TW201213470A - Silicon-wafer polishing composition and silicon-wafer polishing method - Google Patents

Silicon-wafer polishing composition and silicon-wafer polishing method Download PDF

Info

Publication number
TW201213470A
TW201213470A TW100116464A TW100116464A TW201213470A TW 201213470 A TW201213470 A TW 201213470A TW 100116464 A TW100116464 A TW 100116464A TW 100116464 A TW100116464 A TW 100116464A TW 201213470 A TW201213470 A TW 201213470A
Authority
TW
Taiwan
Prior art keywords
honing
wafer
composition
mass
cerium oxide
Prior art date
Application number
TW100116464A
Other languages
Chinese (zh)
Other versions
TWI535803B (en
Inventor
Fumiaki Araki
Eiichirou Ishimizu
Hiroaki Sakaida
Yoshiyuki Kashima
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW201213470A publication Critical patent/TW201213470A/en
Application granted granted Critical
Publication of TWI535803B publication Critical patent/TWI535803B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Detergent Compositions (AREA)

Abstract

Disclosed is a silicon-wafer polishing composition that contains silica, a basic substance, a chelating agent, and water. The chelating agent comprises at least one species selected from a group comprising ethylenediamine-N,N'-di(o-hydroxyphenylacetic acid), 1,4,7,10-tetraazacyclododecane-N,N',N",N-tetraacetic acid, and salts thereof.

Description

201213470 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種具有防止對矽晶圓之金屬污染效果 的矽晶圓用硏磨組成物及矽晶圓之硏磨方法。 【先前技術】 一般而言,半導體矽晶圓之製造方法,係由將單結晶 塊條狀化,製得薄圓板狀晶圓的條狀化步驟,爲防止藉由 該條狀化步驟所得的晶圓產生破裂、缺陷時,面取其外周 部之面取步驟,使該經面取的晶圓予以平坦化的拋光步驟 \除去在經面取及拋光的晶圓上殘留的加工變形之蝕刻步 驟,將該經蝕刻的晶圓表面使用硏磨組成物鏡面化的硏磨 步驟,與洗淨經硏磨的晶圓,除去附著於該物之硏磨組成 物(硏磨液)或異物之洗淨步驟所構成。 於上述硏磨步驟中,一般而言將微細的二氧化矽之砥 粒均句地分散於水中,再將其中添加有如無機鹼或銨鹽、 胺類等之作用爲促進化學硏磨的鹼性物質之硏磨組成物供 應給硏磨墊表面,且藉由使經壓接的硏磨墊與被硏磨物之 矽晶圓相對移動以進行表面硏磨,可使廣範圍之晶圓表面 進行高精度平坦化。 矽晶圓之硏磨,通常係藉由進行複數個階段之硏磨處 理,實現高精度的平坦化。 開始進行的初硏磨’爲除去矽晶圓之深度擦傷(刮傷 ),且以表面平滑化爲主要目的時,企求高的硏磨速度( -5- 201213470 rate )。初硏磨係使硏磨後之晶圓表面變成疏水性,晶圓 周邊亦變得容易附著浮游微粒子等之污染粒子。爲防止粒 子污染時,以往於硏磨後進行晶圓表面之親水化處理,同 時必須於至進行繼後步驟之間,將水吹附於硏磨後之晶圓 表面上,且將硏磨後之晶圓保管於水中。而且,該初硏磨 亦可分爲2段式處理。 於初硏磨後作爲最終階段進行的最終硏磨,係主要以 除去於初硏磨後所殘留的微擦傷,且抑制霧度(表面霧度 )爲目的,以及爲防止粒子污染時,企求表面親水化。具 體而言,亦可降低加工壓力且抑制霧度,同時將硏磨組成 物之組成自初硏磨時使用的硏磨組成物的組成變更,除去 因硏磨之微擦傷,同時進行晶圓表面之親水化處理。而且 ,該最終硏磨亦可分爲2段式進行》 於該初硏磨或最終硏磨時所使用的鹸性之含二氧化矽 之硏磨組成物中,含有微量的金屬雜質。於硏磨組成物中 所含的金屬雜質,例如鎳、鉻、鐵、銅、鋁等。此等之金 屬雜質於鹼性溶液中容易附著於矽晶圓表面上。經附著的 金屬雜質、即銅,擴散係數大,容易擴散至矽晶圓之結晶 內部。擴散至結晶內部之金屬雜質,由於無法以繼後的洗 淨處理予以除去,可知會導致矽晶圓之品質降低,且使用 該矽晶圓之半導體裝置的特性降低。因此,企求可防止因 銅、鐵、鉻、鎳、鋁等金屬所導致的矽晶圓之污染情形的 硏磨組成物。 此處,於初硏磨時,藉由於硏磨組成物中添加大量的 -6- 201213470 鹼性物質,提髙pH値,且藉由添加作爲鹼性物質之胺類 ,顯著提高硏磨速度,惟此等之硏磨組成物會有促進金屬 污染的情形。 對應起因於上述之含二氧化矽的硏磨組成物對半導體 晶圓的金屬污染之對策,考慮使用經高純度化的硏磨組成 物之方法。揭示使用銅、鐵、鉻,鎳及鋁之含量各未達1 質量ppm之二氧化矽溶膠,進行半導體晶圓之硏磨例( 參照專利文獻1)。然而,一般而言由於該高純度的硏磨 組成物高價,故會有硏磨的成本問題。 此外,即使在硏磨組成物中使用高純度的原材料,於 實際進行硏磨時,無法避免來自硏磨墊、硏磨裝置、配管 類引起的金屬污染情形。因此,例如即使準備高純度的硏 磨組成物,仍會有不易防止對半導體晶圓之金屬污染的問 題。 解決此等課題之技術,於專利文獻1及2中揭示,於 半導體晶圓硏磨時含有二氧化矽溶膠、鹼性物質及螯合劑 的硏磨組成物。然而,藉由本發明之檢討可知,雖可抑制 金屬污染情形,惟會導致硏磨速度降低的結果,不具作爲 硏磨組成物之充分性能。另外,於專利文獻3中揭示的技 術,由於不含二氧化矽’不具二氧化矽具有的緩衝作用、 機械作用,且不具作爲硏磨組成物之充分性能。 [專利文獻] [專利文獻1]日本特開2002-226836號公報 201213470 [專利文獻2]日本特開2005-347737號公報 [專利文獻3]日本特開平9 — 40997號公報 【發明內容】 本發明係以提供一種於矽晶圓硏磨時,可維持作爲硏 磨組成物之性能’且可有效地防止銅、鐵、鉻、鎳、鋁等 之金屬污染的矽晶圓用硏磨組成物爲目的。 本發明之第1觀點係有關一種矽晶圓用硏磨組成物, 其係含有二氧化矽、鹼性物質、螯合劑及水之矽晶圓用硏 磨組成物,其特徵爲前述螯合劑爲選自乙二胺-N,Nf-二( 鄰·羥基苯基醋酸)、1,4,7,10-四氮雜環十二烷-Ν,Ν',Ν'ΝΜ-四醋酸及此等之鹽所成群的至少一種; 本發明之第2觀點係有關一種第1觀點記載之矽晶圓 用硏磨組成物,其係前述二氧化矽藉由氮吸附法之平均一 次粒徑爲3〜lOOOnm; 本發明之第3觀點係有關第1觀點記載之矽晶圓用硏 磨組成物,其中前述二氧化矽藉由氮吸附法之平均一次粒 徑爲5〜500nm; 本發明之第4觀點係有關第1觀點至第3觀點中任一 觀點記載之矽晶圓用硏磨組成物,其中前述二氧化矽之濃 度,以矽晶圓用硏磨組成物之質量爲基準時爲〇.〇 5〜30質 量% ; 本發明之第5觀點係有關第1觀點至第4觀點中任一 觀點記載之矽晶圓用硏磨組成物,其中前述二氧化矽爲膠 201213470 體二氧化矽; 本發明之第6觀點係有關第1項至第5觀點中任一觀 點記載之矽晶圓用硏磨組成物,其中前述螯合劑之濃度, 以矽晶圓用硏磨組成物之質量爲基準時爲0.001〜5質量% t 本發明之第7觀點係有關第1觀點至第6觀點中任一 觀點記載之矽晶圓用硏磨組成物,其中前述鹼性物質之濃 度,以矽晶圓用硏磨組成物之質量爲基準時爲0.01〜10質 量% ; 本發明之第8觀點係有關第1觀點至第7觀點中任一 觀點記載之矽晶圓用硏磨組成物,其中前述鹼性物質爲選 自鹼金屬之無機鹽、銨鹽及胺類所成群的至少1種; 本發明之第9觀點係有關第8觀點記載之矽晶圓用硏 磨組成物,其中前述鹼性物質爲選自氫氧化鋰、氫氧化鈉 、氫氧化鉀、碳酸鋰、碳酸鈉、碳酸鉀、碳酸氫鋰、碳酸 氫鈉及碳酸氫鉀所成群的至少一種之鹼金屬的無機鹽; 本發明之第1 〇觀點係有關第9觀點記載之矽晶圓用 硏磨組成物,其中前述鹼性物質爲選自氫氧化鞍、碳酸銨 、碳酸氫銨、氫氧化四甲銨、碳酸四甲銨、碳酸氫化四甲 銨、氯化四甲銨、氫氧化四乙銨、碳酸四乙銨、碳酸氫化 四乙銨、氯化四乙銨、氫氧化單甲基三乙醇銨、碳酸單甲 基三乙醇銨、碳酸氫化單甲基三乙醇銨及氯化單甲基三乙 醇銨所成群的至少一種之前述銨鹽: 本發明之第11觀點係有關第8觀點記載之矽晶圓用 -9 - 201213470 硏磨組成物,其中前述鹼性物質爲選自乙二銨、二乙三銨 、N-甲基-1,3-二胺基丙烷、3-(胺基甲基)哌啶、1,3-二 胺基丙烷、1,2-二胺基丙烷、Ν,Ν·二乙基乙二胺、N-乙基 乙二胺、二丙三胺、單乙醇胺、2- ( 2-胺基乙基)胺基乙 醇胺及哌嗪所成群的至少一種之前述胺類; 本發明之第1 2觀點係有關第1觀點至第1 1觀點中任 一觀點記載之矽晶圓用硏磨組成物,其進一步含有水溶性 高分子化合物及具有醇性羥基之化合物; 本發明之第1 3觀點係有關第1 2觀點記載之矽晶圓用 硏磨組成物,其中前述水溶性高分子化合物爲選自羥基乙 基纖維素、羥基丙基纖維素、羥基丙基甲基纖維素、聚乙 烯醇、聚乙烯基吡咯啶酮及支鏈澱粉所成群的至少一種; 本發明之第14觀點係有關第13觀點之矽晶圓用硏磨 組成物,其中前述水溶性高分子化合物爲重量平均分子量 10萬〜100萬之羥基乙基纖維素; 本發明之第15觀點係有關第12觀點至第14觀點中 任一觀點記載之矽晶圓用硏磨組成物,其中前述水溶性高 分子化合物之濃度,以矽晶圓用硏磨組成物全部的質量爲 基準時爲0.01〜2.0質量% ; 本發明之第16觀點係有關第12觀點至第15觀點中 任一觀點記載之矽晶圓用硏磨組成物’其中前述具有醇性 羥基之化合物爲選自甲醇、乙醇、丙醇、乙二醇、丙二醇 、聚乙二醇、聚丙二醇、乙炔醇、丙三醇所成群的至少一 種; -10- 201213470 本發明之第17觀點係有關第12觀點至第16 任一觀點記載之矽晶圓用硏磨組成物,其中前述具 羥基之化合物的濃度’以矽晶圓用硏磨組成物全部 爲基準時爲0.001〜5.0質量%; 本發明之第18觀點係有關一種矽晶圓之硏磨 其特徵爲使用第1觀點至第17觀點中任一觀點之 用硏磨組成物: 本發明之第19觀點係有關一種矽晶圓之硏磨 其特徵爲使用第1觀點至第11觀點中任一觀點記 晶圓用硏磨組成物,進行初硏磨; 本發明之第20觀點係有關矽晶圓之硏磨方法 徵爲使用第1 2觀點至第1 7觀點中任一觀點之矽晶 磨組成物,進行初硏磨後之最終硏磨。 本發明之矽晶圓用硏磨組成物,係可調製作爲 之原液進行儲藏或輸送等,另外,亦可在硏磨裝置 時加入純水,予以稀釋使用。稀釋倍率爲4〜100倍 者爲10〜50倍。 在使矽晶圓硏磨時之硏磨裝置中,有單面硏磨 兩面硏磨方式,於任一裝置中皆可使用本發明之矽 硏磨組成物。 [發明之效果] 本發明藉由在含有二氧化矽之矽晶圓用硏磨組 含有選自乙二胺-Ν,Ν’-二(鄰-羥基苯基醋酸)、1, 觀點中 有醇性 的質量 方法, 砂晶圓 方法, 載之矽 ,其特 圓用硏 高濃度 中使用 ,較佳 方式與 晶圓用 成物中 4,7,10- -11- 201213470 四氮雜環十二烷-1^,>1’,:^”,>1’”_四醋酸及此等鹽所成群的至 少一種之螯合劑’具有可維持良好的硏磨速度、或霧度抑 制效果、防止粒子污染等之作爲硏磨組成物的性能’且可 抑制對砂晶圓表面及內部之金屬污染、特別是抑制銅污染 情形之效果。特別是含有胺類之砂晶圓用硏磨組成物’藉 由具有效果,可維持高的硏磨速度且抑制銅污染情形。另 外,由於不需使用純度特別高的原材料’可製得低價且可 抑制金屬污染的矽晶圓用硏磨組成物。 [爲實施發明之形態] 說明本發明之實施形態。 本發明之矽晶圓用硏磨組成物’係含有二氧化砂、鹼 性物質、螯合劑及水者,螯合劑爲選自乙二胺-N,N’-二( 鄰-羥基苯基醋酸)、1,4,7,10-四氮雜環十二烷-N,N’,N”,N’”-四醋酸及此等鹽所成群的至少一種。然後, 本發明之矽晶圓用硏磨組成物,詳言之’爲下述初硏磨用 矽晶圓用硏磨組成物及最終硏磨用矽晶圓用硏磨組成物。 於本發明之矽晶圓用硏磨組成物中,使用二氧化矽作 爲砥粒。已知藉由將矽晶圓予以硏削或硏磨時之硏磨組成 物的氧化姉或氧化鋁進行加工爲有效,惟使用作爲本發明 之矽晶圓用硏磨組成物的砥粒使用者以二氧化矽爲宜。而 且,二氧化矽已知者爲二氧化矽溶膠、熱解二氧化矽、沉 澱法二氧化矽或其他不同形態的二氧化矽,此等中之任何 —種皆可使用,特別是爲使半導體(矽晶圓)進行高精度 -12- 201213470 硏磨時,以使用粒徑分布一致且平均粒徑爲膠體次元(奈 米次元)之膠體二氧化矽較佳。 膠體二氧化矽之粒徑,沒有特別的限制’例如爲初硏 磨用矽晶圓用硏磨組成物時’藉由氮吸附法(BET法)自 比表面積換算的平均一次粒徑爲3〜1〇〇〇nm,較佳者爲 5~500nm,最佳者爲1〇〜500nm。而且’爲最終硏磨用砂 晶圓用硏磨組成物時,藉由氮吸附法(BET法)自比表面 積換算的平均粒徑爲5〜100nm ’較佳者爲20〜50nm。較佳 的膠體二氧化矽之形態,係膠體二氧化矽安定地分散於水 中的二氧化矽溶膠。作爲砥粒之二氧化矽,可使用具有單 —粒徑分布的二氧化矽’或可混合不同的複數個粒徑分布 之二氧化矽使用。 此外,本發明之矽晶圓用硏磨組成物中二氧化矽的含 量,以矽晶圓用硏磨組成物之質量爲基準爲〇.〇5〜30質量 %,較佳者爲0·1〜10質量%,更佳者爲0·2〜5質量%。未 達0.05質量%時,無法得到充分的硏磨速度,而若超過 30質量%時,由於會有表面之微小缺陷增加,且平坦度降 低等,矽晶圓之無傷性、平滑性惡化,故不爲企求。特別 是爲最終硏磨用矽晶圓用硏磨組成物時,於〇_〇5〜30質量 %之範圍外時,會有霧度惡化情形,故不爲企求。 於本發明中,作爲螯合劑使用的乙二胺-Ν,Ν’-二( 鄰-羥基苯基醋酸)爲於乙二胺骨架中含有苯基之醋酸系 螯合劑。1,4,7,10-四氮雜環十二烷-^[,:^’,:^’,:^’”-四醋酸爲 環狀鍵結有4個乙二胺的醋酸系螯合劑。此等係以乙二 -13- 201213470 胺-4 -醋酸(以下稱爲ED ΤΑ)爲典型的多座螯合劑之1種 〇 本發明係以選自乙二胺-Ν,Ν’-二(鄰-羥基苯基醋酸 )、1,4,7,10-四氮雜環十二烷-氺:^^^”-四醋酸及此等 所成群的至少1種類爲必須成分。此等之鹽例如銨鹽、有 機胺鹽、鹼金屬鹽等。藉由使用該選自乙二胺-Ν,Ν’-二( 鄰-羥基苯基醋酸)、1,4,7,10-四氮雜環十二烷-Ν,Ν’,Ν”,Ν’”-四醋酸及此等鹽所成群的至少1種,可發揮 僅由EDTA等其他螯合劑無法發揮的良好硏磨速度或霧度 抑制效果、維持防止粒子污染等作爲硏磨組成物的性能且 發揮抑制對矽晶圓表面及內部之金屬污染的效果。而且, 藉由使用選自乙二胺-Ν,Ν’-二(鄰-羥基苯基醋酸)、 1,4,7,10-四氮雜環十二烷-:^,:^’,:^”,:^’”-四醋酸及此等鹽所 成群的至少1種,與使用EDTA等之其他螯合劑相比,可 顯著抑制金屬污染情形。 而且,於本發明矽晶圓用硏磨組成物中,亦可倂用其 他的螯合劑。 可倂用其他的螯合劑,例如亞硝基3醋酸(ΝΤΑ)、 羥基乙基亞胺基2醋酸(HIDA )、乙二胺4醋酸(EDTA )、羥基乙基乙二胺3醋酸(EDTA-OH) 、1,3-二胺基丙 烷4醋酸(DPTA)、二乙三胺5醋酸(DTPA)、三乙四 胺6醋酸(TTHA) 、2-羥基-1,3-二胺基丙烷4醋酸( DPTA-OH )、亞硝基3亞甲基膦酸(NTMP)、亞硝基3 伸乙基膦酸(NTEP)、乙二胺4亞甲基膦酸(EDTMP) -14- 201213470 '乙二胺4伸乙基膦酸(EDTEP )、二乙三胺5亞甲基膦 酸(DTPMP )、二乙三胺5伸乙基膦酸(DTPEP )、三乙 四胺6亞甲基膦酸(TTHMP )、三乙四胺6伸乙基膦酸( TTHEP)等。 選自前述乙二胺-N,N’-二(鄰-羥基苯基醋酸)、 1,4,7,1〇_四氮雜環十二烷-:^,>^’,化’,>^”-四醋酸及此等鹽 1,4,7,10-四氮雜環十二烷-1^,1^’,>1”,>1’”-四醋酸所成群的至 少1種之螯合劑在矽晶圓用硏磨組成物中之濃度,在可達 成本發明效果內沒有特別的限制,例如爲初硏磨用矽晶圓 用硏磨組成物時,以矽晶圓用硏磨組成物之質量爲基準爲 0.0 0 1〜5質量%,較佳者爲0.0 1~3質量%,更佳者爲0.1〜1 質量%。矽晶圓用硏磨組成物中之濃度未達0.001質量% 時,金屬污染之防止效果不充分,反之,超過5質量%時 ’無法期待更進一步的金屬污染之防止效果。另外,爲最 終硏磨用矽晶圓用硏磨組成物時,以矽晶圓用硏磨組成物 之質量爲基準,爲0.001〜10質量%,較佳者爲0.01〜10質 量%,更佳者爲0.0 5〜5質量%。矽晶圓用硏磨組成物中之 濃度未達0.001質量%時,金屬污染之防止效果不充分, 反之,超過10質量%時,無法期待更進一步金屬污染之 防止效果。 本發明使用的鹼性物質,例如選自鹼金屬之無機鹽、 銨鹽及胺類所成群的至少1種。 鹼金屬之鹽例如鹼金屬之氫氧化物或碳酸鹽》具體而 言,例如氫氧化鋰、氫氧化鈉、氫氧化鉀、碳酸鋰、碳酸 -15- 201213470 鈉、碳酸鉀、碳酸氫鋰、碳酸氫鈉、碳酸氫鉀等較佳,特 別是以氫氧化鈉、氫氧化鉀、碳酸鈉、碳酸鉀更佳。 銨鹽例如氫氧化銨、碳酸銨、碳酸氫銨、氫氧化四甲 銨、碳酸四甲銨、碳酸氫化四甲銨、氯化四甲銨、氫氧化 四乙銨、碳酸四乙銨、碳酸氫化四乙銨、氯化四乙銨、氫 氧化單甲基三乙醇銨、碳酸單甲基三乙醇銨、碳酸氫化單 甲基三乙醇銨及氯化單甲基三乙醇銨等較佳,特別是氫氧 化四甲銨更佳。 胺類例如乙二胺、單乙醇胺、2 - ( 2 -胺基乙基)胺基 乙醇胺、二乙三胺、N-甲基-1,3·二胺基丙烷、3-(胺基甲 基)哌啶、1,3-二胺基丙烷、1,2-二胺基丙烷、Ν,Ν-二乙 基乙二胺、Ν-乙基乙二胺、二丙三胺、哌嗪等。由於乙二 胺之提高硏磨速度的效果高,故更佳。胺類不僅含有此等 之胺類,亦可含有其他的胺。 本發明之矽晶圓用硏磨組成物中鹼性物質之較佳濃度 ,以矽晶圓用硏磨組成物之質量爲基準爲〇.〇1~1〇質量% 。特別是鹼金屬鹽時爲0.01〜1質量%,銨鹽時爲0.01〜5 質量%,胺類時爲0.1〜10質量%較佳。矽晶圓用硏磨組成 物之鹼性物質的濃度未達0·01質量%時,無法得到充分的 硏磨速度,反之,超過10質量%時,無法期待更爲提高 硏磨速度。而且,亦可倂用2種以上之上述鹼性物質。 本發明之砂晶圓用硏磨組成物,亦可含有除上述以外 之添加物。例如,亦可含有水溶性高分子化合物或具有醇 性羥基之化合物。藉由含有二氧化矽、鹼性物質、螯合劑 -16- 201213470 及水,以及水溶性高分子化合物與具有醇性羥基之化合物 的矽晶圓用硏磨組成物,可形成最終硏磨用硏磨組成物。 本發明使用的水溶性高分子化合物,主要具有賦予硏 磨完成後之晶圓表面具有親水性之作用。藉由提高硏磨完 成後之晶圓表面的親水性,至硏磨後進行的洗淨步驟之間 ,可防止矽晶圓用硏磨組成物或硏磨環境中之灰塵附著於 矽晶圓上,且具有提高粒子抑制效果。 本發明使用的水溶性高分子化合物,以選自羥基乙基 纖維素、羥基丙基纖維素、羥基丙基甲基纖維素、聚乙烯 醇、聚乙烯基吡咯啶酮及支鏈澱粉所成群的至少一種較佳 ,由於羥基乙基纖維素於硏磨後之矽晶圓表面的霧度良好 ,故更佳。 水溶性高分子化合物之濃度,相對於矽晶圓用硏磨組 成物全量之質量而言以〇.〇1 ~2.0質量%較佳。添加未達 0.0 1質量%時,改善硏磨後之矽晶圓表面的霧度、濕潤性 (親水性)之效果不充分,另外,添加超過2.0質量%, 由於矽晶圓用硏磨用組成物之黏度變得過高,過濾器過濾 等除去異物之步驟的負擔增加,生產性變差,故不爲企求 〇 羥基乙基纖維素之分子量,以絕對分子量之重量平均 分子量(Mw )以10萬〜100萬較佳。絕對分子量可以 GPC(凝膠滲透色層分析法),使用Wyatt公司之多角度 光散射檢測器進行測定。羥基乙基纖維素之分子量分布極 爲廣泛,由於一般的檢量線法之重量平均分子量無法涵蓋 -17- 201213470 全部的分子量範圍,會有缺乏再現性的缺點。由於絕對分 子量之再現性佳,故適合於比較分子量使用。 本發明使用的具有醇性羥基之化合物,於硏磨完成後 ,具有提高硏磨後之砂晶圓表面的霧度水準之效果。該機 構雖不明確,藉由存在具有醇性羥基之化合物,可確實地 改善硏磨後之矽晶圓表面之霧度水準。 本發明使用的具有醇性羥基之化合物,以選自甲醇、 乙醇、丙醇、乙二醇、丙二醇、聚乙二醇、乙炔醇、聚丙 爾醇及丙三醇所成群的至少1種較佳。聚乙二醇之數平均 分子量爲200〜3 0000,聚丙二醇之數平均分子量爲 200〜20000 較{圭。 具有醇性羥基之化合物的含量,以矽晶圓用硏磨用組 成物全量之質量爲基準爲0.001〜5.0質量%,較佳者爲 0.002〜3.0質量%。具有醇性羥基之化合物的含量小於該 範圍時,霧度之改善效果少,而若多於該範圍時,無法期 待更進一步改善霧度之效果。 本發明之矽晶圓用硏磨組成物的製造方法,沒有特別 的限制,例如可藉由使上述各成分溶解或分散於水中予以 製造。而且’本發明之矽晶圓用硏磨組成物,可調製成高 濃度之原液,進行儲藏或輸送等,實際上在硏磨裝置中使 用時’亦在該高濃度之原液中加入純水予以稀釋使用。稀 釋倍率例如4-100倍,較佳者爲1〇〜50倍。 於本發明之矽晶圓用硏磨組成物中,含有二氧化矽、 鹼性物質或螯合劑中所含的來自原料之異物(粒子)、自 -18- 201213470 製造裝置或作業環境混入的異物、特別是二氧化矽之凝聚 物或乾燥凝膠等之粗大粒子,以採用於進行硏磨前除去此 等之粗大粒子之步驟較佳。 除去粗大粒子之方法,例如強制沉澱法或精密過濾法 〇 精密過濾時使用的過濾器,有深層過濾器、摺疊式過 濾器、膜濾器、中空紗過濾器等之型式,任意型式皆可使 用。而且,過濾器之材質有棉、聚丙烯、聚苯乙烯、聚楓 、聚醚颯、耐龍、纖維素、玻璃等,皆可使用。粗大粒子 之除去,係使用篩目更細的過濾器,惟會使過濾速度變慢 。考慮過濾效率時,以0.5〜1.0 μπι之篩目的過濾器。 強制沉澱法例如利用離心力之離心分離裝置等。 本發明之矽晶圓的硏磨方法,使用上述本發明之矽晶 圓用硏磨組成物以硏磨矽晶圓者。硏磨裝置有單面硏磨方 式與雙面硏磨方式,任何裝置皆可使用本發明之矽晶圓用 硏磨組成物,硏磨矽晶圓。本發明之矽晶圓用硏磨組成物 ’其中二氧化矽之濃度,以矽晶圓用硏磨組成物之質量爲 基準’使用〇·〇5〜30質量%較佳。 詳言之,矽晶圓之硏磨步驟,通常藉由複數個階段之 硏磨予以構成,硏磨步驟之初期進行初硏磨,與於該初硏 磨步驟後進行的最終硏磨。而且,初硏磨或最終硏磨皆可 各分爲2段式進行。其次,初硏磨係以除去矽晶圓之深度 刮痕(刮傷),且使表面平滑化爲主要目的者,企求高的 硏磨速度。此外’最終硏磨係以除去初硏磨後所殘留的微 -19- 201213470 擦傷,且抑制霧度(表面曇點)爲主要目的,另外,爲防 止粒子污染時亦可進行表面親水化處理,特別是企求抑制 霧度或防止粒子污染。 此等硏磨步驟使用的硏磨液,可使用本發明之矽晶圓 用硏磨組成物。初硏磨使用的本發明之矽晶圓用硏磨組成 物,爲含有二氧化矽、鹼性物質、螯合劑及水之矽晶圓用 硏磨組成物,爲求高的硏磨速度時,實質上不含水溶性高 分子化合物及具有醇性羥基之化合物。而且,最終硏磨時 使用的本發明之矽晶圓用硏磨組成物,爲含有二氧化矽、 鹼性物質、螯合劑、水、水溶性高分子化合物及具有醇性 羥基之化合物者。 初硏磨與最終硏磨處理兩者,皆可使用本發明之矽晶 圓用硏磨組成物,另外,亦可僅初硏磨與最終硏磨中任何 —方,使用本發明之矽晶圓用硏磨組成物。 如此藉由使用本發明之矽晶圓用硏磨組成物以硏磨矽 晶圓,可有效地防止銅、鐵、鉻、鎳、鋁等之金屬污染情 形。而且,可防止因金屬污染而導致矽晶圓之品質惡化, 或使用該矽晶圓之半導體裝置的特性降低情形。特別是初 硏磨時,由於藉由硏磨而被加熱,或矽晶圓容易因金屬受 到污染,惟於該初硏磨中,可藉由使用本發明之矽晶圓用 硏磨組成物,防止金屬污染》 其次,使用本發明之矽晶圓用硏磨組成物時,如下述 實施例所示,可充分維持無法以EDTA等之其他螯合劑維 持、於初硏磨時企求的高硏磨速度或最終硏磨時企求的霧 -20- 201213470 度抑制及粒子污染防止效果,且可良好地進行硏磨矽晶圓 【實施方式】 於下述中,說明本發明之實施例,惟本發明不受下述 說明的實施例所限制。特別是下述實施例爲避免銅污染之 例,藉由本發明之硏磨組成物亦可更進一步防止其他的重 金屬污染。 [實施例] [實施例1] 使用15kg矽晶圓用硏磨組成物(硏磨液)之基材的 二氧化矽溶膠[二氧化矽濃度:3.0質量%、藉由氮氣吸附 法(BET法)、自比表面積換算的二氧化矽平均一次粒徑 :45nm、分散媒:水、以氫氧化鉀(以下以KOH表示) 將pH値調整爲9],且在前述二氧化矽溶膠中添加原子吸 光分析用標準銅溶液(銅濃度爲1〇〇〇質量PPm之硝酸銅 水溶液),在銅濃度爲1〇質量PPb下強制性調整被銅污 染的二氧化矽溶膠1。在該被銅污染的二氧化矽溶膠1中 各添加KOH、乙二胺-N,N’-二(鄰-羥基苯基醋酸)(以 下稱爲EDDHA ),以所得的硏磨液之質量爲基準,調製 含有KOH 0.1質量。/〇、EDDHA 0.01質量%之硏磨液1。於 硏磨矽晶圓時,使用將前述硏磨液1以絕對孔徑1 (捕 捉效率99.9%以上)之過濾器進行過濾處理者。矽晶圓之 -21 - 201213470 硏磨(初硏磨)以下述所示條件進行。 硏磨機:485φ單面加工機 硏磨墊:suba600 ( Nitta-Haas 公司製) 荷重:270g/cm2 定盤回轉數:40rpm 針頭回轉數:40rpm 硏磨組成物之供應量:3 5 0ml/分鐘 硏磨時間:3 0分鐘 晶圓:Silicone etched · waffer P- ( 1 〇〇 ) 硏磨速度係以非接觸式測定複數點之厚度,換算成 μπι/分鐘》 使硏磨後之硏磨晶圓實施於習知的SCI洗淨(銨: 過氧化氫:水之混合比=1 : 1〜2 : 5〜7 (體積比))之洗淨 液(SCI液)中、75~8 5°C、浸漬處理1〇~2 0分鐘)及 SC2洗淨(鹽酸:過氧化氫:水=1 : 1~2 : 5〜7 (體積比) )之洗淨液(SC2液)中、75~85°C、浸漬處理10〜20分 鐘),除去晶圓表面之雜質後,使洗淨後之晶圓在65 0°C 下進行熱處理20分鐘,且以HF/H202液滴(氟化氫與過 氧化氫之水溶液的液滴)回收晶圓表面之銅’使回收液中 之金屬雜質藉由感應耦合電漿質譜分析法(以下以1cp-MS表示)進行定量分析。 於下述之實施例2~14、比較例1〜9中’除使用的硏 -22- 201213470 磨液外,矽晶圓之硏磨條件、硏磨後之銅之定量條件等與 實施例1相同地進行。 實施例2 在實施例1所調製的二氧化矽溶膠1中各添加K0H 、EDDHA,以所得的硏磨液之質量爲基準,調製含有 KOH 0.1質量%、EDDHA 0.01質量%之硏磨液2’使用該 硏磨液2進行硏磨處理。 實施例3 在實施例1所調製在實施例1所調製的二氧化政溶膠 1中各添加KOH、EDDHA,以所得的硏磨液之質量爲基 準,調製含有KOH 0· 1質量%、EDDHA 0.5質量%之硏磨 液3,使用該硏磨液3進行硏磨處理。 實施例4 在實施例1所調製的二氧化矽溶膠1中各添加乙二胺 、EDDHA,以所得的硏磨液之質量爲基準,調製含有乙 二胺0.1質量%、EDDHA 0.1質量%之硏磨液4 ’使用該硏 磨液4進行硏磨處理。 實施例5 在實施例1所調製的二氧化矽溶膠1中各添加乙二胺 、EDDHA,以所得的硏磨液之質量爲基準’調製含有乙 -23- 201213470 二胺〇.5質量%、EDDHA0.1質量。/。之硏磨液5’使用該硏 磨液5進行硏磨處理。 實施例6 在實施例1所調製的二氧化砂溶膠1中各添加乙二胺 、EDDHA,以所得的硏磨液之質量爲基準,調製含有乙 二胺0.1質量%、EDDHA 0.1質量%之硏磨液使用該硏 磨液6進行硏磨處理。 實施例7 在實施例1所調製的二氧化矽溶膠1中各添加氫氧化 四甲錢(以下稱爲TMAH) 、EDDHA’以所得的硏磨液之 質量爲基準,調製含有TMAH 0.1質量%、EDDHA 0.1質 量。/。之硏磨液7,使用該硏磨液7進行硏磨處理。 實施例8 在實施例1所調製的二氧化矽溶膠1中各添加二乙三 胺、EDDHA,以所得的硏磨液之質量爲基準,調製含有 二乙三胺0.5質量%、EDDHA 0. 1質量%之硏磨液8 ’使用 該硏磨液8進行硏磨處理。 實施例9 在實施例1所調製的二氧化矽溶膠1中各添加N•甲 基-1,3-二胺基丙烷、EDDHA,以所得的硏磨液之質量爲 -24- 201213470 基準,調製含有N -甲基-1,3 -二胺基丙烷0·5質量%、 EDDHA 0.1質量%之硏磨液9,使用該硏磨液9進行硏磨 處理。 實施例1 0 在實施例1所調製的二氧化矽溶膠1中各添加哌嗪、 EDDHA,以所得的硏磨液之質量爲基準’調製含有哌嗪 啶〇·5質量%、EDDHA 0.01質量%之硏磨液10’使用該硏 磨液10進行硏磨處理。 實施例11 在實施例1所調製的二氧化矽溶膠1中各添加K0H 、1,4,7,10-四氮雜環十二烷-1:^,,>1,’.;^,”-四醋酸(以下以 DOTA表示),以所得的硏磨液之質量爲基準’調製含有 KOH 0.1質量%、DOTA 0.1質量%之硏磨液11 ’使用該硏 磨液11進行硏磨處理。 實施例1 2 在實施例1所調製的二氧化矽溶膠1中各添加乙二胺 、DOTA,以所得的硏磨液之質量爲基準’調製含有乙二 胺〇 · 5質量%、D Ο T A 0.1質量%之硏磨液1 2 ’使用該硏磨 液1 2進行硏磨處理。 實施例1 3 -25- 201213470 在實施例1所調製的二氧化矽溶膠1中各添加TM AH 、DO ΤΑ,以所得的硏磨液之質量爲基準’調製含有 ΤΜΑΗ 0.1質量%、DOTA 0.1質量%之硏磨液13 ’使用該 硏磨液13進行硏磨處理。 實施例1 4 在實施例1所調製的二氧化矽溶膠1中各添加脈曉、 DOΤΑ,以所得的硏磨液之質量爲基準’調製含有哌嗪0.5 質量%、DOTA 0.1質量%之硏磨液14 ’使用該硏磨液14 進行硏磨處理。 比較例1 在與實施例1相同的基材之二氧化矽溶膠[二氧化砂 濃度:3·0質量%、藉由氮氣吸附法(BET法)、自比表 面積換算的二氧化矽平均一次粒徑:45nm、分散媒:水 、以KOH將pH値調整爲9]中,在沒有進行銅污染下’ 添加乙二胺,以所得硏磨液之質量爲基準,調製含有乙二 胺〇.5質量%之硏磨液R1。使用該硏磨液R1進行硏磨。 比較例2 在實施例1所調製的二氧化矽溶膠1中添加KOH’ 以所得的硏磨液之質量爲基準’調製含有KOH 0. 1質量% 之硏磨液R2,使用該硏磨液R2進行硏磨處理。 -26- 201213470 比較例3 在實施例1所調製的二氧化矽溶膠1中 以所得的硏磨液之質量爲基準,調製含有乙 %之硏磨液R3 ’使用該硏磨液R3進行硏磨! 比較例4 在實施例1所調製的二氧化矽溶膠1中 ,以所得的硏磨液之質量爲基準’調製含有 量%之硏磨液R4,使用該硏磨液R4進行硏I 比較例5 在實施例1所調製的二氧化矽溶膠1中 、乙二胺四醋酸(EDTA ) ’以所得的硏磨 準,調製含有乙二胺0.5質量%、EDTA 0· 1 液R5,使用該硏磨液R5進行硏磨處理。 比較例6 在實施例1所調製的二氧化矽溶膠1中 、乙二胺四亞甲基膦酸(以下稱爲EDTMP 硏磨液之質量爲基準’調製含有乙二胺 E D Τ Μ P 0.1質量%之硏磨液R 6,使用該硏塵 磨處理。 比較例7 添加乙二胺, 二胺〇. 5質量 i理。 各添加TMAH TMAH 0.1 質 g處理》 各添加乙二胺 液之質量爲基 質量%之硏磨 各添加乙二胺 ),以所得的 0.5質量%、 液R6進行硏 -27- 201213470 在'純水中添加實施例1使用的標準銅溶液,調製 l5kg之10質量ppb的銅水溶液,然後,各添加〖OH、 EDDHA,以所得的硏磨液之質量爲基準,調製含有〖OH 0.1質量%、EDDHA 0.1質量%之硏磨液R7,使用該硏磨 液R7進行硏磨處理。 比較例8 水中添加實施例1使用的標準銅溶液,調製 15kg之1〇質量ppb的銅水溶液,然後,各添加乙二胺、 EDDHA,以所得的硏磨液之質量爲基準,調製含有乙二 胺〇.5質量%、EDDHA 0.1質量%之硏磨液R8,使用該硏 磨液R8進行硏磨處理。 比較例9 &純水中添加實施例1使用的標準銅溶液,調製 15kg之1〇質量ppb的銅水溶液,然後,各添加TMAH、 EDDHA,以所得的硏磨液之質量爲基準,調製含有TMAH 0.1質量% ' EDDHA 0.1質量%之硏磨液R9,使用該硏磨 液R9進行硏磨處理。 -28- 201213470 【s】 硏磨速度 em/分鐘 〇> CM Ο 1 α> CM ο Τ Ο τ-* CO d jr· Ο CO ο 1 CO <〇 o 2 σ> CM <5 r— CO o 〇 CD 1 CO CO ο CO ο CM CO d T-· <〇 〇 s 〇 s o o d H g 班I 働$ 萑Μ 1.0Χ109 <1.0 X 109 <1.0X10® <1.0X10® <1.0 X 109 1.0 X 109 I <ι.〇χιο9 <1.0X109 <1.0X109 I <ι.〇χιο9 I <ι.〇χιο9 <i.〇xio9 I <ι.〇χιο9 I 1 <ι.〇χιο9 I 9.1 X 109 7.7X10® I 6.4X1010 9.3X100 5.1 x 109 3.6 x 109 <1.〇x 109 1.5 x 109 <ι.〇χ io9 Cu添加量 Mfippm Ο Ο ο Ο ο ο ο o o Ο 〇 〇 Ο τ-~ Ο I o Ο ο o 〇 〇 2 〇 ϋ m » <n Ο 5 ιη ο 5 Ο t— 5 o 5 o 〇· 5 I I I I 5 5 Ύ— T— 5 m & U+ήτΙΙ 卿 EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA I DOTA DOTA DOTA DOTA 1 I I I EDTA EDTMP EDDHA EDDHA EDDHA | 1質量% 5 5 5 5 iq ρ 5 L〇 o LO in !» d in d tc to 5 ιη ο 5 in in d 5 iq 5 鹼性物質 種類 氫氧化鉀 氫氧化鉀 氫氧化鉀 m II κι 乙二胺 乙二胺 氫氧化四甲銨 狴 III Kl ll N-甲基-1,3-二胺基丙烷 继 氫氧化鉀 乙二胺 I氫氧化四甲銨 # m 乙二胺 氫氧化鉀 乙二胺 氫氧化四甲銨 乙二胺 乙二胺 氫氧化鉀 乙二胺 氫氧化四甲銨 sis Ο CO Ο CO ο ci ο CO· o CO Ο 〇j o CO ο ci o CO ο cj Ο ¢0 o C9 o co I I I 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 j實施例7 j 實施例8 實施例9 實施例10 實施例11 I實施例12| 實施例13 實施例14 比較例1 比較例2 |比較例3 I 比較例4 (tbWJ5 j 比較例6 比較例7 比較例8 比較例9 -29- 201213470 表1係表示矽晶圓硏磨後之銅污染與硏磨速度之測定 結果。 如實施例1 ~ 1 4之結果所示,可知本發明之砂晶圓用 硏磨組成物於矽晶圓硏磨時極爲抑制金屬污染 '特別是銅 污染,且可得良好的硏磨速度。 如比較例1〜4之結果所示,沒有使用螯合劑之硏磨組 成物,無法抑制硏磨後之銅污染情形。 另外,如比較例5,6之結果所示’沒有使用作爲螯合 劑之EDDHA或DOTA下,使用其他的螯合劑仍無法抑制 硏磨後之銅污染情形。 此外,於硏磨組成物中不含二氧化矽時’硏磨速度變 得極小,無法使用作爲硏磨組成物。 實施例1 5 使用矽晶圓用硏磨組成物(硏磨液)之基材的二氧化 矽溶膠[二氧化矽濃度:0.5質量%、藉由氮氣吸附法( BET法)、自比表面積換算的二氧化矽平均一次粒徑: 3〇nm、分散媒:水、以銨水(以下以NH3表示)將pH値 調整爲9],且在前述二氧化矽溶膠中添加原子吸光分析 用標準銅溶液(銅濃度爲1〇〇〇質量PPm之硝酸銅水溶液 )’在銅濃度爲10質量ppb下強制性調整被銅污染的二 氧化矽溶膠2。該被銅污染的二氧化矽溶膠2中各添加 NH3爲〇.05質量%、乙二胺-N,N’-二(鄰-羥基苯基醋酸) (以下稱爲EDDHA)爲0.05質量%、絕對分子量之重量 -30- 201213470 平均分子量20萬之羥基乙基纖維素(以下稱爲HEC )爲 0.02質量%、數平均分子量1〇〇〇之聚乙二醇(以下稱爲 PEG)爲0.01質量%,調製硏磨液15。於硏磨矽晶圓時, 使用將前述硏磨液1 5以絕對孔徑1 . 〇 μ m (捕捉效率9 9.9 % 以上)之過濾器進行過濾處理者。 進行上述過濾處理,使用除去粗大粒子的硏磨液15 ,以同一條件使初硏磨後之矽晶圓表面以下述所示條件進 行硏磨(最終硏磨)。 硏磨機:48 5 φ單面加工機 硏磨墊:RH-N(Nitta-Haas公司製) 荷重:120g/cm2 定盤回轉數:40rpm 針頭回轉數:40rpm 硏磨組成物之稀釋液:350ml/分鐘 硏磨時間:5分鐘 晶圓:Silicone wafer P- ( 1 00 ) 使最終硏磨後之硏磨晶圓實施習知的SC 1洗淨(銨 ••過氧化氫:水之混合比=1 : : 5〜7 (體積比))之洗 淨液(SCI液)中、75〜8 5 °C、浸漬處理10〜20分鐘)及 SC2洗淨(鹽酸:過氧化氫:水=1 : 1〜2 : 5〜7 (體積比)201213470 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a honing method for a enamel wafer honing composition and a ruthenium wafer having an effect of preventing metal contamination of a silicon wafer. [Prior Art] In general, a method of manufacturing a semiconductor germanium wafer is a stripe step of stripping a single crystal block to obtain a thin disk-shaped wafer, in order to prevent the stripping step from being obtained by the stripping step. When the wafer is cracked or defective, the surface of the wafer is taken from the outer peripheral portion, and the wafer is planarized by polishing. The processing distortion remaining on the wafer obtained by the surface pick-up and polishing is removed. An etching step of honing the surface of the etched wafer using a honing composition, and cleaning the honed wafer to remove the honing composition (honing fluid) or foreign matter adhering to the object The washing step consists of. In the above honing step, generally, the fine cerium oxide particles are uniformly dispersed in water, and then an alkalinity such as an inorganic base or an ammonium salt or an amine is added to promote the alkalinity of the chemical honing. The honing composition of the material is supplied to the surface of the honing pad, and the surface of the wafer can be subjected to surface honing by relatively moving the embossed honing pad against the entangled wafer of the honed object. High precision flattening. The honing of the wafer is usually performed by performing a plurality of stages of honing to achieve high-precision flattening. At the beginning of the initial honing, in order to remove the deep scratches (scratches) of the enamel wafer, and to achieve surface smoothing, a high honing speed (-5-201213470 rate) is sought. The initial honing system makes the surface of the wafer after honing become hydrophobic, and the periphery of the wafer is also likely to adhere to contaminating particles such as floating particles. In order to prevent particle contamination, the surface of the wafer is hydrophilized after honing, and water must be blown onto the surface of the honed wafer between the subsequent steps, and after honing The wafer is kept in water. Moreover, the initial honing can also be divided into two-stage processing. The final honing after the initial honing is mainly to remove the micro-scratches remaining after the initial honing, and to suppress the haze (surface haze), and to prevent particle contamination, the surface is sought Hydrophilic. Specifically, the processing pressure can be lowered and the haze can be suppressed, and the composition of the honing composition can be changed from the composition of the honing composition used in the initial honing to remove the micro-scratch due to honing, and the wafer surface can be simultaneously performed. Hydrophilization treatment. Further, the final honing can be carried out in two stages. The cerium-containing cerium-containing honing composition used in the initial honing or final honing contains a trace amount of metal impurities. Metal impurities contained in the honing composition, such as nickel, chromium, iron, copper, aluminum, and the like. These metal impurities are easily attached to the surface of the germanium wafer in an alkaline solution. The adhered metal impurity, i.e., copper, has a large diffusion coefficient and is easily diffused into the crystallized interior of the germanium wafer. The metal impurities diffused into the inside of the crystal cannot be removed by the subsequent cleaning treatment, and it is found that the quality of the germanium wafer is lowered, and the characteristics of the semiconductor device using the germanium wafer are lowered. Therefore, it is desired to prevent the honing composition of the contamination of the germanium wafer caused by metals such as copper, iron, chromium, nickel, and aluminum. Here, at the time of initial honing, by adding a large amount of -6-201213470 alkaline substance to the honing composition, the pH is increased, and by adding an amine as a basic substance, the honing speed is remarkably improved. However, these honing compositions have a situation that promotes metal contamination. In response to the countermeasure against the metal contamination of the semiconductor wafer by the above-mentioned cerium oxide-containing honing composition, a method of using a highly purified honing composition is considered. An example of honing a semiconductor wafer using a cerium oxide sol having a content of not more than 1 ppm by mass of copper, iron, chromium, nickel, and aluminum is disclosed (refer to Patent Document 1). However, in general, since the high-purity honing composition is expensive, there is a problem of cost of honing. Further, even if a high-purity raw material is used in the honing composition, metal contamination due to the honing pad, the honing device, and the piping cannot be avoided when the honing is actually performed. Therefore, for example, even if a high-purity honing composition is prepared, there is a problem that it is difficult to prevent metal contamination of the semiconductor wafer. A technique for solving such problems is disclosed in Patent Documents 1 and 2, and a honing composition containing a cerium oxide sol, a basic substance, and a chelating agent during honing of a semiconductor wafer. However, it has been found from the review of the present invention that the metal contamination can be suppressed, but the honing speed is lowered, and the squeezing composition does not have sufficient performance. Further, the technique disclosed in Patent Document 3 does not have a buffering action or a mechanical action which does not have cerium oxide, and does not have sufficient performance as a honing composition. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The utility model provides a honing composition for a silicon wafer which can maintain the performance as a honing composition when honing the wafer, and can effectively prevent metal contamination of copper, iron, chromium, nickel, aluminum, etc. purpose. A first aspect of the present invention relates to a honing composition for a tantalum wafer, which comprises a cerium oxide, an alkaline material, a chelating agent, and a water enthalpy wafer honing composition, wherein the chelating agent is Selected from ethylenediamine-N, Nf-bis(o-hydroxyphenylacetic acid), 1,4,7,10-tetraazacyclododecane-indole, Ν', Ν'ΝΜ-tetraacetic acid and the like The second aspect of the present invention relates to a honing composition for a crucible wafer according to the first aspect, wherein the cerium oxide has an average primary particle diameter of 3 by a nitrogen adsorption method. The third aspect of the present invention is the honing composition for a ruthenium wafer according to the first aspect, wherein the cerium oxide has an average primary particle diameter of 5 to 500 nm by a nitrogen adsorption method; The honing composition for a wafer according to any one of the first aspect to the third aspect, wherein the concentration of the cerium oxide is 〇 based on the mass of the honing composition for the ruthenium wafer. The 硏 矽 矽 矽 矽 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 According to a sixth aspect of the invention, the honing composition for a ruthenium wafer according to any one of the first aspect to the fifth aspect, wherein the concentration of the chelating agent is based on a mass of a honing composition for a ruthenium wafer The time is 0. The ninth aspect of the present invention is the honing composition for a ruthenium wafer according to any one of the first aspect to the sixth aspect, wherein the concentration of the alkaline substance is used for a ruthenium wafer. The mass of the grinding composition is 0. The honing composition for a ruthenium wafer according to any one of the first aspect to the seventh aspect, wherein the alkaline substance is an inorganic salt selected from the group consisting of an alkali metal, The ninth aspect of the present invention is the honing composition for a tantalum wafer according to the eighth aspect, wherein the alkaline substance is selected from the group consisting of lithium hydroxide and sodium hydroxide. An inorganic salt of at least one alkali metal group of potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogencarbonate, sodium hydrogencarbonate or potassium hydrogencarbonate; the first aspect of the present invention is related to the ninth viewpoint The entangled composition is characterized by the honing composition, wherein the alkaline substance is selected from the group consisting of saddle hydroxide, ammonium carbonate, ammonium hydrogencarbonate, tetramethylammonium hydroxide, tetramethylammonium carbonate, tetramethylammonium hydrogencarbonate, and chlorinated tetrachloride. Methylammonium, tetraethylammonium hydroxide, tetraethylammonium carbonate, tetraethylammonium hydrogencarbonate, tetraethylammonium chloride, monomethyltriethanolammonium hydroxide, monomethyltriethanolammonium carbonate, hydrogenated monomethyltriethanol At least one of ammonium and chlorinated monomethyltriethanolammonium The eleventh aspect of the present invention is the -9 - 201213470 honing composition for a tantalum wafer according to the eighth aspect, wherein the alkaline substance is selected from the group consisting of ethylene diammonium, diethylene triammonium, and N-methyl. -1,3-diaminopropane, 3-(aminomethyl)piperidine, 1,3-diaminopropane, 1,2-diaminopropane, hydrazine, hydrazine diethylamine And at least one of the above-mentioned amines in which N-ethylethylenediamine, dipropylenetriamine, monoethanolamine, 2-(2-aminoethyl)aminoethanolamine, and piperazine are grouped; The honing composition for a wafer according to any one of the first aspect to the first aspect, further comprising a water-soluble polymer compound and a compound having an alcoholic hydroxyl group; and the first aspect of the present invention The honing composition for a wafer according to the first aspect, wherein the water-soluble polymer compound is selected from the group consisting of hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and polyvinyl alcohol. At least one of a group of polyvinylpyrrolidone and amylopectin; the 14th aspect of the present invention relates to a wafer for the 13th aspect In the composition of the invention, the water-soluble polymer compound is a hydroxyethylcellulose having a weight average molecular weight of 100,000 to 1,000,000; and the fifteenth aspect of the invention is the twin crystal according to any one of the 12th to 14th aspects. The round honing composition, wherein the concentration of the water-soluble polymer compound is 0 based on the mass of the honing composition of the ruthenium wafer. 01~2. The honing composition for a wafer according to any one of the twelfth to fifteenth aspects, wherein the compound having an alcoholic hydroxyl group is selected from the group consisting of methanol, ethanol, and C. At least one of a group consisting of alcohol, ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, acetylene alcohol, and glycerin; -10- 201213470 The 17th aspect of the present invention is related to any of the 12th to 16th points The entangled composition of the wafer is described, wherein the concentration of the compound having a hydroxyl group is 0 when the ruthenium composition is all based on the honing composition. 001~5. The ninth aspect of the present invention relates to a honing composition characterized by using any one of the first to the seventeenth aspects: the ninth aspect of the present invention relates to a honing composition The honing of the ruthenium wafer is characterized in that the honing composition for the wafer is used to perform the preliminary honing using any of the first to eleventh aspects; the twentieth aspect of the present invention relates to the honing method for the ruthenium wafer The crystal grinding composition using any one of the first to the seventeenth aspects is used for the final honing after the initial honing. In the enamel wafer of the present invention, the honing composition can be prepared by storing or transporting the stock solution as a stock solution, or by adding pure water to the honing device and diluting it. The dilution ratio is 4 to 100 times and the ratio is 10 to 50 times. In the honing device for honing the enamel wafer, there is a one-side honing two-side honing method, and the honing composition of the present invention can be used in any of the devices. [Effects of the Invention] The present invention contains an alcohol selected from the group consisting of ethylenediamine-oxime, Ν'-bis(o-hydroxyphenylacetic acid), and a honing group for a wafer containing cerium oxide. Sexual quality method, sand wafer method, after loading, its special use is used in high concentration, preferably in the form of wafers, 4,7,10--11- 201213470 Alkane-1^,>1',:^",>1'"_tetraacetic acid and at least one chelating agent of the group of such salts have a good honing speed or haze suppression effect It can prevent the particle squeezing and the like as a performance of the honing composition, and can suppress the metal contamination on the surface and inside of the sand wafer, in particular, the effect of suppressing copper contamination. In particular, the honing composition for an amine-containing sand wafer has an effect of maintaining a high honing speed and suppressing copper contamination. In addition, since it is not necessary to use a raw material having a particularly high purity, it is possible to obtain a ruthenium composition for a ruthenium wafer which is low in price and which can suppress metal contamination. [In the form of the invention] An embodiment of the invention will be described. The honing composition for the crucible wafer of the present invention contains silica sand, an alkaline substance, a chelating agent and water, and the chelating agent is selected from the group consisting of ethylenediamine-N,N'-bis(o-hydroxyphenylacetic acid). And 1,4,7,10-tetraazacyclododecane-N,N',N",N'"-tetraacetic acid and at least one of the groups of such salts. Then, the tantalum wafer of the present invention is used for the honing composition, and is specifically referred to as the honing composition for the initial honing 矽 wafer and the honing composition for the final honing wafer. In the honing composition for the crucible wafer of the present invention, cerium oxide is used as the cerium particles. It is known that it is effective to process cerium oxide or aluminum oxide of a honing composition by boring or honing a tantalum wafer, but using a granule user as a honing composition for a tantalum wafer of the present invention It is preferred to use cerium oxide. Moreover, cerium oxide is known as cerium oxide sol, pyrogenic cerium oxide, precipitated cerium oxide or other different forms of cerium oxide, any of which can be used, especially for semiconductors. (矽 wafer) High-precision -12-201213470 When honing, colloidal cerium oxide having a uniform particle size distribution and an average particle diameter of colloidal (nano-dimensional) is preferred. The particle size of the colloidal cerium oxide is not particularly limited. For example, when the honing composition is used for the initial honing of the wafer, the average primary particle diameter converted from the specific surface area by the nitrogen adsorption method (BET method) is 3~ 1 〇〇〇 nm, preferably 5 to 500 nm, and most preferably 1 〇 to 500 nm. Further, when the composition is honed for the final honing sand wafer, the average particle diameter converted from the specific surface area by the nitrogen adsorption method (BET method) is 5 to 100 nm', preferably 20 to 50 nm. A preferred form of colloidal cerium oxide is a cerium oxide sol in which colloidal cerium oxide is stably dispersed in water. As the cerium oxide of cerium particles, cerium oxide having a single particle size distribution or cerium oxide having a plurality of different particle size distributions may be used. Further, the germanium wafer of the present invention is used for honing the content of cerium oxide in the composition, based on the mass of the honing composition of the germanium wafer. 〇 5 to 30% by mass, preferably 0·1 to 10% by mass, more preferably 0·2 to 5% by mass. Not up to 0. When the amount is more than 30% by mass, the honing speed is not sufficient. When the amount is more than 30% by mass, the surface defects are reduced, the flatness is lowered, and the scratch resistance and smoothness of the ruthenium wafer are deteriorated. seek. In particular, when the composition is honed for the final honing wafer, when the 〇_〇 is 5 to 30% by mass, the haze is deteriorated, so it is not desirable. In the present invention, ethylenediamine-oxime, Ν'-bis(o-hydroxyphenylacetic acid) used as a chelating agent is an acetic acid-based chelating agent containing a phenyl group in the ethylenediamine skeleton. 1,4,7,10-tetraazacyclododecane-^[,:^',:^',:^'"-tetraacetic acid is an acetic acid-based chelating agent with 4 ethylenediamine ring-bonded One type of chelating agent which is a typical chelating agent of ethylene-2-13-201213470 amine-4-acetic acid (hereinafter referred to as ED ΤΑ) is selected from the group consisting of ethylenediamine-oxime, Ν'-two. (o-hydroxyphenylacetic acid), 1,4,7,10-tetraazacyclododecane-indole: ^^^"-tetraacetic acid and at least one type of these groups are essential components. Such salts are, for example, ammonium salts, organic amine salts, alkali metal salts and the like. By using the selected from the group consisting of ethylenediamine-oxime, Ν'-bis(o-hydroxyphenylacetic acid), 1,4,7,10-tetraazacyclododecane-oxime, Ν', Ν", Ν At least one of the group of tetraacetic acid and the above-mentioned salts can exhibit a good honing speed or a haze suppression effect which cannot be exhibited by other chelating agents such as EDTA, and maintains particle contamination as a honing composition. Performance and the effect of suppressing metal contamination on the surface and inside of the wafer. Further, by using an ethylene diamine-oxime, Ν'-bis(o-hydroxyphenylacetic acid), 1,4,7,10-tetraazacyclododecane-:^,:^',: ^",:^'"-tetraacetic acid and at least one of these salts are grouped, and metal contamination can be remarkably suppressed as compared with other chelating agents such as EDTA. Further, in the honing composition for the wafer of the present invention, other chelating agents may be used. Other chelating agents such as nitrosoacetic acid (hydrazine), hydroxyethylimino 2 acetic acid (HIDA), ethylenediamine 4 acetic acid (EDTA), hydroxyethylethylenediamine 3 acetic acid (EDTA-) may be used. OH), 1,3-diaminopropane 4 acetic acid (DPTA), diethylenetriamine 5 acetic acid (DTPA), triethylenetetramine 6 acetic acid (TTHA), 2-hydroxy-1,3-diaminopropane 4 Acetic acid (DPTA-OH), nitroso 3 methylene phosphonic acid (NTMP), nitroso 3 ethylphosphonic acid (NTEP), ethylenediamine 4 methylene phosphonic acid (EDTMP) -14- 201213470 ' Ethylenediamine 4 exoethylphosphonic acid (EDTEP), diethylenetriamine 5 methylene phosphonic acid (DTPMP), diethylenetriamine 5 exoethylphosphonic acid (DTPEP), triethylenetetramine 6 methylene phosphine Acid (TTHMP), triethylenetetramine 6 extended ethylphosphonic acid (TTHEP), and the like. Selected from the aforementioned ethylenediamine-N,N'-bis(o-hydroxyphenylacetic acid), 1,4,7,1〇-tetraazacyclododecane-:^,>^', >^"-Tetraacetic acid and the salts of these salts 1,4,7,10-tetraazacyclododecane-1^,1^',>1",>1'"-tetraacetic acid The concentration of at least one of the chelating agents in the honing composition for the ruthenium wafer is not particularly limited in terms of the effect of the invention, for example, when the composition is honed for the initial honing wafer, The quality of the wafer honing composition is based on 0. 0 0 1~5 mass%, preferably 0. 0 1~3 mass%, more preferably 0. 1 to 1 mass%. The concentration of the wafer in the honing composition is less than 0. When the amount is 001 mass%, the effect of preventing metal contamination is insufficient. On the other hand, when it exceeds 5% by mass, the effect of preventing further metal contamination cannot be expected. Further, in the case of honing the composition for the final honing wafer, the mass of the honing composition for the ruthenium wafer is 0. 001 to 10% by mass, preferably 0. 01~10% by mass, and better is 0. 0 5 to 5 mass%. The concentration of the wafer in the honing composition is less than 0. When the amount is 001% by mass, the effect of preventing metal contamination is insufficient. On the other hand, when it exceeds 10% by mass, the effect of preventing further metal contamination cannot be expected. The basic substance used in the present invention is, for example, at least one selected from the group consisting of an inorganic salt of an alkali metal, an ammonium salt, and an amine. A salt of an alkali metal such as an alkali metal hydroxide or carbonate, specifically, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate-15-201213470, potassium carbonate, lithium hydrogencarbonate, carbonic acid Sodium hydrogenhydride, potassium hydrogencarbonate or the like is preferred, and sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate is particularly preferred. Ammonium salts such as ammonium hydroxide, ammonium carbonate, ammonium hydrogencarbonate, tetramethylammonium hydroxide, tetramethylammonium carbonate, tetramethylammonium hydrogencarbonate, tetramethylammonium chloride, tetraethylammonium hydroxide, tetraethylammonium carbonate, hydrogenation Tetraethylammonium, tetraethylammonium chloride, monomethyltriethanolammonium hydroxide, monomethyltriethanolammonium carbonate, monomethyltriethanolammonium hydrogencarbonate, and monomethylammonium chloride are preferred, especially Tetramethylammonium hydroxide is preferred. Amines such as ethylenediamine, monoethanolamine, 2-(2-aminoethyl)aminoethanolamine, diethylenetriamine, N-methyl-1,3·diaminopropane, 3-(aminomethyl) Piperidine, 1,3-diaminopropane, 1,2-diaminopropane, hydrazine, hydrazine-diethylethylenediamine, hydrazine-ethylethylenediamine, dipropylenetriamine, piperazine, and the like. It is more preferable because the effect of increasing the honing speed of ethylenediamine is high. The amines contain not only these amines but also other amines. The preferred concentration of the alkaline substance in the honing composition of the germanium wafer of the present invention is based on the mass of the honing composition of the germanium wafer. 〇1~1〇% by mass. Especially in the case of alkali metal salts, it is 0. 01 to 1% by mass, 0. for ammonium salt. 01~5 mass%, 0. for amines. 1 to 10% by mass is preferred. When the concentration of the alkaline substance honing the composition of the crucible is less than 0.101 mass%, a sufficient honing speed cannot be obtained. On the other hand, when it exceeds 10 mass%, the honing speed cannot be expected to be further improved. Further, two or more kinds of the above basic substances may be used. The sand wafer of the present invention may be provided with a honing composition, and may contain additives other than the above. For example, it may contain a water-soluble polymer compound or a compound having an alcoholic hydroxyl group. The final honing agent can be formed by honing the composition by using a cerium-containing wafer containing cerium oxide, a basic substance, a chelating agent-16-201213470 and water, and a water-soluble polymer compound and a compound having an alcoholic hydroxyl group. Grinding the composition. The water-soluble polymer compound used in the present invention mainly has a function of imparting hydrophilicity to the surface of the wafer after completion of the honing. By increasing the hydrophilicity of the surface of the wafer after honing, and between the cleaning steps after honing, it is possible to prevent the ruthenium wafer from adhering to the ruthenium wafer by the honing composition or the honing environment. And has an effect of improving particle suppression. The water-soluble polymer compound used in the present invention is selected from the group consisting of hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone and amylopectin. At least one of them is preferred because hydroxyethylcellulose has a good haze on the surface of the wafer after honing, which is more preferable. The concentration of the water-soluble polymer compound is 〇 with respect to the mass of the total amount of the honing composition of the ruthenium wafer. 〇1 ~2. 0% by mass is preferred. Added less than 0. At 0% by mass, the effect of improving the haze and wettability (hydrophilicity) of the surface of the wafer after honing is insufficient, and the addition is more than 2. 0% by mass, since the viscosity of the composition for honing of the enamel wafer is too high, the burden of removing the foreign matter such as filter filtration increases, and the productivity is deteriorated, so the molecular weight of hydroxyethyl cellulose is not sought. The weight average molecular weight (Mw) of the absolute molecular weight is preferably from 100,000 to 1,000,000. The absolute molecular weight can be determined by GPC (gel permeation chromatography) using a multi-angle light scattering detector from Wyatt. The molecular weight distribution of hydroxyethyl cellulose is extremely wide, and since the weight average molecular weight of the general calibration method cannot cover the entire molecular weight range of -17-201213470, there is a disadvantage of lack of reproducibility. Since the absolute molecular weight is excellent in reproducibility, it is suitable for comparison of molecular weight use. The compound having an alcoholic hydroxyl group used in the present invention has an effect of increasing the haze level of the surface of the sanded wafer after honing after the honing is completed. Although the mechanism is not clear, by having a compound having an alcoholic hydroxyl group, the haze level of the surface of the wafer after honing can be surely improved. The compound having an alcoholic hydroxyl group used in the present invention is at least one selected from the group consisting of methanol, ethanol, propanol, ethylene glycol, propylene glycol, polyethylene glycol, acetylene alcohol, polyhydric alcohol, and glycerin. good. The average molecular weight of polyethylene glycol is 200 to 3 0000, and the average molecular weight of polypropylene glycol is 200 to 20000. The content of the compound having an alcoholic hydroxyl group is 0 based on the mass of the total amount of the honing composition for the tantalum wafer. 001~5. 0% by mass, preferably 0. 002~3. 0% by mass. When the content of the compound having an alcoholic hydroxyl group is less than the above range, the effect of improving the haze is small, and if it is more than this range, the effect of further improving the haze cannot be expected. The method for producing the honing composition for a tantalum wafer of the present invention is not particularly limited, and for example, it can be produced by dissolving or dispersing the above components in water. Moreover, 'the enamel wafer of the present invention is honed to be a high-concentration stock solution for storage or transportation, and is actually used in a honing device to add pure water to the high-concentration stock solution. Diluted for use. The dilution ratio is, for example, 4 to 100 times, preferably 1 to 50 times. The honing composition for a crucible wafer according to the present invention contains foreign matter (particles) derived from raw materials contained in cerium oxide, an alkaline substance or a chelating agent, foreign matter mixed in a manufacturing apparatus or working environment from -18 to 201213470 In particular, the coarse particles such as the cerium oxide agglomerate or the dried gel are preferably used to remove the coarse particles before the honing. Methods for removing coarse particles, such as forced precipitation or precision filtration 〇 Filters used for precision filtration, such as deep filters, folding filters, membrane filters, hollow fiber filters, etc., can be used in any type. Moreover, the filter material can be used, such as cotton, polypropylene, polystyrene, poly maple, polyether oxime, nylon, cellulose, glass, and the like. The removal of coarse particles uses a finer mesh filter, which slows down the filtration rate. When considering the filtration efficiency, 0. 5~1. Filter of 0 μπι mesh. The forced precipitation method is, for example, a centrifugal separator using centrifugal force or the like. In the honing method of the tantalum wafer of the present invention, the above-described twin crystal honing composition of the present invention is used to honing wafers. The honing device has a one-side honing method and a double-side honing method, and any device can use the enamel wafer honing composition of the present invention to honing the wafer. In the ruthenium wafer of the present invention, the concentration of the cerium oxide is preferably 5 to 30% by mass based on the mass of the honing composition of the ruthenium wafer. In particular, the honing step of the ruthenium wafer is usually constituted by honing in a plurality of stages, the initial honing at the beginning of the honing step, and the final honing performed after the preliminary honing step. Moreover, the initial honing or final honing can be divided into two sections. Secondly, the primary honing system is designed to remove the scratches (scratches) of the ruthenium wafer and to smooth the surface, and to achieve a high honing speed. In addition, the final honing is to remove the micro-19-201213470 scratches remaining after the initial honing, and to suppress the haze (surface defects), and to prevent surface contamination, it is also possible to perform surface hydrophilization. In particular, it is intended to suppress haze or prevent particle contamination. The honing fluid used in these honing steps can be honed using the enamel wafer of the present invention. The honing composition for the ruthenium wafer of the present invention used in the initial honing is a honing composition for a ruthenium wafer containing ruthenium dioxide, an alkaline substance, a chelating agent, and water, in order to obtain a high honing speed. It does not substantially contain a water-soluble polymer compound and a compound having an alcoholic hydroxyl group. Further, the honing composition for a crucible wafer of the present invention used in the final honing is a compound containing cerium oxide, a basic substance, a chelating agent, water, a water-soluble polymer compound, and an alcoholic hydroxyl group. Both the initial honing and the final honing treatment can use the honing composition of the enamel wafer of the present invention, or the yttrium wafer of the present invention can be used only in any of the initial honing and final honing. Use the honing composition. Thus, by using the enamel wafer of the present invention to honing the wafer by honing the composition, it is possible to effectively prevent metal contamination of copper, iron, chromium, nickel, aluminum, and the like. Further, it is possible to prevent the deterioration of the quality of the germanium wafer due to metal contamination or the deterioration of the characteristics of the semiconductor device using the germanium wafer. In particular, in the case of initial honing, since it is heated by honing, or the wafer is easily contaminated by metal, in the initial honing, the composition can be honed by using the ruthenium wafer of the present invention, Prevention of Metal Contamination Next, when the composition for honing the wafer of the present invention is used, as shown in the following examples, it is possible to sufficiently maintain the high honing which cannot be maintained by other chelating agents such as EDTA and which is required at the initial honing. The mist or the final effect of the particle-prevention and particle pollution prevention effect at the time of final honing, and the honing of the wafer can be performed well. [Embodiment] Hereinafter, embodiments of the present invention will be described, but the present invention It is not limited by the embodiments described below. In particular, in the following examples, in order to avoid copper contamination, other heavy metal contamination can be further prevented by the honing composition of the present invention. [Examples] [Example 1] A cerium oxide sol of a substrate for honing a composition (honing liquid) using a 15 kg ruthenium wafer [concentration of cerium oxide: 3. 0% by mass, by nitrogen gas adsorption method (BET method), average primary particle diameter of ceria converted from specific surface area: 45 nm, dispersing medium: water, potassium hydroxide (hereinafter referred to as KOH), pH 値 is adjusted to 9 And adding a standard copper solution for atomic absorption analysis (copper concentration of 1 〇〇〇 mass PPm of copper nitrate aqueous solution) to the cerium oxide sol, and forcibly adjusting copper contamination under a copper concentration of 1 〇 mass PPb Cerium oxide sol 1. KOH, ethylenediamine-N,N'-bis(o-hydroxyphenylacetic acid) (hereinafter referred to as EDDHA) is added to each of the copper-contaminated cerium oxide sol 1, and the mass of the obtained honing liquid is Benchmark, the modulation contains KOH 0. 1 quality. /〇, EDDHA 0. 01% by mass of honing fluid 1. When honing the wafer, the honing fluid 1 is used in an absolute aperture of 1 (capture efficiency 99. More than 9% of the filters are filtered.矽 Wafer -21 - 201213470 Honing (primary honing) is carried out under the conditions shown below. Honing machine: 485φ single-sided processing machine honing pad: suba600 (manufactured by Nitta-Haas Co., Ltd.) Load: 270g/cm2 Number of rotations: 40rpm Number of needle rotations: 40rpm Supply of honing composition: 3 5 0ml/min Honing time: 30 minutes Wafer: Silicone etched · waffer P- (1 〇〇) The honing speed is measured by non-contact measurement of the thickness of the complex point, converted into μπι/min. It is applied to a conventional SCI cleaning (ammonium: hydrogen peroxide: water mixing ratio = 1: 1 to 2: 5 to 7 (volume ratio)) in a cleaning solution (SCI solution), 75 to 8 5 ° C , immersion treatment 1 〇 ~ 20 minutes) and SC2 washing (hydrochloric acid: hydrogen peroxide: water = 1: 1 ~ 2: 5 ~ 7 (volume ratio)) of the cleaning solution (SC2 liquid), 75 ~ 85 °C, immersion treatment for 10 to 20 minutes), after removing the impurities on the surface of the wafer, the washed wafer was heat-treated at 65 ° C for 20 minutes, and HF/H202 droplets (hydrogen fluoride and hydrogen peroxide) The droplet of the aqueous solution) recovers the copper on the surface of the wafer, so that the metal impurities in the recovered liquid are quantified by inductively coupled plasma mass spectrometry (hereinafter referred to as 1 cp-MS). analysis. In Examples 2 to 14 and Comparative Examples 1 to 9 below, 'except for the 硏-22-201213470 abrasive liquid used, the honing condition of the ruthenium wafer, the quantitative condition of copper after honing, and the like, and Example 1 The same is done. Example 2 K0H and EDDHA were added to each of the cerium oxide sol 1 prepared in Example 1, and KOH 0 was prepared based on the mass of the obtained honing liquid. 1% by mass, EDDHA 0. The honing liquid 2' of 01% by mass is subjected to honing treatment using the honing liquid 2. Example 3 KOH and EDDHA were added to each of the oxidized oxidized sol 1 prepared in Example 1 in the first embodiment, and KOH 0.1% by mass, EDDHA 0 was prepared based on the mass of the obtained honing liquid. . 5 % by mass of the honing liquid 3 was subjected to honing treatment using the honing liquid 3. Example 4 Ethylenediamine and EDDHA were added to each of the cerium oxide sol 1 prepared in Example 1, and the content of the obtained honing liquid was adjusted to contain ethylenediamine. 1% by mass, EDDHA 0. 1% by mass of the honing fluid 4' is honed using the mashing liquid 4. Example 5 Ethylenediamine and EDDHA were added to each of the cerium oxide sol 1 prepared in Example 1, and the preparation was carried out based on the mass of the obtained honing liquid to prepare a bismuth -23-201213470 diamine oxime. 5 mass%, EDDHA0. 1 quality. /. The honing liquid 5' is honed by the honing liquid 5. Example 6 Ethylenediamine and EDDHA were added to each of the silica sand sol 1 prepared in Example 1, and the ethylene amide was prepared based on the mass of the obtained honing liquid. 1% by mass, EDDHA 0. 1% by mass of the honing liquid is subjected to honing treatment using the honing liquid 6. Example 7 To each of the cerium oxide sols 1 prepared in Example 1, tetramethyl hydride (hereinafter referred to as TMAH) and EDDHA' were prepared to contain TMAH 0 based on the mass of the obtained honing liquid. 1% by mass, EDDHA 0. 1 quality. /. The honing liquid 7 is subjected to honing treatment using the honing liquid 7. Example 8 Diethylenetriamine and EDDHA were added to each of the cerium oxide sol 1 prepared in Example 1, and the content of the obtained honing liquid was adjusted to contain diethylenetriamine. 5 mass%, EDDHA 0.  1% by mass of the honing liquid 8' is honed using the honing liquid 8. Example 9 N-methyl-1,3-diaminopropane and EDDHA were each added to the cerium oxide sol 1 prepared in Example 1, and the mass of the obtained honing liquid was -24-201213470. Containing N-methyl-1,3-diaminopropane 0.5% by mass, EDDHA 0. 1% by mass of the honing liquid 9 was subjected to honing treatment using the honing liquid 9. Example 1 0 Piperazine and EDDHA were each added to the cerium oxide sol 1 prepared in Example 1, and the content of the obtained honing liquid was adjusted to contain piperazine 5 〇 5% by mass, EDDHA 0. The honing liquid 10' of 01% by mass is subjected to honing treatment using the honing liquid 10. Example 11 In the cerium oxide sol 1 prepared in Example 1, K0H, 1,4,7,10-tetraazacyclododecane-1:^,, >1,' was added. ;^,"-tetraacetic acid (hereinafter referred to as DOTA), based on the mass of the obtained honing liquid, prepared to contain KOH 0. 1% by mass, DOTA 0. 1% by mass of the honing liquid 11' is honed using the honing liquid 11. Example 1 2 Ethylenediamine and DOTA were each added to the cerium oxide sol 1 prepared in Example 1, and the content of the obtained honing liquid was adjusted to contain ethylenediamine hydrazine·5 mass%, D Ο TA 0. 1% by mass of the honing fluid 1 2 ' was honed using the honing solution 1 2 . Example 1 3 -25-201213470 Each of the cerium oxide sols 1 prepared in Example 1 was added with TM AH and DO ΤΑ, and the content of the obtained honing liquid was adjusted to contain ΤΜΑΗ 0. 1% by mass, DOTA 0. 1% by mass of the honing liquid 13' is honed using the honing liquid 13. Example 1 4 In the cerium oxide sol 1 prepared in Example 1, each was added with a pulse, DO ΤΑ, and the piperazine was prepared based on the mass of the obtained honing liquid. 5 mass%, DOTA 0. 1% by mass of the honing fluid 14' is honed using the honing fluid 14. Comparative Example 1 A cerium oxide sol having the same base material as in Example 1 [concentration of silica sand: 3.0% by mass, argon oxide adsorption method (BET method), average granules of cerium oxide converted from specific surface area) Diameter: 45 nm, dispersing medium: water, adjusting pH to 9 with KOH, adding ethylenediamine without copper contamination, and preparing ethylenediamine oxime based on the quality of the obtained honing liquid. 5 mass% of honing fluid R1. Honing is performed using the honing fluid R1. Comparative Example 2 KOH' was added to the cerium oxide sol 1 prepared in Example 1 to prepare KOH 0 based on the mass of the obtained honing liquid.  1% by mass of the honing liquid R2 was subjected to honing treatment using the honing liquid R2. -26- 201213470 Comparative Example 3 In the cerium oxide sol 1 prepared in Example 1, the honing liquid R3 containing B% was prepared based on the mass of the obtained honing liquid, and the honing liquid R3 was used for honing. Comparative Example 4 In the cerium oxide sol 1 prepared in Example 1, the honing liquid R4 having a % content was prepared based on the mass of the obtained honing liquid, and 硏I was compared using the honing liquid R4. 5 In the cerium oxide sol 1 prepared in Example 1, ethylenediaminetetraacetic acid (EDTA) was prepared by the enthalpy of the obtained oxime. 5 mass%, EDTA 0·1 liquid R5, honing treatment using the honing liquid R5. Comparative Example 6 In the cerium oxide sol 1 prepared in Example 1, ethylenediaminetetramethylenephosphonic acid (hereinafter referred to as the mass of the EDTMP honing liquid as a reference) was prepared to contain ethylenediamine E D Τ Μ P 0. 1% by mass of the honing liquid R 6 was treated with the dusting mill. Comparative Example 7 Adding ethylenediamine, diamine oxime.  5 quality i. Add TMAH TMAH 0. 1 g g treatment 》 each added ethylene diamine solution mass is based on the mass % of honing each added ethylene diamine), resulting in 0. 5 mass%, liquid R6 was carried out in 硏-27-201213470. The standard copper solution used in Example 1 was added to 'pure water, and 15 kg of a 10 mass ppb copper aqueous solution was prepared, and then OH and EDDHA were added to each obtained. The quality of the grinding fluid is based on the standard, and the modulation contains OH 0. 1% by mass, EDDHA 0. 1% by mass of the honing liquid R7 was subjected to honing treatment using the honing liquid R7. Comparative Example 8 The standard copper solution used in Example 1 was added to water to prepare 15 kg of a 1 〇 mass ppb copper aqueous solution, and then ethylenediamine and EDDHA were added thereto, and the preparation was carried out based on the mass of the obtained honing liquid. Amine. 5 mass%, EDDHA 0. 1% by mass of the honing liquid R8 was subjected to honing treatment using the honing liquid R8. Comparative Example 9 & Pure water The standard copper solution used in Example 1 was added to prepare 15 kg of a 1 pp. mass ppb copper aqueous solution, and then TMAH and EDDHA were added thereto, and the content of the obtained honing liquid was adjusted based on the mass of the obtained honing liquid. TMAH 0. 1% by mass ' EDDHA 0. 1% by mass of the honing liquid R9 was subjected to honing treatment using the honing liquid R9. -28- 201213470 [s] honing speed em/minute 〇> CM Ο 1 α> CM ο Τ Ο τ-* CO d jr· Ο CO ο 1 CO <〇 o 2 σ> CM <5 r - CO o 〇 CD 1 CO CO ο CO ο CM CO d T-· <〇 〇 s 〇 s o o d H g Class I 働$ 萑Μ 1.0Χ109 <1.0 X 109 <1.0X10® <1.0X10® <1.0 X 109 1.0 X 109 I <ι.〇χιο9 <1.0X109 <1.0X109 I <ι.〇χιο9 I <ι.〇χιο9 <i.〇xio9 I <ι.〇χιο9 I 1 <ι.〇χιο9 I 9.1 X 109 7.7X10® I 6.4X1010 9.3X100 5.1 x 109 3.6 x 109 <1.〇x 109 1.5 x 109 <ι.〇χ io9 Cu Addition Mfippm Ο Ο ο Ο ο ο ο o o Ο 〇 Ο τ τ-~ Ο I o Ο ο o 〇 〇 2 〇 ϋ m » <n Ο 5 ιη ο 5 Ο t— 5 o 5 o 〇· 5 IIII 5 5 Ύ — T— 5 m & U+ήτΙΙ Qing EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA EDDHA I DOTA DOTA DOTA DOTA 1 III EDTA EDTMP EDDHA EDDHA EDDHA | 1% by mass 5 5 5 5 iq ρ 5 L〇o LO in !» d in d tc to 5 ιη ο 5 in in d 5 iq 5 Basic substance type potassium hydroxide potassium hydroxide hydroxide Potassium m II κι Ethylenediamine ethylenediamine tetramethylammonium hydroxide III Kl ll N-methyl-1,3-diaminopropane followed by potassium hydroxide ethylenediamine I tetramethylammonium hydroxide # m Ethylenediamine Potassium hydroxide ethylenediamine hydroxide tetramethylammonium ethylenediamine ethylenediamine potassium hydroxide ethylenediamine tetramethylammonium hydroxide sis Ο CO Ο CO ο ci ο CO· o CO Ο 〇jo CO ο ci o CO ο cj ¢ o0 o C9 o co III Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Embodiment 5 Embodiment 6 j Embodiment 7 j Example 8 Example 9 Example 10 Example 11 I Example 12 | 13 Example 14 Comparative Example 1 Comparative Example 2 | Comparative Example 3 I Comparative Example 4 (tbWJ5 j Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 -29- 201213470 1 shows the results of measurement of copper contamination and honing speed after honing of the wafer. As shown in the results of Examples 1 to 14, it is understood that the sanding wafer of the present invention is honed on the enamel wafer by the honing composition. When the metal contamination is particularly suppressed, especially copper contamination, and a good honing speed can be obtained. As shown by the results of Comparative Examples 1 to 4, the honing composition without using a chelating agent cannot suppress the copper contamination after honing. In addition, as shown in the results of Comparative Examples 5 and 6, 'Under the use of EDDHA or DOTA as a chelating agent, the use of other chelating agents still does not inhibit the copper contamination after honing. In addition, it is not in the honing composition. When cerium oxide is contained, the honing speed becomes extremely small, and it cannot be used as a honing composition. Example 1 5 cerium oxide sol of a substrate for honing a composition (honing liquid) using a ruthenium wafer [2 oxidation矽 concentration: 0.5% by mass, average particle diameter of cerium oxide converted from specific surface area by nitrogen adsorption method (BET method): 3 〇 nm, dispersion medium: water, ammonium water (hereinafter referred to as NH3) to pH値 adjusted to 9] and dissolved in the aforementioned cerium oxide Added by atomic absorption spectrometry standard copper solution (copper concentration of an aqueous solution of copper nitrate 1〇〇〇 mass of PPm) 'mandatory to adjust the copper concentration is 10 mass ppb two copper contamination of silicon oxide sol 2. The amount of NH3 added to the copper-contaminated cerium oxide sol 2 was 0.05 mass%, and ethylenediamine-N,N'-bis(o-hydroxyphenylacetic acid) (hereinafter referred to as EDDHA) was 0.05% by mass. Absolute molecular weight -30- 201213470 The average molecular weight of 200,000 hydroxyethyl cellulose (hereinafter referred to as HEC) is 0.02% by mass, and the number average molecular weight of 1 〇〇〇 polyethylene glycol (hereinafter referred to as PEG) is 0.01 mass. %, modulating the honing fluid 15. When the wafer is honed, the filter is processed by a filter having an absolute pore diameter of 1 〇 μ m (capacity of 9 9.9 % or more). The above-mentioned filtration treatment was carried out, and the honing liquid 15 from which the coarse particles were removed was subjected to honing (final honing) on the surface of the ruthenium wafer after the initial honing under the same conditions as described below. Honing machine: 48 5 φ single-sided processing machine honing pad: RH-N (manufactured by Nitta-Haas) Load: 120g/cm2 Number of rotations: 40rpm Number of needles: 40 rpm Dilution of honing composition: 350ml / Minute honing time: 5 minutes Wafer: Silicone wafer P- (1 00) The conventional honed wafer is subjected to the conventional SC 1 wash (ammonium • hydrogen peroxide: water mixture ratio = 1 : : 5 to 7 (volume ratio) of the washing solution (SCI solution), 75 to 8 5 ° C, immersion treatment for 10 to 20 minutes) and SC2 washing (hydrochloric acid: hydrogen peroxide: water = 1: 1~2 : 5~7 (volume ratio)

)之洗淨液(SC2液)中、75~85°C、浸漬處理1〇~20分 鐘),除去晶圓表面之雜質後,使洗淨後之晶圓在6 5 0 °C -31 - 201213470 下進行熱處理20分鐘,且以HF/H202液滴(氟化氫與過 氧化氫之水溶液的液滴)回收晶圓表面之銅,使回收液中 之金屬雜質藉由感應耦合電漿質譜分析法(以下以ICP-MS表示)進行定量分析。 而且,最終硏磨後之矽晶圓表面的LPD ( Light Point Defect),霧度係使用 KLA-Tencor 公司製 Surf Scan.SP-1 進行測定。LPD係以0.08 μιη以上之個數表示,霧度係以 霧度分布之最大頻率的位置表示。而且,LPD係表示晶圓 之表面缺陷’起因於粒子、點狀缺陷、線狀缺陷者。 於下述之實施例16〜23、比較例10〜12中,除使用的 硏磨液外’矽晶圓之硏磨條件、硏磨後銅之定量條件等與 實施例1 5相同地進行。 實施例1 6 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ,調製ΝΗ3爲〇·〇5質量%、HEC爲0.02質量%、EDDHA 爲0.10質量%、PEG爲0.01質量%,調製硏磨液16,使 用該硏磨液16進行硏磨,且進行銅之定量分析。 實施例17 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ,調製NH3爲〇.〇5質量%、HEC爲0.02質量%、EDDHA 爲0.15質量%、PEG爲〇_〇1質量%,調製硏磨液17’使 用該硏磨液17進行硏磨,且進行銅之定量分析。 -32- 201213470 實施例1 8 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ,調製NH3爲〇.〇5質量%、HEC爲002質量%、EDDHA 爲0.10質量%、數平均分子量7 00之聚丙二醇(以下稱爲 PPG)爲0.01質量%,調製硏磨液18,使用該硏磨液18 進行硏磨,且進行銅之定量分析。 實施例1 9 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ,調製KOH爲0.01質量%、HEC爲0.02質量%、EDDHA 爲0.10質量%、PEG爲〇.〇1質量%,調製硏磨液19,使 用該硏磨液19進行硏磨,且進行銅之定量分析。 實施例2 0 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ’調製NH3爲0.05質量%、羥基丙基甲基纖維素(取代 度0.15)(以下稱爲HPMC)爲0.02質量%、EDDHA爲 0.10質量%、PEG爲〇·01質量%,調製硏磨液2〇,使用 該硏磨液20進行硏磨,且進行銅之定量分析。 實施例2 1 在與實施例15相同的被銅污染的二氧化矽溶膠2中 調製氨氧化四甲銨(以下稱爲ΤΜΑΗ)爲0.01質量%、 HEC 爲 〇.〇2質量%、EDDha 爲 質量 %、pEG 爲 〇 -33- 201213470 質量%,調製硏磨液21,使用該硏磨液21進行硏磨,且 進行銅之定量分析。 實施例22 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ,調製 NH3爲 〇_〇5質量%、HEC爲 0.02質量%、 1,4,7,10-四氮雜環十二烷-:^,>^’,;^,’,:^’”-四醋酸(以下稱爲 DOTA)爲〇.1〇質量%、PEG爲0.01質量%,調製硏磨液 22,使用該硏磨液22進行硏磨,且進行銅之定量分析。 實施例23 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ,調製TMAH爲0.01質量%、HEC爲0.02質量%、DOTA 爲0.10質量%、PEG爲〇·〇ι質量%,調製硏磨液23,使 用該硏磨液23進行硏磨,且進行銅之定量分析。 比較例1〇 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ’調製ΝΗ3爲0.05質量%、HEC爲0.02質量%,調製硏 磨液R10’使用該硏磨液R1〇進行硏磨,且進行銅之定量 分析。 比較例11 在與實施例15相同的被銅污染的二氧化矽溶膠2中 -34- 201213470 ,調製NH3爲0.05質量%、HEC爲0.02質量%、PEG爲 0.01質量%,調製硏磨液R11,使用該硏磨液R11進行硏 磨,且進行銅之定量分析。 比較例12 在與實施例15相同的被銅污染的二氧化矽溶膠2中 ,調製NH3爲0.05質量%、HEC爲002質量%、EDTA爲 0.10質量%、PEG爲0.01質量%,調製硏磨液R12,使用 該硏磨液R12進行硏磨,且進行銅之定量分析。 -35- 201213470) In the cleaning solution (SC2 solution), 75~85 ° C, immersion treatment for 1 〇 to 20 minutes), remove the impurities on the surface of the wafer, and then clean the wafer at 65 ° C -31 - The heat treatment was carried out for 20 minutes under 201213470, and the copper on the surface of the wafer was recovered by HF/H202 droplets (droplets of an aqueous solution of hydrogen fluoride and hydrogen peroxide), and the metal impurities in the recovered liquid were subjected to inductively coupled plasma mass spectrometry ( Quantitative analysis was performed below by ICP-MS. Further, the LPD (Light Point Defect) on the surface of the wafer after the final honing was measured using a Surf Scan. SP-1 manufactured by KLA-Tencor. The LPD is expressed by a number of 0.08 μm or more, and the haze is expressed by the position of the maximum frequency of the haze distribution. Further, LPD means that the surface defects of the wafer are caused by particles, dot defects, and linear defects. In Examples 16 to 23 and Comparative Examples 10 to 12 described below, the honing conditions of the 矽 wafer other than the honing liquid used, the quantitative conditions of the copper after honing, and the like were carried out in the same manner as in Example 15. Example 1 6 In the same copper-contaminated cerium oxide sol 2 as in Example 15, ΝΗ3 was prepared as 〇·〇5 mass%, HEC was 0.02 mass%, EDDHA was 0.10 mass%, and PEG was 0.01 mass%. The honing liquid 16 is prepared, honed using the honing liquid 16, and quantitative analysis of copper is performed. Example 17 In the same copper-contaminated cerium oxide sol 2 as in Example 15, NH3 was prepared to be 〇.〇5 mass%, HEC was 0.02 mass%, EDDHA was 0.15 mass%, and PEG was 〇_〇1 mass. %, the honing liquid 17' was honed using the honing liquid 17, and quantitative analysis of copper was performed. -32-201213470 Example 1 8 In the same copper-contaminated cerium oxide sol 2 as in Example 15, NH3 was prepared to be 〇.〇5 mass%, HEC was 002 mass%, EDDHA was 0.10 mass%, and number average The polypropylene glycol having a molecular weight of 700 (hereinafter referred to as PPG) was 0.01% by mass, and the honing liquid 18 was prepared, and the honing liquid 18 was used for honing, and quantitative analysis of copper was performed. Example 1 9 In the same copper-contaminated cerium oxide sol 2 as in Example 15, KOH was prepared to be 0.01% by mass, HEC was 0.02% by mass, EDDHA was 0.10% by mass, and PEG was 〇.〇1% by mass. The honing liquid 19 was prepared, honed using the honing liquid 19, and quantitative analysis of copper was performed. Example 2 0 In the same copper-contaminated cerium oxide sol 2 as in Example 15, 'the NH3 was adjusted to 0.05% by mass, and the hydroxypropylmethylcellulose (degree of substitution 0.15) (hereinafter referred to as HPMC) was 0.02 mass. %, EDDHA was 0.10% by mass, PEG was 〇·01% by mass, and the honing liquid was prepared to be honed, and the honing liquid 20 was used for honing, and quantitative analysis of copper was performed. Example 2 1 In the same copper-contaminated cerium oxide sol 2 as in Example 15, tetramethylammonium ammoxidation (hereinafter referred to as ruthenium) was adjusted to 0.01% by mass, HEC was 〇.〇2% by mass, and EDDha was used as the mass. %, pEG is 〇-33- 201213470% by mass, honing liquid 21 is prepared, honing is performed using the honing liquid 21, and quantitative analysis of copper is performed. Example 22 In the same copper-contaminated cerium oxide sol 2 as in Example 15, NH3 was prepared to be 〇_〇5 mass%, HEC was 0.02 mass%, 1,4,7,10-tetraazacyclohexane Dioxane-:^,>^',;^,',:^'"-tetraacetic acid (hereinafter referred to as DOTA) is 〇.1〇% by mass, PEG is 0.01% by mass, and honing liquid 22 is prepared. The honing liquid 22 was honed and subjected to quantitative analysis of copper. Example 23 In the same copper-contaminated cerium oxide sol 2 as in Example 15, the content of TMAH was 0.01% by mass, and the HEC was 0.02% by mass. DOTA was 0.10% by mass, PEG was 〇·〇ι% by mass, honing liquid 23 was prepared, honing was performed using the honing liquid 23, and quantitative analysis of copper was performed. Comparative Example 1 was the same as Example 15. In the copper-contaminated cerium oxide sol 2, 'modulation ΝΗ3 was 0.05% by mass, HEC was 0.02% by mass, and the honing liquid R10' was honed using the honing liquid R1, and quantitative analysis of copper was performed. Comparative Example 11 In the same copper-contaminated cerium oxide sol 2 as in Example 15, -34-201213470, the NH3 content was 0.05% by mass, and the HEC was 0. 02% by mass, PEG was 0.01% by mass, honing liquid R11 was prepared, honing was performed using the honing liquid R11, and quantitative analysis of copper was performed. Comparative Example 12 The same copper-contaminated cerium oxide as in Example 15. In the sol 2, the NH3 content was 0.05% by mass, the HEC was 002% by mass, the EDTA was 0.10% by mass, and the PEG was 0.01% by mass. The honing liquid R12 was prepared, and the honing liquid R12 was used for honing, and the copper was quantified. Analysis. -35- 201213470

E LPD § <2 V Μ V CM V 04 V <M V N V I<2 J 1 <2 1 10 CM in N m 驄 (ppm) I 0· 08 I 0. 09 00 ο ο I 0. 09 I 0. 08 I O) o d 00 o d 0. 08 0. 09 N r- 〇 0. 08 0. 09 I fei m 趣 £ (atoms/cm2) "ο r- X ο r— V α〇 τ- X Ο τ— \/ b r- X Ο r- V r— X o r- V r— X o r- V b r· X o r· V r* X o T- V b 1— X o r- V/ b X 〇 r· V/ 4. 7 x 10e j b X CM C9 τ— X <0 r— Cu添加量 1 1 ' (質量ppb) Ο τ— Ο τ- Ο r~ 〇 τ— 〇 〇 r— 〇 〇 r— 〇 r 〇 r— o τ— o r* 具有醇性羥基 之化雜 添加量 (質量%) Ο ο I °·〇1 I δ Ο o O o r- o 5 〇 5 d i 01 1 I | o, on | t— o m 卿 I peg J PEG 丨 peg I | PPG I 1 peg 1 1——PEG」 [PEG I 1 PEG 1 丨 PEG 1 I 1 PEG 1 PEG 添加量 (質量%) 0. 02 0. 02 0. 02 0. 02 0. 02 0. 02 0. 02 i 0. 02 0. 02 I 0. 02 ,0. 02 0. 02 II m »1wm 卿 I -HEC I 丨啦ί I hec I 1 hec j | HEC | I HPMC J 1 HEC I 1 HEC I 1 HEC j I hec I 丨 HEC | 蝥合劑 添加量 (質量%) | 0. 05 I Ο Γ~ Ο in r— d o r~ d 〇 r~ o 〇 r- 〇 〇 T~ 〇 o 1— o o T— o I 1 0. 10 m 涵 | EDDHA | | EDDHA | | EDDHA | | EDDHA | | EDDHA | | EDDHA | 1 EDDHA I | DOTA | | DOTA | I 1 EDTA 鹼性物質 i_ 添加量 (質量%) | 0. 05 | | 0. 05 | | 0. 05 | 10 o o 〇〇ll | 0. 05 ] —0.01 — 10-05 1 〇· 〇T 1 IO o o | 0· 05 I 0. 05 m nmn m 2 ζ z 2 |koh| z TMAH « X z [tmah| ^£> 2 z 2 二氧化矽 濃度 (質量%) 10 ο ΙΟ Ο io d in d 10 d LD 6 to d u> d LD 〇 to d in o 10 o I實施例15 ] 丨實施例16 I 實施例17 |實施例is] |實施例191 |實施例20 1 |實施例21 I 1實施例22 | |實施例23 | I比卿ίο I 比較例11 丨比較例12 1 -36- 201213470 表2中硏磨後晶圓之銅污染的測定結果,係表示 0·08μιη以上之LPD數及霧度之測定結果。如實施例 15〜23之結果所示,本發明之矽晶圓用硏磨組成物,於矽 晶圓硏磨時極爲抑制金屬污染、特別是銅污染,且防止霧 度經抑制的粒子污染情形。另外,如實施例1 5〜1 7所示, EDDHA之添加量大增,可避免硏磨後之Cu污染情形。而 且,如實施例22及23所示,即使將EDDHA改爲DOTA ,可避免Cu污染情形。然而,如比較例1 〇〜1 2所示,沒 有添加此等螯合劑時,另外添加常用的其他螯合劑時,無 法避免銅污染情形。 即使使用PPG取代實施例18所示之PEG,或即使使 用HPMC取代實施例2所示之HEC,在硏磨液組成中沒 有添加EDDHA時,可避免硏磨後之Cu污染情形。 此外,於實施例1 5~23所示之硏磨液組成中添加 EDDHA、DO TA時,LPD數未達2個,惟如比較例10-12 所示,沒有添加此等之螯合劑時,另外添加常用的其他螯 合劑時,LPD數變高。 如上所述,本發明藉由在含有二氧化矽之硏磨液中添 加EDDHA或DOTA,可維持霧度且抑制金屬污染、特別 是銅污染,且可減低LPD數之效果。 -37-E LPD § <2 V Μ V CM V 04 V <MVNV I<2 J 1 < 2 1 10 CM in N m 骢(ppm) I 0· 08 I 0. 09 00 ο ο I 0. 09 I 0. 08 IO) od 00 od 0. 08 0. 09 N r- 〇0. 08 0. 09 I fei m Interest £ (atoms/cm2) "ο r- X ο r— V α〇τ- X Ο Τ— \/ b r- X Ο r- V r— X o r- V r — X o r- V br· X or· V r* X o T- V b 1— X o r- V/ b X 〇r· V/ 4. 7 x 10e jb X CM C9 τ— X <0 r— Cu addition amount 1 1 ' (mass ppb) Ο τ— Ο τ- Ο r~ 〇τ— 〇〇r— 〇〇 R— 〇r 〇r— o τ— or* The amount of addition of alcoholic hydroxyl groups (% by mass) Ο ο I °·〇1 I δ Ο o O o r- o 5 〇5 di 01 1 I | o , on | t— om qing I peg J PEG 丨peg I | PPG I 1 peg 1 1——PEG” [PEG I 1 PEG 1 丨 PEG 1 I 1 PEG 1 PEG Adding amount (% by mass) 0. 02 0. 02 0. 02 0. 02 0. 02 0. 02 0. 02 i 0. 02 0. 02 I 0. 02 ,0. 02 0. 02 II m »1wm 卿 I -HEC I 丨啦ί I hec I 1 Hec j | HEC | I HPMC J 1 HEC I 1 HEC I 1 HEC j I hec I 丨HEC | Additive amount (% by mass) | 0. 05 I Ο Γ~ In r— dor~ d 〇r~ o 〇r- 〇〇T~ 〇o 1— oo T— o I 1 0. 10 m han | EDDHA | | EDDHA | | EDDHA | | EDDHA | | EDDHA | | EDDHA | 1 EDDHA I | DOTA | | DOTA | I 1 EDTA Alkaline Substance i_ Addition (% by mass) | 0. 05 | | 0. 05 | | 0. 05 | 10 oo 〇〇ll | 0. 05 ] —0.01 — 10-05 1 〇· 〇T 1 IO oo | 0· 05 I 0. 05 m nmn m 2 ζ z 2 |koh| z TMAH « X z [tmah| ^£> 2 z 2 cerium oxide concentration (quality %) 10 ο ΙΟ Ο io d in d 10 d LD 6 to d u> d LD 〇 to d in o 10 o I Example 15 ] 丨 Example 16 I Example 17 | Example is] | Example 191 | Example 20 1 |Example 21 I 1 Example 22 | | Example 23 | I ratio Qing ί I I Comparative Example 11 丨 Comparative Example 12 1 -36- 201213470 Table 2 Measurement results of copper contamination of honed wafers The system shows the measurement results of the LPD number and haze of 0·08 μιη or more. As shown by the results of Examples 15 to 23, the tantalum wafer of the present invention is used for the honing composition, which greatly suppresses metal contamination, particularly copper contamination, during honing of the wafer, and prevents particle contamination caused by suppression of haze. . Further, as shown in Examples 15 to 17 , the amount of addition of EDDHA is greatly increased, and the Cu contamination after honing can be avoided. Moreover, as shown in Examples 22 and 23, even if EDDHA is changed to DOTA, Cu contamination can be avoided. However, as shown in Comparative Example 1 〇 to 12, when such a chelating agent is not added, when other conventional chelating agents are additionally added, it is impossible to avoid copper contamination. Even if PPG was used instead of the PEG shown in Example 18, or even if HPMC was used instead of the HEC shown in Example 2, when the EDDHA was not added to the honing liquid composition, the Cu contamination after honing could be avoided. Further, when EDDHA and DOTA were added to the composition of the honing liquid shown in Examples 1 to 23, the number of LPDs was less than two, but as shown in Comparative Example 10-12, when such a chelating agent was not added, In addition, when other commonly used chelating agents are added, the number of LPD becomes high. As described above, according to the present invention, by adding EDDHA or DOTA to the cerium containing cerium oxide, the haze can be maintained and metal contamination, particularly copper contamination, can be suppressed, and the effect of the number of LPD can be reduced. -37-

Claims (1)

201213470 七、申請專利範圍: 1 . 一種矽晶圓用硏磨組成物,其係含有二氧化矽、 鹼性物質、螯合劑及水之矽晶圓用硏磨組成物,其特徵爲 前述螯合劑爲選自乙二胺·NW-二(鄰-羥基苯基醋酸)、 1,4,7,10-四氮雜環十二烷·Ν,Ν、Ν",Ν,"·四醋酸及此等之鹽 所成群的至少一種。 2. 如申請專利範圍第1項之矽晶圓用硏磨組成物, 其中前述二氧化矽藉由氮吸附法之平均一次粒徑爲 3〜1OOOnm 0 3. 如申請專利範圍第1項之矽晶圓用硏磨組成物, 其中前述二氧化矽藉由氮吸附法之平均一次粒徑爲 5~5 OOnm ° 4. 如申請專利範圍第1項之矽晶圓用硏磨組成物’ 其中前述二氧化矽之濃度,以矽晶圓用硏磨組成物之質量 爲基準時爲〇.〇5〜30質量%。 5. 如申請專利範圍第1項之矽晶圓用硏磨組成物’ 其中前述二氧化矽爲膠體二氧化矽。 6. 如申請專利範圍第1項之矽晶圓用硏磨組成物, 其中前述螯合劑之濃度’以砂晶圓用硏磨組成物之質量爲 基準時爲0.001〜5質量%。 7. 如申請專利範圍第1項之矽晶圓用硏磨組成物’ 其中前述鹼性物質之濃度,以矽晶圓用硏磨組成物之質量 爲基準時爲0.01-10質量%。 8. 如申請專利範圍第1項之矽晶圓用硏磨組成物’ -38 - 201213470 其中前述鹼性物質爲選自鹼金屬之無機鹽、銨鹽及胺類所 成群的至少1種。 9.如申請專利範圍第8項之矽晶圓用硏磨組成物, 其中前述鹼性物質爲選自氫氧化鋰、氫氧化鈉、·氫氧化鉀 、碳酸鋰、碳酸鈉、碳酸鉀、碳酸氫鋰、碳酸氫鈉及碳酸 氫鉀所成群的至少一種之鹼金屬的無機鹽。 1 〇·如申請專利範圍第8項之矽晶圓用硏磨組成物, 其中前述鹼性物質爲選自氫氧化銨、碳酸銨、碳酸氫銨、 氫氧化四甲銨、碳酸四甲銨、碳酸氫化四甲銨、氯化四甲 銨' 氫氧化四乙銨、碳酸四乙銨、碳酸氫化四乙銨、氯化 四乙銨、氫氧化單甲基三乙醇銨、碳酸單甲基三乙醇銨、 碳酸氫化單甲基三乙醇銨及氯化單甲基三乙醇銨所成群的 至少一種之前述銨鹽。 1 1 .如申請專利範圍第8項之矽晶圓用硏磨組成物, 其中前述鹼性物質爲選自乙二銨、二乙三銨、N-甲基-1,3-二胺基丙烷、3-(胺基甲基)哌啶、1,3-二胺基丙烷 、1,2-二胺基丙烷、N,N-二乙基乙二胺、N-乙基乙二胺、 二丙三胺、單乙醇胺、2- ( 2-胺基乙基)胺基乙醇胺及哌 嗪所成群的至少一種之前述胺類。 1 2 .如申請專利範圍第1項之矽晶圓用硏磨組成物, 其進一步含有水溶性高分子化合物及具有醇性經基之化合 物。 1 3 .如申請專利範圍第1 2項之矽晶圓用硏磨組成物 ,其中前述水溶性高分子化合物爲選自羥基乙基纖維素、 -39- 201213470 羥基丙基纖維素、羥基丙基甲基纖維素 烯基吡咯啶酮及支鏈澱粉所成群的至少 14.如申請專利範圍第13項之矽 ,其中前述水溶性高分子化合物爲重量 〜100萬之羥基乙基纖維素。 1 5.如申請專利範圍第1 2項之矽 ,其中前述水溶性高分子化合物之濃度 組成物全部的質量爲基準時爲0.01-2.0 16.如申請專利範圍第12項之矽 ,其中前述具有醇性羥基之化合物爲選 醇、乙二醇、丙二醇、聚乙二醇、聚丙 三醇所成群的至少一種。 1 7 .如申請專利範圍第1 2項之矽 ,其中前述具有醇性羥基之化合物的濃 磨組成物全部的質量爲基準時爲〇·00 1〜 18. —種矽晶圓之硏磨方法,其特 利範圍第1〜1 7項中任一項之矽晶圓用f 19. —種矽晶圓之硏磨方法,其特 利範圍第1〜1 1項中任一項之矽晶圓用 初硏磨。 20. —種矽晶圓之硏磨方法,其特 利範圍第1 2〜1 7項中任一項之矽晶圓用 初硏磨後之最終硏磨。 、聚乙烯醇、聚乙 一種。 晶圓用硏磨組成物 平均分子量10萬 晶圓用硏磨組成物 ,以砍晶圓用硏磨 質量%。 晶圓用硏磨組成物 自甲醇、乙醇、丙 二醇、乙炔醇、丙 晶圓用硏磨組成物 度,以矽晶圓用硏 5.0質量%。 徵爲使用如申請專 f磨組成物。 徵爲使用如申請專 硏磨組成物,進行 徵爲使用如申請專 硏磨組成物,進行 -40- 201213470 四 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明:無 -3- 201213470 五、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無201213470 VII. Patent Application Range: 1. A honing composition for tantalum wafer, which comprises cerium oxide, an alkaline substance, a chelating agent and a water enthalpy wafer honing composition, characterized by the aforementioned chelating agent It is selected from the group consisting of ethylenediamine, NW-bis(o-hydroxyphenylacetic acid), 1,4,7,10-tetraazacyclododecane, anthracene, oxime ", Ν, "·tetraacetic acid and At least one of the groups of such salts. 2. The honing composition for wafers according to item 1 of the patent application, wherein the cerium oxide has an average primary particle diameter of 3 to 100 Å by the nitrogen adsorption method. The honing composition for the wafer, wherein the cerium oxide has an average primary particle diameter of 5 to 50,000 nm by the nitrogen adsorption method. 4. The honing composition for the wafer according to the first aspect of the patent application' The concentration of cerium oxide is 〜. 5 to 30% by mass based on the mass of the honing composition of the ruthenium wafer. 5. The honing composition for wafers according to item 1 of the patent application' wherein the foregoing cerium oxide is colloidal cerium oxide. 6. The honing composition for wafers according to the first aspect of the patent application, wherein the concentration of the chelating agent is 0.001 to 5% by mass based on the mass of the honing composition of the sand wafer. 7. The honing composition for wafers according to the first aspect of the patent application' wherein the concentration of the alkaline substance is 0.01 to 10% by mass based on the mass of the honing composition for the ruthenium wafer. 8. The honing composition for wafers according to the first aspect of the patent application. -38 - 201213470 wherein the alkaline substance is at least one selected from the group consisting of inorganic salts, ammonium salts and amines of an alkali metal. 9. The honing composition for wafers according to item 8 of the patent application, wherein the alkaline substance is selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, and carbonic acid. An inorganic salt of at least one alkali metal of a group of lithium hydrogen, sodium hydrogencarbonate or potassium hydrogencarbonate. 1 〇 · The honing composition for wafers according to item 8 of the patent application scope, wherein the alkaline substance is selected from the group consisting of ammonium hydroxide, ammonium carbonate, ammonium hydrogencarbonate, tetramethylammonium hydroxide, tetramethylammonium carbonate, Tetramethylammonium hydrogencarbonate, tetramethylammonium chloride 'tetraethylammonium hydroxide, tetraethylammonium carbonate, tetraethylammonium hydrogencarbonate, tetraethylammonium chloride, monomethyltriethanolammonium hydroxide, monomethyltriethanol carbonate At least one of the foregoing ammonium salts of ammonium, hydrogenated monomethyltriethanolammonium chloride, and monomethyltriethanolammonium chloride. 1 1 . The honing composition for wafers according to item 8 of the patent application, wherein the alkaline substance is selected from the group consisting of ethylene diammonium, diethylene triammonium, N-methyl-1,3-diaminopropane , 3-(aminomethyl)piperidine, 1,3-diaminopropane, 1,2-diaminopropane, N,N-diethylethylenediamine, N-ethylethylenediamine, two At least one of the aforementioned amines in a group consisting of propylene triamine, monoethanolamine, 2-(2-aminoethyl)aminoethanolamine, and piperazine. 1 2 . The honing composition for wafers according to the first aspect of the patent application, further comprising a water-soluble polymer compound and a compound having an alcoholic base group. 1 3 . The honing composition for wafers according to claim 12, wherein the water-soluble polymer compound is selected from the group consisting of hydroxyethyl cellulose, -39-201213470 hydroxypropyl cellulose, hydroxypropyl group A mixture of methylcellulose alkenylpyrrolidone and amylopectin according to claim 13, wherein the water-soluble polymer compound is hydroxyethylcellulose having a weight of up to 1,000,000. 1 . The scope of claim 12, wherein the concentration of the water-soluble polymer compound is 0.01-2.0 based on the total mass of the composition of the water-soluble polymer compound. The compound of the alcoholic hydroxyl group is at least one selected from the group consisting of alcohol, ethylene glycol, propylene glycol, polyethylene glycol, and polyglycerol. 1 7 . As claimed in claim 12, wherein the mass of the thickening composition of the compound having an alcoholic hydroxyl group is 〇·00 1 to 18.其 矽 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 矽 19. 19. 19. 矽 矽 矽 矽 矽 19. 矽 矽 矽 矽 矽 矽 矽The round is used for initial grinding. 20. The honing method of the enamel wafer, the enamel wafer of any one of the items 1 to 2 of the patent range, the final honing after the initial honing. , polyvinyl alcohol, polyethylene. The honing composition for wafers has an average molecular weight of 100,000. The wafer is honed with a composition to cut the wafer for honing. The honing composition for wafers is composed of methanol, ethanol, propylene glycol, acetylene alcohol, and propylene wafers, and is used for 矽 wafers at 5.0% by mass. For the use of the application, such as the application of f-grinding composition. For the use of the application, such as the application of special honing composition, the use of the application for the application of special honing composition, the implementation of the designated representative map of -40-201213470: (a) The representative representative of the case is: no (two) representative of the map Simple description of component symbols: None-3-201213470 V. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: none
TW100116464A 2010-05-11 2011-05-11 Silicon wafer with grinding composition and silicon wafer grinding method TWI535803B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109534 2010-05-11

Publications (2)

Publication Number Publication Date
TW201213470A true TW201213470A (en) 2012-04-01
TWI535803B TWI535803B (en) 2016-06-01

Family

ID=44914417

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116464A TWI535803B (en) 2010-05-11 2011-05-11 Silicon wafer with grinding composition and silicon wafer grinding method

Country Status (3)

Country Link
JP (1) JP5967370B2 (en)
TW (1) TWI535803B (en)
WO (1) WO2011142362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506097B (en) * 2012-09-07 2015-11-01 Cabot Microelectronics Corp Polypyrrolidone polishing composition and method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6053311B2 (en) * 2012-04-17 2016-12-27 株式会社フジミインコーポレーテッド Polishing composition used for polishing semiconductor substrate having through silicon via structure and polishing method using the polishing composition
JP2014041978A (en) * 2012-08-23 2014-03-06 Fujimi Inc Polishing composition, manufacturing method of polishing composition, and manufacturing method of polishing composition undiluted solution
JP6110681B2 (en) * 2013-02-13 2017-04-05 株式会社フジミインコーポレーテッド Polishing composition, polishing composition manufacturing method and polishing product manufacturing method
CN103589522A (en) * 2013-10-31 2014-02-19 合肥中南光电有限公司 Alkaline photovoltaic battery silicon wafer cleaning agent and preparation method thereof
CN103571640A (en) * 2013-10-31 2014-02-12 合肥中南光电有限公司 Water-based LED (Light-Emitting Diode) chip cleaning agent and preparation method thereof
JP6387944B2 (en) * 2015-11-12 2018-09-12 信越半導体株式会社 Abrasive and polishing method
JP6796978B2 (en) * 2016-09-23 2020-12-09 株式会社岡本工作機械製作所 Manufacturing method of semiconductor devices
JP6381619B2 (en) * 2016-12-13 2018-08-29 株式会社フジミインコーポレーテッド Polishing composition and method for producing polishing composition
JP2017101248A (en) * 2017-01-13 2017-06-08 株式会社フジミインコーポレーテッド Polishing composition, manufacturing method of polishing composition and manufacturing method of polished article
JP6690606B2 (en) * 2017-07-14 2020-04-28 信越半導体株式会社 Polishing method
JPWO2022154015A1 (en) * 2021-01-18 2022-07-21
WO2022154016A1 (en) * 2021-01-18 2022-07-21 株式会社フジミインコーポレーテッド Polishing composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115562B2 (en) * 1997-10-14 2008-07-09 株式会社フジミインコーポレーテッド Polishing composition
JP2000100767A (en) * 1998-09-18 2000-04-07 Mitsubishi Chemicals Corp Method of controlling concentration of chelate agent in cleaning liquid
JP2005347737A (en) * 2004-05-07 2005-12-15 Nissan Chem Ind Ltd Polishing composition for silicon wafer
JP2007119277A (en) * 2005-10-26 2007-05-17 Showa Denko Kk Stabilizer for hydroxylamine, stabilization method, and stabilized hydroxylamine solution
JP2007299979A (en) * 2006-05-01 2007-11-15 Sumitomo Electric Ind Ltd Surface treatment method of group iii nitride crystal and group iii nitride crystal substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506097B (en) * 2012-09-07 2015-11-01 Cabot Microelectronics Corp Polypyrrolidone polishing composition and method

Also Published As

Publication number Publication date
WO2011142362A1 (en) 2011-11-17
JP5967370B2 (en) 2016-08-10
JPWO2011142362A1 (en) 2013-07-22
TWI535803B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
TW201213470A (en) Silicon-wafer polishing composition and silicon-wafer polishing method
JP7246235B2 (en) Polishing composition, polishing composition manufacturing method, and polishing composition preparation kit
TWI624536B (en) Polishing composition, polishing composition manufacturing method, and polishing product manufacturing method
JP2022118024A5 (en)
TWI532801B (en) A semiconductor wetting agent, a polishing composition thereof, and a polishing method
EP2960314B1 (en) Polishing composition and method for manufacturing polished article
TWI557219B (en) Polish solution composition for wafer
TWI411670B (en) Silicon wafer polishing composition
TWI650410B (en) 矽 wafer honing composition
JP7148506B2 (en) Polishing composition and polishing method using the same
JP6110681B2 (en) Polishing composition, polishing composition manufacturing method and polishing product manufacturing method
JP6691774B2 (en) Polishing composition and method for producing the same
WO2014057932A1 (en) Process for manufacturing polishing composition, and polishing composition
WO2023053961A1 (en) Method for producing polishing composition comprising modified polyvinyl alcohol composition, and polishing composition comprising modified polyvinyl alcohol composition