TW201212516A - Control apparatus and control method - Google Patents

Control apparatus and control method Download PDF

Info

Publication number
TW201212516A
TW201212516A TW100109199A TW100109199A TW201212516A TW 201212516 A TW201212516 A TW 201212516A TW 100109199 A TW100109199 A TW 100109199A TW 100109199 A TW100109199 A TW 100109199A TW 201212516 A TW201212516 A TW 201212516A
Authority
TW
Taiwan
Prior art keywords
magnetic pole
pole position
coils
estimated
linear motor
Prior art date
Application number
TW100109199A
Other languages
Chinese (zh)
Inventor
Masashi Inoue
Shuhei Yamanaka
Yuki Nomura
Original Assignee
Thk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co Ltd filed Critical Thk Co Ltd
Publication of TW201212516A publication Critical patent/TW201212516A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)

Abstract

The present invention relates to a control apparatus and control method for an electric motor. The control apparatus (10) has a magnetic pole position calculating member (12) which receives a signal in accordance with the direction of lines of flux from a magnetic sensor (27) which is positioned so as to be opposed to a driving magnet of a linear motor (20), and a control member (13). The magnetic pole position calculating member calculates a first estimated magnetic pole position based on the signal. The control member selects the first estimated magnetic pole position or a second estimated magnetic pole position in which the magnetic pole position thereof differs 180 degrees from the first estimated magnetic pole position as an initial magnetic pole position.

Description

201212516 六、發明說明: 【發明所屬之技術領域】 本發明係有關於-種電動機之控制裝置及控制方法。 本申請案係基於2G1G年3月17日於日本中請之特願2〇1〇_ 060987號並主張其優先權,其内容引用至本文。 【先前技術】 作為推算同步電動機之啟動時之磁極位置(或者,電氣 角度)即初始磁極位置之方法,有下述技術,即:將與經η 分割之相位對應之電流施加至同步電動機,判定施加電流 時之移動方向(+、〇、-),並再次施加與將移動方向由+變 為0及由0 k為-之電氣角度區域2分割之相位對應的電流, 反覆數次判定此時之移動方向之操作,將在移動方向為〇 之電氣角度區域之中間點,產生電磁力為零之相位決定為 初始磁極位置,並根據所決定之相位進行同步電動機之啟 動(專利文獻1)。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利特開2006-296027號公報 【發明内容】 [發明所欲解決之問題] 然而,當藉由上述技術決定初始磁極位置時,必須進行 多次通電,因而存在檢測初始磁極位置所需之時間較長之 問題。 本發明係為解決上述問題而完成,其目的在於提供—種 154855.doc 201212516 可縮短同步電動機之啟動時的初始磁極位置之檢測所需之 時間的控制裝置及控制方法。 [解決問題之技術手段] 為解決上述問題’本發明係一種控制裝置,其特徵在 於’其係線性馬達之控制裝置,該線性馬達包括:包含於 軸線方向交替排列有N極及s極之磁極之複數個磁鐵之磁鐵 ’及包含複數個線圈之電植’藉由電流流經上述電枢所 包含之複數個線圈而產生之磁場與由上述磁鐵部所包含之 複數個磁鐵所產生之磁場’使上述電樞或上述磁鐵部之一 者於上述軸線方向上直線運動;上述控制裝置包括:磁極 位置計算部,自與上述磁鐵部所包含之複數個磁鐵相向且 由上述電樞所包含之磁感測器接收與由上述複數個磁鐵所 產生之磁%之磁通線之方向相應之信號,並計算出與所接 收到之L號相應之第1推算磁極位置;以及控制部,選擇 磁極位置與上述第1推算磁極位置相差i 8〇。之第2推算磁極 位置及上述第1推算磁極位置中之任一者,將所選擇之推 算磁極位置判定為初始磁極位置。 又’本發明係一種控制方法,其特徵在於’其係線性馬 達之控制裝置中之控制方法,該線性馬達包括:包含於軸 線方向交替排列有N極及S極之磁極之複數個磁鐵之磁鐵 部、及包含複數個線圈之電樞,藉由電流流經上述電框所 包含之複數個線圈而產生之磁場與由上述磁鐵部所包含之 複數個磁鐵所產生之磁場’使上述電樞或上述磁鐵部之一 者於上述軸線方向上直線運動;上述控制方法包括:磁極 154855.doc 201212516 位置計算步驟,自與上述磁鐵部所包含之複數個磁鐵相向 且由上述電樞所包含之磁感測器接收與由上述複數個磁鐵 所產生之磁場之磁通線之方向相應之信號,並計算出與所 接收到之信號相應之第1推算磁極位置;以及判定步驟’ 選擇磁極位置與上述第!推算磁極位置相差18〇。之第2推算 磁極位置及上述第1推算磁極位置中之任一者,將所選擇 之推算磁極位置判定為初始磁極位置。 [發明之效果] 根據本發明,於同步電動機之啟動時,可減少對馬達之 通電次數,從而縮短初始磁極位置之檢測所需之時間。 【實施方式】 以下’參照圖式’對本發明之實施形態之控制裝置及控 制方法進行說明。 [第1實施形態] 圖1係表示本實施形態中之線性馬達裝置1之概略圖。線 性馬達裝置1包含控制裝置1〇及線性馬達20 ^控制裝置10 為進行驅動線性馬達20之控制之裝置。線性馬達20包含長 條之定子21、於定子21上移動之轉子25、及安裝定子21及 轉子25之一對導引裝置22、22。 導引裝置22例如由經由滚珠而安裝之軌道23及滑塊26構 成。將導引裝置22之執道23固定於定子21所具有之底座54 上’並將導引裝置22之滑塊26固定於轉子25,藉此,轉子 25於定子21上沿軌道23自如地受到導引。 又,定子21包含排列於一對執道23、23之間的複數個驅 154855.doc 201212516 動用磁鐵24。複數個驅動用磁鐵24於轉子25移動之方向即 移動方向上’以N極及S極之磁極交替之方式而排列。又, 驅動用磁鐵24各自於移動方向上具有相同之長度。藉此, 轉子25於定子21上之任一位置均可獲得固定之推力。 轉子25包含:具有複數個線圈之電樞6〇 ;載置移動對象 之載台;以及作為磁感測器之MR(Magnetoresistive Elements,磁阻效應元件)感測器27。MR感測器27具有磁 阻效應元件等’並將與配置在定子21上的驅動用磁鐵24所 產生之磁場之磁通線之方向相應的信號輸出至控制裝置 10 ° 控制裝置10根據MR感測器27所輸出之信號,使電流流 經電柩60所具有之複數個線圈。藉此,藉由電榧6〇所具有 之複數個線圈所產生之磁場、與排列在定子21上的驅動用 磁鐵24所產生之磁場之作用,使轉子25沿軌道23移動。 對本實施形態中之線性馬達20之詳細構成進行說明。圖 2係線性馬達20之立體圖(包含載台53之剖面)。又,圖3係 線性馬達20之正面圖。 於線性馬達20中,如上所述,定子21包含複數個板狀之 驅動用磁鐵24 ’該等驅動用磁鐵24係將N極或者S極之任一 者帶磁之面朝向轉子25而排列。又,轉子包含具有複數個 線圈之電樞’且沿執道23而相對於定子21相對地移動。 即’本實施形態中之線性馬達20為扁平型之線性馬達。 又’轉子25所包含之電樞60經由間隙g而與驅動用磁鐵 24相向。 154855.doc 201212516 於定子21所具有之細長地延伸之底座54上,上述複數個 驅動用磁鐵24沿移動方向排列成一列。底座54係由底壁部 54a、及於底壁部54a之寬度方向之兩側設置之一對側壁部 54b構成。於底壁部54a上安裝有上述複數個驅動用磁鐵 24 〇 於複數個驅動用磁鐵24之各者上,於與移動方向正交之 方向且與電樞60相向之方向(圖3中的上下方向)之兩端面形 成有N極及S極。複數個驅動用磁鐵24係以使與各自鄰接之 驅動用磁鐵24不同的磁極朝向與電樞6〇相向之面的狀態而 排列。藉此,轉子25上安裝之MR感測器27於轉子25移動 時’與複數個驅動用磁鐵24之N極及S極交替相向。 於底座54之側壁部54b之上表面,安裝有導引裝置22之 軌道23。又,轨道23與滑塊26係經由未圖示之複數個滾珠 而安裝。於滑塊26上,設有俵複數個滾珠循環之軌狀之滾 珠循環路徑。當滑塊26於軌道23上滑動移動時,複數個滾 珠於滾珠循環路徑内循環。藉此,滑塊26能以較小之滑動 阻力而平滑地於轨道23上滑動移動。 於導引裝置22之滑塊26之上表面’安裝有轉子以之載台 53。載台53係載置由非磁性素材構成之移動對象之台,例 如由鋁等製成。 於載台53之下表面,懸吊有電樞60。如圖4之正面圖所 示’於驅動用磁鐵2 4與電樞6 0之間,設有間隙名。導引带 置22在轉子25相對於定子21而相對移動時,亦維持電樞6〇 與驅動用磁鐵24之間的間隙g為固定。 154855.doc 201212516 於電枢60上’如圖3所示,安裝有MR感測器27。MR感 測器27在電樞60移動時,與電樞6〇一併移動,並且對由排 列在定子21上的驅動用磁鐵24所產生之磁通線之方向之變 化進行檢測。 圖4係表示本實施形態之轉子25之沿移動方向之剖面圖 之圖。於載台53之下表面與電樞6〇之間,安裝有隔熱材 63。電樞60具有由矽鋼等之磁性素材構成之芯以以及上述 複數個線圈即線圈28u、28v、28w。線圈28u、28v、28w 係被捲繞於突極64u、64v、64w上,並施以樹脂密封。對 於線圈28u、28v、28w,自控制裝置10供給具有特定相位 差之三相交流。 又,於載台53之下表面,夾著電樞6〇而安裝有一對輔助 芯67。輔助芯67係為降低線性馬達2〇所產生之齒槽效應轉 矩而設。 圖5係表示本實施形態之控制裝置1〇及轉子乃之構成之 概略方塊圖》如該圖5所示,控制裝置10包含線路接收器 11 a、11 b、磁極位置計算部i 2、控制部丨3及驅動部丨4。如 上所述,轉子25包含MR感測器27及作為複數個線圈之3個 線圈 28u、28v、28w。 於控制裝置10中’線路接收器11a、lib被輸入自轉子25 所包含之MR感測器2 7輸出之2個差動信號。線路接收器 11a、lib自輸入之2個差動信號進行雜訊信號之去除,並 將去除了雜訊信號之2個差動信號輸出至磁極位置計算部 12。該2個差動信號為正弦波信號(Ssin)與餘弦波信號 154855.doc 201212516 (Scos) ’且為具有(π/2)之相位差之信號。 磁極位置計算部12根據自線路接收器iia、lib輸入之正 弦波信號及餘弦波信號’計算推算磁極位置θ。計算方法 係藉由針對((正弦波信號)/(餘弦波信號))之除算結果計算 arctan(或者tan-1、arctangent ;逆正切函數),從而計算推 算磁極位置Θ。 再者’線路接收器11a、lib及磁極位置計算部12亦可由 轉子2 5所包含》 控制部13具有磁極位置檢測部1 3 1及轉子位置檢測部 132 ^磁極位置檢測部131根據自磁極位置計算部12輸入之 表示磁極位置之資訊’在使轉子25移動之前,對表示轉子 25之線圈28u、28v、28w與配置在定子21上的驅動用磁鐵 24之相對位置關係之磁極位置進行檢測。 轉子位置檢測部1 32根據自磁極位置計算部12輸入之表 示磁極位置之資訊’計算轉子25之移動量,以計算轉子25 之相對位置。即,轉子位置檢測部132進行利用驅動用磁 鐵24之相對位置檢測。 驅動部14藉由控制部13之控制,對轉子2 5所包含之線圈 28u、28v、28w進行通電。 於轉子25中,MR感測器27為向量檢測型之磁感測器, 根據定子21所包含之驅動用磁鐵24之磁通線之方向,輸出 上述正弦波信號及餘弦波信號。於Mr感測器27中,如圖5 所示’具有由電阻值會根據透過之磁通線之方向而變化之 強磁性薄膜元件構成的全橋電路27a、27b。全橋電路 154855.doc 201212516 27a、27b例如形成於一個基板上,且係配置成自各個端子 輸出正弦波彳§號與具有相對於正弦波信號(π/2)之相位差之 餘弦波信號。 於本實施形態中,轉子位置檢測部132根據磁極位置計 算部12使用正弦波信號及餘弦波信號算出的推算磁極位置 Θ之變化,檢測轉子2 5之移動方向。又,轉子位置檢測部 132根據推算磁極位置θ之變換量與定子21所包含之驅動用 磁鐵24之間隔,計算轉子25之移動量。即,轉子位置檢測 部132根據自定子21所包含之驅動用磁鐵24產生之磁通, 計算轉子25之移動方向及移動量,藉此檢測轉子25之位 '置。 圖6係表示本實施形態之轉子25所包含之mr感測器27及 線圈28u、28v、28w與定子21所包含之驅動用磁鐵24 (24n、24s)之相對位置之模式圖。於定子21上,如上所 述’以N極與S極之磁極沿移動方向交替之方式,而等間隔 地排列有驅動用磁鐵24 » 於轉子25上,線圈28u、28v、28w以與配置在定子21上 的磁極相向之方式,沿移動方向排列配置。又,MR感測 器27以通過驅動用磁鐵24之磁場最強之位置之方式,而配 置於與各驅動用磁鐵24之中央部相向之位置。 圖7係表示自本實施形態之MR感測器27輸出之正弦波信 號及餘弦波信號、施加至線圈28u、28v、28w之電壓Vu、 Vv、Vw、與電枢60之磁極位置(〇。〜360。)之對應關係之一 例之圖表。於該圖7中’橫轴表示磁極位置,縱轴表示mr 154855.doc •10· 201212516 感測器2 7之正弦波信號及餘弦波信號之位準、與施加至線 圈28u、28v、28w之電壓之位準。再者’於縱軸方向上, 示出有正弦波信號及餘弦波信號與電壓VU、Vv、Vw經標 準化後之相對值。 如圖所示,自MR感測器27輸出之正弦波信號(Ssin)及餘 弦波信號(Scos)之值,係對應於相向之驅動用磁鐵以所產 生之磁場之磁通線之方向(磁極位置)而變化。又,當相向 之驅動用磁鐵24之磁極依N極' S極、N極之順序變化時, MR感測器27對應於由驅動用磁鐵24各自產生之磁通之方 向之變化’輸出2週期之正弦波信號(ssin)及餘弦波信號 (Scos)。 即’當轉子25之電樞60位於具有180。之相位差之磁極位 置時’於各磁極位置,自MR感測器27輸出之正弦波信號 之值成為相同的值’並且餘弦波信號之值亦成為相同的 值。又,由自MR感測器27輸出之正弦波信號及餘弦波信 號推算出2個磁極位置。 磁極位置計算部12根據自MR感測器27輸出之正弦波信 號(Ssin)及餘弦波信號(Sc〇s)計算出第1推算磁極位置 θ(0° $ θ< 180°) »磁極位置檢測部1 3 1將磁極位置計算部i 2 所计算的第1推算磁極位置0、與對推算磁極位置0加上 180。之第2推算磁極位置(0+180。)作為初始磁極位置之候 補。 即’根據由驅動用磁鐵24所產生之磁通之方向,磁極位 置什算部12計算出第1推算磁極位置θ,並由磁極位置檢測 154855.doc 201212516 部13 1所計算出的第1推算磁極位置0而計算第2推算磁極位 置(Θ+180。),將2個推算磁極位置作為應檢測之初始磁極位 置之候補。 又’該圖7表示針對與磁極位置相應之線圈28u、28v、 28w之勵磁圖形》勵磁圖形係對與磁極位置對應之線圈 28u、28v、28w分別施加的電壓vu、Vv、Vw之比。又, 於驅動部14中’與磁極位置相關聯地記憶有該圖7所示之 勵磁圖形。並且,驅動部丨4藉由與自磁極位置檢測部13 j 輸入之磁極位置對應的勵磁圖形來進行針對線圈28u、 28v、28w之通電。 繼而’說明對開始本實施形態之線性馬達2〇之驅動時檢 測的電樞60之磁極位置即初始磁極位置進行檢測之處理。 圖8係表示本實施形態之控制裝置1〇檢測初始極位置之 處理之流程圖。 於控制裝置10中,當開始初始磁極位置之檢測時,磁極 位置計算部12由自MR感測器27輸入之正弦波信號及餘弦 波信號計算出第1推算磁極位置0(步驟S1 〇 1)。 磁極位置檢測部131記憶磁極位置計算部12計算出的第i 推算磁極位置Θ。又,磁極位置檢測部131對驅動部14進行 以與自第1推算磁極位置Θ偏移+90。之磁極位置(Θ+90。)對麻 的勵磁圖形而使線圈28u、28v、28w通電之控制(步驟 S102)。 此時’驅動部14對線圈28u、28v、28w進行通電時,自 初始電流值開始,每隔固定之時間間隔,以預定之步驟使 154855.doc 12 201212516 流經線圈28u、28v、28w之電流之電流值上升,直至最大 電流值為止。又,驅動部14在流經線圈28u、28v、28w之 電流之電流值達到最大電流值時,停止對線圈28u、28v、 28w之通電。此處,初始電流值係施加至轉子25之負載為 最小時’轉子25開始動作之電流值》又,最大電流值係於 線性馬達20之設計上可施加至轉子25之負載最大時,轉子 25開始動作之電流值。該初始電流值、最大電流值及固定 之時間間隔係基於模擬或實測而設定適當之值.。 藉此,藉由通電逐漸增強線圈28u、28v、28w所產生之 磁場,藉此’即使轉子25(電樞60)運動時,亦可減少其移 動量。 磁極位置檢測部13 1對驅動部14進行如下控制,即,根 據正弦波信號及餘弦波信號之變化而檢測轉子25移動,或 者,當流經線圈28u、28v、28w之電流之電流值達到最大 電流值時,使通電停止(步驟S 1 〇3)。 磁極位置檢測部13 1判定轉子25在步驟S102中的通電 時’是否向表示磁極位置之角度增加之正向移動(步驟 S104)。再者,於表示磁極位置之角度之變化超過36〇。之 情形時’磁極位置檢測部13 1判定為磁極位置已增加。 於轉子25向正向移動之情形時(步驟sl〇4 : YES),磁極 位置檢測部131判定為轉子25所處之磁極位置為第1推算磁 極位置Θ(步驟S 10 5 ),並結束檢測初始磁極位置之處理。 另一方面,於轉子25未向正向移動之情形時(步驟 S104 : NO),磁極位.置檢測部i3丨判定轉子25是否向表示 154855.doc -13- 201212516 磁極位置之角度減少之負向移動(步驟Slio)。 於轉子25向負向移動之情形時(步驟Slio : YES),磁極 位置檢測部13 1判定為轉子25所處之磁極位置為第2推算磁 極位置(Θ+1 80°)(步驟S111),並結束檢測初始磁極位置之 處理。 另一方面,於轉子25未向負向移動之情形時(步驟 S110 : NO),磁極位置檢測部131對驅動部14進行以與自第 1推算磁極位置Θ偏移-90。之磁極位置(Θ-90。)對應的勵磁圖 形而使線圈28u、28v、28w通電之控制(步驟S120)。此 時,驅動部14係與步驟S102同樣地,使流經線圈28u、 28v、28w之電流之電流值自初始電流值開始,每隔固定之 時間間隔上升,直至最大電流值為止。 磁極位置檢測部13 1對驅動部14進行如下控制,即,根 據正弦波信號及餘弦波信號之變化檢測轉子25移動,或 者,當流經線圈28u、28v、28w之電流之電流值達到最大 電流值時’使通電停止(步驟S121)。 磁極位置檢測部13 1判定轉子25在步驟S120中的通電 時’是否向正向移動(步驟S122)。 於轉子25向正向移動之情形時(步驟s 122 : YES),磁極 位置檢測部13 1判定為轉子25所處之磁極位置為第2推算磁 極位置(Θ+180。)(步驟S123),並結束檢測初始磁極位置之 處理。 另一方面,於轉子25未向正向移動之情形時(步驟 S122 : NO),磁極位置檢測部131判定轉子25是否向負向 154855.doc • 14- 201212516 移動(步驟S130)。 於轉子25向負向移動之情形時(步驟sl3〇 : YES),磁極 位置檢測部13 1判定為轉子25所處之磁極位置為第1推算磁 極位置Θ(步驟S131) ’並結束檢測初始磁極位置之處理。 另一方面’於轉子25未向負向移動之情形時(步驟 S130 : NO) ’磁極位置檢測部Π1在轉子25未藉由步驟 S102及步驟S120中之通電而移動時,判定為線性馬達2〇發 生了某些故障,進行錯誤處理(步驟sl4〇),並結束檢測初 始磁極位置之處理。此處,步驟sl4〇中之錯誤處理係對線 性馬達裝置1之利用者輸出表示線性馬達2〇發生了故障之 資訊等之處理。 如上所述’本實施形態中之控制裝置丨〇使用與由第1推 算磁極位置Θ計算出的磁極位置(0 + 9〇。)及磁極位置(0_9〇。) 對應之2個勵磁圖形,對線圈28U、28ν、28w進行通電。磁 極位置檢測部131在對線圈28u、28v、28w進行通電時,可 根據轉子25移動之方向而檢測出轉子25係位於第1推算磁 極位置Θ與第2推算磁極位置(0+18〇。)之哪一處,並且可檢 測線性馬達2 0之故障。 如此’本實施形態中之控制裝置丨〇藉由對線圈28u、 28v、28w進行最多2次通電’便可檢測轉子25之磁極位 置,從而可縮短磁極位置之檢測所需之時間。 又,當線性馬達20之轉子25處於與定子21上的稼動範圍 之端部碰抵之狀態時’即使控制裝置1〇以與磁極位置 (Θ+90。)或者(磁極位置(θ_9〇)之任一者對應之勵磁圖形來進 154855.doc •15· 201212516 行通電,轉子25有時亦不會移動。與此相對,控制裝置】〇 於步驟S1〇2及步驟S120之處理中,以與磁極位置(0+9〇〇) 及(磁極位置(Θ-90)對應之2個勵磁圖形來進行通電。藉 此,控制裝置ίο於如上所述之情形時亦可使轉子25移動, 從而可準確地檢測轉子25之磁極位置。 又,於磁極位置之檢測中,有一種方法,係對線圈 28u、28v、28w進行與預定之設定位置相應之勵磁圖形之 通電,使轉子25移動至設定位置,藉此來決定使線性馬達 20啟動時之磁極位置。然而’於此方法中,存在轉子^最 大只能移動1 80。之電氣角度之距離之問題。 本實施形態中之控制裝置1 〇包含當檢測轉子25之移動時 停止通電之構成(步驟S103及步驟S121),因此可使檢測初 始磁極位置時轉子2 5移動之距離為最小限度。 本實施形態之線性馬達20中,轉子25包含電樞60,電樞 60 具有線圈 28u、28v、28w。即,線圈 28u、28v、28w 為 電樞60之一部分’電樞60為轉子之一部分。又,定子21包 含磁鐵部即複數個驅動用磁鐵2 4。該線性馬達2 0係藉由對 線圈28u、28v、28w進行通電而使電樞60移動之扁平型之 線性馬達》然而’對於具有電枢為定子之一部分且磁鐵部 為轉子之一部分之構成之線性馬達,亦可適用上述檢測初 始磁極位置之處理。 又,於本實施形態中,對在步驟S102及步驟S120中,使 用與相對於第1推算磁極位置Θ而偏移了 90。之磁極位置對 應的勵磁圖形來對線圈28u、28v、28w進行通電之構成進 154855.doc •16- 201212516 行了說明。然而,並不限於此,亦可使用與相對於第1推 算磁極位置Θ而偏移了 〇1(0。<〇1<180°)之磁極位置對應的勵磁 圖形來對線圈28u、28v、28w進行通電。再者,於設α=90。 之情形時,當轉子25位於第1推算磁極位置θ或者第2推算 磁極位置(Θ+180)之任一處時,與勵磁圖形之磁極位置之 差均為90。。藉此,當轉子25位於第1推算磁極位置Θ與第2 推算磁極位置(Θ+180)之任一處時,均可確保90。之移動量 以作為磁極位置,從而可提高判定轉子25移動之方向之精 度。 又’於步驟S102及步驟S120中’亦可使用與相對於第1 推算磁極位置而偏移了 β(180°<β<360。)之磁極位置對應的 勵磁圖形來對線圈28u、28v、28w進行通電。此時,對於 步驟S104、步驟S110、步驟S122及步驟S130中之移動方向 之判疋而§,於各個步驟中,「正向」與「負向」為反方 向。 又,本實施形態中,對在步驟s 102及步驟s 120中,自初 始電流值開始’每隔固定之時間間隔,以預定之步驟使流 經線圈28u、28v、28w之電流之電流值上升,直至最大電 流值為止之構成進行了說明e然而,並_不限於此,亦可以 預定之次數將最大電流值之電流呈脈衝狀通電。藉此,與 使流經線圈28u、28v、28w之電流值逐漸上升之情形相 比,可縮短通電所需之時間。 [第2實施形態] 第2實施形態中之線性馬達裝置與第丨實施形態之線性馬 154855.doc 17 201212516 達裝置之不同之處在於包含桿型之線性馬達。又,於本實 施形態中之線性馬達中,除了 MR感測器以外,還包含霍 爾感測器。以下’於本實施形態中,對於與第1實施形態 相同之部分’標註相同之符號並省略其說明。 圖9及圖1 〇係表示第2實施形態中之線性馬達之構成之 概略圖。又,圖9及圖1〇包含線性馬達3〇之剖面圖。 線性馬達30係作為轉子之桿沿長度方向相對於作為電樞 之長條之線圈收納盒31而相對移動之桿型之線性馬達。於 線圈收納盒31之内側,沿長度方向積層有複數個線圈33。 複數個線圈3 3將U相之線圈33u、V相之線圈33v、W相之線 圈33w作為一組’依序積層有複數組線圈33。 又,於線圈收納盒31之兩端面,安裝有端盒34。於端盒 34中,安裝有對桿32之直線運動進行導引之軸承即軸套 35a、35b。 作為轉子之桿32例如由不鏽鋼等非磁性體構成,且如管 般具有中空之空間。於桿32之中空空間内’圓柱形狀之複 數個驅動用磁鐵36其各自之同極相向而於長度方向積層。 即複數個驅動用磁鐵36係各自使n極與n極相向,並且 使S極與S極相向而積層。又,於相鄰的驅動用磁鐵刊之 間,介置有由鐵等軟質磁性材料構成之鐵芯37。藉由介置 鐵芯37,可使桿32產生之磁通密度之變化接近正弦波形 狀。 又,桿32貫穿積層於線圈收納盒31之内側之複數個線圈 33内。又,桿32相對於線圈收納盒31而於長度方向可移動 154855.doc •18· 201212516 地受到支持。 以與安裝在線圈收納盒31之兩端面的端盒34中之—個端 盒3^接觸之方式而設有感測器盒38»即,一個端盒34於桿 32移動之方向上由線圈收納盒3 1與感測器盒38所包夾。 於感測器盒38中具備基板381。於基板381之一個主面 上,與桿32相向地安裝有作為磁感測器之mr感測器27。 又,於基板381之另一主面上,與桿31相向地安裝有作為 磁極感測器之霍爾感測器382。如此,由於MR感測器27與 霍爾感測器382安裝於基板381之各主面上,因此可在桿32 移動之方向上縮短基板381之尺寸。再者,亦可將mr感測 器27與霍爾感測器382安裝於基板381之一個主面上。 再者’於圖10中,為便於辨識MR感測器2 7與霍爾感測 器382,省略了感測器盒38之圖示。 MR感測器27輸出與相向的桿3 1内之驅動用磁鐵%所產 生之磁%之磁通線之方向相應的2個信號。該2個信號係與 第1實施形態同樣地,為正弦波信號及與正弦波信號具有 (π/2)之相位差之餘弦波信號。 霍爾感測器382輸出與相向的桿31内之驅動用磁鐵36之 磁極相應的k號即磁極信號。磁極信號為表示霍爾感測器 382檢測出N極或者檢測出s極之任一者之信號。 圖11係表示對本實施形態之線性馬達3〇進行控制之控制 裝置40之構成之概略方塊圖。再者,於圖〗丨中,示出了線 性馬達30之構成之一部分,示出了線性馬達3〇之構成中的 一組線圈33u、33v、33w、霍爾感測器382&MR感測器 154855.doc -19· 201212516 27。本實施形態之控制裝置40與第1實施形態之控制裝置 10之構成之不同之處在於被輸入霍爾感測器382所輪出之 磁極信號。 如該圖11所示’控制裝置40包含3個線路接收器Ua、 lib、11c、磁極位置計算部12、控制部43及驅動部44。 於控制裝置40中,線路接收器Uc被輸入自線性馬達% 所包含之霍爾感測器3 8 2輸出之磁極信號。自霍爾感測琴 382輸出之磁極信號為差動信號。線路接收器11(^自輸入之 磁極信號進行雜訊信號之去除’並將去除了雜訊信號之磁 極信號輸出至控制部43。再者’於本實施形態中,Mr感 測益2 7輸出之正弦波彳§號及餘弦波信號與以〇。至3 6 0。表干 之磁極位置之關係係與第1實施形態同樣地,設為圖7所示 之關係。即,對S極對應於磁極位置為〗35。至3丨5。之範 圍’ N極對應於磁極位置為〇。至135。之範圍及315。至360。 之範圍之情形進行說明。 控制部43具有磁極位置檢測部43 1及轉子位置檢測部 132。磁極位置檢測部43 1根據自磁極位置計算部12輸入之 表示磁極位置之資訊’在使線性馬達3 0驅動之前,對表示 作為定子之線圈收納盒3 1所包含的複數個線圈33與作為轉 子之桿32上積層之複數個驅動用磁鐵36之相對位置關係的 磁極位置進行檢測。 驅動部44基於控制部43之控制,將具有特定相位差之三 相交流對複數個線圈33進行通電,從而驅動線性馬達30。 圖12係表示本實施形態之控制裝置40檢測初始磁極位置 154855.doc • 20· 201212516 之處理之流程圖。 於控制裝置40中,當開始初始磁極位置之檢測時,磁極 位置計算部12由自MR感測器27輸入之正弦波信號及餘弦 波信號計算第1推算磁極位置0(步驟S201)。 磁極位置檢測部43 1判定自霍爾感測器382輸入之磁極信 號是否表示S極(步驟S202)。 當磁極信號表示S極時(步驟S202 : YES),磁極位置檢測 部431選擇第1推算磁極位置θ與第2推算磁極位置(θ+ι 8〇。) 中的被包含在135。至315。内之推算磁極位置。磁極位置檢 測部43 1判定為線性馬達3〇之初始磁極位置為所選擇之推 鼻磁極位置(步驟S203),並結束檢測初始磁極位置之處 理。 另一方面’當磁極信號表示N極時(步驟S202 : NO),磁 極位置檢測部43 1選擇第1推算磁極位置0與第2推算磁極位 置(Θ+180。)中的未被包含在135。至315。内之推算磁極位 置。磁極位置檢測部43 1判定為線性馬達3〇之初始磁極位 置為所選擇之推算磁極位置(步驟S204),並結束檢測初始 磁極位置之處理。 如上所述’本實施形態之控制裝置4〇根據霍爾感測器 3 82所輸出之磁極信號’檢測出第1推算磁極位置θ及第2推 算磁極位置(Θ+180。)中之任一推算磁極位置,以作為線性 馬達3 0之初始磁極位置。 如此,控制裝置40不對線性馬達3〇進行通電便可檢測線 性馬達3 0之初始磁極位置,從而可縮短初始磁極位置之檢 154855.doc •21 · 201212516 測所需之時間。 又,由於控制裝置40不對線性馬達30進行通電,因此無 須使線性馬達30驅動便可進行初始磁極位置之檢測。 再者’本實施形態中,對MR感測器27輸出之正弦波信 號及餘弦波信號與磁極位置之關係為圖7所示之關係之情 形進行了說明。然而,並不限於S極對應於135°至3 150之 範圍’ N極對應於0。至135。之範圍及315。至360。之範圍之 情形。即’於步驟S203及步驟S204中,磁極位置檢測部 43 1亦可選擇與霍爾感測器3 82所檢測出之磁極對應之磁極 位置之範圍内所含的推算磁極位置。 再者’第1實施形態中,對檢測扁平型之線性馬達之初 始磁極位置之構成進行了說明,但亦可適用於桿型之線性 馬達。又,第2實施形態中’對檢測桿型之線性馬達之初 始磁極位置之構成進行了說明,但亦可適用於扁平型之線201212516 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a control device and a control method for an electric motor. The present application is based on Japanese Patent Application No. 2 〇 〇 060 987, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire content [Prior Art] As a method of estimating the magnetic pole position (or electrical angle) at the start of the synchronous motor, that is, the initial magnetic pole position, there is a technique of applying a current corresponding to the phase divided by η to the synchronous motor, and determining The direction of movement (+, 〇, -) when current is applied, and the current corresponding to the phase divided by the electrical angle region 2 in which the moving direction is changed from + to 0 and from 0 k to - is applied again, and the number of times is determined several times. In the operation of the moving direction, the phase at which the electromagnetic force is zero is determined as the initial magnetic pole position at the intermediate point of the electrical angle region in which the moving direction is 〇, and the synchronous motor is started based on the determined phase (Patent Document 1). [Prior Art Document] [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2006-296027 [Draft] [Problems to be Solved by the Invention] However, when the initial magnetic pole position is determined by the above technique, Multiple energizations are performed, so there is a problem that the time required to detect the initial magnetic pole position is long. The present invention has been made to solve the above problems, and an object thereof is to provide a control device and a control method for reducing the time required for detecting the initial magnetic pole position at the time of starting the synchronous motor by 154855.doc 201212516. [Means for Solving the Problems] In order to solve the above problems, the present invention is a control device characterized in that it is a control device for a linear motor, and the linear motor includes magnetic poles including N poles and s poles alternately arranged in the axial direction. a plurality of magnets of a plurality of magnets and an electrophoresis comprising a plurality of coils, a magnetic field generated by a current flowing through a plurality of coils included in the armature and a magnetic field generated by a plurality of magnets included in the magnet portion The armature or one of the magnet portions is linearly moved in the axial direction; the control device includes: a magnetic pole position calculating unit that is opposed to the plurality of magnets included in the magnet portion and is included in the armature The sensor receives a signal corresponding to a direction of a magnetic flux line generated by the plurality of magnets, and calculates a first estimated magnetic pole position corresponding to the received L number; and a control unit that selects a magnetic pole position It is different from the first estimated magnetic pole position by i 8 〇. The second estimated magnetic pole position and the first estimated magnetic pole position determine the selected estimated magnetic pole position as the initial magnetic pole position. Further, the present invention is a control method characterized by 'a control method in a control device for a linear motor, the linear motor comprising: a magnet including a plurality of magnets in which magnetic poles of N poles and S poles are alternately arranged in the axial direction And an armature including a plurality of coils, the magnetic field generated by a current flowing through a plurality of coils included in the electrical frame and a magnetic field generated by a plurality of magnets included in the magnet portion One of the magnet portions linearly moves in the axial direction; the control method includes a magnetic pole 154855.doc 201212516 position calculation step, and a magnetic sensation included in the armature from a plurality of magnets included in the magnet portion The detector receives a signal corresponding to a direction of a magnetic flux line of the magnetic field generated by the plurality of magnets, and calculates a first estimated magnetic pole position corresponding to the received signal; and a determining step 'selecting a magnetic pole position and the above ! The estimated magnetic pole position differs by 18〇. The second estimated magnetic pole position and the first estimated magnetic pole position determine the selected estimated magnetic pole position as the initial magnetic pole position. [Effect of the Invention] According to the present invention, at the time of starting the synchronous motor, the number of energizations to the motor can be reduced, and the time required for detecting the initial magnetic pole position can be shortened. [Embodiment] Hereinafter, a control device and a control method according to embodiments of the present invention will be described with reference to the drawings. [First Embodiment] Fig. 1 is a schematic view showing a linear motor device 1 according to the present embodiment. The linear motor device 1 includes a control device 1 and a linear motor 20. The control device 10 is a device for controlling the linear motor 20. The linear motor 20 includes a long stator 21, a rotor 25 that moves on the stator 21, and a pair of guiding devices 22, 22 that mount the stator 21 and the rotor 25. The guiding device 22 is constituted, for example, by a rail 23 and a slider 26 which are mounted via balls. The obstruction 23 of the guiding device 22 is fixed to the base 54 of the stator 21 and the slider 26 of the guiding device 22 is fixed to the rotor 25, whereby the rotor 25 is freely received on the stator 21 along the rail 23. guide. Further, the stator 21 includes a plurality of actuators 154855.doc 201212516 moving magnets 24 arranged between the pair of lanes 23, 23. The plurality of driving magnets 24 are arranged such that the magnetic poles of the N pole and the S pole alternate in the direction in which the rotor 25 moves, that is, in the moving direction. Further, each of the driving magnets 24 has the same length in the moving direction. Thereby, the rotor 25 can obtain a fixed thrust at any position on the stator 21. The rotor 25 includes an armature 6A having a plurality of coils, a stage on which the moving object is placed, and an MR (Magnetoresistive Elements) sensor 27 as a magnetic sensor. The MR sensor 27 has a magnetoresistance effect element or the like and outputs a signal corresponding to the direction of the magnetic flux line of the magnetic field generated by the driving magnet 24 disposed on the stator 21 to the control device 10 ° according to the sense of MR The signal output by the detector 27 causes current to flow through the plurality of coils of the power unit 60. Thereby, the rotor 25 is moved along the rail 23 by the magnetic field generated by the plurality of coils of the electric coil 6 and the magnetic field generated by the driving magnet 24 arranged on the stator 21. The detailed configuration of the linear motor 20 in the present embodiment will be described. 2 is a perspective view of the linear motor 20 (including a section of the stage 53). Further, Fig. 3 is a front view of the linear motor 20. In the linear motor 20, as described above, the stator 21 includes a plurality of plate-shaped driving magnets 24'. The driving magnets 24 are arranged such that the magnetic faces of either the N pole or the S pole are aligned toward the rotor 25. Further, the rotor includes an armature ' having a plurality of coils and is relatively moved relative to the stator 21 along the road 23. That is, the linear motor 20 in the present embodiment is a flat type linear motor. Further, the armature 60 included in the rotor 25 faces the driving magnet 24 via the gap g. 154855.doc 201212516 The plurality of driving magnets 24 are arranged in a row in the moving direction on the elongated extending base 54 of the stator 21. The base 54 is composed of a bottom wall portion 54a and one side wall portion 54b provided on both sides in the width direction of the bottom wall portion 54a. The plurality of driving magnets 24 are attached to the bottom wall portion 54a so as to be in the direction orthogonal to the moving direction and in the direction opposite to the armature 60 (the upper and lower sides in FIG. 3). N and S poles are formed on both end faces of the direction). The plurality of driving magnets 24 are arranged such that magnetic poles different from the adjacent driving magnets 24 are oriented in a state facing the armature 6A. Thereby, the MR sensor 27 attached to the rotor 25 alternates with the N pole and the S pole of the plurality of driving magnets 24 when the rotor 25 moves. On the upper surface of the side wall portion 54b of the base 54, a rail 23 of the guiding device 22 is mounted. Further, the rail 23 and the slider 26 are attached via a plurality of balls (not shown). On the slider 26, a ball-shaped ball circulation path of a plurality of ball cycles is provided. As the slider 26 slides over the track 23, a plurality of balls circulate in the ball circulation path. Thereby, the slider 26 can smoothly slide on the rail 23 with a small sliding resistance. A stage 53 for the rotor is mounted on the upper surface of the slider 26 of the guiding device 22. The stage 53 is provided with a table to be moved by a non-magnetic material, for example, made of aluminum or the like. On the lower surface of the stage 53, an armature 60 is suspended. As shown in the front view of Fig. 4, a gap name is provided between the driving magnet 24 and the armature 60. When the rotor 25 relatively moves with respect to the stator 21, the guide belt 22 maintains the gap g between the armature 6? and the driving magnet 24 constant. 154855.doc 201212516 On the armature 60 As shown in FIG. 3, an MR sensor 27 is mounted. The MR sensor 27 moves together with the armature 6 while the armature 60 is moving, and detects changes in the direction of the magnetic flux lines generated by the driving magnets 24 arranged on the stator 21. Fig. 4 is a cross-sectional view showing the rotor 25 in the moving direction of the embodiment. A heat insulating material 63 is attached between the lower surface of the stage 53 and the armature 6A. The armature 60 has a core made of magnetic material such as Nippon Steel and the coils 28u, 28v, and 28w which are the plurality of coils. The coils 28u, 28v, and 28w are wound around the salient poles 64u, 64v, and 64w, and are sealed with a resin. For the coils 28u, 28v, 28w, three-phase alternating current having a specific phase difference is supplied from the control device 10. Further, a pair of auxiliary cores 67 are attached to the lower surface of the stage 53 with the armature 6 interposed therebetween. The auxiliary core 67 is provided to reduce the cogging torque generated by the linear motor 2''. Fig. 5 is a schematic block diagram showing the configuration of the control device 1 and the rotor of the present embodiment. As shown in Fig. 5, the control device 10 includes line receivers 11a and 11b and a magnetic pole position calculating unit i 2. Part 3 and drive unit 丨4. As described above, the rotor 25 includes the MR sensor 27 and three coils 28u, 28v, 28w as a plurality of coils. In the control device 10, the line receivers 11a and 11b are input with two differential signals output from the MR sensor 27 included in the rotor 25. The line receivers 11a and 11b remove the noise signals from the input two differential signals, and output the two differential signals from which the noise signals have been removed to the magnetic pole position calculating unit 12. The two differential signals are a sine wave signal (Ssin) and a cosine wave signal 154855.doc 201212516 (Scos) ' and are signals having a phase difference of (π/2). The magnetic pole position calculating unit 12 calculates the estimated magnetic pole position θ based on the sine wave signal and the cosine wave signal ' input from the line receivers iia, lib'. The calculation method calculates the estimated magnetic pole position Θ by calculating arctan (or tan-1, arctangent; inverse tangent function) for the division result of ((sine wave signal) / (cosine wave signal)). Further, the 'line receivers 11a and 11b and the magnetic pole position calculating unit 12 may be included in the rotor 25'. The control unit 13 includes a magnetic pole position detecting unit 13 1 and a rotor position detecting unit 132. The magnetic pole position detecting unit 131 is based on the self magnetic pole position. The information indicating the magnetic pole position input by the calculation unit 12 detects the magnetic pole position indicating the relative positional relationship between the coils 28u, 28v, and 28w of the rotor 25 and the driving magnet 24 disposed on the stator 21 before moving the rotor 25. The rotor position detecting unit 1 32 calculates the amount of movement of the rotor 25 based on the information 'the magnetic pole position information input from the magnetic pole position calculating unit 12' to calculate the relative position of the rotor 25. In other words, the rotor position detecting unit 132 performs relative position detection using the driving magnet 24. The drive unit 14 energizes the coils 28u, 28v, and 28w included in the rotor 25 by the control of the control unit 13. In the rotor 25, the MR sensor 27 is a vector detecting type magnetic sensor, and outputs the sine wave signal and the cosine wave signal in accordance with the direction of the magnetic flux line of the driving magnet 24 included in the stator 21. In the Mr sensor 27, as shown in Fig. 5, a full-bridge circuit 27a, 27b having a ferromagnetic thin film element whose resistance value changes according to the direction of the magnetic flux line transmitted through is shown. The full bridge circuit 154855.doc 201212516 27a, 27b is formed, for example, on a substrate, and is configured to output a sine wave from each terminal and a cosine wave signal having a phase difference with respect to the sine wave signal (π/2). In the present embodiment, the rotor position detecting unit 132 detects the moving direction of the rotor 25 based on the change in the estimated magnetic pole position 算出 calculated by the magnetic pole position calculating unit 12 using the sine wave signal and the cosine wave signal. Further, the rotor position detecting unit 132 calculates the amount of movement of the rotor 25 based on the distance between the amount of change in the estimated magnetic pole position θ and the driving magnet 24 included in the stator 21. In other words, the rotor position detecting unit 132 calculates the moving direction and the amount of movement of the rotor 25 based on the magnetic flux generated from the driving magnet 24 included in the stator 21, thereby detecting the position of the rotor 25. Fig. 6 is a schematic view showing the relative positions of the mr sensor 27 and the coils 28u, 28v, and 28w included in the rotor 25 of the present embodiment and the driving magnets 24 (24n, 24s) included in the stator 21. As described above, the driving magnet 24 is arranged on the rotor 25 at equal intervals so that the magnetic poles of the N pole and the S pole alternate in the moving direction as described above, and the coils 28u, 28v, 28w are arranged and arranged. The magnetic poles on the stator 21 are arranged to face each other in the moving direction. Further, the MR sensor 27 is disposed at a position facing the central portion of each of the driving magnets 24 so as to pass the position where the magnetic field of the driving magnet 24 is the strongest. Fig. 7 shows the sine wave signal and the cosine wave signal output from the MR sensor 27 of the present embodiment, the voltages Vu, Vv, Vw applied to the coils 28u, 28v, and 28w, and the magnetic pole position of the armature 60. ~360.) A diagram of a correspondence example. In Fig. 7, the horizontal axis represents the magnetic pole position, and the vertical axis represents the level of the sine wave signal and the cosine wave signal of the sensor 257 855.doc • 10·201212516 sensor 27 and the application to the coils 28u, 28v, 28w. The level of voltage. Further, in the vertical axis direction, the relative values of the sine wave signal and the cosine wave signal and the voltages VU, Vv, and Vw are normalized. As shown in the figure, the values of the sine wave signal (Ssin) and the cosine wave signal (Scos) output from the MR sensor 27 correspond to the direction of the magnetic flux lines of the magnetic field generated by the opposing driving magnets (magnetic poles) Position) changes. Further, when the magnetic poles of the opposing driving magnets 24 are changed in the order of the N pole 'S pole and the N pole, the MR sensor 27 corresponds to the change of the direction of the magnetic flux generated by each of the driving magnets 24' output 2 cycles. The sine wave signal (ssin) and the cosine wave signal (Scos). That is, when the armature 60 of the rotor 25 is located at 180. At the magnetic pole position of the phase difference, the values of the sine wave signals output from the MR sensor 27 at the respective magnetic pole positions become the same value 'and the values of the cosine wave signals also have the same value. Further, two magnetic pole positions are derived from the sine wave signal and the cosine wave signal output from the MR sensor 27. The magnetic pole position calculating unit 12 calculates the first estimated magnetic pole position θ (0° $ θ < 180°) based on the sine wave signal (Ssin) and the cosine wave signal (Sc〇s) output from the MR sensor 27 » Magnetic pole position detection The portion 1 3 1 adds 180 to the first estimated magnetic pole position 0 calculated by the magnetic pole position calculating unit i 2 and to the estimated magnetic pole position 0. The second estimated magnetic pole position (0+180.) is used as the candidate for the initial magnetic pole position. That is, the magnetic pole position calculating unit 12 calculates the first estimated magnetic pole position θ based on the direction of the magnetic flux generated by the driving magnet 24, and the first projection calculated by the magnetic pole position detecting 154855.doc 201212516 portion 13 1 The second estimated magnetic pole position (Θ+180.) is calculated with the magnetic pole position 0, and the two estimated magnetic pole positions are used as candidates for the initial magnetic pole position to be detected. Further, Fig. 7 shows the ratio of the voltages vu, Vv, and Vw applied to the coils 28u, 28v, and 28w corresponding to the magnetic pole positions, respectively, for the excitation pattern of the coils 28u, 28v, and 28w corresponding to the magnetic pole positions. . Further, the excitation pattern shown in Fig. 7 is stored in the drive unit 14 in association with the magnetic pole position. Further, the drive unit 丨4 energizes the coils 28u, 28v, and 28w by the excitation pattern corresponding to the magnetic pole position input from the magnetic pole position detecting unit 13j. Next, the process of detecting the magnetic pole position of the armature 60, which is detected when the linear motor 2A of the present embodiment is started, is detected. Fig. 8 is a flow chart showing the process of detecting the initial pole position by the control device 1 of the present embodiment. In the control device 10, when the detection of the initial magnetic pole position is started, the magnetic pole position calculating unit 12 calculates the first estimated magnetic pole position 0 from the sine wave signal and the cosine wave signal input from the MR sensor 27 (step S1 〇 1). . The magnetic pole position detecting unit 131 stores the i-th estimated magnetic pole position 计算 calculated by the magnetic pole position calculating unit 12. Further, the magnetic pole position detecting unit 131 shifts the drive unit 14 by +90 from the first estimated magnetic pole position 。. The magnetic pole position (Θ+90) controls the energization of the hemp to the coils 28u, 28v, and 28w (step S102). At this time, when the drive unit 14 energizes the coils 28u, 28v, and 28w, the current flows through the coils 28u, 28v, and 28w in a predetermined step at predetermined intervals from the initial current value. The current value rises until the maximum current value. Further, when the current value of the current flowing through the coils 28u, 28v, and 28w reaches the maximum current value, the drive unit 14 stops energization of the coils 28u, 28v, and 28w. Here, the initial current value is the current value at which the rotor 25 starts to operate when the load applied to the rotor 25 is minimum. Further, the maximum current value is when the load of the linear motor 20 can be applied to the rotor 25 at the maximum, the rotor 25 The current value of the starting action. The initial current value, the maximum current value, and the fixed time interval are set to appropriate values based on simulation or actual measurement. Thereby, the magnetic field generated by the coils 28u, 28v, 28w is gradually increased by energization, whereby the movement amount of the rotor 25 (armature 60) can be reduced even when it is moved. The magnetic pole position detecting unit 13 1 controls the driving unit 14 to detect the movement of the rotor 25 based on the change of the sine wave signal and the cosine wave signal, or to maximize the current value of the current flowing through the coils 28u, 28v, and 28w. At the current value, the energization is stopped (step S 1 〇 3). The magnetic pole position detecting unit 13 1 determines whether or not the rotor 25 is energized in the forward direction of the magnetic pole position in the step S102 (step S104). Furthermore, the change in the angle indicating the position of the magnetic pole exceeds 36 。. In the case of the case, the magnetic pole position detecting unit 13 1 determines that the magnetic pole position has increased. When the rotor 25 is moving in the forward direction (step s1〇4: YES), the magnetic pole position detecting unit 131 determines that the magnetic pole position at which the rotor 25 is located is the first estimated magnetic pole position Θ (step S105), and ends the detection. Processing of the initial magnetic pole position. On the other hand, when the rotor 25 is not moving in the forward direction (step S104: NO), the magnetic pole position detecting unit i3 determines whether the rotor 25 is negatively decreased toward the angle of the magnetic pole position indicating 154855.doc -13 - 201212516 Move to (step Slio). When the rotor 25 moves in the negative direction (step Slio: YES), the magnetic pole position detecting unit 13 1 determines that the magnetic pole position where the rotor 25 is located is the second estimated magnetic pole position (Θ+1 80°) (step S111). And the process of detecting the initial magnetic pole position is ended. On the other hand, when the rotor 25 has not moved in the negative direction (step S110: NO), the magnetic pole position detecting unit 131 shifts the drive unit 14 by -90 from the first estimated magnetic pole position 。. The magnetic pole position (Θ-90.) corresponds to the excitation pattern to control the energization of the coils 28u, 28v, and 28w (step S120). At this time, the drive unit 14 causes the current value of the current flowing through the coils 28u, 28v, and 28w to rise from the initial current value in the same manner as in the step S102, and rises until the maximum current value every fixed time interval. The magnetic pole position detecting unit 13 1 controls the driving unit 14 to detect the movement of the rotor 25 based on the change of the sine wave signal and the cosine wave signal, or the current value of the current flowing through the coils 28u, 28v, and 28w reaches the maximum current. At the time of 'the power is turned off (step S121). The magnetic pole position detecting unit 13 1 determines whether or not the rotor 25 has moved in the forward direction at the energization in step S120 (step S122). When the rotor 25 is moving in the forward direction (step s 122 : YES), the magnetic pole position detecting unit 13 1 determines that the magnetic pole position where the rotor 25 is located is the second estimated magnetic pole position (Θ + 180 Å) (step S123). And the process of detecting the initial magnetic pole position is ended. On the other hand, when the rotor 25 has not moved in the forward direction (step S122: NO), the magnetic pole position detecting unit 131 determines whether or not the rotor 25 has moved to the negative direction 154855.doc • 14-201212516 (step S130). When the rotor 25 is moved in the negative direction (step s13: YES), the magnetic pole position detecting unit 13 1 determines that the magnetic pole position at which the rotor 25 is located is the first estimated magnetic pole position Θ (step S131)' and ends the detection of the initial magnetic pole. Location processing. On the other hand, when the rotor 25 is not moving in the negative direction (step S130: NO), the magnetic pole position detecting unit Π1 determines that the linear motor 2 is not moving when the rotor 25 is energized by the energization in steps S102 and S120. 〇 Some faults have occurred, error handling (step sl4〇), and the process of detecting the initial magnetic pole position is ended. Here, the error processing in the step s14 is to output a message indicating that the linear motor 2 has failed, and the like to the user of the linear motor device 1. As described above, the control device in the present embodiment uses two excitation patterns corresponding to the magnetic pole position (0 + 9 〇) and the magnetic pole position (0_9 〇) calculated by the first estimated magnetic pole position ,, The coils 28U, 28ν, 28w are energized. When the coils 28u, 28v, and 28w are energized, the magnetic pole position detecting unit 131 detects that the rotor 25 is located at the first estimated magnetic pole position Θ and the second estimated magnetic pole position (0+18 〇) according to the direction in which the rotor 25 moves. Which one, and the failure of the linear motor 20 can be detected. Thus, the control device in the present embodiment can detect the magnetic pole position of the rotor 25 by energizing the coils 28u, 28v, and 28w at most twice, thereby shortening the time required for detecting the magnetic pole position. Further, when the rotor 25 of the linear motor 20 is in a state of being in contact with the end portion of the working range on the stator 21, even if the control device 1 is in contact with the magnetic pole position (Θ+90.) or (magnetic pole position (θ_9〇) The excitation pattern corresponding to any one of the 154855.doc •15·201212516 is energized, and the rotor 25 sometimes does not move. In contrast, the control device is in the processing of steps S1〇2 and S120, The energization is performed by two excitation patterns corresponding to the magnetic pole position (0+9〇〇) and the magnetic pole position (Θ-90). Thereby, the control device can also move the rotor 25 in the case as described above. Therefore, the magnetic pole position of the rotor 25 can be accurately detected. Further, in the detection of the magnetic pole position, there is a method of energizing the coils 28u, 28v, 28w with the excitation pattern corresponding to the predetermined set position, and moving the rotor 25 To the set position, the magnetic pole position when the linear motor 20 is started is determined. However, in this method, there is a problem that the rotor can only move by a distance of 180 degrees. The control device in this embodiment 1 〇 contains when Since the configuration in which the energization of the rotor 25 is stopped is stopped (steps S103 and S121), the distance at which the rotor 25 moves when the initial magnetic pole position is detected can be minimized. In the linear motor 20 of the present embodiment, the rotor 25 includes the armature. 60. The armature 60 has coils 28u, 28v, and 28w. That is, the coils 28u, 28v, and 28w are part of the armature 60. The armature 60 is a part of the rotor. Further, the stator 21 includes a plurality of magnets for driving, that is, a plurality of driving magnets 2 4. The linear motor 20 is a flat type linear motor that moves the armature 60 by energizing the coils 28u, 28v, 28w. However, for the part having the armature as a stator and the magnet portion being a part of the rotor The linear motor configured as described above can also be applied to the above-described process of detecting the initial magnetic pole position. Further, in the present embodiment, the use in step S102 and step S120 is shifted by 90 with respect to the first estimated magnetic pole position 。. The configuration of the excitation pattern corresponding to the magnetic pole position to energize the coils 28u, 28v, and 28w is described in 154855.doc • 16-201212516. However, it is not limited thereto, and the phase can also be used. The coils 28u, 28v, and 28w are energized by the excitation pattern corresponding to the magnetic pole position of 〇1 (0. < 〇1 < 180°) at the first estimated magnetic pole position 。. In the case of 90. When the rotor 25 is located at either the first estimated magnetic pole position θ or the second estimated magnetic pole position (Θ+180), the difference between the magnetic pole positions of the excitation pattern and the magnetic pole position is 90. When the rotor 25 is located at either the first estimated magnetic pole position Θ and the second estimated magnetic pole position (Θ + 180), 90 can be secured. The amount of movement is used as the magnetic pole position, so that the accuracy of determining the direction in which the rotor 25 moves can be improved. Further, in the steps S102 and S120, the excitation patterns corresponding to the magnetic pole positions shifted by β (180° < β < 360°) with respect to the first estimated magnetic pole position may be used to the coils 28u and 28v. 28w is energized. At this time, for the determination of the moving direction in steps S104, S110, S122, and S130, "forward" and "negative direction" are opposite directions in each step. Further, in the present embodiment, in steps s102 and s120, the current value of the current flowing through the coils 28u, 28v, 28w is increased in a predetermined step from the initial current value. The configuration up to the maximum current value has been described. However, the present invention is not limited thereto, and the current of the maximum current value may be energized in a pulsed manner a predetermined number of times. Thereby, the time required for energization can be shortened as compared with the case where the current values flowing through the coils 28u, 28v, and 28w are gradually increased. [Second Embodiment] The linear motor device according to the second embodiment differs from the linear horse 154855.doc 17 201212516 of the second embodiment in that it includes a rod type linear motor. Further, in the linear motor of the present embodiment, a Hall sensor is included in addition to the MR sensor. In the present embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and their description will be omitted. Fig. 9 and Fig. 1 are schematic views showing the configuration of a linear motor in the second embodiment. 9 and FIG. 1B are cross-sectional views of the linear motor 3A. The linear motor 30 is a rod-type linear motor that relatively moves in the longitudinal direction of the rod of the rotor with respect to the long coil storage case 31 as the armature. Inside the coil housing case 31, a plurality of coils 33 are laminated in the longitudinal direction. The plurality of coils 3 3 have a plurality of coils 33u, a V-phase coil 33v, and a W-phase coil 33w as a group. Further, end boxes 34 are attached to both end faces of the coil storage case 31. In the end box 34, bushes 35a, 35b, which are bearings for guiding the linear motion of the rod 32, are mounted. The rod 32 as a rotor is made of, for example, a non-magnetic material such as stainless steel, and has a hollow space like a tube. In the hollow space of the rod 32, a plurality of driving magnets 36 of a cylindrical shape are formed so as to face each other in the same direction. In other words, each of the plurality of driving magnets 36 has an n-pole and an n-pole facing each other, and the S-pole and the S-pole face each other to be laminated. Further, an iron core 37 made of a soft magnetic material such as iron is interposed between adjacent driving magnets. By interposing the iron core 37, the change in the magnetic flux density generated by the rod 32 can be made close to a sinusoidal waveform. Further, the rod 32 penetrates through a plurality of coils 33 which are laminated on the inner side of the coil housing case 31. Further, the rod 32 is movable in the longitudinal direction with respect to the coil storage case 31, and is supported by 154855.doc • 18·201212516. The sensor case 38 is disposed in contact with the end box 3^ of the end box 34 mounted on both end faces of the coil storage case 31, that is, one end case 34 is moved by the coil in the direction in which the rod 32 moves. The storage box 31 is sandwiched by the sensor box 38. A substrate 381 is provided in the sensor case 38. On one main surface of the substrate 381, an mr sensor 27 as a magnetic sensor is attached to the rod 32. Further, a Hall sensor 382 as a magnetic pole sensor is attached to the other main surface of the substrate 381 so as to face the rod 31. Thus, since the MR sensor 27 and the Hall sensor 382 are mounted on the respective main faces of the substrate 381, the size of the substrate 381 can be shortened in the direction in which the rod 32 moves. Further, the mr sensor 27 and the Hall sensor 382 may be mounted on one main surface of the substrate 381. Further, in Fig. 10, in order to facilitate identification of the MR sensor 27 and the Hall sensor 382, the illustration of the sensor box 38 is omitted. The MR sensor 27 outputs two signals corresponding to the direction of the magnetic flux line of the magnetic % generated by the driving magnet % in the opposing rod 31. Similarly to the first embodiment, the two signal systems are a sine wave signal and a cosine wave signal having a phase difference of (π/2) from the sine wave signal. The Hall sensor 382 outputs a k-number, i.e., a magnetic pole signal, corresponding to the magnetic pole of the driving magnet 36 in the opposing rod 31. The magnetic pole signal is a signal indicating that either the Hall sensor 382 detects the N pole or detects the s pole. Fig. 11 is a schematic block diagram showing the configuration of a control device 40 for controlling the linear motor 3A of the present embodiment. Furthermore, in the figure, a part of the configuration of the linear motor 30 is shown, showing a set of coils 33u, 33v, 33w, Hall sensor 382 & MR sensing in the configuration of the linear motor 3? 154855.doc -19· 201212516 27. The control device 40 of the present embodiment is different from the configuration of the control device 10 of the first embodiment in that a magnetic pole signal which is output by the Hall sensor 382 is input. As shown in FIG. 11, the control device 40 includes three line receivers Ua, lib, and 11c, a magnetic pole position calculating unit 12, a control unit 43, and a drive unit 44. In the control device 40, the line receiver Uc is input from the magnetic pole signal output from the Hall sensor 382 included in the linear motor %. The magnetic pole signal output from the Hall sensing piano 382 is a differential signal. The line receiver 11 (removing the noise signal from the input magnetic pole signal) and outputting the magnetic pole signal from which the noise signal is removed to the control unit 43. Further, in the present embodiment, the Mr sense output 2 7 output The relationship between the sine wave and the cosine wave signal and the magnetic pole position of the surface of the sinusoidal wave and the cosine wave signal is the same as that of the first embodiment, and the relationship shown in Fig. 7 is obtained. The magnetic pole position is in the range of 3535. to 3丨5. The range of the N pole corresponds to the range in which the magnetic pole position is 〇. to the range of 135. and the range of 315 to 360. The control unit 43 has a magnetic pole position detecting unit. 43 1 and the rotor position detecting unit 132. The magnetic pole position detecting unit 43 1 refers to the information indicating the magnetic pole position input from the magnetic pole position calculating unit 12, before the linear motor 30 is driven, to the coil storage case 3 1 as the stator. The magnetic coil positions of the plurality of included coils 33 and the plurality of driving magnets 36 stacked on the rod 32 of the rotor are detected. The driving unit 44 controls the three-phase alternating current having a specific phase difference based on the control of the control unit 43. Correct The plurality of coils 33 are energized to drive the linear motor 30. Fig. 12 is a flow chart showing the process of the control device 40 of the present embodiment for detecting the initial magnetic pole position 154855.doc • 20·201212516. In the control device 40, when the initial start is started When the magnetic pole position is detected, the magnetic pole position calculating unit 12 calculates the first estimated magnetic pole position 0 from the sine wave signal and the cosine wave signal input from the MR sensor 27 (step S201). The magnetic pole position detecting unit 43 1 determines the self-housing feeling Whether or not the magnetic pole signal input from the detector 382 indicates the S pole (step S202). When the magnetic pole signal indicates the S pole (step S202: YES), the magnetic pole position detecting unit 431 selects the first estimated magnetic pole position θ and the second estimated magnetic pole position (θ) +ι 8〇.) is included in the estimated magnetic pole position in 135 to 315. The magnetic pole position detecting unit 43 1 determines that the initial magnetic pole position of the linear motor 3〇 is the selected nasal magnetic pole position (step S203) On the other hand, when the magnetic pole signal indicates the N pole (step S202: NO), the magnetic pole position detecting unit 43 1 selects the first estimated magnetic pole position 0 and the second. The estimated magnetic pole position is not included in the magnetic pole position (Θ+180.). The magnetic pole position detecting unit 43 1 determines that the initial magnetic pole position of the linear motor 3〇 is the selected estimated magnetic pole position ( Step S204), the process of detecting the initial magnetic pole position is ended. As described above, the control device 4 of the present embodiment detects the first estimated magnetic pole position θ and the second based on the magnetic pole signal 'output from the Hall sensor 382'. The estimated magnetic pole position of any of the magnetic pole positions (Θ+180.) is estimated as the initial magnetic pole position of the linear motor 30. Thus, the control device 40 can detect the initial magnetic pole position of the linear motor 30 without energizing the linear motor 3, thereby shortening the time required for the initial magnetic pole position detection 154855.doc • 21 · 201212516. Further, since the control device 40 does not energize the linear motor 30, the initial magnetic pole position can be detected without driving the linear motor 30. Further, in the present embodiment, the relationship between the sine wave signal and the cosine wave signal output from the MR sensor 27 and the magnetic pole position is shown in Fig. 7 . However, it is not limited to the S pole corresponding to the range of 135° to 3 150' The N pole corresponds to 0. To 135. The scope and 315. To 360. The scope of the scope. That is, in steps S203 and S204, the magnetic pole position detecting unit 43 1 can select the estimated magnetic pole position included in the range of the magnetic pole position corresponding to the magnetic pole detected by the Hall sensor 382. In the first embodiment, the configuration of the initial magnetic pole position of the flat type linear motor is described. However, the present invention is also applicable to a rod type linear motor. Further, in the second embodiment, the configuration of the initial magnetic pole position of the linear motor of the detecting lever type has been described, but it can also be applied to the flat type line.

性馬達DSex motor D

[產業上之可利用性] 根據本發明,於同步電動機之啟動時,可減少對馬達之 通電次數,從而縮短初始磁極位置之檢測所需之時間。 【圖式簡單說明】 圖1係表示第1實施形態之線性馬達裝置1之概略圖。 圖2係第1實施形態之線性馬達2〇之立體圖(包含載台53 之剖面)。 圖3係第1實施形態之線性馬達2〇之正面圖。 圖4係表示第1實施形態之電枢60之沿移動方向之剖面之 154855.doc •22· 201212516 圖。 圖5係表示第1實施形態之控制裝置1 ο及轉子25之構成之 概略方塊圖。 圖6係表示第1實施形態之轉子25所包含之MR感測器27 及線圈28u、28v、28w與配置在定子21上之磁鐵,24之相對 位置的模式圖。 圖7係表示自第1實施形態之MR感測器27輸出之信號及 施加至線圈28u、28v、28w之電壓Vu、Vv、Vw與磁極位 置之對應關係之一例的圖表。 圖8係表示第1實施形態之控制裝置1〇檢測初始磁極位置 之處理之流程圖。 圖9係表不第2貫施形態之線性馬達3 〇之構成之第1概略 圖。 圖1 〇係表示第2貫施形態之線性馬達3 〇之構成之第2概略 圖。 圖11係表示對第2實施形態之線性馬達3 〇進行控制之控 制裝置40之構成之概略方塊圖。 圖12係表示第2實施形態之控制裝置40檢測初始磁極位 置之處理之流程圖。 【主要元件符號說明】 I 線性馬達裝置 10 ' 40 控制裝置 II a、11 b 線路接收器 12 磁極位置計算部 154855.doc •23· 201212516 13、43 控制部 14、44 驅動部 20 ' 30 線性馬達 21 定子 22 導引裝置 23 軌道 24 ' 24s ' 24η 磁鐵 25 轉子 26 滑塊 27 MR感測器 27a、27b 全橋電路 28u、28v、28w 線圈 31 線圈收納盒 32 桿 33 線圈 33u U相之線圈 33v V相之線圈 3 3 w W相之線圈 34 端盒 35a ' 35b 軸套 36 驅動用磁鐵 37 鐵芯 38 感測器盒 43 控制部 -24- 154855.doc 201212516 44 53 54 54a 54b 60 63 64 64u、64v ' 64w 67 131 、 431 132 381 382 驅動部 載台 底座 底壁部 側壁部 電樞 隔熱材 突極 輔助芯 磁極位置檢測部 轉子位置檢測部 基板 霍爾感測器 154855.doc -25-[Industrial Applicability] According to the present invention, at the time of starting the synchronous motor, the number of energizations to the motor can be reduced, and the time required for detecting the initial magnetic pole position can be shortened. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a linear motor device 1 according to a first embodiment. Fig. 2 is a perspective view of a linear motor 2A according to the first embodiment (including a cross section of the stage 53). Fig. 3 is a front elevational view showing the linear motor 2 of the first embodiment. Fig. 4 is a view showing a section 154855.doc • 22· 201212516 of the armature 60 in the moving direction of the first embodiment. Fig. 5 is a schematic block diagram showing the configuration of the control device 1 and the rotor 25 of the first embodiment. Fig. 6 is a schematic view showing the relative positions of the MR sensor 27 and the coils 28u, 28v, and 28w included in the rotor 25 of the first embodiment and the magnets 24 disposed on the stator 21. Fig. 7 is a graph showing an example of the correspondence between the signal output from the MR sensor 27 of the first embodiment and the voltages Vu, Vv, and Vw applied to the coils 28u, 28v, and 28w and the magnetic pole position. Fig. 8 is a flow chart showing the process of detecting the initial magnetic pole position by the control device 1 of the first embodiment. Fig. 9 is a first schematic view showing the configuration of the linear motor 3 〇 in the second embodiment. Fig. 1 is a second schematic view showing a configuration of a linear motor 3 第 in a second embodiment. Fig. 11 is a schematic block diagram showing the configuration of a control device 40 for controlling the linear motor 3A of the second embodiment. Fig. 12 is a flow chart showing the process of the control device 40 of the second embodiment for detecting the initial magnetic pole position. [Description of main component symbols] I Linear motor device 10' 40 Control device II a, 11 b Line receiver 12 Magnetic pole position calculation unit 154855.doc • 23· 201212516 13, 43 Control unit 14, 44 Drive unit 20 ' 30 Linear motor 21 Stator 22 Guide 23 Track 24 ' 24s ' 24η Magnet 25 Rotor 26 Slide 27 MR sensor 27a, 27b Full-bridge circuit 28u, 28v, 28w Coil 31 Coil storage box 32 Rod 33 Coil 33u U-phase coil 33v V-phase coil 3 3 w W-phase coil 34 end box 35a ' 35b bushing 36 drive magnet 37 core 38 sensor box 43 control unit -24-154855.doc 201212516 44 53 54 54a 54b 60 63 64 64u , 64v ' 64w 67 131 , 431 132 381 382 Drive unit stage base wall side wall part armature insulation material salient pole auxiliary core magnetic pole position detection part rotor position detection unit base plate Hall sensor 154855.doc -25-

Claims (1)

201212516 七、申請專利範圍: 1. 一種控制裝置’其特徵在於’其係線性馬達之控制裝 置’該線性馬達包括:包含於軸線方向交替排列有N極 及S極之磁極之複數個磁鐵之磁鐵部,及包含複數個線 圈之電樞,藉由電流流經上述電極所包含之複數個線圈 而產生之磁場、與由上述磁鐵料包含之複數個磁鐵所 產生之磁場,使上述電樞或上述磁鐵部之一者於上述軸 線方向上直線運動;上述控制裝置包括: 磁極位置計算部,其係自與上述磁鐵部所包含之複數 個磁鐵相向且由上述電樞所包含之磁感測器接收與由上 述複數個磁鐵所產生之磁場之磁通線之方向相應之信 號並汁异出與所接收到之信號相應之第1推算磁極位 置;以及 控制部,其係選擇磁極位置與上述第丨推算磁極位置 相差180之第2推算磁極位置及上述第丨推算磁極位置中 之任一者,將所選擇之推算磁極位置判定為初始磁極位 置。 2.如請求項1之控制裝置,其更包括: 驅動部,其係使用對應於上述第丨推算磁極位置而預 疋之勵磁圖形’對上述複數個線圈進行通電; 上述控制部係於上述驅動部對上述複數個線圈進行通 電時’根據自上述磁感測器輸出之信號,選擇上述第i 推算磁極位置與上述第2推算磁極位置中之任一者,將 所選擇之推算磁極位置判定為初始磁極位置。 I54855.doc 201212516 3.如請求項1之控制裝置,其中 上述控制部根據自上述線性馬達所包含之磁極感測器 輸出之信號,選擇上述第丨推算磁極位置與上述第2推算 磁極位置中之任-者,將所選擇之推算磁極位置判定為 初始磁極位置。 4. 如請求項2之控制裝置,其中 上述驅動部使用與相對於上述第丨推算磁極位置具有 特定偏移之磁極位置對應之勵磁圖形,對上述複數個線 圈進行通電。 5. 如請求項2或4之控制裝置,其中 上述驅動部係於上述驅動部使用上述勵磁圖形進行通 電時,自與上述線性馬達之最小負載相應之初始電流值 起,母隔固疋之時間間隔使施加至上述複數個線圈之電 流上升; 當施加至上述複數個線圈之電流值達到與上述線性馬 達之最大負載相應之最大電流值時,停止對上述複數個 線圈施加電流。 6.如請求項2或4之控制裝置,其中 上述驅動部係於對上述複數個線圈進行上述勵磁圖形 之通電時,將與上述線性馬達之最大負載相應之最大電 流值之電流以脈衝狀通電。 7 · —種控制方法’其特徵在於,其係線性馬達之控制裝置 中之控制方法’該線性馬達包括:包含於軸線方向交替 排列有N極及S極之磁極之複數個磁鐵之磁鐵部,及包含 154855.doc 201212516 複數個線圈之電樞,冑由電流流經上述電樞所包含之複 數個線圈而產生之磁場、與由上述磁鐵部所包含之複數 個磁鐵所產生之磁場,使上述電㈣上述磁鐵部之一者 於上述轴線方向上直線運動,上述控制方法包括: 磁極位置計算步驟,其係自與上述磁鐵部所包含之複 數個磁鐵相向且由上述電樞所包含之磁感測器接收與由 上述複數個磁鐵所產生之磁場之磁通線之方向相應之信 號’並計算出與所接收到之信號相應之第i推算磁極位 置;以及 判定步驟,其係選擇磁極位置與上述第】推算磁極位 置相差1 8G之第2推算磁極位置及上述第!推算磁極位置 者將所選擇之推异磁極位置判定為初始磁極 位置。 154855.doc201212516 VII. Patent application scope: 1. A control device characterized in that it is a control device for a linear motor, the linear motor comprising: a magnet including a plurality of magnets in which magnetic poles of N pole and S pole are alternately arranged in the axial direction And an armature including a plurality of coils, the magnetic field generated by a current flowing through a plurality of coils included in the electrode, and a magnetic field generated by a plurality of magnets included in the magnet material, the armature or the above One of the magnet portions linearly moves in the axial direction; the control device includes: a magnetic pole position calculating unit that receives from a plurality of magnets included in the magnet portion and is received by a magnetic sensor included in the armature a signal corresponding to a direction of a magnetic flux line of a magnetic field generated by the plurality of magnets, and a first estimated magnetic pole position corresponding to the received signal; and a control unit that selects a magnetic pole position and the third Estimating the second estimated magnetic pole position of the magnetic pole position difference 180 and the second estimated magnetic pole position, and pushing the selected one The calculated magnetic pole position is determined as the initial magnetic pole position. 2. The control device according to claim 1, further comprising: a driving unit that energizes the plurality of coils by using an excitation pattern that is preliminarily corresponding to the second estimated magnetic pole position; wherein the control unit is When the driving unit energizes the plurality of coils, 'selecting any one of the i-th estimated magnetic pole position and the second estimated magnetic pole position based on a signal output from the magnetic sensor, and determining the selected estimated magnetic pole position Is the initial magnetic pole position. 3. The control device according to claim 1, wherein the control unit selects the second estimated magnetic pole position and the second estimated magnetic pole position based on a signal output from a magnetic pole sensor included in the linear motor. Any one of the selected magnetic pole positions is determined as the initial magnetic pole position. 4. The control device according to claim 2, wherein the drive unit energizes the plurality of coils by using an excitation pattern corresponding to a magnetic pole position having a specific offset with respect to the second estimated magnetic pole position. 5. The control device according to claim 2 or 4, wherein the driving unit is energized from the driving unit by using the excitation pattern, and is derived from an initial current value corresponding to a minimum load of the linear motor. The time interval causes a current applied to the plurality of coils to rise; and when a current value applied to the plurality of coils reaches a maximum current value corresponding to a maximum load of the linear motor, stopping applying current to the plurality of coils. 6. The control device according to claim 2, wherein the driving unit is configured to pulse the current of the maximum current value corresponding to the maximum load of the linear motor when the plurality of coils are energized by the excitation pattern. power ups. A control method for controlling a linear motor includes a magnet portion including a plurality of magnets in which magnetic poles of N poles and S poles are alternately arranged in the axial direction, And an armature including a plurality of coils of 154855.doc 201212516, a magnetic field generated by a current flowing through a plurality of coils included in the armature, and a magnetic field generated by a plurality of magnets included in the magnet portion, Electric (4) one of the magnet portions linearly moving in the axial direction, and the control method includes: a magnetic pole position calculating step from a magnetic body included in the armature and facing the plurality of magnets included in the magnet portion The sensor receives a signal corresponding to a direction of a magnetic flux line of a magnetic field generated by the plurality of magnets and calculates an ith estimated magnetic pole position corresponding to the received signal; and a determining step of selecting a magnetic pole position The second estimated magnetic pole position which is different from the above-mentioned first estimated magnetic pole position by 18 G and the above-mentioned first! The estimated magnetic pole position determines the selected thrust magnetic pole position as the initial magnetic pole position. 154855.doc
TW100109199A 2010-03-17 2011-03-17 Control apparatus and control method TW201212516A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060987 2010-03-17

Publications (1)

Publication Number Publication Date
TW201212516A true TW201212516A (en) 2012-03-16

Family

ID=44649183

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109199A TW201212516A (en) 2010-03-17 2011-03-17 Control apparatus and control method

Country Status (3)

Country Link
JP (1) JPWO2011115098A1 (en)
TW (1) TW201212516A (en)
WO (1) WO2011115098A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166088B2 (en) * 2013-03-29 2017-07-19 日立オートモティブシステムズ株式会社 Electromagnetic suspension device
JP6966344B2 (en) * 2018-02-01 2021-11-17 株式会社日立産機システム Magnetic pole position estimation method and control device
TWI680406B (en) * 2018-11-14 2019-12-21 由田新技股份有限公司 Suspended double-sided optical inspection apparatus
JP2023056840A (en) * 2021-10-08 2023-04-20 パナソニックIpマネジメント株式会社 Position detection system for motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598909B2 (en) * 1998-09-30 2004-12-08 株式会社日立製作所 Synchronous motor control device, electric vehicle control device, and synchronous motor control method
WO2008123400A1 (en) * 2007-03-30 2008-10-16 Thk Co., Ltd. Magnetic pole detection method and drive guide system
JP5343001B2 (en) * 2007-05-31 2013-11-13 Thk株式会社 Linear motor position detection system

Also Published As

Publication number Publication date
WO2011115098A1 (en) 2011-09-22
JPWO2011115098A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
KR101479364B1 (en) Linear motor position detection system
JP5443718B2 (en) Linear motor system and control device
TW201126877A (en) Distributed-arrangement linear motor and method for controlling a distributed-arrangement linear motor
TW201116959A (en) Movable object system and method for determining an initial position of the movable object
CN106972728B (en) The control method of linear electronic device, linear electronic device
US8970142B2 (en) Control apparatus for linear motor, and linear motor apparatus
JP5224372B2 (en) Magnetic pole position detection method for permanent magnet synchronous motor
TW201212516A (en) Control apparatus and control method
TW201025800A (en) Dispersed linear motors and driving system for dispersed linear motors
US20130207588A1 (en) Initial driving apparatus and method of two-phase srm
JP5101309B2 (en) MOTOR POSITION DETECTION METHOD, MOTOR DRIVE DEVICE, AND PUMP
JP5628140B2 (en) Linear motor control device and control method
JP5529637B2 (en) Linear motor position detection system
JP2012005233A (en) Controller of linear motor
JP2000139069A (en) Linear motor drive
WO2012053370A1 (en) Measurement device, and measurement method
JP6576285B2 (en) Thrust measuring device and thrust measuring method
JP2013031294A (en) Motor control device
WO2008117345A1 (en) Linear motor and its control method
KR100728078B1 (en) a linear Motor with permanent magnet excitation and Method of Controlling the linear Motor
JP5026559B2 (en) Linear motor control device
WO2012053405A1 (en) Control device and control method
KR20200140366A (en) Multi-phase motor control method
JP2010252532A (en) Linear motor and linear-motor device
JPWO2009057442A1 (en) Linear motor and linear motor system