 If there is a chemical formula in the case, please disclose the chemical formula that best shows the characteristics of the invention: no
TW100126571A 2010-08-02 2011-07-27 Electrolysis process TWI521098B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1056360A FR2963338B1 (en) 2010-08-02 2010-08-02 ELECTROLYSIS METHOD

Publications (2)

Publication Number Publication Date
TW201213617A true TW201213617A (en) 2012-04-01
TWI521098B TWI521098B (en) 2016-02-11

Family

ID=43629731

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126571A TWI521098B (en) 2010-08-02 2011-07-27 Electrolysis process

Country Status (8)

Country Link
US (1) US20130161201A1 (en)
EP (1) EP2601138A1 (en)
JP (1) JP2013536320A (en)
KR (1) KR20130097741A (en)
CN (1) CN103052596B (en)
FR (1) FR2963338B1 (en)
TW (1) TWI521098B (en)
WO (1) WO2012016872A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1687248B1 (en) 2003-11-20 2011-06-01 SOLVAY (Société Anonyme) Process for producing dichloropropanol from glycerol and a chlorinated agent and in the presence of a catalyst selected from adipic and glutaric acid
TWI478875B (en) 2008-01-31 2015-04-01 Solvay Process for degrading organic substances in an aqueous composition
FR2935968B1 (en) 2008-09-12 2010-09-10 Solvay PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE
EP2621911A1 (en) 2010-09-30 2013-08-07 Solvay Sa Derivative of epichlorohydrin of natural origin
EP2794484A1 (en) 2011-12-19 2014-10-29 Solvay SA Process for reducing the total organic carbon of aqueous compositions
ITMI20120486A1 (en) * 2012-03-27 2013-09-28 Industrie De Nora Spa TREATMENT OF EFFLUENTS FROM PRODUCTION PLANTS OF EPOXY COMPOUNDS
EP2669305A1 (en) 2012-06-01 2013-12-04 Solvay Sa Process for manufacturing an epoxy resin
WO2014161868A1 (en) * 2013-04-03 2014-10-09 Solvay Sa Plant for chlor-alkali electrolysis of a brine and a process for using it
WO2014161867A1 (en) * 2013-04-03 2014-10-09 Solvay Sa Chlor-alkali electrolysis process
CN105805093A (en) * 2016-05-12 2016-07-27 沈兴华 Full-band filtering, magnetized, adsorption, rotary magnetic field and centrifugal oil filtering system

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1056360A (en) 1952-03-03 1954-02-26 Alsthom Cgee Method and devices for securing the axles of a vehicle, in particular for railway vehicles
US3052612A (en) * 1959-02-16 1962-09-04 Olin Mathieson Recovery of chlorine from electrol ysis of brine
US4240885A (en) * 1979-07-30 1980-12-23 The Lummus Company Oxidation of organics in aqueous salt solutions
JPS6046384A (en) * 1983-08-24 1985-03-13 Hodogaya Chem Co Ltd Preparation of alkali chlorate
US6103092A (en) * 1998-10-23 2000-08-15 General Electric Company Method for reducing metal ion concentration in brine solution
US7037481B2 (en) * 2002-09-09 2006-05-02 United Brine Services Company, Llc Production of ultra pure salt
EP1687248B1 (en) * 2003-11-20 2011-06-01 SOLVAY (Société Anonyme) Process for producing dichloropropanol from glycerol and a chlorinated agent and in the presence of a catalyst selected from adipic and glutaric acid
MX2007014516A (en) * 2005-05-20 2008-02-05 Solvay Method for making a chlorhydrine by reaction between a polyhydroxylated aliphatic hydrocarbon and a chlorinating agent.
CN102249859A (en) 2005-11-08 2011-11-23 索尔维公司 Process for the manufacture of dichloropropanol by chlorination of glycerol
EP1966413B1 (en) * 2005-12-20 2017-06-21 Ceramatec, Inc. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes
WO2007144335A1 (en) 2006-06-14 2007-12-21 Solvay (Societe Anonyme) Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol
US20100032617A1 (en) 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
FR2913421B1 (en) 2007-03-07 2009-05-15 Solvay PROCESS FOR PRODUCING DICHLOROPROPANOL
FR2913684B1 (en) 2007-03-14 2012-09-14 Solvay PROCESS FOR PRODUCING DICHLOROPROPANOL
EP2134433A2 (en) * 2007-03-21 2009-12-23 Sylvain Source, Inc. Water purification system
TW200911740A (en) 2007-06-01 2009-03-16 Solvay Process for manufacturing a chlorohydrin
TW200911773A (en) 2007-06-12 2009-03-16 Solvay Epichlorohydrin, manufacturing process and use
TW200911693A (en) * 2007-06-12 2009-03-16 Solvay Aqueous composition containing a salt, manufacturing process and use
FR2918058A1 (en) 2007-06-28 2009-01-02 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR ITS PURIFICATION AND USE IN THE MANUFACTURE OF DICHLOROPROPANOL
CN101784478A (en) * 2007-08-23 2010-07-21 陶氏环球技术公司 brine purification
EP2207617A1 (en) 2007-10-02 2010-07-21 SOLVAY (Société Anonyme) Use of compositions containing silicon for improving the corrosion resistance of vessels
FR2925045B1 (en) 2007-12-17 2012-02-24 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL
TWI478875B (en) 2008-01-31 2015-04-01 Solvay Process for degrading organic substances in an aqueous composition
WO2009121853A1 (en) 2008-04-03 2009-10-08 Solvay (Société Anonyme) Composition comprising glycerol, process for obtaining same and use thereof in the manufacture of dichloropropanol
FR2935699A1 (en) 2008-09-10 2010-03-12 Solvay PROCESS FOR PRODUCING A CHEMICAL
FR2935968B1 (en) 2008-09-12 2010-09-10 Solvay PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE
FR2939434B1 (en) 2008-12-08 2012-05-18 Solvay PROCESS FOR TREATING GLYCEROL
EP2496625A1 (en) 2009-11-04 2012-09-12 Solvay Sa Process for manufacturing an epoxy resin
FR2952060B1 (en) 2009-11-04 2011-11-18 Solvay PROCESS FOR THE PRODUCTION OF A PRODUCT DERIVED FROM EPICHLORHYDRIN

Also Published As

Publication number Publication date
US20130161201A1 (en) 2013-06-27
CN103052596A (en) 2013-04-17
KR20130097741A (en) 2013-09-03
FR2963338A1 (en) 2012-02-03
WO2012016872A1 (en) 2012-02-09
JP2013536320A (en) 2013-09-19
EP2601138A1 (en) 2013-06-12
CN103052596B (en) 2014-12-03
TWI521098B (en) 2016-02-11
FR2963338B1 (en) 2014-10-24

Similar Documents

Publication Publication Date Title
TWI521098B (en) Electrolysis process
JP5850937B2 (en) Salt water purification method
EP2240414B1 (en) Process for degrading organic substances in an sodium chloride containing aqueous composition
JP5259702B2 (en) Aqueous composition containing salt, process and use
TW200835682A (en) Processes for the production of diaryl carbonates and treatment of alkalichloride solutions resulting therefrom
TW200938525A (en) Process for production of diaryl carbonate
JP2019531875A (en) Process for electrochemical purification of chloride-containing process solutions
JP2020145406A (en) Manufacturing method for quaternary ammonium hydroxide organic solvent solution
JP2015504003A (en) Method for reducing total organic carbon in an aqueous composition
CA3006280A1 (en) Systems, reactors, methods and compositions for producing chlorine dioxide
TW202026274A (en) Method for producing organic solvent solution of quaternary ammonium hydroxide
JP2013039270A (en) Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination
JP2020075908A (en) Manufacturing method of organic solvent solution of hydroxylated quaternary ammonium
TW201336789A (en) Process for reducing the total organic carbon of aqueous compositions

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees