TW201209371A - Method and system for optical metrology optimization using ray tracing - Google Patents

Method and system for optical metrology optimization using ray tracing Download PDF

Info

Publication number
TW201209371A
TW201209371A TW100110185A TW100110185A TW201209371A TW 201209371 A TW201209371 A TW 201209371A TW 100110185 A TW100110185 A TW 100110185A TW 100110185 A TW100110185 A TW 100110185A TW 201209371 A TW201209371 A TW 201209371A
Authority
TW
Taiwan
Prior art keywords
light
optical
parameters
signal
polarization
Prior art date
Application number
TW100110185A
Other languages
Chinese (zh)
Inventor
Shifang Li
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/752,080 external-priority patent/US20110246141A1/en
Priority claimed from US12/752,637 external-priority patent/US8289527B2/en
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW201209371A publication Critical patent/TW201209371A/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Provided is a method and system for determining a profile of a structure using an optical metrology system that includes an optical metrology tool, an optical metrology model, and a profile extraction algorithm. The method comprises selecting a number of rays, selecting beam propagation parameters, determining beam propagation parameters, calculating total intensity and polarization of the diffraction beam, calculating a metrology output signal, and extracting profile parameters. Also provided is a method for determining profile parameters of the structure optimized to achieve accuracy targets, the method comprising: setting accuracy targets; selecting a number of rays and beam propagation parameters, measuring a diffraction signal, generating a metrology output signal, determining an adjusted metrology output signal, concurrently optimizing the optical metrology tool model and the profile model using the adjusted metrology output signal and a parameter extraction algorithm.

Description

201209371 、發明說明 【發明所屬之技術領域】 … 素藉Η户 構輪廓最佳化。 九束订進參數,同時考量結 【先前技術】 光學量測係關於將入射光束指向工作件上 成之繞射信號,並分析所測量之婊射ρ 、 、、口冓,測里所 徵。工作件可以是虎’以判定結構的各項特 造中,通常m冊=保=或磁性媒體。在-作件的製 j之-包括在半導體晶片的操作、;L:成的 二、、:/〇、crk收集。接者分析此繞射 、^ ^ 細對。資料庫中,每 魅成功時’便可敎與該模擬繞射信號 期光栅_的繞射信_測量 號與資料 ======彻。纖細來產生 用準確表稀_徵^;=谢轉確般結__,應使 有成本近低?更將以’,尺寸縮小’光點尺寸變小’擁 射信號中 ’财專絲制產生模擬繞 數的最佳化。當如微影節點為3〇 nm或更低而 201209371 構輪_取有關的錯誤曾是考 寸及結 原先質ΪΓ!量準確性的因素,都將會造成影響。 再者,在模型化光學量測工具中所 曰 ίIfίϊ?之輪廊參數的準轉性’有關物理1學、 定ϊί其„他罐特徵。結構尺寸ί二 號的模擬與模型化 【發明内容】 廓的方法亡, 線,判定其光束行進參數;^、 測器的所選光線中的各光線,判定其光束測j之福 器上繞射光束之各先_強度偏振;( 計算偵測 樣本結“所選光線中的各光 -具之偵 -算偵測 =輸出信號、校準資料、輪廊擷取 射光束的總強度與偏振;(e5)從總強度計 用罝測輪出信驗、姑進签j«丨、、彳輸出by虎,(c6)利 【實施方式】 圓或基板來示範售、製程晶 201209371 號V7 uU L唬57傳輸到處理器53。處理器53拿所測量结射f 示心結的模擬器6〇,假設“ 季缔、'二f?计异Maxwe11方程式的即時繞射信號產生器(迴歸 示性實施例中,選擇模擬11⑻產生之最能夠匹配所 界尺+寸=:為對應樣本結構59之特徵部的實際剖面形狀與臨 統40可使用反射計、橢圓偏光計、或其他光 裝置,齡絲或織。以下文件猶有光學量測 …充’該文件以參照方式併入本文:美國專利第69439〇〇號發201209371, invention description [Technical field to which the invention pertains] ... is optimized by the household structure. Nine bundles of the parameters, while considering the knot [Prior Art] Optical measurement system is to direct the incident beam to the diffraction signal formed on the workpiece, and analyze the measured ρ, 、, 冓, 测 所. The work piece can be a tiger's to determine the various features of the structure, usually m book = warranty = or magnetic media. In the case of the fabrication of the semiconductor wafer, the operation of the semiconductor wafer, L: into two, : / /, crk collection. The receiver analyzes this diffraction, ^ ^ fine pairs. In the database, every time the charm is successful, the diffraction signal _ measurement number and data ====== can be 敎 with the analog diffraction signal period grating_. Slim to produce with accurate table _ _ ^ ^ = Xie turn to the same __, should the cost is near low? Further, the size of the spot is reduced by ', and the size of the spot is reduced.' When the lithography node is 3 〇 nm or lower and the 201209371 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Furthermore, in the modeled optical measurement tool, the accuracy of the wheel corridor parameters of the IfίIf ϊ ' 有关 有关 physics physics, ϊ 其 „ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The method of the profile is dead, the line is determined, and the beam travel parameters are determined; ^, each light in the selected light of the detector is determined to be the first _ intensity polarization of the diffracted beam on the beam of the beam; The sample knot "the light in the selected light - the detection - the detection signal = the output signal, the calibration data, the total intensity and polarization of the ray beam of the rim; (e5) the letter from the total intensity meter Test, enter the sign j«丨, 彳 output by the tiger, (c6) profit [implementation] round or substrate to show sales, process crystal 201209371 V7 uU L唬57 transfer to the processor 53. processor 53 take The simulator 6〇 measuring the junction f shows the knot, assuming that the “difference” and “two-f” different Maxwe11 equations are used for the immediate diffracted signal generator (in the regression example, the simulation 11(8) is selected to produce the best match. Fence + inch =: the actual cross-sectional shape of the feature portion corresponding to the sample structure 59 and 40 may use a reflectometer, ellipsometer meter, or other optical device, wire or weaving the old file worse optical measurement charge ... 'This document is incorporated herein by reference: U.S. Patent No. hair 69439〇〇

月名稱為「GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNAL」,頒證日為薦年 9 月 13 號。 。應用Maxwell方程式,以及用數值解析法來算出Maxwdl方 程式,可產生模擬繞射信號。應注意到,可用各種數值解析法, 包括各種RCWA。有關RCWA的詳細描述可參照以下文件,該文 件以參照方式併入本文:美國專利第6891626號,發明名稱 Caching of intra-layer calculations for rapid rigorous coupled -wave analyses」’申請日為2001年1月25日,頒證日為2005年5月10 曰0The name of the month is "GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNAL", and the award date is September 13th. . The Maxwell equation is applied and the Maxwdl equation is calculated using numerical analysis to produce an analog diffracted signal. It should be noted that various numerical analytical methods are available, including various RCWAs. A detailed description of the RCWA can be found in the following document, which is incorporated herein by reference: U.S. Patent No. 6,916,626, entitled "Caching of intra-layer calculations for rapid rigorous coupled -wave analyses"' application date is January 25, 2001 Day, the certificate is May 10, 2005 曰 0

模擬繞射信號亦可用機器學習系統(MLS)來產生。產生模擬繞 射信號之前,用已知的輸入與輸出資料來訓練MLS。在一例示性 實施例中’模擬繞射信號的產生’可用採用機器學習演算法的MLS 201209371 來進行,演算法如反向傳播、放射狀基礎函數、支援向量、核迴 歸等。有關機器學習系統與演算法的詳述,參照以下文件,該文 件以參照方式併入本文:美國專利申請案序號第1〇/6〇83〇〇號,發 明名稱為「optical metrology of stmctures f〇rmed 〇n semic〇nduct〇r wafers using machine learning systems」,申請曰為 2003 年 6 月 27 曰。 圖2繪示本發明實施例之光學量測系統的例示性方塊圖。在 所不實施财’光學量測祕_可包含燈次祕1G5,且來自燈 次糸統的至少二個光學輸出可傳播至照射器次系統⑽。來自 = = 學輸出⑴可傳播至選擇器次系統 k擇态-人系統115可傳送至少二信號116至光束產生 光t生可用來將至少二個參照輸出126 該平台由平台基部⑽支撐,晶圓1G1 “上; 感測器104。 你4卞口上岫近晶固對準 制出^Ϊ 5 5可包含:第—可選反射次系統13G,用來於 出自先束產生盗次糸統120的至少 用f 「低A〇I」(A0I為入射角)下操 心一楗式 131上,當在第二模式「高A〇I二!Π1控制在弟一路徑 132上。當第一可選反射次系統在第—模\「低制在第二路徑 出自光束產生器次系統120的至少ϋ低,」下操作時, •輸出141可指向高角度聚隹彡 、-人系統的至少 第二肷丄J自先束產生^欠系統12< 亡的輸出指向第一反射次系統140;自第第—路徑⑶ 一輸出141可指向高角度聚隹士冬 、-人系統的至少 的至少 輸請1作為第二路栌二次系統12( 次系統135。或者,除了「低Α〇Γ 曰向低角度聚焦 用其他模式及其他配置。 」〜回A01」的模式之外,可 當量測系統100以第一掇十 聚焦次系統145的至少二輸出f 時1自高角度 201209371 角度务'焦次糸統135的至少-於φ 1 κ ι此丄〇 用低。,或者,可用其“式或其ϋ"圓1〇1。例如,可 次系統^第 、低角度收集 當量測♦ #議、/@糸、先150、第一可選反射次系統160。 认s丨、—认糸、先100以第—模式「低Α(31」操作時,出自曰圓im 的至^、一輸出156可指向高角度收隼-女系日日 度入射角。此外,高条心集系統155。例如,可用高角 輸出156,且高^度收隼统155可處理得自晶圓1〇1的 次系統150, = =可將輸出151提供至第二反射 反射次纽⑽:將猶152射^第二可選 統⑼的輸出1521最^二容許出自第二反射次系 者詈㈣姑咖、,哲相失穿過第二可選反射次系統160。 的至^輸出166可式「高A〇1」操作時,出自晶圓101 ϋ Γ低角度收集次系統165 °例如,可使用低 165 ^ =統 刼作時,出自第二可選反射戈糸乐棋式呵AOI」 次系統no。 狄射-人系統160的輸出⑹可指向分析器 ^當量測系、统100以第一模式「低A〇I」操作時, 高,諸,㈣量 晶圓了〇1、的低^角^作時,可用分析_統i7G分析出自 ,,統觸可包括至少二量測次系統⑺。 f 175可包括如光譜計的至少二偵測器 身紫外線到可見光的區域操作。 大-曰汁了在先4 ^測系、统100可包括至少二相機次系統18 ^欠系統⑽的至少二照射與顯像次系統182β 目 觸亦可包括合至至少二顯像次系統182的至少二The analog diffracted signal can also be generated using a machine learning system (MLS). The MLS is trained with known input and output data before the simulated diffracted signal is generated. In an exemplary embodiment, the 'generating diffracted signal generation' can be performed by MLS 201209371 using a machine learning algorithm such as backpropagation, radial basis functions, support vectors, kernel return, and the like. For a detailed description of machine learning systems and algorithms, reference is made to the following documents, which are incorporated herein by reference: U.S. Patent Application Serial No. 1/6/83, entitled "optical metrology of stmctures f〇 Rmed 〇n semic〇nduct〇r wafers using machine learning systems”, applied for June 27, 2003. 2 is an exemplary block diagram of an optical metrology system in accordance with an embodiment of the present invention. At least the optical optical measurement may be included, and at least two optical outputs from the secondary light system may be transmitted to the illuminator subsystem (10). From = = the learned output (1) can be propagated to the selector sub-system k. The human system 115 can transmit at least two signals 116 to the beam-generating light. The at least two reference outputs 126 can be supported by the platform base (10). Circle 1G1 "Up; Sensor 104. You 4 卞 岫 晶 晶 晶 晶 Ϊ Ϊ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 At least f "low A 〇 I" (A0I is the angle of incidence) under the worry of 131, when in the second mode "high A 〇 I two! Π 1 control on the brother one path 132. When the first optional The reflective sub-system operates at a lower level when the first mode "lower mode is at least lower than the second path from the beam generator subsystem 120". • the output 141 can point to a high angle convergence, at least a second of the human system.肷丄J from the first beam generation ^ owing system 12 < the output of the death points to the first reflection subsystem 140; from the first - path (3) an output 141 can point to at least the high angle Poly-June, the at least the human system 1 as the second way secondary system 12 (sub system 135. Or, in addition to "low 曰 曰 low angle convergence Other modes and other configurations are used. In addition to the mode of "~ back to A01", the equivalent measurement system 100 outputs at least two times of the first tenth focus sub-system 145. 1 from the high angle 201209371 At least φ 1 κ ι 统 135 135 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , φ φ φ φ /@糸, first 150, first optional reflection sub-system 160. recognize s丨, - 糸, first 100 to the first mode "low Α (31" operation, from im round im to ^, an output 156 It can be pointed to a high angle to receive the female day angle of incidence. In addition, the high center system 155. For example, a high angle output 156 can be used, and the high degree system 155 can process the secondary system from the wafer 1〇1. 150, = = can provide the output 151 to the second reflective reflection secondary (10): the output of the second optional system (9) 1521 is allowed to be from the second reflective sub-system 詈 (four) aunt, zhe The phase loss is passed through the second optional reflection subsystem 160. The output 166 can be operated as a high A〇1 operation from the wafer 101 ϋ low angle collection subsystem 165 °, for example, can be used when the lower 165 ^ = rectification, from the second optional reflection Ge 糸 棋 OB AOI sub system no. Di ray - human system 160 output (6) can point to the analyzer ^ equivalent When the system 100 operates in the first mode "low A 〇 I", when the high, the (four) wafers are 〇 1, the low ^ corner ^, the analysis can be analyzed by the _ system i7G, the system can include At least two measurement systems (7). f 175 may include at least two detectors operating in the ultraviolet to visible region of the body. The at least two illumination systems and the imaging subsystem 182β may also include at least two imaging subsystems 182. At least two

8 S 201209371 * 統184。(描述輸出ι86) 在某些實施例中’量測系統100可包括至少二自動聚焦次系 統190。或者,可使用其他聚焦技術。當執行結構的量測時,可使 用至少二次系統(105、no、115、12〇、125、13〇、135、14〇、145、 150、155_、160、165、170、175、180、182、195)中的至少二控制 器(未繪示)。控制器可接收實際信號資料來更新次系統,處理元 件、製程、配方、輪靡、影像、圖案及/或模型資料。至少二次系 統(105、110、115、120、125、130、135、140、145、150、155、 160、165、170、175、180、182、190)可使用至少二半導體設備通 訊標準(SECS)訊息來交換資料,可讀取及/或移除資訊,可前饋及/ 或回饋資’及/或可將資訊作為SECS訊息傳送。 習知技藝者將會了解,至少二次系統(1〇5、110、115、12〇、 125、130、135、140、145、150、155、160、165、170、175、180、 182、195)可包括所需之電腦與記憶體元件(未繪示)。例如,記憶 體元件(未繪示)可用來儲存資訊與指令以供電腦(未繪示)執行,且 可用來在量測系統1〇〇中各式電腦/處理器執行指令時儲存暫時性 變數或其他中間資訊。至少二次系統(105、11〇、115、12〇、125、 130、135、140、145、150、155、160、165、170、175、180、182、 190、195)可包括用以從電腦可讀媒體讀取資料及/或指令的裝置, 且可包含用以將資料及/或指令寫入電腦可讀媒體的裝置。回應處 理糸統中電腦/處理器執行存於記憶體及/或接收於訊息中之至少 二指令的至少二程序,量測系統100可執行本發明一部份或全部 的處理步驟。此等指令可接收自其他電腦、電腦可讀媒體或網路 連線。此外,至少二次系統(105、110、115、120、125、130、135、 140、145、150、155、160、165、170、175、180、182、190、195) 可包含控制應用、圖樣使用者介面(GUI)元件及/或資料庫元件。 應注意到’當量測系統100以從晶圓101到量測次系統175 k 整段路程的高入射角資料而以第一模式「低A0I」操作時(輸出 166、16卜162、171),且當量測系統1〇0以從晶圓101到量測次 系統175整段路程的低入射角資料而以第一模式「高A〇I」操作 201209371 =輸出156、m ' 152、162、171) ’光束稱為(一或多個)繞射信 就0 圖3繪示習知技術之光學量_統的架構圖,其通用介 於光學量測工具(如光度測量裝置)與處理模組之間。光學量測工呈 3〇4包括用以產生絲並將光線指到結構上的光源,以及用以侦^ 自結構繞射出的光線並將所侧光線轉換成所測量繞射信、貞 1器。處理模組312帛以自光學量測工具3〇4接收所測量繞射俨 號,但特別是從_器接收所測量繞射信號,以分析結構,如^ 定結構的輪靡。 旦縫lit種光度測量裝置,其利用各種信號參數,可提供所測 里1射“唬。通用;丨面308用以利用一群組標準的信號參數, 所測1½號提供志處理模組312。該組標準的信號來數包括.反 率Oreflectance)參數,特徵化表示光反射在結構上時的光強度變 化,以及偏振錄’繼彳b麵光反射在結構上時的规振階 變化。當光學量測工具304域測量光強度變化的反射計(如光譜 反射計)時’賴介面3G8細信號參數鮮群組巾的反 ^ 數’將所測量繞射信號提供至處理模組312。當光學量測工且^ 為測量光強度變化與光偏振階段變化兩者的橢圓旋轉 ^的反射轉數錢齡數,將·銳射錢 信號參數鮮频巾的反射轉邮)對朗 偏振參數包括:第-參_,== Ϊ的3 ί數數之絕對值平方的S偏振與Ρ偏振光間之 差的+值,U(s),特徵化表示正規化至R之s 之二個複數反射健干擾的虛數部分;及第三參數/,、= ί=包之實數部分= s 201209371 幻常用於特徵化表示光學儀器中的光偏振狀態與光強 度。或者’利用J0nes矩陣方程式,用同調矩陣可達成同樣目的。 透過以下關係式,史托克斯參數與同調矩陣相關: (s〇 s, s2 s3)=(Jxx+Jyy j^+jyx KJyx.Jiy)) ⑴ 對於簡單撟圓偏光計’通常使用橢圓偏光參數p = tanv^△。在 此例,史托克斯參數S &幻對到常用橢圓偏光參數p = tanv/y 的關係可由以下表達: (^0 S2 53) = /0i?(l -cos2i^ sin cos Δ sin2i//sinA) (勹、 其中: P = Ίεαχψ ei& = i = ⑶ K Es0 橢圓偏光參數(P = tan"’A )可用三個參數來特徵化表示複 巧效應而酬化。在最簡單的情況下,若無消偏振,此關係可表 不為· (Μ S C) — (cos 2ψ sin 2ψ sin Δ sin 2ψ cos Δ) , } (4) χ = β =\ 、’ (5) 半導體結構之光學量測中所用之光度測量裝置,通常使用聚焦光 束來產生小光點尺寸(在μιη的範圍)。因此,對於使用聚焦光束的 光度測量裝置,所測量繞射信號是對應到光度測量裝置之有效數 值孔徑(ΝΑ)中所有線狀光線(pencil ray)的所測量繞射信號積分。 NA中各光線對應至特定入射角(A〇I)與波長。此外,複數反射係 數(CRC)之絕對值平方&與Γρ,及進一步之參數(R,Nsc),為入 射角(A0I)的函數,其中R為以下定義的反射率。因為聚焦光束依 賴AOI,聚焦光束為消偏振。 據此’通¥橢圓偏光參數(p = tan",A)不再足夠來描述聚焦光束 的特徵。此外’-般而言’方程雄)_(5)的定義需重新考量、,、且應 11 201209371 徵化: 到να藉^式^^7^0"2 不再等於1。再者’消偏振並不只受 斜为=限制’其亦可式有限光譜解析度或其他效應的結果。 :’’:t例示性光度測量裝置,所測量繞射信號可以下列關係特8 S 201209371 * System 184. (Description output ι86) In some embodiments, the measurement system 100 can include at least two autofocus subsystems 190. Alternatively, other focusing techniques can be used. At least two secondary systems (105, no, 115, 12〇, 125, 13〇, 135, 14〇, 145, 150, 155_, 160, 165, 170, 175, 180, may be used when performing the measurement of the structure) At least two controllers (not shown) of 182, 195). The controller can receive actual signal data to update the secondary system, processing components, processes, recipes, rims, images, patterns, and/or model data. At least two secondary systems (105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 182, 190) may use at least two semiconductor device communication standards ( SECS) messages to exchange data, read and/or remove information, feed forward and/or feedback, and/or transmit information as SECS messages. Those skilled in the art will appreciate that at least secondary systems (1〇5, 110, 115, 12〇, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 182, 195) may include the required computer and memory components (not shown). For example, a memory component (not shown) can be used to store information and instructions for execution by a computer (not shown), and can be used to store temporary variables when the various computers/processors in the measurement system 1 execute instructions. Or other intermediate information. At least a secondary system (105, 11 〇, 115, 12 〇, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 182, 190, 195) may be included to A device for reading data and/or instructions on a computer readable medium, and may include means for writing data and/or instructions to a computer readable medium. In response to the computer/processor executing at least two of the at least two instructions stored in the memory and/or received in the message, the measurement system 100 can perform some or all of the processing steps of the present invention. These instructions can be received from other computers, computer readable media or network connections. Furthermore, at least the secondary system (105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 182, 190, 195) may comprise a control application, Graphical user interface (GUI) component and/or database component. It should be noted that the 'equivalent measurement system 100 operates in the first mode "low A0I" with high angle of incidence data from the wafer 101 to the measurement subsystem 175 k. (outputs 166, 16 162, 171) And the Equivalent Measurement System 1〇0 operates in the first mode “High A〇I” with low incident angle data from the wafer 101 to the measurement sub-system 175 for the entire length of the path. 201209371 = Output 156, m ' 152, 162 171) 'The beam is called (one or more) diffraction signals. 0 Figure 3 shows the architecture of the optical quantity of the prior art, which is commonly used in optical measurement tools (such as photometric devices) and processing. Between modules. The optical measuring device includes a light source for generating a wire and directing the light onto the structure, and for detecting the light radiated from the structure and converting the side light into the measured diffraction signal. . The processing module 312 receives the measured diffracted signals from the optical metrology tool 3〇4, but in particular receives the measured diffracted signals from the encoder to analyze the structure, such as the rim of the structure. The splicing luminosity measuring device, which utilizes various signal parameters, can provide the measured ray" 唬. General; 丨 308 is used to utilize a group of standard signal parameters, and the measured signal processing module 312 is provided. The standard signal number of the set includes the inverse reflectance (Oreflectance) parameter, which characterizes the change in light intensity when the light is reflected on the structure, and the change in the amplitude of the polarization when the light is reflected on the structure. When the optical metrology tool 304 field measures the reflectance of the change in light intensity (e.g., a spectroscopic reflectometer), the measured diffraction signal is supplied to the processing module 312 by the 'reverse number of the interface 3G8 fine signal parameter fresh group towel'. When the optical quantity measurement is used to measure the change of the light intensity and the change of the light polarization phase, the number of reflections of the elliptical rotation is the number of the money, and the reflection of the sharp signal of the sharp signal is transferred to the polar polarization parameter. Including: the first value of the _, == Ϊ, the absolute value of the squared S-polarization and the difference between the Ρ-polarized light, U(s), characterized by two normalized to the s of R The imaginary part of the complex reflection robust interference; and the third parameter /,, = ί=包之Number = s 201209371 Magic is often used to characterize the polarization state and light intensity of light in an optical instrument. Or 'Using the J0nes matrix equation, the same purpose can be achieved with a homology matrix. Through the following relationship, the Stokes parameter and the homology matrix Related: (s〇s, s2 s3)=(Jxx+Jyy j^+jyx KJyx.Jiy)) (1) For a simple round polarimeter, the elliptical polarization parameter p = tanv^△ is usually used. In this case, Stoke The relationship between the S parameter S & phantom pair to the common elliptical polarization parameter p = tanv/y can be expressed as follows: (^0 S2 53) = /0i?(l -cos2i^ sin cos Δ sin2i//sinA) (勹, where : P = Ίεαχψ ei& = i = (3) K Es0 The ellipsic polarization parameter (P = tan"'A) can be characterized by three parameters to characterize the repetitive effect. In the simplest case, if there is no depolarization, This relationship can be expressed as (Μ SC) — (cos 2ψ sin 2ψ sin Δ sin 2ψ cos Δ) , } (4) χ = β =\ , ' (5) Photometric measurement used in optical measurement of semiconductor structures Devices that typically use a focused beam to produce small spot sizes (in the range of μιη). Therefore, for use A photometric measuring device for focusing a beam, the measured diffracted signal being an integral of the measured diffracted signal corresponding to all linear rays in the effective numerical aperture (ΝΑ) of the photometric device. Each of the rays in the NA corresponds to a specific incidence. Angle (A〇I) and wavelength. In addition, the absolute value of the complex reflection coefficient (CRC) squared & Γρ, and further parameters (R, Nsc), is a function of the angle of incidence (A0I), where R is defined as follows Reflectivity. Since the focused beam depends on the AOI, the focused beam is depolarized. According to this, the ellipsometric parameter (p = tan", A) is no longer sufficient to describe the characteristics of the focused beam. In addition, the definition of _(5) must be reconsidered, and should be 11 201209371 征化: to να borrowing ^^^^^^quot;2 is no longer equal to 1. Furthermore, 'depolarization is not limited to skew = limit'. It can also be the result of limited spectral resolution or other effects. :’’: an exemplary photometric device, the measured diffraction signal can be as follows:

1 = PSD-M-PSG (6) $ /5 ^宁PSD為代表偏振狀態偵測器對偏振光史托克斯參數做出 向i ,PSG為代表由偏振產生器產生之史托克斯參數 士I。1,Μ為慕勒(Muiier)矩陣。向量PSD與psG不是A〇I與 ^ .的函數。對於特定光線(具給定AOI與波長),雜矩陣可寫 ^(ΑΟΙ,λ) 'Rp + Rs Rp~Rs Rp~Rs Rp + Rs 0 0 01 = PSD-M-PSG (6) $ /5 ^ Ning PSD represents the polarization state detector for the polarized light Stokes parameter to i, PSG for the Stokes parameter generated by the polarization generator I. 1, Μ is the Muier matrix. Vector PSD and psG are not functions of A〇I and ^. For a given ray (with a given AOI and wavelength), the matrix can be written ^(ΑΟΙ,λ) 'Rp + Rs Rp~Rs Rp~Rs Rp + Rs 0 0 0

Re(Rsp) Im(Rsp) -Im(Jisp) Re(Jisp) ⑺Re(Rsp) Im(Rsp) -Im(Jisp) Re(Jisp) (7)

其中取P=k,J2 X、及L %為複數反射健。 對於使用聚焦光束的光度測量裝置,所測量繞射信號為na 亡所有線狀光線與光度測餘置中心、波長附近之侧器頻寬的強 度積分。此積分可僅為穆勒矩陣算出,如下·· / = [/(AOI, X)dQA0I άλ =PSD. [\M{AOI, X)dQA〇l ^)- PSGAmong them, P=k, J2 X, and L% are complex reflections. For a photometric device using a focused beam, the measured diffracted signal is the intensity integral of all linear rays and the center of the photometric balance and the sideband width near the wavelength. This integral can be calculated only for the Mueller matrix as follows: · / = [/(AOI, X)dQA0I άλ =PSD. [\M{AOI, X)dQA〇l ^)- PSG

接著,通則化參數(R,NSC)可如下定義: j(Rp + Rs)dQA0J dXThen, the generalization parameter (R, NSC) can be defined as follows: j(Rp + Rs)dQA0J dX

R N:R N:

SS

C \\da ^{Rp-Rs)d€lAOIdX ^{Rp + Rs)dQA〇I dX jlm(Rps)dnA01 dX J(Rp + Rs)dQA0J dX άλ j(Rp + Rs)dCiC \\da ^{Rp-Rs)d€lAOIdX ^{Rp + Rs)dQA〇I dX jlm(Rps)dnA01 dX J(Rp + Rs)dQA0J dX άλ j(Rp + Rs)dCi

dXdX

dX ⑻ (9) (10) (11) (12) 在光度測量裝置的中心波長周圍執行以上對方程式⑻仰的dX (8) (9) (10) (11) (12) Execute the above equation (8) around the center wavelength of the photometric device

S 12 201209371 部分中心波長的資料可用時,或在波長。▲ 介面與信號處理模組可轉換、處理所測量= 譜。、’貝料可用後’ # 徵化表示統射在結構上時之絲度纟, 上ίΠίίϊϊ值^的平均值。_特徵化表示反°射在結構 至^疋反射率間正規化差異的半值。s是正規化 正iffίtr干擾的虛數分量,即不_位分量。c是 冰規i複數反射係數之干擾的實數分量,即同相位分量。此 外’使=線性,光時’且因此史托克斯參數二二里㈣此 'Ns^ s-r 利用方程式⑼仰,正規化穆勒矩陣 1 -# 〇 〇) 7 m^=-n 1 ° 0 0 0 C 5 ,0 0 -s c/ (13) 因此,所測量繞射信號可特徵化表示為:S 12 201209371 Partial center wavelength data available, or at wavelength. ▲ The interface and signal processing module can convert and process the measured = spectrum. After the 'beauty is available' # 征化 indicates the average of the Π Π 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 平均值 平均值 平均值 平均值 平均值 平均值 平均值 平均值The _ characterization represents the half value of the normalized difference between the structure and the reflectance. s is the imaginary component of normalized positive iffίtr interference, ie not _bit component. c is the real component of the interference of the complex reflection coefficient of the ice gauge i, that is, the in-phase component. In addition 'make = linear, light time' and therefore the Stokes parameter two two miles (four) this 'Ns^ sr using equation (9) up, normalized Mueller matrix 1 -# 〇〇) 7 m^=-n 1 ° 0 0 0 C 5 ,0 0 -sc/ (13) Therefore, the measured diffracted signal can be characterized as:

I = PSD-(RM')-PSG _ ___ (14) .一般而5,+ 與(R,NSC)是四個獨立的參數。 參數(R,NSC)可完全描述如薄膜之等向加。卿k)結構的反射特 徵’但不描述如週期光栅之不等向(_〇tr〇pic)結構中存有的偏振 交互麵合。然而,使用90。的方位角消除了偏振交互搞合效應的介 入。參數R $,M’或相等的(R ’ Nsc)是如中心A〇I、中心波長、 有效NA、光譜解析度專所測量狀況的函數。自參數尺與μ,或相 等的(R,NSC)的定義’只要有關於中心Α〇Ι、中心波長、有效ΝΑ、 光譜解析度的資吼可用’可模擬擬合這些量值。可用資料庫或迴 歸或機器學習駐程序的技術來達成擬合。有關光學量測系統的 介面之詳述,參見以下文件,該文件以參照方式併入本夂:美國 專利第 7064829 號,發明名稱 rGENERIC mTERFACE F〇R ^ a- 13 201209371 OPTICAL METROLOGYSYSTEM」’頒證日為 2006 年6月 2〇 日。 ^上’結構尺寸變小時,先前不實質影響量測準確度的因素, 產ί影響。再者’翻化光學制卫財賴之假設已不 # # I θ 4至11Β是例示性架構圖,表示在光學量測工具模型 用於輪齡數擷㈣統的祕錄顯巾,所S用到之光 t件缺_照射、繞射光束影響的詳細分 光學、光束侧參數。 ^ m ^规魏綠的絲量測工具賴示性架構 .,I,僅表不三光線,但用於光線追蹤的光線數量可為單一 ΐί 2二ί更多光線。光學量測工%示為使用三個來自 if過光學量測元件426、430的光線,光線指向工作件 454。工作件452置於運動控制系統444上,運動控 444用以調整照射光束聚焦在工作件452上。在此圖中, 之光線穿過光學制工具_巾照射部分49G與偵測部分 = 學元件,達到且包括偵測器484。第一照射光線408 /勺、;’以光線422傳播穿過光學元件426,光學元件426 ί4 ίΐi取Γ光,或補光片’產生輸出光線424。輸出光線 454 ,"、、兀件430 ’以入射角%產生輸出光線430在結構 426 光、線416 “光線42時進,穿過照射光學元件 偏光min如上述,照射光學元件426可包括準直儀、 先片。輸出光、線432傳播至聚焦元件㈣,以第二 ㈣生,出光線_在結構454上。照射光束的切面420 嫂且成’但僅f追縱穿過系統的幾個代表性光線。各光 ^電^無場可為雜或_職,且親的似可以位於^ i光内的任一處。聚焦光學元件430可以是反射或折 加ίίΊ,傳播到結構454 #輸出照射光線436,以與入射角 集i與元::角ΐ偵測光線458Μί測光線458傳播至收 I綠以土細光線464,穿過收集光學元件460成為 %射先線464 ’產生輸出光'線47〇,並以偵測光線行進至收集I = PSD-(RM')-PSG _ ___ (14) . Normally 5, + and (R, NSC) are four independent parameters. The parameter (R, NSC) can fully describe the isotropic addition of a film. The reflection feature of the structure is not described but does not describe the polarization interactions that exist in the unequal (_〇tr〇pic) structure of the periodic grating. However, use 90. The azimuth eliminates the intervention of the polarization interaction effect. The parameter R $, M' or equal (R ′ Nsc) is a function of the measured state of the center A 〇 I, center wavelength, effective NA, spectral resolution. From the parameter ruler to μ, or the equivalent definition of (R, NSC), as long as there is information about the central enthalpy, the center wavelength, the effective enthalpy, and the spectral resolution available, these magnitudes can be simulated. The fit can be achieved using a database or technique of returning or machine learning in the program. For a detailed description of the interface of the optical measurement system, see the following document, which is incorporated herein by reference: U.S. Patent No. 7,048 229, entitled "rGENERIC mTERFACE F〇R ^ a- 13 201209371 OPTICAL METROLOGY SYSTEM" It is June 2, 2006. The upper structure size becomes smaller, and the factors that do not materially affect the accuracy of the measurement previously have an effect on the production. Furthermore, the assumption of 'turning the optical system to defend the wealth is no longer ## I θ 4 to 11Β is an exemplary architecture diagram, which is used in the optical measurement tool model for the age of the wheel 四 (4). The light used is missing _ illumination, detailed spectroscopic influence of the diffracted beam, beam side parameters. ^ m ^ Wei Wei's silk measurement tool architecture. I, only three rays, but the amount of light used for ray tracing can be a single ΐί 2 2ί more light. Optical metrology is shown using three light rays from the if optical measurement elements 426, 430 that are directed toward the workpiece 454. The workpiece 452 is placed on the motion control system 444, and the motion control 444 is used to adjust the illumination beam to focus on the workpiece 452. In this figure, the light passes through the optical tool _ illuminating portion 49G and the detecting portion ____ element, reaching and including the detector 484. The first illumination ray 408 /spoon,; 'transmits through the optical element 426 with the light 422, the optical element 426 ί4 Γ Γ Γ ,, or the fill patch ′ produces the output light 424. Output ray 454, ", element 430' produces output ray 430 at incident angle % at structure 426 light, line 416 "light 42", through illumination optics polarized min as described above, illumination optics 426 may include The output light, the line 432 is propagated to the focusing element (4), the second (four) is generated, and the light ray is on the structure 454. The cut surface 420 of the illuminating beam is ' and only f is traced through the system A representative light ray. Each light ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #output illuminating light 436 to be combined with the incident angle set i and the element:: corner ΐ ray 458 ί, the measured light 458 propagates to the receive green ray 464, passes through the collecting optics 460 to become the % shot line 464' Output light 'line 47〇, and travel to detect light to collect

14 S 201209371 L484i亦iiif ί件466可包括準直片、補光片及/或收集偏 將收隼集部份494可包括其他光學元件,以 器來^如θι 可包含一或多個偵測 ::r - 456、·ί_=光= 牛=度,成為侧光線伙。侧光線 -,士”先予兀件460,產生偵測光線462 ,穿過收隼并學 二I述,收集貞f光線476行進至收集器484上。 片,且亦稱^乍八^減_7匕括準直片、補光片及/或收集偏光 收集光線指向;二 偵測光束的切面472以呼多弁ϋ & 、或夕固侦測器。14 S 201209371 L484i iiif 466 may include a collimator, a fill patch, and/or a collection bias. The portion 494 may include other optical components, such as θι, which may include one or more detections. ::r - 456, · ί_= light = cow = degree, become a side ray. The side ray-, 士" first gives the 460, generates the detection light 462, passes through the collection and learns the second, and collects the 光线f ray 476 to travel to the collector 484. The film, also known as ^乍八^减_7 includes a collimator, a fill light, and/or a collection of polarized light to collect light rays; and a second detection beam of the cut surface 472 is a Huduo & or Xiugu detector.

相A f 以入射角θ3傳播至結構454卜,,V 姑ΊΓ θ3從結構454繞射並傳播穿過偵測光學元件460、466 播至_器·若以四光線 2 、各光__方式追蹤穿過光學量測工具_昭射邻 二地^測部分494的所有光學元件,達到且包括_器4^4 光丨線__制工具_,絲_類似方式 ί具_照射部分49G與細部分_的所i ,線數量侧測的應用與目的以 二ΤίΪϊ光線範例,輸出照射光線436在工作件松上之社 構454上的第一入射角$可因各光線而不同。再、、、口 ^:/所描述^其他因素會影響傳播參數士到達二括】 =似之各光學元件的入射角、方位角'強度、:且= 从5Α疋架構圖’緣示光線追縱500利用如鏡子之反射杏風_ 牛’該元件具有如示之光轴560。鏡子550具有入射面疋 15 201209371 該入射面為輸入與輸出主光線投射交錯的平面。利用三光線模 型、’具有破为截面.A1的.輸入光線51〇與512,在入射面574、反身; 成為具有微分截面B1的輸出光線514與516。在另一狀況,輸入 光線520、522傳播至反射光學元件55G上,形成輸出微分^面 B2。然而,輸入光線520、522在入射面574之外反射,反射成為 具有不同微分截面B2的輸出光線524、526。微分截面B2可以小 於或大於微分截面B1。在另一狀況,具有微分截面A1的輸入光 線530、532在入射面574反射成為具有徵分截面B1的輸出光線 534、536。 圖5B是架構圖,繪示有折射光學元件68〇(如聚焦透鏡)與光 軸616的光線追蹤600。主光線6〇4與光轴616形成入射面。利用 二光線模型,輸入光線612在入射面中的點656進入第一主面 660,傳播經過折射光學元件68〇與第二主面69〇,以往焦點676 之方向的第一入射角Θ!成為輸出光線672。另一輸入光線608在 入射面之外的第一主面660從焦點652進入折射光學元件680傳 播經過折射光學元件680,從第二主面690出去,以往焦點652 之方向的第二入射角Θ2成為輸出光線668。主光線604在點650 進入第一主面,傳播經過折射光學元件680,從第二主面69〇出, 以第三入射角θ3成為輸出光線664。 ,圖6Α繪示架構圖500,,表示光線追蹤,其具有反射光學元件 570’與光軸584’,其牵涉到光束截面上輸出光線的放大率或縮小 率變化。具有微分截面A1,的輸入光線508’、512,由鏡子57〇,反射 成為具有微分截面A2’的輸出光線528’、532, ’收斂在焦點588,。 在另一狀況’具有微分截面B1,的輸入光線520,、524,傳播至反射 光學元件570’上,反射成為具有不同微分截面B2,的輪出光線 536’、540’,收斂在焦點588,。當在垂直於主光線(未繪示)行進方 向,同樣平面上測量微分截面A1,及ΒΓ,且在垂直於主光線(未 繪示)行進方向的另一平面上測量微分截面A2,及B2,時,可算出 輸入光線508與512’的放大率m,即% = ,且對於輸入光線The phase A f propagates to the structure 454 at the incident angle θ3, and the V ΊΓ θ3 is diffracted from the structure 454 and propagates through the detecting optical elements 460, 466 to the _ 器 · if the four ray 2 , each light _ _ way Track all the optical components passing through the optical measuring tool _ 昭 射 邻 测 测 测 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到 到The application and purpose of the thin section _, the number of lines side measurement, the first incident angle $ of the output illuminating light 436 on the fabric 454 of the working piece may be different for each ray. Then, , ^ ^ / / described ^ other factors will affect the propagation parameters of the arrival of the two] = like the incident angle, azimuth 'intensity of each optical component, and = = from the 5 Α疋 architecture diagram 'margin ray chase The vertical 500 utilizes a mirror-like reflection of the apricot wind _ cow's element having an optical axis 560 as shown. Mirror 550 has an entrance face 疋 15 201209371 This entrance face is the plane in which the input and output chief ray are interlaced. Using the three-ray mode, 'the input rays 51' and 512 having the broken section A1, on the incident surface 574, reflexive; become the output rays 514 and 516 having the differential section B1. In the other case, the input rays 520, 522 propagate to the reflective optical element 55G to form an output differential surface B2. However, the input rays 520, 522 are reflected outside of the entrance face 574 and are reflected as output rays 524, 526 having different differential sections B2. The differential section B2 can be smaller or larger than the differential section B1. In another case, the input light rays 530, 532 having the differential cross section A1 are reflected on the incident surface 574 into output light rays 534, 536 having a scoring cross section B1. Figure 5B is an architectural diagram showing ray tracing 600 with refractive optical element 68 (e.g., a focusing lens) and optical axis 616. The chief ray 6〇4 forms an incident surface with the optical axis 616. With the two-ray model, the point 656 of the input ray 612 in the incident surface enters the first major surface 660 and propagates through the refracting optical element 68 〇 and the second major surface 69 〇. The first angle of incidence 以往 in the direction of the previous focus 676 becomes Light 672 is output. The first main surface 660 of the other input ray 608 outside the entrance surface propagates from the focus 652 into the refractive optical element 680 through the refractive optical element 680, exiting from the second main surface 690, and the second angle of incidence 以往2 in the direction of the previous focus 652 Become the output light 668. The chief ray 604 enters the first major surface at point 650, propagates through the refractive optical element 680, and exits from the second major surface 69, becoming the output ray 664 at a third angle of incidence θ3. Figure 6 depicts an architectural diagram 500 showing ray tracing having a reflective optical element 570' and an optical axis 584' that involve a change in magnification or reduction of the output light over the beam section. The input ray 508', 512 having the differential section A1, reflected by the mirror 57, into the output ray 528', 532 having the differential section A2', converges at the focus 588. In another condition 'the input ray 520, 524 having the differential section B1, propagates onto the reflective optical element 570', and the reflected light rays 536', 540' having different differential sections B2 are converged, converge at the focus 588, . When perpendicular to the direction of travel of the chief ray (not shown), the differential sections A1, and ΒΓ are measured on the same plane, and the differential section A2, and B2 are measured on another plane perpendicular to the direction of travel of the chief ray (not shown). , at which time, the magnification m of the input rays 508 and 512', that is, % = , can be calculated, and for the input light

AA

16 S 201209371 520’、524’為% = ¥。出於幾何考量,光束截面上的放大率可變 化’即’即使是均衡強度分配的輸入光束,此由光學元件產 生的放大率,化會導致光束的強度變化。這是多餘系統人工因 ί,ί產生量測誤差。例如,假設一強度均勻之光束來自光源, 光束穿f一連串光學元件後,聚焦在結構上。當具有微分截面Α1 的線從光源追蹤時,第一光線的微分立體角Ωι,當聚焦在結構 上時,可用光線追蹤演算法算出,所以聚焦在結構上之光線的°角 強度為wj H線的微分立體角ω2,可用姻光線追蹤 演算法算出,即。角強度分布通常為不均勻,即, 因為幾何放大率不均勻所致’即 ' 2或岣為或 Α為 (15) 其中 A是微分截面A1之輪入光束目標上自聚焦點打開之微分立 體角,Ω2是微分截面A2之輸入光束目標上自聚焦點打開之微分 立體角’Ai、A2為來源開孔平面上二個入射光線截面的微分面積。 因此角放大不均勻所致,數值孔徑上的角強度分布是不均勻 的’且會導致在計算繞射信號之強度與偏振中系統性的誤差。 圖6B為架構圖8〇〇緣示有折射光學元件804 (如透鏡)與光軸 820的光線追蹤’其表示輸出光線截面的放大與縮小。試想包含二 光線的二光線模型,二輸入光線8〇8、812進入折射光學元件8〇4, 行進穿過折射光學元件8〇4與第一主面844,以折射光線816、822 射出朝向聚焦點840。在不同模型中,二光線模型包含輸入光線 850、854 ’該二光線進入折射光學元件8〇4,行進穿過折射光學元 件804與第一主面844’以折射光線830、834射出朝向聚隹點840。 第二主面824用於光線追蹤,是在當不同的一或多光線&相反方 向穿過折射光學元件時使用。如圖6A所提及,光線在光束截面上 17 201209371 可能會有輸出光線的放大或縮小變化。光線追縱會使光學量測工 具中各光學元件、反射或折射元件模型化,使光線在進入、行進、 射出光學元件時可改變方向和屬性。 光線904 由蝥重折射姑斜 998 _、/ a * _ ^ a, & u a.16 S 201209371 520', 524' is % = ¥. For geometric considerations, the magnification on the beam section is variably 'that' even if it is an input beam that equalizes the intensity distribution, the magnification produced by the optical element causes a change in the intensity of the beam. This is a redundant system artificial ί, ί produces measurement error. For example, suppose a beam of uniform intensity comes from a source that is focused on the structure after passing through a series of optical components. When the line with the differential section Α1 is tracked from the light source, the differential solid angle Ωι of the first ray can be calculated by the ray tracing algorithm when focused on the structure, so the angle intensity of the light focused on the structure is wj H line. The differential solid angle ω2 can be calculated by the ray tracing algorithm, ie. The angular intensity distribution is usually non-uniform, that is, because the geometric magnification is not uniform, that is, 'that' 2 or 岣 or Α is (15) where A is the differential stereoscopic opening of the self-focusing point on the wheeled beam target of the differential section A1. The angle, Ω2 is the differential solid angle 'Ai, A2 on the input beam target of the differential section A2 on the input beam target is the differential area of the two incident ray sections on the source aperture plane. Therefore, the angular magnification distribution is uneven, and the angular intensity distribution on the numerical aperture is uneven' and causes systematic errors in calculating the intensity and polarization of the diffracted signal. Fig. 6B is a plan view of Fig. 8 showing the ray tracing of the refractive optical element 804 (e.g., lens) and optical axis 820, which represents the enlargement and reduction of the cross section of the output light. Imagine a two-ray model containing two rays, two input rays 8〇8, 812 entering the refractive optical element 8〇4, traveling through the refractive optical element 8〇4 and the first main surface 844, and refracting the light rays 816, 822 to be directed toward the focus Point 840. In a different model, the two-ray model includes input rays 850, 854 'the two rays enter the refractive optical element 8〇4, travel through the refractive optical element 804 and the first major surface 844' to refract the light 830, 834 to exit toward the cluster Point 840. The second major face 824 is used for ray tracing and is used when different one or more rays & of the opposite direction pass through the refractive optical element. As mentioned in Fig. 6A, the light is on the beam section 17 201209371 There may be an enlargement or reduction of the output light. Light tracking can model the optical components, reflective or refractive components of an optical metrology tool, allowing light to change direction and properties as it enters, travels, and exits the optical component. Light 904 is refraction 998 998 _, / a * _ ^ a, & u a.

Ee疋異常輪出光線的輸入電磁場,其輸出 圖7A為架構圖900繪示在光學元件中光線追蹤,表示輸出光 線的應變雙折射。雙折射發生於,當光束穿過雙重折射物件時, 光束分開成一發散光束,通常為非異常(Ordjjjgjy)光束與異常 (extraordinary)光束。應變雙折射產生自外部力及/或變形做用&材 料上,材料如拉伸纖維、薄臈材料,或是產生自生產光學量測工 具中所用黏著劑導致的應變。考量單一輸入光線9〇4,其電磁場為 Es與Ep,光線904以相對於法線912的入射角ρι進入雙重折射材 才斗928。雙重折射材料928具有垂直於紙張平面的光軸942。輸入Ee疋 Input electromagnetic field with abnormally rounded light, its output Figure 7A is an architectural diagram 900 showing ray tracing in an optical component, indicating the strain birefringence of the output light. Birefringence occurs when a beam of light passes through a double-refraction object, the beam splits into a divergent beam, typically a non-abnormal (Ordjjjgjy) beam and an extraordinary beam. Strain birefringence results from external forces and/or deformations on materials such as stretched fibers, thin tantalum materials, or strains resulting from the adhesives used in the production of optical metrology tools. Considering a single input ray 9〇4, the electromagnetic field is Es and Ep, and the ray 904 enters the double refracting material 928 at an incident angle ρι with respect to the normal 912. The dual refractive material 928 has an optical axis 942 that is perpendicular to the plane of the paper. Input

非異常與異常輪丨紐聽電場何得自:What are the non-abnormal and abnormal rims?

(16) 可得自: 201209371 Ί-Α ’為虛數的單位4是真空中的波長,/是材料的j 度。因為相位延遲之故,光的偏振從輸入狀態(奴+职)變成 =;,+尽,。通常,對於大部分光學元件,先前 擬在輪錢面上㈣化,造減射信號模 示性範例中,餘光線Ε。與異f光線Ee。在此例 J辄數羊η。與ne,因此在材料内行進一段距離^後 經歷不同相位延遲卜#-〇·/。至於應變雙折射的例子, 雙折射是舰量的函數,且通f在絲上不均勻。此不均 應變雙折射材料後’光線的偏振狀態產生變化’ 同的偏振狀態。此稱作由應變雙折射產生的 從卜9A、9B將描述,輸出光線的偏振狀態,可 办接i句的輸入光線改變’這些改變表示為偏振狀態之相 ^、振幅、方向。此對於系統中行進 要算的更準,可用本發明所述之光線追:=來 而先刖技術部疋忽略此誤差來源產生的誤差。 19 201209371 圖8纟t讀翻95G ’表示折射絲元件的光線追 ^同光學材料中行進_生的輸出 ' 中j t Λ 968 J 968 ^ ^ ϊ ^ 954 率為ηι ’第二層的折射係數為& ^殊長不同於光線958在第—層954中的波長,^^斤2 波長;ι=ϋ=7(£^1=1.; /〇 (ω0/2τζ) η2} 0 C {ω0/2π) (18) 射率材U第US光速:,C是真空中的光速’"是層的折 &空中的波長。當紐‘ 光線品光線追縱的架構圖_ ’其中偏振狀態隨 9A1 ’入射面是由主光線 二先轴疋A出的平^人射面腳巾具有線性偏振 料件_8献有錄卩爾枝線· 二通^亦為線性偏振。入射面腦外具有相同線性偏振 =tJ〇1G44f播經過光學元件謂8成為具偏振狀態P3的^ ^線1020。入射面中的主光線1〇48傳播成輸出光線1〇 輸出光線收斂難點刪^通常,偏振㈣p3 低有 因為光線穿過人射面腦外光學元件麵 itiii in態非均句改變所致的去偏振,偏“二 糸、·克性钕差的人工因素。輸出光線的電場可為如 1028的線性偏振p2,或可如輸出光線1〇2〇的環狀鬥 般當光波行料電場會旋轉。參關9Α1,Ρι可為^(16) Available from: 201209371 Ί-Α ' is the imaginary unit 4 is the wavelength in vacuum, / is the material's j degree. Because of the phase delay, the polarization of light changes from the input state (slave + job) to =;, + exhaust. In general, for most optical components, it is previously intended to be used on the rotating surface, and in the parametric example of the dimming signal, the residual ray is Ε. Ee with different f rays. In this case, J number is η. With ne, therefore, after traveling a distance ^ within the material, experience a different phase delay, #-〇·/. As for the example of strain birefringence, birefringence is a function of the ship's volume and the pass f is not uniform across the wire. This uneven strain is the same polarization state after the birefringent material changes the polarization state of the light. This is called the generation of strain birefringence. It will be described from Chapters 9A and 9B that the polarization state of the output light can be changed by the input light of the sentence i. These changes are expressed as the phase, amplitude, and direction of the polarization state. This is more accurate for the travel in the system, and the ray of the present invention can be used to ignore the error caused by the source of error. 19 201209371 Figure 8纟t read 95G 'represents the ray of the refractive wire element in the same optical material as the output _ raw output' in jt Λ 968 J 968 ^ ^ ϊ ^ 954 rate ηι 'the refractive index of the second layer is & ^Specially different from the wavelength of light 958 in the first layer 954, ^^ kg 2 wavelength; ι=ϋ=7(£^1=1.; /〇(ω0/2τζ) η2} 0 C {ω0 /2π) (18) The rate of material U is the first speed of light: C is the speed of light in vacuum '" is the wavelength of the layer & When New Zealand's light ray traces the architecture diagram _ 'where the polarization state follows 9A1', the incident surface is the main light ray first axis 疋A out of the flat surface of the human face with a linear polarization material _8 is recorded Erzhi line · Two-way ^ is also linearly polarized. The incident surface has the same linear polarization outside the brain = tJ〇1G44f is broadcasted through the optical element 8 to become the ^10 line 1020 with the polarization state P3. The chief ray 1 〇 48 in the incident surface propagates into the output ray 1 〇 the output ray converges to be difficult to delete. Normally, the polarization (4) p3 is low because the light passes through the human face and the optical element surface isiii in the state of the non-uniform sentence. Polarization, biased by the artificial factors of "two 糸, · 克 钕 。. The electric field of the output light can be a linear polarization p2 such as 1028, or can be like a circular hopper of output light 1 〇 2 当 when the light wave electric field will rotate Participate in 9Α1, Ρι can be ^

S 20 201209371 ,常為線性,p3可為橢圓。反之’ Ρι可為非偏振,俾使光線必須 刀,成正父偏振光狀態,各偏振狀態必須分別追蹤。正交偏振光 ,二種方法之-$置在綱n :依^偏振狀態為關、 部分同調。 圖9Α2繪不光線追蹤的架構圖1〇〇〇,,其中當光線傳播穿過折 射光學元件時,偏振狀態會改變,且折射光束沒有雙折射。類似 的兀件具有類似的元件符號。輸入光線1〇4〇、1〇44、1〇48呈有偏 振朽’傳播經過光學元件麵成為具偏振狀態π的輸^光線 1012、1028及具偏振狀態的輸出光線1〇2〇。因為有雙折射, 朽可以是線性偏振’ Ρ2、Ρ3亦可為線性偏振。 參照圖9Β,輸入光線1564的偏振狀態在入射面中被反射元 件1训反射成輸出光線I536時會改變,入射面由主光線(未繪示 與反射元件1510的光軸152G定義。同樣地,#在反航件⑽ 面外反射成輸出光線1538時,輸人光線156()的偏振狀態 會改變,如從線性偏振1568變成非偏振153〇。 圖10A繪示薄膜層中光線折射與反射之光線追蹤的架 1300。假絲示為單-輸入光線13〇2的光束以斜入射角 過如空氣之材料M3。輸入光線1302以角度%部分反射為第一反 射輸出光線13G4,且以折射角?1部分折射穿過如晶圓層的材料 M2成為第-折射光線1314。第一折射光線1314更在材料== 下邊界部分㈣成反射光線1316,且部分漏?過下—S 20 201209371, often linear, p3 can be elliptical. Conversely, Ρι can be non-polarized, so that the light must be knives and become a positive polarized state, and each polarization state must be tracked separately. Orthogonally polarized light, the two methods - $ placed in the class n: according to the polarization state is off, partially coherent. Figure 9Α2 depicts the architecture without ray tracing. Figure 1〇〇〇, where the light is propagating through the refractive optics, the polarization state changes, and the refracted beam has no birefringence. Similar components have similar component symbols. The input light rays 1 〇 4 〇, 1 〇 44, and 1 〇 48 are polarized. The light transmitted through the surface of the optical element becomes the light ray 1012, 1028 having a polarization state π and the output light 1 〇 2 具 having a polarization state. Because of birefringence, the decay can be linearly polarized. Ρ2, Ρ3 can also be linearly polarized. Referring to FIG. 9A, the polarization state of the input ray 1564 is changed when reflected by the reflective element 1 into the output ray I536 in the incident surface, and the incident surface is defined by the chief ray (not shown as the optical axis 152G of the reflective element 1510. Similarly, # When the anti-Navigation component (10) is reflected out of the output light 1538, the polarization state of the input light 156() changes, such as from linear polarization 1568 to non-polarization 153. Figure 10A shows the light refraction and reflection in the film layer. The ray tracing frame 1300. The false wire is shown as a single-input light 13 〇 2 beam passing through the material M3 such as air at an oblique incident angle. The input ray 1302 is partially reflected at an angle % as the first reflected output ray 13G4, and at a refraction angle The portion 1 is refracted through the material M2 such as the wafer layer to become the first refracted ray 1314. The first refracted ray 1314 is further reflected in the material == lower boundary portion (four) to reflect the light 1316, and partially leaked over -

Ml成為折射光線1326。反射光缘1316部分以第二反射^ 1306傳播,部分在材料M2的上邊界反射成光線1318而回到材料 M2内。光線1318重複進行第二過程的部分反射與折射,光線i3i8 部分繞射成為光線1328穿過簡M1,部分反射成為光132 過^撤且部分折射穿過下一層的材料M1,繼續成為部分反射 的光線1322為到材料M2,部分傳播光線1330進入材料M1,部 分?播成為第三反射輸出光線13G8。在光線反射、折射 “ 重複過程巾’光線的電磁能量可絲判定賴層的所 入光線穿過材料層的反射與傳播可計算如下方程式: 又 201209371 電磁場E由入射場、總反射場、傳播場組成,各場有二偏振 狀態s與p,· (19) (20) (21)Ml becomes the refracted light 1326. The portion of the reflected light edge 1316 propagates with the second reflection ^ 1306 and is partially reflected at the upper boundary of the material M2 into the light 1318 to return to the material M2. The light 1318 repeats the partial reflection and refraction of the second process, and the light ray i3i8 is partially diffracted into the light 1328 through the simple M1, partially reflected into the light 132 and partially refracted through the material M1 of the next layer, and continues to be partially reflected. The light ray 1322 is to the material M2, part of the light ray 1330 enters the material M1, and part of the light ray becomes the third reflected output light 13G8. In the light reflection, refraction "repeating process towel" light electromagnetic energy can determine the reflection and propagation of the incoming light passing through the material layer. The following equation can be calculated: 201209371 Electromagnetic field E from the incident field, total reflection field, propagation field Composition, each field has two polarization states s and p, · (19) (20) (21)

Es.ou. =Γ5 Ep,out =fp-Ep .總反射強度 其中ε是恆數, rs與rp是複數反射係數, E是電磁場。 圖10B繪示多重光線在結構上之光線追蹤的架構圖。緣示於 二光線模型之第一架構圖1400中’輸入光線1402、1404、1406 進入位於第一層L2上方之結構L1。輸入光線1402、1404、1406 以不同入射角θ^θγθ3進入結構,以折射角射出成為 輸出光線1412、141〇、1408。繪示於四光線模型之第二架構圖145〇 中’輸入光線1452、1454、1456、1458以不同入射角θι、%、%、 Θ4進入結構,以折射角θ!、θ2、θ3、Θ4射出成為輸出光線1466、 1464、1462、1460。如各圖與架構圖所示,光線追蹤模型中之光 線數量可因應用所需而有一或更多光線。應注意到,需用來模擬 的電腦資源隨光線數量增加而增加,而基於時間限制、電腦資源 需求、準確度因素,可用最佳化程序來得到最少光線數量。 圖11Α繪示有折射光學元件1504的光線追蹤之架構圖158〇, 描述散射(scattering)光與漫射(stray)光效應。在二光線模型中,輸 入光線1528、1532進入如透鏡的折射光學元件15〇4,光線傳播穿 過光學元件1504成為折射光線1550、1552,其+當傳 折射光學耕且繞過雜質1544時,如殘餘物^轉I立 於折射光學元件1504内部或表面上的雜質1544、輸出光線15〇8、 1512因收斂而具有較小截面。在另—二光線_的例子,輸入光 線1582、1540’表面缺陷1548(如凹槽或刮痕或折射光學元件15〇4 表面上不賴性)、傳财過折射絲元件15G4成 !554、2556的輸入光線1582、154〇,產生輸出光線觸、1524,Es.ou. =Γ5 Ep,out =fp-Ep . Total reflection intensity where ε is a constant number, rs and rp are complex reflection coefficients, and E is an electromagnetic field. FIG. 10B is a block diagram showing the ray tracing of multiple rays on a structure. The edge is shown in the first architectural diagram 1400 of the two-ray model. The input ray 1402, 1404, 1406 enters the structure L1 located above the first layer L2. The input rays 1402, 1404, and 1406 enter the structure at different incident angles θ^θγθ3, and are emitted as output rays 1412, 141, and 1408 at the angle of refraction. In the second architecture diagram 145〇 of the four-ray model, the input rays 1452, 1454, 1456, and 1458 enter the structure at different incident angles θι, %, %, and ,4, and are emitted at the refraction angles θ!, θ2, θ3, and Θ4. It becomes the output light 1466, 1464, 1462, and 1460. As shown in the figures and architecture diagrams, the number of lines in the ray tracing model can be one or more of the light required by the application. It should be noted that the computer resources required for simulation increase with the amount of light, and based on time constraints, computer resource requirements, and accuracy factors, an optimization program can be used to obtain the minimum amount of light. Figure 11A depicts a ray tracing architecture with refractive optical element 1504. Figure 158A depicts the scattering and stray light effects. In the two-ray model, the input ray 1528, 1532 enters the refracting optical element 15 〇 4 as a lens, and the light propagates through the optical element 1504 into refracted light 1550, 1552, which is when the refracting optical ploughs and bypasses the impurity 1544. The impurities 1544, the output rays 15〇8, 1512, such as the residue, which are located inside or on the surface of the refractive optical element 1504, have a smaller cross section due to convergence. In the case of the other two rays _, the input light 1582, 1540' surface defects 1548 (such as grooves or scratches or refractive optical elements 15 〇 4 surface non-reliance), the wealth of the refracting silk element 15G4 into ! 554, 2556 Input light 1582, 154 〇, produces an output light touch, 1524,

22 S 201209371 ^光$ 1584、1524外散時產生較寬的截面。輸出光線15 „,器1516之外成為漫射光線,可能會對量測造成散射影塑。 =射光線如輸出光線1524影響偵測器1516的測量。輸入與^ 光線的光線追縱用來判定傳播至偵測器1516的光線方向,及J 解釋結構輪廓截取光學量測裝置的模擬模型。 ^圖11B繪示反射光學元件1604的架構圖1600,說明散射盥 >更射光效應。輸入光線1608由缺陷165〇 (如位於反射光學元 160^内部絲面上之殘餘物或汙染物)反射,產生指向光學量測工 示)元件1630的第一輸出光線1620,且反射成為漫射光線 而、⑷6伽第二輸出光線1628不反射向侧器1640, 而疋憂成政射光。另一輸入光線1612由腔隙1654 (如凹 或反射光學元件16G4表面上的不規雕)反射成為第—^出= 1616,且由元件1630反射成為漫射光線1636,反射至偵考 =40。第二輸出光線1624反射至偵測器164〇的偵測區域外二二 輸出光線1636、1632,的漫射光線及如輸出級1624、162 Ϊΐϋ影響你f器164G測量。輸入與輸出光線的光線追蹤用來 二軟人,偵測器之光線的方向。此資料與其他光束行進參 數月匕整口在用於結構輪廓擷取之光學量測工具中模型的改 達成應用的總量測準確度需求。 、圖12繪示例示性流程圖1700,表示用於擷取樣本結 一或多個輪廓參數之量測輸出信號的計算方法。在步驟17〇5 選擇用來模型化光學量測工具的光線數量。可選擇一光線,如主 ^線。在其他實施例中,可選擇二或更多光線。如上述 =取決於_需求。選擇數量時,,基準可祕本結構或類似 的歷史模型化資料及應用或該類似應用的模型化資料。了 — 3是晶®結構’如紐已肢射賴三紐模雜型化的已^ =光阻,在此例子中,用來模型化類似應用的光線起始數量以 驟mG中,對於從光_樣本結構的各統,選擇光 。樣本可以是工作件上圖案化或未圖案化的結構ϊ 作件可包括晶圓結構,如薄膜、光柵或重複結構、二維線盘間^ 23 !; 201209371 結構、或三维結構。絲行進參數可包括以下 f位角二八射面、光線強度的定向、跨截面的強度分布均白》 偏振狀態、偏振狀態變化的均勻性、各 _ 布句勻性、 構點、_透射率與反射率、 線的強度傳播不均勻性、光線的放大不均勾^所影===先 光線的不均勻偏振狀態變化可由如光學^, "Α,、應變雙折射(圖7Α、7Β):因 6Α'6Β)22 S 201209371 ^ Light $1584, 1524 when scattered outside gives a wider cross section. The output light 15 „, the diffused light outside the device 1516, may cause scattering shadowing of the measurement. = The light ray, such as the output light 1524, affects the measurement of the detector 1516. The input and the ray of the light are used to determine The direction of the light propagating to the detector 1516, and the interpretation of the structural profile intercepts the simulated model of the optical measuring device. Figure 11B shows an architectural diagram 1600 of the reflective optical element 1604 illustrating the scattering artifacts > Reflected by a defect 165〇 (such as a residue or contaminant on the inner surface of the reflective optical element 160^), a first output ray 1620 that is directed toward the optical metrology component 1630 is generated and reflected into diffuse light, (4) The 6 gamma second output ray 1628 is not reflected to the side device 1640, and the other input ray 1612 is reflected by the cavity 1654 (such as the irregular embossing on the surface of the concave or reflective optical element 16G4) to become the first -^ Output = 1616, and is reflected by component 1630 as diffuse ray 1636, reflected to detection = 40. Second output ray 1624 is reflected to the detection area outside detector 164 二 二 2 2 2 2 2 2 2 2 2 Light and The 1624, 162 出 affects your 164G measurement. The ray tracing of the input and output rays is used to illuminate the direction of the light of the two soft people and the detector. This data is used with other beam travel parameters. The model of the optical measurement tool is adapted to achieve the total accuracy requirement of the application. FIG. 12 depicts an exemplary flow chart 1700 showing the measurement output signal for sampling one or more contour parameters of the sample. The calculation method is to select the number of rays used to model the optical measuring tool in step 17 。 5. A light ray, such as a main line, may be selected. In other embodiments, two or more rays may be selected. In the case of _ demand. When selecting the quantity, the benchmark can be a secret structure or a similar historical modeled data and application or modeled data of the similar application. - 3 is the crystal structure of the ruthenium Shaped ^=resistance, in this example, used to model the number of ray initiations for similar applications in mG, for each system from the light-sample structure, the sample can be the pattern on the workpiece. Or unpatterned The structure may include a wafer structure such as a film, a grating or a repeating structure, a two-dimensional coil, a 23093; a 201209371 structure, or a three-dimensional structure. The wire travel parameters may include the following f-position angles, light intensity The orientation and cross-section intensity distribution are white. The polarization state, the uniformity of the polarization state change, the uniformity of each sentence, the pitting point, the transmittance and the reflectivity, the intensity propagation unevenness of the line, and the amplification of the light are not The hooks of the shadows === The change of the uneven polarization state of the first light can be determined by, for example, optical ^, "Α,, strain birefringence (Fig. 7Α, 7Β): due to 6Α'6Β)

(圖謝9Α2、10Α)自雙折射與應變雙折射 數亦可是因為_透射率與反射糊1GA 光效應(圖11A、11B)所致。 )及先政射與改射 在步驟1715中,所選光束傳播參數為來自樣 的各絲欺。在_72〇巾,將各 且積^產生齡度。有_定絲強度的方法1 I文敎件在此时财賴人社 號’發明名稱「g贈ation toface f〇r ^弟7=(Fig. 9Α2, 10Α) The self-birefringence and strain birefringence can also be caused by the _transmittance and the reflective paste 1GA optical effect (Figs. 11A, 11B). And the first shot and the redirection. In step 1715, the selected beam propagation parameters are from each of the samples. In the _72 wipes, each will produce an age. There is a method of _ fixed silk strength 1 I textbook at this time Cai Lai people agency number "invention name" g gift ation toface f〇r ^ brother 7 =

system」,頒證日為2006年6月20日。在步驟+ ° 〇SY 疮溆低柩斗管旦、a丨认, 在步驟1725中,利用總強 在步驟mG,糊量_出信號、 具权準參數、輪廓擷取系統,操取樣本結構的-或多 ί·5:如上述,輪廓擷取系統可用迴歸、資料庫匹配或機 士 示利用光學量測工具腦與光線追蹤方法來判定樣 本輪廓參數之糸統1800的例示性方塊圖。利用光學量測工 商的規格及處理器1820中的校準器1824,校準光學制 1804,產生校準參數。_處理器獅與_光學量測⑽* 及應用所需之光學量測工具刪_定操作設定,產生光學 工具模型體。光學量測工具模型體包括照射光束的特徵化: 光線數量、絲行進參數、鮮錄等。有·綱量之結 繪不)的資訊1806從光學量測工具18〇4傳送至處理器182〇中的信System", the award date is June 20, 2006. In step + ° 〇 SY 溆 溆 low 柩 管 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , - or more ί·5: As described above, the contour capture system may use regression, database matching, or an illustrative block diagram of the 1800 system that uses the optical metrology tool brain and ray tracing methods to determine sample contour parameters. The optical system 1804 is calibrated using the specifications of the optical metrology manufacturer and the calibrator 1824 in the processor 1820 to generate calibration parameters. _ Processor lion and _ optical measurement (10) * and the optical measurement tools required for the application _ set the operation settings to produce the optical tool model body. The optical metrology tool model body includes the characterization of the illumination beam: the number of rays, the wire travel parameters, the fresh recording, and the like. The information 1806 from the optical measurement tool 18〇4 is transmitted from the optical measurement tool 18〇4 to the processor 182〇

24 S 201209371 號調整器獅。信號調整器刪使用光學量測工且膨盥 校準參數來賴_信雜換祕數輪雜取器184^ 後 量測輸出健刪。輪雜㈣可用迴歸模組1842、資3匹配 模組1844及/或機器學習系、统1846,以判定結構二 廓參數1832給處理器1820。處理器182 以 腦,以改變光學量測工具腦的可調整= 如貝訊的回饋貝料24 S 201209371 adjuster lion. The signal adjuster deletes the optical measurement and expands the calibration parameters to rely on the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The round-robin (4) may be used by the regression module 1842, the 3 matching module 1844 and/or the machine learning system 1846 to determine the structural norm parameter 1832 for the processor 1820. The processor 182 uses the brain to change the optical measurement tool's brain's adjustable = such as Beixun's feedback beaker

圖Η緣示將光線數量與光束行進參數同雜 I t構輪廓參數最佳化之方法的例示性流程圖觸。在, 數判定用之一或多個準破度目標。準確度目ί可包括 確錄(TMU)、信賴區_)、標準不確2目 _設為㈣或更低、ί/至標示’ 另一實施例中,準確度目標示TMU盘C1n或更低。在 CI設為90%或更高。在步驟·,^ 又為0.5或更低, 數量。如上述,可用一或多光線。擇光予里測工具模型的光線 f步驟1915 ’基於結構·定輪醇數 , 進參數。光束行進參數的選擇,可基於 二1光束仃 可選擇光束行進參數。若在;&疋旦否|要f設成可變或固定而言, 為固定值的影響是可忽略的光學行進參數設定 售商資料設成固定值。在g 值的’則將參數基於販 號’產生輸出量測信號。在步驟樣,結構的繞射信 資料,產生調整後麵輪出朽輸出量測信號與校準 類似光學量測工具的資=史貧料、販售商資料、或 構的輪靡模型同時最佳化。系、、先將先學置測工具模型與樣本結 在步驟1935,若法袪士、上九 a ,整光線數量、所選光束目標,在步驟1940 ,數’且重複進行調整後量測輪出二 25 201209371 型與輪廓模型的最佳化、比對步驟,直 偏振狀態。亦假設-或多個準確度目標奴在 ΐϋΓΓ或更尚。細輕後量顺丨錢躲細取i糞 ^或·有已知輪齡數之參考工作件所得的 ΐ二。參數的蘭與CI與所設定之〇.50 2更低: 爾數可調整包括偏振狀態i化^ 散射效應及/或漫射光效應。輪廓參數 ,艾叹為可變或固定的輪廓參數來調整 ,3改 〇.5〇或更低的細及90%或更高⑽。设上核序’直到達到 圖15綠示自動處理與設備控姻來 統的例示性方塊圖1950。在步驟1955,二廓參數之糸 信;可用光學量測工具取; ,里測裝置;k準麵、—或辨確度因 聰許在 JS i^o : ° t 設定。 、〇冓至^輪廊參數修改至少-製程參數或設備 统來判定、使用輪廊參數之系 iiti^ii00"^ 2000 應、、主音ίί,二|&在圖16情不為接續著第—製造_、2002,但 統2_中位於第一製造醜纖之前弟k團族篇可在糸 可用如對晶圓上所施加之光阻層_光及/或顯影, #與旦 >丨=2002執行。光學量測系統厕類似於圖1之 光干里系、、先40。在一例示性實施例中,光學量測系統厕包括The diagram illustrates an exemplary flow chart for the method of optimizing the number of rays and the beam travel parameters as well as the parameters of the hybrid configuration. In the number determination, one or more quasi-breakiness targets are used. Accuracy may include TMU, confidence zone _), standard uncertainty 2 _ set to (four) or lower, ί/ to indication' In another embodiment, the accuracy target indicates TMU disc C1n or lower. Set the CI to 90% or higher. In step ·, ^ is again 0.5 or lower, the number. As mentioned above, one or more rays can be used. Select the light to the light of the tool model f. Step 1915 ‘Based on the structure·the fixed number of alcohols, the parameters. The choice of beam travel parameters can be based on two 1 beam 仃 selectable beam travel parameters. If the setting is set to variable or fixed, the effect of the fixed value is negligible. The optical travel parameter setting is set to a fixed value. At the value of g, the parameter is based on the vendor's output measurement signal. In the step-by-step, the structure of the diffracted information, the adjustment of the rear wheel output measurement signal and the calibration of the optical measurement tool, the history of the poor material, the vending data, or the rim model Chemical. First, first learn the tool model and sample in step 1935, if the gentleman, the upper nine a, the total number of rays, the selected beam target, in step 1940, the number 'and repeat the adjustment after the measurement wheel Figure 2: Optimization of the 201209371 model and the contour model, comparison steps, and direct polarization. It is also assumed that - or multiple accuracy targets are slaves or more. After the fine and light, the amount of money will be taken to avoid the dung. ^ or · The reference work piece with the known number of rounds will be obtained. The blue and CI of the parameter are lower than the set 〇.50 2: the variability can be adjusted to include the polarization state, the scattering effect, and/or the diffuse light effect. Contour parameters, Ai sin is adjusted for variable or fixed contour parameters, 3 is changed to 〇5〇 or lower and 90% or higher (10). The kernel sequence is set up until an exemplary block diagram 1950 of Figure 15 Green Automatic Processing and Device Marriage is reached. In step 1955, the signal of the bi-parameter is used; the optical measuring tool can be used; the measuring device; the k-plane, or the degree of discrimination is set by JS i^o: ° t. , 〇冓 to ^ wheel corridor parameters modify at least - process parameters or equipment to determine, use the corridor parameters of the iiti^ii00" ^ 2000 should,, the vocal ίί, two | & in Figure 16 love is not connected - Manufacturing_, 2002, but before the first manufacturing ugly fiber, the k group can be used in the photoresist layer applied to the wafer _ light and / or development, #与旦>丨=2002 implementation. The optical measurement system toilet is similar to the light-drying system of Fig. 1, first 40. In an exemplary embodiment, the optical measurement system toilet includes

26 S 201209371 與處理112G1G。光學量駐具2_用以測量 ίϊ=ίϊ的繞射信號。處理器誦用以由光學量測工具所測 測’ί用信號調整器(圖13)調整,產生調整後量 ;再ί ’處理^測用mb對簡繼i輸出信號與 量測。,減繞射之判定,可用光線追縱的光學26 S 201209371 and processing 112G1G. The optical quantity station 2_ is used to measure the diffraction signal of ίϊ=ίϊ. The processor 诵 is used by the optical measuring tool to measure ' ί ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ , the reduction of the diffraction, the light that can be traced by light

括*一例示性實施例中,光學量測系統2_亦可包 -或多輪廓參數的複數個值。如2關J 右Γ到匹配的模擬繞射信號時,與資料庫 侧用於生 =曰光學置測系統2004判定之一或多輪廓參數的一或i 定便雇的一:匕 輪廓參數的-或多值狀之一或多 裏的-或多製程參數二製造團簇 團簇細2之前或之後處理晶圓。^:^團^=6 =二 系統2014。 之輸出的輪摩參數’訓練機器學習 雖然以上描述例示性實施例,但 他 簽或用於獨立之量測架設’自;對;圈 27 3 201209371 形式 因此,本發明不該受限於以上敘述及圖式中所載之特定 【圖式簡單說明】 圖1是架構圖’繪示-例示性實施例’其中光 用來判定半導體晶圓或基板上所形成結構的輪廓。頁劂糸統可 圖2根據本發明實施例續'示例示性光學量測系統。 圖3繪示先前技術光學量_統流糊,其 於光學量測工具與處理模組之間。 ,丨面权置 圖4緣示使用光線追蹤方法之光學量取具的例示 圖5A繪示使用有反射光學元件之光線追縱的架Θ 線可進入反射光學元件之入射面中,或在入射面之外進1。,、Τ元 圖5Β繪示以折射光學元件使用光線追蹤的架構圖,复 可進入折射光學元件的入射面,或在入射面之外進入。” 丁冗咪 圖6Α繪示架構圖’表示在牽涉到輸出光線截面放大_ 化之反射光學元件中使用光線追蹤。 圖6Β繪示架構圖’表示在牽涉到輸出光線截面放大或縮小變 化之以折射光學元件使用光線追蹤。 圖7Α繪示以光學元件使用光線追蹤之架構圖,表示輸出光線 中的應變雙折射。 圖7Β繪示光波前之雙軸示意的架構圖,包含非異常光線的電 場Εο及異常光線的電場Ee。 圖8繪示折射光學元件中使用光線追蹤的架構圖,表示輸出 光線的波長改變。 圖9A1、9A2繪示當光線傳播穿過折射光學元件時之偏振變 化的架構圖,而圖9B繪示當光線由反射光學元件反射時之偏振變 化的架構圖。 圖10A繪示薄膜層中光線折射與反射之光線追縱的架構圖。 圖10B繪示多重光線離開結構之光線追瞰的架構圖。 圖11A繪示以折射光學元件使用光線追蹤之架構圖,表示散 射與漫射光效應βIn an exemplary embodiment, the optical measurement system 2_ may also include a plurality of values of - or multiple profile parameters. For example, when 2 is closed to the right of the simulated diffracted signal, the data is used by the database side to determine one or more contour parameters of the one or more contour parameters. - or multi-valued one or more - or multi-process parameters 2 to fabricate the cluster cluster fine 2 before or after processing the wafer. ^:^ group ^=6 = two system 2014. The wheeling parameter of the output 'training machine learning', although the exemplary embodiment is described above, but it is used for independent measuring and erecting 'self; pair; circle 27 3 201209371 form, therefore, the invention should not be limited to the above description DETAILED DESCRIPTION OF THE DRAWINGS [FIG. 1] FIG. 1 is an architectural diagram 'illustrated - an exemplary embodiment' in which light is used to determine the contour of a structure formed on a semiconductor wafer or substrate. The page 2 can be continued as an exemplary optical measurement system in accordance with an embodiment of the present invention. Figure 3 illustrates a prior art optical quantity, which is between the optical measurement tool and the processing module. Figure 5A shows an example of an optical measuring device using a ray tracing method. Figure 5A shows that the ray line using the ray of the reflecting optical element can enter the incident surface of the reflecting optical element, or at the incident surface. Into the face into the 1. Figure 5Β shows an architectural diagram using ray tracing with a refracting optical element that re-enters the entrance face of the refracting optic or enters beyond the entrance face. "Ding Xiaomi's diagram 6' shows the architecture diagram' indicates the use of ray tracing in a reflective optical element that involves the amplification of the output ray section. Figure 6Β depicts the architecture diagram' indicating the enlargement or reduction of the output ray section. The refracting optics use ray tracing. Figure 7Α shows the architectural diagram of ray tracing using optical components, showing the strain birefringence in the output ray. Figure 7Β shows the two-axis schematic architecture of the optical wavefront, including the electric field of non-abnormal light. Εο and the electric field Ee of the extraordinary light. Figure 8 is a block diagram showing the use of ray tracing in the refracting optical element, showing the change in the wavelength of the output ray. Figures 9A1, 9A2 show the structure of the polarization change as the light propagates through the refracting optical element. Figure 9B is a block diagram showing the change of polarization when the light is reflected by the reflective optical element. Figure 10A is a block diagram showing the ray refraction and reflection of the light in the film layer. Figure 10B shows the multiple light leaving structure. Schematic diagram of ray tracing. Figure 11A shows an architectural diagram using ray tracing with refractive optics to show scattering and diffuse light effects.

28 S 201209371 ’表示散 圖11B繪示以反射光學元件使用光線追縱之架構圖 射與沒射光效應。.... ° 或 争夕示例雜5程圖,表示用以擷取樣本結構輪扁夕 更夕輪廓參數而判定量測輸出信號的方法。 郅之· ,I3繪稍雜魏圖,表_絲 6 法測1、判定樣本輪廓參數的系統。 /、興先線追蹤方 ^14繪示例示性流程圖,表示與光學 數同時最佳化光束行進參數及光線數量的…、、”充的''去構輪廓參 圖15繪示例示性流程圖,表示用於插。 定、使用輪廓參數的方法。 、種處理與設備控制之列 圖16繪示例示性方塊圖,表示用於 定、.使用輪廓參數的方法。 、種處理與設備控制之判 【主要元件符號說明】 40光學量測系統 41量測光束源 43量測照射光束 45入射角 47晶圓/基板 49繞射偵測光束 51量測光束接收器 53處理器· 57繞射信號 59樣本結構 60模擬器 100光學量測系統 101晶圓 102平台 103平台基部 104晶圓對準感測器 29 201209371 105燈次系統 106光學輸出 110 照射器次系統 111光學輸出 115選擇器次系統 116信號 120 光束產生器次系統 121輸出 125 參照次系統 126參照輸出 130 第一可選反射次系統 131第一路徑 132 第二路徑 135低角度聚焦次系統 136輸出 140 第一反射次系統 141輸出 145高角度聚焦次系統 146輸出 150 第二反射次系統 151輸出 152輸出 155 高角度收集次系統 156輸出 160 第二可選反射次系統 161輸出 162輸出 165低角度收集次系統 166輸出 170分析器次系統28 S 201209371 ′” scatter Figure 11B illustrates the architectural and non-emissive effects of the ray-tracing using reflective optical elements. .... ° or 争 示例 杂 杂 杂 杂 杂 , , , , , 杂 示例 示例 示例 示例 杂 杂 杂 杂 杂 杂 示例 杂 示例 杂 杂 杂 。 。 。 。 。郅之· , I3 draw slightly Wei Wei, table _ silk 6 method 1, determine the sample contour parameters of the system. /, Xingxian line tracking party ^14 draws an exemplary flow chart, showing the optimization of the beam travel parameters and the number of rays simultaneously with the optical number..., "charged" deconstructed contours Figure 15 depicts an exemplary flow Figure, shows the method used to insert and use the contour parameters. Columns of processing and equipment control Figure 16 shows an exemplary block diagram showing the method used to define and use the contour parameters. Judgment [Major component symbol description] 40 optical measurement system 41 measurement beam source 43 measurement illumination beam 45 incident angle 47 wafer / substrate 49 diffraction detection beam 51 measurement beam receiver 53 processor · 57 diffraction Signal 59 Sample Structure 60 Simulator 100 Optical Measurement System 101 Wafer 102 Platform 103 Platform Base 104 Wafer Alignment Sensor 29 201209371 105 Light System 106 Optical Output 110 Illuminator Sub System 111 Optical Output 115 Selector Sub System 116 signal 120 beam generator subsystem 121 output 125 reference subsystem 126 reference output 130 first optional reflection subsystem 131 first path 132 second path 135 low angle focus subsystem 136 output 140 A reflection subsystem 141 output 145 high angle focus subsystem 146 output 150 second reflection subsystem 151 output 152 output 155 high angle collection subsystem 156 output 160 second optional reflection subsystem 161 output 162 output 165 low angle collection subsystem 166 output 170 analyzer subsystem

30 S 201209371 171輸出 175量測次系統 180相機次系統 182顯像次系統 184照射次系統 186輸出 190自動聚焦次系統 195 次系統 304光學量測工具 308通用介面 312處理模組 400光學量測工具 404 光源 408第一照射光線 416第二照射光線 418 中心光、線 420 切面 422 光線 424輸出光線 428 光線 426照射光學元件 430聚焦元件 432輸出光線 436輸出光線 440輸出光線 444運動控制系統 452 工作件 454結構 456偵測光線 458偵測光線 201209371 460收集光學元件 462偵測光線 464彳貞測光線 466收集光學元件 468 光線 470輸出光線 472 切面 476偵測光線 478輸出光線 480偵測光線 484偵測器 490 照射部分 494偵測部分 500 光線追蹤 500’架構圖 508’、512’輸入光線 510、512 輸入光線 514、516 輸出光線 520 > 522 輸入光線 520’、524’輸入光線 524、526 輸出光線 528’、532’輸出光線 530、532 輸入光線 534、536 輸出光線 536’、540’輸出光線 550反射光學元件 560 光軸 570’反射光學元件/鏡子 574 入射面 580 焦點30 S 201209371 171 Output 175 Measurement System 180 Camera Sub System 182 Development Sub System 184 Illumination Sub System 186 Output 190 Auto Focus Sub System 195 System 304 Optical Measurement Tool 308 Universal Interface 312 Processing Module 400 Optical Measurement Tool 404 light source 408 first illumination ray 416 second illumination ray 418 center light, line 420 slice 422 light 424 output light 428 light 426 illuminate optical element 430 focus element 432 output light 436 output light 440 output light 444 motion control system 452 work piece 454 Structure 456 Detecting Light 458 Detecting Light 201209371 460 Collecting Optical Element 462 Detecting Light 464 Detecting Light 466 Collecting Optical Element 468 Light 470 Output Light 472 Cut Surface 476 Detecting Light 478 Output Light 480 Detecting Light 484 Detector 490 Illumination portion 494 detection portion 500 ray tracing 500' architecture diagram 508', 512' input ray 510, 512 input ray 514, 516 output ray 520 > 522 input ray 520', 524 'input ray 524, 526 output ray 528' 532' output light 530, 532 input light 534, 536 output light 536' 540 '550 output light reflective optical element 560 axis 570' of the reflective optical element / focus mirror 574 incident surface 580

S 32 201209371 584’光軸 588’焦點 600 光線追蹤 604 主光線 608輸入光線 612輸入光線 616 光軸 650 點 652 焦點 656 點 660 第一主面 664輸出光線 668輸出光線 672射出光線 676 焦點 680折射光學元件 690 第二主面 800架構圖 804折射光學元件 808、812輸入光線 816、822折射光線 820 光軸 824 第二主面 830、834折射光線 840 聚焦點 844 第一主面 850、854輸入光線 900架構圖 904輸入光線 912 法線 201209371 924折射光線 928雙重折射材料 934非異常輸出光線 938異常輸出光線 942 光轴 950架構圖 954 第一層 958單色光束 962 第二層 964 光線 968 物件 1000架構圖 1000’架構圖 1008 光學元件 1012輸出光線 1020輸出光線 1024 焦點 1028輸出光線 1040輸入光線 1044輸入光線 1048 主光線 1050 入射面 1200架構圖 1300架構圖 1302輸入光線 1304輸出光線 1306第二反射輸出光線 1308 第三反射輸出光線 1314第一折射光線 1316反射光線 201209371 1318光線 1320 光線 1322 光線· 1326折射光線 1328 光線 1330光線 1400架構圖 1402、1404、1406 輸入光線 1408、1410、1412 輸出光線 1450架構圖 1452、1454、1456、1458 輸入光線 1460、1462、1464、1466 輸出光線 1500架構圖 1504折射光學元件 1508輸出光線 1510反射元件 1512輸出光線 1516偵測器 1520 光轴 1524輸出光線 1528輸入光線 1530非偏振 1532輸入光線 1536輸出光線 1538輸出光線 1540輸入光線 1542橢圓偏振 1544雜質 1548 表面缺陷 1550折射光線 35 201209371 1552折射光線 1554折射光線. 1556折射光線 1560輸入光線 1564輸入光線 1568 線性偏振 1580架構圖 1582輸入光線 1584輸出光線 1600架構圖 1604反射光學元件 1608輸入光線 1612輸入光線 1616第一輸出光線 1620第一輸出光線 1624第二輸出光線 1628第二輸出光線 1630元件 1632漫射光線 1636漫射光線 1640偵測器 1650缺陷 1654腔隙 1700流程圖 1705、1710、1715、1720、1725、1730 步驟 1800 系統 1804光學量測工具 1806 資訊 1808回饋資料 1820處理器S 32 201209371 584' optical axis 588' focus 600 ray tracing 604 main ray 608 input ray 612 input ray 616 optical axis 650 point 652 focus 656 point 660 first main surface 664 output light 668 output light 672 emit light 676 focus 680 refractive optical Element 690 Second Main Face 800 Architecture 804 Refracting Optical Element 808, 812 Input Light 816, 822 Refracted Light 820 Optical Axis 824 Second Main Face 830, 834 Refracted Light 840 Focus Point 844 First Main Face 850, 854 Input Light 900 Architecture Figure 904 Input Ray 912 Normal 201209371 924 Refracted Light 928 Double Refractive Material 934 Non-Exceptional Output Light 938 Abnormal Output Light 942 Optical Axis 950 Architecture Figure 954 First Layer 958 Monochromatic Beam 962 Second Layer 964 Light 968 Object 1000 Architecture 1000' architecture diagram 1008 optical component 1012 output light 1020 output light 1024 focus 1028 output light 1040 input light 1044 input light 1048 main light 1050 incident surface 1200 architecture diagram 1300 architecture diagram 1302 input ray 1304 output ray 1306 second reflection output ray 1308 Three-reflected output light 1314 first refracted light 1316 reflects light 201209371 1318 ray 1320 ray 1322 ray · 1326 refracted light 1328 ray 1330 ray 1400 architecture diagram 1402, 1404, 1406 input ray 1408, 1410, 1412 output ray 1450 architecture diagram 1452, 1454, 1456, 1458 input ray 1460, 1462, 1464, 1466 Output Light 1500 Architecture Figure 1504 Refracting Optics 1508 Output Light 1510 Reflecting Element 1512 Output Light 1516 Detector 1520 Optical Axis 1524 Output Light 1528 Input Light 1530 Unpolarized 1532 Input Light 1536 Output Light 1538 Output Light 1540 Input Light 1542 Elliptical Polarization 1544 impurity 1548 surface defect 1550 refracted light 35 201209371 1552 refracted light 1554 refracted light. 1556 refracted light 1560 input light 1564 input light 1568 linear polarization 1580 architecture Figure 1582 input light 1584 output light 1600 architecture Figure 1604 reflective optics 1608 input ray 1612 input Light 1616 first output light 1620 first output light 1624 second output light 1628 second output light 1630 element 1632 diffused light 1636 diffused light 1640 detector 1650 defect 1654 cavity 1700 flow chart 1705, 1710, 1715, 1720 1725,1730 step 1800 the optical metrology tool system 1804 1806 1808 reserved data information processor 1820

S 36 201209371 1822光學量測工具模型 1824校準器 1826信號調整器 1830調整後量測輸出信號 1832輪廓參數 1840輪廓擷取器 1842 迴歸模組 1844 資料庫匹配模組 1846機器學習系統 1900流程圖 1905、1910、1915、1920、1925、1930、1935、1940 步驟 1950 方塊圖 1955、1960、1965、1970 步驟 2000系統 2100 方塊圖 2002第一製造團簇 2004光學量測系統 2006第二製造團簇 2008光學量測工具 2010處理器 2012 資料庫 2014機器學習系統 2016量測處理器 37S 36 201209371 1822 optical measurement tool model 1824 calibrator 1826 signal adjuster 1830 adjusted measurement output signal 1832 contour parameter 1840 contour extractor 1842 regression module 1844 database matching module 1846 machine learning system 1900 flow chart 1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940 Step 1950 Block Diagram 1955, 1960, 1965, 1970 Step 2000 System 2100 Block Diagram 2002 First Manufacturing Cluster 2004 Optical Measurement System 2006 Second Manufacturing Cluster 2008 Optical Volume Testing Tools 2010 Processor 2012 Database 2014 Machine Learning System 2016 Measuring Processor 37

Claims (1)

201209371 七、申請專利範圍: ^ ί紅作件上樣本結構之财卩參數的方 ^^予]糸統包括光學量測工具、光學量測模型、輪廓擷 取次异法,該光學量測模型包括該光學量測工且 盥兮媸二 iim,該輪廓模型具有樣本輪廓參;,該光以ί ^有m射先束、光學元件、驗光束、偵·,該方法 量,量啦具模型之該照射光束的光線數 (b)選擇該絲量測卫具模型的光束行進表數; (C)使用處理器: ’ 所選紅婦本結構之 各光本結構魏伽11之光線數量中 振;㈣計算在該侧器上該繞射光束各光線的強度與偏 總強對該繞射光束的截面積分,計算該繞射光束的 (c5)從該總強度與偏振計算量測輸出作號. 社用該量測輪出信號、該光學量^具的校準資 料、该輪靡擷取演算法,擷取該一或多輪靡參數。的資 11 ^ 統欺.件上樣本 生模==號資料庫匹配或機器學習系統,執行模擬計算以產 本 丨.如申請翻範㈣1項之使用光學量嶋統判定工作件上樣 S 38 201209371 Μ冓之輪廓參數的方法,其巾該光學量測卫具模型的光線數 .以,一或多光線,該照射光束包含一或多照射光束及/或其中該 測器包含二或更多偵測器,且該工作件是晶圓或基板。、 4. 如申請專利範圍第2項之使肢學量_統敬卫 結構之輪廓參數的方法,其巾該絲行進參數包括以下一或更多 ΐ丄位角、人射面、光線的定向、光束強度、截面強 又刀布的句勻性、偏振狀態、偏振狀態改變的均勻性、 性與反射效應、光散射效應及/或漫射光效應。 、 5. 如申請專利範圍第4項之個絲量測系關定工作件上樣本 結構之輪廓參數的方法,其巾各光線的偏振狀態變化可因光線 ίίίΐίϊ所進入的平面而有不同,且其中偏振狀態變化的差 異被包括在繞射信號模楗計算中。 項之制絲制祕般功件上樣本 甘占其中各光線的光束強度在穿過各光學元件時可以不同,且 八光數強度的差異被包括在繞射信號模擬計算中;及/或 ^ ’各光_光束強度分布在穿過各光學元件的光線截面 模1其中光束強度分布的差異被包括在繞射信號 ϋ申iif細第6項之制絲4魏_定工餅上樣本 、^者,數的方法’其巾該光束不均勾定是因為以下一或更 ⑻來自該光源之光的不均勻傳遞; (b)穿過該光學元件之光的不均勻傳播; (C)該照射光束與該繞射光束不均勻放大; 39 201209371 8·如申請專利範圍第5項之使用光學量測系統判定工作件上樣本 結構之輪廓參數的方法,其中光線的偏振狀態變化在光線截面上 可以不同,且其中該偏振狀態變化的差異被包括在繞射信號模擬 計算中。 ' 9.如申請專利範圍第5項之使用光學量測系統判定工作件上樣本 結構之輪廓參數的方法,其中光線的偏振狀態變化可由以下所致: (a) 因包括光學元件之應變雙折射及/或瑕疵之缺陷及瑕疲 致之跨光線截面的不均勻偏振狀態變化; (b) 因由光學元件改變之入射面所致之跨光束截面的不 偏振狀態變化;及/或 一 (c) 因光學元件的瑕庇或缺陷所致之光散射。 如申明專利範圍第2項之使用光學量測系統判定工作件上 本結構之輪廓參數的方法: ’ 波長3質^概計算來產生驗齡錢假設絲屬性不因 4筲其細指定用於該絲4測王具的光學設定及幾何光學 汁异各光線之包括反射角、繞射角、繞射角的幾何參數; 中1 ^線的偏振參數以_(丨嶋)矩陣或 陣表不,且為所選光線之各光線與各波長儲存。 ====項之使_雜_工作件上樣 有不=射=====細二或更多個具 弁/ί^ί1轉自該光學量測工具的光學設定與幾何參數及對 先在賴與物理光學中之行為的考量,計算各光線的偏振3對 201209371 狀賴辟制械狀工作件上樣 』細絲雜具所得之校 雜其Ι^ίΐϊ參數包括光學元件的位置、光學元件的幾何 形狀先干兀件中存在的不均勻性或缺陷;及/或 其中,校準參數包括應變雙折射、散射及/或漫射光。 以-種利用光學量測系統判定工作件上樣本結 土統’該光學量測系統錄佳化來達成 I =:數= 樣本結構具有輪廓參數,·定祕包含、辦確度目“’該 數的=測萼:=該樣本結構之-或多個輪赫 誃光職_雜本結構射信號, 照射光束、光學元件、繞射光束、 光學量測工具模型,用以利用 :選光線數量與所選光束行進參數,將該=量;= 、,信號調整器,用以利用該光學量測工具模型及該光學量 結構:、該樣本 或多個輪靡參數; 操取模組’判定該樣本結構的一 化,輪廓模型同時行最佳 模擬g。’該輪細取器的一或多個榻取且包括繞射信號 201209371 申請專·圍第13項之·光學制定工作件上揭 本結構之輪廓參數的系統: 』心邛仵上樣 其中,該所選光線數量為一或多光線; 器學iLSS11包括迴歸模組、資料庫匹配模組及/或機 構 其中,該樣本結構是半導體光柵或晶圓或基板上的重複結 15. 如申料纖圍第13項之·光學制祕欺工 j構之輪廓參數齡統,其中,該光束行進參數包括以下一^ H二2、方位角、人射面、光線的定向、強度、截面強 又刀布的均勻性、偏振狀態、偏振狀態改變的均句性、 性與反射效應、光散射效應及/或漫射光效應。 、 16. 如申明專利範圍第13項之利用光學量丨職、统判定工作件 本結構之輪廓參數的系統,其巾,該信號調整器更用 線穿過該光學制工具之各光學元件而進人的不同平面所產生之 所選光線數量中各光線的偏振狀態變化差異。 17. 如申請專補圍第13項之·光學量測祕狀 本結構之輪廓參數的系統: 7 其中,該信號調整器更用以考量穿過各光學元件之所 數量中各光線跨光線截面的光束強度分布差異,且其中 分布差異被包括在該繞射信號模擬計算中; 又 其中,該信號調整器更用以考量所選光線數量中各光線跨光 去偏ί差異’ ^其中去偏振差異被包括在該繞射信號模 獄5卞异1f,及/或 其中,齡號調整器更用以考量所選光線數量中各光線因以 下因素造成的去偏振: (a)因包括光學元件之應變雙折射及/或瑕疲之缺陷及瑕症戶 致之跨光線截面的不均勻偏振狀態變化; 42 S 201209371 偏振狀態變化;及f改&之人射面所致之跨光城面的不均勻 (C)因光學元件的喊或觀所致之級射。 光學量測作件上樣 經過二t f驗器更用以考量所選光線數量中各光線傳播 咕不同折射率的材料層時之波長變化,且其中Ϊ 波長艾化被ο括在該繞射信號模擬計算中; - ΐη該信號調整器更用以考量包括入射角、方位角、縫射 何參 ί及5Γ光=數+’Λ利用指定咖 數;ί/ΐ先予汁十鼻出該所選光線數量中各光線的幾 卜隹ΪΓ該錢織11更肋考量彻該光學量測工具的所得 V,數及所得祕設計參數㈣定出#幾何參數及偏振參數。 絲制纽狀工作件上樣 折射=====卿撤考嶋應變雙 20 種巧定工作件上樣本結構之輪廊參數的 判定系統包含: 系統^ Ϊί^量測系統係最佳化來達成—或更多準確ϋΐ步該 光學制工減型,肋湘所選樣數量及所選光 樣本結具模型化,5亥先學!測工具用以測量離開該 號,IS量量測工具模型與該所測繞射信 43 201209371 數的一或多準確度目標。 21.如申請專利範圍帛2〇項之利用光學量測系統判定工作件上 統,其#該樣本結構是半賴光拇或_ 〒.气申叫專利範圍第2。項之利用光學量測系統判定工作件 本結構之輪廓參數的系統,其中光束行進參數包括以下一或更多 、方位角、人射面、光線的定向、強度、截面強度分 申^概圍第2G項之彻光學量㈣關紅作件上樣 i:: 參數的系統,其中該—或更多個準魏目標包括ί 性信賴區間、標準不確定性、合併標準不確定性及/ ===項之概彻幽紅作件上樣 機器ί以=摘=包含迴歸模組、資料庫匹配模組及/或 量^行更肋將該光學量測工卿的光線數 =以=包=,具、光學量測工具』忿本 該姻參_取演算法,該輪賴型具有麵參數, 目標; 為該樣本結_麵參數攸設定-錢多個準確度 S 201209371 偵測器; .......一 +元件、繞射光束、 產生 量測Si學量測工具測量離開該樣本結構的燒射信號 =里測輸出錢與校準資料,判定調整後量測輸 旦利用该調整後量測輸出信號與該參數擷取淹算法 罝測工具模型與該輪廓模型最佳化; 先予 若達成該一或更多準確度目標,調整 選光束行進參數及/或該輪廓參數,並 、該所 與該參數·演算法,錢判定該 5S具模型與該輪廓模型最佳化,直到達成該;更多個1 學娜關㈣件上樣 驟更= 其㈣_織㈣職信號的步 相2=2;具的光源至該樣本顺^ 束行ϊίί雜本結構至該顧11之所選光翁量巾各光線的光 =該偵靡上繞射光束個光線的魏偏振; 振;及 尤不戮面’產生該繞射光束的總強度與偏 從該總強度與偏振計算量測輪出信號。 2本奴细辟制綠敏讀件上樣 角、:人射角、方位 难度、截面強度分布的均勻性、偏振 45 201209371 狀癌、偏振狀悲改變的约白祕 ^ 效應及/或㈣級應;j 更號擷=法來擷取該一或 習系統,執行模擬計算以=料庫匹配及/或機器學 項之利用綱測系統判定工作件上樣 狀離ϊυϊΓϊΐ後量測輪出信號的步驟考量各光線的偏振 ==依先線穿過該光學量測工具的各光學酬^ 過各信號考量各光線的光束強度分布在穿 在光ί:面的步驟考量光線的去偏振 號模擬計算中;不门的且其中去偏振差異被包括在繞射信 可以it因輪出信號的步驟考量光線的去偏振 成’且其 ίί;ίί^2ίί^ 項之彻絲_峨增上樣 該JL·以以驟::,指定用於 反射角、綠f林光料算包括 其中,判疋該調整後量測輪出信號的步驟考量利用該光學量 S 46 201209371 ί 11所滅準錄及所得料錄,判找何參數及偏振參 射、心·纟_咖變雙折 申^專/巧第251如—學量__紅作件上揭 本結構之輪廓參數的綠,其巾,該―或 =上樣 量測不確定性、信賴區間、標準不碑 人 ς ^包括總 延伸不確定性及/或總量測不確定性。 口不、’不確定性、 八、圖式: 47201209371 VII. Patent application scope: ^ ί 作 作 上 上 上 上 上 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括The optical measuring tool and the second iim, the contour model has a sample contour parameter; the light has a beam first beam, an optical element, a beam inspection, a detection method, the method quantity, and a volume model The number of rays of the illumination beam (b) selects the number of beam travel tables of the wire measurement aid model; (C) uses the processor: 'The selected number of light-structures of the red-haired woman-shaped structure Wei Jia 11 (4) calculating the intensity of each of the diffracted beams and the total intensity of the diffracted beam on the side device, and calculating the cross-section of the diffracted beam, and calculating the (c5) of the diffracted beam from the total intensity and the polarization calculation output. The utility uses the measured wheeling signal, the calibration data of the optical quantity, and the rounding algorithm to retrieve the one or more rim parameters. The capital of 11 ^ system bullying. On the sample model == number database matching or machine learning system, perform simulation calculations to produce the original. If you apply for the model (4), use the optical quantity system to determine the workpiece loading S 38 201209371 A method for contouring a parameter, the number of rays of the optical measuring fixture model, the one or more rays, the illumination beam comprising one or more illumination beams and/or wherein the detector comprises two or more a detector, and the workpiece is a wafer or a substrate. 4. The method of applying the second aspect of the patent scope to the contour parameter of the structure, the wire travel parameters including one or more of the following corners, the human face, and the orientation of the light. , beam intensity, strong cross-section and sentence uniformity of the knife cloth, polarization state, uniformity of polarization state change, sex and reflection effects, light scattering effects and/or diffused light effects. 5. If the wire measurement system of the fourth application of the patent scope determines the profile parameters of the sample structure on the workpiece, the polarization state of each light of the towel may vary depending on the plane into which the light is entered, and The difference in the change in polarization state is included in the calculation of the diffracted signal modulus. The beam intensity of the sample in which the sample is taken is different when passing through the optical elements, and the difference in the intensity of the eight light numbers is included in the simulation calculation of the diffraction signal; and/or ^ 'Each light_beam intensity is distributed in the cross-section mode 1 of the light passing through each optical element. The difference in beam intensity distribution is included in the diffraction signal, and the sample is made on the wire 4 of the diffraction signal. The method of the number 'the towel is unevenly defined because of the following one or (8) uneven transmission of light from the source; (b) uneven propagation of light passing through the optical element; (C) Irradiation beam and the diffracted beam are not uniformly magnified; 39 201209371 8 · A method for determining a profile parameter of a sample structure on a workpiece using an optical measurement system according to claim 5, wherein the polarization state of the light changes over the ray section The difference can be different, and the difference in the polarization state change is included in the diffraction signal simulation calculation. 9. A method for determining the profile parameters of a sample structure on a workpiece using an optical metrology system according to item 5 of the patent application, wherein the polarization state change of the light can be caused by: (a) strain birefringence due to inclusion of the optical element And/or flaws in the ridge and the uneven polarization state change across the ray section; (b) the unpolarized state change of the cross-beam section due to the incident surface changed by the optical element; and/or one (c) Light scattering due to stagnation or defects of optical components. For example, the method for determining the contour parameters of the structure on the workpiece using the optical measurement system in the second paragraph of the patent scope: 'wavelength 3 quality calculation to generate the age-of-the-money silk attribute is not specified for The optical setting of the silk 4 measuring device and the geometrical parameters of the geometrical optical juice including the reflection angle, the diffraction angle, and the diffraction angle; the polarization parameter of the 1 line is in the _(丨嶋) matrix or the array is not, It is stored for each light and wavelength of the selected light. ====Items _Miscellaneous _ Workpiece loading does not = Shooting ===== Fine two or more 弁 / ί^ί1 Transfer from the optical setting and geometric parameters of the optical measuring tool and the first In the consideration of the behavior of Lai and physical optics, calculate the polarization of each light. 3 Pairs of 201209371 Shaped mechanical parts are loaded with the results of the filaments. The parameters include the position of the optical components, optics. The geometry of the component first dissipates the inhomogeneities or defects present in the component; and/or wherein the calibration parameters include strain birefringence, scattering, and/or diffuse light. Using the optical measurement system to determine the sample of the workpiece on the workpiece, the optical measurement system is recorded to achieve I =: number = the sample structure has a contour parameter, and the definition of the inclusion is determined by the number " = 萼 萼: = the sample structure - or a plurality of 誃 誃 誃 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a selected beam travel parameter, the = amount; =, a signal adjuster for utilizing the optical metrology tool model and the optical quantity structure: the sample or the plurality of rim parameters; the operation module 'determines the The sample structure is optimized, and the contour model simultaneously performs the best simulation g. 'One or more of the pulleys of the wheel picker and includes the diffracted signal 201209371 Apply for the special 13th item · Optical development work piece The system of contour parameters of the structure: ”The heart is loaded, wherein the selected number of rays is one or more rays; the instrumental iLSS11 includes a regression module, a database matching module and/or a mechanism, wherein the sample structure is a semiconductor Grating or crystal Or a repeating knot on the substrate. 15. For example, the contour parameter of the optical system is the same as the contour parameter of the optical system, wherein the beam travel parameters include the following: 2, 2, azimuth, and human shooting. Orientation, intensity, section strength and knife uniformity, polarization state, uniformity of polarization state change, sex and reflection effects, light scattering effect and/or diffused light effect. Item 13 of the system for utilizing optical quantity to determine the profile parameter of the structure of the workpiece, the towel adjuster is further produced by using different optical lines of the optical tool to enter different planes of the optical tool. The difference in the polarization state of each light in the selected number of rays. 17. For the system of applying the sub-paragraph 13 of the optical measurement secret profile of the structure: 7 where the signal regulator is used to consider a difference in beam intensity distribution across a ray section of each of the plurality of optical elements, and wherein a difference in distribution is included in the simulation calculation of the diffracted signal; wherein the signal adjuster is further used The amount of light in each of the selected rays is different from the light's deviation. ^ Where the depolarization difference is included in the diffraction signal, the difference is 1f, and/or the age adjuster is used to consider the selected light. The depolarization of each light in the quantity due to: (a) the variation of the strain birefringence and/or fatigue of the optical element and the variation of the polarization state of the cross-ray section caused by the sputum; 42 S 201209371 The change of state; and the unevenness of the trans-lighted surface caused by the surface of the person who changed the & (C) is caused by the shouting or observation of the optical component. The optical measurement is loaded by the two-dimensional detector. Further, it is used to consider the wavelength variation when the light of each selected light propagates through a different refractive index material layer, and wherein Ϊ wavelength Aihua is included in the simulation calculation of the diffraction signal; - ΐη the signal adjuster is used more Considering the angle of incidence, the azimuth angle, the slitting and the number of light, the number of the light, the number of light, the number of light, the number of light, the number of light, the number of light, the number of light Qian Zhi 11 is more ribbed to take the proceeds of the optical measurement tool V, number and the secret design parameters (4) determine the #geometry parameters and polarization parameters. Wire-shaped button-shaped work piece refraction =====Qing withdrawal test 嶋 strain double 20 kinds of work pieces on the sample structure of the wheel corridor parameters of the system includes: System ^ Ϊ ί ^ measurement system is optimized Achieved - or more accurate pace of the optical workmanship reduction, the number of selected samples and the selected light sample formation model, 5 Hai learn! The measuring tool is used to measure one or more accuracy targets of the number of the measuring instrument leaving the number, the IS measuring tool and the measured diffraction signal. 21. If the application of the optical measurement system determines the top of the work piece, the sample structure is the second part of the patent range. A system for determining a profile parameter of a workpiece by using an optical measurement system, wherein the beam travel parameters include one or more of the following, azimuth, human face, direction of light, intensity, and section strength. The optical quantity of the 2G term (4) The system of loading the i:: parameter, where the – or more quasi-Wei goals include the ί confidence interval, the standard uncertainty, the combined standard uncertainty, and / == = Item of the general 幽 幽 作 作 作 上 ί = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = , with optical measurement tools 忿 该 该 该 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ... a + component, a diffracted beam, a measuring Si measuring tool to measure the burning signal leaving the sample structure = the measured output money and calibration data, determine the adjusted measurement and use the adjustment Post-measurement output signal and the parameter drowning algorithm Optimizing the contour model; first, if the one or more accuracy targets are achieved, adjusting the selected beam travel parameters and/or the contour parameters, and the parameter and the algorithm, the money determines the 5S model and The contour model is optimized until it is reached; more 1s are closed (four) and the step is 2 = 2 (the _ woven (four) position signal step 2 = 2; with the light source to the sample smooth line ϊ ί ί The light of each of the rays of the hybrid structure to the selected light of the Gu 11 is the Wei polarization of the light of the diffracted beam on the detective; the vibration; and especially the surface of the lens produces the total intensity and deviation of the diffracted beam The signal is measured from the total intensity and polarization calculation. 2 The slave's fine-grained green-sensitive readings are loaded with angles: man's angle of shooting, azimuth difficulty, uniformity of cross-sectional intensity distribution, polarization 45 201209371, cancerous, polarization-stricken changes, and/or (four) Should be; j is more 撷 = method to take the one or the system, perform simulation calculation = = library matching and / or machine engineering use of the system to determine the workpiece after the sample is off the measurement round signal The steps consider the polarization of each light == according to the first line through the optical measurement tool, each optical compensation, each signal considers the beam intensity distribution of each light in the step of wearing the light: the depolarization number of the light In the calculation; the difference between the depolarization and the depolarization difference is included in the diffraction signal. The depolarization of the light is considered to be due to the step of turning out the signal and its ίί; ίί^2 ίί^ JL·以骤::, specifies the reflection angle, the green f forest light material calculation includes, and the step of determining the adjusted measurement wheel output signal is determined by using the optical quantity S 46 201209371 ί 11 The resulting records, what parameters and polarization are determined Shoot, heart, 纟 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , the confidence interval, the standard is not a monument ς ^ including total extension uncertainty and / or total measurement uncertainty. No, 'uncertainty, eight, schema: 47
TW100110185A 2010-03-31 2011-03-24 Method and system for optical metrology optimization using ray tracing TW201209371A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/752,080 US20110246141A1 (en) 2010-03-31 2010-03-31 Method of optical metrology optimization using ray tracing
US12/752,637 US8289527B2 (en) 2010-04-01 2010-04-01 Optimization of ray tracing and beam propagation parameters

Publications (1)

Publication Number Publication Date
TW201209371A true TW201209371A (en) 2012-03-01

Family

ID=46763575

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100110185A TW201209371A (en) 2010-03-31 2011-03-24 Method and system for optical metrology optimization using ray tracing

Country Status (1)

Country Link
TW (1) TW201209371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506250B (en) * 2013-01-14 2015-11-01 Prec Machinery Res & Dev Ct Angle detection method of angle encoder
CN112384749A (en) * 2020-03-13 2021-02-19 长江存储科技有限责任公司 System and method for semiconductor chip hole geometry metrology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506250B (en) * 2013-01-14 2015-11-01 Prec Machinery Res & Dev Ct Angle detection method of angle encoder
CN112384749A (en) * 2020-03-13 2021-02-19 长江存储科技有限责任公司 System and method for semiconductor chip hole geometry metrology
US11674909B2 (en) 2020-03-13 2023-06-13 Yangtze Memory Technologies Co., Ltd. Systems and methods for semiconductor chip hole geometry metrology

Similar Documents

Publication Publication Date Title
US8289527B2 (en) Optimization of ray tracing and beam propagation parameters
CN105593973B (en) For determining the method and apparatus focused
CN105612601B (en) Method and apparatus for patterned wafers characterization
US20110246141A1 (en) Method of optical metrology optimization using ray tracing
US9103664B2 (en) Automated process control using an adjusted metrology output signal
TWI582380B (en) Method of optimizing an optical parametric model for structural analysis using optical critical dimension (ocd) metrology, nontransitory machine-accessible storage medium, and system to generate a simulated diffraction signal to determine process paramet
US20110246400A1 (en) System for optical metrology optimization using ray tracing
US7525673B2 (en) Optimizing selected variables of an optical metrology system
US20080009081A1 (en) Managing and using metrology data for process and equipment control
TWI685720B (en) Metrology method for a lithographic apparatus
US20080059141A1 (en) Method and system for measuring patterned structures
TW201543003A (en) Scatterometry-based imaging and critical dimension metrology
CN107003114A (en) Spectrum beam profile is measured
TW200821571A (en) Multiple measurement techniques including focused beam scatterometry for characterization of samples
CN106471353B (en) The dynamic of the correlation of highly relevant parameter for optical metrology removes
US20190003960A1 (en) Methods and apparatus for polarizing reticle inspection
JP2013533980A (en) Calculation efficiency improvement by repetitive spatial harmonic order truncation
CN104570616B (en) A kind of self-reference scatterometry device and method
US20070024850A1 (en) Complete system identification of film-substrate systems using single-angle-of-incidence ellipsometry: A fast genetic algorithm
TW201350839A (en) Metrology tool with combined X-ray and optical scatterometers
US8027037B2 (en) Method for evaluating microstructures on a workpiece based on the orientation of a grating on the workpiece
TWI634310B (en) Method, system and machine-accessible storage medium for automatically determining fourier harmonic order
TW201209371A (en) Method and system for optical metrology optimization using ray tracing
US20110276319A1 (en) Determination of material optical properties for optical metrology of structures
Liu et al. Novel system for simultaneously measuring the thickness and refractive index of a transparent plate with two optical paths