TW201211172A - Method for fabricating a counter electrode of dye-sensitized solar cells - Google Patents

Method for fabricating a counter electrode of dye-sensitized solar cells Download PDF

Info

Publication number
TW201211172A
TW201211172A TW99130466A TW99130466A TW201211172A TW 201211172 A TW201211172 A TW 201211172A TW 99130466 A TW99130466 A TW 99130466A TW 99130466 A TW99130466 A TW 99130466A TW 201211172 A TW201211172 A TW 201211172A
Authority
TW
Taiwan
Prior art keywords
dye
sensitized solar
solar cell
counter electrode
cell according
Prior art date
Application number
TW99130466A
Other languages
Chinese (zh)
Other versions
TWI397563B (en
Inventor
Kuo-Chuan Ho
Jiang-Jen Lin
Ying-Chiao Wang
Kuan-Chieh Huang
Rui-Xuan Dong
Wei-Cheng Tsai
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW99130466A priority Critical patent/TWI397563B/en
Publication of TW201211172A publication Critical patent/TW201211172A/en
Application granted granted Critical
Publication of TWI397563B publication Critical patent/TWI397563B/en

Links

Landscapes

  • Hybrid Cells (AREA)
  • Catalysts (AREA)

Abstract

The invention provides a method for fabricating a counter electrode of dye-sensitized solar cells, which includes: (a) providing a polyamine compound, wherein the polyamine comprises polyimide or polyamine; (b) mixing the polyamine compound, a carbon nanotube, a platinum salt and a solvent to obtain a homogeneous suspension; (c) adding a reducing agent into the homogeneous suspension to obtain a mixing solution, wherein the mixing solution comprises a plurality of platinum nanoparticles; (d) coating the mixing solution on a substrate by coating method; and (e) heating the substrate to form a conductive film on the substrate.

Description

201211172 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種電極之製法,且特別是有關於一種染料 敏化太陽能電池之對電極之製法。 【先前技術】 近年來由於受到全球氣候變遷、環境污染問題以及資源曰趨 短缺的影響,在環保意識高漲與能源危機的警訊下刺激了太陽光 電產業的蓬勃發展。於各種太陽能電池中,由於染料敏化太陽能 電池(Dye-Sensitized Solar Cell, DSSC)具備大面積、製程簡便、成 本低廉等優點,因此成為新一代太陽能電池技術發展之主流。 關於染料敏化太陽能電池(DSSC)在對電極(counter electrode) 方面的研究’由於鉑(Pt)具有優異的催化效果,因此習知將鉑形成 於電極的表面作為一催化層’然而,链的價格昂貴,因此使染料 敏化太陽能電池成本無法降低。此外,儘管降低鉑的使用量可以 減少成本,但是電極的催化能力亦會隨之降低。 之後’有研究將翻奈米粒子(platinum nanoparticles,PtNPs)修 飾於奈米碳管(nanotube)中,希望藉由奈米碳管提高整體電極的表 面積,以減少鉑之使用量。然而,奈米碳管分子之間具有強大的 凡得瓦力(van der Waals attraction) ’需要經過化學改質法(chemical modification method)或物理吸附法(physisorption)以使奈米碳管均 勻分散,而這些處理方法的製程繁瑣且費時,不適合量產。 因此’業界亟需發展一種染料敏化太陽能電池(DSSC)之對電 極之製法’此製法不但可使奈米碳管均勻分散,以減少鉑的使用 量,且同時具有優異的催化效果。 201211172 【發明内容】 本發明提供一種染料敏化太陽能電池之對電極(c〇unter electrode)之製法’包括以下步驟:⑷提供一聚胺高分子 (polyamine) ’其中該聚胺高分子包括聚亞醯胺(p〇lyimi心)或聚醯胺 (polyamide); (b)混合該聚胺高分子、—奈米碳管(carb〇n nan〇tube, CNT)、一鉑鹽(platinum salt)於一溶劑中,以製備一均質懸浮液 (homogenous suspension) ;(c)加入—還原劑於該均質懸浮液中, φ 以製備一混合溶液,其中該混合溶液包括複數個鉑奈米粒子;(d) 以塗佈法(coating method)將該混合溶液塗佈於一基材上;以及 對該基材進行一熱處理,以於該基材上形成一導電薄膜。 為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂, 下文特舉出較佳實施例’並配合所附圖式,作詳細說明如下: 【實施方式】 φ 本發明提供一種染料敏化太陽能電池之對電極(counter electrode)之製法’包括以下步驟(a)〜(e),主要藉由聚胺高子作為 奈米碳管之分散劑與作為鉑奈米粒子之穩定劑,使鉑奈米粒子均 勻分散於奈米碳管中,有效提高電極的表面積,以減少鉑的使用 量,降低製程的成本。 首先進行步驟(a),提供一聚胺高分子(polyamine),其中聚胺 高分子包括聚亞酿胺(polyimide)或聚醯胺(polyamide),此聚亞醢胺 包括一含聚醚片段之聚亞醯胺(poly(oxyethylene)-segmented imide, POE-imide),具有下列式(I): 201211172201211172 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of fabricating an electrode, and more particularly to a method of fabricating a counter electrode of a dye-sensitized solar cell. [Prior Art] In recent years, due to the global climate change, environmental pollution problems and the shortage of resources, the solar photovoltaic industry has been booming under the warning of high environmental awareness and energy crisis. Among various solar cells, Dye-Sensitized Solar Cell (DSC) has become a mainstream of the development of new-generation solar cell technology because of its large area, simple process, and low cost. Regarding dye-sensitized solar cells (DSSC) in the field of counter electrodes, since platinum (Pt) has an excellent catalytic effect, it is conventionally known that platinum is formed on the surface of an electrode as a catalytic layer' However, the chain It is expensive, so the cost of dye-sensitized solar cells cannot be reduced. In addition, although reducing the amount of platinum used can reduce the cost, the catalytic performance of the electrode is also reduced. Later, there have been studies to modify platinum nanoparticles (PtNPs) in nanotubes. It is hoped that the surface area of the whole electrode will be increased by the carbon nanotubes to reduce the amount of platinum used. However, there is a strong van der Waals attraction between the carbon nanotube molecules, which requires a chemical modification method or a physisorption method to uniformly disperse the carbon nanotubes. The process of these treatment methods is cumbersome and time consuming, and is not suitable for mass production. Therefore, there is an urgent need to develop a method for the electrode of a dye-sensitized solar cell (DSSC). This method not only allows the carbon nanotubes to be uniformly dispersed, but also reduces the amount of platinum used, and at the same time has an excellent catalytic effect. 201211172 SUMMARY OF THE INVENTION The present invention provides a method for preparing a counter electrode of a dye-sensitized solar cell, which comprises the following steps: (4) providing a polyamine polymer (wherein the polyamine polymer comprises poly Asia)醯amine (p〇lyimi heart) or polyamide; (b) mixing the polyamine polymer, carb〇n nan〇tube (CNT), a platinum salt (platinum salt) a solvent to prepare a homogenous suspension; (c) adding a reducing agent to the homogeneous suspension, φ to prepare a mixed solution, wherein the mixed solution comprises a plurality of platinum nanoparticles; Applying the mixed solution to a substrate by a coating method; and subjecting the substrate to a heat treatment to form a conductive film on the substrate. The above and other objects, features and advantages of the present invention will become more apparent and understood. The method for preparing a counter electrode of a dye-sensitized solar cell includes the following steps (a) to (e), mainly by using a polyamine probe as a dispersing agent for the carbon nanotubes and as a stabilizer for the platinum nanoparticles; The platinum nano particles are uniformly dispersed in the carbon nanotubes, thereby effectively increasing the surface area of the electrode, thereby reducing the amount of platinum used and reducing the cost of the process. First, step (a) is carried out to provide a polyamine polymer, wherein the polyamine polymer comprises a polyimide or a polyamide, and the polyamidene comprises a polyether-containing fragment. Poly(oxyethylene)-segmented imide (POE-imide) having the following formula (I): 201211172

其中η = 1〜16 ;且POE具有下列式(II): 2-)-(-och2ch24-(och2ch-^-nh2 CH-iWhere η = 1~16 ; and POE has the following formula (II): 2-)-(-och2ch24-(och2ch-^-nh2 CH-i

NH2CHCH2-(-〇CHCH (II), ch3 ch3 其中 a+c=6, b=39。 而聚醯胺(polyamide)包括一含聚醚片段之聚醯胺 (poly(oxyethylene)-segmented amide, POE-imide),具有下列式 (III):NH2CHCH2-(-〇CHCH (II), ch3 ch3 where a+c=6, b=39. Polyamide comprises a poly(oxyethylene)-segmented amide, POE -imide), having the following formula (III):

(ΙΠ) 其中η = 1~2 ;且POE同上述式(II)。 上述之聚亞醯胺(polyimide)或聚醯胺(polyamide)可由聚醚胺 (poly(oxyalkylene)-amine)與交聯化合物(linker compounds)反應而 得,其中聚醚胺包括聚醚單胺(poly(oxyalkylene)-monoamine)、聚 酬1 二胺(poly(oxyalkylene)-diamine)或聚 醚三胺 (poly(oxyalkylene)-triamine),詳列於表1中。交聯分子包括四酸 二if (dianhydride)(請參見表2)與環氧樹脂(epoxy)(請參見表3)。 201211172(ΙΠ) where η = 1~2; and the POE is the same as the above formula (II). The above polyimide or polyamide may be obtained by reacting poly(oxyalkylene)-amine with a linker compound, wherein the polyether amine comprises a polyether monoamine ( Poly(oxyalkylene)-monoamine), poly(oxyalkylene)-diamine or poly(oxyalkylene)-triamine are shown in Table 1. Crosslinking molecules include tetraacids such as dianhydride (see Table 2) and epoxy (see Table 3). 201211172

表1 聚醚胺 結構 種類 聚醚單胺 POP-600-1 x=l,y =9 POP-2000-1 x=6,y=29 POE-lOOO-1 x=19, y=3 POE-2000-1 x=31, y=10 聚醚二胺 Η2(ν^/^Τ^1^/>Γ2 ch3 ch3 ch3 POP-230-1 x+z=25, y=0 POP-400-1 x+z=6.1, y=0 POP-2000-2 x+z=33, y=0 POP-4000-1 x+z=68, y=0 POE-220-1 x+z=1.2, y=2 POE-600-1 x+z=3.6, y=9 POE-900-1 x+z=6, y=l2.5 201211172Table 1 Polyether amine structure type Polyether monoamine POP-600-1 x=l, y = 9 POP-2000-1 x=6, y=29 POE-lOOO-1 x=19, y=3 POE-2000 -1 x=31, y=10 polyether diamine Η2(ν^/^Τ^1^/>Γ2 ch3 ch3 ch3 POP-230-1 x+z=25, y=0 POP-400-1 x +z=6.1, y=0 POP-2000-2 x+z=33, y=0 POP-4000-1 x+z=68, y=0 POE-220-1 x+z=1.2, y=2 POE-600-1 x+z=3.6, y=9 POE-900-1 x+z=6, y=l2.5 201211172

表2 化學學名 結構式 分子量Table 2 Chemical name Structural formula Molecular weight

322322

3,3',4,4’-二苯曱酮 四羧二酸酐 (3.3',4,4'-Benzoph enone tetracarboxylic dianhydride ,BTDA) 均苯四羧二酸酐 (Pyromellitic dianhydride ,PMDA) 218 201211172 3, 3',4, 4'-二苯基 四缓二酸酐 (3,3,,4,4'-Biphenyl tetracarboxylic dianhydride ,s-BPDA) 4,4’(六氟異丙 基)雙(磷苯二曱 酸酐) 4,4'-(Hexafluorois opropylidene) diphthalic anliydride, 6FDA) 4,4L二苯鍵四叛 酸二酐 (4,4'-Oxydiphthali c dianliydride, ODPA) 3,3',4,4'-二苯砜四 羧酸二酐 3,3',4,4'-Diphenyl sulfone tetracarboxylic dianhydride (DSDA) 4,4'-雙酚A二酐 4,4'-Biphenol A dianhydride (BPADA) 對苯二酚雙(磷笨 二曱酸酐)3,3',4,4'-Benzophenone tetracarboxylic dianhydride (BTDA) Pyromellitic dianhydride (PMDA) 218 201211172 3, 3,4,4'-Biphenyl tetracarboxylic dianhydride (s-BPDA) 4,4'(hexafluoroisopropyl)bis(phosphonium benzene) 4,4'-(Hexafluorois opropylidene) diphthalic anliydride, 6FDA) 4,4L diphenyl bond tetrahydro acid dianhydride (4,4'-Oxydiphthali c dianliydride, ODPA) 3,3',4,4'- Diphenyl sulfone tetracarboxylic dianhydride 3,3',4,4'-Diphenyl sulfone tetracarboxylic dianhydride (DSDA) 4,4'-bisphenol A dianhydride 4,4'-Biphenol A dianhydride (BPADA) hydroquinone Double (phosphoric acid)

Hydroquinone diphthalic anhydride (HQDA)Hydroquinone diphthalic anhydride (HQDA)

9 201211172 表3 化學學名 結構式 分子量 雙盼A二縮水甘油麵 <Ί <.H·, Oil CH, (t Diglycidy] ether of 350 bisphenol A (BE188) 聚乙二醇縮水甘油醚 Poly (ethylene glycol) nix 0 乩 c-cHcm -ch2ch2o- (Ή, L 八 -CH,CH-CH-, 526 diglycidyl ether n " 聚丙二醇縮水甘油峻 0 「 1 0 Poly (propylene / \ HX-CHCHnO- -CH,CH0 - / \ -ch2ch-ch7 640 glycol) diglycidyl ether Ί J CH, n 之後,進行步驟(b),混合聚胺高分子 '奈米碳管(carbon nanotube)、在白鹽(platinum salt)於溶.劑中,以製備(homogenous suspension),其中奈米碳管為單壁(singie_wall)或多壁(multi_waii) 奈米碳管’而翻鹽(platinum salt)包括六氣链酸(HsPtCU)、氯舶酸 鉀(K2PtCl6)'氣鉑酸銨((NH4)2PtCl6)、六氯合鉑酸铷(Rb2PtCl6)或 六氯合鉑酸鉋(Cs2PtCl6)。此處所謂之,,均質懸浮液”,意指溶質為 不完全溶解’但是於溶劑中呈現「懸浮分散」,其中「溶解」為分 子級大小的分散’「懸浮分散」為以下,分子級大小以上的粒 子的分散’而本發明之分散為懸浮分散。 聚胺高分子、奈米碳管(carbon nanotube)與鈾鹽之混合重量比 為約(1 : 1 :])〜(99 : 1 : 99),較佳為約(1 : 1 : 99)〜(99 : 1 : 99), 更佳為約99 : 1 : 1)〜(99 : 1 : 99)。於一較佳實施例中,聚胺高分 子、奈米碳管(nanotube)與鉑鹽之混合重量比為約28:1:28。 於步驟(b)中所使用之溶劑包括水、乙醇(ethan〇1, c2h5〇H)、 丙酮(acetone, (CH3)2CO)、丙二醇單甲基醚酯(propylene glyc〇1 monomethyl ether acetate, PGMEA)、曱苯(toluene)、N-曱基吡哈酮 (N-methyl pyrrolidinone, NMP)、四氫0夫喃(tetrahydrofuran, THF)、 201211172 乙二醇(ethylene glycol, EG)、甘油(glycerin)或上述之組合。然而, 溶劑不限於上述提及之溶劑,只要能將上述物質混合成均質懸浮 液之溶劑,且可溶解鉑鹽與聚胺高分子之溶劑皆在本發明所保護 之範圍内。於一較佳實施例中,可使用水作為溶劑,以符合環保 的需求。 之後,進行步驟(c) ’加入還原劑於均質懸浮液中,以製備混 合溶液,其中還原劑包括棚氫化鈉(sodium borohydride,NaBH4)、 曱醇(CH30H)、乙二醇(〇2Η4(ΟΗ)2)、單乙醇胺(monoethanolamine, MEA, C2H4OHNH2)、二乙醇胺(diethanolamine, DEA, (C2H4OH)2NH))或二甘醇胺(diglycolamine,DGA,QHhNOO » 還原 劑之作用在於將鉑鹽還原成鉑奈米粒子,以使混合溶液中包括複 數個鉑奈米粒子,其中鉑奈米粒子之粒徑大小為約8 nm〜30 nm, 較佳為約18 nm〜30 nm,更佳為約8 nm〜18 nm。 此處需注意的是,本發明聚胺高分子之苯環與奈米碳管上的 笨環之間會形成7Γ - π作用力(π - π interaction),且於聚胺高分子 上帶有負電的醯亞胺根(imide)與氧,會與奈米碳管之間形成正負 靜電作用力(electrostatic interaction),因此,本發明藉由聚胺高分 子作為分散劑,將奈米碳管包覆於其中,使奈米碳管均勻分散, 以形成均質懸浮液。 此外,鉑鹽中的負電荷會與聚胺高分子中的正電荷相吸引, 使鉑鹽均勻地分散於高分子中,因此於步驟(c)加入還原劑之後, 鉑鹽被還原後形成均勻分散的鉑奈米粒子。於一實施例中,當鉑 鹽為六氣鉑酸(H2PtCl6),其中Pt4+之正電荷會與聚胺高分子中的氧 化乙烯根(-CH2CH20, ethylene oxide)產生正負靜電作用力 (electrostatic interaction)。綜上所述,本發明之聚胺高子具有雙重 201211172 功能,其不但可作為奈米碳管之分散劑,以可作為鉑奈米粒子之 穩定劑。 接著’進行步驟(d),以塗佈法(coating method)將混•合溶液塗 佈於基材上。基材為透明導電基材,包括摻雜氟之二氧化錫玻璃 (fluorine-doped tin oxide glass, FTO) ' 氧化銦錫(indium tin oxide glass)、聚對笨二曱酸乙二醇 g旨(poly (ethylene terephthalate),PET) 或聚亞醯胺(PI)。塗佈法包括旋轉塗佈法(spin coating)、棒狀塗佈 (bar coating)、浸潰塗佈(dip coating)、滾筒塗佈(roll coating)、噴 霧塗佈(spray coating)、凹版式塗佈(gravure coating)、喷墨印刷(ink ^ jet printing)或刮刀塗佈(blade coating)。塗佈法之轉速為約500 rpm ~ 4000 rpm,較佳為約 1000 rpm 〜3000 rpm,更佳為約 15〇〇 ι·ρηι 〜 2000 rpm。塗佈之時間為約5秒〜30秒。 此處需注意的是’本發明之基材為導電透明基材,且相對於 一般使用濺鍍法形成鉑對電極,本發明鉑奈米粒子之使用量較 少’不會完全擋住光線’其具有良好之穿透度,因此本發明之對 電極可組裝成前照式染料敏化太陽能電池(fr〇nt_side iUuminateci DSSC) ’亦可組裝成背照式染料敏化太陽能電池(back side φ illuminated DSSC) 〇 於一較佳實施例中,使用旋轉塗佈法(spin coating)將混合溶 液塗佈於摻雜氟之二氧化錫玻璃(FT0)上,於轉速為2〇〇〇 rpm的 條件下塗佈15秒。 之後進行步驟(e) ’對基材進行熱處理,以於基材上形成導電 薄膜。熱處理之目的之一在於裂解聚胺高分子,以暴露出鉑奈米 粒子與奈米碳管,另一目的在於幫助未還原之鉑鹽還原成鉑奈米 粒子。熱處理之溫度為約170°C〜35〇°C,熱處理之時間為約1〇分 12 201211172 鐘〜50分鐘。最後得到之導電薄膜之膜厚為約400〜500 nm,較佳 為約400〜450 nm。 之後,上述步驟製得之對電極可與一般習知之電解質、染料 與陽極組裝成一染料敏化太陽能電池,此太陽能電池之開路電壓 (open-circuit voltage ’ Voc)為約 0.65〜0.75 V,短路電流(short-circuit current,Jsc)為約 16〜20 mA/cm2,填充因子(fill factor,F. F.)為約 0.55〜0.65;光電轉換效率(power conversion efficiency,7/)為約 7〜9 0/〇。此外’相較於習知濺鍍法(sputter)製備鉑對電極,本發明之染 φ 料敏化太陽能電池具有較佳之短路電流(Jsc)與光電轉換效率(?7 )。 縱上所述’本發明染料敏化太陽能電池對電極之製法中,藉 由聚胺高分子之辅助,使奈米碳管與鉑奈米粒子能均勻分散於溶 液中’進而有效提高對電極之表面積,使對電極具有較佳的催化 活性’有助於提升染料敏化太陽能電池之光電轉化效率。 【實施例】 比較例1 ® 使用濺鍍法(sputter)將鉑粒子形成於摻雜氟之二氧化錫玻璃 (FTO),以得到對電極。 比較例2 取0.036 g多壁奈米碳管溶於7.107 g二甲基曱醯胺 (dimethyl fumarate,DMF)中置於圓底燒瓶内並以超音波震盪以得 到A溶液。加6.143 g水到A溶液中,之後再加入1.〇 g六氣鉑酸 (H2PtCl6)到A溶液中’待完全溶解之後,利用硼氫化鈉(sodium borohydride,NaBH4)作為還原劑,最後得到ptNPs/CNT混合溶液。 13 201211172 於比較例2中,由於未使用本發明之聚胺高分子,所以如第 1A〜1B圖所示(其中第1B圖為第1A圖中圓圈101之放大圖),會 觀察到奈米碳管和白金聚集的現象,由此可知,添加本發明之聚 胺高分子確實可作為奈米碳管的分散劑。 實施例1製備聚亞醢胺 請參見流程1,此流程為形成聚亞醯胺之反應流程圖。合成步 驟如下:以莫耳數比6 : 5比例合成P〇E-2000-2/dianhydride。取 100 ml 之三頸瓶,將 10 g(0.005 mol)的 POE-2000-2 溶於 10 ml 四 氫呋喃(tetrahydrofuran,THF),再加入].3 g(0.0042 mol)的 4,4’-二苯醚四叛酸二針(4,4'-Oxydiphthalic dianhydride,ODPA),以機械 攪拌,全程充氮氣,溫度控制於150 °C,持續反應3小時。反應 過程中以紅外線光譜儀(IR spectra)監控,每隔一段時間取樣,直 至酸酐(anhydride)官能基訊號消失且具亞醯胺(imide)官能基不再 增加為止,會後得到淡黃色黏稠固體之產物。9 201211172 Table 3 Chemical name Structure molecular weight double hope A diglycidide <Ί <.H·, Oil CH, (t Diglycidy) ether of 350 bisphenol A (BE188) Polyethylene glycol glycidyl ether Poly (ethylene Glycol) nix 0 乩c-cHcm -ch2ch2o- (Ή, L 八-CH, CH-CH-, 526 diglycidyl ether n " polypropylene glycol glycidol jun 0 "1 0 Poly (propylene / \ HX-CHCHnO- -CH , CH0 - / \ -ch2ch-ch7 640 glycol) diglycidyl ether Ί J CH, n Then, proceed to step (b), mixing the polyamine polymer 'carbon nanotubes', in the white salt (platinum salt) In a solvent, a homogenous suspension in which a carbon nanotube is a single-walled (singie_wall) or a multi-waii carbon nanotube, and a platinum salt includes a six-gas chain acid (HsPtCU), Potassium chlorate (K2PtCl6)'s gaseous ammonium platinate ((NH4)2PtCl6), hexachloroplatinic acid ruthenium (Rb2PtCl6) or hexachloroplatinic acid sulphate (Cs2PtCl6). Here, so-called, homogeneous suspension" Means that the solute is incompletely dissolved' but exhibits "suspended dispersion" in the solvent, where "dissolved" is a molecule The dispersion of the size of the size "suspension dispersion" is as follows, the dispersion of particles above the molecular size size and the dispersion of the present invention is suspension dispersion. The weight ratio of the polyamine polymer, the carbon nanotube to the uranium salt It is about (1:1:])~(99:1:99), preferably about (1:1:99)~(99:1:99), more preferably about 99:1:1)~( 99:1: 99). In a preferred embodiment, the weight ratio of the polyamine polymer, the nanotube and the platinum salt is about 28:1:28. Used in the step (b). Solvents include water, ethanol (ethan〇1, c2h5〇H), acetone (acetone, (CH3)2CO), propylene glycoxime monomethyl ether acetate (PGMEA), toluene, toluene, N-methyl pyrrolidinone (NMP), tetrahydrofuran (THF), 201211172 ethylene glycol (EG), glycerin or a combination thereof. However, the solvent is not limited to the above-mentioned solvents, as long as the above substances can be mixed into a solvent of a homogeneous suspension, and a solvent which can dissolve the platinum salt and the polyamine polymer is within the scope of the present invention. In a preferred embodiment, water can be used as a solvent to meet environmental requirements. Thereafter, step (c) is carried out to add a reducing agent to the homogeneous suspension to prepare a mixed solution, wherein the reducing agent comprises sodium borohydride (NaBH4), decyl alcohol (CH30H), ethylene glycol (〇2Η4 (ΟΗ) 2), monoethanolamine (MEA, C2H4OHNH2), diethanolamine (DEA, (C2H4OH)2NH), or diglycolamine (DGA, QHhNOO) The role of the reducing agent is to reduce the platinum salt to platinum. And the nano particles, wherein the mixed solution comprises a plurality of platinum nanoparticles, wherein the platinum nanoparticles have a particle size of about 8 nm to 30 nm, preferably about 18 nm to 30 nm, more preferably about 8 nm. ~18 nm. It should be noted here that the benzene ring of the polyamine polymer of the present invention forms a 7 Γ -π interaction between the benzene ring on the carbon nanotube and the stupid ring on the carbon nanotube, and is high in polyamine. The negatively charged imide and oxygen on the molecule form a positive and negative electrostatic interaction with the carbon nanotube. Therefore, the present invention uses a polyamine polymer as a dispersing agent. The carbon tube is coated in it to make the carbon nanotubes uniform Disperse to form a homogeneous suspension. In addition, the negative charge in the platinum salt is attracted to the positive charge in the polyamine polymer, so that the platinum salt is uniformly dispersed in the polymer, so after adding the reducing agent in step (c) The platinum salt is reduced to form uniformly dispersed platinum nanoparticles. In one embodiment, when the platinum salt is hexachloroplatinic acid (H2PtCl6), the positive charge of Pt4+ and the ethylene oxide in the polyamine polymer ( -CH2CH20, ethylene oxide) produces positive and negative electrostatic interactions. In summary, the polyamines of the present invention have a dual 201211172 function, which can be used not only as a dispersing agent for carbon nanotubes, but also as a platinum nanocap. Stabilizer for rice particles. Next, 'Step (d), the mixed solution is applied to the substrate by a coating method. The substrate is a transparent conductive substrate, including fluorine-doped tin dioxide. Fluorine-doped tin oxide glass (FTO) 'indium tin oxide glass, poly (ethylene terephthalate), PET or polyimide (PI) Coating method including spin coating Spin coating), bar coating, dip coating, roll coating, spray coating, gravure coating, inkjet printing (ink ^ jet printing) or blade coating. The rotation speed of the coating method is about 500 rpm to 4000 rpm, preferably about 1000 rpm to 3000 rpm, more preferably about 15 〇〇 ι·ρηι to 2000 rpm. The coating time is about 5 seconds to 30 seconds. It should be noted here that the substrate of the present invention is a conductive transparent substrate, and the platinum counter electrode is used in the sputtering method to form a platinum counter electrode. The use of the platinum nanoparticle of the present invention is less than 'completely blocking the light'. With good penetration, the counter electrode of the present invention can be assembled into a front-illuminated dye-sensitized solar cell (fr〇nt_side iUuminateci DSSC) can also be assembled into a back-illuminated dye-sensitized solar cell (back side φ illuminated DSSC) In a preferred embodiment, the mixed solution is applied to fluorine-doped tin dioxide glass (FT0) using spin coating, and coated at a rotation speed of 2 rpm. Cloth 15 seconds. Thereafter, the substrate (e) is subjected to heat treatment to form a conductive film on the substrate. One of the purposes of the heat treatment is to crack the polyamine polymer to expose the platinum nanoparticles and the carbon nanotubes, and another purpose is to help the unreduced platinum salt to be reduced to platinum nanoparticles. The heat treatment temperature is about 170 ° C to 35 ° C, and the heat treatment time is about 1 〇 12 201211172 〜 50 minutes. The film thickness of the finally obtained conductive film is about 400 to 500 nm, preferably about 400 to 450 nm. Thereafter, the counter electrode prepared in the above step can be assembled into a dye-sensitized solar cell with a conventional electrolyte, dye and anode. The open circuit voltage (Voc) of the solar cell is about 0.65 to 0.75 V, short-circuit current. (short-circuit current, Jsc) is about 16~20 mA/cm2, fill factor (FF) is about 0.55~0.65; photoelectric conversion efficiency (7/) is about 7~9 0/〇 . Further, the dye-sensitized solar cell of the present invention has a better short-circuit current (Jsc) and photoelectric conversion efficiency (?7) than the conventional sputtering of a platinum counter electrode. In the method for preparing the counter electrode of the dye-sensitized solar cell of the present invention, the nano carbon tube and the platinum nanoparticle can be uniformly dispersed in the solution by the aid of the polyamine polymer, thereby effectively improving the counter electrode. The surface area, which makes the counter electrode have better catalytic activity, helps to improve the photoelectric conversion efficiency of the dye-sensitized solar cell. [Examples] Comparative Example 1 ® Platinum particles were formed on a fluorine-doped tin oxide glass (FTO) using a sputtering method to obtain a counter electrode. Comparative Example 2 A 0.036 g multi-walled carbon nanotube was dissolved in 7.107 g of dimethyl fumarate (DMF) and placed in a round bottom flask and ultrasonically shaken to obtain an A solution. Add 6.143 g of water to the A solution, and then add 1. 〇g hexachloroplatinic acid (H2PtCl6) to the solution A. After the solution is completely dissolved, sodium borohydride (NaBH4) is used as a reducing agent to obtain ptNPs. /CNT mixed solution. 13 201211172 In Comparative Example 2, since the polyamine polymer of the present invention is not used, as shown in Figs. 1A to 1B (wherein Fig. 1B is an enlarged view of the circle 101 in Fig. 1A), a nanometer is observed. From the phenomenon of aggregation of carbon tubes and platinum, it is understood that the addition of the polyamine polymer of the present invention can be used as a dispersant for carbon nanotubes. Example 1 Preparation of Polyiminamide See Scheme 1, which is a reaction scheme for the formation of polyamidamine. The synthesis procedure was as follows: P〇E-2000-2/dianhydride was synthesized in a ratio of molar ratio of 6:5. Take 100 ml of three-necked flask, dissolve 10 g (0.005 mol) of POE-2000-2 in 10 ml of tetrahydrofuran (THF), and then add 3.3 g (0.0042 mol) of 4,4'-diphenyl. 4,4'-Oxydiphthalic dianhydride (ODPA), mechanically stirred, nitrogen-filled throughout, temperature controlled at 150 °C, continuous reaction for 3 hours. During the reaction, it was monitored by infrared spectroscopy (IR spectra) and sampled at intervals until the anhydride functional group signal disappeared and the imide functional group no longer increased, and a pale yellow viscous solid was obtained. product.

4-4_-Oxvdiphlhalic dianhydride (ODPA) ^4-4_-Oxvdiphlhalic dianhydride (ODPA) ^

Poly(oxyethylene)-segmented imide (POE-imide) M\v = 39.000 g/mol 流程1 201211172 實施例2製備聚醢胺 請參見流程2 ’此流程為形成聚醯胺(polyamide)之反應流程 圖。實施例2與實施例1之反應步驟相似,差別僅在於實施例2 反應之溫度為約30°C,最後同樣得到淡黃色黏稠固體之產物。Poly(oxyethylene)-segmented imide (POE-imide) M\v = 39.000 g/mol Scheme 1 201211172 Example 2 Preparation of Polyamines See Flow 2 ' This process is a reaction scheme for the formation of polyamide. Example 2 was similar to the reaction procedure of Example 1, except that the temperature of the reaction of Example 2 was about 30 ° C, and finally a product of a pale yellow viscous solid was obtained.

4,4-Oxydiphthalic dianhydride (ODPA) I | ·& b i c CH? CHa CHj4,4-Oxydiphthalic dianhydride (ODPA) I | ·& b i c CH? CHa CHj

POE-2000-2, a+c = 6. b = 39; Mw = 2000 g/ntol 30 »CPOE-2000-2, a+c = 6. b = 39; Mw = 2000 g/ntol 30 »C

流程2 實施例3製備對電極 分別製備A溶液與B溶液。取0.036 g多壁奈米碳管溶於 7.107 g二曱基甲醯胺(dimethyl fumarate,DMF)中置於圓底燒瓶 内並以超音波震盪以得到A溶液。取1.0 g實施例1之高分子溶於 5.143 g水中得到一 B溶液,待A、B溶液分散均勻後隨即混合成 • C溶液,再加入1.0 g六氣始酸(H2PtCl6),待完全溶解之後,利用 爛氫化鈉(sodium borohydride,NaBEU)作為還原劑,最後得到一混 合溶液(POE-imide@Pt@CNT)。 利用旋轉塗佈法,將此混合溶液以2000 rpm轉速塗佈於摻雜 氟之二氧化錫玻璃(FT0)上,經過350°C20分鐘的熱處理,最後得 到對電極。 請參見第2圖,此圖顯示實施例3與比較例1之循環伏安圖 (cyclic voltammetry)(以銀/氣化銀(Ag/AgCl)作為參考電極),由圖 中可以明顯地觀察到實施例3之還原電流(Ipc)高於比較例1之還原 15 201211172 電流,顯示本發明之對電極之催化效果較好。 表4顯示實施例3與比較例1之導電度(conductivity, σ )、串 聯電阻(series resistance, Rs)、電荷轉移電阻(charge transfer lesistance, Ret)與方均根粗糙度(rc)C)t_mean_Square Rms)之 數據’其中串聯電阻(Rs)或電荷轉移電阻(U越小’代表阻力較 小,有利於電荷轉移;而方均根粗糙度㊉^)越大,代表電極表面 積越大。由表4中可得知,本發明實施例3之電荷轉移電阻(Rj 小於比較例1與比較例2,且方均根粗糙度(Rms)大於比較例丨,由 此可知’本發明之對電極因為具有較大的表面積,因此有助於提 高催化效果。 表4 對電極 σ (S cm·1) Rs (Ω cm2) Ret (Ω cm2) Rms (nm) 比較例1 17.15 + 1.26 20.35±0.47 0.50+0.04 10.38+0.09 實施例3 1.96+0.09 22.92+0.24 0.28±0.03 22.69±5.01 實施例4製備染料敏化太陽能電池 將實施例3之對電極、含有二氧化鈦(τ〇2)之陽極 (photoanode)、染料與電解質組合成染料敏化太陽能電池,其中電 解質為〇·6 Μ l,2-二曱基-3-丙基咪唑碘 (l,2-dimethyl-3-pr〇pylimidaz〇iiuni i〇dide,DMPII),0.1 Μ 碘化鋰 (Lil),0.05 Μ 蛾(12)與 0.5 Μ 4-叔丁基 °比石定(4-tert-butylpyridine, TBP) 溶於(MPN)中,其中染料為N719染料(RuL2(NCS)2:2TBA)。 第3圖顯示實施例4、比較例1與比較例2之光電流_電位圖 16 201211172 (I-V),由圖中可得知,於相同電位下,實施例4之光電流明顯高 於比較例1與比較例2。 表5中顯示實施例4、比較例1與比較例2組成之染料敏化太 陽能電池(DSSC)之開路電壓(open-circuit voltage,V。。)、短路電流 (short-circuit current 1 Jsc)、填充因子(fill factor)與光電轉換效率 (power conversion efficiency,η )之數據。由表5中可得知,本發 明實施例4之短路電流與光電轉換效率皆高於比較例1與比較例 2,因此,本發明之製法不但可以減少鉑之使用量,且藉由奈米碳 管提高電極之表面積,以有效增進短路電流與光電轉化效率。 表5 對電極 V〇c (V) J SC F.F. V (mA/cm2) (%) 比較例1 0.74+0.01 14.62±0.19 0.64±0·01 6.92±0.07 比較例2 0.75 15.29 0.62 7.16 實施例4 0.73+0.01 18.01+0.91 0·61±0.01 8.00±0.23 雖然本發明已以數個較佳實施例揭露如上,然其並非用以限 定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發 明之精神和範圍内,當可作任意之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 !7 201211172 【圖式簡單說明】 第1A圖為一照片,用以說 子之聚集現象。 、例不杰加本發明之聚胺高分 第1B圖為一照片,用以說明 第2圖為一循環伏安圖,一圖中圓圈之放大圖。 較例對電極之催化效果。 Μ明本發明-料實施例與比 【主要元件符號說明】 !01〜圓圈Scheme 2 Example 3 Preparation of Counter Electrode A solution and B solution were prepared separately. A 0.036 g multi-walled carbon nanotube was dissolved in 7.107 g of dimethyl fumarate (DMF) and placed in a round bottom flask and ultrasonically shaken to obtain a solution A. Take 1.0 g of the polymer of Example 1 dissolved in 5.143 g of water to obtain a B solution. After the A and B solutions are uniformly dispersed, they are then mixed into a C solution, and then 1.0 g of hexahydroxamic acid (H2PtCl6) is added. Using sodium borohydride (NaBEU) as a reducing agent, a mixed solution (POE-imide@Pt@CNT) was finally obtained. This mixed solution was applied onto fluorine-doped tin oxide glass (FT0) at a rotational speed of 2000 rpm by a spin coating method, and subjected to heat treatment at 350 ° C for 20 minutes to finally obtain a counter electrode. Please refer to FIG. 2, which shows the cyclic voltammetry of Example 3 and Comparative Example 1 (with silver/vaporized silver (Ag/AgCl) as a reference electrode), which can be clearly observed from the figure. The reduction current (Ipc) of Example 3 was higher than that of the reduction 15 201211172 of Comparative Example 1, indicating that the catalytic effect of the counter electrode of the present invention was better. Table 4 shows the conductivity (σ), series resistance (Rs), charge transfer lesistance (Ret) and root mean square roughness (rc) C) t_mean_Square Rms of Example 3 and Comparative Example 1. The data 'where the series resistance (Rs) or charge transfer resistance (the smaller U means 'reducing less resistance, which is beneficial to charge transfer; and the square root roughness is ten) is larger, representing the larger surface area of the electrode. As can be seen from Table 4, the charge transfer resistance (Rj of Example 3 of the present invention is smaller than that of Comparative Example 1 and Comparative Example 2, and the square root roughness (Rms) is larger than that of Comparative Example 丨, and thus it is known that the counter electrode of the present invention is It has a large surface area and thus contributes to the improvement of the catalytic effect. Table 4 Counter electrode σ (S cm·1) Rs (Ω cm2) Ret (Ω cm2) Rms (nm) Comparative Example 1 17.15 + 1.26 20.35±0.47 0.50+ 0.04 10.38+0.09 Example 3 1.96+0.09 22.92+0.24 0.28±0.03 22.69±5.01 Example 4 Preparation of Dye-Sensitized Solar Cell The counter electrode of Example 3, the anode (photoanode) containing titanium dioxide (τ〇2), dye Combined with an electrolyte to form a dye-sensitized solar cell, wherein the electrolyte is 〇·6 Μ 1,2-dimercapto-3-propylimidazolium iodide (l,2-dimethyl-3-pr〇pylimidaz〇iiuni i〇dide, DMPII ), 0.1 Μ lithium iodide (Lil), 0.05 Μ moth (12) and 0.5 Μ 4-tert-butylpyridine (TPP) dissolved in (MPN), wherein the dye is N719 dye (RuL2 (NCS) 2: 2TBA). Fig. 3 shows the photocurrent_potential diagram of Example 4, Comparative Example 1 and Comparative Example 2 201211172 (IV), As can be seen, the photocurrent of Example 4 was significantly higher than that of Comparative Example 1 and Comparative Example 2 at the same potential. Table 4 shows dye-sensitized solar cells composed of Example 4, Comparative Example 1 and Comparative Example 2. (DSSC) open-circuit voltage (V.), short-circuit current (Jsc), fill factor (fill factor) and photoelectric conversion efficiency (power conversion efficiency, η) data. It can be seen from the above that the short-circuit current and the photoelectric conversion efficiency of the fourth embodiment of the present invention are higher than that of the comparative example 1 and the comparative example 2, therefore, the method of the invention can not only reduce the amount of platinum used, but also improve by the carbon nanotubes. The surface area of the electrode is effective to improve the short-circuit current and photoelectric conversion efficiency. Table 5 Counter electrode V〇c (V) J SC FF V (mA/cm2) (%) Comparative Example 1 0.74+0.01 14.62±0.19 0.64±0·01 6.92±0.07 Comparative Example 2 0.75 15.29 0.62 7.16 Example 4 0.73+0.01 18.01+0.91 0·61±0.01 8.00±0.23 Although the present invention has been disclosed above in several preferred embodiments, it is not intended to limit the invention. Anyone in the field of technology Knowledge of those in the present invention without departing from the spirit and scope, it can be made to any modifications and variations of the present invention thus protect the scope of protection as defined by the appended claims which are the scope of their equivalents. !7 201211172 [Simple description of the diagram] Figure 1A is a photo to illustrate the phenomenon of aggregation. The example of the polyamine high score of the present invention is shown in Fig. 1B as a photograph for illustrating a circular voltammogram, and an enlarged view of the circle in the figure. The catalytic effect of the electrode on the electrode. Μ明发明发明-料实施例和比 [Main component symbol description] !01~Circle

1818

Claims (1)

201211172 七、申請專利範圍: 1. 一種染料敏化太陽能電池之對電極(counter electrode)之製 法,包括以下步驟: (a) 提供一聚胺高分子(polyamine),其中該聚胺高分子包括聚 亞醯胺(polyimide)或聚醯胺(polyamide); (b) 混合該聚胺高分子、一奈米碳管(carbon nanotube)、一翻鹽 (platinum salt)於一溶劑中,以製備一均質懸浮液(homogenous suspension); 赢 (c)加入一還原劑於該均質懸浮液中,以製備一混合溶液,其 中該混合溶液包括複數個鉑奈米粒子; (d)以塗佈法(coating method)將該混合溶液塗佈於一基材上; 以及 (e)對該基材進行一熱處理,以於該基材上形成一導電薄膜。 2.如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法,其中該聚亞醯胺包括一含聚醚片段之聚亞醯胺 (poly(oxyethylene)-segmented imide, POE-imide),具有下列式(I):201211172 VII. Patent Application Range: 1. A method for preparing a counter electrode of a dye-sensitized solar cell, comprising the following steps: (a) providing a polyamine polymer, wherein the polyamine polymer comprises poly Polyimide or polyamide; (b) mixing the polyamine polymer, a carbon nanotube, and a platinum salt in a solvent to prepare a homogeneous a homogenous suspension; a (c) addition of a reducing agent to the homogeneous suspension to prepare a mixed solution, wherein the mixed solution comprises a plurality of platinum nanoparticles; (d) a coating method Applying the mixed solution to a substrate; and (e) subjecting the substrate to a heat treatment to form a conductive film on the substrate. 2. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein the polyamidoamine comprises a poly(oxyethylene)-segmented imide (POE) containing a polyether segment. -imide), having the following formula (I): 其中n = 1〜16 ;且P0E具有下列式(II): NH.CHCH, ^ I - ch3 OCHCH2-)^-(-〇CH2CH2-^OCH2CH^-NH2 ch3 (II), 其中 a+c=6,b=39。 3.如申請專利範圍第1項所述之染料敏化太陽能電池之對電 19 201211172 極之製法,其中該聚醯胺(polyamide)包括一含聚醚片段之聚醯胺 (poly(oxyethylene)-segmented amide, POE-imide),具有下列式 (III):Wherein n = 1 to 16; and P0E has the following formula (II): NH.CHCH, ^ I - ch3 OCHCH2-)^-(-〇CH2CH2-^OCH2CH^-NH2 ch3 (II), where a+c=6 , b=39. 3. The method for preparing a dye-sensitized solar cell according to claim 1, wherein the polyamide comprises a polyether-containing polyamine ( Poly(oxyethylene)-segmented amide, POE-imide) having the following formula (III): (ΙΠ) 其中η = 1〜2 ;且POE具有下列式(II): nh2chch2—(- ochch2-)-(· OCH2CH2 ch3 CH3 a 其中 a+c=6,b=39。 ^(och2ch^nh2 CH, (II),(ΙΠ) where η = 1~2 ; and POE has the following formula (II): nh2chch2—(- ochch2-)-(· OCH2CH2 ch3 CH3 a where a+c=6, b=39. ^(och2ch^nh2 CH , (II), 4. 如申請專利範圍第i項所述之染料敏化太陽能電池之對電 極之製法,其中該聚胺高分子的分子量為約2,000〜200,000 g/mol。 5. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法’其中該奈米碳管為單壁(single-wall)或多壁(multi-wall) 奈米碳管。 6. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法’其中該鉑鹽(platinum salt)包括六氣鉑酸(H2PtCl6)、氣 鉑酸鉀(K2PtCl6)、氣鉑酸銨((NH4)2PtCl6)、六氣合鉑酸铷(Rb2PtCl6) 或六氣合鉑酸铯(Cs2PtCl6)。 7. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法,其中該還原劑包括石朋灸化納(sodium borohydride, NaBH4)、曱醇(CH3OH)、乙二醇(C2H4(OH)2)、單乙醇胺 (monoethanolamine,MEA,C2H4OHNH2)、二乙醇胺(diethanolamine, 20 201211172 DEA,(C2H4OH)2NH))或二甘醇胺(diglycolamine,DGA,QHhNC^)。 8. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法,其中於步驟(b)中’該聚胺南分子、該奈米碳管(nanotube) 與該鉑鹽之混合重量比為約1 : 1 : 1〜99 : 1 : 99。 9. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法,其中於步驟(b)中,該溶劑包括水、乙醇(ethanol, C2H5OH)、丙酉同(acetone, (CH3)2CO)、丙二醇單曱基喊醋(propylene glycol monomethyl ether acetate, PGMEA)、曱苯(toluene)、N-甲基 0比^isKN-methyl pyrrolidinone,NMP)、四氫0夫喃(tetrahydrofuran, THF)、乙二醇(ethylene glycol,EG)、甘油(glycerin)或上述之組合。 10. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法,其中於步驟(c)中,該些鉑奈米粒子之粒徑大小為約8 nm~ 30 nm 〇 11. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法,其中於步驟(d)中,該基材包括摻雜氟之二氧化錫玻璃 (fluorine-doped tin oxide glass, FTO) ' 氧化銦錫(indium tin oxide glass)、聚對苯二曱酸乙二醇 @旨(p〇ly (ethylene terephthalate),PET) 或聚亞醯胺(PI)。 12. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法,其中於步驟(d)中,該塗佈法包括旋轉塗佈法(spin coating)、棒狀塗佈(bar coating)、浸潰塗佈(dip coating)、滾筒塗 佈(roll coating)、喷霧塗佈(spray coating)、凹版式塗佈(gravure coating)、噴墨印刷(ink jet printing)或刮刀塗佈(blade coating)。 13. 如申請專利範圍第1項所述之染料敏化太陽能電池之對電 極之製法,其中於步驟(d)中,該塗佈法之轉速為約500 rpm〜4000 21 201211172 卬1",塗佈之時間為約5秒〜30秒。 ]4.如申凊專利範圍第】項所述之染料敏化太陽能電池之餅電 極之製法,其中於步驟(e)中,該熱處理之溫度為約170t〜35(TC, 。亥熱^理之時間為約3〇分鐘〜40分鐘。 極之^如申請專利範圍第1項所述之染料敏化太陽能電池之對電 _。衣…其中於步驟⑷中,該導電薄膜之膜厚為約400腿〜5004. The method for producing a counter electrode of a dye-sensitized solar cell according to claim i, wherein the polyamine polymer has a molecular weight of about 2,000 to 200,000 g/mol. 5. The method of manufacturing a counter electrode for a dye-sensitized solar cell according to claim 1, wherein the carbon nanotube is a single-wall or a multi-wall carbon nanotube. 6. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein the platinum salt comprises hexa-gas platinum acid (H 2 PtCl 6 ), potassium chloroplatinate (K 2 PtCl 6 ), gas platinum Ammonium acid ((NH4)2PtCl6), hexahydrate ruthenium ruthenate (Rb2PtCl6) or hexahydrate ruthenium platinumate (Cs2PtCl6). 7. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein the reducing agent comprises sodium borohydride (NaBH4), decyl alcohol (CH3OH), ethylene glycol ( C2H4(OH)2), monoethanolamine (MEA, C2H4OHNH2), diethanolamine (20 201211172 DEA, (C2H4OH)2NH) or diglycolamine (DGA, QHhNC^). 8. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein in the step (b), the polyamine south molecule, the nanotube and the platinum salt are The mixing weight ratio is about 1: 1: 1 to 99: 1: 99. 9. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein in the step (b), the solvent comprises water, ethanol (C2H5OH), and acetone (acetone, ( CH3)2CO), propylene glycol monomethyl ether acetate (PGMEA), toluene, N-methyl 0 to ^isKN-methyl pyrrolidinone (NMP), tetrahydrofuran (tetrahydrofuran, THF), ethylene glycol (EG), glycerin or a combination thereof. 10. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein in the step (c), the platinum nanoparticles have a particle size of about 8 nm to 30 nm. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein in the step (d), the substrate comprises a fluorine-doped tin oxide glass (fluorine-doped tin oxide glass, FTO) 'Indium tin oxide glass, polyethylene terephthalate, PET or polyimide (PI). 12. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein in the step (d), the coating method comprises spin coating, bar coating ( Bar coating), dip coating, roll coating, spray coating, gravure coating, ink jet printing or doctor blade coating Blade coating. 13. The method for preparing a counter electrode of a dye-sensitized solar cell according to claim 1, wherein in the step (d), the rotation speed of the coating method is about 500 rpm to 4000 21 201211172 卬 1" The cloth time is about 5 seconds to 30 seconds. [4] The method for preparing a cake electrode of a dye-sensitized solar cell according to the invention, wherein in the step (e), the temperature of the heat treatment is about 170t to 35 (TC, . The time is about 3 minutes to 40 minutes. The electrode of the dye-sensitized solar cell of the first aspect of the invention is as described in claim 1. In the step (4), the film thickness of the conductive film is about 400 legs ~ 500 22twenty two
TW99130466A 2010-09-09 2010-09-09 Method for fabricating a counter electrode of dye-sensitized solar cells TWI397563B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99130466A TWI397563B (en) 2010-09-09 2010-09-09 Method for fabricating a counter electrode of dye-sensitized solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99130466A TWI397563B (en) 2010-09-09 2010-09-09 Method for fabricating a counter electrode of dye-sensitized solar cells

Publications (2)

Publication Number Publication Date
TW201211172A true TW201211172A (en) 2012-03-16
TWI397563B TWI397563B (en) 2013-06-01

Family

ID=46764192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99130466A TWI397563B (en) 2010-09-09 2010-09-09 Method for fabricating a counter electrode of dye-sensitized solar cells

Country Status (1)

Country Link
TW (1) TWI397563B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200933903A (en) * 2008-01-18 2009-08-01 Univ Nat Taipei Technology Coating of electrode, counter electrode and dye-sensitized solar cell made from the same

Also Published As

Publication number Publication date
TWI397563B (en) 2013-06-01

Similar Documents

Publication Publication Date Title
Han et al. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells
Li et al. NiS2/reduced graphene oxide nanocomposites for efficient dye-sensitized solar cells
Dong et al. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells
Wang et al. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells
Hwang et al. Dye‐sensitized solar cell counter electrodes based on carbon nanotubes
JP6074962B2 (en) Photoelectric conversion device using perovskite compound and method for producing the same
Jeon et al. Pt nanoparticles supported on polypyrrole nanospheres as a catalytic counter electrode for dye-sensitized solar cells
Schlur et al. Optimization of a new ZnO nanorods hydrothermal synthesis method for solid state dye sensitized solar cells applications
JP6069989B2 (en) Method for producing photoelectric conversion element using perovskite compound
Zheng et al. Highly efficient iodide/triiodide dye-sensitized solar cells with gel-coated reduce graphene oxide/single-walled carbon nanotube composites as the counter electrode exhibiting an open-circuit voltage of 0.90 V
Gao et al. Series and parallel module design for large-area perovskite solar cells
Liu et al. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays
Wu et al. Hybrid titania photoanodes with a nanostructured multi-layer configuration for highly efficient dye-sensitized solar cells
Marchezi et al. Understanding the role of reduced graphene oxide in the electrolyte of dye-sensitized solar cells
Shi et al. Quasi-solid-state dye-sensitized solar cells with polymer gel electrolyte and triphenylamine-based organic dyes
Chen et al. Highly Catalytic Carbon Nanotube/Pt Nanohybrid‐Based Transparent Counter Electrode for Efficient Dye‐Sensitized Solar Cells
Samantaray et al. Synergetic effects of hybrid carbon nanostructured counter electrodes for dye-sensitized solar cells: A review
US20170140878A1 (en) Counter electrode for dye-sensitized solar cell, dye-sensitized solar cell, and solar cell module
Wang et al. Graphitic carbon nitride/multiwalled carbon nanotubes composite as Pt-free counter electrode for high-efficiency dye-sensitized solar cells
Jiao et al. Development of rapid curing SiO2 aerogel composite-based quasi-solid-state dye-sensitized solar cells through screen-printing technology
Mohan et al. A highly stable and efficient quasi solid state dye sensitized solar cell based on Polymethyl methacrylate (PMMA)/Polyaniline Nanotube (PANI-NT) gel electrolyte
Punnoose et al. Highly catalytic nickel sulfide counter electrode for dye-sensitized solar cells
Lodermeyer et al. Implementation of single‐walled carbon nanohorns into solar cell schemes
JP6069987B2 (en) Method for producing photoelectric conversion element using perovskite compound
Choi et al. Characteristics of dye-sensitized solar cells with surface-modified multi-walled carbon nanotubes as counter electrodes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees