TW201212322A - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
TW201212322A
TW201212322A TW100101665A TW100101665A TW201212322A TW 201212322 A TW201212322 A TW 201212322A TW 100101665 A TW100101665 A TW 100101665A TW 100101665 A TW100101665 A TW 100101665A TW 201212322 A TW201212322 A TW 201212322A
Authority
TW
Taiwan
Prior art keywords
layer
transport layer
electron transport
comparative example
electron
Prior art date
Application number
TW100101665A
Other languages
Chinese (zh)
Other versions
TWI562419B (en
Inventor
Tasuku Sato
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of TW201212322A publication Critical patent/TW201212322A/en
Application granted granted Critical
Publication of TWI562419B publication Critical patent/TWI562419B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescence device is described, including, between the anode and the cathode thereof, an organic layer including a luminescent layer and an electron transport layer at least. The luminescent layer includes at least two layers doped with a luminescent material and at least one layer not doped with a luminescent material. The electron transport layer contains two or more kinds of reductive dopants. An adhesion improvement layer is disposed between the organic layer and at least one of the anode and the cathode.

Description

201212322 f L' ‘* 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種有機電激發光元件(下文有時亦 稱為「有機電致發光元件」、「有機£[元件」等)。 【先前技術】 . 有機電激發光元件有自發光、高速響應等特長,而期 待應用於平板顯示器,尤其自積層有電洞傳輸性有機薄膜 (電洞傳輸層)及電子傳輸性有機薄膜(電子傳輸層)的 2層型(積層型)元件之報告以來,以v以下的低電壓 進行發光的大面積發光元件受到關注。積層型有機EL元 件是以陽極/電洞傳輸層/發光層/電子傳輸層/陰極為基本 結構,其中發光層可如上述2層型那般,使電洞傳輸層或 電子傳輸層兼具其功能。 對於此種有機電激發光元件,已知其會隨使用時的溫 度上升而發光效率下降、耐久性惡化,故為改善該些性能 而進行了各種研究。 一 例如,日本專利特開2009-37981號公報提出了包括如 下^光層的有機電激發光元件,該發光層包括:含有發光 材料的2層以上的發光材料掺雜層,以及不含發光材料的 1層以上的發光材料非摻雜層。 、另=,日本專利特開2009-99783號公報揭示了使2種 ^的還原性摻f包含於陰極與有機薄膜層的界面區域的 作法(參照段落[0195])。 另外,日本專利特開2009-16693號公報揭示了與陽極 201212322 及陰極中至少一者接觸且包含無機化合物的附著改善層之 設置(參照段落[0113])。 然而,將該些先前技術文獻記載的技術分別單獨使用 時’雖可抑制高亮度下的發光效率下降現象,但無法抑制 高亮度下的耐久性惡化,故現在期望快速提供可防止是為 有機電激發光元件的大問題的高亮度區域的發光效率下 降、改善高亮度使用時的耐久性的有機電激發光元件。 【發明内容】 本發明目的在提供一種可防止高亮度區域的發光效率 下降、改善高亮度使用時的耐久性的有機電激發光元件。 為解決上述課題,本發明者們反覆潛心研究後發現, (A)使發光層包括至少2層發光材料換雜層及至少1層 發光材料非摻雜層,可增大有助於發光的界面;(B)在電 子傳輸層中摻雜2種以上的還原性摻質,可改善導熱性; 且(C)在有機層與電極之間設置包含無機化合物的密著 改善層,可改善散熱性而抑制高亮度下的溫度上升;利用 該些作法的相乘效果,即可獲得不僅高亮度區域的發光效 率下降得到抑制,且高亮度使用時的耐久性得以改善的有 機電激發光元件。 ^ 本發明是基於本發明者們的上述發現,其用以解決上 述課題的方法如下所述。亦即, 〈1〉一種有機電激發光元件,於陽極與陰極之間包括 至少包含發光層及電子傳輸層的有機層。其中發光層包括 至少2層發光材料摻雜層及至少丨層發光材料非摻ς層, 4 201212322」 種以上還原性摻質’且有機層與陽極及 陰和中至7者之間包括包含無機化合物的附著改善層。 〈2〉如〈1〉所述之有機電激發光元件,其中ς二 料非摻雜層的厚度大於發光材料摻雜層的厚度。 ^ 〈3〉如〈υ所述之有機電激發光元件,其中構成發 光材料非摻關的域材料與淑發絲料摻雜層的主體 材料具有相同的組成。 〈4〉如〈1〉所述之有機電激發光元件,其是於有機 層與陰極之間包括包含無機化合物的附著改善層。 〈5〉如〈4〉所述之有機電激發光元件,其中無機化 合物為選自LiF、Li2〇、MgF2、CaF2、NaF及SiO中的至 少1種。 〈6〉如〈1〉所述之有機電激發光元件,其中還原性 摻質為選自Li、K及Cs中的2種以上。 〈7〉如〈1〉所述之有機電激發光元件,其中上述還 原性摻質的含量為0.01重量百分比(wt%)〜3wt%。 〈8〉如〈1〉所述之有機電激發光元件,其中電子傳 輸層自陽極側起依序包含鄰接發光層的第一電子傳輸層及 與第一電子傳輸層鄰接的第二電子傳輸層,第二電子傳輸 層含有2種以上的還原性摻質,且第一電子傳輸層除不含 上述還原性摻質以外,包含與第二電子傳輸層相同的材料。 〈9〉如〈8〉所述之有機電激發光元件,其中第一電 子傳輸層的平均厚度為5 mn〜15 nm。 利用本發明可解決先前技術的上述諸多問題,而可提201212322 f L' '* VI. Description of the Invention: [Technical Field] The present invention relates to an organic electroluminescent device (hereinafter sometimes referred to as "organic electroluminescent device", "organic [component]" Wait). [Prior Art] Organic electroluminescence devices have the characteristics of self-luminescence and high-speed response, and are expected to be applied to flat panel displays, especially self-assembled layers of electron transporting organic thin films (hole transport layers) and electron transporting organic thin films (electrons). Since the report of the two-layer type (stacking type) element of the transmission layer, a large-area light-emitting element that emits light at a low voltage of v or less has been attracting attention. The laminated organic EL element is based on an anode/hole transport layer/light-emitting layer/electron transport layer/cathode, wherein the light-emitting layer can have the hole transport layer or the electron transport layer as the two-layer type described above. Features. In such an organic electroluminescence device, it is known that the luminous efficiency is lowered as the temperature at the time of use increases, and the durability is deteriorated. Therefore, various studies have been made to improve these properties. For example, Japanese Laid-Open Patent Publication No. 2009-37981 proposes an organic electroluminescent device comprising a light-emitting layer comprising: two or more layers of a light-emitting material doped with a light-emitting material, and no light-emitting material One or more layers of luminescent material undoped layer. Further, Japanese Laid-Open Patent Publication No. 2009-99783 discloses an operation of including two kinds of reducing doping f in an interface region between a cathode and an organic thin film layer (see paragraph [0195]). Further, Japanese Laid-Open Patent Publication No. 2009-16693 discloses the provision of an adhesion improving layer containing an inorganic compound which is in contact with at least one of the anode 201212322 and the cathode (see paragraph [0113]). However, when the techniques described in the prior art documents are used alone, it is possible to suppress the decrease in luminous efficiency at high luminance, but it is not possible to suppress deterioration in durability under high luminance. Therefore, it is now desired to provide rapid protection against organic electricity. An organic electroluminescence element that reduces the luminous efficiency in a high-luminance region of a large problem of the excitation element and improves the durability at the time of high-brightness use. SUMMARY OF THE INVENTION An object of the present invention is to provide an organic electroluminescence device which can prevent a decrease in luminous efficiency in a high-luminance region and improve durability in use in high-brightness use. In order to solve the above problems, the inventors have repeatedly studied and found that (A) the light-emitting layer includes at least two luminescent material-exchange layers and at least one luminescent material undoped layer, which can increase the interface that contributes to light emission. (B) doping two or more kinds of reducing dopants in the electron transport layer to improve thermal conductivity; and (C) providing a adhesion improving layer containing an inorganic compound between the organic layer and the electrode to improve heat dissipation In addition, by suppressing the temperature rise under high luminance, it is possible to obtain an organic electroluminescence device in which not only the decrease in luminous efficiency in the high-luminance region is suppressed but also the durability in high-brightness use is improved by the multiplication effect of the above-described methods. The present invention is based on the above findings of the present inventors, and the method for solving the above problems is as follows. That is, <1> an organic electroluminescence device comprising an organic layer containing at least a light-emitting layer and an electron transport layer between the anode and the cathode. The luminescent layer comprises at least two luminescent material doped layers and at least bismuth luminescent material non-doped yttrium layer, 4 201212322" or more reducing dopants" and the organic layer and the anode and the yin and the middle to 7 include inorganic The adhesion improving layer of the compound. <2> The organic electroluminescent device according to <1>, wherein the thickness of the undoped layer of the bismuth material is larger than the thickness of the doped layer of the luminescent material. <3> The organic electroluminescent device according to [3], wherein the domain material constituting the non-doped luminescent material has the same composition as the host material of the doped layer of the hair ray. <4> The organic electroluminescent device according to <1>, which comprises an adhesion improving layer containing an inorganic compound between the organic layer and the cathode. <5> The organic electroluminescent device according to <4>, wherein the inorganic compound is at least one selected from the group consisting of LiF, Li2, MgF2, CaF2, NaF and SiO. <6> The organic electroluminescent device according to <1>, wherein the reducing dopant is at least two selected from the group consisting of Li, K and Cs. <7> The organic electroluminescent device according to <1>, wherein the content of the above-mentioned reducing dopant is 0.01% by weight (wt%) to 3% by weight. <8> The organic electroluminescent device according to <1>, wherein the electron transport layer sequentially includes a first electron transport layer adjacent to the light emitting layer and a second electron transport layer adjacent to the first electron transport layer from the anode side. The second electron transport layer contains two or more kinds of reducing dopants, and the first electron transport layer contains the same material as the second electron transport layer except for the above-mentioned reducing dopant. <9> The organic electroluminescent device according to <8>, wherein the first electron transport layer has an average thickness of 5 mn to 15 nm. The above problems of the prior art can be solved by the present invention, and

5 S 201212322 供一種可防止高亮度區域的發光效率下降、改善高亮度使 用時的耐久性的有機電激發光元件。 【實施方式】 (有機電激發光元件) 本發明的有機電激發光元件於陽極及陰極間包括至少 含發光層及電子傳輸層的有機層,可視需要更包括其他層。 〈發光層〉 ^ 上述發光層包括至少2層發光材料摻雜層及至少^層 發光材料非摻雜層。 關於此種發光層結構,若於陽極與陰極間施加電壓, 則向發光層中注入電荷。如此,電洞與電子再結合而產生 激發能量,且該激發能量移動至發光材料而得以發光。 電荷的再結合於發光材料摻雜層及發光材料非摻雜層 的任一者中均產生。並且,發光材料摻雜層的激子(exdt〇n) 自不必說,發光材料非摻雜層的激子亦向發光材料摻雜層 的發光材料進行能量移動而有助於發光。再結合尤其容易 於層間的界面產生,因此於發光層内製成多個界面,使激 子的生成不僅於發光層的兩界面產生,亦於内部產生。結 果’激發能量會在發光層整體擴散,而可防止發光層内生 成的熱集中於—處。 本發明不僅設置發光材料摻雜層,亦設置不含發光材 料的發光材料非摻雜層,從而於發光層内製作多個界面。 並且’即使於以上述方式設置發光材料非摻雜層的情況 下,發光材料非摻雜層中生成的激發能量亦移動至發光材 201212322., 料摻雜層的發光材料而有助於發光。 ^卜,發光材料相對於上述發光材料掺雜層的 佳為0· 1 Wt%以上30 wt%以下。 平 光效 :利用此種結構,不僅可防止由濃度消光引起的發 率下降,而且可獲得高效率的發光。 此處,若發光材料相對於發光材料摻雜層的濃声小於 0·1 wt%,則難以形成濃度均勻的發光材料摻雜層,效 率亦低。若發光材料相對於發光材料摻雜層的濃度超過30 wt%,則為了避免濃度消光,必須使發光材料摻雜層的厚 度變薄以使發光材料相對於發光層整體的濃度下降7故製 造變得困難;或者必須使發光材料非摻雜層變厚,故無法 使發光材料非摻雜層中生成的激子能量有助於發光材料摻 雜層中的發光。 ' 此外,發光材料相對於發光材料摻雜層的濃度更佳為 〇_5 wt%以上25 wt%以下’ 0.5 wt%以上20 wt%以下尤佳。 本發明t,較佳為發光材料非摻雜層設置得比發光材 料摻雜層厚。 如使發光材料非摻雜層比發光材料摻雜層厚,則即使 發光材料摻雜層的發光材料濃度高,亦可降低發光層整體 的發光材料濃度。因此’亦可不控制摻雜為低濃度,而有 益於量產性的提高。 本發明中’由於發光材料非摻雜層的厚度大於發光材 料摻雜層的厚度’因此即使於上述提高發光材料摻雜層的 發光材料濃度的情況下’將發光層整體的發光材料濃度稀 201212322 釋的效果也高,而可有效防止濃度消光。 上述發光材料非摻雜層的厚度較佳為〇1 nm以上5〇 nm以下’更佳為〇 45nm以上30nm以下,尤佳為〇9聰 以上15 nm以下。 、上述發光材料摻雜層的厚度較佳為nm以上2〇 nm 以下,更佳為0.5 nm以上15 nm以下。 利用此種結構,可使發光材料非摻雜層中生成的激發 能量向發光材料摻雜層的發光材料移動,而提高發光效率。 、本發明中,由於發光材料非摻雜層與發光材料摻雜層 =開地設置,故即使於使用捕陷性發光材料的情況下,電 荷亦非均勻存在於發光層整體,而是偏多於發光材料摻雜 層2,發光材料非摻雜層中未產生多餘的電場,不會成為 電荷注入的障礙。因此,即使於使用電荷捕陷性發光材料 的情況下,亦可維持良好的發光效率。 本發明中,構成上述發光材料摻雜層的主體材料與構 成上述發光材料非摻雜層的主體材料較佳具有相同組成。 利用此種結構,例如於藉蒸鍍形成發光層的情況下, 形成發光材料摻雜層時蒸鍍發光材料及主體材料,而形成 ,光材料非摻雜層時,僅藉由閉合發光材料的擋板即可僅 蒸鍍主體材料。如此可簡化有機電激發光元件的製造步驟。 本發明中’上述2層以上的發光材料摻雜層可分別含 有顯示不同發光色的發光材料。 例如’若將分別含有紅色、藍色及綠色發光材料的3 層發光材料摻雜層加以組合,則有機電激發光元件整體獲 201212322 f 得白色的發光。 -發光材料- 上述發光材料可使用磷光發光材料以及螢光發 中的任一者。 --礙光發光材料- 上述磷光發光材料無特別限制,可依目的適當選擇, 例如含有過渡金屬原子、鑭系元素原子的錯合物^。 上述過渡金屬原子例如:釕、姥、纪、鶴、鍊、鐵、 銀、16等,其中較佳者為銖、銀、翻,特佳者為銀、紐。 上述鑭系元素原子例如:鑭、鈽、镨、鈥、釤、銪、 此、試、鏑、鈥、辑、链、镱、錦等,其中特佳者為敍、 销、IL。 上述錯合物的配位基例如:G. Wilkins〇n等所著且由 Pergamon Press 出版社於 1987 年發行的“c〇mprehensive Coordination Chemistry”、H. Yersin 著且由 Springer Verlag 出版社於 1987 年發行的“Photochemistry and ph〇t〇卿_ of Coordination ComP〇unds”、山本明夫著且由裳華房出版 社於1982年發行的「有機金屬化學_基礎與應用_」等書中 記載的配位子等。 +具體的配位基例如:齒素配位基(較佳為氣配位基)、 芳香族碳環配位基(例如環戊二烯基陰離子、苯陰離子或 萘基陰離子#)、錢雜馳位基(例如苯基《、笨幷啥 琳(benzoquinoline)、喹啉醇(quin〇lin〇1)、聯吡啶基或啡 啉(phenanthmline)等)、二酮配位基(如乙醯基丙酮等)、 201212322 羧酸配位基(如乙酸配位基等)、醇化物(alcoholate)配 位基(如酚鹽(phenolate)配位基等)、一氧化碳配位基、 ===氣基配位基等。該些配位基中, :亦以過渡金屬原子,另 2錯合物亦可同時含有不同種類的::謂多核錯合物。 物中,縣發光材料例何為原子。該些錯合 4錯合物,但不限於此。5 S 201212322 An organic electroluminescence device that can prevent deterioration in luminous efficiency in a high-luminance region and improve durability at the time of high luminance use. [Embodiment] (Organic Electroluminescent Device) The organic electroluminescent device of the present invention includes an organic layer containing at least a light-emitting layer and an electron transport layer between an anode and a cathode, and may further include other layers as needed. <Light Emitting Layer> ^ The above light emitting layer includes at least two layers of luminescent material doped layers and at least one layer of luminescent material undoped layers. In the light-emitting layer structure, when a voltage is applied between the anode and the cathode, electric charges are injected into the light-emitting layer. Thus, the holes recombine with the electrons to generate excitation energy, and the excitation energy moves to the luminescent material to emit light. Recombination of the charge is produced in either of the luminescent material doped layer and the luminescent material undoped layer. Further, excitons of the doped layer of the luminescent material need not be said that the excitons of the undoped layer of the luminescent material also move energy to the luminescent material of the doped layer of the luminescent material to contribute to luminescence. The recombination is particularly easy to occur at the interface between the layers, so that a plurality of interfaces are formed in the light-emitting layer, so that the generation of excitons is generated not only at the two interfaces of the light-emitting layer but also inside. As a result, the excitation energy spreads as a whole in the light-emitting layer, and the heat generated in the light-emitting layer can be prevented from being concentrated. In the present invention, not only a doped layer of a light-emitting material but also a non-doped layer of a light-emitting material containing no light-emitting material is provided, thereby forming a plurality of interfaces in the light-emitting layer. Further, even in the case where the luminescent material undoped layer is provided in the above manner, the excitation energy generated in the luminescent material undoped layer is also moved to the luminescent material 201212322. The luminescent material of the doped layer contributes to luminescence. Preferably, the luminescent material is preferably 0. 1 Wt% or more and 30 wt% or less with respect to the above-mentioned luminescent material doped layer. Flat light effect: With this structure, not only the decrease in the rate due to concentration extinction but also the high-efficiency light emission can be obtained. Here, if the rich sound of the luminescent material with respect to the doped layer of the luminescent material is less than 0.1% by weight, it is difficult to form a luminescent material doped layer having a uniform concentration, and the efficiency is also low. If the concentration of the luminescent material relative to the doped layer of the luminescent material exceeds 30 wt%, in order to avoid concentration extinction, the thickness of the luminescent material doped layer must be thinned so that the concentration of the luminescent material relative to the entire luminescent layer is decreased. Difficulty; or the luminescent material undoped layer must be thickened so that the exciton energy generated in the luminescent material undoped layer cannot contribute to luminescence in the luminescent material doped layer. Further, the concentration of the luminescent material with respect to the doped layer of the luminescent material is more preferably 〇_5 wt% or more and 25 wt% or less '0.5 wt% or more and 20 wt% or less. In the present invention t, it is preferred that the luminescent material undoped layer is disposed thicker than the luminescent material doped layer. If the luminescent material undoped layer is thicker than the luminescent material doped layer, the luminescent material concentration of the entire luminescent layer can be lowered even if the luminescent material doped layer has a high luminescent material concentration. Therefore, it is also possible to control the doping to a low concentration, which is advantageous for the improvement of mass productivity. In the present invention, 'the thickness of the non-doped layer of the luminescent material is larger than the thickness of the doped layer of the luminescent material', so that the luminescent material concentration of the entire luminescent layer is dilute even in the case of increasing the concentration of the luminescent material of the doped layer of the luminescent material. 201212322 The effect of release is also high, and it can effectively prevent concentration extinction. The thickness of the non-doped layer of the luminescent material is preferably 〇1 nm or more and 5 〇 nm or less, more preferably 〇45 nm or more and 30 nm or less, and particularly preferably 〇9 聪 or more and 15 nm or less. The thickness of the doped layer of the above-mentioned light-emitting material is preferably from nm to 2 nm, more preferably from 0.5 nm to 15 nm. With such a structure, the excitation energy generated in the undoped layer of the luminescent material can be moved to the luminescent material of the luminescent material doped layer, and the luminous efficiency can be improved. In the present invention, since the luminescent material undoped layer and the luminescent material doped layer are set to be open, even in the case of using the trapping luminescent material, the charge is not uniformly present in the entire luminescent layer, but is excessive In the luminescent material doped layer 2, no unnecessary electric field is generated in the luminescent material undoped layer, and it does not become an obstacle to charge injection. Therefore, even in the case of using a charge trapping luminescent material, good luminous efficiency can be maintained. In the present invention, the host material constituting the doped layer of the luminescent material preferably has the same composition as the host material constituting the undoped layer of the luminescent material. With such a structure, for example, in the case of forming a light-emitting layer by vapor deposition, when a light-emitting material doped layer is formed, a light-emitting material and a host material are evaporated, and when the light material is not doped, only by closing the light-emitting material The baffle can only evaporate the body material. This simplifies the manufacturing steps of the organic electroluminescent device. In the present invention, the two or more layers of the light-emitting material doping layers may each contain a light-emitting material exhibiting a different light-emitting color. For example, if three layers of luminescent material doped layers each containing red, blue, and green luminescent materials are combined, the organic electroluminescent device as a whole obtains 201212322 f white luminescence. - Luminescent material - Any of the above phosphors and phosphorescent materials can be used. - Light-blocking luminescent material - The above-mentioned phosphorescent luminescent material is not particularly limited and may be appropriately selected depending on the purpose, for example, a complex compound containing a transition metal atom or a lanthanoid atom. The above transition metal atoms are, for example, ruthenium, osmium, kiln, crane, chain, iron, silver, 16 and the like, of which the preferred ones are ruthenium, silver and ruthenium, and the most preferred ones are silver and ruthenium. The above lanthanide atoms are, for example, 镧, 钸, 镨, 鈥, 钐, 铕, this, test, 镝, 鈥, series, chain, 镱, 锦, etc., among which the best ones are Syria, Pin, IL. The ligand of the above complex is, for example, "c〇mprehensive Coordination Chemistry" by G. Wilkins〇n et al., published by Pergamon Press in 1987, by H. Yersin and by Springer Verlag in 1987. The publication of "Photochemistry and ph〇t〇卿_of Coordination ComP〇unds", and the coordination described in "Organic Metal Chemistry_Basic and Applied_" published by Hiroshi Akabane in 1982 Son and so on. + a specific ligand such as a dentate ligand (preferably a gas ligand), an aromatic carbocyclic ligand (for example, a cyclopentadienyl anion, a benzene anion or a naphthyl anion #), and a miscellaneous Relaxation group (such as phenyl ", benzoquinoline, quin〇lin〇1, bipyridyl or phenanthmline, etc.), diketone ligand (such as acetamidine) Acetone, etc., 201212322 carboxylic acid ligand (such as acetic acid ligand, etc.), alcoholate (such as phenolate ligand, etc.), carbon monoxide ligand, === gas base Ligand and the like. Among the ligands, a transition metal atom is also used, and the other two complexes may also contain different kinds of:: a multinuclear complex. What is the county luminescent material is an atom. These mismatches are complexes, but are not limited thereto.

201212322」 201212322201212322" 201212322

作為上述含銀錯合物的構光發光材料並無特別限制, 可依目的適當選擇,較佳為下述通式(1)、通式(2)及通式(3) 中任一者所表示的化合物。 12 201212322 (R11),The photoluminescent material containing the silver-containing complex is not particularly limited, and may be appropriately selected according to the purpose, and is preferably any one of the following general formula (1), general formula (2), and general formula (3). The compound represented. 12 201212322 (R11),

X&gt; mlX&gt; ml

m2 3-n (R12)M2 3-n (R12)

&lt; η Μ 3-n ;m2 通式(1) 通式(2) 通式(3) 上述通式(1)、通式(2)及通式(3)中,n表示i〜3的整數。 X-Y表示雙牙配位基。環A表示可含有氮原子、硫原子及 氧原子中任一者的環結構。Rll表示取代基 ,ml表示0〜6 。Μ為2以上時’相鄰的Rl1可彼此鍵結而形成可 二取代:敌η及氧原子中任一者的環,該環可進-步 為2以1時,表不取代基,m2表示0〜4的整數。m2 硫原子及氧料目可彼此騎而職可含氮原子、 代。此外,RU與汉12者的環’該環可進一步經取代基取 原子令任一者了鍵結形成可含氮原子、硫原子及氧 衣’讀環可進一步經取代基取代。 13 201212322 上述環A表示可含氮原子、硫原子及氧原子中任一者 的環結構’適宜列舉5員環、6員環等。該環可經取代基 取代。 X-Y表示雙牙配位基,適宜列舉雙牙的單陰離子性配 位基等。 雙牙單陰離子性配位基例如:吡啶曱酸鹽(pic〇linate, pic)、乙醯丙酮酸鹽(acetylacetonate,acac)、二特戊醯基 甲烧化物(dipivaloylmethanate,三級丁基 acac)等。 上述者以外的配位基例如為Lamansky等人的國際公 開第2002/15645號小冊的第89〜91頁中記載的配位基。 上述取代基R11及R12無特別限制,可依目的來適當選 擇’例如表示:可含鹵素原子、烷氧基、胺基、烷基、環 烷基、氮原子或硫原子的芳基,或可含氮原子或硫原子的 芳氧基《該些取代基可進一步經取代。 上述RU及R12相鄰時,可彼此鍵結而形成可含有氮原 子、硫原子或氧原子的環,其適宜列舉5員環、6員環等。 該環可進一步經取代基取代。 上述通式(1)、通式(2)及通式(3)中任一者所表示的具 體化合物例如下述者,但並不限定於該些化合物。&lt; η Μ 3-n ; m2 Formula (1) Formula (2) Formula (3) In the above formula (1), formula (2) and formula (3), n represents i to 3 Integer. X-Y represents a double tooth ligand. Ring A represents a ring structure which may contain any of a nitrogen atom, a sulfur atom and an oxygen atom. Rll represents a substituent, and ml represents 0 to 6. When Μ is 2 or more, the adjacent R11 may be bonded to each other to form a ring which is disubstituted: either of the enemy η and the oxygen atom, and the ring may be 2 to 1, when the substituent is not substituted, m2 An integer representing 0 to 4. The m2 sulfur atom and the oxygen material can be used to ride each other and contain a nitrogen atom. Further, the ring of RU and Han 12 can be further substituted by a substituent such that any one of them can be bonded to form a nitrogen atom, a sulfur atom and an oxygen coat. The read ring can be further substituted with a substituent. 13 201212322 The above ring A represents a ring structure which may contain any of a nitrogen atom, a sulfur atom and an oxygen atom. A 5-membered ring or a 6-membered ring is suitably exemplified. This ring may be substituted with a substituent. X-Y represents a bidentate ligand, and a monoanionic ligand of a double tooth is suitably exemplified. Double-tooth monoanionic ligands such as pic〇linate (pic), acetylacetonate (acac), dipivaloylmethanate (di-butyl acac) Wait. The ligand other than the above is, for example, a ligand described in pages 89 to 91 of Lamansky et al., International Publication No. 2002/15645. The above substituents R11 and R12 are not particularly limited, and may be appropriately selected depending on the purpose, for example, an aryl group which may contain a halogen atom, an alkoxy group, an amine group, an alkyl group, a cycloalkyl group, a nitrogen atom or a sulfur atom, or may be used. Aryloxy group containing a nitrogen atom or a sulfur atom "The substituents may be further substituted. When RU and R12 are adjacent to each other, they may be bonded to each other to form a ring which may contain a nitrogen atom, a sulfur atom or an oxygen atom, and a 5-membered ring or a 6-membered ring is preferably used. This ring may be further substituted with a substituent. The specific compound represented by any one of the above formula (1), formula (2) and formula (3) is, for example, the following, but is not limited to these compounds.

201212322 F201212322 F

15 S 201212322 (M2)15 S 201212322 (M2)

α-ts) 0-11)--ts) 0-11)

16 201212322 ^16 201212322 ^

α-17) α-21)-17-17) α-21)

17 201212322, α-25)17 201212322, α-25)

上述磷光發光材料的其他例子可例舉下示化合物。 D-1 D-3 D-2Other examples of the above phosphorescent material include the compounds shown below. D-1 D-3 D-2

D-7 D-8D-7 D-8

18 201212322 r18 201212322 r

DHO D-9DHO D-9

D-11D-11

D-17 CM8D-17 CM8

D-19D-19

19 201212322 --螢光發光材料-- 上述螢光發光材料無特別限制,可依目的適當選擇, 例如:苯幷噁唑、笨幷咪唑、苯幷噻唑、苯乙烯基苯、多 聯苯、二苯基丁二烯、四苯基丁二烯、萘二甲醯亞胺、香 豆素π底喃 '紫壤_( perjn〇ne)、。惡二嗤、酸連氮(aldazine)、 0比咬、環戊二烯、雙苯乙烯基蒽、喹吖啶酮(quinacridone)、 吡咯幷吡啶、噻二唑幷吡啶、環戊二烯、苯乙烯基胺,芳 香族二次甲基(dimethyiidyne)化合物,縮合多環芳香族 化合物(蒽、啡琳、芘(Pyrene)、茈(pefylene)、紅螢埽 (rubrene)、稠五苯(pentacene)等),8_喹淋醇的金屬錯 合物、吡咯亞甲基(Pyrromethene)錯合物或稀土金屬錯 合物所代表的各種金屬錯合物,聚噻吩、聚苯、聚苯乙^ 等聚合物化合物,有機矽烷或者該些化合物的衍生物等: 該些化合物中,上述螢光發光材料的具體例例如為下 述化合物’但不限於該些化合物。 20121232219 201212322 -- Fluorescent luminescent material -- The above fluorescent luminescent material is not particularly limited and may be appropriately selected according to the purpose, for example, benzoxazole, abbreviated imidazole, benzothiazole, styrylbenzene, polyphenylene, and Phenyl butadiene, tetraphenylbutadiene, naphthyl imine, coumarin π bottom ' 'purinal soil _ (perjn〇ne). Dioxadiazine, aldazine, 0-bite, cyclopentadiene, bisstyrylhydrazine, quinacridone, pyrrolidine pyridine, thiadiazolidine, cyclopentadiene, benzene Vinylamine, aromatic dimethyiidyne compound, condensed polycyclic aromatic compound (Pyrene, pefylene, rubene, pentacene) Etc), various metal complexes represented by the metal complex of 8_quinol, a pyrromethene complex or a rare earth metal complex, polythiophene, polyphenylene, polyphenylene oxide, etc. A polymer compound, an organic decane or a derivative of these compounds, etc.: Among these compounds, specific examples of the above-mentioned fluorescent luminescent material are, for example, the following compounds 'but are not limited thereto. 201212322

-主體材料- 上述主體材料較佳包含電洞傳輸性主體材料以及電子 傳輸性主體材料中的至少1種。 --電洞傳輸性主體材料-- 上述電洞傳輸性主體材料就提高耐久性、降低驅動電 壓的觀點而言,游離電位Ip較佳為51 eV以上6 3 eVa 下,更佳為5.4 eV以上6.1 ev以下,尤佳為5.6 eV以上 6.0 eV以下。另就提高耐久性、降低驅動電壓的觀點而言, 電子親和力Ea較佳為1,2 eV以上3.1 eV以下,更佳為j 4 5 21 201212322 eV以上3.GeV以下’尤佳為18〜以上2 9eV以下。 *此種電洞傳輸性主體材料例如為··吡咯、咔唑、氮呼、 碳烯、二唑、噁唑、噁二唑、吡唑、咪唑、聚芳基烷烴、 吡唑啉、吡唑酮、苯二胺、芳基胺、經胺基取代的查耳酮 (—Icon小苯乙烯基蒽、(flu〇ren〇ne)、腙、二苯 乙烯、矽氮烷(silazane)、芳香族三級胺化合物、苯乙烯 基fe化δ物、方香知一次甲基糸化合物、。卜琳(p〇fphyrin) 系化合物、聚矽烷系化合物、聚(N_乙烯基咔唑)、苯胺系 共聚物、噻吩寡聚物、聚噻吩等導電性高分子寡聚物、有 機石夕烧、碳膜,或者該些化合物的衍生物等。 該些化合物中’電洞傳輸性主體材料較佳為味唾化合 物、氮呼化合物或碳烯錯合化合物,特佳者為味嗤化合物。 作為上述電洞傳輸性主體材料的具體化合物例如為下 述化合物,但不限於該些化合物。- Host material - The above host material preferably contains at least one of a hole transporting host material and an electron transporting host material. - Hole-transporting host material - The above-mentioned hole-transporting host material has a free potential Ip of preferably 51 eV or more and 6 3 eVa, more preferably 5.4 eV or more, from the viewpoint of improving durability and lowering driving voltage. Below 6.1 ev, it is better to be 5.6 eV or more and 6.0 eV or less. Further, from the viewpoint of improving durability and lowering the driving voltage, the electron affinity Ea is preferably 1, 2 eV or more and 3.1 eV or less, more preferably j 4 5 21 201212322 eV or more 3. GeV or less 'more preferably 18 or more 2 9eV or less. * Such a hole transporting host material is, for example, pyrrole, carbazole, nitrogen, carbene, diazole, oxazole, oxadiazole, pyrazole, imidazole, polyarylalkane, pyrazoline, pyrazole Ketones, phenylenediamines, arylamines, amine-substituted chalcones (-Icon small styrene hydrazine, flu〇ren〇ne, hydrazine, stilbene, silazane, aromatic a tertiary amine compound, a styrene-based δ-derivative, a fluorene-based methyl hydrazine compound, a p〇fphyrin compound, a polydecane compound, a poly(N-vinylcarbazole), an aniline system a conductive polymer oligomer such as a copolymer, a thiophene oligomer or a polythiophene, an organic stone, a carbon film, or a derivative of these compounds. Among these compounds, a 'hole transporting host material is preferably The salivary compound, the nitrogen compound or the carbene compound is particularly preferred as the miso compound. Specific compounds as the above-mentioned hole transporting host material are, for example, the following compounds, but are not limited thereto.

22 201212322 r Η-今 十522 201212322 r Η-今十5

Η-1 Τ Η-12Η-1 Τ Η-12

23 20121232223 201212322

H“21:H "21:

H-22H-22

24 20121232224 201212322

--電子傳輸性主體材料一 本發明使用的主體材料可使用與電洞傳輸性優良的電 洞傳輸性主體材料同樣地電子傳輸性優良的電子傳輸性主 體材料。 上述電子傳輸性主體材料就提高耐久性、降低驅動電 壓的觀點而言,電子親和力Ea較佳為2.5 eV以上3.5 eV 以下,更佳為2_6 eV以上3.2 eV以下,尤佳為2.8 eV以 上3.1 eV以下。另就提高耐久性、降低驅動電壓的觀點而 言,游離電位Ip較佳為5.7 eV以上7.5 eV以下,更佳為 25 201212322 5.8 eV以上7.0 eV以下,尤佳為5.9 eV以上6.5 eV以下。 此種電子傳輸性主體材料例如為:!!比咬、鳴咬、三π秦、 咪唑、吡唑、三唑、噁唑、噁二唑、芴酮、蒽醌二甲烷 (anthraquinodimethane)、蒽酮(anthr〇ne)、二苯基苯酉昆、 噻喃二氧化物(thiopyran dioxide)、碳二醯亞胺、亞芴基 甲烷(fluorenylidenemethane)、二苯乙烯基吡嗪、經氟^ 代的芳香族化合物、萘、茈等的四羧酸酐、酞花青,或者 該些化合物的衍生物(可與其他環形成縮合環),8喹啉醇 衍生物的金屬錯合物或金屬酞花青,以苯幷噁唑或苯幷噻 唑為配位基的金屬錯合物所代表的各種金屬錯合物等。 上述電子傳輸性主體材料較佳為金屬錯合物、唑衍生 物(苯幷咪唑衍生物、咪唑幷吡啶衍生物等)、嗪衍生物(吡 唆衍生物、錢衍生物、三物生物等),就耐久性方面而 言,特佳為金屬錯合化合物。上述金屬錯合化合物更佳為 具有包含配位於金㈣至少-魏原子、氧原子或硫料 的配位基的金屬錯合物。 上述金屬錯合物中的金屬離子無特別限制,可依目的 適當選擇,例如較佳為鈹離子、鎂離子、鋁離子、鎵離子、 鋅離子、銦離子、錫離子、鉑離子或鈀離子, 子、雜子、鎵離子、鋅離子、雜子或峰子,特佳^ 铭離子、鋅離子或把離子。 上述金屬錯合物所含的配位基無特別限制,可依目的 自已知配位子基中作適當選擇,例如為:Ηϋη著且由 Spnnger-Verlag出版社於1987年發行的“^- Electron transporting host material - The host material used in the present invention can use an electron transporting host material having excellent electron transport properties similarly to a hole transporting host material having excellent hole transport properties. The electron transporting host material preferably has an electron affinity Ea of 2.5 eV or more and 3.5 eV or less, more preferably 2_6 eV or more and 3.2 eV or less, and particularly preferably 2.8 eV or more and 3.1 eV from the viewpoint of improving durability and lowering driving voltage. the following. Further, from the viewpoint of improving durability and lowering the driving voltage, the free potential Ip is preferably 5.7 eV or more and 7.5 eV or less, more preferably 25 201212322 5.8 eV or more and 7.0 eV or less, and particularly preferably 5.9 eV or more and 6.5 eV or less. Such an electron transporting host material is, for example, a bite, a bite, a triple π, an imidazole, a pyrazole, a triazole, an oxazole, an oxadiazole, an anthrone, an anthraquinodimethane, an anthrone. (anthr〇ne), diphenylbenzoquinone, thiopyran dioxide, carbodiimide, fluorenylidenemethane, distyrylpyrazine, fluorochemical aromatic a tetracarboxylic anhydride such as a compound, naphthalene or anthracene, phthalocyanine, or a derivative of such a compound (which may form a condensed ring with other rings), a metal complex of 8 quinolinol derivatives or a metal phthalocyanine, Various metal complexes represented by metal complexes in which benzoxazole or benzothiazole is a ligand are used. The electron transporting host material is preferably a metal complex, an azole derivative (benzimidazole derivative, imidazolium pyridine derivative, etc.) or a azine derivative (pyridinium derivative, money derivative, three biological organism, etc.). In terms of durability, it is particularly preferred to be a metal-missing compound. More preferably, the above metal complex compound has a metal complex containing a ligand coordinated to at least a -Wei atom, an oxygen atom or a sulfur. The metal ion in the above metal complex is not particularly limited and may be appropriately selected according to the purpose, and is preferably, for example, cerium ion, magnesium ion, aluminum ion, gallium ion, zinc ion, indium ion, tin ion, platinum ion or palladium ion. Sub, hetero, gallium, zinc, hetero or peak, especially good ^ Ming ion, zinc ion or ion. The ligand contained in the above metal complex is not particularly limited and may be appropriately selected from known ligand groups depending on the purpose, for example, "Ηϋη" and issued by Spnnger-Verlag Publishing Co., Ltd. in 1987.

S 26 201212322 and Photophysics 〇f Coordinad〇n c〇mp麵也”、山本明夫著 且由裳華房出版社於1982年發行的「有機金屬化學基 與應用-j等書令記載的配位基等。 上述配位基較佳為含氮雜環配位基(碳數1〜30較佳, 2〜20更佳’3〜15特佳),可為單牙配位基,亦可為雙牙以 上的配位基。健為雙牙以±六牙以下的錄基。另外, 雙牙以上六相下的配絲與單牙者的混合配絲亦佳。 上述配位基例如為:嗪配位基(例如吡啶配位基、聯 吼,配位基、三聯如统位基等)、絲基纽位基(例如 备苯基苯料触位基、鄉基苯㈣'魏絲、經苯基 味唾配位基、鮮基_销吼魏絲朴絲基配位基 (碳數1〜30較佳,1〜20更佳,卜⑺尤佳,例如甲氧基、 乙氧基、丁氡基、2-乙基己氧基等)、芳氧基配位基數 6〜3〇較佳,6〜20更佳,6〜12尤佳,例如苯氧基、丨_萘氧 基、2_萘氧基、2,4,6-三甲基苯氧基、4-聯苯氧基等)等。 又例如:雜芳氧基配位基(碳數M0較佳,^20更 佳j 1〜12尤佳,例如吡啶氧基、吡嗪氧基、嘧啶氧基、喹 咐氧基等)、烧硫基配位基(碳數1〜3〇較佳,1〜2〇更佳, ^ U尤佳,例如甲硫基、乙硫基等)、芳硫基配位基(碳 數=〜30較佳’ 6〜20更佳,6〜12尤佳,例如苯硫基等)、 雜芳硫基配位基(碳數丨〜如較佳’ ijO更佳,丨〜12尤佳, J如比唆石瓜基、2-本幷。米0坐硫基、2-笨幷π惡唾硫基、2_苯 幷嗟°坐硫基等)、硬院氧基配位基(碳數1〜30較佳,3〜25 更佳’ 6〜20尤佳,例如三苯基矽烷氧基、三乙氧基矽烷氧S 26 201212322 and Photophysics 〇f Coordinad〇nc〇mp face", Yamamoto Akira and the "Organic Metal Chemicals and Applications-J and other book titles" issued by the Sanghua House Publishing House in 1982. The ligand is preferably a nitrogen-containing heterocyclic ligand (preferably having a carbon number of from 1 to 30, more preferably from 2 to 20, more preferably from 3 to 15), and may be a single-dentate ligand or a double-dentate or higher. The ligand is a double-toothed tooth with a recording base of less than six teeth. In addition, a mixed yarn of a double-toothed six-phase yarn and a single-toothed one is also preferred. The above-mentioned ligand is, for example, a azine ligand. Base (for example, pyridine ligand, hydrazine, ligand, triple, etc.), silk group linkage (for example, phenylbenzene benzoate, benzyl benzene (tetra) 'weisi, phenyl Savory ligand, fresh base _ pin 吼 Wei Si Pu Shi base ligand (carbon number 1 ~ 30 is better, 1 ~ 20 is better, Bu (7) is better, such as methoxy, ethoxy, butyl thiol, 2-Ethylhexyloxy or the like), the number of aryloxy ligands is preferably 6 to 3, preferably 6 to 20, more preferably 6 to 12, such as phenoxy, 丨-naphthyloxy, 2-naphthyloxy Base, 2,4,6-trimethylphenoxy 4-biphenyloxy group, etc.) Further, for example, a heteroaryloxy ligand (better M0, more preferably ^20, more preferably 1 to 12, such as pyridyloxy, pyrazinyloxy, pyrimidinyloxy) Base, quinoxalyl, etc.), sulfur-based ligand (preferably 1 to 3 carbon atoms, more preferably 1 to 2, more preferably U, such as methylthio, ethylthio, etc.), aromatic sulfur Base ligand (carbon number = ~ 30 is preferred '6 to 20 is better, 6 to 12 is preferred, such as phenylthio, etc.), heteroarylthio ligand (carbon number 丨 ~ as better ' ijO more Good, 丨~12 especially good, J is like 唆石瓜基, 2-本幷. 米0 sits sulfur base, 2-幷幷 幷 恶 唾 sulphur, 2 苯 幷嗟 ° sit thio, etc.), hard Alkoxy ligand (comparative carbon number 1 to 30, preferably 3 to 25 more preferably 6 to 20, such as triphenyldecyloxy, triethoxydecaneoxy)

27 S 201212322 氧基等)、料族烴_子配位基(碳數 較佳,6〜25更佳,6〜2G尤佳,例如苯基陰離^ ί 子、蒽基陰離子等)、芳香族雜環陰離子配位基(碳 數1〜30較佳,2〜25更佳,2〜20尤佳,例如轉陰離子、 :唑陰離子、三唑陰離子、噁唑 =離子、苯輸陰離子、靖離子= 陰 ^ L (lndGlenine)陰離子配位基等。該些配 為含氮雜環配位基、芳氧基配位基、雜芳 基 '芳香族烴陰離子配位基或芳香族 =陰離子配位基,者為含氮雜魏絲、芳氧基配 雜==基、芳香族烴陰離子配位基或芳香族 金屬錯合物電子傳輸性主騎料的例子如··日本專 ^開麗心遍、特開雇_21、特開腦_22驗、 ^ 2004-221065 &gt; 2004-221068 &gt; 2004-327313 寻各公報中記載的化合物。 此種電子傳輸性主體材料具體可例舉以下的化合物, 但不限於該些化合物。27 S 201212322 oxy, etc.), a hydrocarbon group _ sub-ligand (better carbon number, 6 to 25 is better, 6 to 2G is more preferable, such as phenyl cation, ί, sulfhydryl anion, etc.), aromatic Family heterocyclic anion ligand (c. 1~30 is preferred, 2~25 is more preferred, 2~20 is especially preferred, such as transanion, azole anion, triazole anion, oxazole = ion, benzene anion, jing Ion = ^ L (lndGlenine) anionic ligand, etc. These are nitrogen-containing heterocyclic ligands, aryloxy ligands, heteroaryl 'aromatic hydrocarbon anion ligands or aromatic = anion Examples of the electron-transporting main riding material of a nitrogen-containing heteroweisi, an aryloxy group, a aryl group, an aromatic hydrocarbon anion ligand or an aromatic metal complex, such as Japan Hearts, special employment _21, special brain _22 test, ^ 2004-221065 &gt; 2004-221068 &gt; 2004-327313 Looking for the compounds described in each of the publications. The electron transporting host material can specifically exemplify the following Compounds, but are not limited to these compounds.

^2^2

28 20121232228 201212322

E-12 E~13 E-14E-12 E~13 E-14

29 5 201212322 ε-17 Ε-1829 5 201212322 ε-17 Ε-18

Ε-19 Ε-2ΰΕ-19 Ε-2ΰ

Ε-22 Ε-21Ε-22 Ε-21

上述發光層的製作方法是使用具備多個蒸鍍源及遮蔽 自各蒸鍍源蒸散的蒸鐘材料的擋板的蒸鍍裝置,於該些蒸The method for producing the light-emitting layer is to use a vapor deposition device having a plurality of vapor deposition sources and a baffle plate that empties vaporization materials from the respective vapor deposition sources, and the steaming device is used for the steaming.

S 30 201212322 且 少—個上設置構成上述發光材料的摻質材料,丑 的少—個上設置構成上14發光材料摻雜層 ===料非摻雜層的主體的主體材料,然後 的主體材料的蒸鍍源加熱,利用擋板 的開閉而械上述發储料摻雜層及發光材料雜雜層。 使用此種製造方法時,於擋板開放時蒸鑛主體材料與 摻貝材料兩者,而形成域摻雜有發光材料的發光材料推 ^層。另一方面,於擋板關閉時遮蔽摻質材料的蒸散,僅 洛鍵主體材料而形成發光材料非摻雜層。 因此,僅藉由反覆開閉擋板,即可交替形成發光材料 摻雜層及發光材料非摻雜層,而可簡化形成發光層的步驟。 〈電子傳輸層〉 上述電子傳輸層包含第一電子傳輸層及第二電子傳輸 層,具有自陰極或陰極側獲取電子並傳輸至陽極側的功能^ 上述電子傳輸層具有自上述陽極側起依序包括鄰接上 述發光層的上述第一電子傳輸層及與第一電子傳輸層鄰接 的上述弟二電子傳輸層的積層結構。 《第一電子傳輸層》 上述第一電子傳輸層的材料無特別限制,可依目的適 當選擇,例如:以下述結構式表示的2,9-二曱基-4,7-二苯 基-1,10·啡啉(bathocuproin,BCP)、下述結構式表示的三 (8-經基哮琳)銘(tris(8-quinolinolato)aluminum,Alq)等以 8-喹啉醇或其衍生物為配位基的有機金屬錯合物、下述結 構式表示的雙-(2-曱基-8-羥基喹啉)-4-(苯基-酚鹽)-鋁(III) 31 201212322 (BAlq)等啥琳(quinoline)衍生物,鳴、二α坐衍生物、三 唑衍生物、啡啉衍生物、茈衍生物、吡啶衍生物、嘴咬衍 生物、喹噁啉(quinoxaline)衍生物、二苯基苯醌衍生物、 經硝基取代的芴(fluorene)衍生物等。S 30 201212322 and less - one is provided with a dopant material constituting the above-mentioned luminescent material, and ugly is provided with a main body material constituting a main body of the upper luminescent material doping layer ===material undoped layer, and then the main body The vapor deposition source of the material is heated, and the above-mentioned storage material doping layer and the luminescent material impurity layer are mechanically opened and closed by the baffle. When such a manufacturing method is used, both the vaporized host material and the doped material are formed when the baffle is opened, and a luminescent material layer in which the domain is doped with the luminescent material is formed. On the other hand, the evapotranspiration of the dopant material is masked when the baffle is closed, and only the host material of the bond is formed to form an undoped layer of the luminescent material. Therefore, the step of forming the light-emitting layer can be simplified by alternately forming the light-emitting material doping layer and the light-emitting material undoped layer by simply opening and closing the shutter. <Electron Transport Layer> The electron transport layer includes a first electron transport layer and a second electron transport layer, and has a function of acquiring electrons from the cathode or the cathode side and transporting it to the anode side. The electron transport layer has a sequence from the anode side. And comprising a laminated structure of the first electron transport layer adjacent to the light-emitting layer and the second electron transport layer adjacent to the first electron transport layer. <<First Electron Transport Layer>> The material of the first electron transport layer is not particularly limited and may be appropriately selected depending on the purpose, for example, 2,9-dimercapto-4,7-diphenyl-1 represented by the following structural formula. , 10 phenocuproin (BCP), tris (8-quinolinolato) aluminum (Alq) represented by the following structural formula, etc. with 8-quinolinol or its derivative The organometallic complex of a ligand, bis-(2-mercapto-8-hydroxyquinoline)-4-(phenyl-phenolate)-aluminum(III) represented by the following structural formula 31 201212322 (BAlq) Quinoline derivatives, serotonin, bis-sodium derivatives, triazole derivatives, phenanthroline derivatives, anthracene derivatives, pyridine derivatives, mouth bite derivatives, quinoxaline derivatives, a phenyl benzoquinone derivative, a nitro substituted fluorene derivative, and the like.

上述第一電子傳輸層例如可利用蒸鑛法、濕式製膜 法、電子束法、藏鍍法、反應性滅鍍法、分子束蠢晶(MBE) 法、簇離子束(cluster ion beam)法、離子鍍法、電漿聚 合法(高頻激發離子鍵法)、分子積層法、雷射束(LB) 法、印刷法、轉印法等方法來適當形成。 上述第一電子傳輸層的平均厚度較佳為5 nm〜15 32 201212322 r nm,更佳為7nm〜12mn。 若第-電子傳輸層的平均厚度小於5nm,則有因第二 $子傳輸射所含的摻雜金屬的消^使發光效率下降的 情況,若超過15 nm,則有散熱效果消失的情況,且有高 竞度下的耐久性下降的情況。 第一電子傳輸層的平均厚度例如可利用觸針式表面形 狀測定器來敎,其平均厚歧3處败的平均值。 《第二電子傳輸層》 上述第二電子傳輸層的材料包含與上述第一電子傳輸 層相同的有機化合物,以及2種以上的還原性摻質。' 若使含有上述還原性摻質的上述第二電子傳輸層與發 光層鄰接’則有因金屬消光而使發光效率大幅下降的情況。 上述所謂還原性摻質是定義為可將電子傳輸性化合物 還原的物質。因此’只要是有一定還原性的化合物,則無 特別限制,可依目的適當選擇,可適宜例舉:選自鹼金屬二 鹼土金屬、稀土金屬、鹼金屬的氧化物、鹼金屬的_化物、 鹼土金屬的氧化物、鹼土金屬的齒化物、稀土金屬的氧化 物、稀土金屬的齒化物、鹼金屬的有機錯合物、驗土金屬 的有機錯合物及稀土金屬的有機錯合物中的至少2種Y 更具體而言,較佳的還原性摻質可例舉:鐘、納、钟、 铷、鉋等鹼金屬,鈣、锶、鋇等鹼土金屬等;特佳者為鉀、 锁》、铯、伽、鏠。 *亥些還原性摻質中,較佳為链與鉀、鐘與铯、铯與鈉、 铯與鉀、絶與铷、铯與鈉、铯與鉀的組合,就導熱性'改盖 33 201212322 的方面而言’特佳者為鐘與卸、链與铯。 上述還原性摻質的含量較佳為0.01 wt%〜3 wt%,更 土 2 0·05 wt%〜2 wt%。若其含量樣〇 〇1 wt%,則有ς 从的導熱性改善不足的情況;若超過3 wt% 的吸收而導致效率大幅下降的情況。 U金屬 ΐ述第二電子傳輸層與第—電子傳輸層同樣,例如可 製膜法、電子束法、雜法、反應性滅 ί㈣人土 r分子束蟲晶)法、蔡離子束法、離子錢法、 法(㈣激鶴子舰)、分子積層法、LB法、 P刷法、轉印法等方法來適當形成。 上述第二電子傳輪層的平均厚度較佳為10nm〜1()() nm ’更佳為2〇 nm〜5〇 nm。 若第二電子傳輸層的平均厚度小於1〇 nm,則有因 而使效率下降的情況;若超過· nm,則 動電壓上升的情況。 呢 “上述第二電子傳輸層的平均厚度可以使用與上述第一 電子傳輸層的平均厚度同樣的方式來測定。 〈電極〉 本發明的有機電激發光元件包含一對電極,即陽極及 陰極。於此有機電激發光元件的性質方面,較佳為陽極及 陰極中至少一個電極為透明。通常,陽極只要具有作為向 有機化合物層供給電洞的電極的功能即可,陰極只要具有 作為向有機化合物層中注入電子的電極的功能即可。八 上述電極的形狀、結構、大小等無特別限制,可依有The first electron transport layer may be, for example, a vapor deposition method, a wet film formation method, an electron beam method, a plate plating method, a reactive plating method, a molecular beam stray crystal (MBE) method, or a cluster ion beam. The method, the ion plating method, the plasma polymerization method (high-frequency excitation ion bonding method), the molecular layering method, the laser beam (LB) method, the printing method, the transfer method, and the like are appropriately formed. The average thickness of the first electron transport layer is preferably 5 nm to 15 32 201212322 r nm, more preferably 7 nm to 12 nm. When the average thickness of the first-electron transport layer is less than 5 nm, the doping metal contained in the second sub-subject emission may have a decrease in luminous efficiency, and if it exceeds 15 nm, the heat dissipation effect may disappear. And there is a case where the durability is lowered under high competition. The average thickness of the first electron-transporting layer can be, for example, measured by a stylus-type surface shape measuring device, which averages the average value of the thickness difference at three. <<Second Electron Transport Layer>> The material of the second electron transport layer includes the same organic compound as the first electron transport layer, and two or more kinds of reducing dopants. When the second electron-transporting layer containing the reducing dopant is adjacent to the light-emitting layer, the light-emitting efficiency is greatly lowered by the metal extinction. The above-mentioned reducing dopant is defined as a substance capable of reducing an electron transporting compound. Therefore, 'as long as it is a compound having a certain reducing property, it is not particularly limited, and may be appropriately selected according to the purpose, and may be suitably selected from the group consisting of an alkali metal dibasic earth metal, a rare earth metal, an alkali metal oxide, an alkali metal compound, An oxide of an alkaline earth metal, a tooth of an alkaline earth metal, an oxide of a rare earth metal, a tooth of a rare earth metal, an organic complex of an alkali metal, an organic complex of a soil metal, and an organic complex of a rare earth metal More specifically, at least two kinds of Y, more preferably, preferred reducing dopants are exemplified by alkali metals such as bells, nano, bells, samarium, and planing, alkaline earth metals such as calcium, barium, strontium, etc.; 》, 铯, 伽, 鏠. * Among some reducing dopants, it is preferred to combine the chain with potassium, bell and strontium, strontium and sodium, strontium and potassium, and bismuth, strontium and sodium, strontium and potassium, and the thermal conductivity is changed to cover 33 201212322 In terms of 'the best ones are clocks and unloading, chain and shackles. The content of the above reducing dopant is preferably from 0.01 wt% to 3 wt%, more preferably from 20.05% to 2 wt%. If the content is 〇1 wt%, there is a case where the thermal conductivity improvement is insufficient, and if the absorption exceeds 3 wt%, the efficiency is drastically lowered. The U metal describes the second electron transport layer in the same manner as the first electron transport layer, for example, a film formation method, an electron beam method, a hetero method, a reactive method, a tetramine beam crystal method, a Cai ion beam method, and an ion. Money method, law ((4) stimulating crane ship), molecular layering method, LB method, P brush method, transfer method and other methods are appropriately formed. The average thickness of the second electron transport layer is preferably 10 nm to 1 () () nm ', more preferably 2 〇 nm to 5 〇 nm. If the average thickness of the second electron-transporting layer is less than 1 〇 nm, the efficiency may be lowered, and if it exceeds nm, the dynamic voltage may rise. The average thickness of the second electron-transporting layer can be measured in the same manner as the average thickness of the first electron-transporting layer. <Electrode> The organic electroluminescent device of the present invention comprises a pair of electrodes, that is, an anode and a cathode. In terms of the properties of the organic electroluminescence device, at least one of the anode and the cathode is preferably transparent. Generally, the anode may have a function as an electrode for supplying a hole to the organic compound layer, and the cathode may have an organic The function of the electrode for injecting electrons in the compound layer is sufficient. The shape, structure, size, and the like of the above-mentioned electrodes are not particularly limited and may be

S 34 201212322 機電用途'目的自已知電極材料中適當選擇。 化物Hi的材料適宜例舉··金屬、合金、金屬氧 化,、導电性化合物’或者該些材料的混合物等。 _%極_ 構成陽極的材料例如··摻雜錄、氟等的氧化錫(ATO、 氧化錫、氧化辞、氧化銦、氧化鋼錫(ITO)、氧化 銦鋅(IZO)等導電金屬氧化物;金、銀、絡、錄等金屬; 該些金屬與導電金餘化_混合物或制物;職化銅、 硫化銅等無機導電物f;聚苯胺、^塞吩、聚鱗等有機 導電材料’或者該些材料與ITO的積層物等。該些材料十 ,佳者為導電金屬氧化物;就生產性、高導電性、透明性 等方面而言,特佳者為ΙΤΟ。 -陰極- 構成陰極的材料例如:驗金屬(如叙、鈉、卸、鉋等)、 鹼土金屬(如鎂、鈣等)、金、銀、鉛、鋁、鈉-鉀合金、 鐘銘&amp;金、鎂-銀合金、銦、镱等稀土金屬等。該些材料 :單獨使用1種,但就兼顧穩定性與電子注入性的觀點而 言,可適宜併用2種以上。 該些材料中,就電子注入性方面而言,較佳者為鹼金 屬或鹼土金屬;就保存穩定性優良的方面而言,較佳為以 Is為主體的材料。 上述所謂以鋁為主體的材料,有純鋁、鋁與0.01 wt%〜10 wt%的鹼金屬或鹼土金屬的合金或者與該些材料 的混合物(例如鋰-鋁合金、鎂-鋁合金等)。 35 顯 12322, 行,===制,可依已知方法進 賤鍍法、離子鍍料物理空蒸鑛法、 電漿CVD法等化學 —沈積(⑽)' 構成電極的材料的適應性而考慮與 基板上。例如,選擇IT0作法來形成電極於 高頻濺鍍法H料,極材料時,可採用直流或 等作為陰極材料時:將1 i 形成。選擇金屬 利用崎法等而形成。種4者2種以上同時或依序 料2 ’如形成上述電鱗要進行目案化,可藉由利用 蝕:而:的化二而T ’亦可藉由利用雷射等的物理 仃。外’可重豐遮罩而進行真空蒸鍍或濺鍍等, 亦可利用舉離法(lift_QffmethGd)或印刷法來進行。 〈附著改善層〉 本發明中,於有機層與陽極及陰極中至少任一者之間 包括包含無機化合物的附著改善層,就散熱性容易提高的 方面而言,較佳為於有機層與陰極之間包括包含無機化合 物的上述附著改善層。 上述無機化合物層的功能是作為附著改善層。 此無機化合物層使用的較佳無機化合物無特別限制, 可依目的適當選擇,例如為:鹼金屬氧化物、鹼土金屬氧 化物、稀土金屬氧化物、驗金屬齒化物、驗土金屬自化物、 稀土 金屬鹵化物、SiOx、A10x、SiNx、SiON、A10N、GeOx、 LiOx、LiON、TiOx、TiON、TaOx、TaON、TaNx、C 等的S 34 201212322 Electromechanical use 'The purpose is to choose from the known electrode materials. The material of the compound Hi is preferably exemplified by a metal, an alloy, a metal oxide, a conductive compound, or a mixture of these materials. _% pole _ The material constituting the anode is, for example, a conductive metal oxide such as a tin oxide (ATO, tin oxide, oxidized, indium oxide, oxidized steel tin (ITO), or indium zinc oxide (IZO)). Metals such as gold, silver, collateral, and recording; mixtures and preparations of such metals and conductive gold; inorganic conductive materials such as copper and copper sulfide; organic conductive materials such as polyaniline, phenanthrene, and polyscale 'Or a laminate of these materials with ITO, etc. These materials are ten, preferably conductive metal oxides; in terms of productivity, high electrical conductivity, transparency, etc., the best one is ΙΤΟ. - Cathode - Composition Cathode materials such as: metal (such as Syria, sodium, unloading, planing, etc.), alkaline earth metals (such as magnesium, calcium, etc.), gold, silver, lead, aluminum, sodium-potassium alloy, Zhongming &amp; gold, magnesium - A rare earth metal such as a silver alloy, indium or bismuth, etc. These materials may be used alone or in combination, and two or more kinds of materials may be used in combination with respect to stability and electron injectability. In terms of aspect, it is preferably an alkali metal or an alkaline earth metal; In terms of the above, it is preferably a material mainly composed of Is. The above-mentioned aluminum-based material has an alloy of pure aluminum, aluminum and 0.01 wt% to 10 wt% of an alkali metal or an alkaline earth metal or with these materials. Mixture (such as lithium-aluminum alloy, magnesium-aluminum alloy, etc.) 35 show 12322, row, === system, can be immersed by known methods, ionic plating, physical steaming, plasma CVD, etc. Chemical-deposition ((10))' The suitability of the materials constituting the electrode is considered on the substrate. For example, the IT0 method is selected to form the electrode in the high-frequency sputtering method, and when the electrode material is used, when DC or the like is used as the cathode material, : The formation of 1 i is formed. The metal is formed by the method of Kawasaki, etc. The seed is made up of two or more kinds of materials at the same time or in sequence. 2 'If the above-mentioned electric scale is formed, it can be visualized by using the etch: T' can also be performed by vacuum deposition or sputtering using a laser such as a laser, or by a lifting method such as lift_QffmethGd or printing. Layer> In the present invention, at least one of an organic layer and an anode and a cathode In the adhesion improving layer containing an inorganic compound, it is preferable that the adhesion improving layer containing an inorganic compound is included between the organic layer and the cathode in terms of easily improving heat dissipation. The function of the inorganic compound layer is as an adhesion improving layer. The preferred inorganic compound to be used in the inorganic compound layer is not particularly limited and may be appropriately selected depending on the purpose, for example, an alkali metal oxide, an alkaline earth metal oxide, a rare earth metal oxide, a metal tooth, a soil metallization, Rare earth metal halides, SiOx, A10x, SiNx, SiON, A10N, GeOx, LiOx, LiON, TiOx, TiON, TaOx, TaON, TaNx, C, etc.

S 36 201212322. 各種氧化物、氮化物、氧化氮化物。 該些化合物中,就改善散熱性的方面而言,特佳者為S 36 201212322. Various oxides, nitrides, oxynitrides. Among these compounds, in terms of improving heat dissipation, the best one is

LiF、Li20、MgF2、CaF2、NaF、SiO。 形成含上述無機化合物層的附著改善層的方法無特別 限制,可應用已知的方法,例如蒸鍍法、旋塗法、;堯禱法、 LB法等。 上述無機化合物層的厚度無特別限制,可依目的適當 選擇,較佳為0,1 nm〜100 nm,更佳為〇 3 nm〜1〇 nm。田 本發明的有機電激發光元件中,上述其 限制’可依目的適當選擇,例如:電子注人層、伽^ 層、電洞傳輸層、電子阻擋層等。 -電子注入層-LiF, Li20, MgF2, CaF2, NaF, SiO. The method of forming the adhesion improving layer containing the above inorganic compound layer is not particularly limited, and known methods such as a vapor deposition method, a spin coating method, a prayer method, an LB method, and the like can be applied. The thickness of the above inorganic compound layer is not particularly limited and may be appropriately selected depending on the purpose, and is preferably 0, 1 nm to 100 nm, more preferably 〇 3 nm to 1 〇 nm. In the organic electroluminescent device of the present invention, the above limitation may be appropriately selected depending on the purpose, for example, an electron injecting layer, a gamma layer, a hole transporting layer, an electron blocking layer, and the like. -Electronic injection layer -

電子注入層的功能是自陰極或陰極側獲取電子 至陽栖彳目丨丨。 J 上述電子注人層可為包含㈣上材料的單肩 ' 4亦可為包含相同組賴不同城的乡相多層結構 較#^献層的厚度無制限制,可依目的適當選擇, = 〇.=〇〇魏’更佳為〇 2〜刚細,尤佳為〇 5〜5〇卿 同注入層、電洞傳輸層_ 側獲取=傳 =:===陽極 可為單戶M f抑射人層及電洞傳輸層 的多層結構。 為匕3相同城或者不同組成的多層 °亥些層令使用的電洞注入材料或電洞傳輸材料可為低The function of the electron injecting layer is to acquire electrons from the cathode or cathode side to the sacred scorpion. J The above-mentioned electronic injection layer may be a single shoulder containing the material of (4) '4 or may be a thickness of the township multi-layer structure containing the same group of different cities than the thickness of the layer, and may be appropriately selected according to the purpose, = 〇. =〇〇魏' is better for 〇2~ 细细,尤佳为〇5~5〇卿 with injection layer, hole transport layer _ side acquisition = pass =:=== anode can be single-family M f The multilayer structure of the human layer and the hole transport layer. For the same city or different layers of different layers, the hole injection material or hole transmission material can be low.

S 37 201212322 分子化合物,亦可為高分子化合物。 上述電洞注入材料或電洞傳輸材料無特別限制,可依 目的適當選擇,例如:鱗衍生物、料衍生物、三嗤衍 生物、。惡唾衍生物、嚼二0坐衍生物、咪唾衍生物 烷烴,生物、吡唑啉衍生物、吡唑酮衍生物、苯二胺衍= 物、芳基胺衍生物、經胺基取代的查耳 =街生物、_射物、膝衍生物、二苯㈣衍=歸 物、芳香族三級胺化合物、笨乙烯基胺化合物、 :香族一以基系化合物、駄花青系化合物&quot;卜琳系化合 獨使、有機魏衍生物、碳等。該些材料可單 獨使用1種,亦可併用2種以上。 上述電洞注入層及電洞傳輸層可含電子接受性摻質。 上述電子接受性摻質只要為電子接受將 化合物氧化的性質即可,可使用且,將有機 機化合物。 了使用無機化合物,亦可使用有S 37 201212322 Molecular compound, which may also be a polymer compound. The above-mentioned hole injecting material or hole transporting material is not particularly limited and may be appropriately selected depending on the purpose, for example, a scale derivative, a material derivative, or a triterpenoid derivative. Cacao derivative, chew derivative, sodium saliva derivative alkane, biological, pyrazoline derivative, pyrazolone derivative, phenylenediamine derivative, arylamine derivative, substituted by amine group Charle = street creature, _ projectile, knee derivative, diphenyl (tetra) derivative = return, aromatic tertiary amine compound, stupid vinylamine compound,: aromatic one base compound, phthalocyanine compound &quot ; Bu Lin is a combination of independent, organic derivative, carbon and so on. These materials may be used singly or in combination of two or more. The hole injection layer and the hole transport layer may contain an electron accepting dopant. The above-mentioned electron-accepting dopant may be used as long as it is an electron-accepting property of oxidizing a compound, and an organic compound may be used. Using inorganic compounds, you can also use

Si”合物無特別限制,可依目的適當選擇,例 :屬氣化鎵、氯化銦、五氯化録等齒化 金屬’五氧恤、三氧仙等金魏化物等。 如.化ti無特別限制’可依目的適當選擇,例 物:基、三氟f基等為取代基的化合 合物、富料(麻_)等。 該些化合物可單獨使们種,亦可併用2種以上。 類而3電Iff生接質的使用量無特別限制,依材料種 σ八目ί於電洞傳輸層材料或電洞注入材料較佳The Si" compound is not particularly limited and may be appropriately selected depending on the purpose, for example, gallium hydride, indium chloride, pentachloride, etc., such as a metalized metal, a five-oxygen shirt, a trioxane, and the like. The ti is not particularly limited, and may be appropriately selected according to the purpose, and examples include a compound having a substituent such as a group or a trifluorof group, a rich material (hemp), and the like. These compounds may be used alone or in combination. There is no particular limitation on the amount of the metal-based Iff raw material, and it is preferable to use the material σ 八目 ί in the hole transport layer material or the hole injection material.

S 38 201212322 ·S 38 201212322 ·

為0 01 50 Wt%,更佳為0.05〜30 wt%,尤佳A 知方法^ / ^ *轉輪層無特難制,可利用已 夭万法形成’例如可利用蒸鍍法 J T利用已 濕式塗係法t 錢鍍法等乾式製膜法、 4言佈去、轉印法、印刷法 =膜法 上述電洞注入展;》Μ 、垦万式4而適當形成。 ,更佳4傳輸層的厚度較佳為卜· -電子Γ擋ί 尤佳為10〜200, 的電功能是防止自陰極側傳輸至發光層 有機化2Γ 常設置為與發光財陽極側鄰接的 輸材電Γ且撐層的化合物例如可使用作為上述電洞傳 輸材科而例舉的化合物。另外 ^】得 材料的1種或2種以上的單層;二匕3上述 或者不同組成的多層的多層結為。3相同組成 上述電子阻擋層無特別限制’可依已知方法形成,例 =利用蒸鍍法、濺鑛法等乾式製膜法、濕式塗佈法、轉 印法、印刷法、喷墨方式等而適當形成。 上述電子阻擋層的厚度較佳為卜雇膽,更佳為U nm ’尤佳為3〜10nm。 〈基板〉 本發明的有機電激發光元件較佳設置於基板上,可以 電極與基板直接接觸的形式設置,亦可以插入十間層的 式設置。 例 上述基板的材料無特別限制,可依目的適當選擇, 39 £ 201212322 如;氧,紀穩定氧化鍅(ysz)、玻璃(無鹼玻璃、納鈣玻 璃等)等無機材料;聚對苯二曱酸乙二醋、聚對笨二曱酸 I一酯、聚萘二甲酸乙二酯等聚酯;聚苯乙烯、聚碳酸酯、 *芳|旨' 聚酿亞胺、聚環稀烴、降冰片婦樹脂、 ♦(氯二氟乙烯)等有機材料等。 、一上述基板的形狀、結構、大小等無特別限制,可依發 2件的崎、目的等適當選擇。通常,基板的形狀較佳 外,f,板的結構可為單層結構’亦可為積層結構;另 ’可以單-構件形成,亦可以2個以 =為透明’亦可為不透明;於透明的情況下二f 透明,亦可為有色透明。 .、、'巴 基板的表面或背面可設置防透濕層(氣體阻隔障層)。 氧化(氣體阻障層)的材料例如:氣‘、 等而2防透濕層(氣體阻障層)例如可利用高頻濺鍍法 ••其他構成- 成無特職制,可依目的適當卿,例 «德、封谷器、樹脂密封層、密封接著劑等。 、 上述保護層、密封容器、樹脂密封層 本無特別限制,可依目的適當選擇,例如可應二曰 _驅^特開2_-152572號公報等t記载的事項。〜 本發明的有機電激發光元件可藉由向陽極與陰極之間 201212322 施加直流(視需要可含有交流成分)電壓(通常2伏特〜15 伏特)或者直流電流,而獲得發光。 本發明的有機電激發光元件可藉由薄膜電晶體(TFT) ,應用於主動矩陣。賴電晶體的主動層可應財晶石夕、 尚溫多晶石夕、低溫多晶石夕、微晶石夕、氧化物半導體有機 半導體、碳奈米管等。 本發明的有機电激發光元件例如可應用國際公開 2005/088726號小冊、日本專利特開2〇〇6_165529號公報、 美國專利申請公開2_/G237·號說明書料記載的薄 膜電晶體。 本發明,有機電激發光元件無特別限制,可利用各種 已知方法提高取級率。例如可藉由加卫基板表面形狀(例 如形成微細的凹凸圖案),控制基板、加層、有機芦的折 射率’控制基板、ITO層、有機層的厚度等,而使取光效 率提高’並使外部量子效率提高。It is 0 01 50 Wt%, more preferably 0.05~30 wt%, especially good A knows the method ^ / ^ *The runner layer has no special difficulty, and can be formed by using the method of vaporization. For example, the vapor deposition method JT can be utilized. Wet coating method t dry plating method such as dry film forming method, 4 words cloth removal, transfer method, printing method = film method, the above-mentioned hole injection exhibition; "Μ, 垦 式 4, and appropriately formed. Preferably, the thickness of the transport layer is preferably a thickness of 10 to 200, and the electrical function is to prevent the organic layer from being transported from the cathode side to the light-emitting layer. As the compound which transports the electric charge and supports, for example, a compound exemplified as the above-mentioned hole transport material can be used. Further, a single layer of one or two or more kinds of materials is obtained, and a multilayered layer of two or more layers of the above composition or different compositions is obtained. 3 The same composition of the above-mentioned electron blocking layer is not particularly limited 'can be formed by a known method, for example, dry film forming method such as vapor deposition method or sputtering method, wet coating method, transfer method, printing method, or ink jet method And formed appropriately. The thickness of the above electron blocking layer is preferably a urethane, more preferably U nm ' is preferably 3 to 10 nm. <Substrate> The organic electroluminescent device of the present invention is preferably provided on a substrate, and may be provided in such a manner that the electrode is in direct contact with the substrate, or may be inserted in a ten-layer arrangement. The material of the above substrate is not particularly limited and may be appropriately selected according to the purpose, such as oxygen, yttrium stabilized yttrium oxide (ysz), glass (alkali-free glass, nano-calcium glass, etc.) and other inorganic materials; poly-p-benzoquinone Polyesters such as acid bis vinegar, poly(p-dibenzoic acid I monoester), polyethylene naphthalate, etc.; polystyrene, polycarbonate, *fang|"'s brewed imine, polycyclic hydrocarbon, lower Organic materials such as borneol resin and ♦ (chlorodifluoroethylene). The shape, structure, and size of the above-mentioned substrate are not particularly limited, and may be appropriately selected depending on the shape, purpose, and the like of the two pieces. Generally, the shape of the substrate is better, f, the structure of the plate may be a single layer structure 'may also be a laminated structure; the other 'can be formed by a single member, or two can be transparent with =" can also be opaque; transparent In the case of the second f transparent, it can also be colored and transparent. ., , 'The surface of the base plate or the back surface may be provided with a moisture barrier layer (gas barrier layer). Oxidation (gas barrier layer) materials such as: gas ', etc. 2 moisture barrier layer (gas barrier layer), for example, can be used by high-frequency sputtering method • other components - into a special system, can be appropriate according to the purpose , for example, German, sealer, resin sealing layer, sealing adhesive, etc. The protective layer, the sealed container, and the resin sealing layer are not particularly limited, and may be appropriately selected according to the purpose, and may be, for example, a matter described in the following paragraphs such as the Japanese Patent Publication No. 2_-152572. ~ The organic electroluminescent device of the present invention can obtain luminescence by applying a direct current (which may contain an alternating current component) voltage (usually 2 volts to 15 volts) or a direct current between the anode and the cathode 201212322. The organic electroluminescent device of the present invention can be applied to an active matrix by a thin film transistor (TFT). The active layer of the Lai crystal can be used in the case of Cica, the temperature of the polycrystalline stone, the low temperature polycrystalline stone, the microcrystalline stone, the oxide semiconductor organic semiconductor, the carbon nanotube. The organic electroluminescent device of the present invention can be applied, for example, to a film transistor described in International Publication No. 2005/088726, Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. In the present invention, the organic electroluminescent device is not particularly limited, and the rate of grading can be improved by various known methods. For example, by adjusting the surface shape of the substrate (for example, forming a fine concavo-convex pattern), the substrate, the layer, the refractive index of the organic reed, the thickness of the control substrate, the ITO layer, and the organic layer can be controlled to improve the light extraction efficiency. Increase external quantum efficiency.

,來自本發明的有機電激發光元件的取光方式可為頂發 光(top emission)方式,亦可為底發光方式。 、X 本發明的有機電激發光元件可具有共振器結構。例 如’第-祕中’於透明基板上重疊而具有包含折射 同的多個積層膜的多層膜鏡面、透明或半透明電極、發光 ^以及金屬電極。發光射產生的光是衫㈣鏡面及 ,屬電極為反射板,於其間反覆進行反射而共振。 第二態樣中’於透明基板上,透明或半透明電極 屬電極分別發揮反射板的魏,發光層中產生的光於&amp;間 201212322, 反覆進行反射而共振。 為形成共缝構’而將由2塊反射_梭折射率、 2板_各層輯射率及厚度所蚊的光 最適於獲得所需共振波長的值。 為 上述第-態樣的情況的計算式記載於日 9-180883號公報。 開十 上述第二態樣的情況的計算式記餅 2004-127795號公報^ 寻扪将開 -用途_ 本發明的有機電激發光元件無特別限制,可依 虽選擇用於顯示元件、顯示器、背光源、電子相片、昭明 巧、記錄光源、曝光光源、讀取光源、標識、看板、、内 裝材料(interior)、光通信等。 使上述有機電激發光顯示器成為全彩型顯示器的 =如已知以下者:如「月刊顯示器」2_年9月號第3W 頁^己載,將分別發出對應於顏色的三原色(藍⑻、綠 紅(R))的光的有機電激發光元件配置於基板上的3色 光法;使藉由自色發細有機電激發光元件的白色發光^ 過彩色渡光片而分成三原色的白色法;使藉^色發 光用有機電激發光元件的藍色發光通過螢光色素層而 為紅色(R)及綠色(G)的色轉變法等。 [實例] 以下說明本發明的實例,但本發明不受其任何限制。 以下實例中,第一、二電子傳輸層的平均厚度是利用The light-collecting method of the organic electroluminescent device of the present invention may be a top emission method or a bottom emission method. X The organic electroluminescent device of the present invention may have a resonator structure. For example, 'the first secret' overlaps on a transparent substrate and has a multilayer film mirror including a plurality of laminated films having the same refractive index, a transparent or semi-transparent electrode, a light-emitting element, and a metal electrode. The light generated by the illuminating shot is the mirror surface of the shirt (4), and the electrode is a reflecting plate, which is reflected and reciprocated repeatedly. In the second aspect, on the transparent substrate, the transparent or semi-transparent electrode electrodes respectively act as the reflectors, and the light generated in the light-emitting layer is reflected and reciprocated repeatedly in &amp; 201212322. In order to form the co-sewn structure, the light of the two reflection-fuzzy refractive index, the two-plate-by-layer vitrification rate, and the thickness of the mosquitoes are most suitable for obtaining the value of the desired resonance wavelength. The calculation formula for the case of the above-described first aspect is described in Japanese Patent Publication No. 9-180883. In the case of the above-described second aspect, the calculation formula is disclosed in Japanese Laid-Open Patent Publication No. 2004-127795. The organic electroluminescent device of the present invention is not particularly limited, and may be selected for display elements, displays, and Backlights, electronic photos, Zhaomingqiao, recording light sources, exposure light sources, reading light sources, signs, billboards, interior materials, optical communications, etc. The above-mentioned organic electroluminescent display is made into a full-color display = as known below: if the "Monthly Display" 2nd September issue 3W page is loaded, the three primary colors corresponding to the color (blue (8), a three-color light method in which a green-red (R) light organic electroluminescence element is disposed on a substrate; and a white light method in which three-primary colors are separated by a white light-emitting color light-emitting sheet of a color-developing organic electroluminescence element; The color conversion method in which the blue light emission of the organic light-emitting element for light-emitting illumination is passed through the fluorescent pigment layer to be red (R) and green (G). [Examples] Examples of the invention are described below, but the invention is not limited thereto. In the following examples, the average thickness of the first and second electron transport layers is utilized.

S 42 201212322 · 觸針式表面形狀測定器測定3處所得平均值的平均厚声。 (比較例A1) 予又。 -有機電激發光元件的製作― 於厚度0.5 mm、2.5 cm見方的玻璃基板上,利用濺鍍 法,以厚度成為70nm的方式設置IT〇作為陽極。接著^ 將附有ΙΤΟ的玻璃基板放入清洗容器,於2_丙醇中進行 音波清洗後,進行30分鐘的紫外線-臭氧處理。 丁。 接著,於附ΙΤΟ玻璃基板上,在下述結構式所表 2-ΤΝΑΤΑ (4,4’,4&quot;_三(2_萘基苯基胺基)三苯基胺)中^ 的下述結構搞表_如細㈡卩从吨 二曱烧(F4TCNQ ) ’利用真空蒸鑛法形成厚度45她 洞注入層(HIL)。 €S 42 201212322 · The stylus type surface shape measuring device measures the average thick sound of the average value obtained at three places. (Comparative Example A1) To be again. - Fabrication of Organic Electroluminescence Element - On a glass substrate having a thickness of 0.5 mm and 2.5 cm square, IT 〇 was set as an anode so as to have a thickness of 70 nm by sputtering. Next, the glass substrate with ruthenium was placed in a cleaning container, and subjected to sonic cleaning in 2-propanol, followed by ultraviolet-ozone treatment for 30 minutes. Ding. Next, on the glass substrate, the following structure of 2-(4,4',4&quot;_tris(2-naphthylphenylamino)triphenylamine) is shown in the following structural formula. Table _ as fine (2) 卩 from tons of bismuth (F4TCNQ) 'Using vacuum distillation method to form thickness 45 her hole injection layer (HIL). €

2-TNATA2-TNATA

NC、/CNNC, /CN

NC 人 CN F4-TCN0 接著,於電洞注入層上,以厚度成為1〇11111的方式篆 鍍下述結構式所表示的NPD ’而形成電洞傳輪層(HTl)、: 43 201212322NC person CN F4-TCN0 Next, the hole transmission layer (HT1) is formed by plating the NPD ′ represented by the following structural formula on the hole injection layer so as to have a thickness of 1〇11111: 43 201212322

QQ

NPD 接著,於電洞傳輸層上,形成以下述結構式所表示的 化合物H-1為主體、下述結構式所表示的化合物D-1為發 光材料的發光層。 具體而言,將成為發光材料的化合物D-1與成為主體 的化合物H-1設於蒸鍍裝置的不同蒸鍍源。接著,將兩者 的蒸發皿(Boat)加熱,適當切換設置有化合物D-1之侧 的擋板的開閉,而積層2層發光材料摻雜層及2層發光材 料非摻雜層。亦即,自陽極侧起依序積層第一發光材料非 摻雜層、第一發光材料摻雜層、第二發光材料非摻雜層及 第二發光材料摻雜層。 其間,藉由擋板開放及關閉的時間設定,調整為2層 發光材料摻雜層的厚度分為7 5 nm&amp;2層發光材料非摻雜 層的厚度分為7.5 nm。發光層整體厚度為3〇 nm。成為發NPD Next, on the hole transport layer, a compound X-1 represented by the following structural formula and a compound D-1 represented by the following structural formula are formed as a light-emitting layer. Specifically, the compound D-1 to be a light-emitting material and the compound H-1 to be a main component are provided in different vapor deposition sources of the vapor deposition device. Next, the two plates were heated, and the opening and closing of the baffle on the side where the compound D-1 was provided was appropriately switched, and two layers of the light-emitting material doping layer and the two layers of the light-emitting material undoped layer were laminated. That is, the first luminescent material non-doped layer, the first luminescent material doped layer, the second luminescent material undoped layer, and the second luminescent material doped layer are sequentially stacked from the anode side. In the meantime, the thickness of the doped layer of the two layers of the luminescent material is adjusted to be 7 5 nm &amp; the thickness of the undoped layer of the two layers of the luminescent material is divided into 7.5 nm by the time setting of opening and closing of the baffle. The overall thickness of the luminescent layer is 3 〇 nm. Become a hair

Η-1 接著,於發光層上,以平均厚度成為35nm的方式蒸Η-1 Next, steamed on the luminescent layer in such a manner that the average thickness became 35 nm.

S 44 201212322 鍍下述結構式所表示的化合物Ε·1,S 44 201212322 Plating the compound Ε·1 represented by the following structural formula,

而形成電子傳輪層。 接著,於電子傳輸層上,以厚度成為i啲的 鍵SiO,而形成附著改善層。 …、 接著’於附著改善層上設置圖案化的遮罩(發光區域 為2 mmx2 mm的遮罩),以厚度成為7〇 nm的方式蒸 屬IS (A1),而形成陰極。 、'The electron transfer layer is formed. Next, an adhesion improving layer was formed on the electron transporting layer with a bond SiO having a thickness of i 。. Then, a patterned mask (a mask having a light-emitting area of 2 mm x 2 mm) was placed on the adhesion improving layer, and IS (A1) was vaporized so as to have a thickness of 7 〇 nm to form a cathode. , '

、將以上^式製作的積層體放人氬氣麵的手套箱内, 以不鏽鋼製密封罐、乾燥劑(HD-S-071205-40,Dynic公 司製)及紫外線硬化型接著劑(XNR55 i 6HV ,Nagase Ciba a司製)岔封,藉此製作比較例A1的有機電激發光元件。 (比較例A2) -有機電激發光元件的製作· 除了將比較例A1的電子傳輸層替代為以下述方式製 作的第一電子傳輪層及第二電子傳輸層以外,以與比較例 A/相同的方式,製作比較例A2的有機電激發光元件。 •第-電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為l〇nm的方式蒸鍍上述結構式所表示 ^化合物E·1,而形成第-電子傳輸層。然後於該第一電 傳輸層上’在上述結構式所表料化合物中糝雜0.6 Wt/〇的轉為還祕摻質,以平均厚度成為25 nm的方式 進行蒸鍍,㈣成第二電子傳輸層。 45 201212322 (比較例A3 ) -有機電激發光元件的製作_ 除y將比較例A1中的電子傳輸料代為以下述 製作的第-電子傳輸層及第二電子傳輸層以外,以^ 例A1相同的方式,製作比較例A3的有機電激發光元二較 -第-電子傳輸層及第二電子雜層的製作· 以平均厚度;&amp;為1Gnm的枝紐 的化合物E·卜而形成第-電㈣ 赋所表不 X乐€千傳輸層。然後於該第一電 子傳輸層上’在上频構式絲示的化合物W中The laminated body made of the above formula is placed in an argon-filled glove box, and is made of a stainless steel sealed can, a desiccant (HD-S-071205-40, manufactured by Dynic), and an ultraviolet curing adhesive (XNR55 i 6HV). The Nagase Ciba a system was used to seal the organic electroluminescent device of Comparative Example A1. (Comparative Example A2) - Preparation of Organic Electroluminescence Element - The comparison with the comparative example A/ except that the electron transport layer of Comparative Example A1 was replaced with the first electron transport layer and the second electron transport layer produced in the following manner. In the same manner, the organic electroluminescent device of Comparative Example A2 was produced. • Preparation of the first electron transporting layer and the second electron transporting layer _ The compound E·1 represented by the above structural formula was vapor-deposited so that the average thickness became l〇nm, and the first electron transporting layer was formed. Then, on the first electrotransport layer, '0.6 Wt/〇 in the above-mentioned structural formula compound is converted into a reductive dopant, and the average thickness is 25 nm, and (4) into a second electron. Transport layer. 45 201212322 (Comparative Example A3) - Preparation of organic electroluminescence device - The same as in Example A1 except that the electron transport material in Comparative Example A1 was replaced by the first electron transport layer and the second electron transport layer produced as follows. In the manner of producing the organic electroluminescence element 2 of Comparative Example A3, the preparation of the -electron transport layer and the second electron heterolayer, the average thickness; &amp; Electricity (4) The table is not X Le thousand transmission layer. Then on the first electron transport layer 'in the compound W of the upper frequency configuration

Wt%的卸作為還原性摻質,以平均厚度成為25 n:的方气 進行蒸鍍,而形成第二電子傳輪層。 式 (比較例A4) θ -有機電激發光元件的製作_ 除了將比較例A1中的電子傳輸層替代為以下述方式 製作的第-電子傳輪層及第二電子傳輸層,且*形成作 附著改善層的si〇以外’轉比㈣A1相同的方式,&amp; 作比較例A4的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為l〇nm的方式蒸鐘上述結構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上,在上述結構式所表示的化合物Eq中摻雜〇 3 wt%的裡及G.4 wt°/〇的鉀作騎雜摻質,以平均厚度成為 25 nm的方式進行蒸鍍,而形成第二電子傳輸層。 (比較例A5 )Wt% was discharged as a reducing dopant, and vapor deposition was carried out with a square gas having an average thickness of 25 n: to form a second electron transport layer. Formula (Comparative Example A4) Preparation of θ-Organic Electroluminescent Device _ In addition to replacing the electron transport layer in Comparative Example A1 with the first electron transport layer and the second electron transport layer produced in the following manner, and * formation The organic electroluminescent device of Comparative Example A4 was used in the same manner as in the case of the Si (the fourth aspect) A1 of the adhesion improving layer. - Fabrication of First Electron Transport Layer and Second Electron Transport Layer _ The compound E-1 represented by the above structural formula is vaporized so that the average thickness becomes l 〇 nm to form a first electron transport layer. Then, on the first electron transport layer, the compound Eq represented by the above structural formula is doped with 〇3 wt% and G.4 wt°/〇 potassium as a doping dopant to have an average thickness of 25 nm. The evaporation is performed in a manner to form a second electron transport layer. (Comparative Example A5)

S 46 201212322 Ll. •有機電激發光元件的製作_ 除了將味例Μ的發光収為在上述結構式表示的 化合物Η·1巾摻雜IS wt%的上述結構式杨的化合物d i 的發光層(厚度30 nm)’ S將電子傳輸層#代為以下述方 式製作的第-電子傳輸層及第二電子傳輸層以外,以盥比 較例A14目同的方式,製作比較例“的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為10 nm的方式蒸鍍上述結構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上’在上述結構式所表示的化合物Ε_ι中掺雜〇 3 wt〇/。的鋰及0·4 Wt%的鉀作為還原性摻質,以平均厚/度成為 25 nm的方式進行蒸鍍,而形成第二電子傳輸層。 接著,將使比較例A1中的第一電子傳輪層的平均厚 度及第二電子傳輸層的平解度變化_子示於以下的比 較例A6及實例A1〜A7。 (比較例A6) 有機電激發光元件的製作_ 除了將比較例A1中的電子傳輸層替代為以下述方式 製作的電子傳輸層财卜,以無齡】A1相同的方式,製 作比較例A6的有機電激發光元件。 -電子傳輸層的製作- 在上述結構式所表示的化合物E-1中摻雜〇3 wt%的 U及0.4 wt%的鉀作為還原性摻質,以平均厚度成為%邮 的方式進行驗’而形成電子傳輸層。 47 201212322 (實例Al) -有機電激發光元件的製作- 除了將比棚Ai巾的電子傳輸層替代為以下述方式 製作的第一電子傳輸層及弟二電子傳輸層以外以與比較 例A1相同的方式’製作實例八丨的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為2 nm的方式蒸鍍上述結構式所表示 的化合物E·卜而形成第-電子傳輸層1後於該第一電 子傳輸層上,在上述結構式所表示的化合物E]中推雜〇3 wt%的減G.4 Wt%的鉀作騎原性摻質,以平均厚度成為 33 nm的方式進行蒸鍍,而形成第二電子傳輸層。 (實例A2) -有機電激發光元件的製作- 除了將比較例A1巾的電子傳輸料代為以下述方 製作的第-電子傳輸層及第二電子傳輸層以外,以斑比二 例Ai 4目同的方式,製作實例A2的錢電激發光元件。 -第-電子傳輸層及第三電子傳輸層的製作_ 以平均厚度成為4 mn的方式驗上述結構式— 的化合物E·卜而形成第―電子傳輸層。然後於該第: 子傳輸層上,在上述結構式所表示的化合物中〇 感的鐘及0.4 Wt%的鉀作為還原性摻質,以平均厚声、资3 31 mn的方式進行魏,而形成第二電子傳輸層/成為 (實例A3) -有機電激發光元件的製作_ 48 201212322,』 製作二中的電子傳輸層替代為以下述方式 例八!相_方式,製3 3 +傳輸層^卜,比較 + 3的有機電激發光元件。 二f=電子傳輪層的製作_ L· 1又成為7 nm的方式蒸鍍上述結構式所表示 wt。/心及G4 ^結構式所表示的化合物£]中摻雜0.3 wt/〇的鐘及G·4 wt/。的鉀作 28 nm的方式進行# 心摻貝以千%度成為 (實例M) 鍍娜絲二電子傳輸層。 •有機電激發光元件的製作、 除了將比較例A1土 製作的第-電子傳輪層2電子傳輸層替代為以下述方式 例Ai 4目同的方式,電子傳輸層以外,以與比較 -第-電子聽収第_機電激發^件。 以平均戽m 傳輸層的製作_ 的化合物E_h㈣成方式蒸鍍上述結構式所表示 子傳輸層上,在域子籠層。織於該第一電 祕雜及G.4 wt%的示的化合物E·1中摻雜 (實例A5) 鍍而形成第二電子傳輸層。 -有機電激發光元件的製作 子傳輸層替代為以下述方式 電子傳輸層以外,以與比較 除了將比較例A1中的電 製作的第一電子傳輸層及第二S 46 201212322 Ll. Manufacture of organic electroluminescence device _ In addition to the luminescence of the sputum Μ, the luminescent layer of the compound di of the above-mentioned structural formula, which is doped with IS wt% of the compound Η·1 towel represented by the above structural formula (Thickness: 30 nm) 'S The electron transport layer # was replaced by the first electron transport layer and the second electron transport layer produced in the following manner, and the organic electroluminescence of the comparative example was produced in the same manner as in Comparative Example A14. - Preparation of the first electron transport layer and the second electron transport layer - The compound E-1 represented by the above structural formula is vapor-deposited so as to have an average thickness of 10 nm to form a first electron transport layer. On the electron transport layer, 'the compound Ε_ι represented by the above structural formula is doped with 〇3 wt〇/. of lithium and 0.44 wt% of potassium as a reducing dopant, and the average thickness/degree is 25 nm. The vapor deposition was carried out to form a second electron transport layer. Next, the average thickness of the first electron transport layer and the flatness of the second electron transport layer in Comparative Example A1 were shown in the following Comparative Example A6. And examples A1 to A7. (Comparative Example A6) Organic Preparation of Electroluminescence Element _ The organic electroluminescence element of Comparative Example A6 was produced in the same manner as in the case of the age-free A1 except that the electron transport layer in Comparative Example A1 was replaced by the electron transport layer produced in the following manner. - Preparation of Electron Transport Layer - In the compound E-1 represented by the above structural formula, 〇3 wt% of U and 0.4 wt% of potassium are doped as reducing dopants, and the average thickness is % by mail. Forming an electron transport layer. 47 201212322 (Example Al) - Fabrication of an organic electroluminescent device - except that the electron transport layer of the shed Ai towel was replaced by the first electron transport layer and the second electron transport layer fabricated in the following manner An organic electroluminescent device of the example gossip was produced in the same manner as in Comparative Example A1. - Fabrication of the first electron transport layer and the second electron transport layer - vapor deposition of the above structural formula in such a manner that the average thickness was 2 nm After forming the first electron transporting layer 1 on the first electron transporting layer, a compound of the formula E is used to push a ruthenium of 3 wt% of G.4 Wt% of potassium in the compound E] Riding the original dopants to average The second electron transport layer was formed by vapor deposition in a manner of 33 nm. (Example A2) - Fabrication of Organic Electroluminescent Device - Except that the electron transporting material of Comparative Example A1 was replaced by the first electron produced by In addition to the transport layer and the second electron transport layer, the money electroluminescent element of Example A2 was produced in the same manner as the two examples of Ai 4. The fabrication of the first electron transport layer and the third electron transport layer was performed with an average thickness. A method of 4 mn is used to examine the compound E of the above structural formula to form an electron transport layer. Then, on the first sub-transport layer, a chirped time and 0.4 Wt% in the compound represented by the above structural formula are obtained. Potassium as a reducing dopant, the average thick sound, 3 31 mn way to form Wei, and the formation of the second electron transport layer / become (example A3) - the production of organic electroluminescent elements _ 48 201212322,』 The electron transport layer in the middle is replaced by the following example eight! Phase_mode, system 3 3 + transport layer ^, compare + 3 organic electroluminescent elements. The production of the second f=electron transport layer _ L·1 is again 7 nm to vapor-deposit the wt expressed by the above structural formula. The compound represented by the G4^ structural formula is doped with 0.3 wt/〇 of the clock and G·4 wt/. The potassium is carried out in a 28 nm manner. #心掺贝 becomes a thousandth degree (Example M). • Production of an organic electroluminescence device, except that the electron transport layer of the first electron-transport layer 2 produced in Comparative Example A1 was replaced by the same method as in the following example Ai 4, in addition to the electron transport layer, -Electronic listening to the first _ electromechanical excitation. The sub-carrier layer is deposited on the sub-transport layer represented by the above structural formula by the compound E_h (four) of the production of the average 戽m transport layer. The second electron-transporting layer was formed by doping (Example A5) in the compound E·1 of the first electroacoustic and G.4 wt%. - Fabrication of Organic Electroluminescence Element The sub-transport layer was replaced by the first electron-transport layer and the second in addition to the electron-transport layer in the following manner except for the electron transport layer in Comparative Example A1.

S 49 201212322 · 例乂相_方式’製作實例A5的有機電激發光元件β -第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為13 nm的方式蒸鍍上述結構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上’在上述結構式所表示的化合物E1中摻雜Ο」 wt%的鋰及0.4 wt%的鉀作為還原性掺質,以平均厚度成為 22 nm的方式進行蒸鍍,而形成第二電子傳輸層。 (實例A6) -有機電激發光元件的製作- 除了將比較例A1 +的電子傳輸料代為町述方式 製作的第-電子傳輸層及第二電子傳輸層以外,以與比較 例A1相同的方式,製作實例从的有機電激發光元件。 第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為16nm的方式蒸鍍上述結構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上’在上述結構式所表示的化合物中摻雜〇 3 wt%的鋰及0.4 wt%的鉀作為還原性摻質,以平均厚度成為 19 nm的方式進行蒸鍍,而形成第二電子傳輸層。 (實例A7) -有機電激發光元件的製作_ 除了將比較例A1中的電子傳輸層替代為以下述方式 製作的第一電子傳輸層及第二電子傳輸層以外,以與比較 例A1相同的方式,製作實例a?的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作- 50 201212322.; 以平均厚度成為20 nm的方式蒸鍍上述結構式所表示 的化。物E]’㈣成第—電子傳輸層。然後於該第—電 子傳輸層上,在上述結赋所表示的化合物e i巾捧雜 wt%的鐘及0.4 Wt%的鉀作為還原性摻f,时均厚度成為 15nm的方式進行蒸鍍,而形成第二電子傳輸層。 (比較例B1) -有機電激發光元件的製作_ 除了將比較例A1中的發光層替代為下述方式製作的 發光層,將電子傳輸層的平均厚度變為4〇 nm,且以厚度 成為lnm的方式蒸鍍MgF2作為附著改善層以外,以與比 較例A1相同的方式,製作比較例B丨的有機電激發光元件。 -發光層的製作- 於電洞傳輸層上,形成以上述結構式所表示的化合物 H-1為主體、下述結構式所表示的化合物D_2為發光材料 的發光層。 具體而言’將成為發光材料的化合物D-2與成為主體 的化合物H-1設置於蒸鍍裝置的不同蒸鍍源。接著,將兩 者的蒸發皿加熱,適當切換設置有化合物D-2之側的擋板 的開閉,來積層2層發光材料摻雜層及2層發光材料非摻 雜層。亦即’自陽極侧起依序積層第一發光材料非摻雜層、 第一發光材料摻雜層、第二發光材料非摻雜層、及第二發 光材料捧雜層。 其間,藉由擋板開放及關閉的時間設定,調整為2層 發光材料摻雜層的厚度分為7.5 nm且2層發光材料非摻雜 51 5 201212322S 49 201212322 · Example phase _ mode 'Production of organic electroluminescent element β of Example A5 - Preparation of first electron transport layer and second electron transport layer _ Compound E-1 forms a first electron transport layer. Then, on the first electron transport layer, 'the compound E1 represented by the above structural formula is doped with Ο% of lithium and 0.4% by weight of potassium as a reducing dopant, and the average thickness is 22 nm. Plating to form a second electron transport layer. (Example A6) - Preparation of Organic Electroluminescence Element - The same manner as in Comparative Example A1 except that the electron transport material of Comparative Example A1 + was substituted into the first electron transport layer and the second electron transport layer produced by the method , the organic electroluminescent element from which the example was made. Production of First Electron Transport Layer and Second Electron Transport Layer _ The compound E-1 represented by the above structural formula was vapor-deposited so as to have an average thickness of 16 nm to form a first electron transport layer. Then, on the first electron transport layer, 'the compound represented by the above structural formula is doped with 〇3 wt% of lithium and 0.4 wt% of potassium as a reducing dopant, and the average thickness is 19 nm. And forming a second electron transport layer. (Example A7) - Preparation of Organic Electroluminescence Element - The same as Comparative Example A1 except that the electron transport layer in Comparative Example A1 was replaced with the first electron transport layer and the second electron transport layer which were produced in the following manner. In the manner, an organic electroluminescent element of Example a? was produced. - Fabrication of First Electron Transport Layer and Second Electron Transport Layer - 50 201212322. The vaporization of the above structural formula is carried out so that the average thickness becomes 20 nm. The object E]' (4) is the first electron transport layer. Then, on the first electron transporting layer, the compound ei, which is represented by the above-mentioned composition, and the wt% of the bell and 0.4 Wt% of potassium are used as the reductive doping f, and the thickness is 15 nm. A second electron transport layer is formed. (Comparative Example B1) - Preparation of Organic Electroluminescence Element - The average thickness of the electron transport layer was changed to 4 〇 nm, and the thickness was changed, except that the luminescent layer in Comparative Example A1 was replaced with the luminescent layer produced in the following manner. An organic electroluminescent device of Comparative Example B was produced in the same manner as in Comparative Example A1 except that MgF 2 was deposited as a adhesion improving layer in a lnm manner. In the production of the light-emitting layer, a light-emitting layer in which the compound D-1 represented by the above structural formula is a main component and the compound D_2 represented by the following structural formula is a light-emitting material is formed on the hole transport layer. Specifically, the compound D-2 to be a light-emitting material and the compound H-1 to be a main component are provided in different vapor deposition sources of the vapor deposition device. Next, the evaporating dish of both was heated, and the opening and closing of the baffle provided on the side of the compound D-2 was appropriately switched to laminate two layers of the luminescent material doping layer and the two luminescent material non-doped layers. That is, the first luminescent material undoped layer, the first luminescent material doped layer, the second luminescent material undoped layer, and the second luminescent material doped layer are sequentially laminated from the anode side. In the meantime, the thickness of the doped layer of the two layers of luminescent materials is adjusted to 7.5 nm and the two layers of luminescent materials are undoped by the time setting of opening and closing of the baffle 51 5 201212322

層的厚度分為7.5 nm。發光層整體厚度為3〇 nrn。成為發 光材料摻雜層中發光材料的化合物D-2的濃度為3〇〜以〇。 D-2 (比較例B2) -有機電激發光元件的製作_ j除了將比較例B1中的電子傳輸層替代為以下述方式 製作的第一電子傳輸層及第二電子傳輸層以外,以與比較 例B1相同的方式,製作比較例62的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作— 以平均厚度成為l〇nm的方式蒸鍍上述結構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上’在上述結構式所表示的化合物Ed中摻雜0.6 Wt%的鋰作為還原性摻質,以平均厚度成為30 nm的方式 進行蒸鍍,而形成第二電子傳輸層。 (比較例B3) -有機電激發光元件的製作_ 除了將比較例B1中的電子傳輸層替代為以下述方式 製作的第一電子傳輸層及第二電子傳輸層以外,以與比較 例B1相同的方式,製作比較例B3的有機電激發光元件。 •第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為10nm的方式蒸鍍上述結構式所表示 的化合物E-1 ’而形成第一電子傳輸層。然後於該第一電The thickness of the layer is divided into 7.5 nm. The overall thickness of the luminescent layer is 3 〇 nrn. The concentration of the compound D-2 which becomes a luminescent material in the doping layer of the luminescent material is 3 Å to 〇. D-2 (Comparative Example B2) - Preparation of Organic Electroluminescence Element - j except that the electron transport layer in Comparative Example B1 was replaced with the first electron transport layer and the second electron transport layer which were produced in the following manner, In the same manner as in Comparative Example B1, the organic electroluminescent device of Comparative Example 62 was produced. - Fabrication of First Electron Transport Layer and Second Electron Transport Layer - Compound E-1 represented by the above structural formula was vapor-deposited so that the average thickness became l 〇 nm to form a first electron transport layer. Then, on the first electron transport layer, 'the compound Ed represented by the above structural formula is doped with 0.6 Wt% of lithium as a reducing dopant, and the average thickness is 30 nm, and the second electron is formed. Transport layer. (Comparative Example B3) - Preparation of Organic Electroluminescence Element - The same as Comparative Example B1 except that the electron transport layer in Comparative Example B1 was replaced with the first electron transport layer and the second electron transport layer which were produced in the following manner. In the manner of the organic electroluminescent device of Comparative Example B3. - Preparation of First Electron Transport Layer and Second Electron Transport Layer - The compound E-1' represented by the above structural formula was vapor-deposited so as to have an average thickness of 10 nm to form a first electron transport layer. Then at the first electricity

S 52 201212322 子傳輸層上,在上述結構式 _的卸作為還原性中接㈣.8 進行蒸鐘,㈣成第二電子傳輪層厚4為3G⑽的方式 (比較例B4) θ •有機電激發光元件的製作_ 除了將比較例Β1中的電子傳輸層替 製,一電子傳輸層及第二電子傳輸層, 善:的MgF2以外’以與比較例&amp;相同二 作比杈例B4的有機電激發光元件。 製 -第-電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為⑺聰的方式紐上述結構式所 的化合物E·1,而形成第—電子傳制。然後於該第一電 子傳輸層上’在上縣構式所表示的化合物W中捧雜〇3 wt%的鋰及0.4 wt%的鉀作為還原性摻質,以平均厚度成為 30 mn的方式進行蒸鍍,而形成第二電子傳輸層。又*’、、 (比較例B5) -有機電激發光元件的製作- 除了將比較例B1的發光層改為在上述結構式表示的 化合物H-1中摻雜15 wt%的上述結構式表示的化合物d_2 的發光層(厚度30 nm),且將電子傳輸層替代為以下述方 式製作的第一電子傳輸層及第二電子傳輸層以外,以與比 較例B1相同的方式’製作比較例B5的有機電激發光元件^ -第一電子傳輸層及第二電子傳輸層的製作· 以平均厚度成為10nm的方式蒸鍍上述結構式所表示S 52 201212322 On the sub-transport layer, the above-mentioned structural formula is unloaded as a reductive medium (4). 8 is steamed, and (iv) is formed into a second electron-transport layer thickness 4 of 3G (10) (Comparative Example B4) θ • Organic electricity Production of Excitation Light Element - Except for the electron transport layer in Comparative Example 1, an electron transport layer and a second electron transport layer, other than MgF2, which is the same as Comparative Example &amp; Organic electroluminescent elements. Production of the -electron-transporting layer and the second electron-transporting layer _ The electron-transfer was formed by the compound E·1 of the above structural formula in an average thickness of (7) Cong. Then, on the first electron transport layer, '3 wt% of lithium and 0.4 wt% of potassium in the compound W represented by the upper structure are used as a reducing dopant, and the average thickness is 30 mn. Evaporation forms a second electron transport layer. Further, the preparation of the organic electroluminescence device was carried out except that the light-emitting layer of Comparative Example B1 was changed to the above-mentioned structural formula by doping 15 wt% of the compound H-1 represented by the above structural formula. Comparative Example B5 was produced in the same manner as Comparative Example B1 except that the light-emitting layer (thickness: 30 nm) of the compound d_2 was replaced with the first electron-transporting layer and the second electron-transporting layer which were produced in the following manner. Organic electroluminescence element - fabrication of first electron transport layer and second electron transport layer · vapor deposition of the above structural formula so that the average thickness is 10 nm

S 53 201212322 的化合物E],而形成第—電子傳輸層1後於 子傳輸層上’在上述結構式所表示的化合物E l中推雜㈧ wt%的鐘A 0.4 Wt%的鉀作為還原性摻質,以平均/产兔 30nm的方式進行蒸鑛,而形成第二電子傳輸層。又馬 接著,將使比較例B1中第一電子傳輸層的平 及第二電子傳輸層的平均厚度變化_子祕以下^ 例Β6以及實例Β1〜Β7。 (比較例Β6) -有機電激發光元件的製作_ 除了將比較例m中的電子傳輸層替代為以下述方 製作的電子傳輸層财卜’以纽較例B1相同的方式,製 作比較例B6的有機電激發光元件。 -電子傳輸層的製作- 在上述結構式所表示的化合物E_i中推雜〇 3惑的 锂及0.4 w|%的料鍵原性摻f,以平均厚度成為4〇腿 的方式進行蒸鐘,而形成電子傳輸層^ (實例B1) -有機電激發光元件的製作_ 除了將比較例B1中的電子傳輸層替代為以下述方式 製作的第-電子傳輸層及第二電子傳輸層以外,以與比較 例B1相同的方式,製作實例m的有機電激發光元件。 -第-電子傳輸層及第二電子傳輸層的製作, 以平均厚度成為2 nm的料蒸鍍上述結構式所表示 的化合物Ε·1,而形成第—電子傳輸層。然後於該第一電Compound 53 of S 53 201212322, and after forming the first electron transport layer 1 on the sub transport layer, 'in the compound E l represented by the above structural formula, (eight) wt% of the bell A 0.4 Wt% of potassium as a reducing property The dopant was subjected to steaming in an average/30 nm manner to form a second electron transport layer. Further, in the comparative example B1, the average thickness of the first electron-transporting layer in the first electron-transporting layer and the second electron-transporting layer in the comparative example B1 were changed to the following examples and examples Β1 to Β7. (Comparative Example 6) - Preparation of Organic Electroluminescence Element - Comparative Example B6 was prepared in the same manner as in Example B1 except that the electron transport layer in Comparative Example m was replaced by the electron transport layer produced in the following manner. Organic electroluminescent elements. - Preparation of electron-transporting layer - In the compound E_i represented by the above structural formula, lithium and 0.4 w|% of the material-bonding doping f are mixed, and the steaming is performed so that the average thickness becomes 4 〇 legs. Formation of an electron transport layer (Example B1) - Fabrication of an organic electroluminescence device - Except that the electron transport layer in Comparative Example B1 was replaced with the first electron transport layer and the second electron transport layer produced in the following manner, An organic electroluminescent device of Example m was produced in the same manner as in Comparative Example B1. - Preparation of the first electron transporting layer and the second electron transporting layer, the compound Ε·1 represented by the above structural formula was vapor-deposited with a material having an average thickness of 2 nm to form a first electron transporting layer. Then at the first electricity

S 54S 54

201212322 F 子傳輸層上’在上述結構式所表示的化合物E_1中摻雜〇 3 wt%的鐘及(Μ wt%的鉀作為還原性摻f,好均厚度成為 38 nm的方式進行蒸鍍,而形成第二電子傳輸層。 … (實例B2) -有機電激發光元件的製作_ 除了將比較例B1巾的電子傳輸料代為以下述 製作的第-電子傳輸層及第二電子體層以外,以與比^ 例B1相同的方式’製作實例B2的有機電激發光元件。’ -第-電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為4 nm的方式蒸鑛上述結構式 Μ ’而形成第—電子傳輸層。然後於該第—電 子傳輸層上,在上述結構式所衫的化合物W巾擦雜〇電 wt%的鐘及Μ wt%_作為還原⑽f, 免 36賊的方式進行級,㈣成第二電子傳輸層成為 (實例B3) -有機電激發光元件的製作_ 除了將比較例B1中的電子傳輸層替代A 製作的第:電子傳輸層及第二電 二V:二式及:作:例m的有機電激發光元件。乂 弟電子傳輪層及第二電子傳輸層的製作_ 的化3蒸_結構式所表示 子傳輸層上,在上 ㈣的鐘及Μ wt%的鉀作為還原性射以平均厚度成為3On the F-transport layer of 201212322, the compound E_1 represented by the above structural formula is doped with 〇3 wt% of the clock and (Μ wt% of potassium is used as the reductive doping f, and the average thickness is 38 nm. The second electron transport layer was formed. (Example B2) - Fabrication of Organic Electroluminescence Element - Except that the electron transport material of Comparative Example B1 was replaced by the first electron transport layer and the second electron body layer produced as follows The organic electroluminescent device of Example B2 was fabricated in the same manner as in Example B1. 'Production of the -electron transport layer and the second electron transport layer_The above structural formula was distilled in such a manner that the average thickness became 4 nm. Forming a first electron transport layer. Then, on the first electron transport layer, the compound W in the above-mentioned structure is wiped with a wt% of the clock and Μ wt%_ as a reduction (10)f, free of 36 thieves. Progression, (4) into the second electron transport layer (Example B3) - Fabrication of the organic electroluminescent device - Except that the electron transport layer in Comparative Example B1 was substituted for the A: the electron transport layer and the second electricity V: Two formulas and: as: Example m of organic electroluminescent elements. The production of the electronic transmission layer and the second electron transport layer of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

S 55 201212322, 33 mn的方式進行蒸鍍’而形成第二電子傳輸層。 (實例B4 ) -有機電激發光元件的製作_ 制二 較例B1中的電子傳輪層替代為以下述方式 衣作的第t子傳輸層及第二電子傳輸層 r1相同-的方式’製作實⑽的有機電峨元件。. 第-電子傳輸層及第二電子傳輸層的製作_ 的二rt厚度成為10 nm的方式蒸鍍上述結構式所表示 形成第—電子傳輸層。然後於該第-電 子傳輸層上’在上述結構式所表示的化合物w中播雜〇3 wt%的裡及G.4 wt%_作為還原性摻f,以平均厚度成為 30 nm的方式進行蒸鍍,而形成第二電子傳輸層。 (實例B5) -有機電激發光元件的製作_ 除了將比較例B1巾的電子傳輸層❺代為以下述方式 製作的第-電子傳輸層及第二電子傳輸層以外,以與比較 例B1相同的方式’製作實例B5的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度絲n nm的方絲社賴構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上’在上述結構式所表示的化合物E-1中摻雜〇 3 wt%的鋰及0.4 Wt%的鉀作為還原性摻質’以平均厚度成為 27 nm的方式進行蒸鍍,而形成第二電子傳輸層。 (實例B6)S 55 201212322, 33 mn is vapor-deposited to form a second electron transport layer. (Example B4) - Fabrication of Organic Electroluminescence Element - The second electron transfer layer in Comparative Example B1 was replaced by the same method as the t-th sub-transport layer and the second electron-transport layer r1. Organic (10) organic electrode element. The first electron transport layer and the second electron transport layer were formed by vapor deposition of the above structural formula to form a first electron transport layer. Then, on the first electron-transporting layer, 'in the compound w represented by the above structural formula, 〇3 wt% and G.4 wt%_ are used as the reductive doping f, and the average thickness is 30 nm. Evaporation forms a second electron transport layer. (Example B5) - Preparation of Organic Electroluminescence Element - The same as Comparative Example B1 except that the electron transport layer of Comparative Example B1 was replaced by the first electron transport layer and the second electron transport layer produced in the following manner. Method 'The organic electroluminescent element of Example B5 was fabricated. - Fabrication of the first electron transporting layer and the second electron transporting layer - The first electron transporting layer was formed by the compound E-1 represented by the square wire structure of the average thickness of the wire n nm. Then, on the first electron transport layer, 'the compound E-1 represented by the above structural formula is doped with 〇3 wt% of lithium and 0.4 wt% of potassium as a reducing dopant' in such a manner that the average thickness becomes 27 nm. Evaporation is performed to form a second electron transport layer. (Example B6)

S 56 201212322 有機電激發光元件的製作_ 除了將比較例m中的電子傳輸層替代為以下述 製作的第-電子傳輪層衫二電子傳儲料,以盘比 例m相_方式’製作實例B6的錢f激發光元件。 -第-電子傳輸層及第二電子傳輪層的製作_ 以平均厚度成為l6nm的技驗以結構式所表示 的化合物E-卜而形成第—電子傳輸層。然後於該第—雷 子傳輸層上,在_Li4結赋縣*的化合物E1巾推雜 wt%的減0·4 Wt%的钟作為還原性換質,以平 兔 24咖的方式進行蒸鑛,而形成第二電子傳輸層。為 (實例B7) -有機電激發光元件的製作_ 除了將比較例B1中的電子傳輸層替代為以下述方 製作的第-電子雜層及第二電子傳輸層料,賴比: 例m相同的方式,製作實例Β7的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為2G nm的方式驗上述結構式 的化合物E-卜而形成第一電子傳輸層。然後於該第一電 子傳輸層上,在上述結構式所表示的化合物E_〗中摻雜〇3 wt%的鋰及0.4 wt%的鉀作為還原性摻質,以平均厚&gt;度成為 20mn的方式進行蒸鍍,而形成第二電子傳輪層。又 (比較例C1) -有機電激發光元件的製作- 除了將比較例A1 +的發光層替代為下述方式製作的 57 201212322 發光層,將電子傳輸層的平均厚度變為50 nm,且以厚度 成為1 nm的方式蒸鏡LizO作為附著改善層以外,以與比 較例A1相同的方式,製作比較例C1的有機電激發光元件。 -發光層的製作- 於電洞傳輸層上’形成以下述結構式所表示的化合物 H-2為主體、下述結構式所表示的化合物D-3為發光材料 的發光層。 具體而言,將成為發光材料的化合物D-3與成為主體 的化合物H-2設置於蒸鍍裝置的不同蒸鍍源。接著,將兩 者的蒸發服加熱’適當切換設置有化合物D-3之側的擋板 的開閉’來積層2層發光材料摻雜層及2層發光材料非摻 雜層。亦即’自陽極側起依序積層第一發光材料非摻雜層、 第一發光材料摻雜層、第二發光材料非摻雜層及第二發光 材料捧雜層。 其間’藉由擋板開放及關閉的時間設定,調整為2層 發光材料摻雜層的厚度分為7.5 nm且2層發光材料非摻雜 層的厚度分為7.5 nm。發光層整體厚度為30 nm。成為發 光材料摻雜層中的發光材料的化合物D-3的濃度為1 wt%。S 56 201212322 Preparation of organic electroluminescent element _ In addition to replacing the electron transport layer in Comparative Example m with the first-electron transfer layer two electron transfer material prepared as follows, an example of making a disc ratio m phase_method B6's money f excites the light element. - Preparation of the first electron transporting layer and the second electron transporting layer - The first electron transporting layer was formed by a compound E-b represented by a structural formula in a technique having an average thickness of 16 nm. Then, on the first-thunder transport layer, the compound E1 towel of _Li4 knot-making county* is used to reduce the wt% minus 0.44 Wt% clock as a reducing quality, and steaming in the form of a flat rabbit 24 coffee. Mine, forming a second electron transport layer. (Example B7) - Preparation of Organic Electroluminescent Device - In addition to replacing the electron transport layer in Comparative Example B1 with the first-electron hybrid layer and the second electron transport layer produced in the following manner, the ratio is the same as in Example m The method of making the organic electroluminescent element of Example Β7. - Fabrication of the first electron transporting layer and the second electron transporting layer - The first electron transporting layer was formed by examining the compound E-b of the above structural formula in such a manner that the average thickness became 2 G nm. Then, on the first electron transport layer, the compound E_〗 represented by the above structural formula is doped with 〇3 wt% of lithium and 0.4 wt% of potassium as a reducing dopant, and the average thickness &gt; degree becomes 20 mn. The vapor deposition is performed to form a second electron transport layer. Further (Comparative Example C1) - Preparation of Organic Electroluminescence Element - The average thickness of the electron transport layer was changed to 50 nm, except that the light-emitting layer of Comparative Example A1 + was replaced by the 57 201212322 light-emitting layer produced in the following manner. An organic electroluminescent device of Comparative Example C1 was produced in the same manner as in Comparative Example A1 except that the vapor-deposited lens LizO having a thickness of 1 nm was used as the adhesion improving layer. In the production of the light-emitting layer, the compound H-2 represented by the following structural formula is mainly formed on the hole transport layer, and the compound D-3 represented by the following structural formula is a light-emitting layer of a light-emitting material. Specifically, the compound D-3 to be a light-emitting material and the compound H-2 to be a main component are provided in different vapor deposition sources of the vapor deposition device. Next, the evaporation suits of the two were heated and the opening and closing of the baffle provided on the side of the compound D-3 was appropriately switched to laminate two layers of the light-emitting material doping layer and the two layers of the light-emitting material non-doped layer. That is, the first luminescent material undoped layer, the first luminescent material doped layer, the second luminescent material undoped layer, and the second luminescent material mixed layer are sequentially laminated from the anode side. In the meantime, the thickness of the doped layer of the two layers of the luminescent material was adjusted to 7.5 nm by the time setting of the opening and closing of the baffle, and the thickness of the undoped layer of the two layers of the luminescent material was 7.5 nm. The overall thickness of the luminescent layer is 30 nm. The concentration of Compound D-3 which became a luminescent material in the doping layer of the luminescent material was 1 wt%.

(比較例C2) -有機電激發光元件的製作_ 除了將比較例C1中的電子傳輸層替代為以下述方式(Comparative Example C2) - Fabrication of Organic Electroluminescent Device - In addition to replacing the electron transport layer in Comparative Example C1 in the following manner

S 58 201212322.: 製作的第-電子傳輪層及第二電子傳輸層以外,以與比較 例ci相同的方式,製作比較例C2的有機電激發光元件。 Ί1子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為10 nm的方式蒸鍵上述結構式所表示 的化σ物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上’在上述結構式所表示的化合物匕1中摻雜〇 6S 58 201212322. An organic electroluminescent device of Comparative Example C2 was produced in the same manner as in Comparative Example ci except for the produced first electron transport layer and second electron transport layer. Production of Ί1 sub-transport layer and second electron-transport layer _ The ytterbium material E-1 represented by the above structural formula was vapor-deposited so as to have an average thickness of 10 nm to form a first electron-transport layer. Then, on the first electron transport layer, the compound 匕1 represented by the above structural formula is doped with 〇 6

Wt%=鋰作為還原性摻質,以平均厚度成為40 nm的方式 進行蒸鍍,而形成第二電子傳輸層。 (比較例C3 ) -有機電激發光元件的製作_ 除了將比較例C1中的電子傳輸層替代為以下述方式 製作的第一電子傳輸層及第二電子傳輸層以外,以與比較 例C1相同的方式,製作比較例C3的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為10 nm的方式蒸鍍上述結構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上’在上述結構式所表示的化合物E-1中摻雜1 wt%的铯作為還原性摻質,以平均厚度成為4〇 nm的方式 進行蒸鍍,而形成第二電子傳輸層。 (比較例C4) -有機電激發光元件的製作- 除了將比較例C1中的電子傳輸層替代為以下述方式 製作的第一電子傳輸層及第二電子傳輸層,且不形成作為 附著改善層的LhO以外,以與比較例C1相同的方式,製 59 201212322, 作比較例C4的有機電激發光元件。 •第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為10 nm的方式蒸鍍上述結構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第 子傳輸層上,在上述結構式所表示的化合物E-1中摻雜〇 3 wt%的鋰及0.5 wt%的鉋作為還原性摻質,以平均厚度成為 40 nm的方式進行蒸鍍,而形成第二電子傳輸層。 (比較例C5) θ -有機電激發光元件的製作- 除了將比較例C1的發光層改為在上述結構式表示的 化合物Η-2中摻雜0.5 wt%的上述結構式表示的化合物叫 的發光層(厚度3Gnm)’且將電子傳輪層替代為以下述方 式製作的第-電子傳輸層及第二電子傳輸層财卜,以鱼比 較例⑴目同的方式,製作比較例C5的有機電激發光元件。 -第-電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為lGnm財式驗上聽構式所表示 E_1 ’㈣絲—電子傳輸層。紐於該第一電 雨曰上在上述結構式所表示的化合物W中換雜 :/。的=0.5wt%的铯作為還原叫 驗,娜縣4子傳輸層。 -有機電激發光元件的製作_ 除了將比較例C1中的電子傳輸#替 製作的第-電子傳輸層 j代為以下达方式 曰汉弟一電子傳輸層以外,以與比較 201212322j 例Cl相同的方式,製作實例Cl的有機電激發光元件。 -第一電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為10nm的方式蒸鍍上述結構式所表示 的化合物E-1,而形成第一電子傳輸層。然後於該第一電 子傳輸層上,在上述結構式所表示的化合物匕丨中掺雜〇 3 wt%的鋰及0.5 wt%的鉋作為還原性摻質,以平均厚度成為 40 nm的方式進行蒸鍍,而形成第二電子傳輸層。 (比較例D1) -有機電激發光元件的製作- 除了將比較例A1中的發光層替代為以下述方式製作 的發光層以外’以與比較例A1相同的方式,製作比較例 D1的有機電激發光元件。 -發光層的製作- 於電洞傳輸層上,形成以下述結構式所表示的化合物 H-3為主體、上述結構式所表示的化合物d_3或下述結構 式所表示的化合物D-4為發光材料的發光層。 具體而言,將成為發光材料的化合物D-3或D-4與成 為主體的化合物H-3設置於蒸鍍裝置的不同蒸鍍源。接 著’將兩者的蒸發皿加熱,適當切換設置有化合物D-3或 D-4之側的擋板的開閉,來積層2層發光材料摻雜層及2 層發光材料非摻雜層。亦即,自陽極側起依序積層第一發 光材料非摻雜層、第一發光材料摻雜層、第二發光材料非 摻雜層及第二發光材料摻雜層。 其間’藉由擋板的開放及關閉的時間設定,調整為2 201212322 ^ =料層發光材 的/辰度为別為10wt%。Wt% = lithium as a reducing dopant, and vapor deposition was carried out in such a manner that the average thickness became 40 nm, and a second electron transport layer was formed. (Comparative Example C3) - Preparation of Organic Electroluminescence Element - The same as Comparative Example C1 except that the electron transport layer in Comparative Example C1 was replaced with the first electron transport layer and the second electron transport layer produced in the following manner. In the manner of the organic electroluminescent device of Comparative Example C3. - Preparation of First Electron Transport Layer and Second Electron Transport Layer _ The compound E-1 represented by the above structural formula was vapor-deposited so as to have an average thickness of 10 nm to form a first electron transport layer. Then, on the first electron-transporting layer, the compound E-1 represented by the above structural formula is doped with 1 wt% of ruthenium as a reducing dopant, and vapor-deposited so as to have an average thickness of 4 〇 nm. Second electron transport layer. (Comparative Example C4) - Fabrication of Organic Electroluminescent Device - The electron transporting layer in Comparative Example C1 was replaced with the first electron transporting layer and the second electron transporting layer produced in the following manner, and was not formed as an adhesion improving layer. In the same manner as in Comparative Example C1, 59 201212322 was used as the organic electroluminescent device of Comparative Example C4, except for LhO. • Production of First Electron Transport Layer and Second Electron Transport Layer _ The compound E-1 represented by the above structural formula was vapor-deposited so as to have an average thickness of 10 nm to form a first electron transport layer. Then, on the first sub-transport layer, the compound E-1 represented by the above structural formula is doped with 〇3 wt% of lithium and 0.5 wt% of planer as a reducing dopant, and the average thickness is 40 nm. Evaporation forms a second electron transport layer. (Comparative Example C5) Preparation of θ-Organic Electroluminescent Device - In addition to changing the luminescent layer of Comparative Example C1 to 0.5% by weight of the compound represented by the above structural formula in the compound Η-2 represented by the above structural formula The light-emitting layer (thickness: 3 Gnm) was replaced with the electron-transport layer as the first-electron transport layer and the second electron-transport layer produced in the following manner. In the same manner as in the fish comparative example (1), the comparative example C5 was produced. Electromechanical excitation of optical components. - Production of the first-electron transport layer and the second electron transport layer _ The average thickness becomes the E1 '(4) filament-electron transport layer represented by the lGnm. In the first electric rain, the compound W represented by the above structural formula is mixed: /. = 0.5 wt% of 铯 as a reduction test, Naxian 4 sub-transport layer. - Fabrication of Organic Electroluminescence Element - Except that the electron-transport layer j produced by the electron transport in Comparative Example C1 was replaced by the following method, the same as the method of comparing 201212322j, Cl An organic electroluminescent element of Example C was fabricated. - Preparation of First Electron Transport Layer and Second Electron Transport Layer _ The compound E-1 represented by the above structural formula was vapor-deposited so as to have an average thickness of 10 nm to form a first electron transport layer. Then, on the first electron transport layer, 匕丨3 wt% of lithium and 0.5 wt% of planer are doped as a reducing dopant in the compound yttrium represented by the above structural formula, and the average thickness is 40 nm. Evaporation forms a second electron transport layer. (Comparative Example D1) - Preparation of Organic Electroluminescence Element - An organic battery of Comparative Example D1 was produced in the same manner as in Comparative Example A1 except that the light-emitting layer in Comparative Example A1 was replaced with the light-emitting layer produced in the following manner. Excitation light element. In the production of the light-emitting layer, the compound D-3 represented by the following structural formula is mainly formed on the hole transport layer, and the compound D_3 represented by the above structural formula or the compound D-4 represented by the following structural formula is illuminated. The luminescent layer of the material. Specifically, the compound D-3 or D-4 which is a luminescent material and the compound H-3 which is a main component are provided in different vapor deposition sources of a vapor deposition apparatus. Then, the evaporating dish of both was heated, and the opening and closing of the baffle provided on the side of the compound D-3 or D-4 was appropriately switched to laminate two layers of the luminescent material doping layer and the two luminescent material undoped layers. That is, the first luminescent material undoped layer, the first luminescent material doped layer, the second luminescent material undoped layer, and the second luminescent material doped layer are sequentially laminated from the anode side. In the meantime, by the time setting of opening and closing of the baffle, it is adjusted to 2 201212322 ^ = the luminescence of the material layer is 10wt%.

-有機電激發光元件的製作-Manufacture of organic electroluminescent elements

D-4 制二Γΐ較例D1中的電子傳輸層替代為以下述方式 製作的弟-電子傳輸層及第二電子傳輸層以外, 1)2 -第電千傳輸層及第二電子傳輪層的製作_ j句子度成為lGnm的方絲鐘上述結構式所表示 的化&amp;物Ε·1,而形成第—電子傳輸層。然後於該第一電 子傳輸層上,在上述結構式所表示的化合物匕丨中摻雜〇 6 wt%的鋰作為還原性摻質,以平均厚度成為乃nm的方式 進行蒸鍍’而形成第二電子傳輸層。 ^ (比較例D3 ) -有機電激發光元件的製作_ 除了將比較例D1中的電子傳輸層替代為以下述方式 製作的第一電子傳輸層及第二電子傳輸層以外,以與比較 例D1相同的方式’製作比較例D3的有機電激發光元件。 -第一電子傳輸層及第二電子傳輪層的製作-The electron transport layer in the D-4 system is replaced by the electron-transport layer and the second electron transport layer produced in the following manner: 1) 2 - the second electric transport layer and the second electron transport layer The production_j sentence becomes the first wire of the lGnm, and the first electron-transporting layer is formed by the chemical composition represented by the above structural formula. Then, on the first electron-transporting layer, ruthenium 6 wt% of lithium is doped as a reducing dopant in the compound yttrium represented by the above structural formula, and vapor deposition is performed in such a manner that the average thickness becomes nm. Two electron transport layers. ^ (Comparative Example D3) - Preparation of Organic Electroluminescence Element - Except that the electron transport layer in Comparative Example D1 was replaced with the first electron transport layer and the second electron transport layer which were produced in the following manner, and Comparative Example D1 In the same manner, the organic electroluminescent device of Comparative Example D3 was produced. - fabrication of the first electron transport layer and the second electron transport layer -

S 62 201212322 的化度方式蒸鐘上述結構式所表示 子傳輸層上,在上越構魏第一電 為還原性摻質,= 進仃蒸鍍,而形成第二電子傳輪層。細的方式 (比較例D4) -有機電激發光元件的製作_ 制將啸例D1巾的電子傳輸層替代為以下述方1 製作的第-電子傳輸層及第二電子傳輸層 =敍善層的Sl〇以外,以與比較例m相同的方H 作比較例D4的有機電激發光元件。 工製 -第-電子傳輸層及第二電子傳輸層的製作_ 以平均厚度縣10 nm的料驗 ==而形成第一電子傳輸詹。然後^ 子f輸層上’在上述結構式所表示的化合物Ε-i中摻雜〇 3 wt/。的鐘及G.4 wt%的鉀作為還原性摻質,以平均厚声 25 nm的方式進行蒸艘,而形成第二電子 又“、、 (比較例D5) θ -有機電激發光元件的製作_ 除了將比較例m的發光層改為在上述 化合物H-3中摻雜5 wt%的上述結構式表示的化^^的4 的發光層(厚度30 nm),且將電子傳輸層 式製作的第-電子傳輸層及第二電子傳;== 較例D1相同的方式,製作比較例防的有機電激發光元件。 5 63 201212322 -第-電子傳輸層及第二電子傳輸層的製作_ 以平均厚度成為1Gnm財式蒸鍍上述結構式所表示 的化合物Ε·卜而形成第—電子傳輸層。然後於該第一電 子傳輸層上’在上縣料所麵❺化合物巾推雜〇3 wt%的贿0.4 Wt%的卸作為還原性摻質,以平均厚度成為 25腿的方式進行蒸鍍,而形成第二電子傳輸層。 (實例D1) -有機電激發光元件的製作_ 制从^耻較例D1 &quot;電子傳輸層替代為以下述方式 製作㈣—電子傳輸層及第二電子傳輸層以外,以與比較 巧D1相同的方式’製作實例m的錢電激發光元件。 _第一電子雜層及第二電子傳輸層的製作_ 以平均厚度成為1Qnm的方絲壯賴構式所表示 物E 1 ’而形成第—電子傳輸層。然後於該第一電 傳輸層上’在上赌構式所絲的化合物E]巾換雜〇 3 了t%的链及G.4 Wt%的_作為還原性摻質,以平均厚度成為 nm的方式進行③鍍,而形成第二電子傳輸層。 (比較例E1) •有機電激發光元件的製作_ 除了將味例A1中的發光觸代為下述方式製作的 發光層’將電子傳輪層的平均厚度變為50 mn,且以厚度 ,為lmn的方式蒸鍍邮2作為附著改善層以外,以與= ^例A1相同的方式,製作比較例的有機電激發光元 •發光層的製作-S 62 201212322 The degree of vaporization of the clock is represented by the above structural formula. On the sub-transport layer, the first electric current is a reducing dopant, and the second electron-transport layer is formed. Fine method (Comparative Example D4) - Fabrication of organic electroluminescent device _ The electron transport layer of the D1 towel was replaced with the first electron transport layer and the second electron transport layer produced by the following: The same organic layer as the comparative example m was used as the organic electroluminescent element of Comparative Example D4 except for Sl. Production - Production of the -electron transport layer and the second electron transport layer _ The first electron transport was formed by the average thickness of the county 10 nm test ==. Then, the compound Ε-i represented by the above structural formula is doped with 〇 3 wt /. The clock and G.4 wt% of potassium are used as reducing dopants, and are vaporized in an average thick sound of 25 nm to form a second electron, and (Comparative Example D5) θ-organic electroluminescent element Production_ In addition to changing the light-emitting layer of Comparative Example m to the above-mentioned compound H-3, 5 wt% of the light-emitting layer (thickness: 30 nm) of the chemical formula represented by the above structural formula was doped, and the electron transport layer was The produced first electron transport layer and the second electron transport; == The organic electroluminescent device of the comparative example is produced in the same manner as in the case of the example D1. 5 63 201212322 - Production of the first electron transport layer and the second electron transport layer _ forming a first electron transporting layer by vapor-depositing the compound represented by the above structural formula with an average thickness of 1 Gnm. Then, on the first electron transporting layer, a compound towel is smashed in the upper county material. 3 wt% of bribe 0.4 Wt% of unloading as a reducing dopant, evaporation was carried out in such a way that the average thickness became 25 legs, and a second electron transport layer was formed. (Example D1) - Fabrication of organic electroluminescent element Replaced from the D1 &quot;Electronic Transport Layer to create (4)-Electronics In addition to the transport layer and the second electron transport layer, the photovoltaic element of the example m was fabricated in the same manner as the comparative D1. _ The fabrication of the first electronic hybrid layer and the second electron transport layer _ the average thickness became 1 Qnm The square wire is formed by the object E 1 ' to form the first electron transport layer. Then, on the first electrotransport layer, the compound E in the silk fabric is replaced by t%. Chain and G.4 Wt%_ as a reducing dopant, 3 plating was performed in such a manner that the average thickness became nm, and a second electron transport layer was formed. (Comparative Example E1) • Production of an organic electroluminescence device _ The luminescent layer in the scent example A1 is a luminescent layer produced in the following manner: the average thickness of the electron-transporting layer is changed to 50 mn, and the thickness of the lmn is vapor-deposited as the adhesion-improving layer, and ^ In the same manner as in Example A1, the fabrication of the organic electroluminescent element and the luminescent layer of the comparative example was made -

S 64 201212322,』 於電洞傳輸層上,形成以下述結構式所表示的化合物 H-4為主體、下述結構式所表示的化合物D_5為發光材料 的發光層。 具體而言,將成為發光材料的化合物D_5與成為主體 的化合物H-4設置於蒸鍍裝置的不同蒸鍍源。接著,將兩 者的蒸發皿加熱,適當切換設置有化合物D_5之侧的擋板 的開閉,來積層2層發光材料摻雜層及2層發光材料非摻 雜層。亦即,自陽極侧起依序積層第一發光材料摻雜層、 第一發光材料非摻雜層、第二發光材料摻雜層及第二發光 材料非摻雜層。 其間,藉由擋板開放及關閉的時間設定,調整為2層 發光^料摻雜層的厚度分為7.5 mn且2層發光材料非摻^ 層的厚度分為7.5 nm。發光層整體厚度為3〇腿。成為發 光材料摻闕中發光材料的化合物D_5的濃度為1() wt%。In the hole transport layer, a compound D-5 represented by the following structural formula and a compound D_5 represented by the following structural formula are formed as a light-emitting layer of a light-emitting material. Specifically, the compound D_5 which is a light-emitting material and the compound H-4 which is a main component are provided in different vapor deposition sources of the vapor deposition device. Next, the evaporating dish of both was heated, and the opening and closing of the baffle provided on the side of the compound D_5 was appropriately switched to laminate two layers of the luminescent material doping layer and the two luminescent material non-doped layers. That is, the first luminescent material doped layer, the first luminescent material undoped layer, the second luminescent material doped layer, and the second luminescent material undoped layer are sequentially stacked from the anode side. In the meantime, the thickness of the two-layer luminescent material doping layer is 7.5 mn and the thickness of the non-doped layer of the two luminescent materials is 7.5 nm by the time setting of opening and closing of the baffle. The overall thickness of the luminescent layer is 3 〇 legs. The concentration of the compound D_5 which becomes a luminescent material in the erbium-doped luminescent material was 1 (% by weight).

(比較例E2) -有機電激發光元件的製作_ 制除I將=較例E1中的電子傳輸層替代為以下述方式 製作的第-f子傳輸層及第二電子傳輸層以外,以與比較 例Ei相同的方式’製作比較例E2的有機電激發光元件。 65 5 201212322 -第一電子傳輸層及第二電子傳輸層的製作_ 的化方式蒸鍍上述結構式所表示 子傳輸層上,在上聽構式所二 進行蒸鑛,而形成第二電子度成為4〇聰的方式 (比較例E3) -有機電激發光元件的製作_ 製作==中的電子傳輸層替代為以下述方式 -第-電子傳輸層及第二電子傳輪層的製作_ 以平均厚度成為1Gnm的方絲鍍上㈣ 广成第一電子傳輸層。然後於該第; 子傳輸層上’在上述結構式所表示的化合物Ε_ 1(Comparative Example E2) - Preparation of Organic Electroluminescence Element - Production I = The electron transport layer in Comparative Example E1 was replaced by the -f sub-transport layer and the second electron-transport layer produced in the following manner to In the same manner as in Comparative Example Ei, the organic electroluminescent device of Comparative Example E2 was produced. 65 5 201212322 -Preparation of the first electron transport layer and the second electron transport layer _ a method of vapor deposition on the sub-transport layer represented by the above structural formula, and performing steaming in the upper listening configuration to form a second electron beam The method of becoming a 4 〇 ( (Comparative Example E3) - Fabrication of an organic electroluminescent device _ The electron transport layer in the production == is replaced by the following - the production of the -electron transport layer and the second electron transport layer The average thickness becomes 1Gnm square wire plating (4) Guangcheng first electron transport layer. Then on the sub-transport layer, the compound Ε_ 1 represented by the above structural formula

Wt%的絶作為還原性摻質,以平均厚度成為40 nm的^ 進行蒸鍍,而形成第二電子傳輸層。 方式 (比較例E4) θ -有機電激發光元件的製作_Wt% is used as a reducing dopant, and is vapor-deposited with an average thickness of 40 nm to form a second electron transport layer. Method (Comparative Example E4) θ - Production of Organic Electroluminescence Element _

除了將比較例E1中的電子傳輸層替代為以下 製作的第-電子傳輸層及第二電子傳輸層,且不形^ 附著改善層的MgFz以外’以與比較例m相同的,二 作比較例Ε4的有機電激發光元件。 工I -第一電子傳輸層及第二電子傳輸層的製作— 66 201212322」 以平均厚度成為l〇nm的方式蒸錢上述結構式所表_ 的化合物Ε·1,而形成第-電子傳輪層。然後於該第一= 子傳輸層上,在上述結構式所表示的化合物巾推雜 wt%的鋰及0.5 wt%的鉋作為還原性摻質,以平均厚&gt;度成為 40 nm的方式進行蒸鍍,而形成第二電子傳輪層。子又‘、、、 (比較例E5) -有機電激發光元件的製作- 除了將比較例E1的發光層改為在上述結構式表示的 化合物H-4中摻雜5 wt%的上述結構式表示的化合物D 5 的發光層(厚度3Gnm)’且將電子傳輸層替代為以下述方 式製作的第-電子傳輸層及第二電子傳輸層以外,以與比 較例E1相同的方式’製作比較例E5的有機電激發光元件。 -苐一電子傳輸層及第二電子傳輸層的製作一 以平均厚度成為lGmn的方式驗上述結構式所表示 的化合物E-卜而形成第-電子傳輸層。然後於該第一電 子傳輸層上’在上述結構式所表示的化合物E-1中摻雜〇 3 wt%的鋰及0·5 wt%的铯作為還原性摻質,以平均厚度成為 40 nm的方式進行蒸鍵,而形成第二電子傳輸層。The electron transport layer in Comparative Example E1 was replaced with the first electron transport layer and the second electron transport layer produced below, and the MgFz other than the adhesion improving layer was the same as the comparative example m, and the second comparative example was used.有机4 organic electroluminescent element. I - The first electron transport layer and the second electron transport layer are produced - 66 201212322" The compound Ε·1 of the above structural formula is distilled in such a manner that the average thickness becomes l〇nm, and the first electron transfer wheel is formed. Floor. Then, on the first sub-transport layer, the compound towel represented by the above structural formula is subjected to a wt% of lithium and a 0.5 wt% planer as a reducing dopant, and the average thickness &gt; degree is 40 nm. Evaporation forms a second electron transport layer. Further, the preparation of the organic electroluminescence device was carried out except that the light-emitting layer of Comparative Example E1 was changed to the above-mentioned structural formula by doping 5 wt% of the compound H-4 represented by the above structural formula. A comparative example was produced in the same manner as in Comparative Example E1 except that the light-emitting layer (thickness: 3 Gnm) of the compound D 5 was shown and the electron-transporting layer was replaced with the first-electron transport layer and the second electron-transporting layer produced in the following manner. Organic electroluminescent element of E5. - Preparation of the first electron transporting layer and the second electron transporting layer - The first electron transporting layer was formed by examining the compound E-b represented by the above structural formula in such a manner that the average thickness became lGmn. Then, on the first electron transport layer, 'the compound E-1 represented by the above structural formula is doped with 〇3 wt% of lithium and 0.5 wt% of ruthenium as a reducing dopant to have an average thickness of 40 nm. The method is carried out by steaming to form a second electron transport layer.

(實例El) 'S -有機電激發光元件的製作- 除了將比較例E1的電子傳輸層替代為以下述方式製 作的第一電子傳輸層及第二電子傳輸層以外,以與比較例 E1相同的方式,製作實例E1的有機電激發光元^牛。 -弟一電子傳輸層及第二電子傳輸層的製作_(Example El) 'S - Preparation of Organic Electroluminescence Element - The same as Comparative Example E1 except that the electron transport layer of Comparative Example E1 was replaced with the first electron transport layer and the second electron transport layer which were produced in the following manner The way to make the organic electroluminescence element of the example E1 ^ cattle. -Development of an electronic transmission layer and a second electron transport layer_

67 S 201212322 以平均厚度成為1G mn的方式騎上述結構式所表示 的化合物E_卜而形成第-電子傳輸層。然後於該第一電 子傳輸層上’在上㈣赋所絲的化合物+播雜〇3 wt%的鐘及0.5 wt%魏作為還躲射,以平均厚度成為 4〇nm的_方式進行級,而形成第二電子傳輸層。 地^著’於下述表1〜表7中總結表示實例及比較例的有 機電激發光it件的層結構,其中()表示厚度(継)。67 S 201212322 The first electron transport layer was formed by riding the compound E_b represented by the above structural formula so that the average thickness became 1 G mn. Then, on the first electron transport layer, the compound in the upper (four)-extracted silk + 3 wt% of the cesium and 0.5 wt% of Wei are also used as the target, and the average thickness is 4 〇 nm. And forming a second electron transport layer. The layer structure of the electromechanical excitation light of the examples and the comparative examples is summarized in Tables 1 to 7 below, wherein () represents the thickness (継).

S 201212322 J-a06?irn 【1_1 &lt;】 發光層(EML) H-l (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) H-l (7.5) /H-H-30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) H-l (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) H-l (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) H-1 + 15%D-1 (30) H-l (7.5) /H-H-30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) 電洞傳輸層(HTL) NPD (10) NPD (10) NPD ( 10) NPD (10) NPD (10) NPD (10) 電洞注入層(HIL) 2-TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) 陽極 ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) 比較例A1 比較例A2 比較例A3 比較例A4 比較例A5 實例A4 鬥&lt;Ν·ι嵴】 陰極 A1 (70) A1(70) A1 (70) A1(70) A1 (70) A1 (70) 附著改善層(EIL) SiO (1) SiO (1) SiO ( 1 ) SiO ( 1 ) SiO ( 1 ) 第二電子傳輸層(ETL2) E-l+0.6%Li (25) E-1+0.8%K (25) E-1 + 0.3%Li + 0.4%K ( 25 ) E-1 + 0.3%Li + 0.4%K ( 25 ) E-1 + 0.3%Li+0.4%K ( 25 ) 第一電子傳輸層(ETL1) E-1 (35) E-1 (10) E-1 (10) E-1 (10) E-1 (10) E-1 (10) 比較例A1 比較例A2 比較例A3 比較例A4 比較例A5 實例A4 鬥一丨CS啭】 發光層(EML) H-1 (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) H-l (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) 電洞傳輸層(HTL) NPD (10) NPD ( 10) 電洞注入層(HIL) 勺· 〇 δ Η 2: + _ g CN 2-TNATA +1 %F4TCNQ ( 45 ) 陽極 | ITO (70) I ITO (70) |比較例A6 I 實例A1 69 5 201212322S 201212322 J-a06?irn [1_1 &lt;] Light-emitting layer (EML) Hl (7.5) /H-1+30%D-1 (7.5) /Hl (7.5) /H-1+30%D-1 ( 7.5) Hl (7.5) /HH-30%D-1 (7.5) /Hl (7.5) /H-1+30%D-1 (7.5) Hl (7.5) /H-1+30%D-1 ( 7.5) /Hl (7.5) /H-1+30%D-1 (7.5) Hl (7.5) /H-1+30%D-1 (7.5) /Hl (7.5) /H-1+30%D -1 (7.5) H-1 + 15%D-1 (30) Hl (7.5) /HH-30%D-1 (7.5) /Hl (7.5) /H-1+30%D-1 (7.5) Hole Transport Layer (HTL) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) Hole Injection Layer (HIL) 2-TNATA+1%F4TCNQ (45) 2- TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) 2-TNATA+1%F4TCNQ (45) Anode ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) Comparative Example A1 Comparative Example A2 Comparative Example A3 Comparative Example A4 Comparative Example A5 Example A4 Bucket &lt;Ν·ι嵴】 Cathode A1 (70) A1(70) A1 (70) A1(70) A1 (70) A1 (70) adhesion improving layer (EIL) SiO (1) SiO (1) SiO ( 1 ) SiO ( 1 ) SiO ( 1 ) Two electron transport layer (ETL2) E-l+0.6%Li (25) E-1+0.8%K (25) E-1 + 0.3%Li + 0.4%K ( 25 ) E-1 + 0.3% Li + 0.4 %K ( 25 ) E-1 + 0.3%Li +0.4%K ( 25 ) First electron transport layer (ETL1) E-1 (35) E-1 (10) E-1 (10) E-1 (10) E-1 (10) E-1 (10) Comparative Example A1 Comparative Example A2 Comparative Example A3 Comparative Example A4 Comparative Example A5 Example A4 Douyi CS 啭 Light Emitting Layer (EML) H-1 (7.5) /H-1+30%D-1 (7.5) /Hl (7.5) /H-1+30%D-1 (7.5) Hl (7.5) /H-1+30%D-1 (7.5) /Hl (7.5) /H-1+30%D-1 (7.5 ) Hole Transport Layer (HTL) NPD (10) NPD (10) Hole Injection Layer (HIL) Scoop · 〇δ Η 2: + _ g CN 2-TNATA +1 %F4TCNQ ( 45 ) Anode | ITO (70) I ITO (70) | Comparative Example A6 I Example A1 69 5 201212322

Juoa卜 e H-l (7.5) /H-1 + 30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) H-l (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) H-l (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1+30%D-1 (7.5) H-l (7.5) /H-1 + 30%D-1 (7.5) /H-l (7.5) /H-1 + 30%D-1 (7.5) H-l (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1 + 30%D-1 (7.5) H-l (7.5) /H-1+30%D-1 (7.5) /H-l (7.5) /H-1 + 30%D-1 (7.5) NPD (10) NPD (10) NPD (10) NPD (10) ! NPD (10) NPD (10) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 1 2-TNATA+l%F4TCNQ (45) 2-TNATA+ 1%F4TCNQ (45 ) 2-TNATA+l%F4TCNQ (45) | ITO (70) | | ITO (70) I ITO (70) | ITO (70) ITO (70) ITO (70) 實例A2 實例A3 實例A4 實例A5 實例A6 實例A7 【&lt;N_(N&lt;〕 陰極 A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) Ai (70) 附著改善層(EIL) SiO (1) SiO (1) SiO ( 1 ) SiO ( 1 ) SiO ( 1 ) SiO ( 1) SiO ( 1) SiO ( 1 ) 第二電子傳輸層(ETL2) . 1 E-l + 0.3%Li+0.4%K (35) E-l+0.3%Li+0.4%K (33) E-1 + 0.3%Li+0.4%K ( 31 ) E-1 + 0.3%Li+0.4%K ( 28 ) E-l + 0.3%Li+0.4%K (25) E-l+0.3%Li+0.4%K (22) E-l +0.3%Li+0.4%K ( 19) E-l +0.3%Li+0.4%K (15 ) 第一電子傳輸層(ETL1) € E-l (2) E-l (4) E-l (7) E-l (10) E-l (13) E-l (16) 1 E-l (20) 比較例A6 實例AI 實例A2 實例A3 實例A4 實例A5 實例A6 實例A7 發光層(EML) H-1 (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l+30%D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l+30%D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l+30%D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l+30%D-2 (7.5) H-l + 15%D-2 (30) 電洞傳輸層(HTL) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) 電洞注入層(HIL) 2-TNATA+l%F4TCNQ (30)丨 2-TNATA+l%F4TCNQ (30) j 2-TNATA+l%F4TCNQ (30) 2-TNATA+1%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 陽極 ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) |比較例B1 |比較例B2 比較例B3 比較例B4 比較例B5 s 0卜 201212322 J-a06&lt;N卜 e H-l (7.5) /H-l + 30%D-2 (7.5) /H-l (7.5) /H-l+30%D-2 (7.5) NPD (10) 2-TNATA+1%F4TCNQ (30) ITO (70) 實例B4 【3-e&lt;】 陰極 A1 (70) A1(70) A1(70) A1 (70) A1 (70) A1 (70) 附著改善層(EIL) MgF2 (1) MgF2 ⑴ MgF2 ( 1) I MgF2 ( 1 ) MgF2 (1) 第二電子傳輸層(ETL2) E-l + 0.6%Li (30) E-1 + 0.8%K (30) E-l+0.3%Li+0.4%K (30) E-l+0.3%Li + 0.4%K (30) E-l+0.3%Li + 0.4%K (30) 第一電子傳輸層(ETL1) E-1 (40) E-1 (10) E-1 (10) 1 E-1 (10) E-1 (10) E-1 (10) 比較例B1 比較例B2 比較例B3 比較例B4 比較例B5 實例B4 發光層(EML) H-1 (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l + 30°/〇D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l+30%D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l + 30%D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l+30%D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l+30%D-2 (7.5) ! H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l + 30%D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l + 30%D-2 (7.5) H-l (7.5) /H-l+30%D-2 (7.5) /H-l (7.5) /H-l + 30%D-2 (7.5) 電洞傳輸層(HTL) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) 1 NPD (10) 電洞注入層(HIL) 2-TNATA+l%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 2-TNATA+ 1%F4TCNQ ( 30) 2-TNATA +1 %F4TCNQ ( 30 ) 2-TNATA + 1%F4TCNQ (30) 2-TNATA+1 %F4TCNQ ( 30 ) 2-TNATA+1%F4TCNQ (30) 2-TNATA+1%F4TCNQ (30) 陽極 : ITO (70); ITO (70) | ! ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) |比較例B6 | 1實例B1 1 |實例B2 | 實例B3 實例B4 實例B5 實例B6 實例B7Juoa Bu e Hl (7.5) /H-1 + 30%D-1 (7.5) /Hl (7.5) /H-1+30%D-1 (7.5) Hl (7.5) /H-1+30%D -1 (7.5) /Hl (7.5) /H-1+30%D-1 (7.5) Hl (7.5) /H-1+30%D-1 (7.5) /Hl (7.5) /H-1+ 30%D-1 (7.5) Hl (7.5) /H-1 + 30%D-1 (7.5) /Hl (7.5) /H-1 + 30%D-1 (7.5) Hl (7.5) /H- 1+30%D-1 (7.5) /Hl (7.5) /H-1 + 30%D-1 (7.5) Hl (7.5) /H-1+30%D-1 (7.5) /Hl (7.5) /H-1 + 30%D-1 (7.5) NPD (10) NPD (10) NPD (10) NPD (10) ! NPD (10) NPD (10) 2-TNATA+l%F4TCNQ (45) 2- TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 1 2-TNATA+l%F4TCNQ (45) 2-TNATA+ 1%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) | ITO (70) | | ITO (70) I ITO (70) | ITO (70) ITO (70) ITO (70) Example A2 Example A3 Example A4 Example A5 Example A6 Example A7 [&lt;N_(N&lt;] Cathode A1 ( 70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) Ai (70) adhesion improving layer (EIL) SiO (1) SiO (1) SiO ( 1 ) SiO ( 1) SiO ( 1 ) SiO ( 1) SiO ( 1) SiO ( 1 ) Second electron transport layer (ETL2) . 1 El + 0.3% Li + 0.4% K (35) E-l + 0.3% Li + 0.4% K (33) E-1 + 0.3% Li + 0.4% K ( 31 ) E-1 + 0.3% Li + 0.4% K ( 28 ) El + 0.3% Li + 0.4% K (25) E-l + 0.3% Li + 0.4% K (22) El + 0.3% Li + 0.4% K ( 19) El + 0.3% Li + 0.4% K (15 ) An electron transport layer (ETL1) € El (2) El (4) El (7) El (10) El (13) El (16) 1 El (20) Comparative example A6 Example AI Example A2 Example A3 Example A4 Example A5 Example A6 Example A7 Luminescent Layer (EML) H-1 (7.5) /H-l+30%D-2 (7.5) /Hl (7.5) /H-l+30%D-2 (7.5) Hl (7.5) /H-l+30%D-2 (7.5) /Hl (7.5) /H-l+30%D-2 (7.5) Hl (7.5) /H-l+30%D-2 (7.5) /Hl (7.5) /H-l+30%D-2 (7.5) Hl (7.5) /H-l+30%D-2 (7.5) /Hl (7.5) /H-l+30%D-2 (7.5 ) Hl + 15%D-2 (30) Hole Transport Layer (HTL) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) Hole Injection Layer (HIL) 2-TNATA+l %F4TCNQ (30)丨2-TNATA+l%F4TCNQ (30) j 2-TNATA+l%F4TCNQ (30) 2-TNATA+1%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) Anode ITO ( 70) ITO (70) ITO (70) ITO (70) ITO (70) | Comparative Example B1 | Comparative Example B2 Comparative Example B3 Comparative Example B4 Comparative Example B5 s 0 Bu 201212322 J-a06 &lt; N Bu e Hl (7.5) /Hl + 30%D-2 (7.5) /Hl (7.5) /H-l+30%D-2 (7.5) NPD (10) 2-TNATA+1%F4TCNQ (30) ITO (70) Example B4 3-e&lt;] Cathode A1 (70) A1(70) A1(70) A1 (70) A1 (70) A1 (70) Adhesion improvement layer (EIL) MgF2 (1) MgF2 (1) MgF2 (1) I MgF2 ( 1 ) MgF2 (1) Second electron transport layer (ETL2) El + 0.6% Li (30) E-1 + 0.8% K (30) E-l + 0.3% Li + 0.4% K (30) E-l + 0.3 %Li + 0.4%K (30) E-l+0.3%Li + 0.4%K (30) First electron transport layer (ETL1) E-1 (40) E-1 (10) E-1 (10) 1 E-1 (10) E-1 (10) E-1 (10) Comparative Example B1 Comparative Example B2 Comparative Example B3 Comparative Example B4 Comparative Example B5 Example B4 Light Emitting Layer (EML) H-1 (7.5) /H-l +30%D-2 (7.5) /Hl (7.5) /Hl + 30°/〇D-2 (7.5) Hl (7.5) /H-l+30%D-2 (7.5) /Hl (7.5) / H-l+30%D-2 (7.5) Hl (7.5) /H-l+30%D-2 (7.5) /Hl (7.5) /Hl + 30%D-2 (7.5) Hl (7.5) / H-l+30%D-2 (7.5) /Hl (7.5) /H-l+30%D-2 (7.5) Hl (7.5) /H-l+30%D-2 (7.5) /Hl ( 7.5) /H-l+30%D-2 (7.5) ! Hl (7.5) /H-l+30%D-2 (7.5) /Hl (7.5) /Hl + 30%D-2 (7.5) Hl (7.5) /H-l+30%D-2 (7.5) /Hl (7.5) /Hl + 30%D-2 (7.5) Hl (7.5) /H-l+30%D-2 (7.5) / Hl (7.5) /Hl + 30%D-2 (7.5) Hole Transport Layer (HTL) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) NPD (1) 0) NPD (10) 1 NPD (10) Hole injection layer (HIL) 2-TNATA+l%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 2-TNATA+ 1%F4TCNQ ( 30) 2-TNATA +1 %F4TCNQ ( 30 ) 2-TNATA + 1%F4TCNQ (30) 2-TNATA+1 %F4TCNQ ( 30 ) 2-TNATA+1%F4TCNQ (30) 2-TNATA+1%F4TCNQ (30) Anode: ITO (70); ITO (70) | ! ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) | Comparative Example B6 | 1 Example B1 1 | Example B2 | Example B3 Example B4 instance B5 instance B6 instance B7

IL 【3丨寸d 5 201212322IL [3 inch inch d 5 201212322

Jui}6?Je 陰極 A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) 附著改善層(EIL) MgF2 (1) MgF2 (1) MgF2 ( 1 ) ! MgF2 ( 1 ) MgF2 (1) MgF2 (1) MgF2 ( 1 ) MgF2 ( 1 ) 第二電子傳輸層(ETL2) E-1 + 0.3%Li+0.4%K ( 40 ) E-l+0.3%Li+0.4%K (38) E-1 + 0.3%Li + 0.4%K ( 36 ) E-1 + 0.3%Li+0.4%K ( 33 ) E-l + 0.3%Li+0.4%K (30) 1 E-l+0.3%Li+0.4°/〇K (27) E-1 + 0.3%Li + 0.4%K ( 24 ) E-1 + 0.3%Li+0.4%K ( 20 ) 第一電子傳輸層(ETL1) E-1 (2) E-1 (4) E-1 (7) E-1 (10) E-1 (13) E-1 (16) E-1 (20) 比較例B6 實例B1 實例B2 實例B3 實例B4 實例B5 實例B6 實例B7 【I-sd 發光層(EML) H-2 (7.5) /H-2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) H-2 (7.5) /H-2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) H-2 (7.5) /H-2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) H-2 (7.5) /H-2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) H-2 + 0.5%D-3 (30) H-2 (7.5) /H-2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) HTL ! NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) 電洞注入層(HIL) 2-TNATA+l%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 2-TNATA+1%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 陽極 ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) 比較例Cl 比較例C2 比較例C3 比較例C4 比較例C5 實例Cl 噼縴珐匡一. : Ί1Η* 鬥 陰極 A1 (70) A1 (70) A1 (70) 附著改善層 Li2〇 (1) Li2〇 (1) Li20 (1) 第二電子傳輸層 E-l+0.6%Li (40) E-l + l%Cs (40) 第一電子傳輸層 E-1 (50) E-1 (10) E-1 (10) 比較例C1 比較例C2 比較例C3Jui}6?Je Cathode A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) Adhesion improvement layer (EIL) MgF2 (1) MgF2 ( 1) MgF2 ( 1 ) ! MgF2 ( 1 ) MgF2 (1) MgF2 (1) MgF2 ( 1 ) MgF2 ( 1 ) Second electron transport layer (ETL2) E-1 + 0.3% Li + 0.4% K ( 40 ) E -l+0.3%Li+0.4%K (38) E-1 + 0.3%Li + 0.4%K ( 36 ) E-1 + 0.3%Li+0.4%K ( 33 ) El + 0.3%Li+0.4%K (30) 1 E-l+0.3%Li+0.4°/〇K (27) E-1 + 0.3%Li + 0.4%K ( 24 ) E-1 + 0.3%Li+0.4%K ( 20 ) First Electron Transport Layer (ETL1) E-1 (2) E-1 (4) E-1 (7) E-1 (10) E-1 (13) E-1 (16) E-1 (20) Comparative Example B6 Instance B1 Instance B2 Instance B3 Instance B4 Instance B5 Instance B6 Instance B7 [I-sd luminescent layer (EML) H-2 (7.5) /H-2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) H-2 (7.5) /H-2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 ( 7.5) H-2 (7.5) /H-2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) H-2 (7.5) /H- 2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) H-2 + 0.5%D-3 (30) H-2 (7.5) /H -2+l%D-3 (7.5) /H-2 (7.5) /H-2+l%D-3 (7.5) HTL ! NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) Hole Injection Layer (HIL) 2 -TNATA+l%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 2-TNATA+1%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 2-TNATA+l%F4TCNQ (30) 2 -TNATA+l%F4TCNQ (30) Anode ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) Comparative Example Cl Comparative Example C2 Comparative Example C3 Comparative Example C4 Comparative Example C5 Example Cl 噼 珐匡 .. : Ί1Η* Dop Cathode A1 (70) A1 (70) A1 (70) Adhesion improvement layer Li2〇(1) Li2〇(1) Li20 (1) Second electron transport layer E-l+ 0.6% Li (40) El + l% Cs (40) First electron transport layer E-1 (50) E-1 (10) E-1 (10) Comparative Example C1 Comparative Example C2 Comparative Example C3

s ZL 201212322 JU06Z卜 e A1 (70) A1 (70) A1 (70) Li2〇 (1) Li2〇 (1) E-l+0.3%Li + 0.5%Cs (40) E-l+0.3%Li+0.5%Cs (40) E-1 + 0.3%Li + 0.5%Cs (40) E-1 (10) E-1 (10) E-1 (10) 比較例C4 比較例C5 實例Cl 鬥1—9&lt;】 發光層(EML) H-3 (7.5) /H-3 + 10%D-3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) H-3 (7.5) /H-3 + 10%D-3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) H-3 (7.5) /H-3 + 10%D-3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) H-3 (7.5) /H-3 + 10%D-3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) 1 H-3 + 5%D-4 (30) H-3 (7.5) /H-3 + 10%D-3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) HTL NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) 電洞注入層(HIL) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 陽極 ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) 比較例D1 |比較例D2 比較例D3 比較例D4 比較例D5 實例D1 噢縴致暝一. : ΊΗΗ* 陰極 A1 (70) A1(70) A1 (70) A1 (70) A1 (70) A1 (70) 附著改善層 SiO (1) SiO (1) SiO ( 1) SiO ( 1 ) SiO (1) 第二電子傳輸層 E-l+0.6%Li (25) E-1+0.8%K (25) E-l + 0.3%Li + 0.4%K (25) E-1 + 0.3%Li + 0.4%K ( 25 ) E-l+0.3%Li+0.4%K (25) 第一電子傳輸層 E-1 (35) E-1 (10) E-1 (10) E-1 (10) 1 E-1 (10) E-1 (10) 比較例D1 比較例D2 比較例D3 比較例D4 比較例D5 實例D1 ε卜 5 201212322s ZL 201212322 JU06Z卜e A1 (70) A1 (70) A1 (70) Li2〇(1) Li2〇(1) E-l+0.3%Li + 0.5%Cs (40) E-l+0.3%Li+ 0.5% Cs (40) E-1 + 0.3% Li + 0.5% Cs (40) E-1 (10) E-1 (10) E-1 (10) Comparative Example C4 Comparative Example C5 Example Cl Bucket 1-9 ;] Light Emitting Layer (EML) H-3 (7.5) /H-3 + 10%D-3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) H-3 ( 7.5) /H-3 + 10%D-3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) H-3 (7.5) /H-3 + 10%D- 3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) H-3 (7.5) /H-3 + 10%D-3 (7.5) /H-3 (7.5) /H-3 + 10%D-4 (7.5) 1 H-3 + 5%D-4 (30) H-3 (7.5) /H-3 + 10%D-3 (7.5) /H-3 ( 7.5) /H-3 + 10%D-4 (7.5) HTL NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) NPD (10) Hole injection layer (HIL) 2-TNATA +l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA+l%F4TCNQ (45) 2-TNATA +l%F4TCNQ (45) Anode ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) ITO (70) Comparative Example D1 | Comparative Example D2 Comparative Example D3 Comparative Example D4 Comparative Example D5 Example D1噢纤致暝一 : :ΊΗΗ* Cathode A1 (70) A1(70) A1 (70) A1 (70) A1 (70) A1 (70) Adhesion improving layer SiO (1) SiO (1) SiO ( 1) SiO ( 1 ) SiO (1) Second electron transport layer E-l+0.6% Li (25) E-1+0.8%K (25) El + 0.3% Li + 0.4% K (25) E-1 + 0.3% Li + 0.4% K ( 25 ) E-l + 0.3% Li + 0.4% K (25) First electron transport layer E-1 (35) E -1 (10) E-1 (10) E-1 (10) 1 E-1 (10) E-1 (10) Comparative Example D1 Comparative Example D2 Comparative Example D3 Comparative Example D4 Comparative Example D5 Example D1 ε Bu 5 201212322

JU06S 【1-卜嵴〕 發光層(EML) H-4+10%D-5 (7.5) /H-4 (7.5) /H-4+10%D-5 (7.5) /H-4 (7.5) H-4+10%D-5 (7.5) /H-4 (7.5) /H-4+10%D-5 (7.5) /H-4 (7.5) H-4+10%D-5 (7.5) /H-4 (7.5) /H-4+10%D-5 (7.5) /H-4 (7.5) H-4+10%D-5 (7.5) /H-4 (7.5) /H-4+10%D-5 (7.5) /H-4 (7.5) H-4 + 5%D-5 (30) H-4+10%D-5 (7.5) /H-4 (7.5) /H-4+10%D-5 (7.5) /H-4 (7.5) HTL NPD (10) NPD (10) Inpd (10) NPD (10) NPD (10) NPD (10) 電洞注入層(HIL) 2-TNATA + 1 %F4TCNQ ( 30 ) 2-TNATA+l%F4TCNQ (30) 2-TNATA + 1%F4TCNQ ( 30 ) 2-TNATA+1%F4TCNQ (30) 2-TNATA+1%F4TCNQ (30) 2-TNATA + 1 %F4TCNQ ( 30 ) 陽極 ITO (70) ITO (70) ΓΓΟ (70) ITO (70) ITO (70) ITO (70) 比較例El 比較例E2 比較例E3 比較例E4 比較例E5 實例El _縴铁匡: TLH* 【3_卜嵴】 陰極 A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) 附著改善層 MgF2 (1) MgF2 ( 1) MgF2 ( 1 ) 雄 MgF2 ( 1 ) MgF2 ( 1 ) 第二電子傳輸層 礫 E-l+0.6%Li (40) E-l + l%Cs (40) E-l + 0.3%Li + 0.5%Cs (40) E-l+0.3%Li + 0.5%Cs (40) E-1 + 0.3%Li+0.5%Cs ( 40 ) 第一電子傳輸層 E-1 (50) E-1 (10) E-1 (10) E-1 (10) 1 E-1 (10) E-1 (10) 比較例E1 比較例E2 比較例E3 比較例E4 比較例E5 實例El s 寸卜 201212322 接著,對所製作的各有機電激發光元件,以下述方式 測定300 cd/m2 T的發光效率及亮度半衰時間、3,_ cd/m2 下的發光效率及党度半衰時間、以及3娜ed/m2下的元件 表面溫度。結果示於表8〜表14。 〈發光效率的測定〉 於300 cd/m2及3,000 Cd/m2下,利用分光放射亮度計 (Topcon公司製SR-3 )測定以固定電流密度(i 〇 mA/cm2) 驅動的元件的發光亮度,求出電流發光效率(cd/A)。 〈亮度半衰時間的測定〉 於初始亮度300 cd/m2及3,000 cd/m2下,連續通固定 電流,用分光放射亮度計(T〇pc〇n公司製SR_3)測定亮 度變化’測定亮度成為初始的一半的時間即亮度半衰時間。 〈表面溫度的測定〉 於3,〇〇〇 Cd/m2下,使用紅外線放射溫度計(Μκ Scientific公司製CENTER352 )測定4 mm2的各有機電激 發光元件的中央附近的表面溫度。 [表8] 300 cd/m2 3,000 cd/m2 ' ~~ 發光效率(%) 亮度半衰時 間(hr) 發光效率(%) 亮度半衰時 間(hr) 表面溫度(。〇 比較例A1 10.1 2000 6.2 25 52.0 比較例A2 10.3 2100 5.9 26 53.6 比較例A3 10.1 1800 5.8 23 51.〇~~ 比較例A4 比較例A5 10.2 ----— 1900 5.6 24 S33~~ 10.6 p------------------- 1700 5.3 21 51.6 實例A4 10.6 1 一 2210 8.2 48 --- 42.3 -----JU06S [1-Bu] Emitter layer (EML) H-4+10%D-5 (7.5) /H-4 (7.5) /H-4+10%D-5 (7.5) /H-4 (7.5 H-4+10%D-5 (7.5) /H-4 (7.5) /H-4+10%D-5 (7.5) /H-4 (7.5) H-4+10%D-5 ( 7.5) /H-4 (7.5) /H-4+10%D-5 (7.5) /H-4 (7.5) H-4+10%D-5 (7.5) /H-4 (7.5) /H -4+10%D-5 (7.5) /H-4 (7.5) H-4 + 5%D-5 (30) H-4+10%D-5 (7.5) /H-4 (7.5) / H-4+10%D-5 (7.5) /H-4 (7.5) HTL NPD (10) NPD (10) Inpd (10) NPD (10) NPD (10) NPD (10) Hole injection layer (HIL) 2-TNATA + 1 %F4TCNQ ( 30 ) 2-TNATA+l%F4TCNQ (30) 2-TNATA + 1%F4TCNQ ( 30 ) 2-TNATA+1%F4TCNQ (30) 2-TNATA+1%F4TCNQ (30 2-TNATA + 1 %F4TCNQ ( 30 ) Anode ITO (70) ITO (70) ΓΓΟ (70) ITO (70) ITO (70) ITO (70) Comparative Example El Comparative Example E2 Comparative Example E3 Comparative Example E4 Comparative Example E5 Example El _Fiber 匡: TLH* [3_卜嵴] Cathode A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) A1 (70) Adhesion improvement layer MgF2 (1) MgF2 ( 1) MgF2 ( 1 ) male MgF2 ( 1 ) MgF2 ( 1 ) second electron transport layer gravel E-l + 0.6% Li (40) El + l% Cs (40) El + 0.3% Li + 0.5% Cs (40 E-l+0.3%Li + 0.5%Cs (40) E-1 + 0.3%Li+0.5%Cs ( 40) First electron transport layer E-1 (50) E-1 (10) E-1 (10) E-1 (10) 1 E-1 (10) E-1 (10) Comparative example E1 Comparative example E2 Comparative Example E3 Comparative Example E4 Comparative Example E5 Example El s Inch 201212322 Next, for each of the produced organic electroluminescent devices, the luminous efficiency and luminance half-life of 300 cd/m 2 T were measured in the following manner, 3,_cd Luminous efficiency and party half-life time under /m2, and surface temperature of components at 3 ed/m2. The results are shown in Table 8 to Table 14. <Measurement of luminous efficiency> The luminance of the element driven at a fixed current density (i 〇 mA/cm 2 ) was measured by a spectroradiometer (SR-3 manufactured by Topcon Corporation) at 300 cd/m 2 and 3,000 Cd/m 2 . The current luminous efficiency (cd/A) was determined. <Measurement of luminance half-life time> Constant current was continuously supplied at an initial luminance of 300 cd/m2 and 3,000 cd/m2, and the luminance change was measured by a spectroradiometer (SR_3, manufactured by T〇pc〇n Co., Ltd.) Half of the time is the half-brightness of the brightness. <Measurement of surface temperature> The surface temperature in the vicinity of the center of each of the organic electroluminescent elements of 4 mm 2 was measured using an infrared radiation thermometer (CENTER 352 manufactured by K.K. Scientific Co., Ltd.) at 3, 〇〇〇 Cd/m2. [Table 8] 300 cd/m2 3,000 cd/m2 ' ~~ Luminous efficiency (%) Luminance half-life (hr) Luminous efficiency (%) Luminance half-life (hr) Surface temperature (. 〇 Comparative Example A1 10.1 2000 6.2 25 52.0 Comparative Example A2 10.3 2100 5.9 26 53.6 Comparative Example A3 10.1 1800 5.8 23 51.〇~~ Comparative Example A4 Comparative Example A5 10.2 ----- 1900 5.6 24 S33~~ 10.6 p-------- ----------- 1700 5.3 21 51.6 Example A4 10.6 1 A 2210 8.2 48 --- 42.3 -----

75 S 201212322 [表9] 第一電子傳 輸層的平均 厚度(μιη) 300 cd/m2 3,000 cd/m2 發光效率 (%) 亮度半衰 時間(hr) 發光效率 (%) 亮度半衰 時間(hr) 表面溫度(°c) 比較例A6 無 5.5 2200 3.6 54 40.6 實例A1 2 8.2 2100 5.5 56 40.9 實例A2 4 9.3 2250 7.5 55 41.5 實例A3 7 10.4 2110 7.8 53 41.6 實例A4 10 10.6 2210 8.2 48 42.3 實例A5 13 10.7 2120 8.3 48 43.0 實例A6 16 10.8 2050 8.4 43 44.3 實例A7 20 10.7 2200 8.4 27 46.2 表9中第一電子傳輸層的平均厚度與3,000 cd/m2下的 發光效率、亮度半衰時間、及表面溫度的關係示於圖1。 由表9及圖1的結果可知,若第一電子傳輸層的平均 厚度為5 nm〜15 nm的範圍,則可兼顧發光效率及高亮度 下的财久性。 [表 10] 300 cd/m2 3,000 cd/m2 發光效率 (%) 亮度半衰時間 (hr) 發光效率 (%) 亮度半衰時間 (hr) 表面溫度 (0〇 比較例B1 16.3 9800 11.2 123 46.0 比較例B2 16.8 10000 11,2 126 43.9 比較例B3 16.9 9000 12.2 113 44.2 比較例B4 16.5 9500 11.2 120 46.1 比較例B5 16.1 8500 12.0 107 45.0 實例B4 16.5 11000 14.2 260 39.0 [表 11] 第一電子傳 300 cd/m2 3,000 cd/m^ 76 201212322 f 亮度半衰 上間(hr) ^/W 厚度(μηι) 赞无效 率(%) 發光效 率(%) 亮度半衰 時間(hr) 表面溫度 (°C) 比較例B6 無 9.2 12000 8.3 255 38 5 實例B1 2 12.3 11000 10.2 270 38 1 實例B2 4 14.9 12000 12.2 255 38.5 實例B3 7 16.2 10000 13.9~~ 260 38.6 實例B4 實例B5 - 10 ~~— 16.5 ~1^9~ 11000 14.2 260 39.0 11000 14.9 250 41.3 實例B6 16 17.1 12000 15.1 ~~ 43.3 實例B7 17.0 220 /U 11500 15.0 120 47.3 表Η中第一電子傳輸層的平均厚度與3,〇〇〇 cd/m2下 的發光效率、度半衰時間、及表面溫度的關係示於圖2。 广;^表11及圖2的結果可知,若第-電子傳輸層的平均 厚二為5 nm〜15咖的範圍’則可兼顧發光效率及高亮度 下的耐久性。75 S 201212322 [Table 9] Average thickness of first electron transport layer (μιη) 300 cd/m2 3,000 cd/m2 Luminous efficiency (%) Luminance half-life (hr) Luminous efficiency (%) Luminance half-life (hr) Surface temperature (°c) Comparative example A6 No 5.5 2200 3.6 54 40.6 Example A1 2 8.2 2100 5.5 56 40.9 Example A2 4 9.3 2250 7.5 55 41.5 Example A3 7 10.4 2110 7.8 53 41.6 Example A4 10 10.6 2210 8.2 48 42.3 Example A5 13 10.7 2120 8.3 48 43.0 Example A6 16 10.8 2050 8.4 43 44.3 Example A7 20 10.7 2200 8.4 27 46.2 The average thickness of the first electron transport layer in Table 9 and the luminous efficiency, luminance half-life, and surface temperature at 3,000 cd/m2 The relationship is shown in Figure 1. As is apparent from the results of Table 9 and Fig. 1, when the average thickness of the first electron-transporting layer is in the range of 5 nm to 15 nm, both the luminous efficiency and the long-lasting property under high luminance can be achieved. [Table 10] 300 cd/m2 3,000 cd/m2 Luminous efficiency (%) Luminance half-life (hr) Luminous efficiency (%) Luminance half-life (hr) Surface temperature (0 〇 Comparative Example B1 16.3 9800 11.2 123 46.0 Comparison Example B2 16.8 10000 11,2 126 43.9 Comparative Example B3 16.9 9000 12.2 113 44.2 Comparative Example B4 16.5 9500 11.2 120 46.1 Comparative Example B5 16.1 8500 12.0 107 45.0 Example B4 16.5 11000 14.2 260 39.0 [Table 11] First electron transmission 300 cd /m2 3,000 cd/m^ 76 201212322 f Brightness half-life upper (hr) ^/W Thickness (μηι) Like no efficiency (%) Luminous efficiency (%) Luminance half-life (hr) Surface temperature (°C) Comparison Example B6 No 9.2 12000 8.3 255 38 5 Example B1 2 12.3 11000 10.2 270 38 1 Example B2 4 14.9 12000 12.2 255 38.5 Example B3 7 16.2 10000 13.9~~ 260 38.6 Example B4 Example B5 - 10 ~~- 16.5 ~1^9 ~ 11000 14.2 260 39.0 11000 14.9 250 41.3 Example B6 16 17.1 12000 15.1 ~~ 43.3 Example B7 17.0 220 /U 11500 15.0 120 47.3 The average thickness of the first electron transport layer in the table is 3, 〇〇〇cd/m2 Relationship between luminous efficiency, half-life time, and surface temperature In Figure 2. The wide; ^ results in Table 11 and FIG. 2 shows that if the first - the average thickness of the electron transport layer is in the range of 5 nm~15 two coffee apos be both luminous efficiency and durability at a high brightness.

[表 13][Table 13]

發光效率 (%) 亮度半衰時間 (hr) 發光效率 2.9% 亮度半衰時間 (hr) 252 比較例Dl 4.9% 表面溫度 (°C) 62.0 20000 77Luminous efficiency (%) Luminance half-life (hr) Luminous efficiency 2.9% Luminance half-life (hr) 252 Comparative Example Dl 4.9% Surface temperature (°C) 62.0 20000 77

S 201212322 f 比較例D2 5.6% 22000 比較例D3 5.1% 22000 比較例D4 5.3% 20000 — 比較例D5 4.9% 19000 實例D1 5.0% 20000 ’ [表 14] 300 cd/m2 發光效率 亮度半衰時間 λ (%) (hr) 比較例E1 17.6% 15000 比較例E2 18.2% 16000 比較例E3 18.2% 14000 比較例E4 17.3% 14500 比較例E5 17.6% 14500 實例E1 17.9% 15000S 201212322 f Comparative Example D2 5.6% 22000 Comparative Example D3 5.1% 22000 Comparative Example D4 5.3% 20000 - Comparative Example D5 4.9% 19000 Example D1 5.0% 20000 ' [Table 14] 300 cd/m2 Luminous efficiency Brightness half-time λ ( %) (hr) Comparative Example E1 17.6% 15000 Comparative Example E2 18.2% 16000 Comparative Example E3 18.2% 14000 Comparative Example E4 17.3% 14500 Comparative Example E5 17.6% 14500 Example E1 17.9% 15000

由表8〜I4的結果可知,實例A1〜m中,藉由改 機電激發光元件的結構,可抑制高亮度時表面溫度‘上 升,結果’高亮度時發光效帛的下降得到抑制,耐^ 得到改善。 相對於此,可知比較例中,高亮度時溫度的上升幅度 大,與低亮度相比發光效率大幅下降,耐久性亦比本發明 的有機電激發光元件差。 表本發明的有機電激發光元件由於可防止高亮度區域的 發光效率下降,且可改善高亮度使用時的耐久性,故適宜 用於,如顯示元件、顯示器、背光源、電子相片、照明光 源、記錄光源、曝光光源、讀取光源、標識、看 材料、光通信等。 ^As is clear from the results of Tables 8 to I4, in the examples A1 to m, by changing the structure of the electro-optical excitation light element, the surface temperature of the high-intensity brightness can be suppressed from rising, and as a result, the decrease in the luminous efficiency at the time of high luminance is suppressed, and the resistance is suppressed. Improved. On the other hand, in the comparative example, the increase in temperature at the time of high luminance was large, and the luminous efficiency was significantly lowered as compared with the low luminance, and the durability was also inferior to that of the organic electroluminescent device of the present invention. The organic electroluminescent device of the present invention is suitable for use in, for example, display elements, displays, backlights, electronic photographs, illumination sources, since it can prevent a decrease in luminous efficiency in a high-luminance region and can improve durability in use in high-brightness use. Recording light source, exposure light source, reading light source, marking, viewing materials, optical communication, etc. ^

S 78 201212322 f 【圖式簡單說明】 圖1顯示比較例A6及實例A1〜A7中第一電子傳輸層 的平均厚度與3000 cd/m2下的發光效率、亮度半衰時間及 表面溫度的關係。 圖2顯示比較例B6及實例B2〜B8中第一電子傳輸層 的平均厚度與3000 cd/m2下的發光效率、亮度半衰時間及 表面溫度的關係。 【主要元件符號說明】 無0S 78 201212322 f [Simple description of the drawings] Fig. 1 shows the relationship between the average thickness of the first electron-transporting layer in Comparative Example A6 and Examples A1 to A7 and the luminous efficiency, luminance half-life and surface temperature at 3000 cd/m2. Fig. 2 is a graph showing the relationship between the average thickness of the first electron-transporting layer in Comparative Example B6 and Examples B2 to B8 and the luminous efficiency, luminance half-life and surface temperature at 3000 cd/m2. [Main component symbol description] No 0

79 S79 S

Claims (1)

201212322 f 七、申請專利範圍: 1. 一種有機電激發光元件,其在一陽極與一陰極之間 包括至少包含—發光層及—電子傳輸層的-有機層,a中 該發光層包括至少2層發光材料摻雜層,以及至少ι 層發光材料非摻雜層, 該電子傳輸層含有2種以上的還原性掺質,並且 於該有機層與s亥陽極及該陰極中至少一者之 含無機化合物的一附著改善層。 括匕 2. 如申請專利範圍第1項所述之有機電激發光元件, 其中該發光材料非摻騎的厚度大於該發光材料掺雜層的 厚度。 3. 如申請專利範圍第ι項所述之有機電激發光元件, 其中構成㈣光材料非録層的_主體㈣與構成該發光 材料摻雜層的-主崎料具有相同的組成。 4‘如申請專利範圍第ι項所述之有機電激發光元件, 其中於該有機層與該陰極之間包括包含無機化合物的該附 者改善層。 5. 如申請專利範圍第4項所述之有機電激發光元件, 其中該無機化合物為選自LiF、Li20、MgF2、CaF2、NaF 及Si〇中的至少i種。 6. 如申請專利範圍第ι項所述之有機電激發光元件, 其中該還原性摻雜質為選自Li、K及Cs中的2種以上。 7. 如申請專利範圍第ι項所述之有機電激發光元件, 其中該還原性掺質的含量為 0.01〜3 wt%。 201212322 f 8. 如申請專利範圍第1項所述之有機電激發光元件, 其中該電子傳輸層自該陽極侧起依序包括:鄰接該發光層 的第一電子傳輸層,以及與該第一電子傳輸層鄰接的第二 電子傳輸層, 該第二電子傳輸層含有2種以上的還原性摻質,並且 該第一電子傳輸層除了不含該還原性摻質以外,包含 與該第二電子傳輸層相同的材料。 9. 如申請專利範圍第8項所述之有機電激發光元件, 其中該第一電子傳輸層的平均厚度為5〜15 nm。 S 81201212322 f VII. Patent Application Range: 1. An organic electroluminescent device comprising an organic layer comprising at least a light-emitting layer and an electron transport layer between an anode and a cathode, wherein the light-emitting layer in a comprises at least 2 a layer of a light-emitting material doped layer, and at least 1 layer of a non-doped layer of a light-emitting material, the electron-transport layer comprising two or more kinds of reducing dopants, and comprising at least one of the organic layer and the anode and the cathode An adhesion improving layer of an inorganic compound. 2. The organic electroluminescent device of claim 1, wherein the non-doped thickness of the luminescent material is greater than the thickness of the doped layer of the luminescent material. 3. The organic electroluminescent device according to claim 1, wherein the body of the (4) non-recording layer of the optical material has the same composition as the main material of the doping layer constituting the doping layer of the luminescent material. The organic electroluminescent device of claim 1, wherein the additive improving layer comprising an inorganic compound is included between the organic layer and the cathode. 5. The organic electroluminescent device according to claim 4, wherein the inorganic compound is at least one selected from the group consisting of LiF, Li20, MgF2, CaF2, NaF and Si. 6. The organic electroluminescent device according to claim 1, wherein the reducing dopant is at least two selected from the group consisting of Li, K and Cs. 7. The organic electroluminescent device of claim 1, wherein the reducing dopant is present in an amount of 0.01 to 3 wt%. The organic electroluminescent device of claim 1, wherein the electron transporting layer comprises, in order from the anode side, a first electron transport layer adjacent to the light emitting layer, and the first a second electron transport layer adjacent to the electron transport layer, the second electron transport layer containing two or more kinds of reducing dopants, and the first electron transport layer includes the second electron in addition to the reducing dopant The same material as the transport layer. 9. The organic electroluminescent device of claim 8, wherein the first electron transport layer has an average thickness of 5 to 15 nm. S 81
TW100101665A 2010-01-25 2011-01-17 Organic electroluminescence device TWI562419B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010013172 2010-01-25
JP2010245207A JP2011171279A (en) 2010-01-25 2010-11-01 Organic electric field light-emitting element

Publications (2)

Publication Number Publication Date
TW201212322A true TW201212322A (en) 2012-03-16
TWI562419B TWI562419B (en) 2016-12-11

Family

ID=44685150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100101665A TWI562419B (en) 2010-01-25 2011-01-17 Organic electroluminescence device

Country Status (3)

Country Link
JP (1) JP2011171279A (en)
KR (3) KR20110087214A (en)
TW (1) TWI562419B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945930B1 (en) 2012-01-05 2019-02-11 삼성디스플레이 주식회사 Organic light emitting device
CN105103325B (en) * 2013-02-28 2019-04-05 日本放送协会 Organic electroluminescent device
KR102167041B1 (en) 2013-08-14 2020-10-19 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising same
US10181562B2 (en) 2015-04-28 2019-01-15 Samsung Display Co., Ltd. Compound and organic light-emitting device comprising the same
KR102516053B1 (en) 2015-10-22 2023-03-31 삼성디스플레이 주식회사 Compound and Organic light emitting device comprising same
CN109786570A (en) * 2018-12-31 2019-05-21 瑞声科技(南京)有限公司 A kind of phosphorescent OLED device and its manufacturing method
US11508928B2 (en) 2019-11-29 2022-11-22 Joled Inc. Self-luminous element and self-luminous display panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266573B2 (en) * 1998-04-08 2002-03-18 出光興産株式会社 Organic electroluminescence device
JP4693336B2 (en) * 2003-01-14 2011-06-01 出光興産株式会社 Nitrogen-containing heterocyclic derivative and organic electroluminescence device using the same
US20070166566A1 (en) * 2006-01-18 2007-07-19 Eastman Kodak Company Electroluminescent device including a gallium complex
JP2007299828A (en) * 2006-04-28 2007-11-15 Canon Inc Organic light emitting element
JP2009037981A (en) * 2007-08-03 2009-02-19 Idemitsu Kosan Co Ltd Organic el device and manufacturing method for organic el device
WO2009084544A1 (en) * 2007-12-27 2009-07-09 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same

Also Published As

Publication number Publication date
TWI562419B (en) 2016-12-11
KR20180080706A (en) 2018-07-12
KR20110087214A (en) 2011-08-02
KR20170086450A (en) 2017-07-26
KR102238719B1 (en) 2021-04-13
JP2011171279A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
TWI361828B (en) Organic light emitting devices having reduced pixel shrinkage
TWI413287B (en) Electron impeding layer for high efficiency phosphorescent oleds
JP5883548B2 (en) OLED using direct injection into triplet state
US7598381B2 (en) Near-infrared emitting organic compounds and organic devices using the same
US7601436B2 (en) Carbene metal complexes as OLED materials
TWI354693B (en) Organic light emitting devices
US20050025993A1 (en) Materials and structures for enhancing the performance of organic light emitting devices
TWI463913B (en) Charge transporting layer for organic electroluminescent device
KR102238719B1 (en) Organic electroluminescence element
TW200540245A (en) Improved electroluminescent stability
JP2009016184A (en) Organic electroluminescent element
JP2002338579A (en) Heterocyclic compound and light emission element using the same
JP2010135689A (en) White organic electroluminescent element
US6902833B2 (en) Materials and structures for enhancing the performance or organic light emitting devices
JP2007287652A (en) Light-emitting element
JP2010278354A (en) Organic electroluminescent element
JP2011199174A (en) Light-emitting layer forming solid material, organic electroluminescent element, and method for producing the same
TW201134810A (en) Orgaic electroluminescent device
US20050019604A1 (en) Materials and structures for enhancing the performance of organic light emitting devices
US7198859B2 (en) Materials and structures for enhancing the performance of organic light emitting devices
JP6214026B2 (en) ORGANIC LIGHT EMITTING MATERIAL, ORGANIC LIGHT EMITTING MATERIAL MANUFACTURING METHOD, AND ORGANIC LIGHT EMITTING DEVICE
KR20060037421A (en) Organic electroluminescent device
JP2011192829A (en) Organic electroluminescent element
JP5761962B2 (en) Organic electroluminescence device
JP2011216869A (en) Organic field light-emitting element