TW201212518A - Motor controlling apparatus - Google Patents

Motor controlling apparatus Download PDF

Info

Publication number
TW201212518A
TW201212518A TW100104564A TW100104564A TW201212518A TW 201212518 A TW201212518 A TW 201212518A TW 100104564 A TW100104564 A TW 100104564A TW 100104564 A TW100104564 A TW 100104564A TW 201212518 A TW201212518 A TW 201212518A
Authority
TW
Taiwan
Prior art keywords
model
command
deviation
speed
motor
Prior art date
Application number
TW100104564A
Other languages
Chinese (zh)
Other versions
TWI501540B (en
Inventor
Yuji Ide
Original Assignee
Sanyo Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co filed Critical Sanyo Electric Co
Publication of TW201212518A publication Critical patent/TW201212518A/en
Application granted granted Critical
Publication of TWI501540B publication Critical patent/TWI501540B/en

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)

Abstract

To provide a motor control device which can easily adjust a parameter in a model control system and also can achieve positioning without vibration at higher speed without causing a torque command output from a model speed controller to be excessive. The model control system 1 includes a first inertial system mechanical model about a motor, a second inertial system mechanical model about a load, a torsional torque model about a torsional torque between the motor and the load, a first state feedback system which feeds back a feedback acceleration command S10 to a model torque commanding part 8, and a second state feedback system which feeds back a feedback speed command S5 to a model speed commanding part 5. A parameter in a model control system is decided based on the relational expression of a parameter that is obtained by making calculations so that a characteristic equation obtained from a model control system's state equation may have a quadruple root.

Description

201212518 六、發明說明: 【發明所屬之技術領域】 本發明係關於驅動機器人等機械,進行高速定位的電 動機控制裝置。 【先前技術】 以藉由電動機控制裝置來將機械作高速定位的方法之 一而言’有模型追隨控制。模型追隨控制係建構模擬實際 控制系統的模型控制系統,以追隨該模型控制系統的方式 來驅動反饋控制系統的控制方式。第3圖係顯示日本特開 昭62-2 1 7304號公報(專利文獻1)所示之習知之利用模型 追隨控制的電動機控制裝置的構成。在習知的裝置中,取 得位置指令與模型位置的偏差,通過模型位置控制器來輸 出模型速度指令。取得模型速度指令與模型速度的偏差, 通過模型速度控制器來輸出模型力矩指令。將模型力矩指 令透過電動機機械模型來計算模型速度。將模型速度透過 積分器來計算模型位置。取得模型位置與在編碼器所檢測 出的電動機位置的差,透過位置控制器來輸出速度指令。 取得將速度指令與模型速度加算所成者與速度檢測値的偏 差,透過速度控制器來輸出力矩指令。將力矩指令與模型 力矩指令作加算,透過力矩控制器來驅動電動機,而控制 電動機的力矩。 在此,電動機機械模型係將電動機側慣量(inertia) 設爲JM、負荷側慣量設爲JL,而表示爲: -5- 201212518 電動機機械模型=1/ { (JM+JL) S} 。如上所示,藉由構成模型追隨控制,可獨立控制指 令響應特性與外亂響應特性。外亂響應係因機械系統的高 頻共振等而受到限制,無法提高至某程度以上。模型響應 由於不會受到其影響,因此可提高模型響應。藉此,可提 高指令響應而實現機械的高速定位。 如以上所示,若機械系統爲剛體,藉由進行以電動機 機械模型爲剛體的模型追隨控制,可實現高速定位。但是 ,在實際的機械系統係存在有剛性低的部分,由此而產生 振動。機器人等機械係如第4圖所示,可視爲將在近似上 電動機側的慣性與負荷側的慣性藉由較低的扭轉剛性相結 合的機械系統。在如上所示之機械中會發生在驅動電動機 時因電動機側慣性與負荷側慣性及其間的剛性而起的振動 〇 以如此之抑制2個慣性系統的振動的方法而言,係有 在位置指令的輸入部揷入前置濾波器的方法。第5圖係藉 由前置濾波器來抑制2個慣性系統的振動的方塊圖。例如 ,插入陷波濾波器作爲前置濾波器,將其陷波頻率設定爲 振動頻率,藉此可抑制振動。但是,若使用前置濾波器, 因濾波器的延遲,會有無法充分縮短定位整定時間的問題 〇 以其他抑制2個慣性系統之振動的方法而言,在日本 特開平8- 1 68280號公報(專利文獻2 )中顯示一種使用模 型追隨控制的電動機控制裝置。在專利文獻2的第1圖中係 201212518 顯示進行模型追隨控制之電動機控制裝置的構成。在該電 動機控制裝置中,係在第1控制系統(模型控制系統)之 中,裝載有電動機模擬電路與負荷機械模擬電路與力矩傳 達機構模擬電路。此外,電動機控制裝置係具備有:以來 自電動機模型的模擬速度指令與來自負荷機械模型的模擬 速度指令的偏差指令作爲輸入而輸出補償力矩訊號的補償 力矩運算手段。藉由由來自第1速度控制手段的第1力矩訊 號扣除來自該補償力矩運算手段的補償力矩訊號後的偏差 指令,來控制電動機模型或力矩控制手段。而該補償力矩 運算電路係由比例積分控制器所構成。 〔先前技術文獻〕 〔專利文獻〕 〔專利文獻1〕日本特開昭62-2 1 7304號公報 〔專利文獻2〕日本特開平8-16 82 80號公報 【發明內容】 (發明所欲解決之課題) 在專利文獻2所示之習知的電動機控制裝置中,建立 模型控制系統的特性方程式。但是,爲了高速進行定位且 不會發生振動’要如何解開該式來設定控制參數,在專利 文獻2中並未明確揭示。因此’要利用專利文獻2來設定控 制參數,在現實上並無法實施。因此,實際上,若使用專 利文獻2所示之構成時,必須以試算法(cut and try)來調 整各參數’會有耗費時間在調整上的問題。此外,根據發 201212518 明人使用專利文獻2所示之構成,進行是否可利用試算法 來調整各參數,以高速進行定位且不會發生振動的模擬試 驗後的結果,可知由模型速度控制器(第1速度控制電路 )所被輸出的模型力矩指令,如第6圖(B)般成爲大於電動 機可輸出的力矩〔第6圖(B)的縱軸刻度爲±2以下的値〕的 値〔第6圖(B)的縱軸刻度爲±7以上的値〕。因此,爲了以 習知的電動機控制裝置來高速進行定位,係必須將模型速 度控制器(第1速度控制電路)形成爲與過大力矩相對應 者。但是對過大力矩的對應係會造成運算精度的降低或運 算時間的增加,因此以儘可能抑制對過大力矩的對應爲宜 。其中第6圖(A)爲位置指令(微分値),第6圖(C)爲位置 偏差。 本發明之目的在提供一種可簡單調整模型控制系統的 參數,而且不會有由模型速度控制器所被輸出的力矩指令 變得過大的情形,可實現更爲高速且不會振動的定位的電 動機控制裝置。 除了上述目的以外,本發明之其他目的在提供—種可 利用一個參數來簡單調整模型控制系統的參數的電動機控 制裝置。 (解決課題之手段) 本發明之電動機控制裝置係具備有:將實際的電動機 的控制系統進行模擬且包含模型位置控制器、模型速度指 令部、模型速度控制器及模型力矩指令部所構成的模型控 201212518 制系統:及具備有位置控制器、速度控制器及力矩控制器 ,以追隨模型控制系統的方式所構成,將實際的電動機進 行反饋控制的反饋控制系統。 模型控制系統係具備有:生成模型電動機側加速度指 令s 14及模型電動機側速度指令S7之關於電動機的第1慣性 系統的機械模型;生成模型負荷側加速度指令S 1 5及模型 負荷側速度指令S 1 6之關於負荷的第2慣性系統的機械模型 ;關於電動機與負荷之間的扭轉力矩的扭轉力矩模型;將 模型負荷側加速度指令S 1 5與模型電動機側加速度指令S 1 4 的偏差亦即模型側加速度偏差指令S 1 8作增益KAB倍所得的 反饋加速度指令S10,反饋至生成模型力矩偏差指令S11的 模型力矩指令部的第1狀態反饋系統;及將由模型負荷側 速度指令S16與模型電動機側速度指令S7的偏差所構成的 模型側速度偏差指令S 1 9作增益KVB倍所得的反饋速度指令 S5,進行狀態反饋至模型速度指令部的第2狀態反饋系統 。接著,在本發明之電動機控制裝置中,根據以由模型控 制系統的狀態方程式所得的特性方程式具有4重根的方式 進行運算所得的參數的關係式,來決定模型控制系統的參 數。 在本發明中,係使用2個慣性系統的機械模型,以適 用現代控制理論而模型控制系統的特性方程式的根成爲重 根的方式來決定模型控制系統的各參數。因此,在控制參 數的設定中,藉由模型位置控制器的增益來決定特性方程 式中的極値,若可取得較高的反饋系統的位置控制器的增 -9- 201212518 益,與習知技術相比較,可實現非常高速且不會發生機械 振動的定位。 本發明之更爲具體的電動機控制裝置係模型控制系統 具備有:第1偏差運算部、模型位置控制器、第2偏差運算 部、第3偏差運算部、模型速度控制器、第4偏差運算部、 第5偏差運算部、第1慣性系統的機械模型、第2慣性系統 的機械模型、第6偏差運算部、模型負荷加速度指令生成 部、第7偏差運算部、模型速度指令發生部、第8偏差運算 部、及扭轉力矩指令發生部。 第1偏差運算部係將位置指令S 1與模型電動機側位置 指令S2的偏差進行運算,輸出該偏差作爲模型位置偏差指 令S3。模型位置控制器係以模型位置偏差指令S3爲輸入而 輸出模型速度指令S4。 第2偏差運算部係將模型速度指令S4與反饋速度指令 S5的偏差進行運算,輸出該偏差作爲第1模型速度偏差指 令S6。第2偏差運算部構成模型速度指令部》 第3偏差運算部係將第1模型速度偏差指令S6與模型電 動機側速度指令S7的偏差進行運算,輸出該偏差作爲第2 模型速度偏差指令S 8。模型速度控制器係以第2模型速度 偏差指令S8爲輸入而輸出模型力矩指令S9。 第4偏差運算部係將模型力矩指令S9與由第1狀態反饋 系統F1所被輸入的反饋加速度指令S10的偏差進行運算, 輸出該偏差作爲第1模型力矩偏差指令S11。第4偏差運算 部構成模型力矩指令部。 -10- 201212518 第5偏差運算部係將第1模型力矩偏差指令S11與表示 扭轉力矩的扭轉力矩指令S12的偏差進行運算,輸出該偏 差作爲第2模型力矩偏差指令S13。 第1慣性系統的機械模型係以第2模型力矩偏差指令 S13爲輸入,生成模型電動機側加速度指令S14、模型電動 機側速度指令S7及模型電動機側位置指令S2。 第2慣性系統的機械模型係以扭轉力矩指令爲輸入, 生成模型負荷側加速度指令S 1 5、模型負荷側速度指令S 1 6 及模型負荷側位置指令S 1 7。 第6偏差運算部係將模型電動機側加速度指令S 1 4與模 型負荷側加速度指令S15的偏差進行運算,輸出該偏差作 爲模型側加速度偏差指令S 1 8。模型加速度指令發生部係 對模型側加速度偏差指令S 1 8乘以第1增益KAB而生成反饋 加速度指令S10。藉由第6偏差運算部與模型加速度指令發 生部,構成第1狀態反饋系統。 第7偏差運算部係將模型電動機側速度指令S 7與模型 負荷側速度指令S 1 6的偏差進行運算,輸出該偏差作爲模 型側速度偏差指令S 1 9。模型速度指令發生部係對模型側 速度偏差指令S19乘以第2增益KVB而生成反饋速度指令S5 。藉由第7偏差運算部與模型速度指令發生部,構成第2狀 態反饋系統。 第8偏差運算部係將模型負荷側位置指令S 1 7與模型電 動機側位置指令S2的偏差進行運算,輸出該偏差作爲模型 側位置偏差指令S20。扭轉力矩指令發生部係對模型側位 -11 - 201212518 置偏差指令S20乘以第3增益ΚΒ而生成扭轉力矩指令S12。 在本發明中,將模型位置控制器的增益設爲KP、模型 速度控制器的增益設爲Κν、電動機側慣量設爲JM、負荷側 慣量設爲JL,另外將由模型控制系統的狀態方程式所得的 特性方程式的極値設爲K時,根據以特性方程式具有4重根 的方式進行運算所得的關係式:201212518 VI. Description of the Invention: [Technical Field] The present invention relates to a motor control device that drives a robot or the like to perform high-speed positioning. [Prior Art] There is a model following control in the method of positioning a machine at a high speed by a motor control device. The model following control system constructs a model control system that simulates the actual control system, and drives the control system of the feedback control system in a manner that follows the model control system. Fig. 3 is a view showing a configuration of a conventional motor control device using model following control shown in Japanese Laid-Open Patent Publication No. SHO 62-2 No. 7304 (Patent Document 1). In the conventional device, the deviation of the position command from the position of the model is obtained, and the model position command is output through the model position controller. The deviation between the model speed command and the model speed is obtained, and the model torque command is output by the model speed controller. The model torque command is used to calculate the model speed through the motor mechanical model. The model speed is calculated by the integrator to calculate the model position. The difference between the model position and the motor position detected by the encoder is obtained, and the speed command is output through the position controller. The deviation between the speed command and the model speed addition and the speed detection 取得 is obtained, and the torque command is output through the speed controller. The torque command is added to the model torque command, and the torque is controlled by the torque controller to control the torque of the motor. Here, the motor mechanical model sets the motor side inertia (inertia) to JM and the load side inertia to JL, and is expressed as: -5 - 201212518 Motor mechanical model = 1 / { (JM + JL) S} . As shown above, by constructing the model follow-up control, the command response characteristic and the disturbance response characteristic can be independently controlled. The disturbance response is limited by the high-frequency resonance of the mechanical system, and cannot be increased to some extent or more. Model response improves the model response because it is not affected. Thereby, the high-speed positioning of the machine can be realized by improving the command response. As described above, if the mechanical system is a rigid body, high-speed positioning can be realized by performing model following control with a motor mechanical model as a rigid body. However, in the actual mechanical system, there is a portion having low rigidity, thereby generating vibration. As shown in Fig. 4, the mechanical system such as a robot can be regarded as a mechanical system in which the inertia on the motor side and the inertia on the load side are combined by a low torsional rigidity. In the above-described machine, a vibration 〇 caused by the motor side inertia and the load side inertia and the rigidity between the motors when the motor is driven is used to suppress the vibration of the two inertia systems as described above, and is in the position command. The input section of the input unit is inserted into the prefilter. Figure 5 is a block diagram of the vibration of two inertial systems by a pre-filter. For example, a notch filter is inserted as a pre-filter, and its notch frequency is set to the vibration frequency, thereby suppressing vibration. However, if a pre-filter is used, there is a problem that the positioning delay time cannot be sufficiently shortened due to the delay of the filter. For other methods of suppressing the vibration of two inertial systems, Japanese Patent Laid-Open No. Hei 8- 1 68280 (Patent Document 2) shows a motor control device using model following control. In the first drawing of Patent Document 2, 201212518, the configuration of the motor control device that performs model following control is displayed. In the motor control device, a motor analog circuit, a load machine analog circuit, and a torque transmission mechanism analog circuit are mounted in the first control system (model control system). Further, the motor control device is provided with a compensation torque calculation means for outputting a compensation torque signal as an input from an analog speed command of the motor model and a deviation command of an analog speed command from the load machine model. The motor model or the torque control means is controlled by deducting the deviation command from the compensation torque signal from the compensation torque calculation means by the first torque signal from the first speed control means. The compensation torque calculation circuit is composed of a proportional integral controller. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. SHO 62-2 No. 7304 (Patent Document 2) Japanese Laid-Open Patent Publication No. Hei 8-16 82 80 (Invention) Problem) In a conventional motor control device shown in Patent Document 2, a characteristic equation of a model control system is established. However, in order to perform positioning at high speed and vibration does not occur, how to solve the equation to set the control parameters is not explicitly disclosed in Patent Document 2. Therefore, it is practically impossible to implement the control parameters by using Patent Document 2. Therefore, in actuality, when the configuration shown in Patent Document 2 is used, it is necessary to adjust each parameter by a cut and try, which causes a problem of time-consuming adjustment. Further, according to the configuration shown in Patent Document 2 of the Japanese Patent Publication No. 201212518, it is known that the model speed controller can be used as a result of whether or not the test algorithm can be used to adjust each parameter and the positioning is performed at high speed without vibration. As shown in Fig. 6(B), the model torque command outputted by the first speed control circuit is larger than the torque that can be output by the motor (the vertical axis of Fig. 6(B) is ±2 or less). The vertical axis scale of Fig. 6(B) is ±7 or more. Therefore, in order to perform positioning at a high speed by a conventional motor control device, it is necessary to form a model speed controller (first speed control circuit) to correspond to an excessive torque. However, the correspondence to excessive torque causes a decrease in the calculation accuracy or an increase in the operation time. Therefore, it is preferable to suppress the correspondence to excessive torque as much as possible. Fig. 6(A) shows the position command (differential 値), and Fig. 6(C) shows the position deviation. The object of the present invention is to provide a motor that can easily adjust the parameters of the model control system without the torque command outputted by the model speed controller becoming too large, thereby realizing a higher speed and vibration-free positioning motor. Control device. In addition to the above objects, other objects of the present invention are to provide a motor control apparatus which can easily adjust parameters of a model control system using one parameter. (Means for Solving the Problem) The motor control device according to the present invention includes a model including a model position controller, a model speed command unit, a model speed controller, and a model torque command unit that simulates an actual motor control system. Control 201212518 system: and a feedback control system with position controller, speed controller and torque controller to follow the model control system and feedback control of the actual motor. The model control system includes a machine model for generating a model motor side acceleration command s 14 and a model motor side speed command S7 for the first inertia system of the motor, and a model load side acceleration command S 15 and a model load side speed command S. a mechanical model of the second inertial system with respect to the load; a torsional moment model for the torsional moment between the motor and the load; and a deviation between the model load side acceleration command S 1 5 and the model motor side acceleration command S 1 4 The model side acceleration deviation command S 1 8 is used as the feedback acceleration command S10 obtained by multiplying the gain KAB, and is fed back to the first state feedback system of the model torque command unit that generates the model torque deviation command S11; and the model load side speed command S16 and the model motor The model side speed deviation command S 1 9 composed of the deviation of the side speed command S7 is the feedback speed command S5 obtained by multiplying the gain KVB, and the state is fed back to the second state feedback system of the model speed command unit. Next, in the motor control device of the present invention, the parameter of the model control system is determined based on the relational expression of the parameter obtained by the operation of the equation of the equation of the model control system having four roots. In the present invention, the mechanical model of the two inertial systems is used to determine the parameters of the model control system in a manner that adapts to the modern control theory and the root of the characteristic equation of the model control system becomes the root. Therefore, in the setting of the control parameters, the gain of the model position controller is used to determine the poles in the characteristic equation, and if the position controller of the higher feedback system can be obtained, the conventional technique is known. In comparison, positioning that is very fast and does not cause mechanical vibration can be achieved. A more specific motor control device model control system according to the present invention includes: a first deviation calculation unit, a model position controller, a second deviation calculation unit, a third deviation calculation unit, a model speed controller, and a fourth deviation calculation unit. The fifth deviation calculation unit, the mechanical model of the first inertia system, the mechanical model of the second inertia system, the sixth deviation calculation unit, the model load acceleration command generation unit, the seventh deviation calculation unit, the model speed command generation unit, and the eighth The deviation calculation unit and the torsional torque command generation unit. The first deviation calculation unit calculates the deviation between the position command S 1 and the model motor side position command S2, and outputs the deviation as the model position deviation command S3. The model position controller outputs the model speed command S4 with the model position deviation command S3 as an input. The second deviation calculation unit calculates the deviation between the model speed command S4 and the feedback speed command S5, and outputs the deviation as the first model speed deviation command S6. The second deviation calculation unit configures the model speed command unit. The third deviation calculation unit calculates the deviation between the first model speed deviation command S6 and the model motor side speed command S7, and outputs the deviation as the second model speed deviation command S8. The model speed controller outputs the model torque command S9 with the second model speed deviation command S8 as an input. The fourth deviation calculation unit calculates the deviation between the model torque command S9 and the feedback acceleration command S10 input by the first state feedback system F1, and outputs the deviation as the first model torque deviation command S11. The fourth deviation calculation unit constitutes a model torque command unit. -10- 201212518 The fifth deviation calculation unit calculates the deviation between the first model torque deviation command S11 and the torsional moment command S12 indicating the torsional moment, and outputs the deviation as the second model torque deviation command S13. The mechanical model of the first inertia system is input with the second model torque deviation command S13, and generates a model motor side acceleration command S14, a model motor side speed command S7, and a model motor side position command S2. The mechanical model of the second inertia system is input with a torsional moment command, and generates a model load side acceleration command S 1 5 , a model load side speed command S 16 and a model load side position command S 17 . The sixth deviation calculation unit calculates the deviation between the model motor side acceleration command S 14 and the model load side acceleration command S15, and outputs the deviation as the model side acceleration deviation command S 1 8 . The model acceleration command generation unit generates a feedback acceleration command S10 by multiplying the model side acceleration deviation command S 1 8 by the first gain KAB. The first state feedback system is constituted by the sixth deviation calculating unit and the model acceleration command generating unit. The seventh deviation calculation unit calculates the deviation between the model motor side speed command S 7 and the model load side speed command S 16 , and outputs the deviation as the model side speed deviation command S 1 9 . The model speed command generation unit multiplies the model side speed deviation command S19 by the second gain KVB to generate a feedback speed command S5. The seventh deviation calculation unit and the model speed command generation unit constitute a second state feedback system. The eighth deviation calculation unit calculates the deviation between the model load side position command S 17 and the model motor side position command S2, and outputs the deviation as the model side position deviation command S20. The torsional moment command generating unit generates a torsional moment command S12 by multiplying the model side position -11 - 201212518 by the deviation command S20 by the third gain ΚΒ. In the present invention, the gain of the model position controller is set to KP, the gain of the model speed controller is set to Κν, the motor side inertia is set to JM, the load side inertia is set to JL, and the state equation of the model control system is obtained. When the pole of the characteristic equation is set to K, the relation obtained by the operation is based on the equation with four roots:

K = -4KPK = -4KP

Ky=-KB (Jm+J,.) / [1.5KB/K + KpJL] K^KvKb/ (-4K3Jl) - JmKy=-KB (Jm+J,.) / [1.5KB/K + KpJL] K^KvKb/ (-4K3Jl) - Jm

Kvb=~4K (Jm+KJ /Kv-1 ,來決定模型控制系統的參數。 在具體的本發明之電動機控制裝置中,若使用第1及 第2慣性系統的機械模型,將模型負荷側加速度指令S 1 5與 模型電動機側加速度指令S 1 4的偏差亦即模型側加速度偏 差指令S18,進行狀態反饋至構成生成模型力矩偏差指令 SU的模型力矩指令部的第4偏差運算部。此外,將由模型 電動機側速度指令S7與模型負荷側速度指令S16的偏差所 構成的模型側速度偏差指令S 1 9,進行狀態反饋至構成模 型速度指令部的第2偏差運算部。接著,根據以適用現代 控制理論而模型控制系統的特性方程式的根具有4重根的 方式進行運算所得的關係式,來決定模型控制系統的各參 數》藉此,可以模型控制系統的位置控制器的增益KP—個 參數來決定所有模型側的參數,可簡單調整模型控制系統 -12- 201212518 的參數。而且,由模型速度控制器所被輸出的力矩指令係 在電動機可輸出的力矩內。此外’在參數的設定中’若使 用上述關係式,由於藉由模型位置控制器的增益ΚΡ來決定 極値,因此若可取得較高的反饋系統的位置控制器的增益 ,與習知技術相比較,可實現非常高速且不會產生機械振 動的定位。 尤其,將Κρ形成爲與反饋控制系統的位置控制器的增 益爲相同的値,將電動機側慣量、負荷側慣量八、表示 扭轉剛性的增益KB形成爲與實際機械系統的各個的値相同 ,若根據上述關係式來決定第1增益KAB、第2增益KVB、及 模型速度控制器的增益KV時,可得最具效果的控制效果。 【實施方式】 參照圖示,詳加說明本發明之電動機控制裝置之實施 形態之一例。在第1圖所示之本實施形態中,在使用模型 控制系統1與反饋控制系統2的電動機控制裝置中,係使用 第1及第2慣性系統的機械模型,將電動機側模型加速度指 令S 1 4與機械側模型加速度指令S 1 5的偏差,亦即模型側加 速度偏差指令S18、及模型電動機側速度訊號S7與模型負 荷側速度指令S 1 6的偏差,亦即模型側速度偏差指令S 1 9進 行狀態反饋。接著,運用現代控制理論,以控制系統安定 而不會發生振動的方式來決定模型控制系統的參數。 具體而言,電動機控制裝置中,模型控制系統1具備 有:第1偏差運算部3、模型位置控制器4、構成模型速度 -13- 201212518 指令部的第2偏差運算部5、第3偏差運算部6、模型速度控 制器7、構成模型力矩指令部的第4偏差運算部8、第5偏差 運算部9、電動機側模型1〇、由積分器11及12所構成的第1 慣性系統的機械模型、由負荷側模型13、積分器14及15所 構成的第2慣性系統的機械模型、第6偏差運算部16、模型 加速度指令發生部17、第7偏差運算部18、模型速度指令 發生部19、第8偏差運算部20、及扭轉力矩指令發生部21 。反饋控制系統2係具備有:第9偏差運算部22、位置控制 器23、第10偏差運算部24、微分器25、速度控制器26、加 算運算部27、及力矩控制器28。在第1圖中,符號Μ表示電 動機,符號L表示作爲負荷的機械,符號PS表示由檢測電 動機Μ的轉子的旋轉位置的編碼器等所構成的旋轉位置感 測器。 第1偏差運算部3係將由上位控制器所被輸出的位置指 令S1及由積分器I2所被輸出的模型電動機側位置指令S2的 偏差進行運算,將該偏差作爲模型位置偏差指令S3而輸出 至模型位置控制器4。模型位置控制器4係以模型位置偏差 指令S3爲輸入而輸出模型速度指令S4。第2偏差運算部5係 將模型速度指令S4及由第2狀態反饋系統F2所被反饋的反 饋速度指令S5的偏差進行運算,將該偏差作爲第1模型速 度偏差指令S6而輸出至第3偏差運算部6。在本實施形態中 ,第2偏差運算部5構成模型速度指令部。第3偏差運算部6 係將第1模型速度偏差指令S6及由積分器Π所被輸出的模 型電動機側速度指令S7的偏差進行運算,將該偏差作爲第 -14- 201212518 2模型速度偏差指令S8而輸出至模型速度控制器7»模型速 度控制器7係以桌2模型速度偏差指令§8爲輸入而輸出模型 力矩指令S9。 第4偏差運算部8係將模型力矩指令S9與反饋加速度指 令S10的偏差進行運算,輸出該偏差作爲第丨模型力矩偏差 指令S11。在本實施形態中,第4偏差運算部8構成模型力 矩指令部。第5偏差運算部9係將第1模型力矩偏差指令S11 、及表示由扭轉力矩指令發生部21所被輸出的扭轉力矩的 扭轉力矩指令S12的偏差進行運算而輸出該偏差作爲第2模 型力矩偏差指令S13 »第2模型力矩偏差指令S13係被供予 至電動機側模型10與加算運算部27。 第1慣性系統的機械模型係由電動機側模型1 〇、積分 器11及12所構成。電動機側模型1〇係將第2模型力矩偏差 指令S13與考慮到電動機側慣量JM的i/jM的增益相乘,輸 出該結果作爲模型電動機側加速度指令s 1 4。積分器1 1係 將模型電動機側加速度指令S 1 4進行積分,將該結果作爲 模型電動機側速度指令S7而輸出至積分器12、第3偏差運 算部6及第10偏差運算部24。積分器12係將模型電動機側 速度指令S 7進行積分而輸出模型電動機側位置指令s 2。模 型電動機側速度指令S7係被供予至第1偏差運算部3與第9 偏差運算部22。Kvb=~4K (Jm+KJ /Kv-1) determines the parameters of the model control system. In the specific motor control device of the present invention, if the mechanical model of the first and second inertial systems is used, the model load side acceleration is used. The deviation between the command S 1 5 and the model motor side acceleration command S 14 , that is, the model side acceleration deviation command S18, is fed back to the fourth deviation calculation unit constituting the model torque command unit that generates the model torque deviation command SU. The model side speed deviation command S 1 9 formed by the deviation between the model motor side speed command S7 and the model load side speed command S16 is fed back to the second deviation calculation unit constituting the model speed command unit. Theoretically, the root of the characteristic equation of the model control system has a relationship of 4 roots to calculate the parameters of the model control system, thereby determining the gain KP of the position controller of the model control system. All model side parameters can be easily adjusted for the model control system -12- 201212518. Moreover, by the model speed The torque command output by the controller is within the torque that the motor can output. In addition, if the above relationship is used in the parameter setting, since the gain is determined by the gain of the model position controller, if it is available, The gain of the position controller of the higher feedback system enables very high speed positioning without mechanical vibration compared to conventional techniques. In particular, Κρ is formed to be the same as the gain of the position controller of the feedback control system. In the meantime, the motor side inertia, the load side inertia VIII, and the gain KB indicating the torsional rigidity are formed in the same manner as the respective 机械 of the actual mechanical system, and the first gain KAB, the second gain KVB, and the model are determined based on the above relational expression. When the gain of the speed controller is KV, the most effective control effect can be obtained. [Embodiment] An embodiment of the motor control device according to the present invention will be described in detail with reference to the drawings. This embodiment shown in Fig. 1 In the motor control device using the model control system 1 and the feedback control system 2, the first and second inertial systems are used. The deviation between the motor side model acceleration command S 1 4 and the machine side model acceleration command S 1 5, that is, the model side acceleration deviation command S18, and the model motor side speed signal S7 and the model load side speed command S 16 , that is, the model side speed deviation command S 1 9 performs state feedback. Then, using modern control theory, the parameters of the model control system are determined in such a manner that the control system is stable without vibration. Specifically, in the motor control device, The model control system 1 includes a first deviation calculation unit 3, a model position controller 4, a second deviation calculation unit 5 that constitutes a model speed-13-201212518 command unit, a third deviation calculation unit 6, and a model speed controller 7, The fourth deviation calculation unit 8 , the fifth deviation calculation unit 9 , the motor side model 1 构成 constituting the model torque command unit, the mechanical model of the first inertia system including the integrators 11 and 12, the load side model 13 , and the integral The mechanical model of the second inertial system constituted by the units 14 and 15, the sixth deviation calculating unit 16, the model acceleration command generating unit 17, the seventh deviation calculating unit 18, and the model Degree command generating unit 19, 20, 8 and the torsion torque command generator deviation calculation unit 21. The feedback control system 2 includes a ninth deviation calculation unit 22, a position controller 23, a tenth deviation calculation unit 24, a differentiator 25, a speed controller 26, an addition calculation unit 27, and a torque controller 28. In Fig. 1, the symbol Μ indicates a motor, the symbol L indicates a machine as a load, and the symbol PS indicates a rotational position sensor composed of an encoder or the like that detects the rotational position of the rotor of the motor Μ. The first deviation calculation unit 3 calculates the deviation between the position command S1 output by the upper controller and the model motor side position command S2 output by the integrator I2, and outputs the deviation as the model position deviation command S3 to Model position controller 4. The model position controller 4 outputs the model speed command S4 with the model position deviation command S3 as an input. The second deviation calculation unit 5 calculates the deviation between the model speed command S4 and the feedback speed command S5 fed back by the second state feedback system F2, and outputs the deviation to the third deviation as the first model speed deviation command S6. The calculation unit 6. In the present embodiment, the second deviation computing unit 5 constitutes a model speed command unit. The third deviation calculation unit 6 calculates the deviation between the first model speed deviation command S6 and the model motor side speed command S7 outputted by the integrator ,, and uses the deviation as the -14th to 12th, 12th, 2012 model speed deviation command S8. The output to model speed controller 7»model speed controller 7 outputs the model torque command S9 with the table 2 model speed deviation command §8 as an input. The fourth deviation calculating unit 8 calculates the deviation between the model torque command S9 and the feedback acceleration command S10, and outputs the deviation as the second model torque deviation command S11. In the present embodiment, the fourth deviation computing unit 8 constitutes a model torque command unit. The fifth deviation calculating unit 9 calculates the deviation between the first model torque deviation command S11 and the torsional moment command S12 indicating the torsional moment output by the torsional moment command generating unit 21, and outputs the deviation as the second model torque deviation. The command S13 » the second model torque deviation command S13 is supplied to the motor side model 10 and the addition calculation unit 27. The mechanical model of the first inertia system is composed of a motor side model 1 〇 and integrators 11 and 12. The motor side model 1 multiplies the second model torque deviation command S13 by the gain of i/jM in consideration of the motor side inertia JM, and outputs the result as the model motor side acceleration command s 14 . The integrator 1 1 integrates the model motor side acceleration command S 1 4 and outputs the result to the integrator 12, the third deviation operation unit 6, and the tenth deviation calculation unit 24 as the model motor side speed command S7. The integrator 12 integrates the model motor side speed command S7 and outputs the model motor side position command s2. The model motor side speed command S7 is supplied to the first deviation calculating unit 3 and the ninth deviation calculating unit 22.

第2慣性系統的機械模型係由負荷側模型1 3、積分器 1 4及1 5所構成。負荷側模型1 3係以後述的扭轉力矩指令 S12爲輸入’對扭轉力矩指令S12乘以考慮到負荷側慣量jL -15- 201212518 的1 / 而生成模型負荷側加速度指令S 1 5。積分器1 4係將 模型負荷側加速度指令S 1 5進行積分,輸出模型負荷側速 度指令s 1 6,積分器1 5係將模型負荷側速度指令S 1 6進行積 分,而生成模型負荷側位置指令S 1 7。 第6偏差運算部1 6係將模型電動機側加速度指令S 1 4與 模型負荷側加速度指令S 1 5的偏差進行運算,輸出該偏差 作爲模型側加速度偏差指令S 1 8。模型加速度指令發生部 17係對模型側加速度偏差指令S18乘以第1增益KAB而生成 反饋加速度指令S10。在本實施形態中,藉由第6偏差運算 部1 6與模型加速度指令發生部1 7,構成第1狀態反饋系統 F1。 第7偏差運算部18係將模型電動機側速度指令S7與模 型負荷側速度指令S16的偏差進行運算,輸出該偏差作爲 模型側速度偏差指令S 1 9。模型速度指令發生部1 9係對模 型側速度偏差指令S19乘以第2增益KVB而生成反饋速度指 令S5。在本實施形態中,藉由第7偏差運算部18與模型速 度指令發生部19,構成第2狀態反饋系統F2。 第8偏差運算部20係將模型負荷側位置指令S17與模型 電動機側位置指令S2的偏差進行運算,輸出該偏差作爲模 型側位置偏差指令S20。扭轉力矩指令發生部21係對模型 側位置偏差指令S20乘以表示扭轉剛性的第3增益KB而生成 扭轉力矩指令S 1 2 ^ 在本實施形態中,第9偏差運算部22取得模型電動機 側位置指令S2與以由編碼器所構成的位置感測器PS所檢測 -16- 201212518 到的電動機位置的偏差,且將該偏差S22供予至位置控制 器23。位置控制器23係計算出速度指令S22。而且第1〇偏 差運算部24係將模型電動機側速度指令S7與來自位置控制 器23的速度指令S22進行加算,在該加算後的指令取得與 以微分器25將利用位置檢測器PS所檢測到的電動機位置進 行微分後的速度S23的偏差,將該偏差S24供予至速度控制 器26。速度控制器26係計算出力矩指令S25。加算運算部 27係將來自速度控制器26的力矩指令S25及作爲電動機側 模型力矩指令的第2模型力矩偏差指令S1 3進行加算,加算 結果係被供予至力矩控制器28,根據來自力矩控制器28的 輸出S27來驅動電動機Μ。 在本實施形態中,當將模型位置控制器的增益設爲ΚΡ '模型速度控制器的增益設爲Κν、電動機側慣量設爲JM、 負荷側慣量設爲JL時,模型控制系統的狀態方程式係如以 下所示。 【數1】 - 0 1 0 0 - κ KpKy+KB(l~KJB/Jr) Ky„Ky V = ^Μ ^ΛΒ 0 ^ Μ ^ ^ΑΒ 0 ^ U ^ ^ΑΒ 0 ^Μ ^ΛΒ 1 *2 Ιλ」 κΒ . Λ 0 κΒ Λ 0 Λ. Γ〇 0 10] κρκν Ρ* y- 0 ο -17- 201212518 接著,當將由模型控制系統的狀態方程式所得的特性 方程式的極値設爲κ時,根據以特性方程式具有4重根的方 式進行運算所得的關係式:The mechanical model of the second inertial system is composed of a load side model 13 and integrators 14 and 15. The load side model 1 3 is a torque torque command S12 which will be described later. The input torque multiplying S12 is multiplied by 1 / / which takes into consideration the load side inertia jL -15 - 201212518 to generate the model load side acceleration command S 1 5 . The integrator 14 integrates the model load side acceleration command S 1 5 and outputs the model load side speed command s 1 6 . The integrator 15 integrates the model load side speed command S 16 to generate the model load side position. Command S 1 7. The sixth deviation calculating unit 16 calculates the deviation between the model motor side acceleration command S 1 4 and the model load side acceleration command S 15 , and outputs the deviation as the model side acceleration deviation command S 1 8 . The model acceleration command generation unit 17 multiplies the model side acceleration deviation command S18 by the first gain KAB to generate a feedback acceleration command S10. In the present embodiment, the sixth deviation calculation unit 16 and the model acceleration command generation unit 177 constitute the first state feedback system F1. The seventh deviation calculating unit 18 calculates the deviation between the model motor side speed command S7 and the model load side speed command S16, and outputs the deviation as the model side speed deviation command S1 9 . The model speed command generation unit 19 multiplies the model side speed deviation command S19 by the second gain KVB to generate a feedback speed command S5. In the present embodiment, the seventh deviation calculation unit 18 and the model speed command generation unit 19 constitute the second state feedback system F2. The eighth deviation calculating unit 20 calculates the deviation between the model load side position command S17 and the model motor side position command S2, and outputs the deviation as the model side position deviation command S20. The torsion torque command generation unit 21 generates a torsional moment command S 1 2 by multiplying the model side positional deviation command S20 by the third gain KB indicating the torsional rigidity. In the present embodiment, the ninth deviation calculation unit 22 acquires the model motor side position. The deviation of the command S2 from the position of the motor detected by the position sensor PS constituted by the encoder -16 - 201212518, and the deviation S22 is supplied to the position controller 23. The position controller 23 calculates the speed command S22. Further, the first offset calculation unit 24 adds the model motor side speed command S7 and the speed command S22 from the position controller 23, and the added command acquisition and the differentiator 25 detect the use position detector PS. The motor position is differentiated by the deviation of the speed S23, and the deviation S24 is supplied to the speed controller 26. The speed controller 26 calculates a torque command S25. The addition calculation unit 27 adds the torque command S25 from the speed controller 26 and the second model torque deviation command S1 3 as the motor side model torque command, and the addition result is supplied to the torque controller 28, based on the torque control. The output S27 of the device 28 drives the motor Μ. In the present embodiment, when the gain of the model position controller is set to ΚΡ 'the gain of the model speed controller is Κν, the motor side inertia is JM, and the load side inertia is JL, the state equation of the model control system is As shown below. [Number 1] - 0 1 0 0 - κ KpKy+KB(l~KJB/Jr) Ky„Ky V = ^Μ ^ΛΒ 0 ^ Μ ^ ^ΑΒ 0 ^ U ^ ^ΑΒ 0 ^Μ ^ΛΒ 1 *2 Ιλ κ Β Λ 0 κΒ Λ 0 Λ. Γ〇0 10] κρκν Ρ* y- 0 ο -17- 201212518 Next, when the pole of the characteristic equation obtained by the state equation of the model control system is set to κ, The relational equation obtained by the operation of the characteristic equation with four roots:

K = -4KPK = -4KP

KV=-KB (JB+JL) / [1.5Kb/K + KpJJKV=-KB (JB+JL) / [1.5Kb/K + KpJJ

ΚΛΒ=ΚνΚΒ/ (_4K3JL) - JMΚΛΒ=ΚνΚΒ/ (_4K3JL) - JM

Kvb=-4K (JM + KJ /Kv-1 ,來決定模型控制系統1的參數。 若如上所示決定參數,可利用模型控制系統1的模型 位置控制器4的增益KP—個參數來決定所有模型控制系統1 側的參數,而可簡單調整模型控制系統的參數。而且,由 模型速度控制器7所被輸出的模型力矩指令係在電動機Μ可 輸出的力矩範圍。另外若在參數的設定中使用上述關係式 ,藉由模型位置控制器4的增益ΚΡ來決定極値,因此若可 取得較高的反饋系統的位置控制器23的增益,與習知技術 相比較,可實現非常高速且不會發生機械振動的定位。 尤其,將模型位置控制器4的增益ΚΡ設爲與反饋控制 系統2的位置控制器23的增益爲相同的値,將電動機側慣 量Jm、負荷側慣量Jl、表示扭轉剛性的增益ΚΒ形成爲與實 際機械系統L的各個的値相同,若根據上述關係式來決定 第1增益ΚΑΒ、第2增益KVB、及模型速度控制器的增益Κν ,可得最具效果的控制效果。 具體的參數設定係如以下進行。位置控制器23的增益 -18- 201212518 、速度控制器24的增益係在不會將機械系統的諧波共振進 行激振的範圍內調整爲儘可能高的値。模型控制系統1的 模型位置控制器4的增益KP係形成爲與反饋系統爲相同的 値。模型控制系統的慣量J μ、負荷側慣量J L、表示扭轉剛 性的增益KB的參數係配合實際機械系統的値。接著,根據 該等參數,計算出第1及第2狀態反饋F1及F2的第1增益KAB 及第2增益KVB。如上所示,反饋系統的參數係配合實際機 械系統來作調整’配合其來決定模型控制系統的參數。模 型控制系統1側的參數係僅將模型位置控制器4的增益KP調 整一個,來決定所有模型內的參數,並不需要個別調整模 型控制系統的參數亦即增益KP、Kv、KAB、KVB。 第2圖(A)至(C)係使用如上所示所計算出的參數來進 行定位時的位置指令(微分値)、來自模型速度控制器7 的模型力矩指令S9及模型側位置偏差指令S20的模擬結果 。若將第2圖(B)所示之來自模型速度控制器7的模型力矩 指令S9與第6圖(B)的專利文獻2的習知裝置的模型力矩指 令相對比可知,負荷側的振動係受到抑制,而實現高速的 定位。 此外,在本實施形態中,係將模型電動機側加速度指 令S 1 4與模型負荷側加速度指令s 1 5的差的加速度亦即模型 側加速度偏差指令S 1 8作增益KAB倍後的反饋加速度指令 S10,進行狀態反饋至作爲模型力矩指令算出部的第4偏差 運算部8»此外,將模型電動機側速度指令S7與模型負荷 側速度指令S 1 6的差的速度亦即模型側速度偏差指令S 1 9作 -19- 201212518 增益KVB倍後的反饋速度指令S5,進行狀態反饋至作爲模 型速度指令算出部的第2偏差運算部5。結果,由模型速度 控制器7所被輸出的力矩指令係在電動機可輸出的力矩範 圍內。 (產業上可利用性) 在本發明中,若使用第1及第2慣性系統的機械模型, 將模型負荷側加速度指令S 1 5與模型電動機側加速度指令 S 1 4的偏差亦即模型側加速度偏差指令S 1 8,進行狀態反饋 至構成生成模型力矩偏差指令S11的模型力矩指令部的第4 偏差運算部。此外,將由模型電動機側速度指令S7與模型 負荷側速度指令S 1 6的偏差所構成的模型側速度偏差指令 S19,進行狀態反饋至構成模型速度指令部的第2偏差運算 部。接著,根據以適用現代控制理論而模型控制系統的特 性方程式的根具有4重根的方式進行運算所得的關係式, 來決定模型控制系統的各參數。藉此,以模型控制系統的 位置控制器的增益Κρ—個參數即可決定所有模型側的參數 ,可得可簡單調整模型控制系統的參數的優點。而且,由 模型速度控制器所被輸出的力矩指令係在電動機可輸出的 力矩內。此外,在參數的設定中,由於藉由模型位置控制 器的增益ΚΡ來決定極値,因此若可取得較高的反饋系統的 位置控制器的增益,可得可實現非常高速且不會發生機械 振動的定位的優點。 -20- 201212518 【圖式簡單說明】 第1圖係顯示本發明之實施形態之一例之構成的方塊 圖。 第2圖(A)至(C)係在第1圖之實施形態中進行定位時的 位置指令、來自模型速度控制器的模型力矩指令及模型側 位置偏差指令的模擬結果。 第3圖係顯示專利文獻1所示之習知之利用模型追隨控 制的電動機控制裝置之構成圖。 第4圖係用在說明可視爲將在近似上電動機側的慣性 與負荷側的慣性藉由較低的扭轉剛性相結合的機械系統的 圖。 第5圖係藉由前置濾波器來抑制2個慣性系統之振動的 習知的裝置的方塊圖。 第6圖(A)至(C)係在專利文獻2的裝置中,進行定位時 的位置指令、來自模型速度控制器的模型力矩指令及模型 側位置偏差指令的模擬結果。 【主要元件符號說明】 1 :模型控制系統 2 :反饋控制系統 3 :第1偏差運算部 4 :模型位置控制器 5 :第2偏差運算部 6 :第3偏差運算部 -21 - 201212518 7 :模型速度控制器 8 :第4偏差運算部 9 :第5偏差運算部 1 〇 :電動機側模型 1 1、1 2 :積分器 1 3 :負荷側模型 14、15 :積分器 16 :第6偏差運算部 1 7 :模型加速度指令發生部 18 :第7偏差運算部 19:模型速度指令發生部 20 :第8偏差運算部 21 :扭轉力矩指令發生部 22 :第9偏差運算部 23 :位置控制器 24 :第10偏差運算部 25 :微分器 26 :速度控制器 27 :加算運算部 2 8 :力矩控制器 Μ :電動機 PS :位置感測器 -22Kvb=-4K (JM + KJ /Kv-1 , to determine the parameters of the model control system 1. If the parameters are determined as described above, the gain KP of the model position controller 4 of the model control system 1 can be used to determine all The model controls the parameters on the side of the system 1, and the parameters of the model control system can be easily adjusted. Moreover, the model torque command output by the model speed controller 7 is in the torque range that can be output by the motor. In addition, in the parameter setting. Using the above relationship, the gain is determined by the gain 模型 of the model position controller 4, so that the gain of the position controller 23 of the higher feedback system can be obtained, which is very high speed and not comparable to the prior art. In particular, the gain of the model position controller 4 is set to be the same as the gain of the position controller 23 of the feedback control system 2, and the motor side inertia Jm, the load side inertia J1, and the representation are reversed. The rigid gain ΚΒ is formed to be the same as the 値 of each of the actual mechanical systems L, and the first gain ΚΑΒ, the second gain KVB, and the model speed are determined according to the above relationship. The gain of the controller Κν can get the most effective control effect. The specific parameter setting is as follows. The gain of the position controller 23 is -18-201212518, and the gain of the speed controller 24 is not the harmonic of the mechanical system. The range in which the wave resonance is excited is adjusted to be as high as possible. The gain KP of the model position controller 4 of the model control system 1 is formed to be the same as that of the feedback system. The inertia J μ of the model control system, the load side The inertia JL and the parameter of the gain KB indicating the torsional rigidity are matched with the actual mechanical system. Then, based on the parameters, the first gain KAB and the second gain KVB of the first and second state feedbacks F1 and F2 are calculated. As shown, the parameters of the feedback system are adjusted in conjunction with the actual mechanical system to determine the parameters of the model control system. The parameters on the side of the model control system 1 only adjust the gain KP of the model position controller 4 to determine all The parameters in the model do not need to individually adjust the parameters of the model control system, namely the gains KP, Kv, KAB, KVB. Figure 2 (A) to (C) are calculated as shown above. The parameter is used to perform the positioning command (differential 値) at the time of positioning, the model torque command S9 from the model speed controller 7, and the simulation result of the model side position deviation command S20. If the model is shown in Fig. 2(B) The model torque command S9 of the speed controller 7 is compared with the model torque command of the conventional device of Patent Document 2 of Fig. 6(B), and it is understood that the vibration system on the load side is suppressed, and high-speed positioning is realized. In the embodiment, the acceleration of the difference between the model motor side acceleration command S 1 4 and the model load side acceleration command s 15 , that is, the model side acceleration deviation command S 1 8 is the feedback acceleration command S10 after the gain KAB times, and the state is performed. The fourth deviation calculation unit 8» which is the model torque command calculation unit is fed back to the model side speed deviation command S 1 9 which is the speed of the difference between the model motor side speed command S7 and the model load side speed command S 16 - 19-201212518 The feedback speed command S5 after the gain KVB is multiplied to the second deviation calculation unit 5 as the model speed command calculation unit. As a result, the torque command outputted by the model speed controller 7 is within the range of torque that the motor can output. (Industrial Applicability) In the present invention, when the mechanical model of the first and second inertial systems is used, the deviation between the model load side acceleration command S 1 5 and the model motor side acceleration command S 1 4 is also the model side acceleration. The deviation command S 18 8 is fed back to the fourth deviation calculation unit constituting the model torque command unit that generates the model torque deviation command S11. Further, the model side speed deviation command S19 composed of the deviation between the model motor side speed command S7 and the model load side speed command S 16 is fed back to the second deviation calculation unit constituting the model speed command unit. Next, the parameters of the model control system are determined based on the relational expression obtained by calculating the root of the characteristic equation of the model control system by applying the modern control theory. Thereby, the parameters of all the model sides can be determined by the gain —ρ-parameter of the position controller of the model control system, and the advantages of the parameters of the model control system can be easily adjusted. Moreover, the torque command output by the model speed controller is within the torque that the motor can output. In addition, in the parameter setting, since the maximum value is determined by the gain 模型 of the model position controller, if the gain of the position controller of the higher feedback system can be obtained, it can be realized at a very high speed without mechanical occurrence. The advantages of vibration positioning. -20- 201212518 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the configuration of an embodiment of the present invention. Fig. 2(A) to Fig. 2(C) are simulation results of the position command at the time of positioning in the embodiment of Fig. 1, the model torque command from the model speed controller, and the model side position deviation command. Fig. 3 is a view showing the configuration of a conventional motor control device using model following control shown in Patent Document 1. Fig. 4 is a view for explaining a mechanical system which can be regarded as a combination of inertia on the motor side and inertia on the load side by a low torsional rigidity. Fig. 5 is a block diagram of a conventional device for suppressing vibration of two inertial systems by a pre-filter. Fig. 6 (A) to (C) show the simulation results of the position command at the time of positioning, the model torque command from the model speed controller, and the model side position deviation command in the device of Patent Document 2. [Description of main component symbols] 1 : Model control system 2 : Feedback control system 3 : First deviation calculation unit 4 : Model position controller 5 : Second deviation calculation unit 6 : Third deviation calculation unit - 21 - 201212518 7 : Model Speed controller 8: fourth deviation calculation unit 9: fifth deviation calculation unit 1 电动机: motor side model 1 1 and 1 2 : integrator 1 3 : load side model 14 and 15 : integrator 16 : sixth deviation calculation unit 1 : Model acceleration command generation unit 18 : 7th deviation calculation unit 19 : Model speed command generation unit 20 : 8th deviation calculation unit 21 : Torque torque command generation unit 22 : 9th deviation calculation unit 23 : Position controller 24 : Tenth deviation calculation unit 25: Differentiator 26: Speed controller 27: Addition calculation unit 2: Torque controller Μ: Motor PS: Position sensor-22

Claims (1)

201212518 七、申請專利範固: 1.一種電動機控制裝置,係具備有: 將實際的電動機的控制系統進行模擬的模型控制系統 :及 具備有位置控制器、速度控制器及力矩控制器,以追 隨前述模型控制系統的方式所構成,將前述實際的電動機 進行反饋控制的反饋控制系統, 該電動機控制裝置之特徵爲: 前述模型控制系統係具備有: 將位置指令S1與表示模型電動機側位置的模型電動機 側位置指令S2的偏差進行運算,輸出該偏差作爲模型位置 偏差指令S3的第1偏差運算部; 以前述模型位置偏差指令S3爲輸入而輸出模型速度指 令S4的模型位置控制器; 將前述模型速度指令S4與反饋速度指令S5的偏差進行 運算,輸出該偏差作爲第1模型速度偏差指令S6的第2偏差 運算部; 將前述第1模型速度偏差指令S6與模型電動機側速度 指令S7的偏差進行運算,輸出該偏差作爲第2模型速度偏 差指令S8的第3偏差運算部; 以前述第2模型速度偏差指令S8爲輸入而輸出模型力 矩指令S9的模型速度控制器; 將前述模型力矩指令S9與反饋加速度指令S10的偏差 進行運算,輸出該偏差作爲第1模型力矩偏差指令S11的第 -23- 201212518 4偏差運算部: 將前述第1模型力矩偏差指令S11與表示扭轉力矩的扭 轉力矩指令S12的偏差進行運算,輸出該偏差作爲第2模型 力矩偏差指令SIS的第5偏差運算部; 以前述第2模型力矩偏差指令S1 3爲輸入,生成模型電 動機側加速度指令S 1 4、前述模型電動機側速度指令S7及 前述模型電動機側位置指令S2的第1慣性系統的機械模型 > 以前述扭轉力矩指令爲輸入,生成模型負荷側加速度 指令s 1 5、模型負荷側速度指令S 1 6及模型負荷側位置指令 s 1 7的第2慣性系統的機械模型; 將前述模型電動機側加速度指令S14與前述模型負荷 側加速度指令S 1 5的偏差進行運算,輸出該偏差作爲模型 側加速度偏差指令S 1 8的第6偏差運算部; 對前述模型側加速度偏差指令S 1 8乘以第1增益KAB而 生成前述反饋加速度指令S10的模型加速度指令發生部; 將前述模型電動機側速度指令S7與前述模型負荷側速 度指令S16的偏差進行運算,輸出該偏差作爲模型側速度 偏差指令S19的第7偏差運算部;及 對前述模型側速度偏差指令S19乘以第2增益KVB而生 成前述反饋速度指令S5的模型速度指令發生部, 且具備有= 將前述模型負荷側位置指令s 1 7與前述模型電動機側 位置指令S2的偏差進行運算,輸出該偏差作爲模型側位置 -24- 201212518 偏差指令S20的第8偏差運算部;及 對前述模型側位置偏差指令S20乘以第3增益KB而生成 前述扭轉力矩指令S12的扭轉力矩指令發生部, 將前述模型位置控制器的增益設爲KP、前述模型速度 控制器的增益設爲KV、電動機側慣量設爲、負荷側慣量 設爲八,另外將由前述模型控制系統的狀態方程式所得的 特性方程式的極値設爲K時,根據以前述特性方程式具有4 重根的方式進行運算所得的關係式: K = -4KP KV=-KB (Jh+Jl) / [1.5KB/K + KpJL] K^sKvK〆(一4K3JJ -J„ Kvb=-4K (Jm+KJ /Kv-1 ,來決定前述模型控制系統的參數。 2.如申請專利範圍第1項之電動機控制裝置,其中, 將KP形成爲與前述反饋控制系統的前述位置控制器的增益 爲相同的値,將前述電動機側慣量、前述負荷側慣量h 、表示扭轉剛性的前述增益KB形成爲與實際機械系統的各 個的値相同,來決定前述第1增益KAB、前述第2增益KVB、 及前述模型速度控制器的增益Kv。 3 · —種電動機控制裝置,係具備有: 將實際的電動機的控制系統進行模擬且包含模型位置 控制器、模型速度指令部、模型速度控制器及模型力矩指 令部所構成的模型控制系統;及 具備有位置控制器、速度控制器及力矩控制器,以追 -25- 201212518 隨前述模型控制系統的方式所構成’將前述實際的電動機 進行反饋控制的反饋控制系統, 該電動機控制裝置之特徵爲: 前述模型控制系統係具備有:生成模型電動機側加速 度指令S14及模型電動機側速度指令S7之關於前述電動機 的第1慣性系統的機械模型;生成模型負荷側加速度指令 s 1 5及模型負荷側速度指令S 1 6之關於負荷的第2慣性系統 的機械模型;關於前述電動機與前述負荷之間的扭轉力矩 的扭轉力矩模型;將前述模型負荷側加速度指令S15與前 述模型電動機側加速度指令s 1 4的偏差亦即模型側加速度 偏差指令S 1 8作增益KAB倍所得的反饋加速度指令S 1 0,反 饋至生成模型力矩偏差指令S11的前述模型力矩指令部的 第1狀態反饋系統;及將由前述模型負荷側速度指令S1 6與 前述模型電動機側速度指令S7的偏差所構成的模型側速度 偏差指令S19作增益KVB倍所得的反饋速度指令S5,進行狀 態反饋至前述模型速度指令部的第2狀態反饋系統, 根據以由前述模型控制系統的狀態方程式所得的特性 方程式具有4重根的方式進行運算所得的參數的關係式, 來決定前述模型控制系統的參數。 4.如申請專利範圍第3項之電動機控制裝置,其中, 將前述模型位置控制器的增益設爲KP、前述模型速度控制 器的增益設爲Κν、電動機側慣量設爲JM、負荷側慣量設爲 JL ’將關於扭轉剛性的增益設爲KB、關於前述模型電動機 的加速度資訊的增益設爲KAB,將關於前述模型電動機的 -26- 201212518 速度資訊的增益設爲KvB,將由前述模型控制系統的 方程式所得的特性方程式的極値設爲K時,根據以前 性方程式具有4重根的方式進行運算所得的關係式: K = -4KP KV=-KB (JM+JL) / [i.5Kb/K + KpJl] Kab=KvKb/ (-4K3Jl) -Jh Kvb=-4K (Jm+KJ /Kv-1 ,來決定前述模型控制系統的參數。 5.如申請專利範圍第4項之電動機控制裝置,其 將KP形成爲與前述反饋控制系統的前述位置檢測器的 爲相同的値,將前述電動機側慣量JM、前述負荷側慣 、表示扭轉剛性的前述增益KB形成爲與實際機械系統 個的値相同,來決定前述增益KAB、前述增益KVB、及 模型速度控制器的增益Kv。 狀態 述特 中, 增益 量J L 的各 前述 -27-201212518 VII. Application for patents: 1. A motor control device with: a model control system that simulates the actual motor control system: and has a position controller, speed controller and torque controller to follow The above-described model control system comprises a feedback control system that performs feedback control on the actual motor. The motor control device is characterized in that: the model control system includes: a position command S1 and a model indicating a position of the model motor side Calculating the deviation of the motor side position command S2, outputting the deviation as the first deviation calculation unit of the model position deviation command S3, and outputting the model position controller of the model speed command S4 with the model position deviation command S3 as an input; The deviation between the speed command S4 and the feedback speed command S5 is calculated, and the deviation is output as the second deviation calculation unit of the first model speed deviation command S6; and the deviation between the first model speed deviation command S6 and the model motor side speed command S7 is performed. Operation, output the deviation The third deviation calculation unit of the second model speed deviation command S8; the model speed controller that outputs the model torque command S9 with the second model speed deviation command S8 as an input; and the deviation between the model torque command S9 and the feedback acceleration command S10 The calculation is performed, and the deviation is output as the first model torque deviation command S11. The -23-201212518 4 deviation calculation unit calculates the deviation between the first model torque deviation command S11 and the torsional moment command torque S12, and outputs the deviation. The deviation is a fifth deviation calculation unit of the second model torque deviation command SIS; the model motor side acceleration command S1 4, the model motor side speed command S7, and the model motor are generated by the second model torque deviation command S1 3 as an input. The mechanical model of the first inertia system of the side position command S2 is input with the torsional moment command, and the model load side acceleration command s 15 , the model load side speed command S 16 , and the model load side position command s 1 7 are generated. a mechanical model of the second inertial system; the aforementioned model motor side acceleration command S14 and the front The deviation of the model load side acceleration command S 1 5 is calculated, and the deviation is output as the sixth deviation calculation unit of the model side acceleration deviation command S 1 8 ; the model side acceleration deviation command S 1 8 is multiplied by the first gain KAB a model acceleration command generation unit that generates the feedback acceleration command S10; calculates a deviation between the model motor side speed command S7 and the model load side speed command S16, and outputs the deviation as a seventh deviation calculation unit of the model side speed deviation command S19. And a model speed command generating unit that generates the feedback speed command S5 by multiplying the model side speed deviation command S19 by the second gain KVB, and includes: the model load side position command s 17 and the model motor side position The deviation of the command S2 is calculated, and the deviation is output as the eighth deviation calculation unit of the model side position-24-201212518 deviation command S20; and the model side position deviation command S20 is multiplied by the third gain KB to generate the torsional moment command S12. Torque torque command generating unit, setting the gain of the aforementioned model position controller to KP, the gain of the model speed controller is KV, the motor side inertia is set, the load side inertia is set to eight, and the pole of the characteristic equation obtained by the state equation of the model control system is K, The relational equation has a relation of 4 roots: K = -4KP KV=-KB (Jh+Jl) / [1.5KB/K + KpJL] K^sKvK〆 (a 4K3JJ -J„ Kvb=-4K (Jm+KJ /Kv-1 to determine the parameters of the aforementioned model control system. 2. The motor control device according to claim 1, wherein the KP is formed to be the same as the gain of the position controller of the feedback control system, and the motor side inertia and the load side inertia h are expressed. The aforementioned gain KB of the torsional rigidity is formed in the same manner as each of the actual mechanical systems, and the first gain KAB, the second gain KVB, and the gain Kv of the model speed controller are determined. (3) A motor control device comprising: a model control system including a model position controller, a model speed command unit, a model speed controller, and a model torque command unit that simulates an actual motor control system; and It is equipped with a position controller, a speed controller and a torque controller to follow the above-mentioned model control system to form a feedback control system that performs feedback control on the actual motor. The motor control device is characterized by The model control system includes a machine model for generating a model motor side acceleration command S14 and a model motor side speed command S7 with respect to the first inertia system of the motor, and a model load side acceleration command s 15 and a model load side speed. a mechanical model of the second inertial system with respect to the load of the command S 16 ; a torsional moment model of the torsional moment between the motor and the load; the model load side acceleration command S15 and the model motor side acceleration command s 1 4 The deviation of the model The degree deviation command S 1 8 is a feedback acceleration command S 1 0 obtained by multiplying the gain KAB, and is fed back to the first state feedback system of the model torque command unit that generates the model torque deviation command S11; and the model load side speed command S1 6 The model side speed deviation command S19 formed by the deviation of the model motor side speed command S7 is a feedback speed command S5 obtained by multiplying the gain KVB, and the state feedback is performed to the second state feedback system of the model speed command unit. The equation of the state equation of the model control system has a relational expression of the parameters obtained by the operation of the four-rooted method to determine the parameters of the aforementioned model control system. 4. The motor control device according to claim 3, wherein the gain of the model position controller is KP, the gain of the model speed controller is Κν, the motor side inertia is JM, and the load side inertia is set. For JL 'the gain for the torsional rigidity is set to KB, the gain for the acceleration information of the aforementioned model motor is set to KAB, and the gain for the -26-201212518 speed information of the aforementioned model motor is set to KvB, which will be controlled by the aforementioned model control system. When the pole of the characteristic equation obtained by the equation is K, the relation is obtained by the operation of the previous equation with 4 roots: K = -4KP KV=-KB (JM+JL) / [i.5Kb/K + KpJl] Kab=KvKb/ (-4K3Jl) -Jh Kvb=-4K (Jm+KJ /Kv-1 , to determine the parameters of the aforementioned model control system. 5. The motor control device of claim 4, which will The KP is formed in the same manner as the position detector of the feedback control system, and the motor side inertia JM, the load side habit, and the aforementioned gain KB indicating the torsional rigidity are formed as the actual mechanical system. Zhi same, the KAB determines the gain, the gain of KVB, and the gain Kv of the speed controller model. Laid-described state, the amount of gain for each of the J L -27-
TW100104564A 2010-02-16 2011-02-11 Motor controlling apparatus TWI501540B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031412A JP5113862B2 (en) 2010-02-16 2010-02-16 Motor control device

Publications (2)

Publication Number Publication Date
TW201212518A true TW201212518A (en) 2012-03-16
TWI501540B TWI501540B (en) 2015-09-21

Family

ID=44464969

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104564A TWI501540B (en) 2010-02-16 2011-02-11 Motor controlling apparatus

Country Status (3)

Country Link
JP (1) JP5113862B2 (en)
CN (1) CN102163952B (en)
TW (1) TWI501540B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718959B (en) * 2020-06-08 2021-02-11 東元電機股份有限公司 Motor load real-time adjustment system and method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130057902A (en) * 2011-11-24 2013-06-03 엘에스산전 주식회사 A method for controlling an elevator, a control apparatus of elevator using it and an elevator using it
CN104617845B (en) * 2015-01-23 2017-12-08 苏州汇川技术有限公司 Servo electrical machinery system gain parameter self-regulating method and system
JP7049754B2 (en) * 2015-02-13 2022-04-07 山洋電気株式会社 Motor control device
JP6512430B2 (en) * 2015-03-24 2019-05-15 株式会社ジェイテクト Electric power steering apparatus and gain setting method in electric power steering apparatus
JP6607097B2 (en) * 2015-11-19 2019-11-20 オムロン株式会社 Control device, control method, information processing program, and recording medium
KR101739929B1 (en) * 2017-03-10 2017-05-26 (주) 한사 Motor control device controlling several motors independently
US11316452B2 (en) * 2020-01-15 2022-04-26 Delta Electronics, Inc. Electronic device and control method thereof
CN114070165A (en) * 2021-12-03 2022-02-18 深圳市英威腾电气股份有限公司 Motor driving method, system, device and medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214270B2 (en) * 1994-12-08 2001-10-02 三菱電機株式会社 Motor speed control device and speed and position control device
JP3364412B2 (en) * 1997-07-14 2003-01-08 山洋電気株式会社 Vibration suppression method for servo control system with speed reduction mechanism
DE19907757A1 (en) * 1998-02-25 1999-08-26 Fuji Electric Co Ltd Speed controller for motor with resilient shaft connection to load
JP3667547B2 (en) * 1998-02-25 2005-07-06 義弘 松井 Speed control device for electric motor
WO2000075739A1 (en) * 1999-06-04 2000-12-14 Kabushiki Kaisha Yaskawa Denki Position controller for motor
JP2002291271A (en) * 2001-03-28 2002-10-04 Yaskawa Electric Corp Motor control device
WO2004008624A1 (en) * 2002-07-11 2004-01-22 Kabushiki Kaisha Yaskawa Denki Servo control device gain adjustment method
JP4020726B2 (en) * 2002-08-08 2007-12-12 三菱電機株式会社 Machine position control device and machine position control system
JP4540727B2 (en) * 2008-07-31 2010-09-08 山洋電気株式会社 Motor control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718959B (en) * 2020-06-08 2021-02-11 東元電機股份有限公司 Motor load real-time adjustment system and method thereof

Also Published As

Publication number Publication date
JP5113862B2 (en) 2013-01-09
JP2011172317A (en) 2011-09-01
TWI501540B (en) 2015-09-21
CN102163952B (en) 2015-02-18
CN102163952A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
TW201212518A (en) Motor controlling apparatus
JP5344067B1 (en) Dynamometer system
US9242375B2 (en) Control device for power device
JP4879173B2 (en) Electric motor control device
JP6037364B2 (en) Motor control device and motor control method
JP5816826B2 (en) Motor drive device
JP2010041734A (en) Motor control system
JP5393238B2 (en) Electric motor drive system, electric motor control device, and electric motor drive method
JP6305283B2 (en) Power system control system
CN104993766A (en) Two-mass system resonance suppression method
JPWO2015063842A1 (en) Motor control device
JP5989694B2 (en) Control device, control method, and control program
JP3751606B2 (en) Method for estimating rotor inertia
JP5644203B2 (en) Torque ripple suppression control device and control method for rotating electrical machine
JP5441944B2 (en) Motor control device
JP6686658B2 (en) Electric vehicle control method and electric vehicle control device
KR101347921B1 (en) Servo control device
JP6728633B2 (en) Electric vehicle control method and control device
JPWO2009084258A1 (en) Motor control device
JP2010045957A (en) Motor control device and backlash identifying method
JP5263143B2 (en) Electric motor control device
JP5312195B2 (en) DC brushless motor control device
JP3972155B2 (en) Motor control device
JP2011135632A5 (en)
JP5845884B2 (en) Active vibration control device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees