TW201212245A - Solar cell and electrode layer structures thereof - Google Patents

Solar cell and electrode layer structures thereof Download PDF

Info

Publication number
TW201212245A
TW201212245A TW99130471A TW99130471A TW201212245A TW 201212245 A TW201212245 A TW 201212245A TW 99130471 A TW99130471 A TW 99130471A TW 99130471 A TW99130471 A TW 99130471A TW 201212245 A TW201212245 A TW 201212245A
Authority
TW
Taiwan
Prior art keywords
layer
type
type conductive
metal oxide
conductive polymer
Prior art date
Application number
TW99130471A
Other languages
Chinese (zh)
Other versions
TWI453926B (en
Inventor
Wen-Ti Wu
Original Assignee
Chi Lin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Lin Technology Co Ltd filed Critical Chi Lin Technology Co Ltd
Priority to TW099130471A priority Critical patent/TWI453926B/en
Publication of TW201212245A publication Critical patent/TW201212245A/en
Application granted granted Critical
Publication of TWI453926B publication Critical patent/TWI453926B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar cell and electrode layer structure thereof, the structure including an n-type layer, a p-type layer, and a p-n junction disposed between the n-type layer and the p-type layer. The n-type layer includes a modified n-type conductive polymer and metal oxides with chemical bondings therebetween. The electrode layer structure can be utilized in solar cells, especially in multi-junctions solar cells. In addition, the preparation of the electrode layer structure is a low temperature process such as coating or printing, thereby reducing the manufacture cost.

Description

201212245 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種電極層及太陽能電池,更特別關於 一種多重電極層及具有該多重電極層的太陽能電池。 【先前技術】 太陽能電池是一種利用太陽光將光能轉換為電能的光 電半導體元件,藉由光照,瞬間就可輸出電壓及電流。太 陽能電池發電是/種可再生的綠色發電方式,發電過程中 不會產生二氧化碳等有害氣體,可減少對於環境所造成污 染。按照其製作材料的不同可分為矽基半導體電池、光敏 染料電池、有機材料電池等。 其中,光敏染料太陽能電池(咖sensitized solar ceU, 簡稱DSSC)和〆般光伏特電池不同的是,DSSC之上基板 通常是玻璃或透明可彎曲的聚合箔(polymer foil)。破螭上 有一層透明導電的氧化物如掺雜氟i之氧化錫(Sn〇2:F ’簡稱 FTO)或銦錫氧化物(ITO)。在透明導電物上具有一層約1〇 微米厚的孔洞材料,一般為Ti02粒子(約10〜20 nm)組成 之奈米孔洞薄膜。接著在奈米孔洞薄膜上塗上一層染料如 聚°比°定基之釕錯合物(ruthenium polypyridyl complex),即形 成所謂的上基板。下基板通常亦是玻璃或透明可彎曲的聚 合箔,玻璃上有一層透明導電的氧化物如FT0外,一般為 鍍上一層鉑作為電解質反應的催化物(platinum catalyst)。上下基板之間,貝ij注入含有蛾化物之電解質 (electrolyte)。雖然目前DSSC的最高轉換效率約12%左右, 201212245 但是製造過程簡單,所以一般認為DSSC的問市將大幅降 低太陽電池的生產成本,同時伴隨的效益亦能降低每度電 的電費。 在美國公告之第US 7,094,441號專利中,以溶膠_凝膠 法(sol_gel)製備Ti〇2電極。上述作法極易殘留燒氧義 (alkoxy)於Ti02電極層中,造成電子不易傳輸。 另一種習知方法係先以無機酸根改質Ti〇2粒子表面, 接著以靜電斥力將改質之Ti〇2粒子吸附於基板上。然而上 φ 述作法會有多餘的無機酸根殘留造成電子不易傳輸,且吸 附之Ti02層與基板之間並無化學鍵結,極易因外力碰撞造 成分層 '龜裂、甚至剝落的問題。 在美國公開第US2006/0107994號申請案中,係以毐占著 劑(binder)搭配Ti〇2粒子,形成漿料後塗佈於基板上。接 著以高壓去除漿料中的黏著劑。但,此高壓製程無法靡用 於大面積之基板。 另一種去除漿料中黏著劑的方法為高溫燒結,但高^ • 燒結無法應用於熱穩定性較差的軟式基板上。 上述製程都面臨到一個問題,即無法形成一個能兼具 於低溫、常壓製程、且能製作出大面積、產能好、傳輸效 能佳的電極層,特別是作為電化學式太陽能電池之陽極。 綜上所述,目前極需新的方法及結構用以形成太陽電池電 極,俾利降低製程時間及成本。 【發明内容】 本發明提供一種電極層結構,包括第一基板;以及第 201212245 一 η型層位於第一基板上,第一 n型層包含複數個第一金 屬氧化物與複數個第一 η型導電高分子交聯;其中至少部 分第一 η型導電高分子與第一金屬氧化物之表面之間具有 化學鍵結,至少部分第一 η型導電高分子與第一基板表面 之間具有化學鍵結。 本發明亦提供一種太陽能電池,包括第一基板;第一 η型層,第一 η型層包含複數個第一金屬氧化物與複數個 第一 η型導電高分子交聯,至少部分第一 η型導電高分子 與第一金屬氧化物之表面之間具有化學鍵結,至少部分第 - η型導電高分子與第—基板表面之間具有化學鍵結;第 二基板,相對配置於第-基板;以及第—電解質層,電解 質層係填充於第一基板與第二基板之間。 本發明亦提供另-種太陽能電池,包括第一基板,·至 ^-電極層.,電極層包含:第1型層,第一 η型層包含 複數個第—金屬氧化物與複數個第-η型導電高分子六 少部分第一η型導電高分子與第-金屬氧化物之: -基板表面之間具有化學紗1 導電心子與第 松 。’第—電解質層位於第一 η 解質層與第一η型層之間具有ρ-接面; =-觸媒層,位於第-電解質層上;第二η型層位於第一 觸媒層上,第二η型層包含複數個 、 個第二„型導電高分子交聯,至二第數 子與第二金屬氧化物之表面之間二η型導電高分 第- η型導電高分子與第一觸媒 : 結;第二電解質層位於第二η型層1表^間具有化學鍵 層上,且第二電解質層與 201212245 第二η型層之間具有p-n接面;第二觸媒層,配置於第二 電解質層之上;以及第二基板,相對配置於第一基板。 【實施方式】 本發明提供可應用於太陽能電池之電極層結構,以及 對應之製備方法。首先如第1圖所示,提供一第一基板10, 該第一基板10可為透明材質如玻璃或高分子,亦可為反射 材質如金屬,端視陽光入射方向而定。在本發明一實施例 中,第一基板10亦可為可撓性基板,以符合軟性元件的需 • 求。 請參考第1圖至第3圖,形成第一 η型層11A於第一 基板10上。第一 η型層11Α之厚度較佳係介於1 # m至50 gm之間。第一 η型層11A為本發明之關鍵特徵,其組成 成分為第一金屬氧化物23與第一 η型導電高分子21的複 合材料,為第一金屬氧化物23與第一 η型導電高分子21 交聯而成。在本發明一實施例中,第一金屬氧化物23與第 一 η型導電高分子21之重量比較佳約500:50000。本發明 • 以化學法或電漿處理等製程修飾第一 η型導電高分子21之 侧鏈,再進一步接枝適當的官能基,以與第一金屬氧化物 23表面產製生化學鍵結。 在本發明一實施例中,將改質後之第一 η型導電高分 子21及第一金屬氧化物23粒子加入一般有機溶劑混合 後,即可塗佈或印刷於第一基板10上形成第一 η型層 11Α,再將該第一 η型層11Α浸置於一具有第一染料25之 溶液,使該第一染料25吸附於該第一金屬氧化物23粒子 201212245 及填充於部分之第一 η型層11A之中。在本發明另一實施 例中,將第一金屬氧化物23、第一染料25、改質之第一 η 型導電高分子21單體、及起始劑加入有機溶劑(圖未視) 後,以光起始或熱起始進行聚合反應,形成第一 η型導電 高分子21與吸附第一染料25之第一金屬氧化物23的混合 物。接著將上述混合物塗佈或印刷於第一基板10上形成第 一 η型層11Α。不論採用何種作法,第一 η型導電高分子 21側鏈改質之酸根或官能基與第一金屬氧化物23之表面 之間具有化學鍵結,與第一基板10接觸之第一 η型導電高 分子21其側鏈改質之酸根或官能基與第一基板10表面具 有化學鍵結。 第一金屬氧化物23與第一 η型導電高分子21之間的 相對關係如第2Α圖所示,吸附第一染料25之第一金屬氧 化物23係均勻地分散在第一 η型導電高分子21組成之網 狀結構中,且第一金屬氧化物23與第一 η型導電高分子 21之間具有化學鍵結。如第3Α圖所示,在本發明一實施 例中,第一 η型導電高分子21的兩端分別與兩個第一金屬 氧化物23之表面之間具有化學鍵結,且每一第一金屬氧化 物23之表面與複數個第一 η型導電高分子21之間具有化 學鍵結。如第4Α圖所示,在本發明另一實施例中,多個 第一金屬氧化物23之表面只與某一第一 η型導電高分子具 有化學鍵結。可以理解的是,本發明中第一金屬氧化物與 第一 η型導電高分子之間的型態可為第3Α圖、第4Α圖、 其他可能的型態、或上述之組合,係取決於第一金屬氧化 物23與第一 η型導電高分子21之間的比例、兩者的混合 201212245 條件、兩者的種類、兩者的大小、及/或其他可能的參數。 巨觀來看,不論如何變化第一金屬氧化物23與第一 η型導 電高分子21之間的參數’第一金屬氧化物23都可視作均 勻的分散於第一 η型導電高分子21之中,甚至有部份的第 一金屬氧化物23會露出複合材料的表面。此外,第一金屬 氧化物23與第一 η型導電高分子21兩者之間必然含有化 學鍵結。 上述第一金屬氧化物23可包含二氧化鈦(Ti〇2)、二氧 φ 化錫(Sn〇2)、氧化鋅(ZnO)、三氧化鎢(WO3)、氧化鐵 (Fe203)、五氧化二鈮(Nb205)、氧化銦錫(IT0)、三氧化二 銦(In2〇3)、鈦酸錕(SrTi〇3)、一氧化鎳(Ni〇)或上述金屬氧 化物之組合。第一金屬氧化物23之粒徑約介於1 β m至1〇〇 // m之間。 上述第一 η型導電高分子21之重均分子量較佳介於 500至50000間。適用於本發明之第一 η型導電高分子21 主要分為三種,其結構特徵為主鏈含有共軛之雙鍵與芳香 鲁 環,上述η型導電尚分子之最南占有電子軌域(HOMO)介於 -4.5eV至-7.0eV之間,其最低未占有電子軌域(LUMO)介於 -3.5eV 至-5.0eV 之間。 上述第一染料25可為順二(硫氰酸酯基)雙(2,2’_聯吡 啶 基 -4,4’- 二羧酸 酯基)釕 (II) (cis-di(thiocyanato)bis(2,2'_bipyridyl-4,4'-dicarboxylate)ruth enium(II),簡稱N3)、順雙(異硫氰酯基)雙(2,2,-聯吼啶基 -4,4’-二羧酸酯基)釕(II) 雙四丁基銨鹽 (cis-bis(isothiocyanato)bis(2,2'-bipyricjyi-4,4'-dicarboxylato) 201212245 -ruthenium(II)bis_tetrabutylammonium,簡稱 N719)、或無 金屬之有機染料(請參考Angew. Chem. Int. Ed. 2009, 48, 2474-2499)。 接著形成第一電解質層13A於上述之第一n型層11A 上’其形成方法可為塗佈法。在本發明一實施例中,第一 電解質層13A可為膠態電解質如或固態電解質。不論第一 電解質層13A屬於何種組成’均為電化學電位介於+2 5ev 至-0.5eV之間的p型材料。如此一來,第一 n型層UA與 第電解質層13A之間將形成p_n接面。上述第一電解質 層13A之厚度介於約2〇nm至⑺以爪之間。 夕吻參照第5圖,係本發明之另一實施例太陽能電池之 多重電極層結構,其係接續第一實施例後接著形成第一觸 媒層15Α於第一電解質層13八上其形成方法可為塗佈 法、。第-觸媒層15Α之材質可為链、石墨、碳奈米管、或 士述j質之組合,其厚度較佳約介於〇知爪至上之間。 右第觸媒層1认之厚度過薄,將有製程上的困難。若第 一觸媒層 之厚度過厚,其材質均為反光或吸光材質, 可能le成陽光不易穿透。201212245 VI. Description of the Invention: [Technical Field] The present invention relates to an electrode layer and a solar cell, and more particularly to a multiple electrode layer and a solar cell having the same. [Prior Art] A solar cell is a photo-electric semiconductor element that converts light energy into electric energy by using sunlight, and instantaneously outputs voltage and current by illumination. Solar power generation is a renewable green power generation method that generates no harmful gases such as carbon dioxide during power generation and reduces environmental pollution. According to the different materials, it can be divided into bismuth-based semiconductor batteries, photosensitive dye batteries, and organic material batteries. Among them, the photosensitive dye solar cell (DSSC) differs from the xenon-like photovoltaic cell in that the substrate on the DSSC is usually a glass or a transparent and flexible polymer foil. There is a transparent conductive oxide such as tin oxide doped with fluorine i (Sn〇2: F ‘abbreviated as FTO) or indium tin oxide (ITO). The transparent conductive material has a layer of pore material of about 1 微米 microns thick, and is generally a nanoporous film composed of TiO 2 particles (about 10 to 20 nm). Next, a layer of dye such as a ruthenium polypyridyl complex is coated on the nanopore film to form a so-called upper substrate. The lower substrate is also typically a glass or transparent bendable polymeric foil having a layer of transparent conductive oxide such as FT0, typically plated with platinum as the electrolyte catalyst. Between the upper and lower substrates, the beij ij is injected with a molybdenum-containing electrolyte (electrolyte). Although the current DSSC's highest conversion efficiency is about 12%, 201212245, but the manufacturing process is simple, it is generally believed that the DSSC market will significantly reduce the production cost of solar cells, and the accompanying benefits can also reduce the electricity bill per kilowatt hour. In the U.S. Patent No. 7,094,441, the Ti 〇 2 electrode is prepared by a sol-gel method (sol_gel). The above method is highly prone to residual alkoxy in the Ti02 electrode layer, causing electrons to be difficult to transport. Another conventional method is to first modify the surface of the Ti〇2 particles with a mineral acid, and then adsorb the modified Ti〇2 particles onto the substrate by electrostatic repulsion. However, the upper φ method has excess inorganic acid residue, which makes electrons difficult to transport, and there is no chemical bond between the adsorbed TiO 2 layer and the substrate, which is easy to cause cracking or even peeling of the constituent layer due to external force collision. In the application of U.S. Patent Application Publication No. US2006/0107994, a binder is used in combination with Ti 2 particles to form a slurry and then coated on a substrate. The adhesive in the slurry is then removed at high pressure. However, this high-pressure process cannot be applied to large-area substrates. Another method of removing the adhesive in the slurry is high temperature sintering, but high sintering cannot be applied to a soft substrate with poor thermal stability. All of the above processes face a problem in that it is impossible to form an electrode layer which can be combined with a low temperature and a normal pressing process, and which can produce a large area, a good productivity, and a good transmission efficiency, particularly as an anode of an electrochemical solar cell. In summary, there is a great need for new methods and structures for forming solar cell electrodes to reduce process time and cost. SUMMARY OF THE INVENTION The present invention provides an electrode layer structure including a first substrate; and a 201212245 n-type layer on the first substrate, the first n-type layer comprising a plurality of first metal oxides and a plurality of first n-types The conductive polymer is cross-linked; wherein at least a portion of the first n-type conductive polymer has a chemical bond with the surface of the first metal oxide, and at least a portion of the first n-type conductive polymer has a chemical bond with the surface of the first substrate. The present invention also provides a solar cell comprising a first substrate; a first n-type layer, the first n-type layer comprising a plurality of first metal oxides and a plurality of first n-type conductive polymers crosslinked, at least a portion of the first n The conductive polymer has a chemical bond with the surface of the first metal oxide, and at least a portion of the n-th type conductive polymer has a chemical bond with the surface of the first substrate; the second substrate is oppositely disposed on the first substrate; The first electrolyte layer is filled between the first substrate and the second substrate. The invention also provides another solar cell comprising a first substrate, to the electrode layer, the electrode layer comprising: a first type layer, the first n-type layer comprising a plurality of first metal oxides and a plurality of first The n-type conductive polymer has a small portion of the first n-type conductive polymer and the first metal oxide: - a chemical yarn 1 between the surface of the substrate and a conductive core. a first electrolyte layer having a p-junction between the first η-deposited layer and the first n-type layer; a =-catalyst layer on the first electrolyte layer; and a second n-type layer on the first catalyst layer The second n-type layer comprises a plurality of second and second types of conductive polymer crosslinks, and between the second number and the surface of the second metal oxide, two n-type conductive high-grade n-type conductive polymers And a first catalyst: a junction; a second electrolyte layer having a chemical bond layer between the second n-type layer 1 and a second pn junction between the second electrolyte layer and the 201212245 second n-type layer; the second catalyst a layer disposed on the second electrolyte layer; and a second substrate disposed opposite to the first substrate. [Embodiment] The present invention provides an electrode layer structure applicable to a solar cell, and a corresponding preparation method. As shown in the figure, a first substrate 10 is provided. The first substrate 10 may be a transparent material such as glass or a polymer, or may be a reflective material such as a metal, depending on the incident direction of the sunlight. In an embodiment of the invention, The first substrate 10 can also be a flexible substrate to conform to the soft element Please refer to FIGS. 1 to 3 to form a first n-type layer 11A on the first substrate 10. The thickness of the first n-type layer 11 is preferably between 1 #m and 50 gm. The first n-type layer 11A is a key feature of the present invention, and its constituent component is a composite material of the first metal oxide 23 and the first n-type conductive polymer 21, which is the first metal oxide 23 and the first n-type. The conductive polymer 21 is crosslinked. In one embodiment of the invention, the weight of the first metal oxide 23 and the first n-type conductive polymer 21 is preferably about 500:50000. The invention includes chemical or plasma The process or the like modifies the side chain of the first n-type conductive polymer 21, and further grafts an appropriate functional group to produce a biochemical bond with the surface of the first metal oxide 23. In an embodiment of the present invention, After the first n-type conductive polymer 21 and the first metal oxide 23 particles are mixed with a common organic solvent, they may be coated or printed on the first substrate 10 to form a first n-type layer 11Α, and then the first An n-type layer 11 is dipped in a solution having a first dye 25 to make the first dye 25 adsorbed on the first metal oxide 23 particles 201212245 and filled in a portion of the first n-type layer 11A. In another embodiment of the invention, the first metal oxide 23, the first dye 25, is modified After the first n-type conductive polymer 21 monomer and the initiator are added to an organic solvent (not shown), polymerization is initiated by light initiation or thermal initiation to form a first n-type conductive polymer 21 and adsorption. a mixture of a first metal oxide 23 of a dye 25. The above mixture is then coated or printed on the first substrate 10 to form a first n-type layer 11 Α. Regardless of the practice, the first n-type conductive polymer 21 side The chain-modified acid or functional group has a chemical bond with the surface of the first metal oxide 23, and the first n-type conductive polymer 21 in contact with the first substrate 10 has a side chain-modified acid or functional group and a A substrate 10 has a chemical bond on its surface. The relative relationship between the first metal oxide 23 and the first n-type conductive polymer 21 is as shown in FIG. 2, and the first metal oxide 23 adsorbing the first dye 25 is uniformly dispersed in the first n-type conductive high. In the network structure composed of the molecules 21, and the first metal oxide 23 and the first n-type conductive polymer 21 have a chemical bond. As shown in FIG. 3, in one embodiment of the present invention, both ends of the first n-type conductive polymer 21 have chemical bonds with the surfaces of the two first metal oxides 23, and each of the first metals The surface of the oxide 23 has a chemical bond with the plurality of first n-type conductive polymers 21. As shown in Fig. 4, in another embodiment of the present invention, the surface of the plurality of first metal oxides 23 is chemically bonded only to a certain first n-type conductive polymer. It can be understood that the type between the first metal oxide and the first n-type conductive polymer in the present invention may be a third map, a fourth map, other possible patterns, or a combination thereof, depending on The ratio between the first metal oxide 23 and the first n-type conductive polymer 21, the mixing of the two 201212245 conditions, the type of both, the size of both, and/or other possible parameters. In view of the macroscopic view, the parameter "the first metal oxide 23" between the first metal oxide 23 and the first n-type conductive polymer 21 can be regarded as uniformly dispersed in the first n-type conductive polymer 21. There is even a portion of the first metal oxide 23 that exposes the surface of the composite. Further, the first metal oxide 23 and the first n-type conductive polymer 21 necessarily contain a chemical bond. The first metal oxide 23 may include titanium oxide (Ti〇2), tin oxide (Sn〇2), zinc oxide (ZnO), tungsten trioxide (WO3), iron oxide (Fe203), and antimony pentoxide. (Nb205), indium tin oxide (IT0), indium trioxide (In2〇3), barium titanate (SrTi〇3), nickel monoxide (Ni〇) or a combination of the above metal oxides. The first metal oxide 23 has a particle size of between about 1 β m and 1 〇〇 // m. The weight average molecular weight of the first n-type conductive polymer 21 is preferably from 500 to 50,000. The first n-type conductive polymer 21 suitable for use in the present invention is mainly classified into three types, and its structural features include a conjugated double bond and an aromatic ruthenium ring in the main chain, and the most southmost occupied electronic orbital domain of the above-mentioned n-type conductive molecule (HOMO) ) Between -4.5eV and -7.0eV with a minimum unoccupied electronic rail (LUMO) between -3.5eV and -5.0eV. The first dye 25 may be cis-di(thiocyanate)bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) (cis-di(thiocyanato)bis (2,2'_bipyridyl-4,4'-dicarboxylate)ruth enium(II), abbreviated as N3), cis-bis(isothiocyanate) bis(2,2,-biacridinyl-4,4'- Dicarboxylate) cis-bis(isothiocyanato)bis(2,2'-bipyricjyi-4,4'-dicarboxylato) 201212245 -ruthenium(II)bis_tetrabutylammonium (N719) Or metal-free organic dyes (see Angew. Chem. Int. Ed. 2009, 48, 2474-2499). Next, the first electrolyte layer 13A is formed on the first n-type layer 11A described above. The forming method may be a coating method. In an embodiment of the invention, the first electrolyte layer 13A may be a colloidal electrolyte such as a solid electrolyte. Regardless of the composition of the first electrolyte layer 13A, a p-type material having an electrochemical potential of between +2 5 ev and -0.5 eV is used. As a result, a p_n junction is formed between the first n-type layer UA and the first electrolyte layer 13A. The thickness of the first electrolyte layer 13A is between about 2 〇 nm and (7) between the claws. Referring to FIG. 5, a multiple electrode layer structure of a solar cell according to another embodiment of the present invention is connected to the first embodiment and then forms a first catalyst layer 15 on the first electrolyte layer 13 It can be a coating method. The material of the first catalyst layer 15 may be a combination of a chain, a graphite, a carbon nanotube, or a material, and preferably has a thickness of about 〇 between the claws and the upper side. If the thickness of the right catalyst layer 1 is too thin, there will be difficulty in the process. If the thickness of the first catalyst layer is too thick, the material is reflective or light absorbing material, which may be difficult to penetrate into sunlight.

、接,形成—第二n型層11B於第-觸媒層15A上,形 成^法可為塗佈法或印刷法。一般而言,第二η型層11B /*、坌及尺寸與前述之第一 η型層11Α大致相同,其差異 'η型層11Α中的第一金屬氧化物23(如第2Α至 所不)粒徑,可不同於第二η型層11Β中的第二金屬 氧化物23,(如笛π s m . 1第2B至4B圖所示)粒徑。若陽光之入射方向 ' 圖所示之100時,第一 n型層11A中的第一金屬氧 201212245 化物23粒徑小於第二η型層11B中的第二金屬氧化物23, 粒徑。相反地,若陽光之入射方向為第6圖所示之1〇〇,時, 第一 n型層11A中的第一金屬氧化物23粒徑大於第二n 型層11B中的第二金屬氧化物23,粒徑。這是為了使光在 穿過透明基板後,先接觸較小粒徑之金屬氧化物,再接觸 較大粒徑之金屬氧化物。經過較大粒子的光散射後能更有 效的應用長波長段的光線。全光譜的光波如太陽光,其較Then, the second n-type layer 11B is formed on the first catalyst layer 15A, and the formation method may be a coating method or a printing method. In general, the second n-type layer 11B /*, 坌 and size are substantially the same as the first n-type layer 11 前述 described above, and the difference is 'the first metal oxide 23 in the n-type layer 11 ( (eg, the second Α to the 所The particle size may be different from the second metal oxide 23 in the second n-type layer 11 , (as shown in the flute π sm . 1 2B to 4B) particle size. If the incident direction of the sunlight is '100', the particle diameter of the first metal oxide 201212245 compound 23 in the first n-type layer 11A is smaller than that of the second metal oxide 23 in the second n-type layer 11B. Conversely, if the incident direction of the sunlight is 1 所示 as shown in FIG. 6, the first metal oxide 23 in the first n-type layer 11A has a larger particle diameter than the second metal oxide in the second n-type layer 11B. Matter 23, particle size. This is to allow the light to contact the metal oxide of a smaller particle size after passing through the transparent substrate, and then contact the metal oxide of a larger particle size. Long-wavelength light is more effectively applied by light scattering from larger particles. Full spectrum of light waves, such as sunlight,

短波長的光如藍光在入射至電池後的穿透距離較短,而較 長波長的光如紅光在入射電池後的穿透距離較長。如此一 來 較短波長且能量較強的光經較小粒徑之金屬氧化物將 會較易被染料吸收。另—方面,較長波長錢量較弱的光 經較大粒徑之金屬氧化減射後,將增加練於電極中的 光路徑,以增加長波長波段的吸收。若先制光之金屬氧 化物其粒徑大於後接觸光之金騎化物叙粒徑,則短波 長的光無法搭配距基板較遠之粒徑較小的金騎化物,而 長波長的光無法搭配距基板較近之粒徑較大的金屬氧化 物。如此-來’將無法達到增加可利用光波長範圍的效果。 在本發明-實施例中,第-n型層UA與第二η型層 11Β内所含的金屬氧化物為相同材 例中,第-η型層ηΑ與第另-實施 化物為不同材質。 ㈣仙内所含的金屬氧 除了調整金屬氧化物粒徑以外, 金屬氧化物於第- n型層11A虚第一二t用相同粒徑 1 \ ,、第一 n型層11B中,但 者为別吸附不同吸收波長之染料。如 上所述^ ’吸你姑e 短之染料應吸附於先接觸光的n型層之金屬氧化物上, 201212245 吸收波長較長之染料應吸附於後接觸光的η型層之金屬氧 化物上。 接著依序形成第二電解質層13Β與第二觸媒層15Β於 上述結構上,其形成方法及材料選擇如上述,在此不贅述。 第二電解質層13Β與第二η型層ηΒ之間亦具有ρ_η接面。 5月參閱第6圖,該圖係本發明之一實施例多重接面之 太陽能電池’係形成另一第二基板17於第二觸媒層15Β 上,並以封裝材料封裝上述結構後,即形成多重接面之太 陽能電池。 上述之第二基板17之材質可為環氧樹脂、矽膠、或聚 丙烯酉欠酉日等透明材料。若第6圖之太陽能電池其光入射方 向為100,則第一基板1〇需為透明材質且可在第二基板 17與第二觸媒層15Β之間夾射反光層狀材料,以提高光轉 換效率。另—方面’若第6圖之太陽能電池其光入射方向 為100’,則第一基板10可採用金屬材質之反射基板,第二 基板17可為透明材質之材料。此外,若太陽能電池架設於 需要採光的位置,則第—基板1G及第二基板17均採用透 明材質。 值得注意的是,雖然第6圖中包含兩個各自具有p_n 接面之f電池’但其僅為說明本發明之一實施態樣,可以 推知的疋子電池數目並不限於兩個,可依需求配置多重電 ,之太陽能能電池。且由於本發明採用低溫製程形成上述 多層結構’可依前述in型層、電解質層、觸媒層的循環 形成多重接面之太陽能電池,其子電池數目(即p_n接面數 目)端視需要而定。 12 201212245 另一實施例中,本發明之太陽能電池亦可只包含單一 接面,比如只具有第一基板10、第一 η型層11A、第一基 板17並將第一電解質層13Α填充於第一基板10及第二基 板17之間。 因此,不論太陽能電池有多少個子電池,均可採用外 部電路分別連接子電池之觸媒層(陰極)與η型層(陽極),使 太陽能電池產生之電流驅動連接外部電路之元件。 雖然本發明已以數個較佳實施例揭露如上,然其並非 φ 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作任意之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。Short-wavelength light such as blue light has a shorter penetration distance after being incident on the battery, and longer-wavelength light such as red light has a longer penetration distance after entering the battery. As a result, light of shorter wavelengths and higher energy will be more easily absorbed by the dye through metal oxides of smaller particle size. On the other hand, light with a relatively long wavelength and a small amount of light is oxidized by a larger particle size, which increases the light path in the electrode to increase the absorption in the long wavelength band. If the particle size of the first light-emitting metal oxide is larger than the particle size of the post-contact light, the short-wavelength light cannot match the gold-grained material with a smaller particle size farther from the substrate, and the long-wavelength light cannot be matched. A metal oxide having a larger particle diameter closer to the substrate. So-to-can't achieve the effect of increasing the wavelength range of available light. In the present invention-embodiment, the metal oxide contained in the n-type layer UA and the second n-type layer 11 is the same material, and the first-n-type layer ηΑ is different from the second embodiment. (4) In addition to adjusting the particle size of the metal oxide, the metal oxide in the first n-type layer 11A is the same as the first n-type layer 11B, but the first n-type layer 11B To absorb different dyes with different absorption wavelengths. As mentioned above, the dye that is short-lived should be adsorbed on the metal oxide of the n-type layer that first contacts the light. 201212245 The dye with a longer absorption wavelength should be adsorbed on the metal oxide of the n-type layer of the rear contact light. . Then, the second electrolyte layer 13A and the second catalyst layer 15 are sequentially formed on the above structure, and the formation method and material selection thereof are as described above, and are not described herein. The second electrolyte layer 13A and the second n-type layer ηΒ also have a p_η junction. Referring to FIG. 6 , which is a multi-junction solar cell of an embodiment of the present invention, another second substrate 17 is formed on the second catalyst layer 15 , and the above structure is encapsulated by an encapsulating material. A solar cell that forms multiple junctions. The material of the second substrate 17 described above may be a transparent material such as an epoxy resin, a silicone resin, or a polypropylene resin. If the solar cell of FIG. 6 has a light incident direction of 100, the first substrate 1 is not required to be a transparent material, and the reflective layered material may be sandwiched between the second substrate 17 and the second catalyst layer 15Β to enhance the light. Conversion efficiency. On the other hand, if the solar cell of Fig. 6 has a light incident direction of 100', the first substrate 10 may be a reflective substrate made of a metal material, and the second substrate 17 may be a material of a transparent material. Further, if the solar cell is mounted at a position where lighting is required, the first substrate 1G and the second substrate 17 are made of a transparent material. It should be noted that although FIG. 6 includes two f-cells each having a p_n junction, but it is merely an embodiment of the present invention, it can be inferred that the number of dice batteries is not limited to two, and can be Demand to configure multiple power, solar energy battery. And because the invention adopts a low-temperature process to form the above-mentioned multilayer structure, a solar cell capable of forming multiple junctions according to the circulation of the in-type layer, the electrolyte layer and the catalyst layer, the number of sub-cells (ie, the number of p_n junctions) is required. set. 12 201212245 In another embodiment, the solar cell of the present invention may also include only a single junction, such as having only the first substrate 10, the first n-type layer 11A, the first substrate 17, and the first electrolyte layer 13 Between a substrate 10 and a second substrate 17. Therefore, regardless of the number of sub-cells in the solar cell, the external circuit can be used to connect the catalyst layer (cathode) and the n-type layer (anode) of the sub-cell, respectively, so that the current generated by the solar cell drives the components connected to the external circuit. While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the invention, and any one skilled in the art can make any changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

13 201212245 【圖式簡單說明】 第1圖係本發明一實施例之太陽能電池之電極層結構 不意圖, 第2A圖係本發明一實施例之第一 η型層之結構示意 圖, 第2Β圖係本發明一實施例之第二η型層之結構示意 圖; 第3Α圖係本發明一實施例中第一 η型導電高分子與 第一金屬氧化物之鍵結示意圖; 籲 第3Β圖係本發明一實施例中第二η型導電高分子與第 二金屬氧化物之鍵結示意圖; 第4Α圖係本發明另一實施例中第一 η型導電高分子 與第一金屬氧化物之鍵結示意圖; 第4Β圖係本發明另一實施例中第二η型導電高分子與 第二金屬氧化物之鍵結示意圖; 第5圖係本發明一實施例之太陽能電池之多重電極層 結構示意圖;以及 · 第6圖係本發明一實施例之染料敏化太陽能電池示意 圖。 【主要元件符號說明】 10 第 一基板; 17 第 二基板; 11Α 第 一 η型層; 11Β 第 二η型層; 14 201212245 13A 第一電解質層; 13B 第二電解質層; 15A 第一觸媒層; 15B 第二觸媒層; 21 第一 η型導電高分子; 21, 第二η型導電高分子; 23 第一金屬氧化物; 23, 第二金屬氧化物; 25 第一染料; 25, 第二染料; 100、 100’ 陽光入射方向。13 201212245 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the structure of an electrode layer of a solar cell according to an embodiment of the present invention, and FIG. 2A is a schematic structural view of a first n-type layer according to an embodiment of the present invention, and FIG. A schematic diagram of a structure of a second n-type layer according to an embodiment of the present invention; FIG. 3 is a schematic diagram of bonding of a first n-type conductive polymer and a first metal oxide in an embodiment of the present invention; Schematic diagram of bonding of a second n-type conductive polymer and a second metal oxide in an embodiment; FIG. 4 is a schematic diagram of bonding of a first n-type conductive polymer and a first metal oxide in another embodiment of the present invention Figure 4 is a schematic diagram showing the bonding of a second n-type conductive polymer and a second metal oxide in another embodiment of the present invention; and Figure 5 is a schematic view showing the structure of a multi-electrode layer of a solar cell according to an embodiment of the present invention; Fig. 6 is a schematic view showing a dye-sensitized solar cell according to an embodiment of the present invention. [Main component symbol description] 10 first substrate; 17 second substrate; 11Α first n-type layer; 11Β second n-type layer; 14 201212245 13A first electrolyte layer; 13B second electrolyte layer; 15A first catalyst layer 15B second catalyst layer; 21 first n-type conductive polymer; 21, second n-type conductive polymer; 23 first metal oxide; 23, second metal oxide; 25 first dye; 25, Two dyes; 100, 100' sunlight incident direction.

1515

Claims (1)

201212245 七、申請專利範圍: 1. 一種電極層結構,包括: 一第一基板;以及 .一第一 η型層位於該第一基板上,該第—n型層 複數個第一金屬氧化物與複數個第一 n = 3 聯; 向刀子父 其中至少部分該些第- n型導電高分子與該些第 屬氧化物之表面之間具有化學鍵結,至少部分該二 , 型導電高分子與該第一基板表面之間具有化學鍵:。η 2. 如中請專利範圍第工項所述之電極層結構: 些第一金屬氧化物表面吸附一第一染料。 /、 3如中請專利範圍第1項所述之電極層結構, Ϊ— η型導電高分子的兩端分別與兩個第-金屬氧 物之:面=固Γ學鍵結’且部分該些第-金屬氧化 結。表面Μ數個第1型導電高分子之間具有化學鍵 範圍第1項所述之電極層結構,更包含: 第-電解質層’其位於該第一 電解質^與該第1型層之間具有㈣接面;及且該第一 ϋ媒層’形成於該第 ,申請專利範圍第4項所述之二 第—11型層位於該第一觸媒声上, -^ " ^刀該些第二η型導電高分子與該些第二金 16 201212245 屬氧化物表面之間具有化學鍵結,至少部分該些第二η型 導電高分子與該第一觸媒層表面之間具有化學鍵結; 一第二電解質層,且該第二電解質層與該第二η型層 之間具有ρ-η接面;及 一第二觸媒層,形成配置於該第二電解質層之上。 6.如申請專利範圍第5項所述之電極層結構,其中該 些第一金屬氧化物表面吸附一第一染料,且該些第二金屬 氧化物表面吸附一第二染料。 • 7.如申請專利範圍第6項所述之電極層結構,其中該 第二染料之吸收波長係小於該第一染料之吸收波長。 8. 如申請專利範圍第6項所述之電極層結構,其中該 第二染料之吸收波長係大於該第一染料之吸收波長。 9. 如申請專利範圍第5項所述之電極層結構,其中部 份該些第二η型導電高分子的兩端分別與兩個第二金屬氧 ,化物之表面之間具有化學鍵結,且部分該些第二金屬氧化 物之表面與複數個第二η型導電高分子之間具有化學鍵 • 結。 10. —種太陽能電池,包括: 一第一基板; 一第一 η型層,該第一 η型層包含複數個第一金屬氧 化物與複數個第一 η型導電高分子交聯,至少部分該些第 一 η型導電高分子與該些第一金屬氧化物之表面之間具有 化學鍵結,至少部分該些第一 η型導電高分子與該第一基 板表面之間具有化學鍵結; 一第二基板,相對配置於該第一基板;以及 17 201212245 一第一電解質層,該第一電解質層係填充於該第—基 板與該第二基板之間。 11. 如申請專利範圍第10項所述之太陽能電池,其中 該些第一金屬氧化物表面吸附一第一染料。 12. 如申請專利範圍第1〇項所述之太陽能電池,其中 部份該些第一 η型導電高分子的兩端分別與兩個第一金屬 氧化物之表面之間具有化學鍵結,且部分該些第—金屬氧 化物之表面與複數個第一 η型導電高分子之間具有化 結。 硬 13. —種太陽能電池,包括: 一第一基板; 至少一電極層,該電極層包含: 第11型層,該第一 η型層包含複數個第一 化物與複數個第- η型導電高分子交聯,至少部分該 一 11型導電高分子與該些第—金屬氧化物之表面之間i有 鍵結’至少部分該些第一 n型導電高分 板表面之間具有化學鍵結; 乐基 一第-電解質層位於該第—以層上, 質層無第1型層之間具有p-n接面; 電解 一第一觸媒層,位於該第一電解質層上; 一第二η型層位於該第—觸媒層上, ==化物:複導數:第二"型導,;: 化物之表*之叫魏二金屬氧 電高分子與該第一觸拔思主 少口丨刀該些第一 ϋ型導 第㈣層表面之間具有化學鍵結; 201212245 一第二電解質層位於該第二η型層上,且該第二電解 質層與該第二η型層之間具有ρ-η接面; 一第二觸媒層,配置於該第二電解質層之上;以及 一第二基板,相對配置於該第一基板。 14. 如申請專利範圍第13項所述之太陽能電池,其中 該些第一金屬氧化物表面吸附一第一染料,且該些第二金 屬氧化物表面吸附一第二染料。 15. 如申請專利範圍第13項所述之太陽能電池,其中 φ 部份該些第一 η型導電高分子的兩端分別與兩個第一金屬 氧化物之表面之間具有化學鍵結,且部分該些第一金屬氧 化物之表面與複數個第一 η型導電高分子之間具有化學鍵 結。 16. 如申請專利範圍第13項所述之太陽能電池,其中 部份該些第二η型導電南分子的兩端分別與兩個第二金屬 氧化物之表面之間具有化學鍵結,且部分該些第二金屬氧 化物之表面與複數個第二η型導電高分子之間具有化學鍵 φ 結。 17. 如申請專利範圍第14項所述之太陽能電池,其中 該第二染料之吸收波長係小於該第一染料之吸收波長。 18. 如申請專利範圍第14項所述之太陽能電池,其中 該第二染料之吸收波長係大於該第一染料之吸收波長。 19201212245 VII. Patent application scope: 1. An electrode layer structure comprising: a first substrate; and a first n-type layer on the first substrate, the first n-type layer of the plurality of first metal oxides and a plurality of first n = 3 bonds; wherein at least a portion of the n-th type conductive polymer and a surface of the first oxides are chemically bonded to at least a portion of the second type conductive polymer There is a chemical bond between the surfaces of the first substrate: η 2. Electrode layer structure as described in the scope of work of the patent scope: The first metal oxide surface adsorbs a first dye. /, 3, as in the electrode layer structure described in the first paragraph of the patent scope, the two ends of the Ϊ-n-type conductive polymer and the two first-metal oxides: face = solid bond bonding' and part of the Some of the -metal oxides. The surface layer structure of the first aspect of the first type of the conductive polymer having the chemical bond range according to the first item, further comprising: the first electrolyte layer 'between the first electrolyte layer and the first type layer (4) a junction; and the first dielectric layer is formed in the first, and the second type 11 layer of the fourth aspect of the patent application is located on the first catalyst sound, -^ " The two n-type conductive polymer has a chemical bond with the surface of the oxide of the second gold 16 201212245, and at least a portion of the second n-type conductive polymer has a chemical bond with the surface of the first catalyst layer; a second electrolyte layer having a p-n junction between the second electrolyte layer and the second n-type layer; and a second catalyst layer formed on the second electrolyte layer. 6. The electrode layer structure of claim 5, wherein the first metal oxide surface adsorbs a first dye, and the second metal oxide surface adsorbs a second dye. 7. The electrode layer structure of claim 6, wherein the absorption wavelength of the second dye is less than the absorption wavelength of the first dye. 8. The electrode layer structure of claim 6, wherein the absorption wavelength of the second dye is greater than the absorption wavelength of the first dye. 9. The electrode layer structure according to claim 5, wherein a portion of the second n-type conductive polymer has a chemical bond between the two ends of the second n-type conductive polymer and the surface of the two second metal oxides, respectively. A portion of the second metal oxide has a chemical bond between the surface of the second metal oxide and the plurality of second n-type conductive polymers. 10. A solar cell comprising: a first substrate; a first n-type layer comprising a plurality of first metal oxides and a plurality of first n-type conductive polymers crosslinked, at least in part The first n-type conductive polymer has a chemical bond with the surface of the first metal oxide, and at least a portion of the first n-type conductive polymer has a chemical bond with the surface of the first substrate; a second substrate disposed opposite to the first substrate; and 17 201212245 a first electrolyte layer, the first electrolyte layer being filled between the first substrate and the second substrate. 11. The solar cell of claim 10, wherein the first metal oxide surface adsorbs a first dye. 12. The solar cell of claim 1, wherein a portion of the first n-type conductive polymer has a chemical bond between the two ends of the first n-type conductive polymer and a portion of the first metal oxide, respectively. The surface of the first metal oxide and the plurality of first n-type conductive polymers have a bond. A solar cell comprising: a first substrate; at least one electrode layer, the electrode layer comprising: an 11th type layer, the first n-type layer comprising a plurality of first compounds and a plurality of first-n-type conductive Polymer cross-linking, at least a portion of the 11-type conductive polymer and the surface of the first metal oxide are i-bonded with at least a portion of the first n-type conductive high-profile plate surface having a chemical bond; a Leki-first electrolyte layer is located on the first layer, and the first layer has no pn junction between the first layer; an electrolysis-first catalyst layer is located on the first electrolyte layer; a second n-type The layer is located on the first catalyst layer, == compound: complex derivative: second " type guide;;: the table of the compound * called Wei Er metal oxygen polymer and the first touch of the main less than the mouth a first chemical bond between the surfaces of the first (four) layer; a second electrolyte layer on the second n-type layer, and a p between the second electrolyte layer and the second n-type layer a η junction; a second catalyst layer disposed on the second electrolyte layer; And a second substrate disposed opposite to the first substrate. 14. The solar cell of claim 13, wherein the first metal oxide surface adsorbs a first dye, and the second metal oxide surface adsorbs a second dye. 15. The solar cell of claim 13, wherein the φ portion of the first n-type conductive polymer has a chemical bond between the two ends of the first n-type conductive polymer and the surface of the two first metal oxides, respectively. The surface of the first metal oxide has a chemical bond with the plurality of first n-type conductive polymers. 16. The solar cell of claim 13, wherein a portion of the second n-type conductive south molecule has a chemical bond between the two ends of the second n-type conductive south molecule and a portion of the second metal oxide. There is a chemical bond φ junction between the surface of the second metal oxide and the plurality of second n-type conductive polymers. 17. The solar cell of claim 14, wherein the absorption wavelength of the second dye is less than the absorption wavelength of the first dye. 18. The solar cell of claim 14, wherein the second dye has an absorption wavelength greater than an absorption wavelength of the first dye. 19
TW099130471A 2010-09-09 2010-09-09 Solar cell and electrode layer structures thereof TWI453926B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099130471A TWI453926B (en) 2010-09-09 2010-09-09 Solar cell and electrode layer structures thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099130471A TWI453926B (en) 2010-09-09 2010-09-09 Solar cell and electrode layer structures thereof

Publications (2)

Publication Number Publication Date
TW201212245A true TW201212245A (en) 2012-03-16
TWI453926B TWI453926B (en) 2014-09-21

Family

ID=46764534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099130471A TWI453926B (en) 2010-09-09 2010-09-09 Solar cell and electrode layer structures thereof

Country Status (1)

Country Link
TW (1) TWI453926B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823691B2 (en) 2017-01-11 2020-11-03 Winbond Electronics Corp. Sensor, composite material and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940447B2 (en) * 2006-12-04 2011-05-10 3M Innovative Properties Company Electrochromic device
TW201017956A (en) * 2008-08-28 2010-05-01 Panasonic Elec Works Co Ltd Photoelectric element
US20100065834A1 (en) * 2008-09-16 2010-03-18 Plextronics, Inc. Integrated organic photovoltaic and light emitting diode device

Also Published As

Publication number Publication date
TWI453926B (en) 2014-09-21

Similar Documents

Publication Publication Date Title
Pan et al. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells
KR101156531B1 (en) Method for Preparing a Flexible Semiconductor Electrode, Semiconductor Electrode Prepared by the Same and Solar Cell using the Same
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
EP2211418A1 (en) Dye-sensitized solar cell module
US20080115829A1 (en) Dye-sensitized solar cell
TWI443892B (en) Method for manufacturing an electrode
CN1643630A (en) Photovoltaic cell interconnection
KR101234239B1 (en) Dye sensitized solar cell, and manufacturing method thereof
Mingsukang et al. Third-generation-sensitized solar cells
EP2073226A2 (en) Dye-sensitized solar cell and method of manufacturing the same
US20090211630A1 (en) Dye-sensitized solar cell and method of manufacturing the same
KR20120043648A (en) Dye-sensitized solar cell and manufacturing method thereof
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2006236637A (en) Photoelectric conversion device and photovoltaic power generator using the same
JP2009009936A (en) Photoelectric conversion device
Kang et al. Electrochemically synthesized mesoscopic nickel oxide films as photocathodes for dye-sensitized solar cells
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
JP5334380B2 (en) Dye-sensitized solar cell and method for producing the same
KR101538640B1 (en) Photoelectrode for dye-sensitized solar cell, manufacturing method thereof and dye-sensitized solar cell using the same
TWI453926B (en) Solar cell and electrode layer structures thereof
TW201044671A (en) Dye-sensitized solar cell and method for manufacturing the same
JP5248821B2 (en) Composite solar cell
KR20130118578A (en) Light sensitized solar cell and method for manufacturing the same
JP5332739B2 (en) Photoelectric conversion element and solar cell
JP2009135395A (en) Photoelectric conversion device, photovoltaic generator, and photoelectric conversion module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees