TW201213507A - Method for preparing Eu solid solution β type SiAlON - Google Patents

Method for preparing Eu solid solution β type SiAlON Download PDF

Info

Publication number
TW201213507A
TW201213507A TW100121393A TW100121393A TW201213507A TW 201213507 A TW201213507 A TW 201213507A TW 100121393 A TW100121393 A TW 100121393A TW 100121393 A TW100121393 A TW 100121393A TW 201213507 A TW201213507 A TW 201213507A
Authority
TW
Taiwan
Prior art keywords
less
aluminum oxynitride
container
mpa
type lanthanum
Prior art date
Application number
TW100121393A
Other languages
Chinese (zh)
Other versions
TWI454556B (en
Inventor
Fumihiro Nakahara
Kohki Ichikawa
Ryuji Tokunaga
Suzuya Yamada
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW201213507A publication Critical patent/TW201213507A/en
Application granted granted Critical
Publication of TWI454556B publication Critical patent/TWI454556B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Abstract

The present invention relates to a method for preparing Eu solid solution β type SiAlON with high efficacy of luminance in less unevenness of quality and good reproducibility, which is carried out by sintering materials comprising one or two of aluminum oxide or silicon oxide, silicon nitride, aluminum nitride, and europium compound, in a container made by boron nitride with air transmission rate of 0.1 cm<SP>3</SP>/cm<SP>2</SP>.s.MPa and less, in nitrogen atmosphere.

Description

201213507 六、發明說明: 【發明所屬之技術領域】 本發明係關於將Eu(銪)固溶的β型矽鋁氮氧化物 製造方法。 之 【先前技術】 將Eu固溶的β型矽鋁氮氧化物(以下稱為Eu固溶 型矽鋁氮氧化物)係被使用作為螢光體,將氮化矽 、氮化鋁(A1N)、及氧化銪(EU2〇3)所代表的光學活性1^ 化合物以預定的莫耳比加以混合,以2〇〇〇t附近的=产 進行燒成,將所得的燒成物粉碎而予以製造的技術 已為人所知(專利文獻1)。 但是,以專利文獻丨所記載的方法所得的Eu固溶 型矽鋁氮氧化物由於發光強度低,因此對粉體另外進行 熱處理已為人所知(專利文獻2、3)。 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2005_255885號 [專利文獻2]日本特開2〇〇5_255895號 [專利文獻3]國際公開第2〇〇8/〇62781號小冊 【發明内容】 (發明所欲解決之課題) 在習知的Eu固溶β型矽鋁氮氧化物之製造方法中, ^於在燒成時所使用的容器的形狀或所填充的原料粉的 »使得所燒成的螢光體的特性會大幅變化,無法獲得 了的龟光強度’而且要重現性佳地製造發光強度不均 較&gt;、的EU固溶β型矽鋁氮氧化物乃極為困難。 201213507 本發明之目的在提供一種品質不均較少且 地衣&amp;發光效率高的Eu固溶β型矽鋁氮氧化系 本發明人等經調查即使以相同的燒成條件 造,亦會發4 r: 生Eu固溶β型矽鋁氮氧化物的發光 的原因,韻^ $目^ 奴J兄右EU固溶β型矽鋁氮氧化物的原 夕率或氧減少比例變高,則發光強度會變弱。 對將原料重量減少率及氧減少比例控制在一定 方法精心研究,以致完成本發明。 (用以解決課題之手段) 本發明係一種Eu固溶Ρ型矽鋁氮氧化物之 + 特彳政為具備燒成步驟,該燒成步驟係將包 二氣透過度為0·1 cm3/cm2 . S . MPa以下之氮化 的氧化銘或氧化;^的__者或二者、氛化石夕、氣 銪化合物的原料在氮氣環境下進行燒成。 (發明之效果) ”藉由本發明’·可品質不均較少且重現性佳 光效率高的Eu固溶β型矽鋁氮氧化物。 藉由本發明之方法所製造的Eu固溶Ρ型矽 物係即使在高溫下亦為亮度降低較少,使用其 置係其亮度降低及色度偏移較小,耐熱性亦佳 品質且安定性佳。 此外,連同Eu固溶β型矽鋁氮氧化物併用 發光特性的營光體,II此亦可構成發出所希望 光裴置。尤其在將藍色LED作為激發源時,在 形態之營光體、與在575nm以上59〇nm以下的 重現性佳 7的方法》 來進行製 效率不均 料重量減 接著,針 量以下的 製造方法 含填充在 硼製容器 化紹、及 地製造發 產呂氮氧化 之發光裝 ,因此高 具有其他 顏色的發 將本實施 領域具有 201213507 發光峰值的黃色螢光體加以組合時,可成為範 色溫度的白色發光。 此外,藉由與發光波長的峰值為6〇〇nm以 以下的紅色螢光體,例如CaAlSiN〗:楚Λ J 寻加以 成演色性或顏色重現性的提升,富於適合各種室 明等的演色性,具有適於液晶顯示裝置的背光光 顏色重現性,而且可提供高溫特性優異的白色光 【實施方式】 以下說明本發明之實施形態。 本發明係一種EU固溶β型矽鋁氮氧化物之 ,其係具備有燒成步驟,該燒成步驟係將包含 氣透過度為O.lcmVcm2 · s · MPa以下之氣化刪 氧化鋁或氧化矽的一者或二者、氮化矽、氮化 化合物的原料在氮氣環境下進行燒成。 銪化合物係可選自金屬銪、氮化物、氧化衫 鹽。以使用在工業上較容易取得的氧化銪為佳。 量係以(M質量%以上3質量%以下的範圍為佳。 範圍内,可得適於實用之具有發光亮度之將Eu [ 型矽鋁氮氧化物。 氧化鋁或氧化矽的一者或二者、氮化矽、及 的摻合比例係一般式Sl6_zAlz〇zN8_z的z為超過 以下的範圍。Al/Ο莫耳比係以丨3以下為宜。 此外,關於原料的氮化矽’亦可使用將含有 的金屬粉末在氮氣環境下進行燒成者。含有Si纪 末的氮化反應係在1400t以上16〇〇t的溫度下〗 寬廣的 700nm 合,達 内外照 源等的 源0 .造方法 -充在空 .容器的 ,、及銪 f或碳酸 鋪的含 若在該 g溶的β .IL化在呂 0 且 4_2 Si(矽) J金屬粉 电行,因 201213507 此若在垓溫度條件的範圍的溫度、氮氣環境 的金屬粉末加熱而形成為氮化矽即可。 在將前述原料混合時,係可採用進行乾 法,及在與原料各成分不會實質上起反應的 進行濕式混合後’將溶媒去除的方法等。在 可使用v型混合機、搖擺式混合機(R〇cking 磨機、振動磨機等混合裝置。 在填充原料的容器係使用氮化硼製容器 用氮化硼製容器(以下稱為BN容器)是因為 板狀結晶所構成的容器具有透氣性,在燒成 的成刀主要形成為Si〇的氣相,可通過氮化 朝容器之外揮發之故。 但是,若SiO的揮發量變多時,判明出 矽鋁氮氧化物的一次粒子成長的阻礙與β型 物結晶中的氧耗盡。本發明人等針對一次粒 疑一氧耗盡的控制加以研究,可知若bn容 過度為0.1cm3/cm2 · s · Mpa以下,s⑴的揮 抑制。 在本發明中,BN容器的空氣透過度將於 由下式進行計算。 空氣透過度=空氣透過量(體積)/(壓力差 x空氣透過時間) 之所以將空氣透過度設為0.1cm3/cm2 . s ,疋因為抑制Si◦的揮發量而抑止β型矽鋁 一-人粒子成長阻礙,而且抑止氧的揮發量而4 下將含有Si 式混合的方 惰性溶媒中 混合中,係 M i X e r)、球 。之所以使 由氮化爛的 中,原料粉 爛的氣孔而 會發生β型 矽鋁氮氧化 子成長的阻 器的空氣透 發量即受到 後述,其藉 -χ透過面積 • MPa以下 氮氧化物的 印止β型矽 201213507 鋁氮氧化物結晶中的氡耗盡之故。藉由將BN容器的办 氣透過度設為0.1cm3/cm2· s· MPa以下,可將因燒成戶斤 造成的原料重量的減少抑制為1.5 %以下,且可將氧量的 減少率抑止為4 0 %以下。藉由抑制原料重量的減少與氧 量的減少率,在燒成中,β型矽鋁氮氧化物的一次粒子 會充分成長’可得具有較向發光效率的Eu固溶β型砂紹 氮氧化物。 空氣透過度較佳為0.01cm3/cm2· s· MPa以上。若 未達0·0 lcm3/cm2 · s . MPa,SiO的揮發量變得非常少, 變得容易形成縱橫比較大、短徑較細的微細粒子,而使 發光特性降低之故。亦即,BN容器的空氣透過度係以 0.01cm3/cm2 · s · MPa 以上 〇.lcm3/cm2 · s · MPa 以下為 佳’尤其空氣透過度係以0.01cm3/cm2 . s · MPa以上 0.09cm3/cm2 · s . MPa以下的範圍為更佳。 BN谷器的空氣透過度係可依設計而形成為 〇.lcm3/cm2 · s · MPa以下,但是亦可藉由在燒成步驟中 的使用次數來控制》即使為相同的BN容器,亦依所使 用的頻度,空氣透過度會有所不同。具有燒成所使用的 頻度愈多’空氣透過度愈小的傾向。 此外,若BN容器較小,會有抑制si〇的揮發量的 效果變小的傾向,若BN容器較大,則會有容器内的si〇 揮發量變得不均一的傾向。因此,較佳為以Eu固溶p 型矽鋁氮氧化物的粉體物性與發光特性不會變得不均一 的方式,形成為内寸計為直徑5cm以上15cm以下,高 度5cm以上15 cm以下的圓筒型容器。 201213507 燒成爐内的溫度為1 820°C以上2200°C以下,較佳為 1 850°C以上20 50°C以下。若燒成爐内的溫度過低時,會 有Eu2 +變得無法進入至β型矽鋁氮氧化物的結晶晶格中 的傾向,若溫度過高時,會有發生Eu固溶p型矽鋁氮氧 化物分解的傾向,因此較佳為上述範圍。燒成爐内的氣 壓較佳.為0.5MPa以上10MPa以下。此外,較佳為燒成 熱時間為5小時以上20小時以了。若燒成時間較短,β 型矽鋁氮氧化物的一次粒子成長變得不充分,若變長, 由製造成本的觀點來看並不理想。 i成後,將燒成物冷卻、粉碎而形成為使粒徑一致 的粉:。本發明之製造方法中,抑制因燒成所造成的原 料重量的減少及氧量的減少。藉此可具有重現性地製造 發光強度高的EU固溶β型矽鋁氮氧化物。 為了使Eu固溶β型矽鋁氮氧化物的發光強度提升, 亦可將所得的粉末在真空中或氮氣以外的氣體:境中再 加熱(以下稱為再加熱步驟),且另外進行酸處理。 再加熱步驟係用以使殘留在燒成步驟後的Eu =氮氧化物中的低結晶性部分更為不安定的處理步 β 馱處理步驟係用以去除在再加熱步驟 — 的低結晶性部分的處理步驟。 不… 再加熱步驟係以在盡量未含有屬於構成 八 一.-”…丨行哪’限裢晶性 ”的氮與氧的氣體環境中進行再加熱 以盡晋夹人 徑馬有效 ^ 3有氧的氣體而言,有選自氦、氖、惫、&amp; 矶、乳的稀有氣體,較佳為氬。 亂 201213507 再加熱步驟較佳為將燒成步驟後的Eu固溶p型石夕鋁 氮氧化物’在真空中為12〇(rc以上155(rc以下的溫度範 圍、或在稀有氣體中為1 300t以上155〇t以下的溫度範 圍進行加熱。若為s亥溫度範圍内,可抑制Eu固溶β型石夕 銘氮氧化物的明顯分解。 酸處理熱步驟係藉由浸潰在強酸性液體中,來將呈 不安定化的低結晶性部分去除的處理步驟。以酸而言, 係有氫氟酸、硝酸的單體或混合體。 藉由本發明之方法所製造的Eu固溶ρ型矽鋁氮氧化 物:在1外線至可見光之範圍寬廣的波長範圍被激發,由 於尚效率且以52〇nm以上550nm以下的範圍内作為主波 長而以綠色發光,因此作為綠色螢光體極為優異。因此, 單獨或與其他的紅色發光、藍色發光、黃色發光、燈色發 光的螢光體加以組合,藉此可適於使用在各種發光元件, 尤其以紫外LED或藍色LED為光源的白色LED。 以下藉由實施例來說明本發明。 [貫施例1 ] 以由原料粉中的A1量所計算出的z値為〇 25的方式 —摻合電氣化學工業公司製α型氮化矽粉末(Np_4〇〇級, 氧、含量0.96質量%)95·4質量%、丁〇 —咖公司製氣化銘 粉末(F級,氧含量0.84質量%)2 63質量%、大明化學公 司製氧化鋁粉末(丁^4-〇八11級)1.30質量%、信越化學工業 公司製氧化銪粉末(RU級)0.794質量%而得原料混合物 8以氧氮分析裝置(堀場製作所公司製EMGA-920)測 定原料混合粉的氧量,結果為丨68質量%。 201213507 使用搖擺式混合機(愛知電機公司製RM_丨〇),以6〇 分鐘乾式混合原料混合物’另外全部通過篩孔15〇μηι的 不銹鋼製篩,而得螢光體合成用的原料粉末。 ΒΝ容器係使用為内寸計為直徑i〇Cm&gt;&lt;高度9cmx 厚 度 0. .5 cm的附蓋的圓筒型BN容器(電氣化學 工業公司 製 Ν- 1 , 級 ,密度 1.8g/cm3)。 BN容器的空氣透過性係使用第1圖所示 裝置來進 行 測 定 〇 將 卸除上蓋的BN容器1透過橡膠襯塾 3而固定 在 固 定 具 2。在固定具2係透過閥4及壓力計 5連接有 旋 轉 式 真 空泵(未圖示)。進行真空抽吸至室溫下bn容器 1 内 的 壓 力相對大氣壓為-0.03MPa為止。在停 止真空泵 之 後 &gt; 測 定出空氣透過BN容器的壁部,恢復 至容器内 的 壓 力 為 -0.01 MPa為止的時間(以下稱為空氣透過時間) 0 ΒΝ容器的空氣透過度係藉由下列計算式來計算出 〔計算式〕 &quot;&quot; 空氣透過度(cm3/cm2 · s · = 空氣透過量(體積:cm3)/(壓力差(MPa)x透過面積 (cm2)x空氣透過時間(秒)) 在此’空氣透過量係考慮壓力變化(〇 〇2MPa),使用 將BN容器的容積換算成在大氣壓狀態下的値者。具體 而吕,係形成為對BN容器的容積乘以壓力差〇 〇2“匕 ’再除以大氣壓(〇.1024MPa)m得的値。壓力差係空氣透 過時的BN容器側壁的塵力差(0.03MPa)。此外,透過面 積係BN S器的側面的自積。之所以在透過面積未加上 -10- 201213507 BN容器的底面積,是因為如前所述bn容器的底面被固 定具2所覆蓋,因此空氣不會透過之故。 在實施例1中所使用的BN容器的空氣透過時間為 260 秒。 因此,空氣透過度為: 700(cm3) * 〇.〇2(MPa)/〇.i〇24(MPa) * 0.03(MPa) * 260(秒)=0_062(cm3/cm2 · s · MPa)。 此外’實施例1的BN容器係使用已經使用於5〇次 以上的燒成者。 在BN容器填充25〇g原料粉末’以碳加熱器的電氣 爐’在0.9MPa的加壓氮氣環境中’以2〇〇〇°c進行1 〇小 時的燒成。燒成前後的原料重量減少為0 9 8 %。 燒成物係稀薄凝聚的塊狀,在進行輕度裂解後,通 過篩孔4 5 μιη的篩而得Eu固溶β型矽鋁氮氧化物的榮光 體粉末。螢光體粉末的氧量為1.丨5質量%,相對原料混 合粉末的氧量的減少量為3 1.5 %。 對螢光體粉末進行使用Cu之Κα線的粉末X線繞射 測定(XRD) ’進行結晶相的同化及β型石夕紹氮氧化物的 晶格4數測疋的結果’觀察到作為結晶相的β型碎铭氮 氧化物’及以其他相而言’在2 Θ = 3 3〜3 8。附近觀察到 複數的微小繞射線。其中最南的繞射線強度係相對β型 矽鋁氮氧化物的(1 0 1)面的繞射線強度為1 %以下。 使用分光螢光光度計(曰立先端科技公司(Hitachi High-Technologies Corporation)製 F45 00)來測定當將所 得的β型矽鋁氮氧化物中的4 5 5 nm的藍色光作為激發光 -11- 201213507 時的螢光頻譜的峰值波長的高度。以在相同條件下測定 出化成Kasei Optonix公司製YAG : Ce :螢光體(ρ46_γ3) 的峰值波長為基準,求出相對値作為發光強度。在激發 光係使用經分光的氙燈光源。實施例丨的螢光體的發光 強度為1 3 5 %。 [實施例2] 除了與實施例1同樣地在BN容器填充2〇〇g來進行 燒成以外,係以與實施例丨相同的條件將原料粉末進行 燒成,在裂解後通過篩孔45 μηι的篩而得£U固溶β型矽 鋁氮氧化物的螢光體粉末》將所得的螢光體粉末與實施 例1同樣地進行評估。燒成前後的原料重量減少為丨丨5 % ’氧量減少為3 3.9 %,發光強度為1 2 7 %。 [實施例3 ] 使用空氣透過度為〇.〇88cm3/cm2· s· MPa的ΒΝ容 器(空氣透過時間為1 84秒),以與實施例2相同的條件 將原料粉末進行燒成’在裂解後通過篩孔45μιη的篩, 而得Eu固溶β型矽鋁氮氧化物的螢光體粉末。將所得的 榮光體粉末與實施例1同樣地進行評估。燒成前後的原 料重量減少為1.29%,氧量減少為35.1%,發光強度為 125¾。此外,在實施例3中所使用的bn容器係使用次 數第2次者。 [實施例4] 將在實施例2中所得的Eu固溶β型矽鋁氮氧化物的 營光體粉末再次填充在ΒΝ容器,加熱至1〇〇〇 ,以 1000°C導入氬氣而將氣體壓力作為大氣壓,以每分鐘 -12- 201213507 1 0 °C升溫至1 5 0 0 °C,以1 5 0 0 °C保持6小時而進行再加熱 處理。之後,以每分鐘10°C冷卻至1200°C,1200ec以下 係藉由爐内冷卻而冷卻至室溫附近。所得的粉末係變色 成深綠色,但是並不會發生固化而保持粉末狀的狀態。 將進行再加熱處理後的粉末在10%氫氟酸與15%硝 酸的混酸中,以7 5 °C進行加熱處理,在冷卻後靜置,將 上清液長除’另外添加蒸餾水,攪拌、靜置,反覆進行 用以去除上清液的傾析(decantation)至懸浮液的pH成為 中性為土。之後’進行過濾、乾燥而得螢光體粉末。實 施例4的螢光體的發光強度為203%。 (比較例1) 除了使用空氣透過度為〇.18cm3/cm2· s· MPa的BN 容器(空氣透過時間為8 8秒)以外,以與實施例2相同的 條件將原料粉末進行燒成,在粉碎後通過篩孔4 5 μηι的 篩而得Eu固溶β型矽鋁氮氧化物的螢光體粉末。將所得 的螢光體粉末與實施例i同樣地進行評估。燒成前後的 原料重量減少為1.83%,氧量減少為417%,發光強度為 100°/。°在比較例1中所使用的BN容器係使用次數第2 次者。 (比較例2) 除了使用空氣透過度為0.22cm3/cm2· s· MPa的低 密度的BN容器(電氣化學工業公司製NB1000級,密度 1.6g/cm3 ’空氣透過時間=75秒)以外,以與實施例2相 同=條件將原料粉末進行燒成,在裂解後通過篩孔45 、1而得Eu固溶β型矽鋁氮氧化物的螢光體粉末。將所 -13- 201213507 付的螢光體粉末與實施例丨同樣地進行評估。燒成前後 的原料重量減少為2.43%,氧量減少$ 43 5%,發光強度 為 83%。 (比較例3) 除了使用空氣透過度為〇 34cm3/cm2 · s · MPa的低 岔度的BN容器(電氣化學工業公司製NB1〇〇〇級密度 1.6g/cm3 ’空氣透過時間=47秒)以外係以與實施例2 相同的條件將原料粉末進行燒成,在裂解後通過筛孔 45_的筛而得Eu固溶p型矽鋁氮氧化物的螢光體粉末 。將所得的螢光體粉末與實施例!同樣地進行評估。燒 成前後的原料重量減少A 2.63%、氧量減少$ 47·6%、: 光強度為70%。 將實施例1〜3與比較例卜3的評估結果顯示於表ι 。此外,根據實施例1〜3與比較例丨〜3的評估結果,將 原料重量減少與發光強度的關係曲線圖顯示於第2圖。 [表1] 實施例 ---— 比較例 1 2 3 1 2 3 容 器 容積 公升 0.7 0.7 0.7 0.7 0.7 0.7 壁厚尺寸 mm 5 5 15 5 5 5 ΒΝ材質 N1 N1 __N1 N1 NB1000 NB1000 氣體透過 時間 sec 260 260 184 — 88 75 47 空氣透過度 cm3/cm2 · s · MPa 0.062 0.062 0.088 0.18 0.22 0.34 容器 1使用次數 50次 以上 50次 以上 第2次 第2次 50次 以上 第2次 原 料 試樣量 g 250 200 200 200 200 200 螢 光 體 重量減少 % 0.98 1.15 _1.29 1.83 2.43 2.63 氧量 燒成前重量g 1.68 1.68 1.68 1.68 1.68 1.68 燒成後重量g 1.15 1.11 1.09 0.98 0.95 0.88 氧量減少 % 31.5 33.9 35.1 41.7 43.5 47.6 發光強度 % 135 127 125 100 83 70 -14- 201213507 實施例1〜3的螢光體係均為原料重量減少為1. 5 %以 下,氧減少量為4 0 %以下,與比較例1 ~ 3相比,具有較 高的發光強度。此外,如第1圖所示,原料重量減少値 愈高,螢光體的發光強度愈低。 【圖式簡單說明】 第1圖係容器的空氣透過度測定時所使用的裝置的 模式圖。 第2圖係顯示藉由燒成所致的原料重量減少率與所 得的螢光體的發光強度的關係的曲線圖。 【主要元件符號說明】 1 BN容器 2 固定具 3 橡膠襯墊 4 閥 5 壓力計 -15-201213507 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for producing a β-type lanthanum aluminum oxynitride which dissolves Eu (铕). [Prior Art] β-type yttrium aluminum oxynitride (hereinafter referred to as Eu solid solution yttrium aluminum oxynitride) in which Eu is dissolved is used as a phosphor, and tantalum nitride and aluminum nitride (A1N) are used. And the optically active compound represented by cerium oxide (EU2〇3) is mixed at a predetermined molar ratio, and fired at a yield of 2 〇〇〇t, and the obtained fired product is pulverized and manufactured. The technology is known (Patent Document 1). However, since the Eu solid solution type lanthanum aluminum oxynitride obtained by the method described in the patent document is low in light emission, it is known that heat treatment is additionally performed on the powder (Patent Documents 2 and 3). [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2005-255885 [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei No. Hei No. Hei. SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) In the conventional method for producing Eu-solution β-type lanthanum aluminum oxynitride, the shape of the container used in the firing or the raw material powder to be filled »The characteristics of the phosphor to be fired are greatly changed, and the tortoise strength which cannot be obtained is obtained, and the EU solid solution β-type lanthanum aluminum oxynitride is produced with good reproducibility. It is extremely difficult. 201213507 The object of the present invention is to provide an Eu-solution β-type lanthanum-aluminum oxynitride system having a low degree of unevenness in quality and a high luminous efficiency of lichens & luminescence. The present inventors have investigated that even if they are made under the same firing conditions, they will be issued. r: the reason for the luminescence of the Eu-solution-type β-type lanthanum aluminum oxynitride, the rhyme ^ 目 ^ slave J brother right EU solid solution β-type lanthanum oxynitride has a higher ratio of the original eve rate or oxygen reduction, then illuminate The intensity will be weaker. The method of controlling the weight reduction rate of the raw material and the oxygen reduction ratio in a certain manner has been carefully studied, so that the present invention has been completed. (Means for Solving the Problem) The present invention is a Eu solid solution type lanthanum aluminum oxynitride + 彳 彳 为 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备 具备Cm2. S. MPa below the nitridation of oxidation or oxidation; ^ __ or both, the atmosphere of the fossils, gas compounds are fired in a nitrogen atmosphere. (Effects of the Invention) "Eu solid solution β-type lanthanum aluminum oxynitride having low quality unevenness and high reproducibility and high light efficiency by the present invention. Eu solid solution type produced by the method of the present invention. The sputum system has a low brightness reduction even at high temperatures, and its use is reduced in brightness and chromaticity shift, heat resistance is good, and stability is good. In addition, together with Eu, it is dissolved in β-type lanthanum aluminum. In the case of an oxide with a luminescent property, it is also possible to emit a desired light. Especially when the blue LED is used as an excitation source, the luminescence in the form and the weight of 575 nm or more and 59 〇 nm or less. The method of the presently good 7 is used to carry out the production efficiency unevenness weight reduction, and the manufacturing method below the needle amount is filled with the boron-based container, and the ground-made luminescence product is produced, so that it has other colors. When the yellow phosphor having the emission peak of 201213507 in this embodiment is combined, it can be white light of a color temperature. Further, by using a red phosphor having a peak wavelength of 6 〇〇 nm or less, Such as CaAlSi N〗: Chu Yu J seeks to enhance the color rendering or color reproducibility, is suitable for various color renderings, and has backlight color reproducibility suitable for liquid crystal display devices, and provides excellent high temperature characteristics. [Embodiment] Hereinafter, an embodiment of the present invention will be described. The present invention relates to an EU solid solution β-type lanthanum aluminum oxynitride, which is provided with a baking step, which comprises a gas permeability of O.lcmVcm2 · s · MPa or less Gasification of one or both of alumina or yttrium oxide, raw materials of tantalum nitride, nitrided compound are fired in a nitrogen atmosphere. The ruthenium compound may be selected from metal ruthenium, It is preferable to use a cerium oxide which is industrially easy to obtain. The amount is preferably in the range of (M% by mass or more and 3% by mass or less. In the range, it is suitable for practical use. The ratio of Eu [type bismuth aluminum oxynitride. One or both of aluminum oxide or cerium oxide, cerium nitride, and the blending ratio of the general formula S16_zAlz〇zN8_z is in the range exceeding the following. Al/Ο莫The ear ratio is preferably 丨3 or less. In addition, the tantalum nitride of the raw material can also be used for firing the metal powder contained in a nitrogen atmosphere. The nitridation reaction system containing Si is at a temperature of 1400 t or more and 16 〇〇t. Source of source such as internal and external sources. Method of production - filling in the empty container, and 铕f or carbonated coating if dissolved in the g. IL in the L0 and 4_2 Si(矽) J metal In the case of 201213507, it is preferable to form the tantalum nitride by heating the metal powder in the temperature range of the temperature and the nitrogen atmosphere. When the raw materials are mixed, the dry method and the raw materials may be used. A method of removing a solvent after wet mixing after the components are not substantially reacted. A mixing device such as a v-type mixer or a rocking mixer (R〇cking mill, vibrating mill, etc.) can be used. In the container for filling the raw material, a container made of boron nitride for a container made of boron nitride (hereinafter referred to as a BN container) It is because the container made of plate crystals has gas permeability, and the formed blade formed by firing is mainly formed into a gas phase of Si〇, which can be volatilized outside the container by nitriding. However, if the amount of volatilization of SiO is large, In the present invention, the inventors of the present invention have studied the control of the growth of the primary particles of the aluminum oxynitride and the depletion of the oxygen in the β-type crystal. The inventors of the present invention have studied the control of the primary particle and the oxygen depletion. /cm2 · s · Mpa or less, s(1) is suppressed. In the present invention, the air permeability of the BN container will be calculated by the following formula: Air permeability = air permeability (volume) / (pressure difference x air transmission time) The reason why the air permeability is set to 0.1cm3/cm2. s, 疋 suppresses the amount of volatilization of Si 而 to suppress the growth inhibition of β-type yttrium aluminum-human particles, and suppresses the amount of oxygen volatilization and 4 contains Si Mixed square inert solvent Combined, Department of M i X e r), ball. The reason why the amount of air permeation of a resistor in which the β-type lanthanum oxynitride grows due to the crater of the raw material in the nitriding is caused by the latter, and the NOx permeability is less than MPa. The printing of β-type 矽201213507 The ruthenium in the crystallization of aluminum oxynitride is exhausted. By setting the gas permeability of the BN container to 0.1 cm 3 /cm 2 · s·MPa or less, the reduction in the weight of the raw material due to the firing of the household can be suppressed to 1.5% or less, and the reduction rate of the oxygen amount can be suppressed. It is below 40%. By suppressing the decrease in the weight of the raw material and the rate of decrease in the amount of oxygen, the primary particles of the β-type lanthanum aluminum oxynitride are sufficiently grown during the firing, and the Eu-solution β-type shale oxide having a relatively high luminous efficiency can be obtained. . The air permeability is preferably 0.01 cm 3 /cm 2 · s· MPa or more. When it is less than 0·0 lcm3/cm2 · s. MPa, the amount of SiO is extremely small, and it is easy to form fine particles having a large aspect ratio and a small short diameter, and the luminescent property is lowered. That is, the air permeability of the BN container is preferably 0.01 cm 3 /cm 2 · s · MPa or more 〇.lcm 3 /cm 2 · s · MPa or less. In particular, the air permeability is 0.01 cm 3 /cm 2 . s · MPa or more and 0.09 cm 3 . /cm2 · s . The range below MPa is more preferable. The air permeability of the BN grain can be designed to be 〇.lcm3/cm2 · s · MPa or less, but can also be controlled by the number of uses in the firing step, even if it is the same BN container. The air used will vary in frequency. The more frequently used, the more the air permeability tends to be smaller. Further, when the BN container is small, the effect of suppressing the amount of volatilization of the si oxime tends to be small, and if the BN container is large, the amount of volatility of the si 内 in the container tends to be non-uniform. Therefore, it is preferable that the powder physical properties and the luminescent properties of the solid solution p-type lanthanum aluminum oxynitride are not 5 cm or more and 15 cm or less in height, and the height is 5 cm or more and 15 cm or less. Cylindrical container. 201213507 The temperature in the firing furnace is 1 820 ° C or more and 2200 ° C or less, preferably 1 850 ° C or more and 20 50 ° C or less. When the temperature in the firing furnace is too low, Eu2 + tends not to enter the crystal lattice of the β-type lanthanum oxynitride. If the temperature is too high, Eu-soluble p-type 矽 occurs. Since aluminum oxynitride tends to decompose, it is preferably in the above range. The gas pressure in the firing furnace is preferably 0.5 MPa or more and 10 MPa or less. Further, it is preferred that the calcination time is from 5 hours to 20 hours. When the firing time is short, the primary particle growth of the β-type lanthanum oxynitride is insufficient, and if it is long, it is not preferable from the viewpoint of production cost. After i is formed, the fired product is cooled and pulverized to form a powder having a uniform particle diameter: In the production method of the present invention, the reduction in the weight of the raw material due to the baking and the reduction in the amount of oxygen are suppressed. Thereby, the EU solid solution β-type lanthanum aluminum oxynitride having high luminescence intensity can be produced reproducibly. In order to increase the luminescence intensity of the Eu solution-type yttrium aluminum oxynitride, the obtained powder may be reheated in a vacuum or a gas other than nitrogen (hereinafter referred to as a reheating step), and additionally subjected to acid treatment. . The reheating step is for treating the lower crystalline portion of the Eu = oxynitride remaining after the firing step to be more unstable. The processing step is used to remove the low crystalline portion of the reheating step. Processing steps. No. The reheating step is performed by reheating in a gas atmosphere that does not contain nitrogen and oxygen which constitutes the one-by-one--------------------------------- The oxygen gas is a rare gas selected from the group consisting of lanthanum, cerium, lanthanum, &amp; rock, and milk, preferably argon. Disorder 201213507 The reheating step is preferably to treat the Eu-solution p-type Shixi aluminum oxynitride after the firing step to 12 真空 in vacuum (rc above 155 (temperature range below rc, or 1 in rare gas) Heating in the temperature range of 300t or more and 155〇t or less. If it is within the temperature range of shai, it can inhibit the obvious decomposition of the Eu-solution β-type Shi Ximing nitrogen oxide. The acid treatment thermal step is by dipping in a strong acidic liquid. In the process of removing the unresolved low crystalline portion, the acid is a monomer or a mixture of hydrofluoric acid and nitric acid. The Eu solid solution p type produced by the method of the present invention.矽Aluminum oxynitride: It is excited in a wide wavelength range from the outside line to the visible light, and emits green light as a main wavelength in the range of 52 〇 nm or more and 550 nm or less. Therefore, it is excellent as a green phosphor. Therefore, it can be used alone or in combination with other red, blue, yellow, and light-emitting phosphors, thereby being suitable for use in various light-emitting elements, especially ultraviolet LEDs or blue LEDs. White LE D. Hereinafter, the present invention will be described by way of examples. [Example 1] A method in which z 计算 calculated from the amount of A1 in the raw material powder is 〇 25 - blending α-type tantalum nitride manufactured by Electric Chemical Industry Co., Ltd. Powder (Np_4〇〇 grade, oxygen, content 0.96 mass%) 95·4 mass%, gasification Ming powder made by Dingwei-Cai Company (F grade, oxygen content 0.84% by mass) 2 63% by mass, oxidation by Daming Chemical Co., Ltd. Aluminium powder (Binger 〇 〇 11 11 11 11 11 11 11 11 11 11 11 11 11 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM The amount of oxygen in the raw material mixed powder was measured and found to be 68% by mass. 201213507 The raw material mixture was dry-mixed in 6 minutes using a rocking mixer (RM_丨〇, manufactured by Aichi Electric Co., Ltd.), and all passed through the sieve 15〇μηι. A stainless steel sieve is used to obtain a raw material powder for phosphor synthesis. The crucible container is a cylindrical BN container with a diameter of i〇Cm&gt;&lt;9 cmx in thickness and 0.5 cm in thickness (electrical) Chemical Industry Company Ν - 1 , grade, density 1 .8g/cm3) The air permeability of the BN container is measured by using the apparatus shown in Fig. 1, and the BN container 1 from which the upper cover is removed is fixed to the fixture 2 through the rubber lining 3. A rotary vacuum pump (not shown) is connected to the valve 4 and the pressure gauge 5. The vacuum is sucked to room temperature, and the pressure in the container 1 is at a pressure of -0.03 MPa. After the vacuum pump is stopped, the air is measured to pass through the BN. The wall of the container is restored to a time when the pressure inside the container is -0.01 MPa (hereinafter referred to as air permeation time). 0 The air permeability of the container is calculated by the following formula: [calculation formula] &quot;&quot; Air permeability (cm3/cm2 · s · = air permeation (volume: cm3) / (pressure difference (MPa) x transmission area (cm2) x air permeation time (seconds)) Here, 'air permeation is based on pressure change (〇〇2MPa), the volume of the BN container is converted to the one under atmospheric pressure. Specifically, it is formed by multiplying the volume of the BN container by the pressure difference 〇〇2 "匕" and dividing by atmospheric pressure (〇.1024 MPa) m. The pressure difference is the difference in dust force of the side wall of the BN container when air is transmitted. (0.03 MPa). In addition, the transmission area is the self-product of the side of the BN S. The reason why the bottom area of the -10-201213507 BN container is not added to the transmission area is because the bottom surface of the bn container is fixed as described above. The air is not permeable. The air permeation time of the BN container used in Example 1 is 260 seconds. Therefore, the air permeability is: 700 (cm3) * 〇.〇2 (MPa)/ 〇.i〇24(MPa) * 0.03(MPa) * 260 (seconds) = 0_062 (cm3/cm2 · s · MPa). Further, the BN container of the first embodiment is used for firing more than 5 times. The BN container was filled with 25 μg of raw material powder 'electric furnace of carbon heater' in a pressurized nitrogen atmosphere of 0.9 MPa for 2 hrs at 2 ° C. Raw materials before and after calcination The weight loss is 0.99%. The fired product is a thin, agglomerated block, which is passed through a sieve of 4 5 μm after a slight cracking. A glory powder of Eu-soluble β-type lanthanum aluminum oxynitride. The amount of oxygen of the phosphor powder is 1. 5% by mass, and the amount of oxygen relative to the raw material mixed powder is reduced by 3.5%. Powder X-ray diffraction measurement (XRD) using Cu Κα line was carried out 'The assimilation of the crystal phase and the result of the crystal lattice 4 number of the β-type Shi Xishao oxynitride' were observed as the β-form of the crystal phase. Ming nitrogen oxides 'and other phases' in 2 Θ = 3 3~3 8. Near the number of tiny diffraction rays observed. The southernmost ray intensity is relative to β-type yttrium aluminum oxynitride (1 0 1) The ray intensity of the surface is less than 1%. The spectrophotometer (F45 00 manufactured by Hitachi High-Technologies Corporation) is used to determine when the obtained β-type lanthanum aluminum oxynitride is used. The blue light of 4 5 5 nm is used as the peak wavelength of the fluorescence spectrum at excitation light-11-201213507. The peak value of YAG : Ce : phosphor (ρ46_γ3) manufactured by Kasei Optonix Co., Ltd. is measured under the same conditions. The wavelength is used as a reference, and the relative enthalpy is obtained as the luminescence intensity. A luminescence intensity of the luminescence of the spectroscopy was used. The luminescence intensity of the phosphor of Example 1 was 135 %. [Example 2] In the same manner as in Example 1, except that 2% of the BN container was filled and fired, The raw material powder was fired under the same conditions as in Example ,, and after being pulverized, it was passed through a sieve of 45 μm mesh to obtain a phosphor powder of a solid solution of β-type lanthanum oxynitride. The bulk powder was evaluated in the same manner as in Example 1. The weight reduction of the raw materials before and after firing was 丨丨5 %', the oxygen amount was reduced to 33.9 %, and the luminescence intensity was 127%. [Example 3] Using a crucible container having an air permeability of 〇.〇88 cm3/cm2·s·MPa (air transmission time: 1 84 seconds), the raw material powder was fired in the same conditions as in Example 2 'in the cracking After passing through a sieve having a mesh size of 45 μm, a phosphor powder of Eu-soluble β-type lanthanum aluminum oxynitride was obtained. The obtained glomer powder was evaluated in the same manner as in Example 1. The weight of the raw material before and after firing was reduced to 1.29%, the oxygen amount was reduced to 35.1%, and the luminous intensity was 1253⁄4. Further, the bn container used in the third embodiment was used for the second time. [Example 4] The campant powder of the Eu-solution β-type lanthanum aluminum oxynitride obtained in Example 2 was again filled in a helium vessel, heated to 1 Torr, and argon gas was introduced at 1000 ° C. The gas pressure was raised to 1,500 ° C per minute at -12 - 201213507 1 0 ° C, and reheated at 1,500 ° C for 6 hours. Thereafter, it was cooled to 1200 ° C at 10 ° C per minute, and 1200 ec or less was cooled to near room temperature by cooling in a furnace. The obtained powder was discolored into a dark green color, but it did not solidify and remained in a powdery state. The powder which was subjected to the reheating treatment was heat-treated at 7 5 ° C in a mixed acid of 10% hydrofluoric acid and 15% nitric acid, and allowed to stand after cooling, and the supernatant was removed by adding 'distilled water separately, and stirred. After standing, the decantation for removing the supernatant was repeated until the pH of the suspension became neutral. Thereafter, the mixture was filtered and dried to obtain a phosphor powder. The luminescent intensity of the phosphor of Example 4 was 203%. (Comparative Example 1) The raw material powder was fired under the same conditions as in Example 2, except that a BN container having an air permeability of 1818 cm3/cm2·s·MPa was used (air transmission time was 8 8 seconds). After pulverization, a sieve powder of 4 5 μm was passed through a sieve to obtain a phosphor powder of Eu-soluble β-type lanthanum aluminum oxynitride. The obtained phosphor powder was evaluated in the same manner as in Example i. The weight of the raw materials before and after the calcination was reduced to 1.83%, the oxygen amount was reduced to 417%, and the luminous intensity was 100 °/. ° The BN container used in Comparative Example 1 was used for the second time. (Comparative Example 2) A low-density BN container having an air permeability of 0.22 cm 3 /cm 2 · s· MPa (NB1000 grade manufactured by Denki Kagaku Kogyo Co., Ltd., density 1.6 g/cm 3 'air transmission time = 75 seconds) was used. The same as in Example 2 = Condition The raw material powder was fired, and after the cracking, it passed through the mesh holes 45 and 1, and a phosphor powder of Eu-solution β-type lanthanum aluminum oxynitride was obtained. The phosphor powder of -13 - 201213507 was evaluated in the same manner as in Example 。. The weight of the raw materials before and after calcination was reduced by 2.43%, the amount of oxygen was reduced by $43.5%, and the luminous intensity was 83%. (Comparative Example 3) A BN container having a low air permeability of 〇34 cm 3 /cm 2 · s · MPa was used (the NB1 grade density of the electric chemical industry company was 1.6 g/cm 3 'air transmission time = 47 seconds). The raw material powder was fired under the same conditions as in Example 2, and after passing through a sieve having a mesh size of 45 mm, a phosphor powder of Eu solid solution p-type lanthanum aluminum oxynitride was obtained. The obtained phosphor powder and examples! The assessment is performed in the same way. The weight of the raw materials before and after the calcination was reduced by A 2.63%, the oxygen amount was reduced by 47.6%, and the light intensity was 70%. The evaluation results of Examples 1 to 3 and Comparative Example 3 are shown in Table ι. Further, according to the evaluation results of Examples 1 to 3 and Comparative Examples 丨 to 3, a graph showing the relationship between the weight loss of the raw material and the luminescence intensity is shown in Fig. 2 . [Table 1] Example----Comparative Example 1 2 3 1 2 3 Container volume liter 0.7 0.7 0.7 0.7 0.7 0.7 Wall thickness dimension mm 5 5 15 5 5 5 ΒΝMaterial N1 N1 __N1 N1 NB1000 NB1000 Gas transmission time sec 260 260 184 — 88 75 47 Air permeability cm3/cm2 · s · MPa 0.062 0.062 0.088 0.18 0.22 0.34 Container 1 used 50 times or more 50 times or more 2nd 2nd time 50 times or more 2nd raw material sample quantity g 250 200 200 200 200 200 Phosphor weight reduction % 0.98 1.15 _1.29 1.83 2.43 2.63 Oxygen weight before calcination g 1.68 1.68 1.68 1.68 1.68 1.68 Weight after calcination g 1.15 1.11 1.09 0.98 0.95 0.88 Oxygen reduction % 31.5 33.9 35.1 41.7 43.5 47.6 Luminous intensity % 135 127 125 100 83 70 -14- 201213507 The phosphor systems of Examples 1 to 3 were all reduced in weight of the raw material to 1.5% or less, and the oxygen reduction amount was 40% or less, and Comparative Example 1 ~ Compared with 3, it has a higher luminous intensity. Further, as shown in Fig. 1, the weight of the raw material is reduced, and the luminous intensity of the phosphor is lower. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a device used for measuring the air permeability of a container. Fig. 2 is a graph showing the relationship between the weight reduction rate of the raw material by firing and the luminous intensity of the obtained phosphor. [Main component symbol description] 1 BN container 2 Fixture 3 Rubber gasket 4 Valve 5 Pressure gauge -15-

Claims (1)

201213507 七、申請專利範圍: 1. 一種Eu固溶β型矽鋁氮氧化物之製造方法,其係具備 有燒成步驟,該燒成步驟係將包含填充在空氣透過度 為0.1cm3/cm2· s. MPa以下之氮化硼製容器的氧化鋁 或氧化砍的一者或二者、氮化發、氮化紹、及銪化合 物的原料在氮氣環境下進行燒成。 2. 如申請專利範圍第1項之Eu固溶β型矽鋁氮氧化物之 製造方法,其中氮化硼製容器的空氣透過度為 0.01cm3/cm2 · s · MPa 以上。 3. 如申請專利範圍第1項之Eu固溶β型矽鋁氮氧化物之 製造方法,其中前述氮化硼製容器為内寸計為直徑5 cm 以上15cm以下,高度5cm以上15cm以下的圓筒型容 器。 4. 如申請專利範圍第1或2項之Eu固溶β型矽鋁氮氧化 物之製造方法,其中前述燒成步驟的燒成溫度為 1 820°C以上2200°C以下,壓力為0.5MPa以上lOMPa 以下。 5. 如申請專利範圍第1項之Eu固溶β型矽鋁氮氧化物之 製造方法,其將前述燒成步驟後的前述原料的重量減 少為1 · 5 %以下,並且將氧量減少率設為4 0 %以下。 6 ·如申請專利範圍第1項之Eu固溶β型矽鋁氮氧化物之 製造方法,其中在前述燒成步驟後,另外具備有:將 經粉碎的粉末在真空中或氮氣以外的氣體環境中進行 再加熱的再加熱步驟、及酸處理步驟。 -16-201213507 VII. Patent Application Range: 1. A method for producing Eu-solutionized β-type lanthanum aluminum oxynitride, which comprises a firing step, which comprises filling in an air permeability of 0.1 cm 3 /cm 2 · s. One or both of alumina or oxidized chopping of a boron nitride container having a MPa or less, and a raw material of a nitrided, nitriding, and cerium compound are fired in a nitrogen atmosphere. 2. The method for producing Eu-solution β-type lanthanum aluminum oxynitride according to the first aspect of the patent application, wherein the boron nitride container has an air permeability of 0.01 cm 3 /cm 2 · s · MPa or more. 3. The method for producing Eu-solution β-type lanthanum aluminum oxynitride according to the first aspect of the patent application, wherein the boron nitride container is a circle having a diameter of 5 cm or more and 15 cm or less and a height of 5 cm or more and 15 cm or less. Cartridge container. 4. The method for producing Eu-solution β-type lanthanum aluminum oxynitride according to claim 1 or 2, wherein the firing temperature in the baking step is 1 820 ° C or more and 2200 ° C or less, and the pressure is 0.5 MPa. Above lOMPa. 5. The method for producing Eu-solution β-type lanthanum aluminum oxynitride according to claim 1, wherein the weight of the raw material after the calcination step is reduced to 1.25 % or less, and the oxygen reduction rate is decreased. Set to 40% or less. 6. The method for producing Eu-solution β-type lanthanum aluminum oxynitride according to claim 1, wherein after the calcining step, the pulverized powder is additionally provided in a vacuum or a gas atmosphere other than nitrogen. The reheating step of reheating and the acid treatment step. -16-
TW100121393A 2010-09-09 2011-06-20 Method for preparing eu solid solution β type sialon TWI454556B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202511A JP2012057070A (en) 2010-09-09 2010-09-09 METHOD FOR PRODUCING Eu-DOPED β-TYPE SIALON

Publications (2)

Publication Number Publication Date
TW201213507A true TW201213507A (en) 2012-04-01
TWI454556B TWI454556B (en) 2014-10-01

Family

ID=45810425

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121393A TWI454556B (en) 2010-09-09 2011-06-20 Method for preparing eu solid solution β type sialon

Country Status (3)

Country Link
JP (1) JP2012057070A (en)
TW (1) TWI454556B (en)
WO (1) WO2012032818A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024849B1 (en) * 2015-06-05 2016-11-16 日亜化学工業株式会社 Method for producing β-sialon phosphor
JP7335112B2 (en) * 2019-08-21 2023-08-29 デンカ株式会社 Manufacturing method of oxynitride phosphor
JPWO2022209178A1 (en) * 2021-03-31 2022-10-06

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210921A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Oxynitride fluorophor and method for producing the same and light-emitting device using the same
WO2007129713A1 (en) * 2006-05-10 2007-11-15 Denki Kagaku Kogyo Kabushiki Kaisha Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same
JP5122765B2 (en) * 2006-06-09 2013-01-16 電気化学工業株式会社 Phosphor production method, phosphor and lighting apparatus
JP5125039B2 (en) * 2006-09-12 2013-01-23 日亜化学工業株式会社 Rare earth oxynitride phosphor and light emitting device using the same
JP5378644B2 (en) * 2006-09-29 2013-12-25 Dowaホールディングス株式会社 Method for producing nitride phosphor or oxynitride phosphor
CN101600778B (en) * 2006-11-20 2013-10-23 电气化学工业株式会社 Fluorescent substance and production method thereof, and light emitting device
JP5832713B2 (en) * 2008-04-14 2015-12-16 日亜化学工業株式会社 Phosphor, light emitting device using the same, and method for producing phosphor

Also Published As

Publication number Publication date
TWI454556B (en) 2014-10-01
JP2012057070A (en) 2012-03-22
WO2012032818A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5910498B2 (en) Silicon nitride powder for silicon nitride phosphor, CaAlSiN3 phosphor, Sr2Si5N8 phosphor, (Sr, Ca) AlSiN3 phosphor and La3Si6N11 phosphor using the same, and method for producing the same
JP4894048B2 (en) Phosphor and production method thereof
KR101455486B1 (en) Method for producing sialon-based acid nitride phosphor, and sialon-based acid nitride phosphor
JP4581120B2 (en) Oxynitride powder and method for producing the same
TWI393765B (en) Method for preparing β-sialon phosphor
KR101762473B1 (en) SILICON NITRIDE POWDER FOR SILICONITRIDE FLUORESCENT MATERIAL, SR3AL3SI13O2N21 FLUORESCENT MATERIAL AND β-SIALON FLUORESCENT MATERIAL BOTH OBTAINED USING SAME, AND PROCESSES FOR PRODUCING THESE
JP2011140664A5 (en)
JP6065971B2 (en) Method for producing nitride phosphor, silicon nitride powder for nitride phosphor, and nitride phosphor
JP5212691B2 (en) Method for producing inorganic crystals
JP6015851B2 (en) Oxynitride phosphor powder and method for producing the same
JP2008045080A (en) Method for producing inorganic compound
TW201213507A (en) Method for preparing Eu solid solution β type SiAlON
JP6028858B2 (en) Oxynitride phosphor powder
JP7122245B2 (en) Manufacturing method of phosphor
JP6982245B2 (en) Method for manufacturing β-sialon phosphor
JP2017186459A (en) Nitride phosphor powder and production method thereof
TWI493018B (en) Phosphor and light emitting device comprising the phosphor
JP5002819B2 (en) Sialon phosphor and white light emitting diode using the same
JP7282757B2 (en) Red phosphor and light-emitting device
US11078414B2 (en) Method for producing fluorescent material, and fluorescent material
JP2005307084A (en) Fluorescent substance
WO2022080097A1 (en) EUROPIUM-ACTIVATED β-TYPE SIALON PHOSPHOR
JP2011032332A (en) Phosphor and method for producing the same
JP2022064478A (en) METHOD FOR PRODUCING β SIALON PHOSPHOR